O O

o o b4 b
PMI:10

14985 3

PMIx: State-of-the-Union

Ralph H. Castain

Intel

Joshua Hursey
IBM

M

P X |
Slack: pmix-workspace.slack.com Lo https://pmix.org

Quick status update

= Library releases
= Standards documents

Application examples
= PMIx Basics: Querying information
= OpenSHMEM
= |nterlibrary coordination
= MPI| Sessions: Dynamic Process Grouping
= Dynamic Programming Models (web only)

Overview Paper

PMIx: Process Management for Exascale Environments

Ralph H. Castain®, Aurelien Bouteiller®!, Joshua Hursey®, David Solt®

@ Intel, Inc.
b The University of Tennessee, Knozville

¢IBM

Abstract

High-Performance Computing (HPC) applications have historically executed in static resource allocations,
using programming models that ran independently from the resident system management stack (SMS).
Achieving exascale performance that is both cost-effective and fits within site-level environmental constraints
will, however, require that the application and SMS collaboratively orchestrate the flow of work to optimize
resource utilization and compensate for on-the-fly faults. The Process Management Interface - Exascale
(PMIx) community is committed to establishing scalable workflow orchestration by defining an abstract
set of interfaces by which not only applications and tools can interact with the resident SMS, but also the
various SMS components can interact with each other. This paper presents a high-level overview of the
goals and current state of the PMIx standard, and lays out a roadmap for future directions.

Ralph H. Castain, Joshua Hursey, Aurelien Bouteiller, David Solt, “PMIx: Process management for exascale
environments”, Parallel Computing, 2018.

https://doi.org/10.1016/j.parco.2018.08.002

https://doi.org/10.1016/j.parco.2018.08.002

Status Snapshot

Standards Documents

= v2.0 released Sept. 27, 2018
= v2.1 (errata/clarifications, Dec.)

= v3.0 (DeC-) Current Library Releases

= v4.0 (1Q19)

https://github.com/pmix/pmix-standard/releases

https://github.com/pmix/pmix-standard/releases

PMIx Standard — In Progress

Clarify terms
= Session, job, application

New chapter detailing namespace registration
data organization

Data retrieval examples

= Application size in multi-app scenarios
= What rank to provide for which data attributes

Status Snapshot

Standards Documents

= v2.0 released Sept. 27, 2018
= v2.1 (errata/clarifications, Dec.)

= v3.0 (DeC-) Current Library Releases

= v4.0 (1Q19)
Reference Implementation

= v3.0 =>v3.1 (DeC) New dstore Full Standard
s y2 1 =>vy2 2 (Dec) Implementation Compliance

What's in the Standard?

v2 => workflow orchestration
= (Ch.7) Job Allocation Management and Reporting, (Ch.8) Event Notification

v3 => tools support
= Security credentials, I/O management

v4 => tools, network, dynamic programming models
= Complete debugger attach/detach/re-attach
Direct and indirect launch

= Fabric topology information (switches, NICs, ...)
Communication cost, connectivity graphs, inventory collection

= PMIx Groups
= Bindings (Python, ...)

Status Snapshot

PRRTE

= Formal releases to begin in Dec. or Jan.
= Ties to external PMIx, libevent, hwloc installations
= Support up thru current head PMIx master branch

Cross-version support
= Regqularly tested, automated script

Help Wanted: Container developers for regular regression testing
= v2.1.1 and above remain interchangeable

= https://pmix.org/support/fag/how-does-pmix-work-with-containers/

https://pmix.org/support/faq/how-does-pmix-work-with-containers/

Adoption Updates

MPI| use-cases

= Re-ordering for load balance
(UTK/ECP)

= Fault management (UTK)

= On-the-fly session
formation/teardown (MPIF)

MPI libraries

- OMPI MPICH, Intel MPI,
HPE-MPI, Spectrum MPI,
FUJltsu MPI

Resource Managers (RMs)

= Slurm, Fujitsu,
IBM's Job Step Manager (JSM),
PBSPro (2019), Kubernetes(?)

