


1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.4

1.4.1

1.5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.7

1.7.1

1.7.2

Table	of	Contents
Elixir	Getting	Started

Introduction

Interactive	mode

Installation

Running	scripts

Asking	questions

Basic	types

Basic	arithmetic

Booleans

Atoms

Strings

Anonymous	functions

Tuples

(Linked)	Lists

Lists	or	tuples?

Basic	operators

Operator	table

Pattern	matching

The	match	operator

Pattern	matching

The	pin	operator

case,	cond	and	if

case

Expressions	in	guard	clauses

cond

if	and	unless

do/end	blocks

Binaries,	strings,	and	char	lists

UTF-8	and	Unicode

Binaries	(and	bitstrings)

2



1.7.3

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.10

1.10.1

1.10.2

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.14

1.14.1

1.14.2

Char	lists

Keywords	and	maps

Keyword	lists

Maps

Nested	data	structures

Modules

Compilation

Scripted	mode

Named	functions

Function	capturing

Default	arguments

Recursion

Loops	through	recursion

Reduce	and	map	algorithms

Enumerables	and	Streams

Enumerables

Eager	vs	Lazy

The	pipe	operator

Streams

Processes

spawn

send	and	receive

Links

Tasks

State

IO	and	the	file	system

The	IO	module

The	File	module

The	Path	module

Processes	and	group	leaders

iodata	and	chardata

alias,	require	and	import

alias

require

3



1.14.3

1.14.4

1.14.5

1.14.6

1.14.7

1.15

1.15.1

1.15.2

1.15.3

1.16

1.16.1

1.16.2

1.16.3

1.17

1.17.1

1.17.2

1.17.3

1.18

1.18.1

1.18.2

1.18.3

1.18.4

1.19

1.19.1

1.19.2

1.19.3

1.19.4

1.20

1.20.1

1.20.2

1.20.3

1.20.4

1.20.5

import

use

Understanding	Aliases

Module	nesting

Multi	alias/import/require/use

Module	attributes

As	annotations

As	constants

As	temporary	storage

Structs

Defining	structs

Accessing	and	updating	structs

Structs	are	bare	maps	underneath

Protocols

Protocols	and	structs

Implementing	Any

Built-in	protocols

Comprehensions

Protocol	consolidation

Generators	and	filters

Bitstring	generators

The	:into	option

Sigils

Strings,	char	lists	and	words	sigils

Regular	expressions

Interpolation	and	escaping	in	sigils

Custom	sigils

try,	catch	and	rescue

Errors

Throws

Exits

After

Variables	scope

4



1.21

1.21.1

1.21.2

1.22

1.22.1

1.22.2

1.22.3

1.22.4

1.22.5

1.22.6

1.22.7

1.22.8

1.22.9

1.23

1.23.1

1.23.2

1.23.3

1.23.4

Typespecs	and	behaviours

Types	and	specs

Behaviours

Erlang	libraries

The	binary	module

Formatted	text	output

The	crypto	module

The	digraph	module

Erlang	Term	Storage

The	math	module

The	queue	module

The	rand	module

The	zip	and	zlib	modules

Where	to	go	next

Build	your	first	Elixir	project

Meta-programming

A	byte	of	Erlang

Community	and	other	resources

5



Elixir	Getting	Started

Elixir	Getting	Started

6



Introduction
Welcome!

In	this	tutorial	we	are	going	to	teach	you	the	Elixir	foundation,	the	language	syntax,	how	to
define	modules,	how	to	manipulate	the	characteristics	of	common	data	structures	and	more.
This	chapter	will	focus	on	ensuring	Elixir	is	installed	and	that	you	can	successfully	run	Elixir's
Interactive	Shell,	called	IEx.

Our	requirements	are:

Elixir	-	Version	1.2.0	onwards
Erlang	-	Version	18.0	onwards

Let's	get	started!

If	you	find	any	errors	in	the	tutorial	or	on	the	website,	please	report	a	bug	or	send	a	pull
request	to	our	issue	tracker.

Introduction

7

https://github.com/elixir-lang/elixir-lang.github.com


Interactive	mode
When	you	install	Elixir,	you	will	have	three	new	executables:		iex	,		elixir		and		elixirc	.	If
you	compiled	Elixir	from	source	or	are	using	a	packaged	version,	you	can	find	these	inside
the		bin		directory.

For	now,	let's	start	by	running		iex		(or		iex.bat		if	you	are	on	Windows)	which	stands	for
Interactive	Elixir.	In	interactive	mode,	we	can	type	any	Elixir	expression	and	get	its	result.
Let's	warm	up	with	some	basic	expressions.

Open	up		iex		and	type	the	following	expressions:

Interactive	Elixir	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex>	40	+	2

42

iex>	"hello"	<>	"	world"

"hello	world"

It	seems	we	are	ready	to	go!	We	will	use	the	interactive	shell	quite	a	lot	in	the	next	chapters
to	get	a	bit	more	familiar	with	the	language	constructs	and	basic	types,	starting	in	the	next
chapter.

Note:	if	you	are	on	Windows,	you	can	also	try		iex.bat	--werl		which	may	provide	a
better	experience	depending	on	which	console	you	are	using.

Interactive	mode

8



Installation
If	you	still	haven't	installed	Elixir,	run	to	our	installation	page.	Once	you	are	done,	you	can
run		elixir	-v		to	get	the	current	Elixir	version.

Installation

9



Running	scripts
After	getting	familiar	with	the	basics	of	the	language	you	may	want	to	try	writing	simple
programs.	This	can	be	accomplished	by	putting	the	following	Elixir	code	into	a	file:

IO.puts	"Hello	world	from	Elixir"

Save	it	as		simple.exs		and	execute	it	with		elixir	:

$	elixir	simple.exs

Hello	world	from	Elixir

Later	on	we	will	learn	how	to	compile	Elixir	code	(in	Chapter	8)	and	how	to	use	the	Mix	build
tool	(in	the	Mix	&	OTP	guide).	For	now,	let's	move	on	to	Chapter	2.

Running	scripts

10



Asking	questions
When	going	through	this	getting	started	guide,	it	is	common	to	have	questions,	after	all,	that
is	part	of	the	learning	process!	There	are	many	places	you	could	ask	them	to	learn	more
about	Elixir:

elixir-lang	on	freenode	IRC
Elixir	on	Slack
Elixir	Forum
elixir-talk	mailing	list
elixir	tag	on	StackOverflow

When	asking	questions,	remember	these	two	tips:

Instead	of	asking	"how	to	do	X	in	Elixir",	ask	"how	to	solve	Y	in	Elixir".	In	other	words,
don't	ask	how	to	implement	a	particular	solution,	instead	describe	the	problem	at	hand.
Stating	the	problem	gives	more	context	and	less	bias	for	a	correct	answer.

In	case	things	are	not	working	as	expected,	please	include	as	much	information	as	you
can	in	your	report,	for	example:	your	Elixir	version,	the	code	snippet	and	the	error
message	alongside	the	error	stacktrace.	Use	sites	like	Gist	to	paste	this	information.

Asking	questions

11

https://elixir-slackin.herokuapp.com/
http://elixirforum.com
https://groups.google.com/group/elixir-lang-talk
https://stackoverflow.com/questions/tagged/elixir
https://gist.github.com/


Basic	types
In	this	chapter	we	will	learn	more	about	Elixir	basic	types:	integers,	floats,	booleans,	atoms,
strings,	lists	and	tuples.	Some	basic	types	are:

iex>	1										#	integer

iex>	0x1F							#	integer

iex>	1.0								#	float

iex>	true							#	boolean

iex>	:atom						#	atom	/	symbol

iex>	"elixir"			#	string

iex>	[1,	2,	3]		#	list

iex>	{1,	2,	3}		#	tuple

Basic	types

12



Basic	arithmetic
Open	up		iex		and	type	the	following	expressions:

iex>	1	+	2

3

iex>	5	*	5

25

iex>	10	/	2

5.0

Notice	that		10	/	2		returned	a	float		5.0		instead	of	an	integer		5	.	This	is	expected.	In
Elixir,	the	operator		/		always	returns	a	float.	If	you	want	to	do	integer	division	or	get	the
division	remainder,	you	can	invoke	the		div		and		rem		functions:

iex>	div(10,	2)

5

iex>	div	10,	2

5

iex>	rem	10,	3

1

Notice	that	parentheses	are	not	required	in	order	to	invoke	a	function.

Elixir	also	supports	shortcut	notations	for	entering	binary,	octal	and	hexadecimal	numbers:

iex>	0b1010

10

iex>	0o777

511

iex>	0x1F

31

Float	numbers	require	a	dot	followed	by	at	least	one	digit	and	also	support		e		for	the
exponent	number:

iex>	1.0

1.0

iex>	1.0e-10

1.0e-10

Floats	in	Elixir	are	64	bit	double	precision.

Basic	arithmetic

13



You	can	invoke	the		round		function	to	get	the	closest	integer	to	a	given	float,	or	the		trunc	
function	to	get	the	integer	part	of	a	float.

iex>	round(3.58)

4

iex>	trunc(3.58)

3

Basic	arithmetic

14



Booleans
Elixir	supports		true		and		false		as	booleans:

iex>	true

true

iex>	true	==	false

false

Elixir	provides	a	bunch	of	predicate	functions	to	check	for	a	value	type.	For	example,	the
	is_boolean/1		function	can	be	used	to	check	if	a	value	is	a	boolean	or	not:

Note:	Functions	in	Elixir	are	identified	by	name	and	by	number	of	arguments	(i.e.	arity).
Therefore,		is_boolean/1		identifies	a	function	named		is_boolean		that	takes	1
argument.		is_boolean/2		identifies	a	different	(nonexistent)	function	with	the	same
name	but	different	arity.

iex>	is_boolean(true)

true

iex>	is_boolean(1)

false

You	can	also	use		is_integer/1	,		is_float/1		or		is_number/1		to	check,	respectively,	if	an
argument	is	an	integer,	a	float	or	either.

Note:	At	any	moment	you	can	type		h		in	the	shell	to	print	information	on	how	to	use	the
shell.	The		h		helper	can	also	be	used	to	access	documentation	for	any	function.	For
example,	typing		h	is_integer/1		is	going	to	print	the	documentation	for	the
	is_integer/1		function.	It	also	works	with	operators	and	other	constructs	(try		h	==/2	).

Booleans

15



Atoms
Atoms	are	constants	where	their	name	is	their	own	value.	Some	other	languages	call	these
symbols:

iex>	:hello

:hello

iex>	:hello	==	:world

false

The	booleans		true		and		false		are,	in	fact,	atoms:

iex>	true	==	:true

true

iex>	is_atom(false)

true

iex>	is_boolean(:false)

true

Atoms

16



Strings
Strings	in	Elixir	are	inserted	between	double	quotes,	and	they	are	encoded	in	UTF-8:

iex>	"hellö"

"hellö"

Note:	if	you	are	running	on	Windows,	there	is	a	chance	your	terminal	does	not	use
UTF-8	by	default.	You	can	change	the	encoding	of	your	current	session	by	running
	chcp	65001		before	entering	IEx.

Elixir	also	supports	string	interpolation:

iex>	"hellö	#{:world}"

"hellö	world"

Strings	can	have	line	breaks	in	them.	You	can	introduce	them	using	escape	sequences:

iex>	"hello

...>	world"

"hello\nworld"

iex>	"hello\nworld"

"hello\nworld"

You	can	print	a	string	using	the		IO.puts/1		function	from	the		IO		module:

iex>	IO.puts	"hello\nworld"

hello

world

:ok

Notice	the		IO.puts/1		function	returns	the	atom		:ok		as	result	after	printing.

Strings	in	Elixir	are	represented	internally	by	binaries	which	are	sequences	of	bytes:

iex>	is_binary("hellö")

true

We	can	also	get	the	number	of	bytes	in	a	string:

Strings

17



iex>	byte_size("hellö")

6

Notice	the	number	of	bytes	in	that	string	is	6,	even	though	it	has	5	characters.	That's
because	the	character	"ö"	takes	2	bytes	to	be	represented	in	UTF-8.	We	can	get	the	actual
length	of	the	string,	based	on	the	number	of	characters,	by	using	the		String.length/1	
function:

iex>	String.length("hellö")

5

The	String	module	contains	a	bunch	of	functions	that	operate	on	strings	as	defined	in	the
Unicode	standard:

iex>	String.upcase("hellö")

"HELLÖ"

Strings

18



Anonymous	functions
Functions	are	delimited	by	the	keywords		fn		and		end	:

iex>	add	=	fn	a,	b	->	a	+	b	end

#Function<12.71889879/2	in	:erl_eval.expr/5>

iex>	is_function(add)

true

iex>	is_function(add,	2)

true

iex>	is_function(add,	1)

false

iex>	add.(1,	2)

3

Functions	are	"first	class	citizens"	in	Elixir	meaning	they	can	be	passed	as	arguments	to
other	functions	just	as	integers	and	strings	can.	In	the	example,	we	have	passed	the	function
in	the	variable		add		to	the		is_function/1		function	which	correctly	returned		true	.	We	can
also	check	the	arity	of	the	function	by	calling		is_function/2	.

Note	a	dot	(	.	)	between	the	variable	and	parenthesis	is	required	to	invoke	an	anonymous
function.

Anonymous	functions	are	closures	and	as	such	they	can	access	variables	that	are	in	scope
when	the	function	is	defined.	Let's	define	a	new	anonymous	function	that	uses	the		add	
anonymous	function	we	have	previously	defined:

iex>	double	=	fn	a	->	add.(a,	a)	end

#Function<6.71889879/1	in	:erl_eval.expr/5>

iex>	double.(2)

4

Keep	in	mind	a	variable	assigned	inside	a	function	does	not	affect	its	surrounding
environment:

iex>	x	=	42

42

iex>	(fn	->	x	=	0	end).()

0

iex>	x

42

Anonymous	functions

19



The	capture	syntax		&amp;()		can	also	be	used	for	creating	anonymous	functions.	This	type
of	syntax	will	be	discussed	in	Chapter	8.

Anonymous	functions

20



Tuples
Elixir	uses	curly	brackets	to	define	tuples.	Like	lists,	tuples	can	hold	any	value:

iex>	{:ok,	"hello"}

{:ok,	"hello"}

iex>	tuple_size	{:ok,	"hello"}

2

Tuples	store	elements	contiguously	in	memory.	This	means	accessing	a	tuple	element	per
index	or	getting	the	tuple	size	is	a	fast	operation.	Indexes	start	from	zero:

iex>	tuple	=	{:ok,	"hello"}

{:ok,	"hello"}

iex>	elem(tuple,	1)

"hello"

iex>	tuple_size(tuple)

2

It	is	also	possible	to	put	an	element	at	a	particular	index	in	a	tuple	with		put_elem/3	:

iex>	tuple	=	{:ok,	"hello"}

{:ok,	"hello"}

iex>	put_elem(tuple,	1,	"world")

{:ok,	"world"}

iex>	tuple

{:ok,	"hello"}

Notice	that		put_elem/3		returned	a	new	tuple.	The	original	tuple	stored	in	the		tuple	
variable	was	not	modified	because	Elixir	data	types	are	immutable.	By	being	immutable,
Elixir	code	is	easier	to	reason	about	as	you	never	need	to	worry	if	a	particular	code	is
mutating	your	data	structure	in	place.

Tuples

21



(Linked)	Lists
Elixir	uses	square	brackets	to	specify	a	list	of	values.	Values	can	be	of	any	type:

iex>	[1,	2,	true,	3]

[1,	2,	true,	3]

iex>	length	[1,	2,	3]

3

Two	lists	can	be	concatenated	and	subtracted	using	the		++/2		and		--/2		operators:

iex>	[1,	2,	3]	++	[4,	5,	6]

[1,	2,	3,	4,	5,	6]

iex>	[1,	true,	2,	false,	3,	true]	--	[true,	false]

[1,	2,	3,	true]

Throughout	the	tutorial,	we	will	talk	a	lot	about	the	head	and	tail	of	a	list.	The	head	is	the	first
element	of	a	list	and	the	tail	is	the	remainder	of	a	list.	They	can	be	retrieved	with	the
functions		hd/1		and		tl/1	.	Let's	assign	a	list	to	a	variable	and	retrieve	its	head	and	tail:

iex>	list	=	[1,	2,	3]

iex>	hd(list)

1

iex>	tl(list)

[2,	3]

Getting	the	head	or	the	tail	of	an	empty	list	is	an	error:

iex>	hd	[]

**	(ArgumentError)	argument	error

Sometimes	you	will	create	a	list	and	it	will	return	a	value	in	single-quotes.	For	example:

iex>	[11,	12,	13]

'\v\f\r'

iex>	[104,	101,	108,	108,	111]

'hello'

When	Elixir	sees	a	list	of	printable	ASCII	numbers,	Elixir	will	print	that	as	a	char	list	(literally
a	list	of	characters).	Char	lists	are	quite	common	when	interfacing	with	existing	Erlang	code.
Whenever	you	see	a	value	in	IEx	and	you	are	not	quite	sure	what	it	is,	you	can	use	the		i/1	

(Linked)	Lists

22



to	retrieve	information	about	it:

iex>	i	'hello'

Term

		'hello'

Data	type

		List

Description

		...

Raw	representation

		[104,	101,	108,	108,	111]

Reference	modules

		List

Keep	in	mind	single-quoted	and	double-quoted	representations	are	not	equivalent	in	Elixir	as
they	are	represented	by	different	types:

iex>	'hello'	==	"hello"

false

Single-quotes	are	char	lists,	double-quotes	are	strings.	We	will	talk	more	about	them	in	the
"Binaries,	strings	and	char	lists"	chapter.

(Linked)	Lists

23



Lists	or	tuples?
What	is	the	difference	between	lists	and	tuples?

Lists	are	stored	in	memory	as	linked	lists,	meaning	that	each	element	in	a	list	holds	its	value
and	points	to	the	following	element	until	the	end	of	the	list	is	reached.	We	call	each	pair	of
value	and	pointer	a	cons	cell:

iex>	list	=	[1	|	[2	|	[3	|	[]]]]

[1,	2,	3]

This	means	accessing	the	length	of	a	list	is	a	linear	operation:	we	need	to	traverse	the	whole
list	in	order	to	figure	out	its	size.	Updating	a	list	is	fast	as	long	as	we	are	prepending
elements:

iex>	[0	|	list]

[0,	1,	2,	3]

Tuples,	on	the	other	hand,	are	stored	contiguously	in	memory.	This	means	getting	the	tuple
size	or	accessing	an	element	by	index	is	fast.	However,	updating	or	adding	elements	to
tuples	is	expensive	because	it	requires	copying	the	whole	tuple	in	memory.

Those	performance	characteristics	dictate	the	usage	of	those	data	structures.	One	very
common	use	case	for	tuples	is	to	use	them	to	return	extra	information	from	a	function.	For
example,		File.read/1		is	a	function	that	can	be	used	to	read	file	contents	and	it	returns
tuples:

iex>	File.read("path/to/existing/file")

{:ok,	"...	contents	..."}

iex>	File.read("path/to/unknown/file")

{:error,	:enoent}

If	the	path	given	to		File.read/1		exists,	it	returns	a	tuple	with	the	atom		:ok		as	the	first
element	and	the	file	contents	as	the	second.	Otherwise,	it	returns	a	tuple	with		:error		and
the	error	description.

Most	of	the	time,	Elixir	is	going	to	guide	you	to	do	the	right	thing.	For	example,	there	is	a
	elem/2		function	to	access	a	tuple	item	but	there	is	no	built-in	equivalent	for	lists:

Lists	or	tuples?

24



iex>	tuple	=	{:ok,	"hello"}

{:ok,	"hello"}

iex>	elem(tuple,	1)

"hello"

When	"counting"	the	number	of	elements	in	a	data	structure,	Elixir	also	abides	by	a	simple
rule:	the	function	is	named		size		if	the	operation	is	in	constant	time	(i.e.	the	value	is	pre-
calculated)	or		length		if	the	operation	is	linear	(i.e.	calculating	the	length	gets	slower	as	the
input	grows).

For	example,	we	have	used	4	counting	functions	so	far:		byte_size/1		(for	the	number	of
bytes	in	a	string),		tuple_size/1		(for	the	tuple	size),		length/1		(for	the	list	length)	and
	String.length/1		(for	the	number	of	graphemes	in	a	string).	That	said,	we	use		byte_size		to
get	the	number	of	bytes	in	a	string,	which	is	cheap,	but	retrieving	the	number	of	unicode
characters	uses		String.length	,	since	the	whole	string	needs	to	be	traversed.

Elixir	also	provides		Port	,		Reference		and		PID		as	data	types	(usually	used	in	process
communication),	and	we	will	take	a	quick	look	at	them	when	talking	about	processes.	For
now,	let's	take	a	look	at	some	of	the	basic	operators	that	go	with	our	basic	types.

Lists	or	tuples?

25



Basic	operators
In	the	previous	chapter,	we	saw	Elixir	provides		+	,		-	,		*	,		/		as	arithmetic	operators,	plus
the	functions		div/2		and		rem/2		for	integer	division	and	remainder.

Elixir	also	provides		++		and		--		to	manipulate	lists:

iex>	[1,	2,	3]	++	[4,	5,	6]

[1,	2,	3,	4,	5,	6]

iex>	[1,	2,	3]	--	[2]

[1,	3]

String	concatenation	is	done	with		&lt;&gt;	:

iex>	"foo"	<>	"bar"

"foobar"

Elixir	also	provides	three	boolean	operators:		or	,		and		and		not	.	These	operators	are	strict
in	the	sense	that	they	expect	a	boolean	(	true		or		false	)	as	their	first	argument:

iex>	true	and	true

true

iex>	false	or	is_atom(:example)

true

Providing	a	non-boolean	will	raise	an	exception:

iex>	1	and	true

**	(ArgumentError)	argument	error:	1

	or		and		and		are	short-circuit	operators.	They	only	execute	the	right	side	if	the	left	side	is
not	enough	to	determine	the	result:

iex>	false	and	raise("This	error	will	never	be	raised")

false

iex>	true	or	raise("This	error	will	never	be	raised")

true

Note:	If	you	are	an	Erlang	developer,		and		and		or		in	Elixir	actually	map	to	the
	andalso		and		orelse		operators	in	Erlang.

