
Ralph H. Castain
Intel

Joshua Hursey
IBM

PMIx: State-of-the-Union

https://pmix.orgSlack: pmix-workspace.slack.com

Agenda
• Quick status update

§ Library releases
§ Standards documents

• Application examples
§ PMIx Basics: Querying information
§ OpenSHMEM
§ Interlibrary coordination
§ MPI Sessions: Dynamic Process Grouping
§ Dynamic Programming Models (web only)

Ralph H. Castain, Joshua Hursey, Aurelien Bouteiller, David Solt, “PMIx: Process management for exascale
environments”, Parallel Computing, 2018.

https://doi.org/10.1016/j.parco.2018.08.002

Overview Paper

https://doi.org/10.1016/j.parco.2018.08.002

• Standards Documents
§ v2.0 released Sept. 27, 2018
§ v2.1 (errata/clarifications, Dec.)
§ v3.0 (Dec.)
§ v4.0 (1Q19)

Status Snapshot

Current Library Releases

https://github.com/pmix/pmix-standard/releases

https://github.com/pmix/pmix-standard/releases

• Clarify terms
§ Session, job, application

• New chapter detailing namespace registration
data organization
• Data retrieval examples

§ Application size in multi-app scenarios
§ What rank to provide for which data attributes

PMIx Standard – In Progress

• Standards Documents
§ v2.0 released Sept. 27, 2018
§ v2.1 (errata/clarifications, Dec.)
§ v3.0 (Dec.)
§ v4.0 (1Q19)

• Reference Implementation
§ v3.0 => v3.1 (Dec)
§ v2.1 => v2.2 (Dec)

Status Snapshot

Current Library Releases

New dstore
implementation

Full Standard
Compliance

• v2 => workflow orchestration
§ (Ch.7) Job Allocation Management and Reporting, (Ch.8) Event Notification

• v3 => tools support
§ Security credentials, I/O management

• v4 => tools, network, dynamic programming models
§ Complete debugger attach/detach/re-attach

• Direct and indirect launch
§ Fabric topology information (switches, NICs, …)

• Communication cost, connectivity graphs, inventory collection
§ PMIx Groups
§ Bindings (Python, …)

What’s in the Standard?

• PRRTE
§ Formal releases to begin in Dec. or Jan.
§ Ties to external PMIx, libevent, hwloc installations
§ Support up thru current head PMIx master branch

• Cross-version support
§ Regularly tested, automated script

• Help Wanted: Container developers for regular regression testing
§ v2.1.1 and above remain interchangeable
§ https://pmix.org/support/faq/how-does-pmix-work-with-containers/

Status Snapshot

https://pmix.org/support/faq/how-does-pmix-work-with-containers/

Adoption Updates
• MPI use-cases

§ Re-ordering for load balance
(UTK/ECP)

§ Fault management (UTK)
§ On-the-fly session

formation/teardown (MPIF)
• MPI libraries

§ OMPI, MPICH, Intel MPI,
HPE-MPI, Spectrum MPI,
Fujitsu MPI

• Resource Managers (RMs)
§ Slurm, Fujitsu,

IBM’s Job Step Manager (JSM),
PBSPro (2019), Kubernetes(?)

• Spark, TensorFlow
§ Just getting underway

• OpenSHMEM
§ Multiple implementations

Artem Y. Polyakov, Joshua S. Ladd, Boris I. Karasev
Mellanox Technologies

Shared Memory Optimizations (ds21)

• Improvements to intra-node performance
§ Highly optimized the intra-node communication component dstor/ds21[1]

• Significantly improved the PMIx_Get latency using the 2N-lock algorithm on systems with a large
number of processes per node accessing many keys.

• Designed for exascale: Deployed in production on CORAL systems, Summit and Sierra,
POWER9-based systems.

• Available in PMIx v2.2, v3.1, and subsequent releases.
§ Enabled by default.

