diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index 9511a42f5e..15a3856159 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -3,8 +3,8 @@ - [ ] Closes #xxxx - [ ] I am familiar with the [contributing guidelines](https://pvlib-python.readthedocs.io/en/latest/contributing.html) - [ ] Tests added - - [ ] Updates entries in [`docs/sphinx/source/reference`](https://github.com/pvlib/pvlib-python/blob/main/docs/sphinx/source/reference) for API changes. - - [ ] Adds description and name entries in the appropriate "what's new" file in [`docs/sphinx/source/whatsnew`](https://github.com/pvlib/pvlib-python/tree/main/docs/sphinx/source/whatsnew) for all changes. Includes link to the GitHub Issue with `` :issue:`num` `` or this Pull Request with `` :pull:`num` ``. Includes contributor name and/or GitHub username (link with `` :ghuser:`user` ``). + - [ ] Updates entries in [`docs/sphinx/source/reference`](https://github.com/pvlib/pvlib-python/blob/master/docs/sphinx/source/reference) for API changes. + - [ ] Adds description and name entries in the appropriate "what's new" file in [`docs/sphinx/source/whatsnew`](https://github.com/pvlib/pvlib-python/tree/master/docs/sphinx/source/whatsnew) for all changes. Includes link to the GitHub Issue with `` :issue:`num` `` or this Pull Request with `` :pull:`num` ``. Includes contributor name and/or GitHub username (link with `` :ghuser:`user` ``). - [ ] New code is fully documented. Includes [numpydoc](https://numpydoc.readthedocs.io/en/latest/format.html) compliant docstrings, examples, and comments where necessary. - [ ] Pull request is nearly complete and ready for detailed review. - [ ] Maintainer: Appropriate GitHub Labels (including `remote-data`) and Milestone are assigned to the Pull Request and linked Issue. diff --git a/.github/workflows/asv_check.yml b/.github/workflows/asv_check.yml index 0f6379eeb9..701f217ed9 100644 --- a/.github/workflows/asv_check.yml +++ b/.github/workflows/asv_check.yml @@ -4,7 +4,7 @@ name: asv on: push: branches: - - main + - master pull_request: diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml index fb1f3366c9..0363316ee3 100644 --- a/.github/workflows/publish.yml +++ b/.github/workflows/publish.yml @@ -4,7 +4,7 @@ on: pull_request: push: branches: - - main + - master tags: - "v*" diff --git a/.github/workflows/pytest-remote-data.yml b/.github/workflows/pytest-remote-data.yml index 06adfb1807..347871658b 100644 --- a/.github/workflows/pytest-remote-data.yml +++ b/.github/workflows/pytest-remote-data.yml @@ -1,5 +1,5 @@ # A secondary test job that only runs the iotools tests if explicitly requested -# (for pull requests) or on a push to the main branch. +# (for pull requests) or on a push to the master branch. # Because the iotools tests require GitHub secrets, we need to be careful about # malicious PRs accessing the secrets and exposing them externally. # @@ -48,7 +48,7 @@ on: types: [labeled] push: branches: - - main + - master jobs: test: @@ -68,7 +68,7 @@ jobs: steps: - uses: actions/checkout@v3 if: github.event_name == 'pull_request_target' - # pull_request_target runs in the context of the target branch (pvlib/main), + # pull_request_target runs in the context of the target branch (pvlib/master), # but what we need is the hypothetical merge commit from the PR: with: ref: "refs/pull/${{ github.event.number }}/merge" diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 31d4c117c5..79e345baff 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -4,7 +4,7 @@ on: pull_request: push: branches: - - main + - master jobs: test: diff --git a/README.md b/README.md index 993cfa5665..0186295f84 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ License - + license @@ -28,11 +28,11 @@ documentation build status - - GitHub Actions Testing Status + + GitHub Actions Testing Status - codecov coverage + codecov coverage diff --git a/benchmarks/README.md b/benchmarks/README.md index 93ed223157..b0e27c5214 100644 --- a/benchmarks/README.md +++ b/benchmarks/README.md @@ -7,7 +7,7 @@ tests are run using The basic structure of the tests and how to run them is described below. We refer readers to the ASV documentation for more details. The AstroPy -[documentation](https://github.com/astropy/astropy-benchmarks/tree/main) +[documentation](https://github.com/astropy/astropy-benchmarks/tree/master) may also be helpful. The test configuration is described in [asv.conf.json](asv.conf.json). @@ -23,7 +23,7 @@ For example, if your feature branch is named ``feature``, a useful asv run may be (from the same directory as `asv.conf.json`): ``` -$ asv run main..feature +$ asv run master..feature ``` This will generate timings for every commit between the two specified @@ -87,7 +87,7 @@ $ asv preview Nightly benchmarking -------------------- -The benchmarks are run nightly for new commits to pvlib-python/main. +The benchmarks are run nightly for new commits to pvlib-python/master. - Timing results: https://pvlib-benchmarker.github.io/pvlib-benchmarks/ - Information on the process: https://github.com/pvlib-benchmarker/pvlib-benchmarks diff --git a/benchmarks/asv.conf.json b/benchmarks/asv.conf.json index 1ae618cb9f..afaf22daba 100644 --- a/benchmarks/asv.conf.json +++ b/benchmarks/asv.conf.json @@ -29,7 +29,7 @@ // List of branches to benchmark. If not provided, defaults to "master" // (for git) or "default" (for mercurial). - "branches": ["main"], // for git + // "branches": ["master"], // for git // "branches": ["default"], // for mercurial // The DVCS being used. If not set, it will be automatically diff --git a/docs/sphinx/source/conf.py b/docs/sphinx/source/conf.py index cd2d6b379d..fb5228c332 100644 --- a/docs/sphinx/source/conf.py +++ b/docs/sphinx/source/conf.py @@ -431,7 +431,7 @@ def make_github_url(file_name): "/docs/sphinx/source/api.rst" or "generated/pvlib.atmosphere.alt2pres.rst" """ - URL_BASE = "https://github.com/pvlib/pvlib-python/blob/main/" + URL_BASE = "https://github.com/pvlib/pvlib-python/blob/master/" # is it a gallery page? if any(d in file_name for d in sphinx_gallery_conf['gallery_dirs']): diff --git