Basic	operators

26



Besides	these	boolean	operators,	Elixir	also	provides		||	,		&amp;&amp;		and		!		which
accept	arguments	of	any	type.	For	these	operators,	all	values	except		false		and		nil		will
evaluate	to	true:

#	or

iex>	1	||	true

1

iex>	false	||	11

11

#	and

iex>	nil	&&	13

nil

iex>	true	&&	17

17

#	!

iex>	!true

false

iex>	!1

false

iex>	!nil

true

As	a	rule	of	thumb,	use		and	,		or		and		not		when	you	are	expecting	booleans.	If	any	of	the
arguments	are	non-boolean,	use		&amp;&amp;	,		||		and		!	.

Elixir	also	provides		==	,		!=	,		===	,		!==	,		&lt;=	,		&gt;=	,		&lt;		and		&gt;		as	comparison
operators:

iex>	1	==	1

true

iex>	1	!=	2

true

iex>	1	<	2

true

The	difference	between		==		and		===		is	that	the	latter	is	more	strict	when	comparing
integers	and	floats:

iex>	1	==	1.0

true

iex>	1	===	1.0

false

In	Elixir,	we	can	compare	two	different	data	types:

Basic	operators

27



iex>	1	<	:atom

true

The	reason	we	can	compare	different	data	types	is	pragmatism.	Sorting	algorithms	don't
need	to	worry	about	different	data	types	in	order	to	sort.	The	overall	sorting	order	is	defined
below:

number	<	atom	<	reference	<	functions	<	port	<	pid	<	tuple	<	maps	<	list	<	bitstring

You	don't	actually	need	to	memorize	this	ordering,	but	it	is	important	just	to	know	an	order
exists.

Basic	operators

28



Operator	table
Although	we	have	learned	only	a	handful	of	operators	so	far,	we	present	below	the	complete
operator	table	for	Elixir	ordered	from	higher	to	lower	precedence	for	reference:

Operator	table

29



Operator Associativity

	@	 Unary

	.	 Left	to	right

	+			-			!		 	̂ 	

	not			~~~	 Unary

	*			/	 Left	to	right

	+			-	 Left	to	right

	++			--			..	
	&lt;&gt;	

Right	to	left

	in	 Left	to	right

`

> 	̀ &lt;&lt;&lt;	

	&gt;&gt;&gt;			~&gt;&gt;	
	&lt;&lt;~			~&gt;			&lt;~	
	&lt;~&gt;		`<

>`
Left
to
right

	&lt;			&gt;	
	&lt;=			&gt;=	 Left	to	right

	==			!=			=~	
	===			!==	 Left	to	right

	&amp;&amp;	

	&amp;&amp;&amp;	

	and	
Left	to	right

` 			 	̀ or	

Left
to
right

	=	 Right	to	left

	=&gt;	 Right	to	left

` `
Right
to
left

	::	 Right	to	left

	when	 Right	to	left

	&lt;-	,		\\	 Left	to	right

	&amp;	 Unary

We	will	learn	the	majority	of	those	operators	as	we	go	through	the	getting	started	guide.	In
the	next	chapter,	we	are	going	to	discuss	some	basic	functions,	data	type	conversions	and	a
bit	of	control-flow.

Operator	table

30



Operator	table

31



Pattern	matching
In	this	chapter,	we	will	show	how	the		=		operator	in	Elixir	is	actually	a	match	operator	and
how	to	use	it	to	pattern	match	inside	data	structures.	Finally,	we	will	learn	about	the	pin
operator	 	̂ 		used	to	access	previously	bound	values.

Pattern	matching

32



The	match	operator
We	have	used	the		=		operator	a	couple	times	to	assign	variables	in	Elixir:

iex>	x	=	1

1

iex>	x

1

In	Elixir,	the		=		operator	is	actually	called	the	match	operator.	Let's	see	why:

iex>	1	=	x

1

iex>	2	=	x

**	(MatchError)	no	match	of	right	hand	side	value:	1

Notice	that		1	=	x		is	a	valid	expression,	and	it	matched	because	both	the	left	and	right	side
are	equal	to	1.	When	the	sides	do	not	match,	a		MatchError		is	raised.

A	variable	can	only	be	assigned	on	the	left	side	of		=	:

iex>	1	=	unknown

**	(CompileError)	iex:1:	undefined	function	unknown/0

Since	there	is	no	variable		unknown		previously	defined,	Elixir	imagined	you	were	trying	to	call
a	function	named		unknown/0	,	but	such	a	function	does	not	exist.

The	match	operator

33



Pattern	matching
The	match	operator	is	not	only	used	to	match	against	simple	values,	but	it	is	also	useful	for
destructuring	more	complex	data	types.	For	example,	we	can	pattern	match	on	tuples:

iex>	{a,	b,	c}	=	{:hello,	"world",	42}

{:hello,	"world",	42}

iex>	a

:hello

iex>	b

"world"

A	pattern	match	will	error	in	the	case	the	sides	can't	match.	This	is,	for	example,	the	case
when	the	tuples	have	different	sizes:

iex>	{a,	b,	c}	=	{:hello,	"world"}

**	(MatchError)	no	match	of	right	hand	side	value:	{:hello,	"world"}

And	also	when	comparing	different	types:

iex>	{a,	b,	c}	=	[:hello,	"world",	42]

**	(MatchError)	no	match	of	right	hand	side	value:	[:hello,	"world",	42]

More	interestingly,	we	can	match	on	specific	values.	The	example	below	asserts	that	the	left
side	will	only	match	the	right	side	when	the	right	side	is	a	tuple	that	starts	with	the	atom
	:ok	:

iex>	{:ok,	result}	=	{:ok,	13}

{:ok,	13}

iex>	result

13

iex>	{:ok,	result}	=	{:error,	:oops}

**	(MatchError)	no	match	of	right	hand	side	value:	{:error,	:oops}

We	can	pattern	match	on	lists:

iex>	[a,	b,	c]	=	[1,	2,	3]

[1,	2,	3]

iex>	a

1

Pattern	matching

34



A	list	also	supports	matching	on	its	own	head	and	tail:

iex>	[head	|	tail]	=	[1,	2,	3]

[1,	2,	3]

iex>	head

1

iex>	tail

[2,	3]

Similar	to	the		hd/1		and		tl/1		functions,	we	can't	match	an	empty	list	with	a	head	and	tail
pattern:

iex>	[h	|	t]	=	[]

**	(MatchError)	no	match	of	right	hand	side	value:	[]

The		[head	|	tail]		format	is	not	only	used	on	pattern	matching	but	also	for	prepending
items	to	a	list:

iex>	list	=	[1,	2,	3]

[1,	2,	3]

iex>	[0	|	list]

[0,	1,	2,	3]

Pattern	matching	allows	developers	to	easily	destructure	data	types	such	as	tuples	and	lists.
As	we	will	see	in	following	chapters,	it	is	one	of	the	foundations	of	recursion	in	Elixir	and
applies	to	other	types	as	well,	like	maps	and	binaries.

Pattern	matching

35



The	pin	operator
Variables	in	Elixir	can	be	rebound:

iex>	x	=	1

1

iex>	x	=	2

2

The	pin	operator	 	̂ 		should	be	used	when	you	want	to	pattern	match	against	an	existing
variable's	value	rather	than	rebinding	the	variable:

iex>	x	=	1

1

iex>	^x	=	2

**	(MatchError)	no	match	of	right	hand	side	value:	2

iex>	{y,	^x}	=	{2,	1}

{2,	1}

iex>	y

2

iex>	{y,	^x}	=	{2,	2}

**	(MatchError)	no	match	of	right	hand	side	value:	{2,	2}

Because	we	have	assigned	the	value	of	1	to	the	variable	x,	this	last	example	could	also
have	been	written	as:

iex>	{y,	1}	=	{2,	2}

**	(MatchError)	no	match	of	right	hand	side	value:	{2,	2}

If	a	variable	is	mentioned	more	than	once	in	a	pattern,	all	references	should	bind	to	the
same	pattern:

iex>	{x,	x}	=	{1,	1}

{1,	1}

iex>	{x,	x}	=	{1,	2}

**	(MatchError)	no	match	of	right	hand	side	value:	{1,	2}

In	some	cases,	you	don't	care	about	a	particular	value	in	a	pattern.	It	is	a	common	practice
to	bind	those	values	to	the	underscore,		_	.	For	example,	if	only	the	head	of	the	list	matters
to	us,	we	can	assign	the	tail	to	underscore:

The	pin	operator

36



iex>	[h	|	_]	=	[1,	2,	3]

[1,	2,	3]

iex>	h

1

The	variable		_		is	special	in	that	it	can	never	be	read	from.	Trying	to	read	from	it	gives	an
unbound	variable	error:

iex>	_

**	(CompileError)	iex:1:	unbound	variable	_

Although	pattern	matching	allows	us	to	build	powerful	constructs,	its	usage	is	limited.	For
instance,	you	cannot	make	function	calls	on	the	left	side	of	a	match.	The	following	example
is	invalid:

iex>	length([1,	[2],	3])	=	3

**	(CompileError)	iex:1:	illegal	pattern

This	finishes	our	introduction	to	pattern	matching.	As	we	will	see	in	the	next	chapter,	pattern
matching	is	very	common	in	many	language	constructs.

The	pin	operator

37



case,	cond	and	if
In	this	chapter,	we	will	learn	about	the		case	,		cond		and		if		control-flow	structures.

case,	cond	and	if

38



	case	

	case		allows	us	to	compare	a	value	against	many	patterns	until	we	find	a	matching	one:

iex>	case	{1,	2,	3}	do

...>			{4,	5,	6}	->

...>					"This	clause	won't	match"

...>			{1,	x,	3}	->

...>					"This	clause	will	match	and	bind	x	to	2	in	this	clause"

...>			_	->

...>					"This	clause	would	match	any	value"

...>	end

"This	clause	will	match	and	bind	x	to	2	in	this	clause"

If	you	want	to	pattern	match	against	an	existing	variable,	you	need	to	use	the	 	̂ 		operator:

iex>	x	=	1

1

iex>	case	10	do

...>			^x	->	"Won't	match"

...>			_		->	"Will	match"

...>	end

"Will	match"

Clauses	also	allow	extra	conditions	to	be	specified	via	guards:

iex>	case	{1,	2,	3}	do

...>			{1,	x,	3}	when	x	>	0	->

...>					"Will	match"

...>			_	->

...>					"Would	match,	if	guard	condition	were	not	satisfied"

...>	end

"Will	match"

The	first	clause	above	will	only	match	when		x		is	positive.

case

39



Expressions	in	guard	clauses
Elixir	imports	and	allows	the	following	expressions	in	guards	by	default:

comparison	operators	(	==	,		!=	,		===	,		!==	,		&gt;	,		&gt;=	,		&lt;	,		&lt;=	)
boolean	operators	(	and	,		or	,		not	)
arithmetic	operations	(	+	,		-	,		*	,		/	)
arithmetic	unary	operators	(	+	,		-	)
the	binary	concatenation	operator		&lt;&gt;	
the		in		operator	as	long	as	the	right	side	is	a	range	or	a	list
all	the	following	type	check	functions:

	is_atom/1	

	is_binary/1	

	is_bitstring/1	

	is_boolean/1	

	is_float/1	

	is_function/1	

	is_function/2	

	is_integer/1	

	is_list/1	

	is_map/1	

	is_nil/1	

	is_number/1	

	is_pid/1	

	is_port/1	

	is_reference/1	

	is_tuple/1	

plus	these	functions:
	abs(number)	

	binary_part(binary,	start,	length)	

	bit_size(bitstring)	

	byte_size(bitstring)	

	div(integer,	integer)	

	elem(tuple,	n)	

	hd(list)	

	length(list)	

	map_size(map)	

	node()	

	node(pid	|	ref	|	port)	

Expressions	in	guard	clauses

40



	rem(integer,	integer)	

	round(number)	

	self()	

	tl(list)	

	trunc(number)	

	tuple_size(tuple)	

Additionally,	users	may	define	their	own	guards.	For	example,	the		Bitwise		module	defines
guards	as	functions	and	operators:		bnot	,		~~~	,		band	,		&amp;&amp;&amp;	,		bor	,		|||	,
	bxor	,	 	̂ ^^	,		bsl	,		&lt;&lt;&lt;	,		bsr	,		&gt;&gt;&gt;	.

Note	that	while	boolean	operators	such	as		and	,		or	,		not		are	allowed	in	guards,	the	more
general	and	short-circuiting	operators		&amp;&amp;	,		||		and		!		are	not.

Keep	in	mind	errors	in	guards	do	not	leak	but	simply	make	the	guard	fail:

iex>	hd(1)

**	(ArgumentError)	argument	error

				:erlang.hd(1)

iex>	case	1	do

...>			x	when	hd(x)	->	"Won't	match"

...>			x	->	"Got:	#{x}"

...>	end

"Got	1"

If	none	of	the	clauses	match,	an	error	is	raised:

iex>	case	:ok	do

...>			:error	->	"Won't	match"

...>	end

**	(CaseClauseError)	no	case	clause	matching:	:ok

Note	anonymous	functions	can	also	have	multiple	clauses	and	guards:

iex>	f	=	fn

...>			x,	y	when	x	>	0	->	x	+	y

...>			x,	y	->	x	*	y

...>	end

#Function<12.71889879/2	in	:erl_eval.expr/5>

iex>	f.(1,	3)

4

iex>	f.(-1,	3)

-3

The	number	of	arguments	in	each	anonymous	function	clause	needs	to	be	the	same,
otherwise	an	error	is	raised.

Expressions	in	guard	clauses

41



iex>	f2	=	fn

...>			x,	y	when	x	>	0	->	x	+	y

...>			x,	y,	z	->	x	*	y	+	z

...>	end

**	(CompileError)	iex:1:	cannot	mix	clauses	with	different	arities	in	function	definit

ion

Expressions	in	guard	clauses

42



	cond	

	case		is	useful	when	you	need	to	match	against	different	values.	However,	in	many
circumstances,	we	want	to	check	different	conditions	and	find	the	first	one	that	evaluates	to
true.	In	such	cases,	one	may	use		cond	:

iex>	cond	do

...>			2	+	2	==	5	->

...>					"This	will	not	be	true"

...>			2	*	2	==	3	->

...>					"Nor	this"

...>			1	+	1	==	2	->

...>					"But	this	will"

...>	end

"But	this	will"

This	is	equivalent	to		else	if		clauses	in	many	imperative	languages	(although	used	way
less	frequently	here).

If	none	of	the	conditions	return	true,	an	error(	CondClauseError	)	is	raised.	For	this	reason,	it
may	be	necessary	to	add	a	final	condition,	equal	to		true	,	which	will	always	match:

iex>	cond	do

...>			2	+	2	==	5	->

...>					"This	is	never	true"

...>			2	*	2	==	3	->

...>					"Nor	this"

...>			true	->

...>					"This	is	always	true	(equivalent	to	else)"

...>	end

"This	is	always	true	(equivalent	to	else)"

Finally,	note		cond		considers	any	value	besides		nil		and		false		to	be	true:

iex>	cond	do

...>			hd([1,	2,	3])	->

...>					"1	is	considered	as	true"

...>	end

"1	is	considered	as	true"

cond

43



	if		and		unless	
Besides		case		and		cond	,	Elixir	also	provides	the	macros		if/2		and		unless/2		which	are
useful	when	you	need	to	check	for	just	one	condition:

iex>	if	true	do

...>			"This	works!"

...>	end

"This	works!"

iex>	unless	true	do

...>			"This	will	never	be	seen"

...>	end

nil

If	the	condition	given	to		if/2		returns		false		or		nil	,	the	body	given	between		do/end		is
not	executed	and	it	simply	returns		nil	.	The	opposite	happens	with		unless/2	.

They	also	support		else		blocks:

iex>	if	nil	do

...>			"This	won't	be	seen"

...>	else

...>			"This	will"

...>	end

"This	will"

Note:	An	interesting	note	regarding		if/2		and		unless/2		is	that	they	are	implemented
as	macros	in	the	language;	they	aren't	special	language	constructs	as	they	would	be	in
many	languages.	You	can	check	the	documentation	and	the	source	of		if/2		in	the
	Kernel		module	docs.	The		Kernel		module	is	also	where	operators	like		+/2		and
functions	like		is_function/2		are	defined,	all	automatically	imported	and	available	in
your	code	by	default.

if	and	unless

44



	do/end		blocks
At	this	point,	we	have	learned	four	control	structures:		case	,		cond	,		if		and		unless	,	and
they	were	all	wrapped	in		do/end		blocks.	It	happens	we	could	also	write		if		as	follows:

iex>	if	true,	do:	1	+	2

3

Notice	how	the	example	above	has	a	comma	between		true		and		do:	,	that's	because	it	is
using	Elixir's	regular	syntax	where	each	argument	is	separated	by	comma.	We	say	this
syntax	is	using	keyword	lists.	We	can	pass		else		using	keywords	too:

iex>	if	false,	do:	:this,	else:	:that

:that

	do/end		blocks	are	a	syntactic	convenience	built	on	top	of	the	keywords	one.	That's	why
	do/end		blocks	do	not	require	a	comma	between	the	previous	argument	and	the	block.	They
are	useful	exactly	because	they	remove	the	verbosity	when	writing	blocks	of	code.	These
are	equivalent:

iex>	if	true	do

...>			a	=	1	+	2

...>			a	+	10

...>	end

13

iex>	if	true,	do:	(

...>			a	=	1	+	2

...>			a	+	10

...>	)

13

One	thing	to	keep	in	mind	when	using		do/end		blocks	is	they	are	always	bound	to	the
outermost	function	call.	For	example,	the	following	expression:

iex>	is_number	if	true	do

...>		1	+	2

...>	end

**	(CompileError)	undefined	function:	is_number/2

Would	be	parsed	as:

do/end	blocks

45



iex>	is_number(if	true)	do

...>		1	+	2

...>	end

**	(CompileError)	undefined	function:	is_number/2

which	leads	to	an	undefined	function	error	as	Elixir	attempts	to	invoke		is_number/1	,	but
passing	it	two	arguments	(the		if	true		expression	-	which	would	throw	an	undefined
function	error	itself	as		if		needs	a	second	argument	-	the		do/end		block).	Adding	explicit
parentheses	is	enough	to	resolve	the	ambiguity:

iex>	is_number(if	true	do

...>		1	+	2

...>	end)

true

Keyword	lists	play	an	important	role	in	the	language	and	are	quite	common	in	many
functions	and	macros.	We	will	explore	them	a	bit	more	in	a	future	chapter.	Now	it	is	time	to
talk	about	"Binaries,	strings	and	char	lists".

do/end	blocks

46



Binaries,	strings,	and	char	lists
In	"Basic	types",	we	learned	about	strings	and	used	the		is_binary/1		function	for	checks:

iex>	string	=	"hello"

"hello"

iex>	is_binary(string)

true

In	this	chapter,	we	will	understand	what	binaries	are,	how	they	associate	with	strings,	and
what	a	single-quoted	value,		&#039;like	this&#039;	,	means	in	Elixir.

Binaries,	strings,	and	char	lists

47



UTF-8	and	Unicode
A	string	is	a	UTF-8	encoded	binary.	In	order	to	understand	exactly	what	we	mean	by	that,	we
need	to	understand	the	difference	between	bytes	and	code	points.

The	Unicode	standard	assigns	code	points	to	many	of	the	characters	we	know.	For	example,
the	letter		a		has	code	point		97		while	the	letter		ł		has	code	point		322	.	When	writing	the
string		&quot;hełło&quot;		to	disk,	we	need	to	convert	this	code	point	to	bytes.	If	we	adopted
a	rule	that	said	one	byte	represents	one	code	point,	we	wouldn't	be	able	to	write
	&quot;hełło&quot;	,	because	it	uses	the	code	point		322		for		ł	,	and	one	byte	can	only
represent	a	number	from		0		to		255	.	But	of	course,	given	you	can	actually	read
	&quot;hełło&quot;		on	your	screen,	it	must	be	represented	somehow.	That's	where
encodings	come	in.

When	representing	code	points	in	bytes,	we	need	to	encode	them	somehow.	Elixir	chose	the
UTF-8	encoding	as	its	main	and	default	encoding.	When	we	say	a	string	is	a	UTF-8	encoded
binary,	we	mean	a	string	is	a	bunch	of	bytes	organized	in	a	way	to	represent	certain	code
points,	as	specified	by	the	UTF-8	encoding.

Since	we	have	code	points	like		ł		assigned	to	the	number		322	,	we	actually	need	more
than	one	byte	to	represent	it.	That's	why	we	see	a	difference	when	we	calculate	the
	byte_size/1		of	a	string	compared	to	its		String.length/1	:

iex>	string	=	"hełło"

"hełło"

iex>	byte_size(string)

7

iex>	String.length(string)

5

Note:	if	you	are	running	on	Windows,	there	is	a	chance	your	terminal	does	not	use
UTF-8	by	default.	You	can	change	the	encoding	of	your	current	session	by	running
	chcp	65001		before	entering		iex		(	iex.bat	).

UTF-8	requires	one	byte	to	represent	the	code	points		h	,		e		and		o	,	but	two	bytes	to
represent		ł	.	In	Elixir,	you	can	get	a	code	point's	value	by	using		?	:

iex>	?a

97

iex>	?ł

322

UTF-8	and	Unicode

48



You	can	also	use	the	functions	in	the		String		module	to	split	a	string	in	its	code	points:

iex>	String.codepoints("hełło")

["h",	"e",	"ł",	"ł",	"o"]

You	will	see	that	Elixir	has	excellent	support	for	working	with	strings.	It	also	supports	many
of	the	Unicode	operations.	In	fact,	Elixir	passes	all	the	tests	showcased	in	the	article	"The
string	type	is	broken".

However,	strings	are	just	part	of	the	story.	If	a	string	is	a	binary,	and	we	have	used	the
	is_binary/1		function,	Elixir	must	have	an	underlying	type	empowering	strings.	And	it	does.
Let's	talk	about	binaries!