Spark, TensorFlow
= Just getting underway

OpenSHMEM
= Multiple implementations

O ©
o

3 4 b
PMI:10

14985 3

Shared Memory Optimizations (ds21)

Artem Y. Polyakov, Joshua S. Ladd, Boris |. Karasev

Mellanox Technologies

A Mellanox update

TECHNOLOGIES

Improvements to intra-node performance
= Highly optimized the intra-node communication component dstor/ds21!1]

Significantly improved the PMIx_Get latency using the 2N-lock algorithm on systems with a large
number of processes per node accessing many keys.

Designed for exascale: Deployed in production on CORAL systems, Summit and Sierra,

POWER9-based systems.

Available in PMIx v2.2, v3.1, and subsequent releases. 1000
= Enabled by default.

PMIx_Get() latency (POWERS system)

100 ¢

pmix/v21 ——
fastp-opt ——
no-lock —»—
2N-lock —=—

Improvements to the SLURM PMIx plug-in
= Added a ring-based PMIx_Fence collective (Slurm v18.08) 10

= Added support for high-performance RDMA point-to-point
via UCX (Slurm v17.11) [2]

= Verified PMIx compatibility through v3.x API (Slurm v18.08) 0 20 40 60 8 100 120 140 160

Number of PMIx clients

latency, us

— 1

[1] Artem Polyakov et al. A Scalable PMIx Database (poster) EuroMPI’18: hittps://eurompiZ2018.bsc.es/sites/default/files/uploaded/dstore _empi2018.pdf
[2] Artem Polyakov PMIx Plugin with UCX Support (SC17), SchedMD Booth talk: hittps:/slurm.schedmd.com/publications.html

https://eurompi2018.bsc.es/sites/default/files/uploaded/dstore_empi2018.pdf
https://slurm.schedmd.com/publications.html

O O

o o b4 b
PMI:10

14985 3

PMIx Basics: Querying Information

Joshua Hursey
IBM

ﬁ) IBM Spectrum MPI
A\t

» https://pmix.org/support/fag/rm-provided-information/
https://pmix.org/support/fag/what-information-is-an-rm-supposed-to-provide/

Harnessing PMIx capabilities

#include <pmix.h>

int main(int argc, char **argv) {
pmix_proc_t myproc, proc_wildcard;
pmix_value_t value;
pmix_value_t *val = &value;

PMIx_Init(&myproc, NULL, 0@);

PMIX_PROC_CONSTRUCT(&proc_wildcard);
(void)strncpy(proc_wildcard.nspace, myproc.nspace, PMIX_MAX_NSLEN);
proc_wildcard.rank = PMIX_RANK_WILDCARD;

PMIx_Get(&proc_wildcard, PMIX_JOB_SIZE, NULL, @, &val);
job_size = val->data.uint3Z;

PMIx_Get(&myproc, PMIX_HOSTNAME, NULL, @, &val);
strncpyChostname, val->data.string, 256);

printf("%d/%d) Hello World from %s\n", myproc.rank, job_size, hostname);

PMIx_Get(&proc_wildcard, PMIX_LOCALLDR, NULL, @, &val); // Lowest rank on this node
printf("%d/%d) Lowest Local Rank: %d\n", myproc.rank, job_size, val->data.rank);
PMIx_Get(&proc_wildcard, PMIX_LOCAL_SIZE, NULL, @, &val); // Number of ranks on this node
printf("%d/%d) Local Ranks: %d\n", myproc.rank, job_size, val->data.uint32);

PMIx_Fence(&proc_wildcard, 1, NULL, @); // Synchronize processes (not required, just for demo)
PMIXx_Finalize(NULL, @); // Cleanup
return 0;

¥

IBM
Systems

https://pmix.org/support/faq/rm-provided-information/
https://pmix.org/support/faq/what-information-is-an-rm-supposed-to-provide/

 https://pmix.org/support/how-to/example-direct-launch-debugger-tool/
https://pmix.org/support/how-to/example-indirect-launch-debugger-tool/

