-
Notifications
You must be signed in to change notification settings - Fork 1
/
material.cpp
435 lines (342 loc) · 14.8 KB
/
material.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cstring>
#include <map>
#include "material.h"
using namespace std;
////
//// Local definitions
////
namespace {
// Values modified by Joona Kiiski
const Value MidgameLimit = Value(15581);
const Value EndgameLimit = Value(3998);
// Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][8] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
const int QuadraticCoefficientsOppositeColor[][8] = {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
typedef map<Key, EF*> EFMap;
typedef map<Key, SF*> SFMap;
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
EvaluationFunction<KmmKm> EvaluateKmmKm[] = { EvaluationFunction<KmmKm>(WHITE), EvaluationFunction<KmmKm>(BLACK) };
EvaluationFunction<KXK> EvaluateKXK[] = { EvaluationFunction<KXK>(WHITE), EvaluationFunction<KXK>(BLACK) };
ScalingFunction<KBPsK> ScaleKBPsK[] = { ScalingFunction<KBPsK>(WHITE), ScalingFunction<KBPsK>(BLACK) };
ScalingFunction<KQKRPs> ScaleKQKRPs[] = { ScalingFunction<KQKRPs>(WHITE), ScalingFunction<KQKRPs>(BLACK) };
ScalingFunction<KPsK> ScaleKPsK[] = { ScalingFunction<KPsK>(WHITE), ScalingFunction<KPsK>(BLACK) };
ScalingFunction<KPKP> ScaleKPKP[] = { ScalingFunction<KPKP>(WHITE), ScalingFunction<KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.non_pawn_material(Them) == VALUE_ZERO
&& pos.piece_count(Them, PAWN) == 0
&& pos.non_pawn_material(Us) >= RookValueMidgame;
}
template<Color Us> bool is_KBPsK(const Position& pos) {
return pos.non_pawn_material(Us) == BishopValueMidgame
&& pos.piece_count(Us, BISHOP) == 1
&& pos.piece_count(Us, PAWN) >= 1;
}
template<Color Us> bool is_KQKRPs(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.piece_count(Us, PAWN) == 0
&& pos.non_pawn_material(Us) == QueenValueMidgame
&& pos.piece_count(Us, QUEEN) == 1
&& pos.piece_count(Them, ROOK) == 1
&& pos.piece_count(Them, PAWN) >= 1;
}
}
////
//// Classes
////
/// EndgameFunctions class stores endgame evaluation and scaling functions
/// in two std::map. Because STL library is not guaranteed to be thread
/// safe even for read access, the maps, although with identical content,
/// are replicated for each thread. This is faster then using locks.
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, for evaluate and scaling functions...
pair<EFMap, SFMap> maps;
// ...and here is the accessing template function
template<typename T> const map<Key, T*>& get() const;
};
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const EFMap& EndgameFunctions::get<EF>() const { return maps.first; }
template<> const SFMap& EndgameFunctions::get<SF>() const { return maps.second; }
////
//// Functions
////
/// MaterialInfoTable c'tor and d'tor, called once by each thread
MaterialInfoTable::MaterialInfoTable() {
entries = new MaterialInfo[MaterialTableSize];
funcs = new EndgameFunctions();
if (!entries || !funcs)
{
cerr << "Failed to allocate " << MaterialTableSize * sizeof(MaterialInfo)
<< " bytes for material hash table." << endl;
exit(EXIT_FAILURE);
}
memset(entries, 0, MaterialTableSize * sizeof(MaterialInfo));
}
MaterialInfoTable::~MaterialInfoTable() {
delete funcs;
delete [] entries;
}
/// MaterialInfoTable::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialInfo.
Phase MaterialInfoTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
if (npm >= MidgameLimit)
return PHASE_MIDGAME;
if (npm <= EndgameLimit)
return PHASE_ENDGAME;
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}
/// MaterialInfoTable::get_material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
/// same material configuration occurs again.
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
Key key = pos.get_material_key();
unsigned index = unsigned(key & (MaterialTableSize - 1));
MaterialInfo* mi = entries + index;
// If mi->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
// Clear the MaterialInfo object, and set its key
memset(mi, 0, sizeof(MaterialInfo));
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
mi->key = key;
// Store game phase
mi->gamePhase = MaterialInfoTable::game_phase(pos);
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
return mi;
if (is_KXK<WHITE>(pos) || is_KXK<BLACK>(pos))
{
mi->evaluationFunction = is_KXK<WHITE>(pos) ? &EvaluateKXK[WHITE] : &EvaluateKXK[BLACK];
return mi;
}
if ( pos.pieces(PAWN) == EmptyBoardBB
&& pos.pieces(ROOK) == EmptyBoardBB
&& pos.pieces(QUEEN) == EmptyBoardBB)
{
// Minor piece endgame with at least one minor piece per side and
// no pawns. Note that the case KmmK is already handled by KXK.
assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE)));
assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK)));
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
mi->evaluationFunction = &EvaluateKmmKm[WHITE];
return mi;
}
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
SF* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
}
// Generic scaling functions that refer to more then one material
// distribution. Should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if (is_KBPsK<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
if (is_KBPsK<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
if (is_KQKRPs<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
else if (is_KQKRPs<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == VALUE_ZERO)
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// Compute the space weight
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
{
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
+ pos.piece_count(BLACK, KNIGHT)
+ pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, BISHOP);
mi->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material balance
const int pieceCount[2][8] = {
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
Color c, them;
int sign, pt1, pt2, pc;
int v, vv, matValue = 0;
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
{
// No pawns makes it difficult to win, even with a material advantage
if ( pos.piece_count(c, PAWN) == 0
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
{
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|| pos.non_pawn_material(c) < RookValueMidgame)
mi->factor[c] = 0;
else
{
switch (pos.piece_count(c, BISHOP)) {
case 2:
mi->factor[c] = 32;
break;
case 1:
mi->factor[c] = 12;
break;
case 0:
mi->factor[c] = 6;
break;
}
}
}
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
if (pieceCount[c][ROOK] >= 1)
matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty);
them = opposite_color(c);
v = 0;
// Second-degree polynomial material imbalance by Tord Romstad
//
// We use PIECE_TYPE_NONE as a place holder for the bishop pair "extended piece",
// this allow us to be more flexible in defining bishop pair bonuses.
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
{
pc = pieceCount[c][pt1];
if (!pc)
continue;
vv = LinearCoefficients[pt1];
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
vv += pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2]
+ pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
v += pc * vv;
}
matValue += sign * v;
}
mi->value = (int16_t)(matValue / 16);
return mi;
}
/// EndgameFunctions member definitions
EndgameFunctions::EndgameFunctions() {
add<EvaluationFunction<KNNK> >("KNNK");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (EFMap::const_iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete it->second;
for (SFMap::const_iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete it->second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
// Build up a fen string with the given pieces, note that
// the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
typedef map<Key, F*> M;
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
}