UTF-8	and	Unicode

49

http://mortoray.com/2013/11/27/the-string-type-is-broken/


Binaries	(and	bitstrings)
In	Elixir,	you	can	define	a	binary	using		&lt;&lt;&gt;&gt;	:

iex>	<<0,	1,	2,	3>>

<<0,	1,	2,	3>>

iex>	byte_size(<<0,	1,	2,	3>>)

4

A	binary	is	just	a	sequence	of	bytes.	Of	course,	those	bytes	can	be	organized	in	any	way,
even	in	a	sequence	that	does	not	make	them	a	valid	string:

iex>	String.valid?(<<239,	191,	191>>)

false

The	string	concatenation	operation	is	actually	a	binary	concatenation	operator:

iex>	<<0,	1>>	<>	<<2,	3>>

<<0,	1,	2,	3>>

A	common	trick	in	Elixir	is	to	concatenate	the	null	byte		&lt;&lt;0&gt;&gt;		to	a	string	to	see
its	inner	binary	representation:

iex>	"hełło"	<>	<<0>>

<<104,	101,	197,	130,	197,	130,	111,	0>>

Each	number	given	to	a	binary	is	meant	to	represent	a	byte	and	therefore	must	go	up	to
255.	Binaries	allow	modifiers	to	be	given	to	store	numbers	bigger	than	255	or	to	convert	a
code	point	to	its	utf8	representation:

iex>	<<255>>

<<255>>

iex>	<<256>>	#	truncated

<<0>>

iex>	<<256	::	size(16)>>	#	use	16	bits	(2	bytes)	to	store	the	number

<<1,	0>>

iex>	<<256	::	utf8>>	#	the	number	is	a	code	point

"Ā"

iex>	<<256	::	utf8,	0>>

<<196,	128,	0>>

Binaries	(and	bitstrings)

50



If	a	byte	has	8	bits,	what	happens	if	we	pass	a	size	of	1	bit?

iex>	<<1	::	size(1)>>

<<1::size(1)>>

iex>	<<2	::	size(1)>>	#	truncated

<<0::size(1)>>

iex>	is_binary(<<	1	::	size(1)>>)

false

iex>	is_bitstring(<<	1	::	size(1)>>)

true

iex>	bit_size(<<	1	::	size(1)>>)

1

The	value	is	no	longer	a	binary,	but	a	bitstring	--	just	a	bunch	of	bits!	So	a	binary	is	a	bitstring
where	the	number	of	bits	is	divisible	by	8.

We	can	also	pattern	match	on	binaries	/	bitstrings:

iex>	<<0,	1,	x>>	=	<<0,	1,	2>>

<<0,	1,	2>>

iex>	x

2

iex>	<<0,	1,	x>>	=	<<0,	1,	2,	3>>

**	(MatchError)	no	match	of	right	hand	side	value:	<<0,	1,	2,	3>>

Note	each	entry	in	the	binary	pattern	is	expected	to	match	exactly	8	bits.	If	we	want	to	match
on	a	binary	of	unknown	size,	it	is	possible	by	using	the	binary	modifier	at	the	end	of	the
pattern:

iex>	<<0,	1,	x	::	binary>>	=	<<0,	1,	2,	3>>

<<0,	1,	2,	3>>

iex>	x

<<2,	3>>

Similar	results	can	be	achieved	with	the	string	concatenation	operator		&lt;&gt;	:

iex>	"he"	<>	rest	=	"hello"

"hello"

iex>	rest

"llo"

A	complete	reference	about	the	binary	/	bitstring	constructor		&lt;&lt;&gt;&gt;		can	be	found
in	the	Elixir	documentation.	This	concludes	our	tour	of	bitstrings,	binaries	and	strings.	A
string	is	a	UTF-8	encoded	binary	and	a	binary	is	a	bitstring	where	the	number	of	bits	is

Binaries	(and	bitstrings)

51

http://elixir-lang.org/docs/stable/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1


divisible	by	8.	Although	this	shows	the	flexibility	Elixir	provides	for	working	with	bits	and
bytes,	99%	of	the	time	you	will	be	working	with	binaries	and	using	the		is_binary/1		and
	byte_size/1		functions.

Binaries	(and	bitstrings)

52



Char	lists
A	char	list	is	nothing	more	than	a	list	of	characters:

iex>	'hełło'

[104,	101,	322,	322,	111]

iex>	is_list	'hełło'

true

iex>	'hello'

'hello'

You	can	see	that,	instead	of	containing	bytes,	a	char	list	contains	the	code	points	of	the
characters	between	single-quotes	(note	that	IEx	will	only	output	code	points	if	any	of	the
chars	is	outside	the	ASCII	range).	So	while	double-quotes	represent	a	string	(i.e.	a	binary),
single-quotes	represents	a	char	list	(i.e.	a	list).

In	practice,	char	lists	are	used	mostly	when	interfacing	with	Erlang,	in	particular	old	libraries
that	do	not	accept	binaries	as	arguments.	You	can	convert	a	char	list	to	a	string	and	back	by
using	the		to_string/1		and		to_char_list/1		functions:

iex>	to_char_list	"hełło"

[104,	101,	322,	322,	111]

iex>	to_string	'hełło'

"hełło"

iex>	to_string	:hello

"hello"

iex>	to_string	1

"1"

Note	that	those	functions	are	polymorphic.	They	not	only	convert	char	lists	to	strings,	but
also	integers	to	strings,	atoms	to	strings,	and	so	on.

With	binaries,	strings,	and	char	lists	out	of	the	way,	it	is	time	to	talk	about	key-value	data
structures.

Char	lists

53



Keywords	and	maps
So	far	we	haven't	discussed	any	associative	data	structures,	i.e.	data	structures	that	are
able	to	associate	a	certain	value	(or	multiple	values)	to	a	key.	Different	languages	call	these
different	names	like	dictionaries,	hashes,	associative	arrays,	etc.

In	Elixir,	we	have	two	main	associative	data	structures:	keyword	lists	and	maps.	It's	time	to
learn	more	about	them!

Keywords	and	maps

54



Keyword	lists
In	many	functional	programming	languages,	it	is	common	to	use	a	list	of	2-item	tuples	as	the
representation	of	an	associative	data	structure.	In	Elixir,	when	we	have	a	list	of	tuples	and
the	first	item	of	the	tuple	(i.e.	the	key)	is	an	atom,	we	call	it	a	keyword	list:

iex>	list	=	[{:a,	1},	{:b,	2}]

[a:	1,	b:	2]

iex>	list	==	[a:	1,	b:	2]

true

iex>	list[:a]

1

As	you	can	see	above,	Elixir	supports	a	special	syntax	for	defining	such	lists,	and
underneath	they	just	map	to	a	list	of	tuples.	Since	they	are	simply	lists,	we	can	use	all
operations	available	to	lists.	For	example,	we	can	use		++		to	add	new	values	to	a	keyword
list:

iex>	list	++	[c:	3]

[a:	1,	b:	2,	c:	3]

iex>	[a:	0]	++	list

[a:	0,	a:	1,	b:	2]

Note	that	values	added	to	the	front	are	the	ones	fetched	on	lookup:

iex>	new_list	=	[a:	0]	++	list

[a:	0,	a:	1,	b:	2]

iex>	new_list[:a]

0

Keyword	lists	are	important	because	they	have	three	special	characteristics:

Keys	must	be	atoms.
Keys	are	ordered,	as	specified	by	the	developer.
Keys	can	be	given	more	than	once.

For	example,	the	Ecto	library	makes	use	of	these	features	to	provide	an	elegant	DSL	for
writing	database	queries:

Keyword	lists

55

https://github.com/elixir-lang/ecto


query	=	from	w	in	Weather,

						where:	w.prcp	>	0,

						where:	w.temp	<	20,

					select:	w

These	features	are	what	prompted	keyword	lists	to	be	the	default	mechanism	for	passing
options	to	functions	in	Elixir.	In	chapter	5,	when	we	discussed	the		if/2		macro,	we
mentioned	the	following	syntax	is	supported:

iex>	if	false,	do:	:this,	else:	:that

:that

The		do:		and		else:		pairs	are	keyword	lists!	In	fact,	the	call	above	is	equivalent	to:

iex>	if(false,	[do:	:this,	else:	:that])

:that

In	general,	when	the	keyword	list	is	the	last	argument	of	a	function,	the	square	brackets	are
optional.

In	order	to	manipulate	keyword	lists,	Elixir	provides	the		Keyword		module.	Remember,
though,	keyword	lists	are	simply	lists,	and	as	such	they	provide	the	same	linear	performance
characteristics	as	lists.	The	longer	the	list,	the	longer	it	will	take	to	find	a	key,	to	count	the
number	of	items,	and	so	on.	For	this	reason,	keyword	lists	are	used	in	Elixir	mainly	as
options.	If	you	need	to	store	many	items	or	guarantee	one-key	associates	with	at	maximum
one-value,	you	should	use	maps	instead.

Although	we	can	pattern	match	on	keyword	lists,	it	is	rarely	done	in	practice	since	pattern
matching	on	lists	requires	the	number	of	items	and	their	order	to	match:

iex>	[a:	a]	=	[a:	1]

[a:	1]

iex>	a

1

iex>	[a:	a]	=	[a:	1,	b:	2]

**	(MatchError)	no	match	of	right	hand	side	value:	[a:	1,	b:	2]

iex>	[b:	b,	a:	a]	=	[a:	1,	b:	2]

**	(MatchError)	no	match	of	right	hand	side	value:	[a:	1,	b:	2]

Keyword	lists

56



Maps
Whenever	you	need	a	key-value	store,	maps	are	the	"go	to"	data	structure	in	Elixir.	A	map	is
created	using	the		%{}		syntax:

iex>	map	=	%{:a	=>	1,	2	=>	:b}

%{2	=>	:b,	:a	=>	1}

iex>	map[:a]

1

iex>	map[2]

:b

iex>	map[:c]

nil

Compared	to	keyword	lists,	we	can	already	see	two	differences:

Maps	allow	any	value	as	a	key.
Maps'	keys	do	not	follow	any	ordering.

In	contrast	to	keyword	lists,	maps	are	very	useful	with	pattern	matching.	When	a	map	is
used	in	a	pattern,	it	will	always	match	on	a	subset	of	the	given	value:

iex>	%{}	=	%{:a	=>	1,	2	=>	:b}

%{2	=>	:b,	:a	=>	1}

iex>	%{:a	=>	a}	=	%{:a	=>	1,	2	=>	:b}

%{2	=>	:b,	:a	=>	1}

iex>	a

1

iex>	%{:c	=>	c}	=	%{:a	=>	1,	2	=>	:b}

**	(MatchError)	no	match	of	right	hand	side	value:	%{2	=>	:b,	:a	=>	1}

As	shown	above,	a	map	matches	as	long	as	the	keys	in	the	pattern	exist	in	the	given	map.
Therefore,	an	empty	map	matches	all	maps.

Variables	can	be	used	when	accessing,	matching	and	adding	map	keys:

iex>	n	=	1

1

iex>	map	=	%{n	=>	:one}

%{1	=>	:one}

iex>	map[n]

:one

iex>	%{^n	=>	:one}	=	%{1	=>	:one,	2	=>	:two,	3	=>	:three}

%{1	=>	:one,	2	=>	:two,	3	=>	:three}

Maps

57



The		Map		module	provides	a	very	similar	API	to	the		Keyword		module	with	convenience
functions	to	manipulate	maps:

iex>	Map.get(%{:a	=>	1,	2	=>	:b},	:a)

1

iex>	Map.to_list(%{:a	=>	1,	2	=>	:b})

[{2,	:b},	{:a,	1}]

When	all	the	keys	in	a	map	are	atoms,	you	can	use	the	keyword	syntax	for	convenience:

iex>	map	=	%{a:	1,	b:	2}

%{a:	1,	b:	2}

Another	interesting	property	of	maps	is	that	they	provide	their	own	syntax	for	updating	and
accessing	atom	keys:

iex>	map	=	%{:a	=>	1,	2	=>	:b}

%{2	=>	:b,	:a	=>	1}

iex>	map.a

1

iex>	map.c

**	(KeyError)	key	:c	not	found	in:	%{2	=>	:b,	:a	=>	1}

iex>	%{map	|	:a	=>	2}

%{2	=>	:b,	:a	=>	2}

iex>	%{map	|	:c	=>	3}

**	(KeyError)	key	:c	not	found	in:	%{2	=>	:b,	:a	=>	1}

Both	access	and	update	syntaxes	above	require	the	given	keys	to	exist.	For	example,
accessing	and	updating	the		:c		key	failed	because	there	is	no		:c		in	the	map.

Elixir	developers	typically	prefer	to	use	the		map.field		syntax	and	pattern	matching	instead
of	the	functions	in	the		Map		module	when	working	with	maps	because	they	lead	to	an
assertive	style	of	programming.	This	blog	post	provides	insight	and	examples	on	how	you
get	more	concise	and	faster	software	by	writing	assertive	code	in	Elixir.

Note:	Maps	were	recently	introduced	into	the	Erlang	VM	and	only	from	Elixir	v1.2	they
are	capable	of	holding	millions	of	keys	efficiently.	Therefore,	if	you	are	working	with
previous	Elixir	versions	(v1.0	or	v1.1)	and	you	need	to	support	at	least	hundreds	of
keys,	you	may	consider	using	the		HashDict		module.

Maps

58

http://blog.plataformatec.com.br/2014/09/writing-assertive-code-with-elixir/


Nested	data	structures
Often	we	will	have	maps	inside	maps,	or	even	keywords	lists	inside	maps,	and	so	forth.
Elixir	provides	conveniences	for	manipulating	nested	data	structures	via	the		put_in/2	,
	update_in/2		and	other	macros	giving	the	same	conveniences	you	would	find	in	imperative
languages	while	keeping	the	immutable	properties	of	the	language.

Imagine	you	have	the	following	structure:

iex>	users	=	[

		john:	%{name:	"John",	age:	27,	languages:	["Erlang",	"Ruby",	"Elixir"]},

		mary:	%{name:	"Mary",	age:	29,	languages:	["Elixir",	"F#",	"Clojure"]}

]

[john:	%{age:	27,	languages:	["Erlang",	"Ruby",	"Elixir"],	name:	"John"},

	mary:	%{age:	29,	languages:	["Elixir",	"F#",	"Clojure"],	name:	"Mary"}]

We	have	a	keyword	list	of	users	where	each	value	is	a	map	containing	the	name,	age	and	a
list	of	programming	languages	each	user	likes.	If	we	wanted	to	access	the	age	for	john,	we
could	write:

iex>	users[:john].age

27

It	happens	we	can	also	use	this	same	syntax	for	updating	the	value:

iex>	users	=	put_in	users[:john].age,	31

[john:	%{age:	31,	languages:	["Erlang",	"Ruby",	"Elixir"],	name:	"John"},

	mary:	%{age:	29,	languages:	["Elixir",	"F#",	"Clojure"],	name:	"Mary"}]

The		update_in/2		macro	is	similar	but	allows	us	to	pass	a	function	that	controls	how	the
value	changes.	For	example,	let's	remove	"Clojure"	from	Mary's	list	of	languages:

iex>	users	=	update_in	users[:mary].languages,	&List.delete(&1,	"Clojure")

[john:	%{age:	31,	languages:	["Erlang",	"Ruby",	"Elixir"],	name:	"John"},

	mary:	%{age:	29,	languages:	["Elixir",	"F#"],	name:	"Mary"}]

There	is	more	to	learn	about		put_in/2		and		update_in/2	,	including	the
	get_and_update_in/2		that	allows	us	to	extract	a	value	and	update	the	data	structure	at	once.
There	are	also		put_in/3	,		update_in/3		and		get_and_update_in/3		which	allow	dynamic
access	into	the	data	structure.	Check	their	respective	documentation	in	the		Kernel		module
for	more	information.

Nested	data	structures

59



This	concludes	our	introduction	to	associative	data	structures	in	Elixir.	You	will	find	out	that,
given	keyword	lists	and	maps,	you	will	always	have	the	right	tool	to	tackle	problems	that
require	associative	data	structures	in	Elixir.

Nested	data	structures

60



Modules
In	Elixir	we	group	several	functions	into	modules.	We've	already	used	many	different
modules	in	the	previous	chapters	such	as	the		String		module:

iex>	String.length("hello")

5

In	order	to	create	our	own	modules	in	Elixir,	we	use	the		defmodule		macro.	We	use	the		def	
macro	to	define	functions	in	that	module:

iex>	defmodule	Math	do

...>			def	sum(a,	b)	do

...>					a	+	b

...>			end

...>	end

iex>	Math.sum(1,	2)

3

In	the	following	sections,	our	examples	are	going	to	get	longer	in	size,	and	it	can	be	tricky	to
type	them	all	in	the	shell.	It's	about	time	for	us	to	learn	how	to	compile	Elixir	code	and	also
how	to	run	Elixir	scripts.

Modules

61



Compilation
Most	of	the	time	it	is	convenient	to	write	modules	into	files	so	they	can	be	compiled	and
reused.	Let's	assume	we	have	a	file	named		math.ex		with	the	following	contents:

defmodule	Math	do

		def	sum(a,	b)	do

				a	+	b

		end

end

This	file	can	be	compiled	using		elixirc	:

$	elixirc	math.ex

This	will	generate	a	file	named		Elixir.Math.beam		containing	the	bytecode	for	the	defined
module.	If	we	start		iex		again,	our	module	definition	will	be	available	(provided	that		iex		is
started	in	the	same	directory	the	bytecode	file	is	in):

iex>	Math.sum(1,	2)

3

Elixir	projects	are	usually	organized	into	three	directories:

ebin	-	contains	the	compiled	bytecode
lib	-	contains	elixir	code	(usually		.ex		files)
test	-	contains	tests	(usually		.exs		files)

When	working	on	actual	projects,	the	build	tool	called		mix		will	be	responsible	for	compiling
and	setting	up	the	proper	paths	for	you.	For	learning	purposes,	Elixir	also	supports	a
scripted	mode	which	is	more	flexible	and	does	not	generate	any	compiled	artifacts.

Compilation

62



Scripted	mode
In	addition	to	the	Elixir	file	extension		.ex	,	Elixir	also	supports		.exs		files	for	scripting.	Elixir
treats	both	files	exactly	the	same	way,	the	only	difference	is	in	intention.		.ex		files	are
meant	to	be	compiled	while		.exs		files	are	used	for	scripting.	When	executed,	both
extensions	compile	and	load	their	modules	into	memory,	although	only		.ex		files	write	their
bytecode	to	disk	in	the	format	of		.beam		files.

For	instance,	we	can	create	a	file	called		math.exs	:

defmodule	Math	do

		def	sum(a,	b)	do

				a	+	b

		end

end

IO.puts	Math.sum(1,	2)

And	execute	it	as:

$	elixir	math.exs

The	file	will	be	compiled	in	memory	and	executed,	printing	"3"	as	the	result.	No	bytecode	file
will	be	created.	In	the	following	examples,	we	recommend	you	write	your	code	into	script
files	and	execute	them	as	shown	above.

Scripted	mode

63



Named	functions
Inside	a	module,	we	can	define	functions	with		def/2		and	private	functions	with		defp/2	.	A
function	defined	with		def/2		can	be	invoked	from	other	modules	while	a	private	function	can
only	be	invoked	locally.

defmodule	Math	do

		def	sum(a,	b)	do

				do_sum(a,	b)

		end

		defp	do_sum(a,	b)	do

				a	+	b

		end

end

IO.puts	Math.sum(1,	2)				#=>	3

IO.puts	Math.do_sum(1,	2)	#=>	**	(UndefinedFunctionError)

Function	declarations	also	support	guards	and	multiple	clauses.	If	a	function	has	several
clauses,	Elixir	will	try	each	clause	until	it	finds	one	that	matches.	Here	is	an	implementation
of	a	function	that	checks	if	the	given	number	is	zero	or	not:

defmodule	Math	do

		def	zero?(0)	do

				true

		end

		def	zero?(x)	when	is_integer(x)	do

				false

		end

end

IO.puts	Math.zero?(0)									#=>	true

IO.puts	Math.zero?(1)									#=>	false

IO.puts	Math.zero?([1,	2,	3])	#=>	**	(FunctionClauseError)

IO.puts	Math.zero?(0.0)							#=>	**	(FunctionClauseError)

Giving	an	argument	that	does	not	match	any	of	the	clauses	raises	an	error.

Similar	to	constructs	like		if	,	named	functions	support	both		do:		and		do	/	end		block
syntax,	as	we	learned		do	/	end		is	just	a	convenient	syntax	for	the	keyword	list	format.	For
example,	we	can	edit		math.exs		to	look	like	this:

Named	functions

64



defmodule	Math	do

		def	zero?(0),	do:	true

		def	zero?(x)	when	is_integer(x),	do:	false

end

And	it	will	provide	the	same	behaviour.	You	may	use		do:		for	one-liners	but	always	use
	do	/	end		for	functions	spanning	multiple	lines.

Named	functions

65



Function	capturing
Throughout	this	tutorial,	we	have	been	using	the	notation		name/arity		to	refer	to	functions.	It
happens	that	this	notation	can	actually	be	used	to	retrieve	a	named	function	as	a	function
type.	Start		iex	,	running	the		math.exs		file	defined	above:

$	iex	math.exs

iex>	Math.zero?(0)

true

iex>	fun	=	&Math.zero?/1

&Math.zero?/1

iex>	is_function(fun)

true

iex>	fun.(0)

true

Local	or	imported	functions,	like		is_function/1	,	can	be	captured	without	the	module:

iex>	&is_function/1

&:erlang.is_function/1

iex>	(&is_function/1).(fun)

true

Note	the	capture	syntax	can	also	be	used	as	a	shortcut	for	creating	functions:

iex>	fun	=	&(&1	+	1)

#Function<6.71889879/1	in	:erl_eval.expr/5>

iex>	fun.(1)

2

The		&amp;1		represents	the	first	argument	passed	into	the	function.		&amp;(&amp;1+1)		above
is	exactly	the	same	as		fn	x	-&gt;	x	+	1	end	.	The	syntax	above	is	useful	for	short	function
definitions.

If	you	want	to	capture	a	function	from	a	module,	you	can	do		&amp;Module.function()	:

iex>	fun	=	&List.flatten(&1,	&2)

&List.flatten/2

iex>	fun.([1,	[[2],	3]],	[4,	5])

[1,	2,	3,	4,	5]

Function	capturing

66



	&amp;List.flatten(&amp;1,	&amp;2)		is	the	same	as	writing		fn(list,	tail)	-&gt;
List.flatten(list,	tail)	end		which	in	this	case	is	equivalent	to		&amp;List.flatten/2	.	You
can	read	more	about	the	capture	operator		&amp;		in	the		Kernel.SpecialForms	
documentation.