• Improvements to the SLURM PMIx plug-in
§ Added a ring-based PMIx_Fence collective (Slurm v18.08)
§ Added support for high-performance RDMA point-to-point

via UCX (Slurm v17.11) [2]

§ Verified PMIx compatibility through v3.x API (Slurm v18.08)

[1] Artem Polyakov et al. A Scalable PMIx Database (poster) EuroMPI’18: https://eurompi2018.bsc.es/sites/default/files/uploaded/dstore_empi2018.pdf
[2] Artem Polyakov PMIx Plugin with UCX Support (SC17), SchedMD Booth talk: https://slurm.schedmd.com/publications.html

Mellanox update

PMIx_Get() latency (POWER8 system)

https://eurompi2018.bsc.es/sites/default/files/uploaded/dstore_empi2018.pdf
https://slurm.schedmd.com/publications.html

Joshua Hursey
IBM

PMIx Basics: Querying Information

IBM
Systems

Harnessing PMIx capabilities
#include <pmix.h>
int main(int argc, char **argv) {

pmix_proc_t myproc, proc_wildcard;
pmix_value_t value;
pmix_value_t *val = &value;

PMIx_Init(&myproc, NULL, 0);
PMIX_PROC_CONSTRUCT(&proc_wildcard);
(void)strncpy(proc_wildcard.nspace, myproc.nspace, PMIX_MAX_NSLEN);
proc_wildcard.rank = PMIX_RANK_WILDCARD;

PMIx_Get(&proc_wildcard, PMIX_JOB_SIZE, NULL, 0, &val);
job_size = val->data.uint32;
PMIx_Get(&myproc, PMIX_HOSTNAME, NULL, 0, &val);
strncpy(hostname, val->data.string, 256);

printf("%d/%d) Hello World from %s\n", myproc.rank, job_size, hostname);

PMIx_Get(&proc_wildcard, PMIX_LOCALLDR, NULL, 0, &val); // Lowest rank on this node
printf("%d/%d) Lowest Local Rank: %d\n", myproc.rank, job_size, val->data.rank);
PMIx_Get(&proc_wildcard, PMIX_LOCAL_SIZE, NULL, 0, &val); // Number of ranks on this node
printf("%d/%d) Local Ranks: %d\n", myproc.rank, job_size, val->data.uint32);

PMIx_Fence(&proc_wildcard, 1, NULL, 0); // Synchronize processes (not required, just for demo)
PMIx_Finalize(NULL, 0); // Cleanup
return 0;

}

• https://pmix.org/support/faq/rm-provided-information/
• https://pmix.org/support/faq/what-information-is-an-rm-supposed-to-provide/

https://pmix.org/support/faq/rm-provided-information/
https://pmix.org/support/faq/what-information-is-an-rm-supposed-to-provide/

IBM
Systems

Harnessing PMIx capabilities
volatile bool isdone = false;
static void cbfunc(pmix_status_t status, pmix_info_t *info, size_t ninfo, void *cbdata,

pmix_release_cbfunc_t release_fn, void *release_cbdata)
{

size_t n, i;
if (0 < ninfo) {

for (n=0; n < ninfo; n++) {
// iterate trough the info[n].value.data.darray->array of

/*
typedef struct pmix_proc_info {

pmix_proc_t proc;
char *hostname;
char *executable_name;
pid_t pid;
int exit_code;
pmix_proc_state_t state;

} pmix_proc_info_t;
*/

}
}

if (NULL != release_fn) {
release_fn(release_cbdata);

}
isdone = true;

}

• https://pmix.org/support/how-to/example-direct-launch-debugger-tool/
• https://pmix.org/support/how-to/example-indirect-launch-debugger-tool/

#include <pmix.h>
int main(int argc, char **argv) {

pmix_query_t *query;
char clientspace[PMIX_MAX_NSLEN+1];
// ... Initialize and setup – PMIx_tool_init()...