Harnessing PMIx capabilities

volatile bool isdone = false;
static void cbfunc(pmix_status_t status, pmix_info_t *info, size_t ninfo, void *cbdata,
pmix_release_cbfunc_t release_fn, void *release_cbdata)
{
size_t n, 1;
if (0 < ninfo) {
for (n=0; n < ninfo; n++) {
// 1iterate trough the 1info[n].value.data.darray->array of
/*
typedef struct pmix_proc_info { #include <pmix.h>
pmix_proc_t proc; int main(int argc, char **argv) {
char *hostname; pmix_query_t *query;
char *executable_name; char clientspace[PMIX_MAX_NSLEN+1];
pid_t pid; // ... Initialize and setup - PMIx_tool_init()...
int exit_code;
pmix_proc_state_t state; /* get the proctable for this nspace */
} pmix_proc_info_t; PMIX_QUERY_CREATE(query, 1);
*/ PMIX_ARGV_APPEND(rc, query[@].keys, PMIX_QUERY_PROC_TABLE);
} query[@].nqual = 1;
} PMIX_INFO_CREATE(query->qualifiers, query[@].nqual);
PMIX_INFO_LOAD(&query->qualifiers[@], PMIX_NSPACE, clientspace, PMIX_STRING
1f (NULL !'= release_fn) {
release_fn(release_cbdata); if (PMIX_SUCCESS != (rc = PMIx_Query_info_nb(query, 1, cbfunc, NULL))) {
} exit(42);
1sdone = true; 1
} /* wait to get a response */
while(!isdone) { usleep(10); }

¥

O ©
o

3 4 b
PMI:10

14985 3

OSSS OpenSHMEM-on-UCX / Fault Tolerance

Tony Curtis <anthony.curtis@stonybrook.edu>

Dr. Barbara Chapman
Abdullah Shahneous Bari Sayket, Wenbin LU, Wes Suttle
Stony Brook University

https://www.1acs.stonybrook.edu/

mailto:anthony.curtis@stonybrook.edu

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

OpenSHMEM

= Partitioned Global Address Space library
= Take advantage of RDMA

put/get directly to/from remote memory
Atomics, locks A
SIF-)IMEM

Collectives

http://www.openshmem.or
And more... p:/ 2 8/

http://www.openshmem.org/

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

OpenSHMEM: our bit

= Reference Implementation
OSSS + LANL + SBU + Rice + Duke + Rhodes

Wireup/maintenance: PMIx

Communication substrate: UCX
= shm, IB, uGNI, CUDA, ...

OSSS OpenSHMEM-on-UCX

Tony Curtis (SBU), Howard Pritchard (LANL)

Open
SHMEM

http://www.openucx.org/

[Job scheduler]‘:’[$ oshrun -np N pr'ogram

https://github.com/openshmem-org/0sss-ucx
https://pmix.github.io/pmix/

o Reference OpenSHMEM 1.4 ++ Implementation PMIx server

Open Source Software Solutions
LANL
Stony Brook U

_

Rice U / Georgia Tech
= UCX for communications
User and contributor

PMix clien

http://www.open-mpi.org/
https://github.com/pmix/prrte

@ http://www.openshmem.org/

PE #0 D ———————— PE #N-1

| OpenSHMEM AP hmem_long_put shmem_quiet shmem_long_atomic_add ...
OpenSHMEM Collectives API shmemc_put shmemc_quiet shmemc_add64
@ PMix for startup,
rasilience Abstr. Comms API

e Program launch via .
mpiexec: UCP ucp_put ucp_worker_flush ucp_atomic_addé4
Open-MP UCX
PMIx Reference UCcT
RunTime
Environment N

u PRRTE = =

cma knem xpmem

IB

..... GN'

ﬁ U.S. DEPARTMENT OF

ﬁ s"‘& ‘\\\‘ Stony Brook University @ R]C E & L/—jos A'amos EN ERGY

NATIONAL LABORATORY
EL7.094)

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

Reference Implementation
= PMIX/UCX for OpenSHMEM = 1.4
= Also for < 1.4 based on GASNet

= Open-Source @ github
Or my dev repo if you're brave
Our research vehicle

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

Reference Implementation

= PMIX/PRRTE used as 0-0-b startup / launch

= Exchange of wireup info e.g. heap addresses/rkeys
= Rank/locality and other "ambient” queries