Function	capturing

67



Default	arguments
Named	functions	in	Elixir	also	support	default	arguments:

defmodule	Concat	do

		def	join(a,	b,	sep	\\	"	")	do

				a	<>	sep	<>	b

		end

end

IO.puts	Concat.join("Hello",	"world")						#=>	Hello	world

IO.puts	Concat.join("Hello",	"world",	"_")	#=>	Hello_world

Any	expression	is	allowed	to	serve	as	a	default	value,	but	it	won't	be	evaluated	during	the
function	definition;	it	will	simply	be	stored	for	later	use.	Every	time	the	function	is	invoked
and	any	of	its	default	values	have	to	be	used,	the	expression	for	that	default	value	will	be
evaluated:

defmodule	DefaultTest	do

		def	dowork(x	\\	IO.puts	"hello")	do

				x

		end

end

iex>	DefaultTest.dowork

hello

:ok

iex>	DefaultTest.dowork	123

123

iex>	DefaultTest.dowork

hello

:ok

If	a	function	with	default	values	has	multiple	clauses,	it	is	required	to	create	a	function	head
(without	an	actual	body)	for	declaring	defaults:

Default	arguments

68



defmodule	Concat	do

		def	join(a,	b	\\	nil,	sep	\\	"	")

		def	join(a,	b,	_sep)	when	is_nil(b)	do

				a

		end

		def	join(a,	b,	sep)	do

				a	<>	sep	<>	b

		end

end

IO.puts	Concat.join("Hello",	"world")						#=>	Hello	world

IO.puts	Concat.join("Hello",	"world",	"_")	#=>	Hello_world

IO.puts	Concat.join("Hello")															#=>	Hello

When	using	default	values,	one	must	be	careful	to	avoid	overlapping	function	definitions.
Consider	the	following	example:

defmodule	Concat	do

		def	join(a,	b)	do

				IO.puts	"***First	join"

				a	<>	b

		end

		def	join(a,	b,	sep	\\	"	")	do

				IO.puts	"***Second	join"

				a	<>	sep	<>	b

		end

end

If	we	save	the	code	above	in	a	file	named	"concat.ex"	and	compile	it,	Elixir	will	emit	the
following	warning:

concat.ex:7:	warning:	this	clause	cannot	match	because	a	previous	clause	at	line	2	alw

ays	matches

The	compiler	is	telling	us	that	invoking	the		join		function	with	two	arguments	will	always
choose	the	first	definition	of		join		whereas	the	second	one	will	only	be	invoked	when	three
arguments	are	passed:

$	iex	concat.exs

Default	arguments

69



iex>	Concat.join	"Hello",	"world"

***First	join

"Helloworld"

iex>	Concat.join	"Hello",	"world",	"_"

***Second	join

"Hello_world"

This	finishes	our	short	introduction	to	modules.	In	the	next	chapters,	we	will	learn	how	to	use
named	functions	for	recursion,	explore	Elixir	lexical	directives	that	can	be	used	for	importing
functions	from	other	modules	and	discuss	module	attributes.

Default	arguments

70



Recursion

Recursion

71



Loops	through	recursion
Due	to	immutability,	loops	in	Elixir	(as	in	any	functional	programming	language)	are	written
differently	from	imperative	languages.	For	example,	in	an	imperative	language	like	C,	one
would	write:

for(i	=	0;	i	<	sizeof(array);	i++)	{

		array[i]	=	array[i]	*	2;

}

In	the	example	above,	we	are	mutating	both	the	array	and	the	variable		i	.	Mutating	is	not
possible	in	Elixir.	Instead,	functional	languages	rely	on	recursion:	a	function	is	called
recursively	until	a	condition	is	reached	that	stops	the	recursive	action	from	continuing.	No
data	is	mutated	in	this	process.	Consider	the	example	below	that	prints	a	string	an	arbitrary
number	of	times:

defmodule	Recursion	do

		def	print_multiple_times(msg,	n)	when	n	<=	1	do

				IO.puts	msg

		end

		def	print_multiple_times(msg,	n)	do

				IO.puts	msg

				print_multiple_times(msg,	n	-	1)

		end

end

Recursion.print_multiple_times("Hello!",	3)

#	Hello!

#	Hello!

#	Hello!

Similar	to		case	,	a	function	may	have	many	clauses.	A	particular	clause	is	executed	when
the	arguments	passed	to	the	function	match	the	clause's	argument	patterns	and	its	guard
evaluates	to		true	.

When		print_multiple_times/2		is	initially	called	in	the	example	above,	the	argument		n		is
equal	to		3	.

The	first	clause	has	a	guard	which	says	"use	this	definition	if	and	only	if		n		is	less	than	or
equal	to		1	".	Since	this	is	not	the	case,	Elixir	proceeds	to	the	next	clause's	definition.

Loops	through	recursion

72



The	second	definition	matches	the	pattern	and	has	no	guard	so	it	will	be	executed.	It	first
prints	our		msg		and	then	calls	itself	passing		n	-	1		(	2	)	as	the	second	argument.

Our		msg		is	printed	and		print_multiple_times/2		is	called	again,	this	time	with	the	second
argument	set	to		1	.	Because		n		is	now	set	to		1	,	the	guard	in	our	first	definition	of
	print_multiple_times/2		evaluates	to	true,	and	we	execute	this	particular	definition.	The
	msg		is	printed,	and	there	is	nothing	left	to	execute.

We	defined		print_multiple_times/2		so	that,	no	matter	what	number	is	passed	as	the
second	argument,	it	either	triggers	our	first	definition	(known	as	a	base	case)	or	it	triggers
our	second	definition,	which	will	ensure	that	we	get	exactly	one	step	closer	to	our	base	case.

Loops	through	recursion

73



Reduce	and	map	algorithms
Let's	now	see	how	we	can	use	the	power	of	recursion	to	sum	a	list	of	numbers:

defmodule	Math	do

		def	sum_list([head	|	tail],	accumulator)	do

				sum_list(tail,	head	+	accumulator)

		end

		def	sum_list([],	accumulator)	do

				accumulator

		end

end

IO.puts	Math.sum_list([1,	2,	3],	0)	#=>	6

We	invoke		sum_list		with	the	list		[1,	2,	3]		and	the	initial	value		0		as	arguments.	We	will
try	each	clause	until	we	find	one	that	matches	according	to	the	pattern	matching	rules.	In
this	case,	the	list		[1,	2,	3]		matches	against		[head	|	tail]		which	binds		head		to		1		and
	tail		to		[2,	3]	;		accumulator		is	set	to		0	.

Then,	we	add	the	head	of	the	list	to	the	accumulator		head	+	accumulator		and	call		sum_list	
again,	recursively,	passing	the	tail	of	the	list	as	its	first	argument.	The	tail	will	once	again
match		[head	|	tail]		until	the	list	is	empty,	as	seen	below:

sum_list	[1,	2,	3],	0

sum_list	[2,	3],	1

sum_list	[3],	3

sum_list	[],	6

When	the	list	is	empty,	it	will	match	the	final	clause	which	returns	the	final	result	of		6	.

The	process	of	taking	a	list	and	reducing	it	down	to	one	value	is	known	as	a	reduce
algorithm	and	is	central	to	functional	programming.

What	if	we	instead	want	to	double	all	of	the	values	in	our	list?

Reduce	and	map	algorithms

74



defmodule	Math	do

		def	double_each([head	|	tail])	do

				[head	*	2	|	double_each(tail)]

		end

		def	double_each([])	do

				[]

		end

end

iex	math.exs

iex>	Math.double_each([1,	2,	3])	#=>	[2,	4,	6]

Here	we	have	used	recursion	to	traverse	a	list,	doubling	each	element	and	returning	a	new
list.	The	process	of	taking	a	list	and	mapping	over	it	is	known	as	a	map	algorithm.

Recursion	and	tail	call	optimization	are	an	important	part	of	Elixir	and	are	commonly	used	to
create	loops.	However,	when	programming	in	Elixir	you	will	rarely	use	recursion	as	above	to
manipulate	lists.

The		Enum		module,	which	we're	going	to	see	in	the	next	chapter,	already	provides	many
conveniences	for	working	with	lists.	For	instance,	the	examples	above	could	be	written	as:

iex>	Enum.reduce([1,	2,	3],	0,	fn(x,	acc)	->	x	+	acc	end)

6

iex>	Enum.map([1,	2,	3],	fn(x)	->	x	*	2	end)

[2,	4,	6]

Or,	using	the	capture	syntax:

iex>	Enum.reduce([1,	2,	3],	0,	&+/2)

6

iex>	Enum.map([1,	2,	3],	&(&1	*	2))

[2,	4,	6]

Let's	take	a	deeper	look	at		Enumerable	s	and,	while	we're	at	it,	their	lazy	counterpart,
	Stream	s.

Reduce	and	map	algorithms

75

https://en.wikipedia.org/wiki/Tail_call


Enumerables	and	Streams

Enumerables	and	Streams

76



Enumerables
Elixir	provides	the	concept	of	enumerables	and	the		Enum		module	to	work	with	them.	We
have	already	learned	two	enumerables:	lists	and	maps.

iex>	Enum.map([1,	2,	3],	fn	x	->	x	*	2	end)

[2,	4,	6]

iex>	Enum.map(%{1	=>	2,	3	=>	4},	fn	{k,	v}	->	k	*	v	end)

[2,	12]

The		Enum		module	provides	a	huge	range	of	functions	to	transform,	sort,	group,	filter	and
retrieve	items	from	enumerables.	It	is	one	of	the	modules	developers	use	frequently	in	their
Elixir	code.

Elixir	also	provides	ranges:

iex>	Enum.map(1..3,	fn	x	->	x	*	2	end)

[2,	4,	6]

iex>	Enum.reduce(1..3,	0,	&+/2)

6

The	functions	in	the	Enum	module	are	limited	to,	as	the	name	says,	enumerating	values	in
data	structures.	For	specific	operations,	like	inserting	and	updating	particular	elements,	you
may	need	to	reach	for	modules	specific	to	the	data	type.	For	example,	if	you	want	to	insert
an	element	at	a	given	position	in	a	list,	you	should	use	the		List.insert_at/3		function	from
the		List		module,	as	it	would	make	little	sense	to	insert	a	value	into,	for	example,	a	range.

We	say	the	functions	in	the		Enum		module	are	polymorphic	because	they	can	work	with
diverse	data	types.	In	particular,	the	functions	in	the		Enum		module	can	work	with	any	data
type	that	implements	the		Enumerable		protocol.	We	are	going	to	discuss	Protocols	in	a	later
chapter;	for	now	we	are	going	to	move	on	to	a	specific	kind	of	enumerable	called	a	stream.

Enumerables

77



Eager	vs	Lazy
All	the	functions	in	the		Enum		module	are	eager.	Many	functions	expect	an	enumerable	and
return	a	list	back:

iex>	odd?	=	&(rem(&1,	2)	!=	0)

#Function<6.80484245/1	in	:erl_eval.expr/5>

iex>	Enum.filter(1..3,	odd?)

[1,	3]

This	means	that	when	performing	multiple	operations	with		Enum	,	each	operation	is	going	to
generate	an	intermediate	list	until	we	reach	the	result:

iex>	1..100_000	|>	Enum.map(&(&1	*	3))	|>	Enum.filter(odd?)	|>	Enum.sum

7500000000

The	example	above	has	a	pipeline	of	operations.	We	start	with	a	range	and	then	multiply
each	element	in	the	range	by	3.	This	first	operation	will	now	create	and	return	a	list	with
	100_000		items.	Then	we	keep	all	odd	elements	from	the	list,	generating	a	new	list,	now	with
	50_000		items,	and	then	we	sum	all	entries.

Eager	vs	Lazy

78



The	pipe	operator
The		|&gt;		symbol	used	in	the	snippet	above	is	the	pipe	operator:	it	simply	takes	the
output	from	the	expression	on	its	left	side	and	passes	it	as	the	first	argument	to	the	function
call	on	its	right	side.	It's	similar	to	the	Unix		|		operator.	Its	purpose	is	to	highlight	the	flow	of
data	being	transformed	by	a	series	of	functions.	To	see	how	it	can	make	the	code	cleaner,
have	a	look	at	the	example	above	rewritten	without	using	the		|&gt;		operator:

iex>	Enum.sum(Enum.filter(Enum.map(1..100_000,	&(&1	*	3)),	odd?))

7500000000

Find	more	about	the	pipe	operator	by	reading	its	documentation.

The	pipe	operator

79



Streams
As	an	alternative	to		Enum	,	Elixir	provides	the		Stream		module	which	supports	lazy
operations:

iex>	1..100_000	|>	Stream.map(&(&1	*	3))	|>	Stream.filter(odd?)	|>	Enum.sum

7500000000

Streams	are	lazy,	composable	enumerables.

In	the	example	above,		1..100_000	|&gt;	Stream.map(&amp;(&amp;1	*	3))		returns	a	data	type,
an	actual	stream,	that	represents	the		map		computation	over	the	range		1..100_000	:

iex>	1..100_000	|>	Stream.map(&(&1	*	3))

#Stream<[enum:	1..100000,	funs:	[#Function<34.16982430/1	in	Stream.map/2>]]>

Furthermore,	they	are	composable	because	we	can	pipe	many	stream	operations:

iex>	1..100_000	|>	Stream.map(&(&1	*	3))	|>	Stream.filter(odd?)

#Stream<[enum:	1..100000,	funs:	[...]]>

Instead	of	generating	intermediate	lists,	streams	build	a	series	of	computations	that	are
invoked	only	when	we	pass	the	underlying	stream	to	the		Enum		module.	Streams	are	useful
when	working	with	large,	possibly	infinite,	collections.

Many	functions	in	the		Stream		module	accept	any	enumerable	as	an	argument	and	return	a
stream	as	a	result.	It	also	provides	functions	for	creating	streams.	For	example,
	Stream.cycle/1		can	be	used	to	create	a	stream	that	cycles	a	given	enumerable	infinitely.	Be
careful	to	not	call	a	function	like		Enum.map/2		on	such	streams,	as	they	would	cycle	forever:

iex>	stream	=	Stream.cycle([1,	2,	3])

#Function<15.16982430/2	in	Stream.cycle/1>

iex>	Enum.take(stream,	10)

[1,	2,	3,	1,	2,	3,	1,	2,	3,	1]

On	the	other	hand,		Stream.unfold/2		can	be	used	to	generate	values	from	a	given	initial
value:

Streams

80



iex>	stream	=	Stream.unfold("hełło",	&String.next_codepoint/1)

#Function<39.75994740/2	in	Stream.unfold/2>

iex>	Enum.take(stream,	3)

["h",	"e",	"ł"]

Another	interesting	function	is		Stream.resource/3		which	can	be	used	to	wrap	around
resources,	guaranteeing	they	are	opened	right	before	enumeration	and	closed	afterwards,
even	in	the	case	of	failures.	For	example,	we	can	use	it	to	stream	a	file:

iex>	stream	=	File.stream!("path/to/file")

#Function<18.16982430/2	in	Stream.resource/3>

iex>	Enum.take(stream,	10)

The	example	above	will	fetch	the	first	10	lines	of	the	file	you	have	selected.	This	means
streams	can	be	very	useful	for	handling	large	files	or	even	slow	resources	like	network
resources.

The	amount	of	functionality	in	the		Enum		and		Stream		modules	can	be	daunting	at	first,	but
you	will	get	familiar	with	them	case	by	case.	In	particular,	focus	on	the		Enum		module	first
and	only	move	to		Stream		for	the	particular	scenarios	where	laziness	is	required,	to	either
deal	with	slow	resources	or	large,	possibly	infinite,	collections.

Next	we'll	look	at	a	feature	central	to	Elixir,	Processes,	which	allows	us	to	write	concurrent,
parallel	and	distributed	programs	in	an	easy	and	understandable	way.

Streams

81



Processes
In	Elixir,	all	code	runs	inside	processes.	Processes	are	isolated	from	each	other,	run
concurrent	to	one	another	and	communicate	via	message	passing.	Processes	are	not	only
the	basis	for	concurrency	in	Elixir,	but	they	also	provide	the	means	for	building	distributed
and	fault-tolerant	programs.

Elixir's	processes	should	not	be	confused	with	operating	system	processes.	Processes	in
Elixir	are	extremely	lightweight	in	terms	of	memory	and	CPU	(unlike	threads	in	many	other
programming	languages).	Because	of	this,	it	is	not	uncommon	to	have	tens	or	even
hundreds	of	thousands	of	processes	running	simultaneously.

In	this	chapter,	we	will	learn	about	the	basic	constructs	for	spawning	new	processes,	as	well
as	sending	and	receiving	messages	between	different	processes.

Processes

82



	spawn	

The	basic	mechanism	for	spawning	new	processes	is	with	the	auto-imported		spawn/1	
function:

iex>	spawn	fn	->	1	+	2	end

#PID<0.43.0>

	spawn/1		takes	a	function	which	it	will	execute	in	another	process.

Notice		spawn/1		returns	a	PID	(process	identifier).	At	this	point,	the	process	you	spawned	is
very	likely	dead.	The	spawned	process	will	execute	the	given	function	and	exit	after	the
function	is	done:

iex>	pid	=	spawn	fn	->	1	+	2	end

#PID<0.44.0>

iex>	Process.alive?(pid)

false

Note:	you	will	likely	get	different	process	identifiers	than	the	ones	we	are	getting	in	this
guide.

We	can	retrieve	the	PID	of	the	current	process	by	calling		self/0	:

iex>	self()

#PID<0.41.0>

iex>	Process.alive?(self())

true

Processes	get	much	more	interesting	when	we	are	able	to	send	and	receive	messages.

spawn

83



	send		and		receive	
We	can	send	messages	to	a	process	with		send/2		and	receive	them	with		receive/1	:

iex>	send	self(),	{:hello,	"world"}

{:hello,	"world"}

iex>	receive	do

...>			{:hello,	msg}	->	msg

...>			{:world,	msg}	->	"won't	match"

...>	end

"world"

When	a	message	is	sent	to	a	process,	the	message	is	stored	in	the	process	mailbox.	The
	receive/1		block	goes	through	the	current	process	mailbox	searching	for	a	message	that
matches	any	of	the	given	patterns.		receive/1		supports	guards	and	many	clauses,	such	as
	case/2	.

If	there	is	no	message	in	the	mailbox	matching	any	of	the	patterns,	the	current	process	will
wait	until	a	matching	message	arrives.	A	timeout	can	also	be	specified:

iex>	receive	do

...>			{:hello,	msg}		->	msg

...>	after

...>			1_000	->	"nothing	after	1s"

...>	end

"nothing	after	1s"

A	timeout	of	0	can	be	given	when	you	already	expect	the	message	to	be	in	the	mailbox.

Let's	put	it	all	together	and	send	messages	between	processes:

iex>	parent	=	self()

#PID<0.41.0>

iex>	spawn	fn	->	send(parent,	{:hello,	self()})	end

#PID<0.48.0>

iex>	receive	do

...>			{:hello,	pid}	->	"Got	hello	from	#{inspect	pid}"

...>	end

"Got	hello	from	#PID<0.48.0>"

While	in	the	shell,	you	may	find	the	helper		flush/0		quite	useful.	It	flushes	and	prints	all	the
messages	in	the	mailbox.

send	and	receive

84



iex>	send	self(),	:hello

:hello

iex>	flush()

:hello

:ok

send	and	receive

85



Links
The	most	common	form	of	spawning	in	Elixir	is	actually	via		spawn_link/1	.	Before	we	show
an	example	with		spawn_link/1	,	let's	try	to	see	what	happens	when	a	process	fails:

iex>	spawn	fn	->	raise	"oops"	end

#PID<0.58.0>

[error]	Process	#PID<0.58.00>	raised	an	exception

**	(RuntimeError)	oops

				:erlang.apply/2

It	merely	logged	an	error	but	the	spawning	process	is	still	running.	That's	because
processes	are	isolated.	If	we	want	the	failure	in	one	process	to	propagate	to	another	one,	we
should	link	them.	This	can	be	done	with		spawn_link/1	:

iex>	spawn_link	fn	->	raise	"oops"	end

#PID<0.41.0>

**	(EXIT	from	#PID<0.41.0>)	an	exception	was	raised:

				**	(RuntimeError)	oops

								:erlang.apply/2

When	a	failure	happens	in	the	shell,	the	shell	automatically	traps	the	failure	and	shows	it
nicely	formatted.	In	order	to	understand	what	would	really	happen	in	our	code,	let's	use
	spawn_link/1		inside	a	file	and	run	it:

#	spawn.exs

spawn_link	fn	->	raise	"oops"	end

receive	do

		:hello	->	"let's	wait	until	the	process	fails"

end

$	elixir	spawn.exs

**	(EXIT	from	#PID<0.47.0>)	an	exception	was	raised:

				**	(RuntimeError)	oops

								spawn.exs:1:	anonymous	fn/0	in	:elixir_compiler_0.__FILE__/1

Links

86



This	time	the	process	failed	and	brought	the	parent	process	down	as	they	are	linked.	Linking
can	also	be	done	manually	by	calling		Process.link/1	.	We	recommend	that	you	take	a	look
at	the		Process		module	for	other	functionality	provided	by	processes.

Processes	and	links	play	an	important	role	when	building	fault-tolerant	systems.	In	Elixir
applications,	we	often	link	our	processes	to	supervisors	which	will	detect	when	a	process
dies	and	start	a	new	process	in	its	place.	This	is	only	possible	because	processes	are
isolated	and	don't	share	anything	by	default.	And	since	processes	are	isolated,	there	is	no
way	a	failure	in	a	process	will	crash	or	corrupt	the	state	of	another.

While	other	languages	would	require	us	to	catch/handle	exceptions,	in	Elixir	we	are	actually
fine	with	letting	processes	fail	because	we	expect	supervisors	to	properly	restart	our
systems.	"Failing	fast"	is	a	common	philosophy	when	writing	Elixir	software!

	spawn/1		and		spawn_link/1		are	the	basic	primitives	for	creating	processes	in	Elixir.
Although	we	have	used	them	exclusively	so	far,	most	of	the	time	we	are	going	to	use
abstractions	that	build	on	top	of	them.	Let's	see	the	most	common	one,	called	tasks.

