forked from elastic/elasticsearch
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement new analysis type: classification (elastic#46537)
- Loading branch information
1 parent
31a5e1c
commit efcc4d1
Showing
27 changed files
with
1,833 additions
and
427 deletions.
There are no files selected for viewing
245 changes: 245 additions & 0 deletions
245
...t/rest-high-level/src/main/java/org/elasticsearch/client/ml/dataframe/Classification.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
/* | ||
* Licensed to Elasticsearch under one or more contributor | ||
* license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright | ||
* ownership. Elasticsearch licenses this file to you under | ||
* the Apache License, Version 2.0 (the "License"); you may | ||
* not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
package org.elasticsearch.client.ml.dataframe; | ||
|
||
import org.elasticsearch.common.Nullable; | ||
import org.elasticsearch.common.ParseField; | ||
import org.elasticsearch.common.Strings; | ||
import org.elasticsearch.common.xcontent.ConstructingObjectParser; | ||
import org.elasticsearch.common.xcontent.XContentBuilder; | ||
import org.elasticsearch.common.xcontent.XContentParser; | ||
|
||
import java.io.IOException; | ||
import java.util.Objects; | ||
|
||
public class Classification implements DataFrameAnalysis { | ||
|
||
public static Classification fromXContent(XContentParser parser) { | ||
return PARSER.apply(parser, null); | ||
} | ||
|
||
public static Builder builder(String dependentVariable) { | ||
return new Builder(dependentVariable); | ||
} | ||
|
||
public static final ParseField NAME = new ParseField("classification"); | ||
|
||
static final ParseField DEPENDENT_VARIABLE = new ParseField("dependent_variable"); | ||
static final ParseField LAMBDA = new ParseField("lambda"); | ||
static final ParseField GAMMA = new ParseField("gamma"); | ||
static final ParseField ETA = new ParseField("eta"); | ||
static final ParseField MAXIMUM_NUMBER_TREES = new ParseField("maximum_number_trees"); | ||
static final ParseField FEATURE_BAG_FRACTION = new ParseField("feature_bag_fraction"); | ||
static final ParseField PREDICTION_FIELD_NAME = new ParseField("prediction_field_name"); | ||
static final ParseField TRAINING_PERCENT = new ParseField("training_percent"); | ||
|
||
private static final ConstructingObjectParser<Classification, Void> PARSER = | ||
new ConstructingObjectParser<>( | ||
NAME.getPreferredName(), | ||
true, | ||
a -> new Classification( | ||
(String) a[0], | ||
(Double) a[1], | ||
(Double) a[2], | ||
(Double) a[3], | ||
(Integer) a[4], | ||
(Double) a[5], | ||
(String) a[6], | ||
(Double) a[7])); | ||
|
||
static { | ||
PARSER.declareString(ConstructingObjectParser.constructorArg(), DEPENDENT_VARIABLE); | ||
PARSER.declareDouble(ConstructingObjectParser.optionalConstructorArg(), LAMBDA); | ||
PARSER.declareDouble(ConstructingObjectParser.optionalConstructorArg(), GAMMA); | ||
PARSER.declareDouble(ConstructingObjectParser.optionalConstructorArg(), ETA); | ||
PARSER.declareInt(ConstructingObjectParser.optionalConstructorArg(), MAXIMUM_NUMBER_TREES); | ||
PARSER.declareDouble(ConstructingObjectParser.optionalConstructorArg(), FEATURE_BAG_FRACTION); | ||
PARSER.declareString(ConstructingObjectParser.optionalConstructorArg(), PREDICTION_FIELD_NAME); | ||
PARSER.declareDouble(ConstructingObjectParser.optionalConstructorArg(), TRAINING_PERCENT); | ||
} | ||
|
||
private final String dependentVariable; | ||
private final Double lambda; | ||
private final Double gamma; | ||
private final Double eta; | ||
private final Integer maximumNumberTrees; | ||
private final Double featureBagFraction; | ||
private final String predictionFieldName; | ||
private final Double trainingPercent; | ||
|
||
private Classification(String dependentVariable, @Nullable Double lambda, @Nullable Double gamma, @Nullable Double eta, | ||
@Nullable Integer maximumNumberTrees, @Nullable Double featureBagFraction, @Nullable String predictionFieldName, | ||
@Nullable Double trainingPercent) { | ||
this.dependentVariable = Objects.requireNonNull(dependentVariable); | ||
this.lambda = lambda; | ||
this.gamma = gamma; | ||
this.eta = eta; | ||
this.maximumNumberTrees = maximumNumberTrees; | ||
this.featureBagFraction = featureBagFraction; | ||
this.predictionFieldName = predictionFieldName; | ||