a/docs/sphinx/source/contributing.rst b/docs/sphinx/source/contributing.rst index 3742d0af40..3e224f6abd 100644 --- a/docs/sphinx/source/contributing.rst +++ b/docs/sphinx/source/contributing.rst @@ -102,8 +102,8 @@ A pull request can also quickly become unmanageable if it proposes changes to the API in order to implement another feature. Consider clearly and concisely documenting all proposed API changes before implementing any code. Modifying -`api.rst `_ -and/or the latest `whatsnew file `_ +`api.rst `_ +and/or the latest `whatsnew file `_ can help formalize this process. Questions about related issues frequently come up in the process of @@ -154,7 +154,7 @@ a timely manner is to: the issue with the appropriate milestone. #. Make a limited-scope pull request. It can be a lot of work to check all of the boxes in `pull request guidelines - `_, + `_, especially for pull requests with a lot of new primary code. See :ref:`pull-request-scope`. #. Tag pvlib community members or ``@pvlib`` when the pull @@ -217,7 +217,7 @@ We typically use GitHub's "`squash and merge `_" feature to merge your pull request into pvlib. GitHub will condense the commit history of your branch into a single commit when merging into -pvlib-python/main (the commit history on your branch remains +pvlib-python/master (the commit history on your branch remains unchanged). Therefore, you are free to make commits that are as big or small as you'd like while developing your pull request. @@ -258,7 +258,7 @@ Read the Docs build it for you. Building the docs locally requires installing pvlib python as an editable library (see :ref:`installation` for instructions). First, install the ``doc`` dependencies specified in the ``EXTRAS_REQUIRE`` section of -`setup.py `_. +`setup.py `_. An easy way to do this is with:: pip install pvlib[doc] @@ -288,7 +288,7 @@ Example Gallery The example gallery uses `sphinx-gallery `_ and is generated from script files in the -`docs/examples `_ +`docs/examples `_ directory. sphinx-gallery will execute example files that start with ``plot_`` and capture the output. @@ -325,7 +325,7 @@ Testing Developers **must** include comprehensive tests for any additions or modifications to pvlib. New unit test code should be placed in the corresponding test module in the -`pvlib/tests `_ +`pvlib/tests `_ directory. A pull request will automatically run the tests for you on a variety of @@ -334,7 +334,7 @@ typically more efficient to run and debug the tests in your own local environment. To run the tests locally, install the ``test`` dependencies specified in the -`setup.py `_ +`setup.py `_ file. See :ref:`installation` instructions for more information. pvlib's unit tests can easily be run by executing ``pytest`` on the @@ -492,7 +492,7 @@ tests are run using the `airspeed velocity performance tests for most contributions at this time. Pull request reviewers will provide further information if a performance test is necessary. See our `README -`_ +`_ for instructions on running the benchmarks. @@ -507,4 +507,4 @@ contributing.html>`_ for inspiration. Code of Conduct ~~~~~~~~~~~~~~~ All contributors are expected to adhere to the `Contributor Code of Conduct -`_. +`_. diff --git a/docs/sphinx/source/index.rst b/docs/sphinx/source/index.rst index bd41618841..ecb37d8225 100644 --- a/docs/sphinx/source/index.rst +++ b/docs/sphinx/source/index.rst @@ -19,7 +19,7 @@ Please see the :ref:`installation` page for installation help. For examples of how to use pvlib python, please see :ref:`package_overview` and our `Jupyter Notebook tutorials -`_. The documentation assumes general familiarity with Python, NumPy, and Pandas. Google searches will yield many excellent tutorials for these packages. @@ -72,9 +72,9 @@ Additional pvlib python publications include: * W.F. Holmgren, R.W. Andrews, A.T. Lorenzo, and J.S. Stein, “PVLIB Python 2015,” in 42nd Photovoltaic Specialists Conference, 2015. (`paper - `__ and + `__ and the `notebook to reproduce the figures - `_) + `_) * J.S. Stein, W.F. Holmgren, J. Forbess, and C.W. Hansen, "PVLIB: Open Source Photovoltaic Performance Modeling Functions for Matlab and Python," in 43rd Photovoltaic Specialists Conference, 2016. @@ -85,7 +85,7 @@ Additional pvlib python publications include: License ======= -`BSD 3-clause `_. +`BSD 3-clause `_. NumFOCUS ======== diff --git a/docs/sphinx/source/reference/pv_modeling.rst b/docs/sphinx/source/reference/pv_modeling.rst index 2208e932bd..6f4c863cd4 100644 --- a/docs/sphinx/source/reference/pv_modeling.rst +++ b/docs/sphinx/source/reference/pv_modeling.rst @@ -42,7 +42,6 @@ PV temperature models temperature.sapm_cell_from_module temperature.pvsyst_cell temperature.faiman - temperature.faiman_rad temperature.fuentes temperature.ross temperature.noct_sam @@ -182,6 +181,31 @@ Utilities for working with IV curve data ivtools.utils.rectify_iv_curve +Loss Factors model +^^^^^^^^^^^^^^^^^^ + +.. autosummary:: + :toctree: generated/ + + mlfm.mlfm_6 + mlfm.mlfm_meas_to_norm + mlfm.mlfm_norm_to stack + +Functions for fitting the Loss Factors model + +.. autosummary:: + :toctree: generated/ + + mlfm.mlfm_fit + +Utilities for plotting + +.. autosummary:: + :toctree: generated/ + + mlfm.plot_mlfm_scatter + mlfm.plot_mlfm_stack + Other ----- diff --git a/docs/sphinx/source/user_guide/forecasts.rst b/docs/sphinx/source/user_guide/forecasts.rst index d549726fa3..d61b40387a 100644 --- a/docs/sphinx/source/user_guide/forecasts.rst +++ b/docs/sphinx/source/user_guide/forecasts.rst @@ -46,9 +46,9 @@ We do not know of a similarly easy way to access archives of forecast data. This document demonstrates how to use pvlib python to create a PV power forecast using these tools. The `forecast `_ and `forecast_to_power +master/docs/tutorials/forecast.ipynb>`_ and `forecast_to_power `_ Jupyter notebooks +master/docs/tutorials/forecast_to_power.ipynb>`_ Jupyter notebooks provide additional example code. .. warning:: diff --git a/docs/sphinx/source/user_guide/installation.rst b/docs/sphinx/source/user_guide/installation.rst index ec3ef3abff..42d27faa6e 100644 --- a/docs/sphinx/source/user_guide/installation.rst +++ b/docs/sphinx/source/user_guide/installation.rst @@ -98,7 +98,7 @@ repository `_ or go to the download the zip file of the most recent release. You can also use the nbviewer website to choose a tutorial to experiment with. Go to our `nbviewer tutorial page -`_. @@ -228,7 +228,7 @@ pvlib-python is compatible with Python 3. pvlib-python requires Pandas, Numpy, and SciPy. The minimum version requirements are specified in -`setup.py `_. +`setup.py `_. They are typically releases from several years ago. A handful of pvlib-python features require additional packages that must diff --git a/docs/sphinx/source/whatsnew/v0.9.4.rst b/docs/sphinx/source/whatsnew/v0.9.4.rst index 6524c1745f..c042f6aaa2 100644 --- a/docs/sphinx/source/whatsnew/v0.9.4.rst +++ b/docs/sphinx/source/whatsnew/v0.9.4.rst @@ -12,24 +12,19 @@ Enhancements * Multiple code style issues fixed that were reported by LGTM analysis. (:issue:`1275`, :pull:`1559`) * Added a direct IAM model :py:func:`pvlib.iam.schlick` which can be used with :py:func:`~pvlib.iam.marion_diffuse`, and a diffuse IAM model - :py:func:`pvlib.iam.schlick_diffuse`. (:pull:`1562`, :issue:`1564`) + :py:func:`pvlib.iam.schlick_diffuse` (:pull:`1562`, :issue:`1564`) * Added a function to calculate one of GHI, DHI, and DNI from values of the other two. - :py:func:`~pvlib.irradiance.complete_irradiance`. + :py:func:`~pvlib.irradiance.complete_irradiance` (:issue:`1565`, :pull:`1567`) -* Added optional ``return_components`` parameter to :py:func:`pvlib.irradiance.haydavies` to return +* Add optional ``return_components`` parameter to :py:func:`pvlib.irradiance.haydavies` to return individual diffuse irradiance components (:issue:`1553`, :pull:`1568`) -* Added a module temperature model that accounts for radiative losses to the sky - in a simplified way, using the Faiman model as an example. - :py:func:`~pvlib.temperature.faiman_rad` - (:issue:`1594`, :pull:`1595`) + Bug fixes ~~~~~~~~~ * Fixed bug in :py:func:`pvlib.shading.masking_angle` and :py:func:`pvlib.bifacial.infinite_sheds._ground_angle` - where zero ``gcr`` input caused a ZeroDivisionError. (:issue:`1576`, :pull:`1589`) -* Fixed bug in :py:func:`pvlib.tools._golden_sect_DataFrame` so that a result is returned when the search - interval is length 0 (which occurs in :py:func:`pvlib.pvsystem.singlediode` if v_oc is 0.) (:issue:`1603`, :pull:`1606`) + where zero ``gcr`` input caused a ZeroDivisionError (:issue:`1576`, :pull:`1589`) Testing ~~~~~~~ @@ -45,6 +40,7 @@ Benchmarking ~~~~~~~~~~~~~ * Removed ``time_tracker_singleaxis`` function from tracking.py (:issue:`1508`, :pull:`1535`) + Requirements ~~~~~~~~~~~~ @@ -61,5 +57,4 @@ Contributors * Kevin Anderson (:ghuser:`kanderso-nrel`) * Karel De Brabandere (:ghuser:`kdebrab`) * Naman Priyadarshi (:ghuser:`Naman-Priyadarshi`) -* Adam R. Jensen (:ghuser:`AdamRJensen`) * Echedey Luis (:ghuser:`echedey-ls`) diff --git a/docs/tutorials/mlfm_0.html b/docs/tutorials/mlfm_0.html new file mode 100644 index 0000000000..d381e9bf6a --- /dev/null +++ b/docs/tutorials/mlfm_0.html @@ -0,0 +1,16931 @@ + + + + + +mlfm_0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/tutorials/mlfm_0.ipynb b/docs/tutorials/mlfm_0.ipynb new file mode 100644 index 0000000000..d927c85847 --- /dev/null +++ b/docs/tutorials/mlfm_0.ipynb @@ -0,0 +1,1913 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MLFM for PVLIB \n", + "ver: 221212t18\n", + "### Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) \n", + "Corrections and additions for comments by : \n", + "Cliff Hansen, Kevin Anderson, Anton Driesse and Mark Campanelli\n", + "\n", + "## Tutorial overview.\n", + "see details for each function in mlfm.py\n", + "\n", + "I) The Loss Factors Model (LFM) 2011 ref [1] quantifies normalised losses \n", + "from module parameters (e.g. pr_dc, i_sc, r_sc, i_mp, v_mp, r_oc and v_oc) \n", + "by analysing module measurements or the shape of the IV curve and comparing \n", + "it with STC reference values from the datasheet. \n", + "\n", + "II) The Mechanistic performance model (MPM) 2017 ref [2] has \"meaningful, \n", + "independent, robust and normalised\" coefficients which fit how the LFM values \n", + "depend on irradiance, module temperature (and windspeed) and time. \n", + "\n", + "III) This tutorial shows how to take module measured and weather data, \n", + "(either outdoor or IEC 61853-like matrix data), normalise it, generate MLFM \n", + "coefficients, fit them with the MPM then analyse module performance looking for \n", + "loss values, degradation and allowing performance predictions as shown in fig 2. \n", + "\n", + "Fig 1 illustrates the loss factors model (LFM). \n", + "\n", + "Depending on the number of measurements available the LFM is defined \n", + "with a suffix number x = 1..12 LFM_n as in ref [4] - \n", + "\n", + "It uses the shape and values from dc measurements to quantify the values of each \n", + "of the loss factors (coloured arrors on the y=current or x=voltage axes\n", + "going from (1) ref\\_p\\_mp to (6) meas\\_p\\_mp. \n", + "\n", + "![mlfm_data/figs/lfm_220914t15.png](mlfm_data/figs/lfm_220914t15.png) \n", + "\n", + "Fig 1: Loss Factors Model \n", + "\n", + "\n", + "![mlfm_data/figs/flow_1024.png](mlfm_data/figs/flow_1024.png) \n", + "\n", + "Fig 2: MLFM overview flow chart of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Explanations of the Loss factors model in fig 1.\n", + "\n", + "1) ref_p_mp = Initial datasheet value at STC.\n", + "\n", + "Multiply by 1/FF to get to (ref_i_sc * ref_v_oc) to start to analyse current and voltage losses \n", + "\n", + "2->3) Three 'current' losses get from ref_i_sc to norm_i_mp\n", + " - norm_i_sc = measured / expected isc corrected for poa_global (purple)\n", + " - norm_r_sc = loss caused by 'shunt resistance' slope at i_sc (orange)\n", + " - norm_i_ff = loss caused by 'current part' of fill factor (green). \n", + " \n", + " \n", + "4->5) Three 'voltage' losses (plus a temperature coefficient) get from from ref_v_oc to norm_v_mp \n", + " - norm_temp_corr = optional temp correction subtracted from v_oc (red). \n", + " - norm_v_oc_t = measured / expected v_oc temp_corrected (brown) \n", + " - norm_r_oc = loss caused by 'series resistance' slope at v_oc (pink)\n", + " - norm_v_ff = loss caused by 'voltage part' of fill factor (blue)\n", + " \n", + " \n", + "6) These losses cause the performance to fall to pr_dc (= meas_p_mp / ref_p_mp) \n", + "\n", + "pr_dc = 1/ff \\* \n", + " (norm_i_sc \\* norm_r_sc \\* norm_i_ff ) \\* \n", + " (norm_v_ff \\* norm_r_oc \\* norm_v_oc_t \\* norm_temp_corr ) \n", + "\n", + "Note: \n", + "The gamma temperature correction is just subtracted from voc for simplicity. \n", + "In reality there will be temperature dependencies for i_sc and ff but they are smaller." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# import mlfm \n", + "\n", + "from pvlib.mlfm import meas_to_norm, mpm_a_fit, mpm_b_fit, meas_to_stack_lin\n", + "from pvlib.mlfm import mpm_a_calc, mpm_b_calc\n", + "\n", + "from pvlib.mlfm import plot_scatter, plot_stack # , mpm_calc\n", + "\n", + "# FIND AND SHOW INSTALLATION CURRENT WORKING DIRECTORY\n", + "import os\n", + "root_dir = os.getcwd()\n", + "\n", + "# uncomment to see root dir\n", + "# print(root_dir)\n", + "\n", + "# STANDARD DEFINITIONS (also in mlfm.py)\n", + "G_STC = 1000.0 # STC irradiance [W/m^2]\n", + "T_STC = 25.0 # STC temperature [C] temperature_ref\n", + "\n", + "# https://matplotlib.org/stable/tutorials/introductory/customizing.html\n", + "plt.rcParams['figure.figsize'] = [7, 5] # setup fig size inches ~[7, 5]\n", + "plt.rcParams.update({'font.size': 12}) # setup fontsize ~12\n", + "plt.linewidth = 1.5 # line width in points ~1.5\n", + "plt.linestyle = '--' # solid line ~'--'\n", + "plt.marker = 's' # the default marker square ~'s'\n", + "plt.markersize = 9 # marker size, in points ~9\n", + "plt.bbox = 1.4 # offset --> to not overwrite ~1.4\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get user choices " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# save graphs as png files to the output directory?\n", + "save_figs = True" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# select which mpm to model : must be 'a original 2017' or 'b advanced 2022'\n", + "mpm_sel = 'b' # 'a' or 'b'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [A] Select MLFM measurement data file\n", + "\n", + "Three default files are included (\\* = version number ) \n", + "\n", + "(0) g78\\_T16\\_Xall\\_F10m\\_R900\\*.csv (6 LFM params) \n", + "(1) n05667\\_Y13\\_R1k6\\_fClear\\*.csv (4 LFM params) \n", + "(2) x19074001\\_iec61853\\*.csv (4 LFM params) \n", + "\n", + "(Some variants are added to the IEC 61853 with fewer data points \n", + "or added scatter to test the fit algorithms)\n", + "\n", + "Essential default column names in meas( ) are :- \n", + "\n", + "meas { \n", + "'date\\_time', 'module\\_id', \n", + "'poa\\_global', 'temp\\_module', \n", + "'v\\_oc', 'i\\_sc', 'i\\_mp', 'v\\_mp', \n", + "'r\\_sc', 'r\\_oc', <-- optional for LFM_6 \n", + "'wind\\_speed', 'temp\\_air', <-- optional \n", + "}\n", + "\n", + "\n", + "File naming conventions can be used to help identify files, for example \n", + "`x81_T1906_D3_Fh.csv` \n", + "\n", + "where \n", + " - x = source e.g. (G)antner, (N)rel, (S)andia, matri(X), ... \n", + " - 81 = module id/channel number \n", + " - T1906 = (T)ime started = yymm(dd) \n", + " - D3 = (D)uration in days \n", + " - Fh = (F)requency e.g. (h)ours or (10m)10 minutes \n", + " - etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Uncomment just one line to select a file from \n", + "# directory ''\\pvlib-python\\docs\\tutorials\\mlfm_data\\meas_gtw'\n", + "\n", + "# PTS COMMENTS \n", + "\n", + "# 0) LFM 6 outdoor Gantner Instruments \n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041.csv' # 900 <<< raw data with rsc and roc\n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041_4param.csv' # 900 deleted rsc,roc\n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R1_041.csv' # 1 test record only\n", + "\n", + "# 1) LFM 4 outdoor NREL \n", + "# mlfm_meas_file = 'n05667_Y13_R1k6_fClear_041.csv' # 1600 <<< raw data no rsc,roc measured \n", + "\n", + "# 2) IEC 61853 CFV : either raw data or fewer points and/or added scatter error\n", + "# mlfm_meas_file = 'x19074001_iec61853_041.csv' # 27 <<< raw data no rsc,roc measured \n", + "# mlfm_meas_file = 'x19074001_iec61853_041_6pts.csv' # 6 raw but fewer points\n", + "# mlfm_meas_file = 'x19074001_iec61853_041_rand5pc.csv' # 27 rand 5% rmse\n", + "mlfm_meas_file = 'x19074001_iec61853_041_rand1pc.csv' # 27 rand 1% rmse\n", + "# mlfm_meas_file = 'x19074001_iec61853_041_rand5pc_6pts.csv' # 6 rand 5% rmse fewer points\n", + "\n", + "\n", + "# extract module id from filename e.g. 'g78'\n", + "mlfm_mod = mlfm_meas_file.split('_')\n", + "\n", + "mlfm_mod_sel = mlfm_mod[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import measured data (outdoor or matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "meas = pd.read_csv(\n", + " # root_dir + '/mlfm_data/meas_gtw/' + mlfm_meas_file,\n", + " os.path.join(root_dir, 'mlfm_data', 'meas_gtw', mlfm_meas_file),\n", + " index_col='date_time'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [B] Read all reference datasheet values at STC" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# user must keep updated with their modules from their measurements\n", + "\n", + "\n", + "ref_file_name = os.path.join(root_dir, 'mlfm_data', 'ref', 'mlfm_reference_modules.csv')\n", + "\n", + "ref_data = pd.read_csv(\n", + " ref_file_name, index_col='module_id')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Select module stc data from reference database" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " ref_data = ref_data[\n", + " ref_data.index == mlfm_mod_sel]\n", + "\n", + "except IndexError:\n", + " print(\"You must define module ref data to use this module ...\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# Put relevant data into a dict for easy use\n", + "# ignore any other columns that may be database specific\n", + "# as they aren't needed\n", + "\n", + "ref = dict(\n", + " # module_id=ref_data['module_id'].values[0],\n", + " i_sc=ref_data['i_sc'].values[0],\n", + " i_mp=ref_data['i_mp'].values[0],\n", + " v_mp=ref_data['v_mp'].values[0],\n", + " v_oc=ref_data['v_oc'].values[0],\n", + "\n", + " alpha_i_sc=ref_data['alpha_i_sc'].values[0],\n", + " beta_v_oc=ref_data['beta_v_oc'].values[0],\n", + " alpha_i_mp=ref_data['alpha_i_mp'].values[0],\n", + " beta_v_mp=ref_data['beta_v_mp'].values[0],\n", + " gamma_pdc=ref_data['gamma_pdc'].values[0],\n", + "\n", + " p_mp= ref_data['p_mp'].values[0],\n", + " \n", + " \n", + " ff=ref_data['ff'].values[0],\n", + ")\n", + "\n", + "# uncomment to show ref data\n", + "# ref" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate useful data columns for meas" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