Links

87



Tasks
Tasks	build	on	top	of	the	spawn	functions	to	provide	better	error	reports	and	introspection:

iex(1)>	Task.start	fn	->	raise	"oops"	end

{:ok,	#PID<0.55.0>}

15:22:33.046	[error]	Task	#PID<0.55.0>	started	from	#PID<0.53.0>	terminating

**	(RuntimeError)	oops

				(elixir)	lib/task/supervised.ex:74:	Task.Supervised.do_apply/2

				(stdlib)	proc_lib.erl:239:	:proc_lib.init_p_do_apply/3

Function:	#Function<20.90072148/0	in	:erl_eval.expr/5>

				Args:	[]

Instead	of		spawn/1		and		spawn_link/1	,	we	use		Task.start/1		and		Task.start_link/1		to
return		{:ok,	pid}		rather	than	just	the	PID.	This	is	what	enables	Tasks	to	be	used	in
supervision	trees.	Furthermore,		Task		provides	convenience	functions,	like		Task.async/1	
and		Task.await/1	,	and	functionality	to	ease	distribution.

We	will	explore	those	functionalities	in	the	Mix	and	OTP	guide,	for	now	it	is	enough	to
remember	to	use	Task	to	get	better	error	reports.

Tasks

88



State
We	haven't	talked	about	state	so	far	in	this	guide.	If	you	are	building	an	application	that
requires	state,	for	example,	to	keep	your	application	configuration,	or	you	need	to	parse	a
file	and	keep	it	in	memory,	where	would	you	store	it?

Processes	are	the	most	common	answer	to	this	question.	We	can	write	processes	that	loop
infinitely,	maintain	state,	and	send	and	receive	messages.	As	an	example,	let's	write	a
module	that	starts	new	processes	that	work	as	a	key-value	store	in	a	file	named		kv.exs	:

defmodule	KV	do

		def	start_link	do

				Task.start_link(fn	->	loop(%{})	end)

		end

		defp	loop(map)	do

				receive	do

						{:get,	key,	caller}	->

								send	caller,	Map.get(map,	key)

								loop(map)

						{:put,	key,	value}	->

								loop(Map.put(map,	key,	value))

				end

		end

end

Note	that	the		start_link		function	starts	a	new	process	that	runs	the		loop/1		function,
starting	with	an	empty	map.	The		loop/1		function	then	waits	for	messages	and	performs	the
appropriate	action	for	each	message.	In	the	case	of	a		:get		message,	it	sends	a	message
back	to	the	caller	and	calls		loop/1		again,	to	wait	for	a	new	message.	While	the		:put	
message	actually	invokes		loop/1		with	a	new	version	of	the	map,	with	the	given		key		and
	value		stored.

Let's	give	it	a	try	by	running		iex	kv.exs	:

iex>	{:ok,	pid}	=	KV.start_link

#PID<0.62.0>

iex>	send	pid,	{:get,	:hello,	self()}

{:get,	:hello,	#PID<0.41.0>}

iex>	flush

nil

:ok

State

89



At	first,	the	process	map	has	no	keys,	so	sending	a		:get		message	and	then	flushing	the
current	process	inbox	returns		nil	.	Let's	send	a		:put		message	and	try	it	again:

iex>	send	pid,	{:put,	:hello,	:world}

{:put,	:hello,	:world}

iex>	send	pid,	{:get,	:hello,	self()}

{:get,	:hello,	#PID<0.41.0>}

iex>	flush

:world

:ok

Notice	how	the	process	is	keeping	a	state	and	we	can	get	and	update	this	state	by	sending
the	process	messages.	In	fact,	any	process	that	knows	the		pid		above	will	be	able	to	send
it	messages	and	manipulate	the	state.

It	is	also	possible	to	register	the		pid	,	giving	it	a	name,	and	allowing	everyone	that	knows
the	name	to	send	it	messages:

iex>	Process.register(pid,	:kv)

true

iex>	send	:kv,	{:get,	:hello,	self()}

{:get,	:hello,	#PID<0.41.0>}

iex>	flush

:world

:ok

Using	processes	around	state	and	name	registering	are	very	common	patterns	in	Elixir
applications.	However,	most	of	the	time,	we	won't	implement	those	patterns	manually	as
above,	but	by	using	one	of	the	many	abstractions	that	ship	with	Elixir.	For	example,	Elixir
provides	agents,	which	are	simple	abstractions	around	state:

iex>	{:ok,	pid}	=	Agent.start_link(fn	->	%{}	end)

{:ok,	#PID<0.72.0>}

iex>	Agent.update(pid,	fn	map	->	Map.put(map,	:hello,	:world)	end)

:ok

iex>	Agent.get(pid,	fn	map	->	Map.get(map,	:hello)	end)

:world

A		:name		option	could	also	be	given	to		Agent.start_link/2		and	it	would	be	automatically
registered.	Besides	agents,	Elixir	provides	an	API	for	building	generic	servers	(called
GenServer),	tasks	and	more,	all	powered	by	processes	underneath.	Those,	along	with
supervision	trees,	will	be	explored	with	more	detail	in	the	Mix	and	OTP	guide	which	will
build	a	complete	Elixir	application	from	start	to	finish.

For	now,	let's	move	on	and	explore	the	world	of	I/O	in	Elixir.

State

90



State

91



IO	and	the	file	system
This	chapter	is	a	quick	introduction	to	input/output	mechanisms	and	file-system-related
tasks,	as	well	as	to	related	modules	like		IO	,		File		and		Path	.

We	had	originally	sketched	this	chapter	to	come	much	earlier	in	the	getting	started	guide.
However,	we	noticed	the	IO	system	provides	a	great	opportunity	to	shed	some	light	on	some
philosophies	and	curiosities	of	Elixir	and	the	VM.

IO	and	the	file	system

92



The		IO		module
The		IO		module	is	the	main	mechanism	in	Elixir	for	reading	and	writing	to	standard
input/output	(	:stdio	),	standard	error	(	:stderr	),	files	and	other	IO	devices.	Usage	of	the
module	is	pretty	straightforward:

iex>	IO.puts	"hello	world"

hello	world

:ok

iex>	IO.gets	"yes	or	no?	"

yes	or	no?	yes

"yes\n"

By	default,	functions	in	the	IO	module	read	from	the	standard	input	and	write	to	the	standard
output.	We	can	change	that	by	passing,	for	example,		:stderr		as	an	argument	(in	order	to
write	to	the	standard	error	device):

iex>	IO.puts	:stderr,	"hello	world"

hello	world

:ok

The	IO	module

93



The		File		module
The		File		module	contains	functions	that	allow	us	to	open	files	as	IO	devices.	By	default,
files	are	opened	in	binary	mode,	which	requires	developers	to	use	the	specific
	IO.binread/2		and		IO.binwrite/2		functions	from	the		IO		module:

iex>	{:ok,	file}	=	File.open	"hello",	[:write]

{:ok,	#PID<0.47.0>}

iex>	IO.binwrite	file,	"world"

:ok

iex>	File.close	file

:ok

iex>	File.read	"hello"

{:ok,	"world"}

A	file	can	also	be	opened	with		:utf8		encoding,	which	tells	the		File		module	to	interpret
the	bytes	read	from	the	file	as	UTF-8-encoded	bytes.

Besides	functions	for	opening,	reading	and	writing	files,	the		File		module	has	many
functions	to	work	with	the	file	system.	Those	functions	are	named	after	their	UNIX
equivalents.	For	example,		File.rm/1		can	be	used	to	remove	files,		File.mkdir/1		to	create
directories,		File.mkdir_p/1		to	create	directories	and	all	their	parent	chain.	There	are	even
	File.cp_r/2		and		File.rm_rf/1		to	respectively	copy	and	remove	files	and	directories
recursively	(i.e.,	copying	and	removing	the	contents	of	the	directories	too).

You	will	also	notice	that	functions	in	the		File		module	have	two	variants:	one	"regular"
variant	and	another	variant	with	a	trailing	bang	(	!	).	For	example,	when	we	read	the
	&quot;hello&quot;		file	in	the	example	above,	we	use		File.read/1	.	Alternatively,	we	can
use		File.read!/1	:

iex>	File.read	"hello"

{:ok,	"world"}

iex>	File.read!	"hello"

"world"

iex>	File.read	"unknown"

{:error,	:enoent}

iex>	File.read!	"unknown"

**	(File.Error)	could	not	read	file	unknown:	no	such	file	or	directory

Notice	that	when	the	file	does	not	exist,	the	version	with		!		raises	an	error.	The	version
without		!		is	preferred	when	you	want	to	handle	different	outcomes	using	pattern	matching:

The	File	module

94



case	File.read(file)	do

		{:ok,	body}						->	#	do	something	with	the	`body`

		{:error,	reason}	->	#	handle	the	error	caused	by	`reason`

end

However,	if	you	expect	the	file	to	be	there,	the	bang	variation	is	more	useful	as	it	raises	a
meaningful	error	message.	Avoid	writing:

{:ok,	body}	=	File.read(file)

as,	in	case	of	an	error,		File.read/1		will	return		{:error,	reason}		and	the	pattern	matching
will	fail.	You	will	still	get	the	desired	result	(a	raised	error),	but	the	message	will	be	about	the
pattern	which	doesn't	match	(thus	being	cryptic	in	respect	to	what	the	error	actually	is
about).

Therefore,	if	you	don't	want	to	handle	the	error	outcomes,	prefer	using		File.read!/1	.

The	File	module

95



The		Path		module
The	majority	of	the	functions	in	the		File		module	expect	paths	as	arguments.	Most
commonly,	those	paths	will	be	regular	binaries.	The		Path		module	provides	facilities	for
working	with	such	paths:

iex>	Path.join("foo",	"bar")

"foo/bar"

iex>	Path.expand("~/hello")

"/Users/jose/hello"

Using	functions	from	the		Path		module	as	opposed	to	just	manipulating	binaries	is	preferred
since	the		Path		module	takes	care	of	different	operating	systems	transparently.	Finally,	keep
in	mind	that	Elixir	will	automatically	convert	slashes	(	/	)	into	backslashes	(	\	)	on	Windows
when	performing	file	operations.

With	this	we	have	covered	the	main	modules	that	Elixir	provides	for	dealing	with	IO	and
interacting	with	the	file	system.	In	the	next	sections,	we	will	discuss	some	advanced	topics
regarding	IO.	Those	sections	are	not	necessary	in	order	to	write	Elixir	code,	so	feel	free	to
skip	them,	but	they	do	provide	a	nice	overview	of	how	the	IO	system	is	implemented	in	the
VM	and	other	curiosities.

The	Path	module

96



Processes	and	group	leaders
You	may	have	noticed	that		File.open/2		returns	a	tuple	like		{:ok,	pid}	:

iex>	{:ok,	file}	=	File.open	"hello",	[:write]

{:ok,	#PID<0.47.0>}

That	happens	because	the		IO		module	actually	works	with	processes	(see	chapter	11).
When	you	write		IO.write(pid,	binary)	,	the		IO		module	will	send	a	message	to	the	process
identified	by		pid		with	the	desired	operation.	Let's	see	what	happens	if	we	use	our	own
process:

iex>	pid	=	spawn	fn	->

...>		receive	do:	(msg	->	IO.inspect	msg)

...>	end

#PID<0.57.0>

iex>	IO.write(pid,	"hello")

{:io_request,	#PID<0.41.0>,	#Reference<0.0.8.91>,	{:put_chars,	:unicode,	"hello"}}

**	(ErlangError)	erlang	error:	:terminated

After		IO.write/2	,	we	can	see	the	request	sent	by	the		IO		module	(a	four-elements	tuple)
printed	out.	Soon	after	that,	we	see	that	it	fails	since	the		IO		module	expected	some	kind	of
result	that	we	did	not	supply.

The		StringIO		module	provides	an	implementation	of	the		IO		device	messages	on	top	of
strings:

iex>	{:ok,	pid}	=	StringIO.open("hello")

{:ok,	#PID<0.43.0>}

iex>	IO.read(pid,	2)

"he"

By	modelling	IO	devices	with	processes,	the	Erlang	VM	allows	different	nodes	in	the	same
network	to	exchange	file	processes	in	order	to	read/write	files	in	between	nodes.	Of	all	IO
devices,	there	is	one	that	is	special	to	each	process:	the	group	leader.

When	you	write	to		:stdio	,	you	are	actually	sending	a	message	to	the	group	leader,	which
writes	to	the	standard-output	file	descriptor:

Processes	and	group	leaders

97



iex>	IO.puts	:stdio,	"hello"

hello

:ok

iex>	IO.puts	Process.group_leader,	"hello"

hello

:ok

The	group	leader	can	be	configured	per	process	and	is	used	in	different	situations.	For
example,	when	executing	code	in	a	remote	terminal,	it	guarantees	messages	in	a	remote
node	are	redirected	and	printed	in	the	terminal	that	triggered	the	request.

Processes	and	group	leaders

98



	iodata		and		chardata	
In	all	of	the	examples	above,	we	used	binaries	when	writing	to	files.	In	the	chapter	"Binaries,
strings	and	char	lists",	we	mentioned	how	strings	are	simply	bytes	while	char	lists	are	lists
with	code	points.

The	functions	in		IO		and		File		also	allow	lists	to	be	given	as	arguments.	Not	only	that,	they
also	allow	a	mixed	list	of	lists,	integers	and	binaries	to	be	given:

iex>	IO.puts	'hello	world'

hello	world

:ok

iex>	IO.puts	['hello',	?\s,	"world"]

hello	world

:ok

However,	this	requires	some	attention.	A	list	may	represent	either	a	bunch	of	bytes	or	a
bunch	of	characters	and	which	one	to	use	depends	on	the	encoding	of	the	IO	device.	If	the
file	is	opened	without	encoding,	the	file	is	expected	to	be	in	raw	mode,	and	the	functions	in
the		IO		module	starting	with		bin*		must	be	used.	Those	functions	expect	an		iodata		as
argument;	i.e.,	they	expect	a	list	of	integers	representing	bytes	and	binaries	to	be	given.

On	the	other	hand,		:stdio		and	files	opened	with		:utf8		encoding	work	with	the	remaining
functions	in	the		IO		module.	Those	functions	expect	a		char_data		as	an	argument,	that	is,	a
list	of	characters	or	strings.

Although	this	is	a	subtle	difference,	you	only	need	to	worry	about	these	details	if	you	intend
to	pass	lists	to	those	functions.	Binaries	are	already	represented	by	the	underlying	bytes	and
as	such	their	representation	is	always	"raw".

This	finishes	our	tour	of	IO	devices	and	IO	related	functionality.	We	have	learned	about	four
Elixir	modules	-		IO	,		File	,		Path		and		StringIO		-	as	well	as	how	the	VM	uses	processes
for	the	underlying	IO	mechanisms	and	how	to	use		chardata		and		iodata		for	IO	operations.

iodata	and	chardata

99



alias,	require	and	import
In	order	to	facilitate	software	reuse,	Elixir	provides	three	directives	(	alias	,		require		and
	import	)	plus	a	macro	called		use		summarized	below:

#	Alias	the	module	so	it	can	be	called	as	Bar	instead	of	Foo.Bar

alias	Foo.Bar,	as:	Bar

#	Ensure	the	module	is	compiled	and	available	(usually	for	macros)

require	Foo

#	Import	functions	from	Foo	so	they	can	be	called	without	the	`Foo.`	prefix

import	Foo

#	Invokes	the	custom	code	defined	in	Foo	as	an	extension	point

use	Foo

We	are	going	to	explore	them	in	detail	now.	Keep	in	mind	the	first	three	are	called	directives
because	they	have	lexical	scope,	while		use		is	a	common	extension	point.

alias,	require	and	import

100



alias
	alias		allows	you	to	set	up	aliases	for	any	given	module	name.	Imagine	our		Math		module
uses	a	special	list	implementation	for	doing	math	specific	operations:

defmodule	Math	do

		alias	Math.List,	as:	List

end

From	now	on,	any	reference	to		List		will	automatically	expand	to		Math.List	.	In	case	one
wants	to	access	the	original		List	,	it	can	be	done	by	prefixing	the	module	name	with
	Elixir.	:

List.flatten													#=>	uses	Math.List.flatten

Elixir.List.flatten						#=>	uses	List.flatten

Elixir.Math.List.flatten	#=>	uses	Math.List.flatten

Note:	All	modules	defined	in	Elixir	are	defined	inside	a	main	Elixir	namespace.
However,	for	convenience,	you	can	omit	"Elixir."	when	referencing	them.

Aliases	are	frequently	used	to	define	shortcuts.	In	fact,	calling		alias		without	an		:as		option
sets	the	alias	automatically	to	the	last	part	of	the	module	name,	for	example:

alias	Math.List

Is	the	same	as:

alias	Math.List,	as:	List

Note	that		alias		is	lexically	scoped,	which	allows	you	to	set	aliases	inside	specific
functions:

alias

101



defmodule	Math	do

		def	plus(a,	b)	do

				alias	Math.List

				#	...

		end

		def	minus(a,	b)	do

				#	...

		end

end

In	the	example	above,	since	we	are	invoking		alias		inside	the	function		plus/2	,	the	alias
will	just	be	valid	inside	the	function		plus/2	.		minus/2		won't	be	affected	at	all.

alias

102



require
Elixir	provides	macros	as	a	mechanism	for	meta-programming	(writing	code	that	generates
code).

Macros	are	chunks	of	code	that	are	executed	and	expanded	at	compilation	time.	This
means,	in	order	to	use	a	macro,	we	need	to	guarantee	its	module	and	implementation	are
available	during	compilation.	This	is	done	with	the		require		directive:

iex>	Integer.is_odd(3)

**	(CompileError)	iex:1:	you	must	require	Integer	before	invoking	the	macro	Integer.is

_odd/1

iex>	require	Integer

Integer

iex>	Integer.is_odd(3)

true

In	Elixir,		Integer.is_odd/1		is	defined	as	a	macro	so	that	it	can	be	used	as	a	guard.	This
means	that,	in	order	to	invoke		Integer.is_odd/1	,	we	need	to	first	require	the		Integer	
module.

In	general	a	module	does	not	need	to	be	required	before	usage,	except	if	we	want	to	use	the
macros	available	in	that	module.	An	attempt	to	call	a	macro	that	was	not	loaded	will	raise	an
error.	Note	that	like	the		alias		directive,		require		is	also	lexically	scoped.	We	will	talk	more
about	macros	in	a	later	chapter.

require

103



import
We	use		import		whenever	we	want	to	easily	access	functions	or	macros	from	other
modules	without	using	the	fully-qualified	name.	For	instance,	if	we	want	to	use	the
	duplicate/2		function	from	the		List		module	several	times,	we	can	simply	import	it:

iex>	import	List,	only:	[duplicate:	2]

List

iex>	duplicate	:ok,	3

[:ok,	:ok,	:ok]

In	this	case,	we	are	importing	only	the	function		duplicate		(with	arity	2)	from		List	.
Although		:only		is	optional,	its	usage	is	recommended	in	order	to	avoid	importing	all	the
functions	of	a	given	module	inside	the	namespace.		:except		could	also	be	given	as	an
option	in	order	to	import	everything	in	a	module	except	a	list	of	functions.

	import		also	supports		:macros		and		:functions		to	be	given	to		:only	.	For	example,	to
import	all	macros,	one	could	write:

import	Integer,	only:	:macros

Or	to	import	all	functions,	you	could	write:

import	Integer,	only:	:functions

Note	that		import		is	lexically	scoped	too.	This	means	that	we	can	import	specific	macros
or	functions	inside	function	definitions:

defmodule	Math	do

		def	some_function	do

				import	List,	only:	[duplicate:	2]

				duplicate(:ok,	10)

		end

end

In	the	example	above,	the	imported		List.duplicate/2		is	only	visible	within	that	specific
function.		duplicate/2		won't	be	available	in	any	other	function	in	that	module	(or	any	other
module	for	that	matter).

Note	that		import	ing	a	module	automatically		require	s	it.

import

104



import

105



use
Although	not	a	directive,		use		is	a	macro	tightly	related	to		require		that	allows	you	to	use	a
module	in	the	current	context.	The		use		macro	is	frequently	used	by	developers	to	bring
external	functionality	into	the	current	lexical	scope,	often	modules.

For	example,	in	order	to	write	tests	using	the	ExUnit	framework,	a	developer	should	use	the
	ExUnit.Case		module:

defmodule	AssertionTest	do

		use	ExUnit.Case,	async:	true

		test	"always	pass"	do

				assert	true

		end

end

Behind	the	scenes,		use		requires	the	given	module	and	then	calls	the		__using__/1		callback
on	it	allowing	the	module	to	inject	some	code	into	the	current	context.	Generally	speaking,
the	following	module:

defmodule	Example	do

		use	Feature,	option:	:value

end

is	compiled	into

defmodule	Example	do

		require	Feature

		Feature.__using__(option:	:value)

end

With	this	we	have	almost	finished	our	tour	of	Elixir	modules.	The	last	topic	to	cover	is
module	attributes.

use

106



Understanding	Aliases
At	this	point,	you	may	be	wondering:	what	exactly	is	an	Elixir	alias	and	how	is	it
represented?

An	alias	in	Elixir	is	a	capitalized	identifier	(like		String	,		Keyword	,	etc)	which	is	converted	to
an	atom	during	compilation.	For	instance,	the		String		alias	translates	by	default	to	the	atom
	:&quot;Elixir.String&quot;	:

iex>	is_atom(String)

true

iex>	to_string(String)

"Elixir.String"

iex>	:"Elixir.String"	==	String

true

By	using	the		alias/2		directive,	we	are	simply	changing	the	atom	the	alias	expands	to.

Aliases	expand	to	atoms	because	in	the	Erlang	VM	(and	consequently	Elixir)	modules	are
always	represented	by	atoms.	For	example,	that's	the	mechanism	we	use	to	call	Erlang
modules:

iex>	:lists.flatten([1,	[2],	3])

[1,	2,	3]

This	is	also	the	mechanism	that	allows	us	to	dynamically	call	a	given	function	in	a	module:

iex>	mod	=	:lists

:lists

iex>	mod.flatten([1,	[2],	3])

[1,	2,	3]

We	are	simply	calling	the	function		flatten		on	the	atom		:lists	.