this.trainingPercent = trainingPercent; | ||
} | ||
|
||
@Override | ||
public String getName() { | ||
return NAME.getPreferredName(); | ||
} | ||
|
||
public String getDependentVariable() { | ||
return dependentVariable; | ||
} | ||
|
||
public Double getLambda() { | ||
return lambda; | ||
} | ||
|
||
public Double getGamma() { | ||
return gamma; | ||
} | ||
|
||
public Double getEta() { | ||
return eta; | ||
} | ||
|
||
public Integer getMaximumNumberTrees() { | ||
return maximumNumberTrees; | ||
} | ||
|
||
public Double getFeatureBagFraction() { | ||
return featureBagFraction; | ||
} | ||
|
||
public String getPredictionFieldName() { | ||
return predictionFieldName; | ||
} | ||
|
||
public Double getTrainingPercent() { | ||
return trainingPercent; | ||
} | ||
|
||
@Override | ||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException { | ||
builder.startObject(); | ||
builder.field(DEPENDENT_VARIABLE.getPreferredName(), dependentVariable); | ||
if (lambda != null) { | ||
builder.field(LAMBDA.getPreferredName(), lambda); | ||
} | ||
if (gamma != null) { | ||
builder.field(GAMMA.getPreferredName(), gamma); | ||
} | ||
if (eta != null) { | ||
builder.field(ETA.getPreferredName(), eta); | ||
} | ||
if (maximumNumberTrees != null) { | ||
builder.field(MAXIMUM_NUMBER_TREES.getPreferredName(), maximumNumberTrees); | ||
} | ||
if (featureBagFraction != null) { | ||
builder.field(FEATURE_BAG_FRACTION.getPreferredName(), featureBagFraction); | ||
} | ||
if (predictionFieldName != null) { | ||
builder.field(PREDICTION_FIELD_NAME.getPreferredName(), predictionFieldName); | ||
} | ||
if (trainingPercent != null) { | ||
builder.field(TRAINING_PERCENT.getPreferredName(), trainingPercent); | ||
} | ||
builder.endObject(); | ||
return builder; | ||
} | ||
|
||
@Override | ||
public int hashCode() { | ||
return Objects.hash(dependentVariable, lambda, gamma, eta, maximumNumberTrees, featureBagFraction, predictionFieldName, | ||
trainingPercent); | ||
} | ||
|
||
@Override | ||
public boolean equals(Object o) { | ||
if (this == o) return true; | ||
if (o == null || getClass() != o.getClass()) return false; | ||
Classification that = (Classification) o; | ||
return Objects.equals(dependentVariable, that.dependentVariable) | ||
&& Objects.equals(lambda, that.lambda) | ||
&& Objects.equals(gamma, that.gamma) | ||
&& Objects.equals(eta, that.eta) | ||
&& Objects.equals(maximumNumberTrees, that.maximumNumberTrees) | ||
&& Objects.equals(featureBagFraction, that.featureBagFraction) | ||
&& Objects.equals(predictionFieldName, that.predictionFieldName) | ||
&& Objects.equals(trainingPercent, that.trainingPercent); | ||
} | ||
|
||
@Override | ||
public String toString() { | ||
return Strings.toString(this); | ||
} | ||
|
||
public static class Builder { | ||
private String dependentVariable; | ||
private Double lambda; | ||
private Double gamma; | ||
private Double eta; | ||
private Integer maximumNumberTrees; | ||
private Double featureBagFraction; | ||
private String predictionFieldName; | ||
private Double trainingPercent; | ||
|
||
private Builder(String dependentVariable) { | ||
this.dependentVariable = Objects.requireNonNull(dependentVariable); | ||
} | ||
|
||
public Builder setLambda(Double lambda) { | ||
this.lambda = lambda; | ||
return this; | ||
} | ||
|
||
public Builder setGamma(Double gamma) { | ||
this.gamma = gamma; | ||
return this; | ||
} | ||
|
||
public Builder setEta(Double eta) { | ||
this.eta = eta; | ||
return this; | ||
} | ||
|
||
public Builder setMaximumNumberTrees(Integer maximumNumberTrees) { | ||
this.maximumNumberTrees = maximumNumberTrees; | ||
return this; | ||
} | ||
|
||
public Builder setFeatureBagFraction(Double featureBagFraction) { | ||
this.featureBagFraction = featureBagFraction; | ||
return this; | ||
} | ||
|
||
public Builder setPredictionFieldName(String predictionFieldName) { | ||
this.predictionFieldName = predictionFieldName; | ||
return this; | ||
} | ||
|
||
public Builder setTrainingPercent(Double trainingPercent) { | ||
this.trainingPercent = trainingPercent; | ||
return this; | ||
} | ||
|
||
public Classification build() { | ||
return new Classification(dependentVariable, lambda, gamma, eta, maximumNumberTrees, featureBagFraction, predictionFieldName, | ||
trainingPercent); | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.