= Stays out of the way until OpenSHMEM finalized

= Could kill it once we're up but used for fault tolerance
project

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

Fault Tolerance (NSF) #1

= Project with UTK and Rutgers

= Current OpenSHMEM specification lacks general
fault tolerance (FT) features

= PMIx has basic FT building blocks already
Event handling, process monitoring, job control

= Using these features to build FT API for
OpenSHMEM

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

Fault Tolerance (NSF) #2

= User specifies
Desired process monitoring scheme
Application-specific fault mitigation procedure
= Then our FT API takes care of:
Initiating specified process monitoring
Registering fault mitigation routine with PMIx server

= PMIx takes care of the rest

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

Fault Tolerance (NSF) #3

= Longer-term goal: automated selection and
implementation of FT techniques

= Compiler chooses from a small set of pre-packaged
FT schemes

= Appropriate technique selected based on application
structure and data access patterns

= Compiler implements the scheme at compile-time

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

PMIx @ github

= We try to keep up on the bleeding edge of both PMIx
& PRRTE for development

= But make sure releases work too!

= \We've opened quite a few tickets
Always fixed or nixed quickly!

O ©
o

3 4 b
PMI:10

14985 3

OSSS OpenSHMEM-on-UCX / Fault Tolerance

Open

SHMEM

http://www.openshmem.org/

http://www.openucx.org/

Any (easy) Questions?
Tony Curtis <anthony.curtis@stonybrook.edu>
Dr. Barbara Chapman
Abdullah Shahneous Bari Sayket, Wenbin LU, Wes Suttle

L)

Stony Brook University ;_ﬁ
2 N
https://www.iacs.stonybrook.edu/ X~

mailto:anthony.curtis@stonybrook.edu
http://www.openshmem.org/

O ©
o

3 4 b
PMI:10

14985 3

Runtime Coordination Based on PMIx

Geoffroy Vallee
Oak Ridge National Laboratory

OAK —_
RIDGE E\(\g\\P

National Laboratory . EXASCALE COMPUTING PROJECT

Introduction

Many pre-exascale systems show a fairly
drastic hardware architecture change

= Bigger/complex compute nodes
= Summit: 2 IBM Power-9 CPUs, 6 GPUs per node

Requires most scientific simulations to switch
from pure MPI to a MPI+X paradigm

MPI+OpenMP is a popular solution

Challenges

MPI| and OpenMP are independent communities

Implementations un-aware of each other

= MPI will deploy ranks without any knowledge of the
OpenMP threads that will run under each rank

= OpenMP assumes by default that all available
resources can be used

It is very difficult for users to have a fine-grain control
over application execution

U.S. DOE Exascale Computing Project (ECP)
ECP OMPI-X project
ECP SOLLVE project

Oak Ridge Leadership Computing Facility
(OCLF)

Challenges (2)

Impossible to coordinate runtimes and optimize
resource utilization

= Runtimes independently allocate resources

= No fine-grain & coordinated control over the
placement of MP| ranks and OpenMP threads

= Difficult to express affinity across runtimes
= Difficult to optimize applications

C
O
e

(©

-
-y

)
=

B MPI rank / OpenMP master thread

B OpenMP thread

»
D
9
O
-
=
-
=
)
-
®,

| [m]

B

L0

00
| [m

(0]
| [m]

00
| [m]

0]
| [m]

00
| [m]

0]
| [m]

00
| [m

00
B

00
B

00
| [m

(0]
B

00
B

0]
| [m]

0]

| [m

0]
| [m

(0]

00

Numa Node 1

| [m]

B

20212221212
ojojomo oo
O|l010mO10]0
00| [O0| [E0] | ([mO) mO) oo

010

[
| [m

_|m
| [m]

00
00

|
| [m]

|l
| [m]

0]
00

[
| [m

|l
B

00
00

[
B

_|m
B

00
010

|
| [m]

_|m
| [m

7_u_u

00

00

Numa Node 2

00
00

0]
00

(0]
L0

00
L0

00
L0

00
L0

(0]
L0

00
L0

00
L0

00
L0

0]