Understanding	Aliases

107



Module	nesting
Now	that	we	have	talked	about	aliases,	we	can	talk	about	nesting	and	how	it	works	in	Elixir.
Consider	the	following	example:

defmodule	Foo	do

		defmodule	Bar	do

		end

end

The	example	above	will	define	two	modules:		Foo		and		Foo.Bar	.	The	second	can	be
accessed	as		Bar		inside		Foo		as	long	as	they	are	in	the	same	lexical	scope.	The	code
above	is	exactly	the	same	as:

defmodule	Elixir.Foo	do

		defmodule	Elixir.Foo.Bar	do

		end

		alias	Elixir.Foo.Bar,	as:	Bar

end

If,	later,	the		Bar		module	is	moved	outside	the		Foo		module	definition,	it	must	be	referenced
by	its	full	name	(	Foo.Bar	)	or	an	alias	must	be	set	using	the		alias		directive	discussed
above.

Note:	in	Elixir,	you	don't	have	to	define	the		Foo		module	before	being	able	to	define	the
	Foo.Bar		module,	as	the	language	translates	all	module	names	to	atoms.	You	can	define
arbitrarily-nested	modules	without	defining	any	module	in	the	chain	(e.g.,		Foo.Bar.Baz	
without	defining		Foo		or		Foo.Bar		first).

As	we	will	see	in	later	chapters,	aliases	also	play	a	crucial	role	in	macros,	to	guarantee	they
are	hygienic.

Module	nesting

108



Multi	alias/import/require/use
From	Elixir	v1.2,	it	is	possible	to	alias,	import	or	require	multiple	modules	at	once.	This	is
particularly	useful	once	we	start	nesting	modules,	which	is	very	common	when	building	Elixir
applications.	For	example,	imagine	you	have	an	application	where	all	modules	are	nested
under		MyApp	,	you	can	alias	the	modules		MyApp.Foo	,		MyApp.Bar		and		MyApp.Baz		at	once	as
follows:

alias	MyApp.{Foo,	Bar,	Baz}

Multi	alias/import/require/use

109



Module	attributes
Module	attributes	in	Elixir	serve	three	purposes:

1.	 They	serve	to	annotate	the	module,	often	with	information	to	be	used	by	the	user	or	the
VM.

2.	 They	work	as	constants.
3.	 They	work	as	a	temporary	module	storage	to	be	used	during	compilation.

Let's	check	each	case,	one	by	one.

Module	attributes

110



As	annotations
Elixir	brings	the	concept	of	module	attributes	from	Erlang.	For	example:

defmodule	MyServer	do

		@vsn	2

end

In	the	example	above,	we	are	explicitly	setting	the	version	attribute	for	that	module.		@vsn		is
used	by	the	code	reloading	mechanism	in	the	Erlang	VM	to	check	if	a	module	has	been
updated	or	not.	If	no	version	is	specified,	the	version	is	set	to	the	MD5	checksum	of	the
module	functions.

Elixir	has	a	handful	of	reserved	attributes.	Here	are	just	a	few	of	them,	the	most	commonly
used	ones:

	@moduledoc		-	provides	documentation	for	the	current	module.
	@doc		-	provides	documentation	for	the	function	or	macro	that	follows	the	attribute.
	@behaviour		-	(notice	the	British	spelling)	used	for	specifying	an	OTP	or	user-defined
behaviour.
	@before_compile		-	provides	a	hook	that	will	be	invoked	before	the	module	is	compiled.
This	makes	it	possible	to	inject	functions	inside	the	module	exactly	before	compilation.

	@moduledoc		and		@doc		are	by	far	the	most	used	attributes,	and	we	expect	you	to	use	them
a	lot.	Elixir	treats	documentation	as	first-class	and	provides	many	functions	to	access
documentation.	You	can	read	more	about	writing	documentation	in	Elixir	in	our	official
documentation.

Let's	go	back	to	the		Math		module	defined	in	the	previous	chapters,	add	some
documentation	and	save	it	to	the		math.ex		file:

As	annotations

111



defmodule	Math	do

		@moduledoc	"""

		Provides	math-related	functions.

		##	Examples

						iex>	Math.sum(1,	2)

						3

"""

		@doc	"""

		Calculates	the	sum	of	two	numbers.

"""

		def	sum(a,	b),	do:	a	+	b

end

Elixir	promotes	the	use	of	markdown	with	heredocs	to	write	readable	documentation.
Heredocs	are	multiline	strings,	they	start	and	end	with	triple	double-quotes,	keeping	the
formatting	of	the	inner	text.	We	can	access	the	documentation	of	any	compiled	module
directly	from	IEx:

$	elixirc	math.ex

$	iex

iex>	h	Math	#	Access	the	docs	for	the	module	Math

...

iex>	h	Math.sum	#	Access	the	docs	for	the	sum	function

...

We	also	provide	a	tool	called	ExDoc	which	is	used	to	generate	HTML	pages	from	the
documentation.

You	can	take	a	look	at	the	docs	for	Module	for	a	complete	list	of	supported	attributes.	Elixir
also	uses	attributes	to	define	typespecs.

This	section	covers	built-in	attributes.	However,	attributes	can	also	be	used	by	developers	or
extended	by	libraries	to	support	custom	behaviour.

As	annotations

112

https://github.com/elixir-lang/ex_doc


As	constants
Elixir	developers	will	often	use	module	attributes	as	constants:

defmodule	MyServer	do

		@initial_state	%{host:	"147.0.0.1",	port:	3456}

		IO.inspect	@initial_state

end

Note:	Unlike	Erlang,	user	defined	attributes	are	not	stored	in	the	module	by	default.	The
value	exists	only	during	compilation	time.	A	developer	can	configure	an	attribute	to
behave	closer	to	Erlang	by	calling		Module.register_attribute/3	.

Trying	to	access	an	attribute	that	was	not	defined	will	print	a	warning:

defmodule	MyServer	do

		@unknown

end

warning:	undefined	module	attribute	@unknown,	please	remove	access	to	@unknown	or	expl

icitly	set	it	before	access

Finally,	attributes	can	also	be	read	inside	functions:

defmodule	MyServer	do

		@my_data	14

		def	first_data,	do:	@my_data

		@my_data	13

		def	second_data,	do:	@my_data

end

MyServer.first_data	#=>	14

MyServer.second_data	#=>	13

Notice	that	reading	an	attribute	inside	a	function	takes	a	snapshot	of	its	current	value.	In
other	words,	the	value	is	read	at	compilation	time	and	not	at	runtime.	As	we	are	going	to
see,	this	makes	attributes	useful	to	be	used	as	storage	during	module	compilation.

As	constants

113



As	temporary	storage
One	of	the	projects	in	the	Elixir	organization	is	the		Plug		project,	which	is	meant	to	be	a
common	foundation	for	building	web	libraries	and	frameworks	in	Elixir.

The	Plug	library	also	allows	developers	to	define	their	own	plugs	which	can	be	run	in	a	web
server:

defmodule	MyPlug	do

		use	Plug.Builder

		plug	:set_header

		plug	:send_ok

		def	set_header(conn,	_opts)	do

				put_resp_header(conn,	"x-header",	"set")

		end

		def	send_ok(conn,	_opts)	do

				send(conn,	200,	"ok")

		end

end

IO.puts	"Running	MyPlug	with	Cowboy	on	http://localhost:4000"

Plug.Adapters.Cowboy.http	MyPlug,	[]

In	the	example	above,	we	have	used	the		plug/1		macro	to	connect	functions	that	will	be
invoked	when	there	is	a	web	request.	Internally,	every	time	you	call		plug/1	,	the	Plug	library
stores	the	given	argument	in	a		@plugs		attribute.	Just	before	the	module	is	compiled,	Plug
runs	a	callback	that	defines	a	function	(	call/2	)	which	handles	http	requests.	This	function
will	run	all	plugs	inside		@plugs		in	order.

In	order	to	understand	the	underlying	code,	we'd	need	macros,	so	we	will	revisit	this	pattern
in	the	meta-programming	guide.	However	the	focus	here	is	on	how	using	module	attributes
as	storage	allows	developers	to	create	DSLs.

Another	example	comes	from	the	ExUnit	framework	which	uses	module	attributes	as
annotation	and	storage:

As	temporary	storage

114

https://github.com/elixir-lang/plug


defmodule	MyTest	do

		use	ExUnit.Case

		@tag	:external

		test	"contacts	external	service"	do

				#	...

		end

end

Tags	in	ExUnit	are	used	to	annotate	tests.	Tags	can	be	later	used	to	filter	tests.	For	example,
you	can	avoid	running	external	tests	on	your	machine	because	they	are	slow	and	dependent
on	other	services,	while	they	can	still	be	enabled	in	your	build	system.

We	hope	this	section	shines	some	light	on	how	Elixir	supports	meta-programming	and	how
module	attributes	play	an	important	role	when	doing	so.

In	the	next	chapters	we'll	explore	structs	and	protocols	before	moving	to	exception	handling
and	other	constructs	like	sigils	and	comprehensions.

As	temporary	storage

115



Structs
In	chapter	7	we	learned	about	maps:

iex>	map	=	%{a:	1,	b:	2}

%{a:	1,	b:	2}

iex>	map[:a]

1

iex>	%{map	|	a:	3}

%{a:	3,	b:	2}

Structs	are	extensions	built	on	top	of	maps	that	provide	compile-time	checks	and	default
values.

Structs

116



Defining	structs
To	define	a	struct,	the		defstruct		construct	is	used:

iex>	defmodule	User	do

...>			defstruct	name:	"John",	age:	27

...>	end

The	keyword	list	used	with		defstruct		defines	what	fields	the	struct	will	have	along	with	their
default	values.

Structs	take	the	name	of	the	module	they're	defined	in.	In	the	example	above,	we	defined	a
struct	named		User	.

We	can	now	create		User		structs	by	using	a	syntax	similar	to	the	one	used	to	create	maps:

iex>	%User{}

%User{age:	27,	name:	"John"}

iex>	%User{name:	"Meg"}

%User{age:	27,	name:	"Meg"}

Structs	provide	compile-time	guarantees	that	only	the	fields	(and	all	of	them)	defined	through
	defstruct		will	be	allowed	to	exist	in	a	struct:

iex>	%User{oops:	:field}

**	(CompileError)	iex:3:	unknown	key	:oops	for	struct	User

Defining	structs

117



Accessing	and	updating	structs
When	we	discussed	maps,	we	showed	how	we	can	access	and	update	the	fields	of	a	map.
The	same	techniques	(and	the	same	syntax)	apply	to	structs	as	well:

iex>	john	=	%User{}

%User{age:	27,	name:	"John"}

iex>	john.name

"John"

iex>	meg	=	%{john	|	name:	"Meg"}

%User{age:	27,	name:	"Meg"}

iex>	%{meg	|	oops:	:field}

**	(KeyError)	key	:oops	not	found	in:	%User{age:	27,	name:	"Meg"}

When	using	the	update	syntax	(	|	),	the	VM	is	aware	that	no	new	keys	will	be	added	to	the
struct,	allowing	the	maps	underneath	to	share	their	structure	in	memory.	In	the	example
above,	both		john		and		meg		share	the	same	key	structure	in	memory.

Structs	can	also	be	used	in	pattern	matching,	both	for	matching	on	the	value	of	specific	keys
as	well	as	for	ensuring	that	the	matching	value	is	a	struct	of	the	same	type	as	the	matched
value.

iex>	%User{name:	name}	=	john

%User{age:	27,	name:	"John"}

iex>	name

"John"

iex>	%User{}	=	%{}

**	(MatchError)	no	match	of	right	hand	side	value:	%{}

Accessing	and	updating	structs

118



Structs	are	bare	maps	underneath
In	the	example	above,	pattern	matching	works	because	underneath	structs	are	just	bare
maps	with	a	fixed	set	of	fields.	As	maps,	structs	store	a	"special"	field	named		__struct__	
that	holds	the	name	of	the	struct:

iex>	is_map(john)

true

iex>	john.__struct__

User

Notice	that	we	referred	to	structs	as	bare	maps	because	none	of	the	protocols	implemented
for	maps	are	available	for	structs.	For	example,	you	can	neither	enumerate	nor	access	a
struct:

iex>	john	=	%User{}

%User{age:	27,	name:	"John"}

iex>	john[:name]

**	(UndefinedFunctionError)	undefined	function:	User.fetch/2

iex>	Enum.each	john,	fn({field,	value})	->	IO.puts(value)	end

**	(Protocol.UndefinedError)	protocol	Enumerable	not	implemented	for	%User{age:	27,	na

me:	"John"}

However,	since	structs	are	just	maps,	they	work	with	the	functions	from	the		Map		module:

iex>	kurt	=	Map.put(%User{},	:name,	"Kurt")

%User{age:	27,	name:	"Kurt"}

iex>	Map.merge(kurt,	%User{name:	"Takashi"})

%User{age:	27,	name:	"Takashi"}

iex>	Map.keys(john)

[:__struct__,	:age,	:name]

Structs	alongside	protocols	provide	one	of	the	most	important	features	for	Elixir	developers:
data	polymorphism.	That's	what	we	will	explore	in	the	next	chapter.

Structs	are	bare	maps	underneath

119



Protocols
Protocols	are	a	mechanism	to	achieve	polymorphism	in	Elixir.	Dispatching	on	a	protocol	is
available	to	any	data	type	as	long	as	it	implements	the	protocol.	Let's	see	an	example.

In	Elixir,	only		false		and		nil		are	treated	as	false.	Everything	else	evaluates	to	true.
Depending	on	the	application,	it	may	be	important	to	specify	a		blank?		protocol	that	returns
a	boolean	for	other	data	types	that	should	be	considered	blank.	For	instance,	an	empty	list
or	an	empty	binary	could	be	considered	blanks.

We	could	define	this	protocol	as	follows:

defprotocol	Blank	do

		@doc	"Returns	true	if	data	is	considered	blank/empty"

		def	blank?(data)

end

The	protocol	expects	a	function	called		blank?		that	receives	one	argument	to	be
implemented.	We	can	implement	this	protocol	for	different	Elixir	data	types	as	follows:

#	Integers	are	never	blank

defimpl	Blank,	for:	Integer	do

		def	blank?(_),	do:	false

end

#	Just	empty	list	is	blank

defimpl	Blank,	for:	List	do

		def	blank?([]),	do:	true

		def	blank?(_),		do:	false

end

#	Just	empty	map	is	blank

defimpl	Blank,	for:	Map	do

		#	Keep	in	mind	we	could	not	pattern	match	on	%{}	because

		#	it	matches	on	all	maps.	We	can	however	check	if	the	size

		#	is	zero	(and	size	is	a	fast	operation).

		def	blank?(map),	do:	map_size(map)	==	0

end

#	Just	the	atoms	false	and	nil	are	blank

defimpl	Blank,	for:	Atom	do

		def	blank?(false),	do:	true

		def	blank?(nil),			do:	true

		def	blank?(_),					do:	false

end

Protocols

120



And	we	would	do	so	for	all	native	data	types.	The	types	available	are:

	Atom	

	BitString	

	Float	

	Function	

	Integer	

	List	

	Map	

	PID	

	Port	

	Reference	

	Tuple	

Now	with	the	protocol	defined	and	implementations	in	hand,	we	can	invoke	it:

iex>	Blank.blank?(0)

false

iex>	Blank.blank?([])

true

iex>	Blank.blank?([1,	2,	3])

false

Passing	a	data	type	that	does	not	implement	the	protocol	raises	an	error:

iex>	Blank.blank?("hello")

**	(Protocol.UndefinedError)	protocol	Blank	not	implemented	for	"hello"

Protocols

121



Protocols	and	structs
The	power	of	Elixir's	extensibility	comes	when	protocols	and	structs	are	used	together.

In	the	previous	chapter,	we	have	learned	that	although	structs	are	maps,	they	do	not	share
protocol	implementations	with	maps.	Let's	define	a		User		struct	as	in	that	chapter:

iex>	defmodule	User	do

...>			defstruct	name:	"john",	age:	27

...>	end

{:module,	User,

	<<70,	79,	82,	...>>,	{:__struct__,	0}}

And	then	check:

iex>	Blank.blank?(%{})

true

iex>	Blank.blank?(%User{})

**	(Protocol.UndefinedError)	protocol	Blank	not	implemented	for	%User{age:	27,	name:	"

john"}

Instead	of	sharing	protocol	implementation	with	maps,	structs	require	their	own	protocol
implementation:

defimpl	Blank,	for:	User	do

		def	blank?(_),	do:	false

end

If	desired,	you	could	come	up	with	your	own	semantics	for	a	user	being	blank.	Not	only	that,
you	could	use	structs	to	build	more	robust	data	types,	like	queues,	and	implement	all
relevant	protocols,	such	as		Enumerable		and	possibly		Blank	,	for	this	data	type.

Protocols	and	structs

122



Implementing		Any	
Manually	implementing	protocols	for	all	types	can	quickly	become	repetitive	and	tedious.	In
such	cases,	Elixir	provides	two	options:	we	can	explicitly	derive	the	protocol	implementation
for	our	types	or	automatically	implement	the	protocol	for	all	types.	In	both	cases,	we	need	to
implement	the	protocol	for		Any	.

Deriving

Elixir	allows	us	to	derive	a	protocol	implementation	based	on	the		Any		implementation.	Let's
first	implement		Any		as	follows:

defimpl	Blank,	for:	Any	do

		def	blank?(_),	do:	false

end

Now,	when	defining	the	struct,	we	can	explicitly	derive	the	implementation	for	the		Blank	
protocol.	Let's	create	another	struct,	this	one	called		DeriveUser	:

defmodule	DeriveUser	do

		@derive	Blank

		defstruct	name:	"john",	age:	27

end

When	deriving,	Elixir	will	implement	the		Blank		protocol	for		DeriveUser		based	on	the
implementation	provided	for		Any	.	Note	this	behaviour	is	opt-in:	structs	will	only	work	with
the	protocol	as	long	as	they	explicitly	implement	or	derive	it.

Fallback	to		Any	

Another	alternative	to		@derive		is	to	explicitly	tell	the	protocol	to	fallback	to		Any		when	an
implementation	cannot	be	found.	This	can	be	achieved	by	setting		@fallback_to_any		to
	true		in	the	protocol	definition:

defprotocol	Blank	do

		@fallback_to_any	true

		def	blank?(data)

end

Assuming	we	have	implemented		Any		as	in	the	previous	section:

Implementing	Any

123



defimpl	Blank,	for:	Any	do

		def	blank?(_),	do:	false

end

Now	all	data	types	(including	structs)	that	have	not	implemented	the		Blank		protocol	will	be
considered	non-blank.	In	contrast	to		@derive	,	falling	back	to		Any		is	opt-out:	all	data	types
get	a	pre-defined	behaviour	unless	they	provide	their	own	implementation	of	the	protocol.
Which	technique	is	best	depends	on	the	use	case	but,	given	Elixir	developers	prefer	explicit
over	implicit,	you	may	see	many	libraries	pushing	towards	the		@derive		approach.

Implementing	Any

124



Built-in	protocols
Elixir	ships	with	some	built-in	protocols.	In	previous	chapters,	we	have	discussed	the		Enum	
module	which	provides	many	functions	that	work	with	any	data	structure	that	implements	the
	Enumerable		protocol:

iex>	Enum.map	[1,	2,	3],	fn(x)	->	x	*	2	end

[2,	4,	6]

iex>	Enum.reduce	1..3,	0,	fn(x,	acc)	->	x	+	acc	end

6

Another	useful	example	is	the		String.Chars		protocol,	which	specifies	how	to	convert	a	data
structure	with	characters	to	a	string.	It's	exposed	via	the		to_string		function:

iex>	to_string	:hello

"hello"

Notice	that	string	interpolation	in	Elixir	calls	the		to_string		function:

iex>	"age:	#{25}"

"age:	25"

The	snippet	above	only	works	because	numbers	implement	the		String.Chars		protocol.
Passing	a	tuple,	for	example,	will	lead	to	an	error:

iex>	tuple	=	{1,	2,	3}

{1,	2,	3}

iex>	"tuple:	#{tuple}"

**	(Protocol.UndefinedError)	protocol	String.Chars	not	implemented	for	{1,	2,	3}

When	there	is	a	need	to	"print"	a	more	complex	data	structure,	one	can	simply	use	the
	inspect		function,	based	on	the		Inspect		protocol:

iex>	"tuple:	#{inspect	tuple}"

"tuple:	{1,	2,	3}"

The		Inspect		protocol	is	the	protocol	used	to	transform	any	data	structure	into	a	readable
textual	representation.	This	is	what	tools	like	IEx	use	to	print	results:

Built-in	protocols

125



iex>	{1,	2,	3}

{1,	2,	3}

iex>	%User{}

%User{name:	"john",	age:	27}

Keep	in	mind	that,	by	convention,	whenever	the	inspected	value	starts	with		#	,	it	is
representing	a	data	structure	in	non-valid	Elixir	syntax.	This	means	the	inspect	protocol	is
not	reversible	as	information	may	be	lost	along	the	way:

iex>	inspect	&(&1+2)

"#Function<6.71889879/1	in	:erl_eval.expr/5>"

There	are	other	protocols	in	Elixir	but	this	covers	the	most	common	ones.

Built-in	protocols

126



Comprehensions
In	Elixir,	it	is	common	to	loop	over	an	Enumerable,	often	filtering	out	some	results	and
mapping	values	into	another	list.	Comprehensions	are	syntactic	sugar	for	such	constructs:
they	group	those	common	tasks	into	the		for		special	form.

For	example,	we	can	map	a	list	of	integers	into	their	squared	values:

iex>	for	n	<-	[1,	2,	3,	4],	do:	n	*	n

[1,	4,	9,	16]

A	comprehension	is	made	of	three	parts:	generators,	filters	and	collectables.

Comprehensions

127



Protocol	consolidation
When	working	with	Elixir	projects,	using	the	Mix	build	tool,	you	may	see	output	as	follows:

Consolidated	String.Chars

Consolidated	Collectable

Consolidated	List.Chars

Consolidated	IEx.Info

Consolidated	Enumerable

Consolidated	Inspect

Those	are	all	protocols	that	ship	with	Elixir	and	they	are	being	consolidated.	Because	a
protocol	can	dispatch	to	any	data	type,	the	protocol	must	check	on	every	call	if	an
implementation	for	the	given	type	exists.	This	may	be	expensive.

However,	after	our	project	is	compiled	using	a	tool	like	Mix,	we	know	all	modules	that	have
been	defined,	including	protocols	and	their	implementations.	This	way,	the	protocol	can	be
consolidated	into	a	very	simple	and	fast	dispatch	module.

From	Elixir	v1.2,	protocol	consolidation	happens	automatically	for	all	projects.	We	will	build
our	own	project	in	the	Mix	and	OTP	guide.

