
Improving the
Presto Parquet
Reader
Venki Korukanti, Interactive Analytics Team

I

NYC

Uber’s mission is to
ignite opportunity by
setting the world in
motion.

15M
Trips/Day

600+
Cities

75M
Monthly Riders

Data informs every decision at the company

Growth Marketing

Data Science

Marketplace
Pricing

Community
Operations

Compliance

Ad-hoc Querying

Overview of Uber’s Data Platform

DATA SOURCES

RAW DATA

MODELED TABLES

MINING BUSINESS
INSIGHTS

CONSUMING BUSINESS INSIGHTS

EXPERIMENTATION

DATA SCIENCE

MACHINE
LEARNING

CUSTOM DATA SETS

Dashboarding
Alerting
Monitoring

Data Exploration
Knowledge Bases

Storage
Infrastructure

ETL Frameworks
Data Integrity

Query Engines

Presto @ Uber-scale

6.5K
Weekly Active Users

400K
Queries/day

2
Data Centers

2.3K
Nodes

10
Clusters

35PB
HDFS data

processed/day

Presto Usage Growth

In last 6 months

● Weekly active users up by 25%

● Weekly queries up by 150%

● Weekly data read up by 70%

● Query latency P90 remained the same

New capacity addition every few months

Queries are constrained by CPU resources

Efforts to Reduce the Scan-Filter-Project CPU Time

● Better data modelling

● Push Filter completely into reader

● Even finer filter pruning using stats

● Improve reader decoding

Parquet Reader
Improvements

Parquet Format Overview

File

Footer

RowGroup 1

RowGroup n

RowGroup

Schema:
1. name string,
2. phone array<string>,
3. address struct(city string, street string)

ColumnChunk (name)

ColumnChunk (phone)

ColumnChunk (city)

ColumnChunk (street)

ColumnChunk
● Consist of one or more pages
● Page types

○ Dictionary
■ Optional and depends on the data

○ Data page
■ dictionary page exists → dictionary ids
■ no dictionary page → contains the actual values

[Dictionary Page]

Data Page 1

Data Page m

Data Page
● Repetition Levels (RLs)

○ Encodes list starting

○ Values: ([1, 2], [3, 4]) written as (1, 2, 3, 4)

○ RLs: [0, 1, 0, 1]

○ More details here

RLs

DLs

Values

Page
● Encoding Types

○ RLE/BitPacked/Plain/Delta encoding

● Definition Levels (DLs)
○ Nullability. [1, null, 2] → DLs: [1, 0, 1]

● Values: Only contains the non-null values

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html

RLE/Bit Packed Encoding
RLE (Run Length Encoding)

1. Consecutively repeating values
2. Example: CA, CA, CA, CA → (4, CA)

Value 1 | Value 2 |
Value 3 | Value 4

RLE Packed

RLEPacked R
Ls

D
Ls

Page

RLE Packed

RLEPacked

Bit Packed

1. Max value bitwidth < 8, 16, 24 or 48 bits
2. Encode the bits back to back
3. To encode: 2, 3, 5, 7, 2:

a. Write bit width (3) in first byte
b. Followed by values: <010 011 10> | <1 111 010 0>
c. Encoded in three bytes, rather than five

Va
lu

es

RLE Packed

RLEPacked

Read next DL

Current Column Reader

RLs

DLs

Values

P
ag

e

Read next RL

Add value/NULL to BlockBuilder

Repeat n
times

Dictionary
(Optional)

Improvements
● Batch reads from Decoders

○ One end-of-stream check
○ One status update
○ Decoder state can be kept in registers

● ArrayBlock implementations instead of BlockBuilder
○ LongArrayBlock/IntegerArrayBlock/ByteArrayBlock/VariableWidthArrayBlock
○ ArrayBlocks take an array of values and array of isNull flags
○ Avoids function call to BlockBuilder

Improvements [2]
● RLE Block, Dictionary decoding

○ If the RLE block says 300 values of dictionary id 27 → 300 dictionary lookups
○ New Decoder that contains both the dictionary and values decoder

■ lookup only once for the RLE block

● Use System.arraycopy wherever possible
○ Avoid generating byte arrays and copying

● Avoid reading RL or DL if not needed
○ non-Nested columns don’t need RL
○ non-Nested and non-nullable columns don’t need to read DL

● Skip values without decoding
○ Ex. Interested in reading from 100th value in a Page.
○ Update the current offset in page value buffer

2. Read n DLs

New Nested Column Reader

RLs

DLs

Values +
Dictionary (optional)

P
ag

e

1. Read n RLs

5. Read m values
6. Rearrange with nulls
7. Create ArrayBlock

3. Find non-null value count m
4. Create isNull vector

1. Read n isNull values

New non-Nested Nullable Column Reader

DLs

Values +
Dictionary (optional)

P
ag

e

2. Read m values
3. Rearrange with nulls
4. Create ArrayBlock

New non-Nested non-Nullable Column Reader

Values +
Dictionary (optional)P

ag
e 1. Read n values

2. Create ArrayBlock

JMH Benchmarks
● Based on ORC benchmark tests
● 10m rows, 30 warmup iterations, 20 test iterations

Type
(non-nested)

Speed up

Boolean 4x

Float 3.5x

Integer 3.5x

Double 3x

Long 3x

VarChar 3.5x

Type (inside
Struct)

Speed up

Boolean 50%

Float 40%

Integer 40%

Double 45%

Long 45%

VarChar 47%

Type
(List Type)

Speed up

Boolean 30%

Float 35%

Integer 35%

Double 30%

Long 30%

VarChar 40%

Results in Production
● Shadowed traffic of one of the dedicated customer cluster (50 nodes)

● ~25K queries per day

● ScanFilterAndProject CPU time decreased by ~40%

● Total CPU time saved is ~28%, Latency improved by ~15%

Thank you

Proprietary © 2018 Uber Technologies, Inc. All rights reserved. No part of this
document may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval systems, without permission in writing from
Uber. This document is intended only for the use of the individual or entity to
whom it is addressed. All recipients of this document are notified that the
information contained herein includes proprietary information of Uber, and
recipient may not make use of, disseminate, or in any way disclose this
document or any of the enclosed information to any person other than
employees of addressee to the extent necessary for consultations with
authorized personnel of Uber.

Parquet Format Overview - Dictionary
● The encoding is PLAIN
● For fixed length types, values are written one after the other
● For variable length types:

○ Length is written in first four bytes
○ Followed by the value

Current Reader’s method of decoding
ColumnReader (reads values in one ColumnChunk)

1. Initialize the BlockBuilder
2. (Optional) Initialize the dictionary page
3. Read the next page and initialize

a. RL decoder
b. DL decoder
c. Values decoder

4. Read one value from RL and one value from DL
5. Based on the RL and DL values

a. read value from values decoder (may involve dictionary lookup)
b. write it to BlockBuilder

New Reader

● Two separate ColumnChunk readers for nested and non-nested columns
a. Nested column reading adds complexity with RLs
b. Restrict the RL decoding logic only to nested column readers

● DL/RL decoders
○ Read n values at a time
○ RLE/BitPacked encoding

● In each reader separate path for
a. Nullable column
b. Non-nullable column (skips reading DLs)

● Values Decoders for each physical data type
a. Read n values at time
b. PLAIN encoding
c. RLE/BitPacked encoding