/* get the proctable for this nspace */
PMIX_QUERY_CREATE(query, 1);
PMIX_ARGV_APPEND(rc, query[0].keys, PMIX_QUERY_PROC_TABLE);
query[0].nqual = 1;
PMIX_INFO_CREATE(query->qualifiers, query[0].nqual);
PMIX_INFO_LOAD(&query->qualifiers[0], PMIX_NSPACE, clientspace, PMIX_STRING);

if (PMIX_SUCCESS != (rc = PMIx_Query_info_nb(query, 1, cbfunc, NULL))) {
exit(42);

}
/* wait to get a response */
while(!isdone) { usleep(10); }
// ... Finalize and cleanup

}

Tony Curtis <anthony.curtis@stonybrook.edu>
Dr. Barbara Chapman

Abdullah Shahneous Bari Sayket, Wenbin Lü, Wes Suttle
Stony Brook University

OSSS OpenSHMEM-on-UCX / Fault Tolerance

https://www.iacs.stonybrook.edu/

mailto:anthony.curtis@stonybrook.edu

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• OpenSHMEM
§ Partitioned Global Address Space library
§ Take advantage of RDMA

• put/get directly to/from remote memory
• Atomics, locks
• Collectives
• And more…

http://www.openshmem.org/

http://www.openshmem.org/

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• OpenSHMEM: our bit
§ Reference Implementation

• OSSS + LANL + SBU + Rice + Duke + Rhodes

• Wireup/maintenance: PMIx
• Communication substrate: UCX

§ shm, IB, uGNI, CUDA, …

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• Reference Implementation
§ PMIx/UCX for OpenSHMEM ≥ 1.4
§ Also for < 1.4 based on GASNet
§ Open-Source @ github

• Or my dev repo if you’re brave
• Our research vehicle

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• Reference Implementation
§ PMIx/PRRTE used as o-o-b startup / launch
§ Exchange of wireup info e.g. heap addresses/rkeys
§ Rank/locality and other “ambient” queries
§ Stays out of the way until OpenSHMEM finalized
§ Could kill it once we’re up but used for fault tolerance

project

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• Fault Tolerance (NSF) #1
§ Project with UTK and Rutgers
§ Current OpenSHMEM specification lacks general

fault tolerance (FT) features
§ PMIx has basic FT building blocks already

• Event handling, process monitoring, job control
§ Using these features to build FT API for

OpenSHMEM

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• Fault Tolerance (NSF) #2
§ User specifies

• Desired process monitoring scheme
• Application-specific fault mitigation procedure

§ Then our FT API takes care of:
• Initiating specified process monitoring
• Registering fault mitigation routine with PMIx server

§ PMIx takes care of the rest

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• Fault Tolerance (NSF) #3
§ Longer-term goal: automated selection and

implementation of FT techniques
§ Compiler chooses from a small set of pre-packaged

FT schemes
§ Appropriate technique selected based on application

structure and data access patterns
§ Compiler implements the scheme at compile-time

PMIx@SC18: OSSS OpenSHMEM-on-UCX / Fault Tolerance

• PMIx @ github
§ We try to keep up on the bleeding edge of both PMIx

& PRRTE for development
§ But make sure releases work too!
§ We’ve opened quite a few tickets

• Always fixed or nixed quickly!

Any (easy) Questions?
Tony Curtis <anthony.curtis@stonybrook.edu>

Dr. Barbara Chapman
Abdullah Shahneous Bari Sayket, Wenbin Lü, Wes Suttle

Stony Brook University

OSSS OpenSHMEM-on-UCX / Fault Tolerance

https://www.iacs.stonybrook.edu/

http://www.openshmem.org/

http://www.openucx.org/

mailto:anthony.curtis@stonybrook.edu
http://www.openshmem.org/

Geoffroy Vallee
Oak Ridge National Laboratory

Runtime Coordination Based on PMIx

Introduction
• Many pre-exascale systems show a fairly

drastic hardware architecture change
§ Bigger/complex compute nodes
§ Summit: 2 IBM Power-9 CPUs, 6 GPUs per node