Protocol	consolidation

128



Generators	and	filters
In	the	expression	above,		n	&lt;-	[1,	2,	3,	4]		is	the	generator.	It	is	literally	generating
values	to	be	used	in	the	comprehension.	Any	enumerable	can	be	passed	in	the	right-hand
side	of	the	generator	expression:

iex>	for	n	<-	1..4,	do:	n	*	n

[1,	4,	9,	16]

Generator	expressions	also	support	pattern	matching	on	their	left-hand	side;	all	non-
matching	patterns	are	ignored.	Imagine	that,	instead	of	a	range,	we	have	a	keyword	list
where	the	key	is	the	atom		:good		or		:bad		and	we	only	want	to	compute	the	square	of	the
	:good		values:

iex>	values	=	[good:	1,	good:	2,	bad:	3,	good:	4]

iex>	for	{:good,	n}	<-	values,	do:	n	*	n

[1,	4,	16]

Alternatively	to	pattern	matching,	filters	can	be	used	to	select	some	particular	elements.	For
example,	we	can	select	the	multiples	of	3	and	discard	all	others:

iex>	multiple_of_3?	=	fn(n)	->	rem(n,	3)	==	0	end

iex>	for	n	<-	0..5,	multiple_of_3?.(n),	do:	n	*	n

[0,	9]

Comprehensions	discard	all	elements	for	which	the	filter	expression	returns		false		or		nil	;
all	other	values	are	selected.

Comprehensions	generally	provide	a	much	more	concise	representation	than	using	the
equivalent	functions	from	the		Enum		and		Stream		modules.	Furthermore,	comprehensions
also	allow	multiple	generators	and	filters	to	be	given.	Here	is	an	example	that	receives	a	list
of	directories	and	gets	the	size	of	each	file	in	those	directories:

for	dir		<-	dirs,

				file	<-	File.ls!(dir),

				path	=	Path.join(dir,	file),

				File.regular?(path)	do

		File.stat!(path).size

end

Multiple	generators	can	also	be	used	to	calculate	the	cartesian	product	of	two	lists:

Generators	and	filters

129



iex>	for	i	<-	[:a,	:b,	:c],	j	<-	[1,	2],	do:		{i,	j}

[a:	1,	a:	2,	b:	1,	b:	2,	c:	1,	c:	2]

A	more	advanced	example	of	multiple	generators	and	filters	is	Pythagorean	triples.	A
Pythagorean	triple	is	a	set	of	positive	integers	such	that		a*a	+	b*b	=	c*c	,	let's	write	a
comprehension	in	a	file	named		triple.exs	:

defmodule	Triple	do

		def	pythagorean(n)	when	n	>	0	do

				for	a	<-	1..n,

								b	<-	1..n,

								c	<-	1..n,

								a	+	b	+	c	<=	n,

								a*a	+	b*b	==	c*c,

								do:	{a,	b,	c}

		end

end

Now	on	terminal:

iex	triple.exs

iex>	Triple.pythagorean(5)

[]

iex>	Triple.pythagorean(12)

[{3,	4,	5},	{4,	3,	5}]

iex>	Triple.pythagorean(48)

[{3,	4,	5},	{4,	3,	5},	{5,	12,	13},	{6,	8,	10},	{8,	6,	10},	{8,	15,	17},

	{9,	12,	15},	{12,	5,	13},	{12,	9,	15},	{12,	16,	20},	{15,	8,	17},	{16,	12,	20}]

The	code	above	is	quite	expensive	when	the	range	of	search	is	a	large	number.	Additionally,
since	the	tuple		{b,	a,	c}		represents	the	same	Pythagorean	triple	as		{a,	b,	c}	,	our
function	yields	duplicate	triples.	We	can	optimize	the	comprehension	and	eliminate	the
duplicate	results	by	referencing	the	variables	from	previous	generators	in	the	following	ones,
for	example:

Generators	and	filters

130



defmodule	Triple	do

		def	pythagorean(n)	when	n	>	0	do

				for	a	<-	1..n-2,

								b	<-	a+1..n-1,

								c	<-	b+1..n,

								a	+	b	+	c	<=	n,

								a*a	+	b*b	==	c*c,

								do:	{a,	b,	c}

		end

end

Finally,	keep	in	mind	that	variable	assignments	inside	the	comprehension,	be	it	in
generators,	filters	or	inside	the	block,	are	not	reflected	outside	of	the	comprehension.

Generators	and	filters

131



Bitstring	generators
Bitstring	generators	are	also	supported	and	are	very	useful	when	you	need	to	comprehend
over	bitstring	streams.	The	example	below	receives	a	list	of	pixels	from	a	binary	with	their
respective	red,	green	and	blue	values	and	converts	them	into	tuples	of	three	elements	each:

iex>	pixels	=	<<213,	45,	132,	64,	76,	32,	76,	0,	0,	234,	32,	15>>

iex>	for	<<r::8,	g::8,	b::8	<-	pixels>>,	do:	{r,	g,	b}

[{213,	45,	132},	{64,	76,	32},	{76,	0,	0},	{234,	32,	15}]

A	bitstring	generator	can	be	mixed	with	"regular"	enumerable	generators,	and	supports	filters
as	well.

Bitstring	generators

132



The		:into		option
In	the	examples	above,	all	the	comprehensions	returned	lists	as	their	result.	However,	the
result	of	a	comprehension	can	be	inserted	into	different	data	structures	by	passing	the
	:into		option	to	the	comprehension.

For	example,	a	bitstring	generator	can	be	used	with	the		:into		option	in	order	to	easily
remove	all	spaces	in	a	string:

iex>	for	<<c	<-	"	hello	world	">>,	c	!=	?\s,	into:	"",	do:	<<c>>

"helloworld"

Sets,	maps	and	other	dictionaries	can	also	be	given	to	the		:into		option.	In	general,		:into	
accepts	any	structure	that	implements	the		Collectable		protocol.

A	common	use	case	of		:into		can	be	transforming	values	in	a	map,	without	touching	the
keys:

iex>	for	{key,	val}	<-	%{"a"	=>	1,	"b"	=>	2},	into:	%{},	do:	{key,	val	*	val}

%{"a"	=>	1,	"b"	=>	4}

Let's	make	another	example	using	streams.	Since	the		IO		module	provides	streams	(that
are	both		Enumerable	s	and		Collectable	s),	an	echo	terminal	that	echoes	back	the	upcased
version	of	whatever	is	typed	can	be	implemented	using	comprehensions:

iex>	stream	=	IO.stream(:stdio,	:line)

iex>	for	line	<-	stream,	into:	stream	do

...>			String.upcase(line)	<>	"\n"

...>	end

Now	type	any	string	into	the	terminal	and	you	will	see	that	the	same	value	will	be	printed	in
upper-case.	Unfortunately,	this	example	also	got	your	IEx	shell	stuck	in	the	comprehension,
so	you	will	need	to	hit		Ctrl+C		twice	to	get	out	of	it.	:)

The	:into	option

133



Sigils
We	have	already	learned	that	Elixir	provides	double-quoted	strings	and	single-quoted	char
lists.	However,	this	only	covers	the	surface	of	structures	that	have	textual	representation	in
the	language.	Atoms,	for	example,	are	mostly	created	via	the		:atom		representation.

One	of	Elixir's	goals	is	extensibility:	developers	should	be	able	to	extend	the	language	to	fit
any	particular	domain.	Computer	science	has	become	such	a	wide	field	that	it	is	impossible
for	a	language	to	tackle	many	fields	as	part	of	its	core.	Rather,	our	best	bet	is	to	make	the
language	extensible,	so	developers,	companies	and	communities	can	extend	the	language
to	their	relevant	domains.

In	this	chapter,	we	are	going	to	explore	sigils,	which	are	one	of	the	mechanisms	provided	by
the	language	for	working	with	textual	representations.	Sigils	start	with	the	tilde	(	~	)
character	which	is	followed	by	a	letter	(which	identifies	the	sigil)	and	then	a	delimiter;
optionally,	modifiers	can	be	added	after	the	final	delimiter.

Sigils

134



Strings,	char	lists	and	words	sigils
Besides	regular	expressions,	Elixir	ships	with	three	other	sigils.

Strings

The		~s		sigil	is	used	to	generate	strings,	like	double	quotes	are.	The		~s		sigil	is	useful,	for
example,	when	a	string	contains	both	double	and	single	quotes:

iex>	~s(this	is	a	string	with	"double"	quotes,	not	'single'	ones)

"this	is	a	string	with	\"double\"	quotes,	not	'single'	ones"

Char	lists

The		~c		sigil	is	used	to	generate	char	lists:

iex>	~c(this	is	a	char	list	containing	'single	quotes')

'this	is	a	char	list	containing	\'single	quotes\''

Word	lists

The		~w		sigil	is	used	to	generate	lists	of	words	(words	are	just	regular	strings).	Inside	the
	~w		sigil,	words	are	separated	by	whitespace.

iex>	~w(foo	bar	bat)

["foo",	"bar",	"bat"]

The		~w		sigil	also	accepts	the		c	,		s		and		a		modifiers	(for	char	lists,	strings	and	atoms,
respectively),	which	specify	the	data	type	of	the	elements	of	the	resulting	list:

iex>	~w(foo	bar	bat)a

[:foo,	:bar,	:bat]

Strings,	char	lists	and	words	sigils

135



Regular	expressions
The	most	common	sigil	in	Elixir	is		~r	,	which	is	used	to	create	regular	expressions:

#	A	regular	expression	that	matches	strings	which	contain	"foo"	or	"bar":

iex>	regex	=	~r/foo|bar/

~r/foo|bar/

iex>	"foo"	=~	regex

true

iex>	"bat"	=~	regex

false

Elixir	provides	Perl-compatible	regular	expressions	(regexes),	as	implemented	by	the	PCRE
library.	Regexes	also	support	modifiers.	For	example,	the		i		modifier	makes	a	regular
expression	case	insensitive:

iex>	"HELLO"	=~	~r/hello/

false

iex>	"HELLO"	=~	~r/hello/i

true

Check	out	the		Regex		module	for	more	information	on	other	modifiers	and	the	supported
operations	with	regular	expressions.

So	far,	all	examples	have	used		/		to	delimit	a	regular	expression.	However	sigils	support	8
different	delimiters:

~r/hello/

~r|hello|

~r"hello"

~r'hello'

~r(hello)

~r[hello]

~r{hello}

~r<hello>

The	reason	behind	supporting	different	delimiters	is	that	different	delimiters	can	be	more
suited	for	different	sigils.	For	example,	using	parentheses	for	regular	expressions	may	be	a
confusing	choice	as	they	can	get	mixed	with	the	parentheses	inside	the	regex.	However,
parentheses	can	be	handy	for	other	sigils,	as	we	will	see	in	the	next	section.

Regular	expressions

136

https://en.wikipedia.org/wiki/Regular_Expressions
http://www.pcre.org/


Regular	expressions

137



Interpolation	and	escaping	in	sigils
Besides	lowercase	sigils,	Elixir	supports	uppercase	sigils	to	deal	with	escaping	characters
and	interpolation.	While	both		~s		and		~S		will	return	strings,	the	former	allows	escape
codes	and	interpolation	while	the	latter	does	not:

iex>	~s(String	with	escape	codes	\x26	#{"inter"	<>	"polation"})

"String	with	escape	codes	&	interpolation"

iex>	~S(String	without	escape	codes	\x26	without	#{interpolation})

"String	without	escape	codes	\\x26	without	\#{interpolation}"

The	following	escape	codes	can	be	used	in	strings	and	char	lists:

	\&quot;		–	double	quote
	\&#039;		–	single	quote
	\\		–	single	backslash
	\a		–	bell/alert
	\b		–	backspace
	\d		-	delete
	\e		-	escape
	\f		-	form	feed
	\n		–	newline
	\r		–	carriage	return
	\s		–	space
	\t		–	tab
	\v		–	vertical	tab
	\0		-	null	byte
	\xDD		-	represents	a	single	byte	in	hexadecimal	(such	as		\x13	)
	\uDDDD		and		\u{D...}		-	represents	a	Unicode	codepoint	in	hexadecimal	(such	as
	\u{1F600}	)

Sigils	also	support	heredocs,	that	is,	triple	double-	or	single-quotes	as	separators:

iex>	~s"""

...>	this	is

...>	a	heredoc	string

...>	"""

The	most	common	use	case	for	heredoc	sigils	is	when	writing	documentation.	For	example,
writing	escape	characters	in	documentation	would	soon	become	error	prone	because	of	the
need	to	double-escape	some	characters:

Interpolation	and	escaping	in	sigils

138



@doc	"""

Converts	double-quotes	to	single-quotes.

##	Examples

				iex>	convert("\\\"foo\\\"")

				"'foo'"

"""

def	convert(...)

By	using		~S	,	this	problem	can	be	avoided	altogether:

@doc	~S"""

Converts	double-quotes	to	single-quotes.

##	Examples

				iex>	convert("\"foo\"")

				"'foo'"

"""

def	convert(...)

Interpolation	and	escaping	in	sigils

139



Custom	sigils
As	hinted	at	the	beginning	of	this	chapter,	sigils	in	Elixir	are	extensible.	In	fact,	using	the	sigil
	~r/foo/i		is	equivalent	to	calling		sigil_r		with	a	binary	and	a	char	list	as	argument:

iex>	sigil_r(<<"foo">>,	'i')

~r"foo"i

We	can	access	the	documentation	for	the		~r		sigil	via		sigil_r	:

iex>	h	sigil_r

...

We	can	also	provide	our	own	sigils	by	simply	implementing	functions	that	follow	the
	sigil_{identifier}		pattern.	For	example,	let's	implement	the		~i		sigil	that	returns	an
integer	(with	the	optional		n		modifier	to	make	it	negative):

iex>	defmodule	MySigils	do

...>			def	sigil_i(string,	[]),	do:	String.to_integer(string)

...>			def	sigil_i(string,	[?n]),	do:	-String.to_integer(string)

...>	end

iex>	import	MySigils

iex>	~i(13)

13

iex>	~i(42)n

-42

Sigils	can	also	be	used	to	do	compile-time	work	with	the	help	of	macros.	For	example,
regular	expressions	in	Elixir	are	compiled	into	an	efficient	representation	during	compilation
of	the	source	code,	therefore	skipping	this	step	at	runtime.	If	you're	interested	in	the	subject,
we	recommend	you	learn	more	about	macros	and	check	out	how	sigils	are	implemented	in
the		Kernel		module	(where	the		sigil_*		functions	are	defined).

Custom	sigils

140



try,	catch	and	rescue
Elixir	has	three	error	mechanisms:	errors,	throws	and	exits.	In	this	chapter	we	will	explore
each	of	them	and	include	remarks	about	when	each	should	be	used.

try,	catch	and	rescue

141



Errors
Errors	(or	exceptions)	are	used	when	exceptional	things	happen	in	the	code.	A	sample	error
can	be	retrieved	by	trying	to	add	a	number	into	an	atom:

iex>	:foo	+	1

**	(ArithmeticError)	bad	argument	in	arithmetic	expression

					:erlang.+(:foo,	1)

A	runtime	error	can	be	raised	any	time	by	using		raise/1	:

iex>	raise	"oops"

**	(RuntimeError)	oops

Other	errors	can	be	raised	with		raise/2		passing	the	error	name	and	a	list	of	keyword
arguments:

iex>	raise	ArgumentError,	message:	"invalid	argument	foo"

**	(ArgumentError)	invalid	argument	foo

You	can	also	define	your	own	errors	by	creating	a	module	and	using	the		defexception	
construct	inside	it;	this	way,	you'll	create	an	error	with	the	same	name	as	the	module	it's
defined	in.	The	most	common	case	is	to	define	a	custom	exception	with	a	message	field:

iex>	defmodule	MyError	do

iex>			defexception	message:	"default	message"

iex>	end

iex>	raise	MyError

**	(MyError)	default	message

iex>	raise	MyError,	message:	"custom	message"

**	(MyError)	custom	message

Errors	can	be	rescued	using	the		try/rescue		construct:

iex>	try	do

...>			raise	"oops"

...>	rescue

...>			e	in	RuntimeError	->	e

...>	end

%RuntimeError{message:	"oops"}

Errors

142



The	example	above	rescues	the	runtime	error	and	returns	the	error	itself	which	is	then
printed	in	the		iex		session.

If	you	don't	have	any	use	for	the	error,	you	don't	have	to	provide	it:

iex>	try	do

...>			raise	"oops"

...>	rescue

...>			RuntimeError	->	"Error!"

...>	end

"Error!"

In	practice,	however,	Elixir	developers	rarely	use	the		try/rescue		construct.	For	example,
many	languages	would	force	you	to	rescue	an	error	when	a	file	cannot	be	opened
successfully.	Elixir	instead	provides	a		File.read/1		function	which	returns	a	tuple	containing
information	about	whether	the	file	was	opened	successfully:

iex>	File.read	"hello"

{:error,	:enoent}

iex>	File.write	"hello",	"world"

:ok

iex>	File.read	"hello"

{:ok,	"world"}

There	is	no		try/rescue		here.	In	case	you	want	to	handle	multiple	outcomes	of	opening	a
file,	you	can	simply	use	pattern	matching	with	the		case		construct:

iex>	case	File.read	"hello"	do

...>			{:ok,	body}						->	IO.puts	"Success:	#{body}"

...>			{:error,	reason}	->	IO.puts	"Error:	#{reason}"

...>	end

At	the	end	of	the	day,	it's	up	to	your	application	to	decide	if	an	error	while	opening	a	file	is
exceptional	or	not.	That's	why	Elixir	doesn't	impose	exceptions	on		File.read/1		and	many
other	functions.	Instead,	it	leaves	it	up	to	the	developer	to	choose	the	best	way	to	proceed.

For	the	cases	where	you	do	expect	a	file	to	exist	(and	the	lack	of	that	file	is	truly	an	error)
you	can	simply	use		File.read!/1	:

iex>	File.read!	"unknown"

**	(File.Error)	could	not	read	file	unknown:	no	such	file	or	directory

				(elixir)	lib/file.ex:305:	File.read!/1

Errors

143



Many	functions	in	the	standard	library	follow	the	pattern	of	having	a	counterpart	that	raises
an	exception	instead	of	returning	tuples	to	match	against.	The	convention	is	to	create	a
function	(	foo	)	which	returns		{:ok,	result}		or		{:error,	reason}		tuples	and	another
function	(	foo!	,	same	name	but	with	a	trailing		!	)	that	takes	the	same	arguments	as		foo	
but	which	raises	an	exception	if	there's	an	error.		foo!		should	return	the	result	(not	wrapped
in	a	tuple)	if	everything	goes	fine.	The		File		module	is	a	good	example	of	this	convention.

In	Elixir,	we	avoid	using		try/rescue		because	we	don't	use	errors	for	control	flow.	We
take	errors	literally:	they	are	reserved	for	unexpected	and/or	exceptional	situations.	In	case
you	actually	need	flow	control	constructs,	throws	should	be	used.	That's	what	we	are	going
to	see	next.

Errors

144



Throws
In	Elixir,	a	value	can	be	thrown	and	later	be	caught.		throw		and		catch		are	reserved	for
situations	where	it	is	not	possible	to	retrieve	a	value	unless	by	using		throw		and		catch	.

Those	situations	are	quite	uncommon	in	practice	except	when	interfacing	with	libraries	that
do	not	provide	a	proper	API.	For	example,	let's	imagine	the		Enum		module	did	not	provide
any	API	for	finding	a	value	and	that	we	needed	to	find	the	first	multiple	of	13	in	a	list	of
numbers:

iex>	try	do

...>			Enum.each	-50..50,	fn(x)	->

...>					if	rem(x,	13)	==	0,	do:	throw(x)

...>			end

...>			"Got	nothing"

...>	catch

...>			x	->	"Got	#{x}"

...>	end

"Got	-39"

Since		Enum		does	provide	a	proper	API,	in	practice		Enum.find/2		is	the	way	to	go:

iex>	Enum.find	-50..50,	&(rem(&1,	13)	==	0)

-39

Throws

145



Exits
All	Elixir	code	runs	inside	processes	that	communicate	with	each	other.	When	a	process
dies	of	"natural	causes"	(e.g.,	unhandled	exceptions),	it	sends	an		exit		signal.	A	process
can	also	die	by	explicitly	sending	an	exit	signal:

iex>	spawn_link	fn	->	exit(1)	end

#PID<0.56.0>

**	(EXIT	from	#PID<0.56.0>)	1

In	the	example	above,	the	linked	process	died	by	sending	an		exit		signal	with	value	of	1.
The	Elixir	shell	automatically	handles	those	messages	and	prints	them	to	the	terminal.

	exit		can	also	be	"caught"	using		try/catch	:

iex>	try	do

...>			exit	"I	am	exiting"

...>	catch

...>			:exit,	_	->	"not	really"

...>	end

"not	really"

Using		try/catch		is	already	uncommon	and	using	it	to	catch	exits	is	even	more	rare.

	exit		signals	are	an	important	part	of	the	fault	tolerant	system	provided	by	the	Erlang	VM.
Processes	usually	run	under	supervision	trees	which	are	themselves	processes	that	just
wait	for		exit		signals	from	the	supervised	processes.	Once	an	exit	signal	is	received,	the
supervision	strategy	kicks	in	and	the	supervised	process	is	restarted.

It	is	exactly	this	supervision	system	that	makes	constructs	like		try/catch		and		try/rescue	
so	uncommon	in	Elixir.	Instead	of	rescuing	an	error,	we'd	rather	"fail	fast"	since	the
supervision	tree	will	guarantee	our	application	will	go	back	to	a	known	initial	state	after	the
error.

Exits

146



After
Sometimes	it's	necessary	to	ensure	that	a	resource	is	cleaned	up	after	some	action	that
could	potentially	raise	an	error.	The		try/after		construct	allows	you	to	do	that.	For	example,
we	can	open	a	file	and	use	an		after		clause	to	close	it--even	if	something	goes	wrong:

iex>	{:ok,	file}	=	File.open	"sample",	[:utf8,	:write]

iex>	try	do

...>			IO.write	file,	"olá"

...>			raise	"oops,	something	went	wrong"

...>	after

...>			File.close(file)

...>	end

**	(RuntimeError)	oops,	something	went	wrong

The		after		clause	will	be	executed	regardless	of	whether	or	not	the	tried	block	succeeds.
Note,	however,	that	if	a	linked	process	exits,	this	process	will	exit	and	the		after		clause	will
not	get	run.	Thus		after		provides	only	a	soft	guarantee.	Luckily,	files	in	Elixir	are	also	linked
to	the	current	processes	and	therefore	they	will	always	get	closed	if	the	current	process
crashes,	independent	of	the		after		clause.	You	will	find	the	same	to	be	true	for	other
resources	like	ETS	tables,	sockets,	ports	and	more.