00

0]
00

(0]
L0

00
L0

Numa Node 1

00
00

00
00

0]
00

00
L0

(0]
L0

00
010

00
L0

00
L0

00
00

00
L0

(0]
L0

00
00

00
00

00
L0

00
010

00
L0

0]
00

0]
00

00
00

(0]
L0

00
010

Numa Node 2

Desired placement

Node architecture

Proposed Solution

Make all runtimes PMIx aware for data
exchange and notification through events

Key PMIx characteristics
= Distributed key/value store for data exchange

= Asynchronous events for coordination
= Enable interactions with the resource manager

Modification of LLVM OpenMP and Open MPI

Two Use-cases

Fine-grain placement over MPI ranks and
OpenMP threads (prototyping stage)

Inter-runtime progress (design stage)

Fine-grain Placement

Goals

= Explicit placement of MPI| ranks

= Explicit placement of OpenMP threads

= Re-configure MPI+OpenMP Jayout at runtime

Propose the concept of /ayout

= Static layout: explicit definition of ranks and threads
placement at initialization time only

= Dynamic layouts: change placement at runtime

Layout: Example

TN L ICTIRE .. [T T > S
EEEE OO OO|oO AN T]-’
o0 |08(os oo(o8 [OpenMP MPI-0,HT,[[0,1,2,3],[4,5,6,71,18,9.-],
.. .- _10711’-7-_7_12’13’-5-_5_145155-’-_5_161171-1-]’
.- .. I:’D Dl:‘ D DI:] DI:, :187195-7-:7:20,21,-,-:,:22,23,-1-:,:241251-’-]1
Numa Node 26,27 ,-,-],[28,29,-,-],[30,31,-,-],[32,33,34,39],
TIMT MY Y T 36,37,38,39],[40,41,-,-1,[42,43,-,-],[44,45,-,-],
EEEE 0000000000 46,47.-,-1,[48,49,- -]
BN BN EEEEEEEEEE ' _ .
=n/mm|00/08/00/00/50 PO (123 L1 15, 6T]
sl 18,19,21,22],[23,24,25,26],[27,28,-,-],
Numa Node 2 29,30,-,-1,[31,32,-,-],[33,34,-,-],[35,36,-,-],

37,38,39,40],[41,42,43,44],[45,46 -],
Bl MP rank 47 ,48,-,-1,[49,50,-,-1,[61,52,-,-1,[63,54,-,-]]

B OpenMP thread

Static Layouts

New MPI| mapper

= Get the layout specified by the user
= Publish it through PMIx

New MPI| OpenMP Coordination (MOC) helper-
library gets the layout and set OpenMP places
to specify threads will be created placement

No modification to OpenMP standard or runtime

Dynamic Layouts

New API to define phases within the application
= A static layout is deployed for each phase

= Modification of the layout between phases (w/ MOC)
= Well adapted to the nature of some applications

Requires
= OpenMP runtime modifications (LLVM prototype)

Get phases’ layouts and set new places internally
= OpenMP standard modifications to allow dynamicity

Architecture Overview

MPI rank / OpenMP thread

MPI runtime (PMIx client)

Explicit Mapper Layout

MOC library

PMiIx Server

4)

PMix library

OpenMP runtime (PMix client)

Affinity Manager

MOC library

PMiIx library

PMiIx library

MOC ensures inter-runtime data
exchanged (MOC-specific PMIx
keys)

Runtimes are PMIx-aware
Runtimes have a layout-aware
mapper/affinity manager
Respect the separation between
standards, resource manager
and runtimes

Inter-runtime Progress

Runtime usually guarantee internal progress but
are not aware of other runtimes

Runtimes can end up in a deadlock if mutually
waiting for completion

= MPI operation is ready to complete
= Application calls and block in other runtimes

Inter-runtime Progress (2)

Proposed solution

= Runtimes use PMIx to notify of progress

= When a runtime gets a progress notification, it yields
once done with all tasks that can be completed

Currently working on prototyping

Conclusion

There is a real need for making runtimes aware
of each other

PMIx is a privileged option
= Asynchronous / event based

= Data exchange
= Enable interaction with the resource manager

Opens new opportunities for both research and
development (e.g. new project focusing on QoS)