module_idtemp_modulepoa_globali_scv_oci_mpv_mpp_mpwind_speedpr_dcv_oc_temp_corrpr_dc_temp_corr
count27.027.00000027.00000027.00000027.00000027.00000027.00000027.00000027.027.00000027.00000027.000000
mean19074001.042.222222581.4814813.45176265.3415133.19187454.327655175.7842790.00.92319267.8670730.965356
std0.023.588350358.4550582.1264554.8380531.9760124.450850110.9508790.00.0770222.9160700.038490
min19074001.015.000000100.0000000.58618854.2577390.53887844.79129224.1567970.00.74950260.8812440.859701
25%19074001.025.000000200.0000001.21678361.8190741.10095650.16646861.9667940.00.84970466.1581480.951905
50%19074001.050.000000600.0000003.57753865.7091733.25858454.298885178.6761990.00.93051968.7452750.976175
75%19074001.062.500000900.0000005.32593669.0727084.93581558.162051270.7211470.00.97974769.8009960.992304
max19074001.075.0000001100.0000006.61698272.9458716.09891061.126873357.7693600.01.03943171.5346751.023443
\n", + "
" + ], + "text/plain": [ + " module_id temp_module ... v_oc_temp_corr pr_dc_temp_corr\n", + "count 27.0 27.000000 ... 27.000000 27.000000\n", + "mean 19074001.0 42.222222 ... 67.867073 0.965356\n", + "std 0.0 23.588350 ... 2.916070 0.038490\n", + "min 19074001.0 15.000000 ... 60.881244 0.859701\n", + "25% 19074001.0 25.000000 ... 66.158148 0.951905\n", + "50% 19074001.0 50.000000 ... 68.745275 0.976175\n", + "75% 19074001.0 62.500000 ... 69.800996 0.992304\n", + "max 19074001.0 75.000000 ... 71.534675 1.023443\n", + "\n", + "[8 rows x 12 columns]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate p_mp and pr_dc as they might be missing\n", + "meas['p_mp'] = meas['i_mp'] * meas['v_mp']\n", + "\n", + "meas['pr_dc'] = (meas['p_mp'] / ref['p_mp']\n", + " / (meas['poa_global'] / G_STC))\n", + "\n", + "# temperature corrected v_c and pr_dc\n", + "meas['v_oc_temp_corr'] = \\\n", + " (meas['v_oc'] * (1 - ref['beta_v_oc']*(meas['temp_module'] - T_STC)))\n", + "\n", + "meas['pr_dc_temp_corr'] = \\\n", + " (meas['pr_dc'] * (1 - ref['gamma_pdc']*(meas['temp_module'] - T_STC)))\n", + "\n", + "# show some meas data\n", + "meas.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Select LFM_n model by counting variables in the meas data \n", + "usually LFM_4 = matrix (i\\_sc, i\\_mp, v\\_mp, v\\_oc) \n", + "and LFM_6 = iv (i\\_sc, i\\_mp, v\\_mp, v\\_oc + r\\_sc, r\\_oc) " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "def get_qty_lfm_vars(dmeas):\n", + " \"\"\"Find the quantity of LFM variables in the measured data.\n", + "\n", + " (e.g. I_MP+V_MP=2, MATRIX=4, IV_CURVE=6).\n", + "\n", + " Parameters\n", + " ----------\n", + " dmeas: DataFrame\n", + " Measured weather and module electrical values per time or measurement\n", + "\n", + " Returns\n", + " -------\n", + " qty_lfm_vars : int\n", + " number of lfm_values present in data usually\n", + "\n", + " 2 = ( i_mp, v_mp ) from mpp tracker\n", + " 4 = (i_sc, i_mp, v_mp, v_oc) from matrix\n", + " 6 = (i_sc, r_sc, i_mp, v_mp, r_oc, v_oc) from iv curve.\n", + "\n", + " \"\"\"\n", + " # find how many lfm variables were measured\n", + " qty_lfm_vars = 0\n", + " for lfm_sel in ('i_sc', 'r_sc', 'i_mp', 'v_mp', 'r_oc', 'v_oc'):\n", + " if lfm_sel in dmeas.columns:\n", + " qty_lfm_vars += 1\n", + " # print(qty_lfm_vars, lfm_sel)\n", + "\n", + " return qty_lfm_vars" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "qty_lfm_vars = get_qty_lfm_vars(meas)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [C] Normalise LFM values from meas and ref to norm dataframes \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
poa_globaltemp_modulewind_speedpr_dcpr_dc_temp_corri_sci_mpv_ocv_oc_temp_corrv_mp
date_time
01001500.9402260.9125781.0207920.9024080.9406340.9176680.843822
12001500.9624320.9341300.9912520.9348370.9709550.9472490.831821
24001501.0008000.9713711.0024950.9121540.9884030.9642710.861077
\n", + "
" + ], + "text/plain": [ + " poa_global temp_module ... v_oc_temp_corr v_mp\n", + "date_time ... \n", + "0 100 15 ... 0.917668 0.843822\n", + "1 200 15 ... 0.947249 0.831821\n", + "2 400 15 ... 0.964271 0.861077\n", + "\n", + "[3 rows x 10 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm = meas_to_norm(meas, ref)\n", + "\n", + "# show some normalised data\n", + "norm.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make irradiance and temperature bins for pivot tables " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# poa_global bin e.g. 100, 200 .. 1100W/m2\n", + "norm['poa_global_bin'] = \\\n", + " norm['poa_global'].round(-2)\n", + "\n", + "# temp_module bin e.g. 5, 10 .. 