Sometimes	you	may	want	to	wrap	the	entire	body	of	a	function	in	a		try		construct,	often	to
guarantee	some	code	will	be	executed	afterwards.	In	such	cases,	Elixir	allows	you	to	omit
the		try		line:

iex>	defmodule	RunAfter	do

...>			def	without_even_trying	do

...>					raise	"oops"

...>			after

...>					IO.puts	"cleaning	up!"

...>			end

...>	end

iex>	RunAfter.without_even_trying

cleaning	up!

**	(RuntimeError)	oops

Elixir	will	automatically	wrap	the	function	body	in	a		try		whenever	one	of		after	,		rescue	
or		catch		is	specified.

After

147



Variables	scope
It	is	important	to	bear	in	mind	that	variables	defined	inside		try/catch/rescue/after		blocks
do	not	leak	to	the	outer	context.	This	is	because	the		try		block	may	fail	and	as	such	the
variables	may	never	be	bound	in	the	first	place.	In	other	words,	this	code	is	invalid:

iex>	try	do

...>			raise	"fail"

...>			what_happened	=	:did_not_raise

...>	rescue

...>			_	->	what_happened	=	:rescued

...>	end

iex>	what_happened

**	(RuntimeError)	undefined	function:	what_happened/0

Instead,	you	can	store	the	value	of	the		try		expression:

iex>	what_happened	=

...>			try	do

...>					raise	"fail"

...>					:did_not_raise

...>			rescue

...>					_	->	:rescued

...>			end

iex>	what_happened

:rescued

This	finishes	our	introduction	to		try	,		catch		and		rescue	.	You	will	find	they	are	used	less
frequently	in	Elixir	than	in	other	languages,	although	they	may	be	handy	in	some	situations
where	a	library	or	some	particular	code	is	not	playing	"by	the	rules".

Variables	scope

148



Typespecs	and	behaviours

Typespecs	and	behaviours

149



Types	and	specs
Elixir	is	a	dynamically	typed	language,	so	all	types	in	Elixir	are	inferred	by	the	runtime.
Nonetheless,	Elixir	comes	with	typespecs,	which	are	a	notation	used	for:

1.	 declaring	custom	data	types;
2.	 declaring	typed	function	signatures	(specifications).

Function	specifications

By	default,	Elixir	provides	some	basic	types,	such	as		integer		or		pid	,	as	well	as	more
complex	types:	for	example,	the		round/1		function,	which	rounds	a	float	to	its	nearest
integer,	takes	a		number		as	an	argument	(an		integer		or	a		float	)	and	returns	an
	integer	.	As	you	can	see	in	its	documentation,		round/1	's	typed	signature	is	written	as:

round(number)	::	integer

	::		means	that	the	function	on	the	left	side	returns	a	value	whose	type	is	what's	on	the	right
side.	Function	specs	are	written	with	the		@spec		directive,	placed	right	before	the	function
definition.	The		round/1		function	could	be	written	as:

@spec	round(number)	::	integer

def	round(number),	do:	#	implementation...

Elixir	supports	compound	types	as	well.	For	example,	a	list	of	integers	has	type		[integer]	.
You	can	see	all	the	built-in	types	provided	by	Elixir	in	the	typespecs	docs.

Defining	custom	types

While	Elixir	provides	a	lot	of	useful	built-in	types,	it's	convenient	to	define	custom	types	when
appropriate.	This	can	be	done	when	defining	modules	through	the		@type		directive.

Say	we	have	a		LousyCalculator		module,	which	performs	the	usual	arithmetic	operations
(sum,	product	and	so	on)	but,	instead	of	returning	numbers,	it	returns	tuples	with	the	result
of	an	operation	as	the	first	element	and	a	random	remark	as	the	second	element.

Types	and	specs

150



defmodule	LousyCalculator	do

		@spec	add(number,	number)	::	{number,	String.t}

		def	add(x,	y),	do:	{x	+	y,	"You	need	a	calculator	to	do	that?!"}

		@spec	multiply(number,	number)	::	{number,	String.t}

		def	multiply(x,	y),	do:	{x	*	y,	"Jeez,	come	on!"}

end

As	you	can	see	in	the	example,	tuples	are	a	compound	type	and	each	tuple	is	identified	by
the	types	inside	it.	To	understand	why		String.t		is	not	written	as		string	,	have	another
look	at	the	notes	in	the	typespecs	docs.

Defining	function	specs	this	way	works,	but	it	quickly	becomes	annoying	since	we're
repeating	the	type		{number,	String.t}		over	and	over.	We	can	use	the		@type		directive	in
order	to	declare	our	own	custom	type.

defmodule	LousyCalculator	do

		@typedoc	"""

		Just	a	number	followed	by	a	string.

		"""

		@type	number_with_remark	::	{number,	String.t}

		@spec	add(number,	number)	::	number_with_remark

		def	add(x,	y),	do:	{x	+	y,	"You	need	a	calculator	to	do	that?"}

		@spec	multiply(number,	number)	::	number_with_remark

		def	multiply(x,	y),	do:	{x	*	y,	"It	is	like	addition	on	steroids."}

end

The		@typedoc		directive,	similarly	to	the		@doc		and		@moduledoc		directives,	is	used	to
document	custom	types.

Custom	types	defined	through		@type		are	exported	and	available	outside	the	module	they're
defined	in:

defmodule	QuietCalculator	do

		@spec	add(number,	number)	::	number

		def	add(x,	y),	do:	make_quiet(LousyCalculator.add(x,	y))

		@spec	make_quiet(LousyCalculator.number_with_remark)	::	number

		defp	make_quiet({num,	_remark}),	do:	num

end

If	you	want	to	keep	a	custom	type	private,	you	can	use	the		@typep		directive	instead	of
	@type	.

Types	and	specs

151



Static	code	analysis

Typespecs	are	not	only	useful	to	developers	and	as	additional	documentation.	The	Erlang
tool	Dialyzer,	for	example,	uses	typespecs	in	order	to	perform	static	analysis	of	code.	That's
why,	in	the		QuietCalculator		example,	we	wrote	a	spec	for	the		make_quiet/1		function	even
if	it	was	defined	as	a	private	function.

Types	and	specs

152

http://www.erlang.org/doc/man/dialyzer.html


Behaviours
Many	modules	share	the	same	public	API.	Take	a	look	at	Plug,	which,	as	its	description
states,	is	a	specification	for	composable	modules	in	web	applications.	Each	plug	is	a
module	which	has	to	implement	at	least	two	public	functions:		init/1		and		call/2	.

Behaviours	provide	a	way	to:

define	a	set	of	functions	that	have	to	be	implemented	by	a	module;
ensure	that	a	module	implements	all	the	functions	in	that	set.

If	you	have	to,	you	can	think	of	behaviours	like	interfaces	in	object	oriented	languages	like
Java:	a	set	of	function	signatures	that	a	module	has	to	implement.

Defining	behaviours

Say	we	want	to	implement	a	bunch	of	parsers,	each	parsing	structured	data:	for	example,	a
JSON	parser	and	a	YAML	parser.	Each	of	these	two	parsers	will	behave	the	same	way:	both
will	provide	a		parse/1		function	and	an		extensions/0		function.	The		parse/1		function	will
return	an	Elixir	representation	of	the	structured	data,	while	the		extensions/0		function	will
return	a	list	of	file	extensions	that	can	be	used	for	each	type	of	data	(e.g.,		.json		for	JSON
files).

We	can	create	a		Parser		behaviour:

defmodule	Parser	do

		@callback	parse(String.t)	::	any

		@callback	extensions()	::	[String.t]

end

Modules	adopting	the		Parser		behaviour	will	have	to	implement	all	the	functions	defined
with	the		@callback		directive.	As	you	can	see,		@callback		expects	a	function	name	but	also
a	function	specification	like	the	ones	used	with	the		@spec		directive	we	saw	above.

Adopting	behaviours

Adopting	a	behaviour	is	straightforward:

Behaviours

153

https://github.com/elixir-lang/plug


defmodule	JSONParser	do

		@behaviour	Parser

		def	parse(str),	do:	#	...	parse	JSON

		def	extensions,	do:	["json"]

end

defmodule	YAMLParser	do

		@behaviour	Parser

		def	parse(str),	do:	#	...	parse	YAML

		def	extensions,	do:	["yml"]

end

If	a	module	adopting	a	given	behaviour	doesn't	implement	one	of	the	callbacks	required	by
that	behaviour,	a	compile-time	warning	will	be	generated.

Behaviours

154



Erlang	libraries
Elixir	provides	excellent	interoperability	with	Erlang	libraries.	In	fact,	Elixir	discourages
simply	wrapping	Erlang	libraries	in	favor	of	directly	interfacing	with	Erlang	code.	In	this
section	we	will	present	some	of	the	most	common	and	useful	Erlang	functionality	that	is	not
found	in	Elixir.

As	you	grow	more	proficient	in	Elixir,	you	may	want	to	explore	the	Erlang	STDLIB	Reference
Manual	in	more	detail.

Erlang	libraries

155

http://erlang.org/doc/apps/stdlib/index.html


The	binary	module
The	built-in	Elixir	String	module	handles	binaries	that	are	UTF-8	encoded.	The	binary
module	is	useful	when	you	are	dealing	with	binary	data	that	is	not	necessarily	UTF-8
encoded.

iex>	String.to_char_list	"Ø"

[216]

iex>	:binary.bin_to_list	"Ø"

[195,	152]

The	above	example	shows	the	difference;	the		String		module	returns	UTF-8	codepoints,
while		:binary		deals	with	raw	data	bytes.

The	binary	module

156

http://erlang.org/doc/man/binary.html


Formatted	text	output
Elixir	does	not	contain	a	function	similar	to		printf		found	in	C	and	other	languages.	Luckily,
the	Erlang	standard	library	functions		:io.format/2		and		:io_lib.format/2		may	be	used.
The	first	formats	to	terminal	output,	while	the	second	formats	to	an	iolist.	The	format
specifiers	differ	from		printf	,	refer	to	the	Erlang	documentation	for	details.

iex>	:io.format("Pi	is	approximately	given	by:~10.3f~n",	[:math.pi])

Pi	is	approximately	given	by:					3.142

:ok

iex>	to_string	:io_lib.format("Pi	is	approximately	given	by:~10.3f~n",	[:math.pi])

"Pi	is	approximately	given	by:					3.142\n"

Also	note	that	Erlang's	formatting	functions	require	special	attention	to	Unicode	handling.

Formatted	text	output

157

http://erlang.org/doc/man/io.html#format-1


The	crypto	module
The	crypto	module	contains	hashing	functions,	digital	signatures,	encryption	and	more:

iex>	Base.encode16(:crypto.hash(:sha256,	"Elixir"))

"3315715A7A3AD57428298676C5AE465DADA38D951BDFAC9348A8A31E9C7401CB"

The		:crypto		module	is	not	part	of	the	Erlang	standard	library,	but	is	included	with	the
Erlang	distribution.	This	means	you	must	list		:crypto		in	your	project's	applications	list
whenever	you	use	it.	To	do	this,	edit	your		mix.exs		file	to	include:

		def	application	do

				[applications:	[:crypto]]

		end

The	crypto	module

158

http://erlang.org/doc/man/crypto.html


The	digraph	module
The	digraph	module	(as	well	as	digraph_utils)	contains	functions	for	dealing	with	directed
graphs	built	of	vertices	and	edges.	After	constructing	the	graph,	the	algorithms	in	there	will
help	finding	for	instance	the	shortest	path	between	two	vertices,	or	loops	in	the	graph.

Note	that	the	functions	in		:digraph		alter	the	graph	structure	indirectly	as	a	side	effect,	while
returning	the	added	vertices	or	edges.

Given	three	vertices,	find	the	shortest	path	from	the	first	to	the	last.

iex>	digraph	=	:digraph.new()

iex>	coords	=	[{0.0,	0.0},	{1.0,	0.0},	{1.0,	1.0}]

iex>	[v0,	v1,	v2]	=	(for	c	<-	coords,	do:	:digraph.add_vertex(digraph,	c))

iex>	:digraph.add_edge(digraph,	v0,	v1)

iex>	:digraph.add_edge(digraph,	v1,	v2)

iex>	:digraph.get_short_path(digraph,	v0,	v2)

[{0.0,	0.0},	{1.0,	0.0},	{1.0,	1.0}]

The	digraph	module

159

http://erlang.org/doc/man/digraph.html
http://erlang.org/doc/man/digraph_utils.html


Erlang	Term	Storage
The	modules		ets		and		dets		handle	storage	of	large	data	structures	in	memory	or	on	disk
respectively.

ETS	lets	you	create	a	table	containing	tuples.	By	default,	ETS	tables	are	protected,	which
means	only	the	owner	process	may	write	to	the	table	but	any	other	process	can	read.	ETS
has	some	functionality	to	be	used	as	a	simple	database,	a	key-value	store	or	as	a	cache
mechanism.

The	functions	in	the		ets		module	will	modify	the	state	of	the	table	as	a	side-effect.

iex>	table	=	:ets.new(:ets_test,	[])

#	Store	as	tuples	with	{name,	population}

iex>	:ets.insert(table,	{"China",	1_374_000_000})

iex>	:ets.insert(table,	{"India",	1_284_000_000})

iex>	:ets.insert(table,	{"USA",	322_000_000})

iex>	:ets.i(table)

<1			>	{"USA",	322000000}

<2			>	{"China",	1_374_000_000}

<3			>	{"India",	1_284_000_000}

Erlang	Term	Storage

160

http://erlang.org/doc/man/ets.html
http://erlang.org/doc/man/dets.html


The	math	module
The		math		module	contains	common	mathematical	operations	covering	trigonometry,
exponential	and	logarithmic	functions.

iex>	angle_45_deg	=	:math.pi()	*	45.0	/	180.0

iex>	:math.sin(angle_45_deg)

0.7071067811865475

iex>	:math.exp(55.0)

7.694785265142018e23

iex>	:math.log(7.694785265142018e23)

55.0

The	math	module

161

http://erlang.org/doc/man/math.html


The	queue	module
The		queue		is	a	data	structure	that	implements	(double-ended)	FIFO	(first-in	first-out)
queues	efficiently:

iex>	q	=	:queue.new

iex>	q	=	:queue.in("A",	q)

iex>	q	=	:queue.in("B",	q)

iex>	{value,	q}	=	:queue.out(q)

iex>	value

{:value,	"A"}

iex>	{value,	q}	=	:queue.out(q)

iex>	value

{:value,	"B"}

iex>	{value,	q}	=	:queue.out(q)

iex>	value

:empty

The	queue	module

162

http://erlang.org/doc/man/queue.html


The	rand	module
	rand		has	functions	for	returning	random	values	and	setting	the	random	seed.

iex>	:rand.uniform()

0.8175669086010815

iex>	_	=	:rand.seed(:exs1024,	{123,	123534,	345345})

iex>	:rand.uniform()

0.5820506340260994

iex>	:rand.uniform(6)

6

The	rand	module

163

http://erlang.org/doc/man/rand.html


The	zip	and	zlib	modules
The		zip		module	lets	you	read	and	write	zip	files	to	and	from	disk	or	memory,	as	well	as
extracting	file	information.

This	code	counts	the	number	of	files	in	a	zip	file:

iex>	:zip.foldl(fn	_,	_,	_,	acc	->	acc	+	1	end,	0,	:binary.bin_to_list("file.zip"))

{:ok,	633}

The		zlib		module	deals	with	data	compression	in	zlib	format,	as	found	in	the		gzip	
command.

iex>	song	=	"

...>	Mary	had	a	little	lamb,

...>	His	fleece	was	white	as	snow,

...>	And	everywhere	that	Mary	went,

...>	The	lamb	was	sure	to	go."

iex>	compressed	=	:zlib.compress(song)

iex>	byte_size	song

110

iex>	byte_size	compressed

99

iex>	:zlib.uncompress(compressed)

"\nMary	had	a	little	lamb,\nHis	fleece	was	white	as	snow,\nAnd	everywhere	that	Mary	we

nt,\nThe	lamb	was	sure	to	go."

The	zip	and	zlib	modules

164

http://erlang.org/doc/man/zip.html
http://erlang.org/doc/man/zlib.html


Where	to	go	next
Eager	to	learn	more?	Keep	reading!

Where	to	go	next

165



Build	your	first	Elixir	project
In	order	to	get	your	first	project	started,	Elixir	ships	with	a	build	tool	called	Mix.	You	can	get
your	new	project	started	by	simply	running:

mix	new	path/to/new/project

We	have	written	a	guide	that	covers	how	to	build	an	Elixir	application,	with	its	own
supervision	tree,	configuration,	tests	and	more.	The	application	works	as	a	distributed	key-
value	store	where	we	organize	key-value	pairs	into	buckets	and	distribute	those	buckets
across	multiple	nodes:

Mix	and	OTP

Build	your	first	Elixir	project

166



Meta-programming
Elixir	is	an	extensible	and	very	customizable	programming	language	thanks	to	its	meta-
programming	support.	Most	meta-programming	in	Elixir	is	done	through	macros,	which	are
very	useful	in	several	situations,	especially	for	writing	DSLs.	We	have	written	a	short	guide
that	explains	the	basic	mechanisms	behind	macros,	shows	how	to	write	macros,	and	how	to
use	macros	to	create	DSLs:

Meta-programming	in	Elixir

Meta-programming

167



A	byte	of	Erlang
Elixir	runs	on	the	Erlang	Virtual	Machine	and,	sooner	or	later,	an	Elixir	developer	will	want	to
interface	with	existing	Erlang	libraries.	Here's	a	list	of	online	resources	that	cover	Erlang's
fundamentals	and	its	more	advanced	features:

This	Erlang	Syntax:	A	Crash	Course	provides	a	concise	intro	to	Erlang's	syntax.	Each
code	snippet	is	accompanied	by	equivalent	code	in	Elixir.	This	is	an	opportunity	for	you
to	not	only	get	some	exposure	to	Erlang's	syntax	but	also	review	some	of	the	things	you
have	learned	in	this	guide.

Erlang's	official	website	has	a	short	tutorial	with	pictures	that	briefly	describe	Erlang's
primitives	for	concurrent	programming.

Learn	You	Some	Erlang	for	Great	Good!	is	an	excellent	introduction	to	Erlang,	its	design
principles,	standard	library,	best	practices	and	much	more.	Once	you	have	read	through
the	crash	course	mentioned	above,	you'll	be	able	to	safely	skip	the	first	couple	of
chapters	in	the	book	that	mostly	deal	with	the	syntax.	When	you	reach	The	Hitchhiker's
Guide	to	Concurrency	chapter,	that's	where	the	real	fun	starts.

A	byte	of	Erlang

168

http://www.erlang.org/course/concurrent_programming.html
http://learnyousomeerlang.com/
http://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency


Community	and	other	resources
We	have	a	Learning	section	that	suggests	books,	screencasts	and	other	resources	for
learning	Elixir	and	exploring	the	ecosystem.	There	are	also	plenty	of	Elixir	resources	out
there,	like	conference	talks,	open	source	projects,	and	other	learning	material	produced	by
the	community.

Remember	that	in	case	of	any	difficulties,	you	can	always	visit	the	#elixir-lang	channel	on
irc.freenode.net	or	send	a	message	to	the	mailing	list.	You	can	be	sure	that	there	will	be
someone	willing	to	help.	To	keep	posted	on	the	latest	news	and	announcements,	follow	the
blog	and	follow	the	language	development	on	the	elixir-core	mailing	list.

Don't	forget	that	you	can	also	check	the	source	code	of	Elixir	itself,	which	is	mostly	written	in
Elixir	(mainly	the		lib		directory),	or	explore	Elixir's	documentation.

Community	and	other	resources

169

https://groups.google.com/group/elixir-lang-talk
https://groups.google.com/group/elixir-lang-core
https://github.com/elixir-lang/elixir

	Elixir Getting Started
	Introduction
	Interactive mode
	Installation
	Running scripts
	Asking questions

	Basic types
	Basic arithmetic
	Booleans
	Atoms
	Strings
	Anonymous functions
	Tuples
	(Linked) Lists
	Lists or tuples?

	Basic operators
	Operator table

	Pattern matching
	The match operator
	Pattern matching
	The pin operator

	case, cond and if
	case
	Expressions in guard clauses
	cond
	if and unless
	do/end blocks

	Binaries, strings, and char lists
	UTF-8 and Unicode
	Binaries (and bitstrings)
	Char lists

	Keywords and maps
	Keyword lists
	Maps
	Nested data structures

	Modules
	Compilation
	Scripted mode
	Named functions
	Function capturing
	Default arguments

	Recursion
	Loops through recursion
	Reduce and map algorithms

	Enumerables and Streams
	Enumerables
	Eager vs Lazy
	The pipe operator
	Streams

	Processes
	spawn
	send and receive
	Links
	Tasks
	State

	IO and the file system
	The IO module
	The File module
	The Path module
	Processes and group leaders
	iodata and chardata

	alias, require and import
	alias
	require
	import
	use
	Understanding Aliases
	Module nesting
	Multi alias/import/require/use

	Module attributes
	As annotations
	As constants
	As temporary storage

	Structs
	Defining structs
	Accessing and updating structs
	Structs are bare maps underneath

	Protocols
	Protocols and structs
	Implementing Any
	Built-in protocols

	Comprehensions
	Protocol consolidation
	Generators and filters
	Bitstring generators
	The :into option

	Sigils
	Strings, char lists and words sigils
	Regular expressions
	Interpolation and escaping in sigils
	Custom sigils

	try, catch and rescue
	Errors
	Throws
	Exits
	After
	Variables scope

	Typespecs and behaviours
	Types and specs
	Behaviours

	Erlang libraries
	The binary module
	Formatted text output
	The crypto module
	The digraph module
	Erlang Term Storage
	The math module
	The queue module
	The rand module
	The zip and zlib modules

	Where to go next
	Build your first Elixir project
	Meta-programming
	A byte of Erlang
	Community and other resources