• Requires most scientific simulations to switch
from pure MPI to a MPI+X paradigm
• MPI+OpenMP is a popular solution

Challenges
• MPI and OpenMP are independent communities
• Implementations un-aware of each other

§ MPI will deploy ranks without any knowledge of the
OpenMP threads that will run under each rank

§ OpenMP assumes by default that all available
resources can be used

It is very difficult for users to have a fine-grain control
over application execution

Context

• U.S. DOE Exascale Computing Project (ECP)
• ECP OMPI-X project
• ECP SOLLVE project
• Oak Ridge Leadership Computing Facility

(OCLF)

Challenges (2)
• Impossible to coordinate runtimes and optimize

resource utilization
§ Runtimes independently allocate resources
§ No fine-grain & coordinated control over the

placement of MPI ranks and OpenMP threads
§ Difficult to express affinity across runtimes
§ Difficult to optimize applications

Illustration
• On Summit nodes

Numa Node 1

Numa Node 2

GPU
GPU
GPU

GPU
GPU
GPU

Node architecture

Numa Node 1

Numa Node 2

GPU
GPU
GPU

GPU
GPU
GPU

Desired placement

MPI rank / OpenMP master thread
OpenMP thread

Proposed Solution
• Make all runtimes PMIx aware for data

exchange and notification through events
• Key PMIx characteristics

§ Distributed key/value store for data exchange
§ Asynchronous events for coordination
§ Enable interactions with the resource manager

• Modification of LLVM OpenMP and Open MPI

Two Use-cases

• Fine-grain placement over MPI ranks and
OpenMP threads (prototyping stage)
• Inter-runtime progress (design stage)

Fine-grain Placement
• Goals

§ Explicit placement of MPI ranks
§ Explicit placement of OpenMP threads
§ Re-configure MPI+OpenMP layout at runtime

• Propose the concept of layout
§ Static layout: explicit definition of ranks and threads

placement at initialization time only
§ Dynamic layouts: change placement at runtime

Layout: Example

→

Static Layouts
• New MPI mapper

§ Get the layout specified by the user
§ Publish it through PMIx

• New MPI OpenMP Coordination (MOC) helper-
library gets the layout and set OpenMP places
to specify threads will be created placement
• No modification to OpenMP standard or runtime

Dynamic Layouts
• New API to define phases within the application

§ A static layout is deployed for each phase
§ Modification of the layout between phases (w/ MOC)
§ Well adapted to the nature of some applications

• Requires
§ OpenMP runtime modifications (LLVM prototype)

• Get phases’ layouts and set new places internally
§ OpenMP standard modifications to allow dynamicity

Architecture Overview

• MOC ensures inter-runtime data
exchanged (MOC-specific PMIx
keys)

• Runtimes are PMIx-aware
• Runtimes have a layout-aware

mapper/affinity manager
• Respect the separation between

standards, resource manager
and runtimes

Inter-runtime Progress
• Runtime usually guarantee internal progress but

are not aware of other runtimes
• Runtimes can end up in a deadlock if mutually

waiting for completion
§ MPI operation is ready to complete
§ Application calls and block in other runtimes

Inter-runtime Progress (2)
• Proposed solution

§ Runtimes use PMIx to notify of progress
§ When a runtime gets a progress notification, it yields

once done with all tasks that can be completed
• Currently working on prototyping

Conclusion
• There is a real need for making runtimes aware

of each other
• PMIx is a privileged option

§ Asynchronous / event based
§ Data exchange
§ Enable interaction with the resource manager

• Opens new opportunities for both research and
development (e.g. new project focusing on QoS)