O ©
o

3 4 b
PMI:10

14985 3

MPI| Sessions: Dynamic Proc. Groups

Dan Holmes
EPCC University of Edinburgh

Howard Pritchard, Nathan Hjelm
Los Alamos National Laboratory

AAAAAAAAAAAAAAAAAA

Using PMIx to Help
Replace MPI_Init

14th November 2018
Dan Holmes, Howard Pritchard, Nathan Hjelm

LA-UR-18-30830

Problems with MPI Init

All MPI processes must initialize MPI exactly once

MPI cannot be initialized within an MPI process from different
application components without coordination

MPI cannot be re-initialized after MPI is finalized

Error handling for MPI initialization cannot be specified

Sessions — a new way to start MPI

e General scheme: MPI_Session

e Query the underlying

e Geta “set” of processes Query runtime

: for set of processes
e Determine the processes P

you want

e Create an MPI_Group

e Createacommunicator R!_Grotl

with just those processes
e Createan MPI_Comm
MPI_Comm

MPI Sessions proposed AP|

® Create (or destroy) a session:
® MPI_SESSION_INIT (and MPI_SESSION_FINALIZE)

® Get names of sets of processes:
® MPI_SESSION_GET_NUM_PSETS, MPI_SESSION_GET_NTH_PSET

® Create an MPI_GROUP from a process set name:
® MPI_GROUP_CREATE_FROM_SESSION

® Create an MPI_COMM from an MPI_GROUP: PMIx groups
e MPI COMM _CREATE FROM GROUP helps here

MPI_COMM_CREATE_FROM_GROUP

MPI Create comm from group(IN MPI Group group,
IN const char *uri,
IN MPI Info info,
IN MPI Erhandler hndl,
OUT MPI Comm *comm);

The ‘uri’ is supplied by the application.

Implementation challenge: ‘group’ is a local object.

Need some way to synchronize with other “joiners” to the
communicator. The ‘uri’ is different than a process set

Using PMIx Groups

e PMIx Groups - a collection of processes desiring a unified identifier for
purposes such as passing events or participating in PMIx fence
operations

e Invite/join/leave semantics

e Sessions prototype implementation currently uses
PMIX_Group_construct/PMIX_Group_destruct

e Can be used to generate a “unique” 64-bit identifier for the group.
Used by the sessions prototype to generate a communicator ID.

e Useful options for future work

e Timeout for processes joining the group
@ Asynchronous notification when a process leaves the group

Using PMIx_Group_Construct

PMIx Group Construct(const char id[],
const pmix proc t procs]],
const pmix info t info[],
size t ninfo);

e ‘id’ maps to/from the ‘uri’ in MPI_Comm_create_from_group
(plus additional Open MPI internal info)

e ‘procs’ array comes from information previously supplied by PMIx
o “mpi://world” and “mpi://self” already available

o mpiexec-np 2 --pset user://ocean ocean.x: \ s
-np 2 --pset user://atmosphere atmosplq,\eﬁgqg)g‘e -
K\ :
\NOf

MPI Sessions Prototype Status

o Al“MPI_*_from_group” functions have been implemented
® Only pml/obl supported at this time

® Working on MPI_Group creation (from PSET) now
e Will start with mpi://world and mpi://self
e User-defined process sets need additional support from PMIx

® Up next: break apart MPl initialization

® Goalistoreduce startup time and memory footprint

Summary

® PMIx Groups provides an OOB mechanism for MPI processes to
bootstrap the formation of a communication context (MPI
Communicator) from a group of MPI processes

® Functionality for future work
® Handling (unexpected) process exit

® User-defined process sets

® Group expansion

Funding Acknowledgments

O ©
o

3 4 b
PMI:10

14985 3

Q&A

Useful Links:

General Information: hitps://pmix.org/

PMIx Library: https://github.com/pmix/pmix

PMIx Reference RunTime Environment (PRRTE): hitps://github.com/pmix/prrie
PMIx Standard: hitps://github.com/pmix/pmix-standard

Slack: pmix-workspace.slack.com

https://pmix.org/
https://github.com/pmix/pmix
https://github.com/pmix/prrte
https://github.com/pmix/pmix-standard