Dan Holmes
EPCC University of Edinburgh

Howard Pritchard, Nathan Hjelm
Los Alamos National Laboratory

MPI Sessions: Dynamic Proc. Groups

Using PMIx to Help
Replace MPI_Init

14th November 2018
Dan Holmes, Howard Pritchard, Nathan Hjelm

LA-UR-18-30830

Problems with MPI_Init
● All MPI processes must initialize MPI exactly once

● MPI cannot be initialized within an MPI process from different
application components without coordination

● MPI cannot be re-initialized after MPI is finalized

● Error handling for MPI initialization cannot be specified

Sessions – a new way to start MPI
● General scheme:

● Query the underlying
run-time system
● Get a “set” of processes

● Determine the processes
you want
● Create an MPI_Group

● Create a communicator
with just those processes
● Create an MPI_Comm

Query runtime
for set of processes

MPI_Group

MPI_Comm

MPI_Session

Could be PMIx

MPI Sessions proposed API
● Create (or destroy) a session:

● MPI_SESSION_INIT (and MPI_SESSION_FINALIZE)

● Get names of sets of processes:
● MPI_SESSION_GET_NUM_PSETS, MPI_SESSION_GET_NTH_PSET

● Create an MPI_GROUP from a process set name:
● MPI_GROUP_CREATE_FROM_SESSION

● Create an MPI_COMM from an MPI_GROUP:
● MPI_COMM_CREATE_FROM_GROUP

PMIx groups
helps here

MPI_COMM_CREATE_FROM_GROUP

The ‘uri’ is supplied by the application.
Implementation challenge: ‘group’ is a local object.
Need some way to synchronize with other “joiners” to the
communicator. The ‘uri’ is different than a process set
name.

MPI_Create_comm_from_group(IN MPI_Group group,
IN const char *uri,
IN MPI_Info info,
IN MPI_Erhandler hndl,
OUT MPI_Comm *comm);

Using PMIx Groups

● PMIx Groups - a collection of processes desiring a unified identifier for
purposes such as passing events or participating in PMIx fence
operations

● Invite/join/leave semantics

● Sessions prototype implementation currently uses
PMIX_Group_construct/PMIX_Group_destruct

● Can be used to generate a “unique” 64-bit identifier for the group.
Used by the sessions prototype to generate a communicator ID.

● Useful options for future work

● Timeout for processes joining the group
● Asynchronous notification when a process leaves the group

Using PMIx_Group_Construct

● ‘id’ maps to/from the ‘uri’ in MPI_Comm_create_from_group
(plus additional Open MPI internal info)

● ‘procs’ array comes from information previously supplied by PMIx

○ “mpi://world” and “mpi://self” already available

○ mpiexec -np 2 --pset user://ocean ocean.x : \
-np 2 --pset user://atmosphere atmosphere.x

PMIx_Group_Construct(const char id[],
const pmix_proc_t procs[],
const pmix_info_t info[],
size_t ninfo);

Work in progress

MPI Sessions Prototype Status

● All “MPI_*_from_group” functions have been implemented
● Only pml/ob1 supported at this time

● Working on MPI_Group creation (from PSET) now
● Will start with mpi://world and mpi://self
● User-defined process sets need additional support from PMIx

● Up next: break apart MPI initialization
● Goal is to reduce startup time and memory footprint

Summary

● PMIx Groups provides an OOB mechanism for MPI processes to
bootstrap the formation of a communication context (MPI
Communicator) from a group of MPI processes

● Functionality for future work

● Handling (unexpected) process exit

● User-defined process sets

● Group expansion

Funding Acknowledgments

Useful Links:
General Information: https://pmix.org/
PMIx Library: https://github.com/pmix/pmix
PMIx Reference RunTime Environment (PRRTE): https://github.com/pmix/prrte
PMIx Standard: https://github.com/pmix/pmix-standard
Slack: pmix-workspace.slack.com

Q&A

https://pmix.org/
https://github.com/pmix/pmix
https://github.com/pmix/prrte
https://github.com/pmix/pmix-standard