75C\n", + "norm['temp_module_bin'] = \\\n", + " (5 * round(norm['temp_module'] / 5, 0))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [D] Perform sanity checks on meas and norm data \n", + "\n", + "It's easier to sanity check and study normalised data than raw values. \n", + "1) Remove bad, missing, unwanted or outlier data \n", + "2) User defined limits may depend on data scatter and degradation \n", + "3) Can either select on values e.g. '0.5 x stdev from mean' \n", + "4) Possible to select on dates if desired. " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# select by irradiance poa_global range e.g. 100-1100 W/m2\n", + "norm = norm[(norm['poa_global'] >= 100) &\n", + " (norm['poa_global'] <= 1100)]\n", + "\n", + "# remove specific lfm values outside limits e.g. <0.5 or >1.5\n", + "norm = norm[((norm['pr_dc'] > 0.5) &\n", + " (norm['pr_dc'] < 1.5))]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# remove all mlfm values outside x~3 stdevs\n", + "if qty_lfm_vars == 6:\n", + " # only needed for outdoor data as indoor ought to be less scattered\n", + " # remove all mlfm data > x stdev usually 3\n", + " stdevs = 3\n", + "\n", + " for lfm in ('i_sc', 'r_sc', 'i_ff', 'v_ff', 'r_oc', 'v_oc'):\n", + " norm = norm[\n", + " ((norm[lfm] - norm[lfm].mean()) /\n", + " norm[lfm].std()).abs() < stdevs\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filter only matching rows from meas and norm data\n", + "like an inner join but leave data in separate norm and meas frames" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# drop meas rows that aren't in norm\n", + "meas_not_in_norm = ~meas.index.isin(norm.index)\n", + "meas = meas.drop(meas[meas_not_in_norm].index)\n", + "\n", + "# drop norm rows that aren't in meas\n", + "norm_not_in_meas = ~norm.index.isin(meas.index)\n", + "norm = norm.drop(norm[norm_not_in_meas].index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [E] Plot normalised LFM data vs irradiance \n", + "\n", + "For outdoor data - \n", + "LFM values norm() should be narrow, smooth lines (around 70-120% on the yaxis).\n", + "\n", + "For matrix data - \n", + "LFM values norm() should be close, almost parallel lines (around 70-120% on the yaxis).\n", + "\n", + "1. Higher values are always better (unlike measured values such as \n", + " Rseries or Io where lower is better)\n", + "1. Accurate measurements and a stable module result in narrowest lines \n", + "1. v_oc and r_sc tend to fall at low light levels ( / left) \n", + "1. r_oc tends to fall at high light levels ( \\ right) \n", + "1. i_ff and v_ff are usually fairly flat ( - ) \n", + "1. i_sc may vary the most due to spectral sensitivity, soiling, shading \n", + " and/or snow (if not properly corrected). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Normalised lfm values vs. irradiance.\n", + "\n", + "All traces should be thin, smoot lines usually around 0.9 ± 0.1 \n", + "i\\_sc may be more scattered if there is uncorrected soiling, spectral and angle of incidence ###" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFaCAYAAAAZ0UstAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAACYAElEQVR4nOzdd1xTVxsH8F8IO4HIkCUQQMVBFWtpfR11ts7XUbeAglipttaqb6tVVETFVVut1aq4UEm1Vltb68CKe9RWBVQcqAgIKAqobCThvH9Qbo1JMKwkkOf7+eQj99ybe5+cJObJyRk8xhgDIYQQQgghespA2wEQQgghhBCiTZQQE0IIIYQQvUYJMSGEEEII0WuUEBNCCCGEEL1GCTEhhBBCCNFrlBATQgghhBC9RgkxIZVwc3PD4sWLtR0G0WGBgYF47733tB0GIYSQGqCEuIGbNm0aOnToAHNzcxgaGio95tq1axgwYABsbW1hYWGBIUOGIDk5WeG4FStWQCwWw9TUFG+++SaOHj0qt5/H4ym9DRgwQOl1jx8/Dj6fj2bNminsu3jxIjp16gRTU1M4Ojpi9uzZkMlkcsckJiaiT58+MDc3h62tLSZNmoSCggJuf3FxMcaPH48333wTxsbGSq/zOn///TemT59e5fu9zunTp9GzZ08IhUIIhUK8/fbbuHfvHrc/IiICvXr1grW1NXg8Hs6ePatwjsLCQkyfPh2urq4wMzND06ZNERoaKldPCxYsUPqc3L17lzsmOjoaHTt2hK2tLUxNTdG0aVPMnTsXL168UPvx5OXlYeLEibCxsYFAIEC/fv3kHs+rAgMDwePxFL5sqPO4dd3p06cxePBgiMVipY+REEKI7qGEuIGTyWTw9fXFxx9/rHT/o0eP0KNHD1hbW+P06dM4e/YsZDIZ3nvvPRQVFXHHrV69GqGhoVi0aBFiY2Px/vvvY+DAgbh69Sp3zMOHD+VuFy5cAACMHj1a4bqZmZkICAjA+++/r7DvwYMHeP/999GiRQtcvnwZ69evx8aNGxESEsIdk5+fj169esHQ0BDnz5/Hnj17cOTIEUyYMEHusRsbGyM4OFhpDOpo3LgxBAJBte6rypEjR9CvXz90794d58+fR1xcHObPnw9zc3PumMLCQvTs2RNfffWVyvN88cUX2LNnDzZv3oybN29i+fLl+Oabb7BixQq549zc3BSeG3d3d26/paUlPvvsM5w8eRK3b9/G119/jYiICMyaNUvtxzR27FjExMRg7969OHv2LBhjeP/99+VeQxW2b9+Oa9euwcnJSWGfOo+7KkpLS6HptYfy8/PRunVrrFixAg4ODhq9NiGEkGpipN7Kyspizs7ObOrUqVxZZmYmc3BwYDNnzpQ7dtu2bYzP5yucY9OmTUwoFLIXL15wZdnZ2QwA27p1K2OMsbKyMubk5MRmz54td18fHx8WEBCgMr45c+Ywa2trVlRUJFcuk8lYr1692NKlS1loaChr2rSp3P7Zs2ezJk2aMJlMxpWtXbuWmZubs/z8fMYYYxs3bmSmpqbs2bNn3DG///47A8CSkpIUYlF2HXWIxWK2aNEibru0tJSFhoYyNzc3ZmJiwlq3bs02bNggd5+8vDz22WefMWdnZ2ZsbMzEYjELDw/nHru7uzv78ssv1br+/fv3GQB25swZhX3e3t5sxowZcmVDhw5lQ4YM4bar+7inTZvG2rVrp9axt2/fZgBYdHQ0V5aTk8OMjY3Ztm3b5I69ceMGs7e3Z4mJiQp1+7LKHndlAgICWK9evdiaNWuYWCxmPB6P5eXlsaNHj7Ju3boxKysrZmlpybp27couXrwod18AbN26dczf358JhULm7OzMli9fLndMTk4OGzlyJDM3N2d2dnYsJCSEjRs3jvXq1UtpPKoeY0WcX3/9NXNycmJmZmZs6NCh7MmTJ3LH7d69m7Vv356ZmJgwa2tr1rdvX5aTk6Py8d+9e5cNHz6cWVlZMTMzM9amTRt24MABxhhjz58/Z4GBgcze3p4ZGxszZ2dnNn36dMYYYxEREczS0pIVFhbKnW/ZsmXMyclJ7r1ICCENEbUQ12M2NjaQSCT4/vvvceDAATDGMHbsWIjFYrV/pi0uLoaRkZFcdwpTU1MYGBjg9OnTAIDk5GRkZGSgb9++cvft27evyp+0S0tLsXXrVgQEBMDU1FRu36JFi8Dj8TBz5kyl9z137hx69+4NA4N/X559+/ZFYWEhYmNjuWM6duwIkUjEHVNxn3Pnzqn12Kvjww8/xM8//4yNGzfi5s2bmD9/PmbNmoUtW7YAABhj+O9//4vffvsN3333HW7evIkdO3agcePGAIArV67g/v37cHZ2RteuXWFnZ4f//Oc/+OWXX6ocS5cuXXD48GHcv38fABAXF4ezZ88qdFFJS0uDs7MznJ2d0a9fP5w/f77S8966dQuHDx9Gjx491Irj3LlzMDIyQq9evbgyKysrvPPOO3Kvj8LCQowYMQJfffUVmjdvru7DrLK//voLx48fx/79+xEfHw9TU1Pk5+fjk08+wZ9//onz58+jefPm6Nu3L7Kzs+XuGxYWhq5duyIuLg5ffPEFZs2ahRMnTnD7g4KCcPnyZRw4cADHjx9HcnJytZ67ijhPnjyJI0eO4NChQ7h69SqCgoK4/du2bYO/vz+GDBmCK1eu4MSJE+jbt69C16EKjx49QqdOnfD06VP89ttvuHbtGhYtWsS9j+bOnYsrV67g119/xZ07d/Djjz+iVatWAICRI0fixYsX2L9/v9w5d+7cCX9/f7n3IiGENEjazshJzS1YsIDZ2NiwGTNmMJFIpLSFVFUL8c2bN5mRkRGbO3cuKyoqYnl5eWzSpEkMAOvduzdjjLFz584xAOz27dty961otVXmp59+YgDYzZs35cqPHz/OHBwc2MOHDxljylswmzdvrtAanZ+fzwCwPXv2MMYYe//999mYMWMUrmtra8tWrFihUF4bLcRJSUmMx+MpPKawsDDm7e3NGGPs2LFjDAD7+++/lZ5v9+7dDACzsrJimzZtYrGxsWzRokWMx+Oxo0ePKhxfWUvpixcv2OTJkxkAZmhoyHg8Hlu4cKHcMYcOHWI//vgji4+PZ6dPn2ZjxoxhBgYGSq/VpEkTZmxszACw4OBgJpVK1aqj8PBw5ujoqFA+fPhw1r9/f247MDCQ+fv7c9t11UIsEolYXl5epcfJZDLWqFEjFhUVxZUBYJ9++qnccS1atOBa8+/cucMAyNVdSUkJc3JyqlYLsUAgkPuFIzo6mgFgiYmJjDHGXFxc2CeffPKaR/yvuXPnMnt7e+5XlFcNGjSo0l90Ro0axfr27cttX758mQFg169fVzsGQgipr5SPsiL1yrx58xAdHY1vvvkGu3fvlusf+jotW7aERCLB9OnTsWTJEhgYGMDf3x9vvfUW+Hz+a+/P4/GUlm/cuBHdunVDy5YtubKsrCz4+/tj69atVe5bWXEdVddTJ6aaunTpEhhj8PHxkSuXSqVcXV2+fBlWVlYKx1SoaN378MMP8eGHHwIA2rVrhz///BPfffed0j7Vqnz//fc4cuQI9u3bh+bNm+Py5cuYPn067O3tERwcDADo16+f3H3effddpKen46uvvlK41pkzZ7hW+FmzZsHBwQFhYWFqx6NMxXMhkUhw9uxZroW/LrVq1QpCoVCu7P79+5g/fz4uXLiAx48fo6ysDIWFhUhJSZE7rl27dnLbTZo0QWZmJgDgxo0bAIBOnTpx+42NjfH2228jPz+/ynG2bt1a7heOzp07AwBu3rwJkUiEBw8eoHfv3mqf7/Lly+jUqZPKPu8ff/wxhg0bhkuXLqFXr17o27cv+vTpw7X+jhs3DoMGDcKjR4/g4OCAnTt34q233oKXl1eVHxshhNQ3lBA3AA8fPkRiYiL4fD4SExOrfP8RI0ZgxIgRePz4MUxMTCASiWBvb4+OHTsCABwdHQGU/yTr6enJ3S8zM1NpYnv37l3ExMTghx9+kCu/fv06MjIyMHDgQK6srKwMjDEYGhpix44d8PX1haOjIx49eiR334rtius5OjriwYMHcseUlpYiJyenzgYylZWVAQDOnz8vNwAOkE/CK0vIKwaStW7dWq7cy8sLR44cUTuW4uJizJw5Ezt27MDQoUMBAG3atMGDBw+wcOFCLiFWpmPHjvj5558Vyiu+SHl5eYHP58Pf3x8zZ8587aBCR0dHZGVlQSaTyX2JyszM5F4vf/zxB+7du4dGjRpx+2UyGUJDQ7F48WIUFxer/dhfR1m8//3vf2Fra4t169bBxcUFxsbG6NKli8JMGsbGxnLbPB6Pe96ZhgfnVVy/to7v06cPUlNTER0djZMnT8Lf3x9t2rRBTEwM+Hw++vTpg8aNG0MikeCzzz7Drl27MGfOnJo+BEIIqReoY1g9V1ZWBn9/f3h5eWHv3r1YuHBhtaeqsrOzg0gkwrFjx/D48WMu0XJzc4OTkxOio6Pljj9y5Ai6dOmicJ6IiAjY2Nhw96/w9ttv49q1a4iLi+NukyZNgouLC+Li4ri+r507d8Yff/zBJSIV1zI3N8ebb77JHXPhwgXk5uZyx1Tcp6Klrba99dZbAIDU1FQ0a9ZM7ta0aVPumJycHFy6dEnpOXx8fGBmZobbt2/Lld++fRtubm5qx1JaWorS0lKFvp18Pv+1iVtsbCxcXFwqPaasrAxlZWUoLS19bSydO3dGaWkpjh8/zpU9e/YMFy9e5F4f4eHhuHr1qtxz7+TkhE8++QSXL19+7TVqIjs7Gzdu3MCXX36JPn36oHXr1jA1NcXjx4+rdJ6KltKX+2C/ePECf//9d7Xiunnzptzrt+K8rVq1gp2dHZydnRXec5V56623cO7cObmpB19lbW2NMWPGYOPGjTh48CBOnTrFtXzz+Xz4+vpix44dOHr0KHJycjBmzJhqPTZCCKl3tNtjg9TUwoULmY2NDXvw4AFjjLEpU6YwV1dXbiT6nTt3WGxsLAsLC2N8Pp/Fxsay2NhYuT6Wa9euZX///Te7c+cO27ZtG2vUqJFcX0/GGFu1ahUzMzNjO3fuZDdv3mSzZs1ixsbGLC4uTu64kpIS1rhxY/bFF1+oFb+yvr2pqanMwsKCBQUFsevXr7Nff/2VWVtbs1mzZnHH5OXlMWdnZzZgwAAWFxfHjh8/ztzc3NioUaPkzpWQkMBiY2PZRx99xFxcXLjHX1JSolZ8r/YBDQoKYg4ODmzHjh3szp07LC4ujm3ZsoUtW7aMMVY+I8e7777LPDw82P79+1lSUhI7e/Ys27RpE3eOmTNnMgsLC7Zr1y529+5dtmrVKmZgYMBiYmK4Yx4+fMhiY2PZwYMHGQC2bds2Fhsby/W9Zoyxnj17subNm7OjR4+y+/fvs7179zJra2s2ZcoU7pjp06ezmJgYdu/ePRYbG8s+/vhjxuPx2G+//cYds3LlSvb777+zxMREdufOHbZr1y7m5OTEBg0apFYdMcbY4MGDWdOmTdnJkydZbGws69evH3N3d1eYtaCyulX3cVemYvaGl8lkMta4cWP2wQcfsNu3b7Pz58+zLl26MHNzcxYaGsodB4Dt3LlT7r69evWS63c7aNAg1rx5c3b8+HGWkJDAxo4dyywsLOSumZeXx73OHB0d2SeffMJiY2PZnTt35OK0sLBggwcPZteuXWOnTp1izZs3ZwMGDOCO2bRpEzM0NGQLFy5kN27cYNevX2ffffcdNxPFd999x1q0aMEdn5GRwRo3bsx69erFzp49y5KSktiBAwfYoUOHGGPls77s27eP3bp1iyUmJrIpU6YwoVAo1485Pj6eAWDt2rWr0vNPCCH1HSXE9di5c+eYoaEh+/XXX7my4uJi1rZtWzZ06FDGGGPdunVjABRuJ06c4O4zfvx4Zmtry4yMjFjz5s3Z0qVLlQ6oWr58OXNxcWHGxsbM29ubHTlyROGYXbt2MR6PJ/fhXxlVg90uXLjAOnbsyExMTJi9vT378ssvFWK6desWe//995mZmRmztrZmwcHBCgOKxGKx0sd///59teJ7NWmTSqVs+fLlrEWLFszIyIjZ2Niwrl27coP9GGMsNzeXTZkyhTk4ODAjIyPm5ubGli5dKneOefPmsSZNmjAzMzPWvn17tn//foV6URb3ywnc48eP2cSJE5mzszMzMTFhHh4e7Msvv5RLQkePHs0NlqtIll5OvBljbOnSpaxVq1bM3NycCYVC5uXlxcLDw1lBQYFadVTxmCdMmMBN99WnT5/XvgaUJcTqPO7KKEuIGWPs5MmTrG3btszExIR5enqyvXv3sqZNm1Y5Ic7KymIjRoxg5ubmzNbWln355ZcK066dOHFC6WPo1q2bQpxfffUVc3BwYKampmzIkCHs8ePHctePiopibdu2ZcbGxsza2pr179+fPX36VK6uXnb79m02ZMgQZmlpyczMzFjbtm3ZwYMHGWPlX569vLyYQCDgpp5TNmixXbt2DADbu3dvpXVNCCENCY8xLXSMI4QQPRYYGIi0tDQcO3ZM26EQQggB9SEmhBBCCCF6TmMJ8dq1a+Hj4wMTExMEBgaqPO769evo06cPbG1tlY6YzsnJwQcffACBQACxWKwwkwEh6po0aRKEQqHSG0019S8vLy+V9TRp0iSNxXHmzBmVcQiFQpw5c0ZjsRD9c+fOHZiamsLf31/lMatWrYKDgwNEIhGCgoJQUlKiwQgJITWhsS4TP//8MwwMDBAdHY2ioiJERkYqPe727ds4e/YsbG1tMWTIEIUR82PGjEFZWRm2bNnCzUxw/vx5SmBIlT1+/FhulP/LjIyMIBaLNRyRbkpJSVE524SlpSXs7Ow0EkdRURHS09NV7m/SpAnMzMw0EgvRP71790ZRURHEYjGioqIU9kdHR2PcuHE4fvw4nJyc8MEHH+A///kPli1bpoVoCSFVpfE+xHPnzkVaWprKhLjC3bt30bx5c7mEuKCgAFZWVrh+/To3v+nYsWPRpEkT+k+HEEJIndi9ezd+/vlntG7dGnfv3lWaEPv6+sLNzQ1LliwBAMTExMDPz09hTnVCiG6qVwtzVCw+8fLiEN7e3jh16pTS4yMiIhAREQGgfBWnVxdTqM9ebrEzMjLSYiSENAz0nlKtodZNYWEhN784AAQHByssapObm4v58+cjJiYGW7ZsUXmuhIQEDB48mNv29vZGZmYmsrOzYWNjU/vBa1lZWRnS0tIqnfeaEF0iEAjg7OysMH9/hXqVEOfn58stdQoAIpEIeXl5So9/+T83gUDQoN64Ly+pGxoaqsVICGkY6D2lWkOtG4FAoHIRnQrz5s3DhAkTXruYzaufTxV/5+XlNciEOCsrCzweDy1atFCZYBCiK8rKypCeno6srCyV3fzqVUIsFAoV+nzm5ubCwsJCSxERQghpqOLi4nDs2DHExsa+9thXP58q/m6on0/Pnj2Dm5sbJcOkXjAwMIC9vT1SUlIaRkLs6ekJqVSKO3fuoHnz5gCA+Ph4GlBHCCGk1p08eRLJyclwdXUFUN4KLJPJcOPGDVy5ckXuWC8vL8THx2PkyJEAyj+b7O3tG2TrMADIZLIG1X2GNHxGRkaQSqUq92vsq51UKkVxcTFkMhlkMhmKi4uVBsYYQ3FxMV68eAEAKC4u5qauEQgEGDp0KObPn4+CggKcO3cOv/76K8aOHauph0EIIURPBAcH4969e4iLi0NcXBwmTZqEAQMGIDo6WuHYcePGYcuWLbhx4waePn2KxYsXVzrFaEOgbGpUQnTV616vGkuIFy9eDDMzMyxbtgxRUVEwMzPD4sWLkZqaCqFQiNTUVADlUzyZmZlxrb5mZmZo0aIFd57vv/8eRUVFsLOzw5gxY7B+/XpqISaEEFLrzM3N4eDgwN2EQiFMTU3RuHFjhc+uvn37YubMmejRowfEYjHEYrFc32tCiG7TWJeJBQsWYMGCBUr35efnc3+7ubkpzD38Mmtra+zfv7+WoyOEEEIq9/JnmKurq9xnFwDMmDEDM2bM0HBURFN4PB7u3LmDZs2aaTsUUgeoNzwhhBBCSB1KTk4Gj8ertA8r0S5KiAkhhBCidyg5rR3K6rE+1i0lxIQQQgjRCIlEwk3X5ubmBolEUuvXcHNzw9KlS9G6dWtYWVlh/PjxKC4uxsmTJ+Hs7Izly5fDwcEB48ePr/Q8X331FRwdHeHk5IStW7fK7SsqKsL//vc/iMViiEQidOnSBUVFRSrP1bVrVwBAo0aNIBQKceHCBQDA1q1b0apVK1hZWaFPnz5ISUnh7sPj8fD999+jefPmsLCwwLx583Dv3j107NgRlpaWGDlyJDcBQcVjW7JkCWxtbdWu28oex2+//QYvLy80atQI3bt3x82bN+XqePny5Wjbti0EAgHu3r0LHo+HLVu2wNXVFT179nzttXVNvZp2jRBCCCH1k0QiQXBwMAoLCwGUD6KvWDzLz8+v1q8VHR0NgUCAgQMHYvHixXjvvffw6NEj5OTkICUlBWVlZSrvf+TIEaxcuRIxMTFwd3fHxIkT5fZ//vnnSEhIwPnz5+Hg4ICLFy9WOifz6dOn4e7ujmfPnsHQsDz12r9/P5YsWYIDBw6gefPmWLZsGcaMGYPz58/LxXH58mU8ePAA7du3x/nz5yGRSGBjY4OOHTti165dCAgIAAA8evQIWVlZSE9Px59//on+/fvDx8dHbmKCV6l6HImJiRgzZgz279+P7t27Y9WqVRg4cCBu3LgBY2NjAMCuXbtw8OBB2NraIjMzEwBw6tQp3Lx5s17OT13/IiaEEEJIvRMSEsIlwxUKCwsREhJS69eaMmUKXFxcYG1tjZCQEOzatQtA+QINYWFhMDExgZmZmcr779mzB+PHj8cbb7wBgUAgN6CyrKwMW7duxbfffosmTZqAz+ejU6dOMDExqVKMGzduxOzZs9GqVSsYGhpizpw5iIuLk2slnjVrFiwtLeHl5YU33ngDvXv3hoeHB0QiEfr166ewaMyiRYtgYmKCbt26YcCAAdizZ4/K61f2OH788UcMGDAA77//PoyMjPD555+jqKhILlmfOnUqXFxc5OpxwYIFEAgEldatrqKEmBBCCCF1rmKKOnXLa+LlpbbFYjEyMjIAAI0bN4apqelr75+RkaFwjgpZWVkoLi5G06ZNaxRjSkoKPvvsMzRq1AiNGjWCtbU1GGNIT0/njrG3t+f+NjMzU9h+eaYTKysrCAQCuZgrHrcylT2OjIwMucdsYGAAFxcXudiULWf+uiXOdRklxIQQQgipcxUr/qlbXhMPHjzg/k5NTYWTkxMA9RcTcXR0VDhHBVtbW5iamuLevXtqx6Psui4uLti4cSOePXvG3YqKitCpUye1z/uyp0+foqCgQC7misetTGWPw8nJSa6lmjGGBw8eoEmTJpU+pvq8WAslxIQQQgipc+Hh4TA3N5crMzc3R3h4eK1fa926dUhLS0NOTg6WLFmCUaNGVen+I0eORGRkJG7cuIHCwkK5RVYMDAwQFBSEGTNmICMjAzKZDBcuXOBW1VWmcePGMDAwQFJSElc2adIkLF26FAkJCQCA58+f46effqriI5UXGhqKFy9e4MyZM/j9998xYsQIlcdW9jhGjhyJgwcPIiYmBqWlpfj6669hYmJS7WS9PqCEmBBCCCF1zs/PDxERERCLxeDxeBCLxYiIiKj1AXUA4Ovry/W39fDwwNy5c6t0/379+mHatGno2bMnmjVrpjBrwsqVK9GmTRu8/fbbsLa2xqxZsyodpGdubo6QkBB07twZjRo1wp9//okPPvgAs2bNwujRo2FpaYk33ngDhw8frtbjBQAHBwdYWVnByckJfn5+2LBhA1q2bFnpfVQ9jhYtWiAqKgqffvopbG1tceDAARw4cIAbUNcQ8Vhly8I1IAKBQO6nhPru5W+roaGhWoyEkIaB3lOqNdS6aWifC5p08+ZNtGrVStthKOXm5obNmzfjvffe03YoGnPy5En4+/sjLS1N26HotMpet9RCTAghhBBC9BolxIQQQgjRO0uWLIFQKFS49evXr1rnk0gkSs/n5eVVy5FXjZeXl9K46mJRlPqMFuYghBBCSIORnJys1nFz5szBnDlzau26fn5+ddIfWh3du3dX2V2iYtAeqRy1EBNCCCGEEL1GCTEhhBBCCNFrlBATQgghhBC9RgkxIYQQQgjRa5QQE0IIIYQQvUYJMSGEEEJIHVmyZAk+/PBDbYdBXoOmXSOEEEIIqSO1ObUbqTvUQkwIIYQQ8hKpVKrtEIiGUUJMCCGEEI2QXJPAbbUbDMIM4LbaDZJrtb9ampubG1auXIm2bdtCJBJh1KhRKC4uBgBs2rQJzZo1g7W1NQYNGoSMjAzufjweD+vWrUPz5s3RvHlznDx5Es7OzlixYgXs7Ozg6OiI/fv349ChQ/D09IS1tTWWLFny2ngWLFgAf3//So9JTk4Gj8fDtm3b4OLiAisrK2zYsAF///032rZti0aNGmHKlCnc8ZGRkejcuTM+/fRTiEQitGzZEjExMdWsMQJQlwlCCCGEaIDkmgTBB4JRWFoIAEh5noLgA8EAAL82tbvC2549e3DkyBGYmpqic+fOiIyMhKenJ2bPno2jR4/Cy8sLn3/+OUaPHo3Tp09z99u/fz8uXrwIMzMzXLx4EY8ePUJxcTHS09MRGRmJiRMn4v3338fly5eRmpqKt956C6NHj4aHh0etxH3x4kXcuXMHp0+fxqBBg9C3b18cO3YMpaWlePPNNzFixAh069aNO3b48OHIysrCzz//jKFDh+L+/fuwtraulVj0DbUQE0IIIaTOhcSEcMlwhcLSQoTEhNT6taZOnQonJydYW1tj4MCBiIuLg0QiQVBQENq3bw8TExMsXboUFy5ckFvqefbs2bC2toaZmRkAwMjICCEhITAyMsLo0aORlZWFzz77DBYWFvDy8oKXlxeuXr1aa3HPmzcPpqam6N27NwQCAcaMGQM7Ozs0adIE7777LmJjY7lj7ezsMG3aNBgZGWHUqFFo0aIFDh48WGux6BtKiAkhhBAV/P394ejoCEtLS3h6emLz5s1Kj4uMjASfz4dQKORuJ0+e1GywOi71eWqVymvCwcGB+9vc3Bz5+fnIyMiAWCzmyoVCIWxsbJCens6Vubi4yJ3HxsYGfD4fALgk2d7enttvZmaG/Pz8Wov71XNXdq0mTZqAx+Nx22KxWK4LCKkaSogJIYQQFWbPno3k5GTk5ubit99+w9y5c3H58mWlx3bs2BH5+fncrXv37poNVse5ilyrVF7bnJyckJKSwm0XFBQgOzsbTZo04cpeTjB1XXp6Ohhj3HZqaiqcnJy0GFH9RgkxIYQQooKXlxdMTEwAlCdLPB4P9+7d03JU9VN4r3CYG5nLlZkbmSO8V7hGru/r64tt27YhLi4OJSUlmDNnDjp06AA3NzeNXL+2PX78GGvWrEFpaSl++ukn3Lx5E/3799d2WPUWJcSEEEL0klQqhY+PD3eLiIhQetzHH38Mc3NztGzZEo6OjiqTjtjYWNja2sLT0xOLFi2iqbte4dfGDxEDIyAWicEDD2KRGBEDI2p9QJ0qvXr1wqJFizBs2DA4Ojri3r172L17t0auXRc6dOiAO3fuwNbWFiEhIdi7dy9sbGy0HVa9xWMvt7c3YAKBAAUFBdoOo9aEhYVxf4eGhmoxEkIaBnpPqdZQ66YqnwsymQwXLlzAyZMnMWvWLBgZGcntT0pKAo/Hg1gsRkJCAkaNGoWxY8di9uzZdRG61t28eROtWrXSdhh6KzIyEps3b8bZs2e1HUq9UtnrllqICSGEkNfg8/no0qUL0tLSsH79eoX9Hh4ecHd3h4GBAdq0aYP58+dj7969WoiUEFIdlBATQgghapJKpWr1IebxeNCTH2AJgH79+snNMFJxe3nhDolEovQYLy8vLUZOKtDCHIQQQogSjx8/xvHjx/Hf//4XZmZmOHbsGHbt2oUffvhB4djDhw+jffv2sLe3x61bt7Bo0SKMGDFCC1ETbTh8+PBrj/Hz84OfX+30lw4MDERgYGCtnIuUoxZiQgghRAkej4f169fD2dkZVlZW+Pzzz7F69WoMHjwYqampEAqFSE0tn0M3JiYGbdu2hUAgQP/+/TF06FDMmTNHy4+AEKIuaiEmhBBClGjcuDFOnTqldJ+rq6vcIgkrV67EypUrNRUaIaSWUQsxIYQQQgjRaxpLiNeuXQsfHx+YmJi8tt/LqlWr4ODgAJFIhKCgIJSUlHD7unfvDlNTU64zeosWLeo4ckIIIYQQ0pBpLCF2cnLC3LlzERQUVOlx0dHRWLZsGWJiYpCcnIykpCSFeS/Xrl3LLY15+/btugybEEIIIYQ0cBpLiIcOHYohQ4a8dhWV7du3Y8KECfDy8oKVlRXmzZuHyMhIzQRJCCGEEEL0js71IU5ISIC3tze37e3tjczMTGRnZ3Nls2fPhq2tLTp37oyTJ09qIUpCCCGEENJQ6FxCnJ+fD5FIxG1X/J2XlwcAWL58OZKSkpCeno7g4GAMHDhQ5STpERER3Br1tKY8IYQQQtRBOYP+0bmEWCgUIjc3l9uu+NvCwgIA0KFDB1hYWMDExAQBAQHo3LkzDh06pPRcwcHBuHTpEi5dugRDQ5phjhBCCNEmiQRwcwMMDMr/lUhq/xpubm5YuXIl2rZtC5FIhFGjRqG4uBgAsGnTJjRr1gzW1tYYNGgQMjIyuPvxeDysW7cOzZs3R/PmzXHy5Ek4OztjxYoVsLOzg6OjI/bv349Dhw7B09MT1tbWcivRKZORkQEzMzPk5ORwZbGxsbC1tUVpaanK+0VGRqJz586YPn06GjVqBA8PD5w/fx6RkZFwcXGBnZ0dtm/fzh0fGBiISZMm4f3334eFhQW6deuGlJSU6lahXtK5hNjLywvx8fHcdnx8POzt7VX2PablMQkhhBDdJ5EAwcFASgrAWPm/wcF1kxTv2bMHR44cwf3793H16lVERkbi+PHjmD17Nvbs2YOHDx9CLBZj9OjRcvfbv38/Ll68iBs3bgAAHj16hOLiYqSnp2PhwoWYOHEioqKicPnyZZw5cwYLFy5EUlKSyjicnJzQsWNH7Nu3jyv74YcfMHz4cBgZGVX6GC5evIi2bdsiOzsbvr6+GD16NP7++2/cvXsXUVFRmDJlitxc2BKJBPPmzUNWVhbatWtXa6vi6QuNJcRSqRTFxcWQyWSQyWQoLi5W+pPEuHHjsGXLFty4cQNPnz7F4sWLuWnanj17hujoaO6+EokEp0+fRp8+fTT1MAghhBBSDSEhQGGhfFlhYXl5bZs6dSqcnJxgbW2NgQMHIi4uDhKJBEFBQWjfvj1MTEywdOlSXLhwAcnJydz9Zs+eDWtra5iZmQEAjIyMEBISAiMjI4wePRpZWVn47LPPYGFhAS8vL3h5eeHq1auVxuLr64tdu3YBABhj2L17N3x9fV/7GNzd3TF+/Hjw+XyMGjUKDx48wPz582FiYoLevXvD2NgYd+/e5Y4fMGAAunbtChMTE4SHh+PChQt48OBBNWpPP2ksIV68eDHMzMywbNkyREVFwczMDIsXL1ZY/rJv376YOXMmevToAbFYDLFYjLCwMABAaWkp5s6di8aNG8PW1hbfffcd9u/fT3MRE0IIITrun495tctrwsHBgfvb3Nwc+fn5yMjIgFgs5sqFQiFsbGyQnp7Olbm4uMidx8bGBnw+HwC4JNne3p7bb2ZmJtdKq8zw4cNx4cIFZGRk4PTp0+DxeHj33Xdf+xhevc7rrv1y7EKhENbW1nJdQkjlNNaxdsGCBViwYIHSfa++mGbMmIEZM2YoHNe4cWP8/fffdREeIYQQQuqQq2t5Nwll5Zrg5OQk16+2oKAA2dnZaNKkCVfG4/Fq/bqNGjVC7969sWfPHty8eRNjxoypk+u83Bqcn5+PnJwcODk51fp1Giqd60NMCCGEkIYnPBwwN5cvMzcvL9cEX19fbNu2DXFxcSgpKcGcOXPQoUMHuLm5aeTaO3bswL59+9TqLlEdhw4dwtmzZ/HixQvMmzcPHTp0UGjxJqpRQkwIIYSQOufnB0REAGIxwOOV/xsRUV6uCb169cKiRYswbNgwODo64t69e9i9e7dGrj1o0CDcuXMH9vb2cmst1CZfX1+EhYXB2toaly9fhqQuRis2YDQXGSGEEEI0ws+v7hPglwfJAZDrrjlp0iRMmjRJ6f1enbGqe/fuSEtL47YNDQ0Vjjl79qxaMZmZmXHrKagjMDCQm1AAAJo1a6Zw7ZdjAwBbW1ts2LBB7WsQedRCTAghhBBC9BolxIQQQgghNdCvXz8IhUKFW2ULd0yaNEnpfVS1YJO6RV0mCCGEEEJq4PDhw1W+z4YNG2qti0NkZGStnEefUQtxPXRNcq3SbUIIIYQQoj5KiOuZa5JrOBB8QK7sQPABSooJIYQQQqqJEuJ6JiYkBqWFpXJlpYWliAmJ0VJEhBBCCCH1GyXE9czz1OdVKieEEEIIIZWjhLieEbmKqlROCCGEEEIqRwlxPdMrvBf4xny5Mr4xH73Ce2kpIkIIIYSQ+o2mXVPTNck1xITE4Hnqc4hcRegV3gtt/NpoJZZXV6t5dZsQQgghumHJkiVISkrC5s2btR0KqQS1EKuhYmaH5ynPAQY8T3mutZkdYkJiUFZaJldWVlpGg+oIIaQO+Pv7w9HREZaWlvD09Kw0qVm1ahUcHBwgEokQFBSEkpISDUZKdNWcOXMoGa4HKCFWgy7N7ECD6gghRHNmz56N5ORk5Obm4rfffsPcuXNx+fJlheOio6OxbNkyxMTEIDk5GUlJSQgNDdVCxLrtmuQaVrutRphBGFa7rdbZKUOlUqm2QyAaRgmxGnQpCaVBdYTUPolEUuk20V9eXl4wMTEBAPB4PPB4PNy7d0/huO3bt2PChAnw8vKClZUV5s2bR6uHvUJTv7a6ublh5cqVaNu2LUQiEUaNGoXi4mIAwKZNm9CsWTNYW1tj0KBByMjI4O7H4/Gwbt06NG/eHM2bN8fJkyfh7OyMFStWwM7ODo6Ojti/fz8OHToET09PWFtbV7o0c4UFCxbA39+/0mOKi4vh7+8PGxsbNGrUCG+//TYyMzMBADk5ORg/fjycnJxgZWWFIUOGVL9yiEqUEKtBl5LQXuG9YGRuJFdmZG5Eg+oIqSaJRILg4GC5suDgYEqK9YBUKoWPjw93i4iIUHrcxx9/DHNzc7Rs2RKOjo7o37+/wjEJCQnw9vbmtr29vZGZmYns7Ow6i7++0eSvrXv27MGRI0dw//59XL16FZGRkTh+/Dhmz56NPXv24OHDhxCLxRg9erTc/fbv34+LFy/ixo0bAIBHjx6huLgY6enpWLhwISZOnIioqChcvnwZZ86cwcKFC5GUlFTjeLdv347nz5/jwYMHyM7OxoYNG2BmZgYAGDt2LAoLC5GQkIDHjx9j+vTpNb4eUUQJsRp0aWaHNn5tMDBioFzZwIiBWhvgR0h9FxISgsLCQrmywsJChISEaCkioimGhoa4dOkSd3v1i1GF77//Hnl5eThz5gyGDh3KtRi/LD8/HyLRv40kFX/n5eXVTfD1kCZ/bZ06dSqcnJxgbW2NgQMHIi4uDhKJBEFBQWjfvj1MTEywdOlSXLhwAcnJydz9Zs+eDWtray4ZNTIyQkhICIyMjDB69GhkZWXhs88+g4WFBby8vODl5YWrV6/WOF4jIyNkZ2fj7t274PP5eOutt2BpaYmHDx/i8OHD2LBhA6ysrGBkZIRu3brV+HpEESXEatKlmR1eTX4pGSak+lJTU6tUTvQTn89Hly5dkJaWhvXr1yvsFwqFyM3N5bYr/rawsNBYjLpOk7+2Ojg4cH+bm5sjPz8fGRkZEIvFXLlQKISNjQ3S09O5MhcXF7nz2NjYgM8vbxCrSJLt7e25/WZmZsjPz69xvGPHjkWfPn0wevRoODk5YebMmSgtLcWDBw9gbW0NKyurGl+DVI4SYjXQzA6ENFyurq74j7P8B/J/nEVwdXXVUkSkMtoelCWVSpX2Ifby8kJ8fDy3HR8fD3t7e9jY2GgyPJ2m7S5/Tk5OSElJ4bYLCgqQnZ2NJk2acGU8Hk8jsbzKyMgIoaGhuHHjBs6fP4/ff/8dO3bsgIuLC3JycvDs2TOtxKVPKCFWgy4NqiOE1K6FH/lifHtnubLx7Z2x8CNfLUVEVLkmuYZjod/BouUuiIfsg0XLXTgW+l2dJcWPHz/G7t27kZ+fD5lMhujoaOzatQs9e/ZUOHbcuHHYsmULbty4gadPn2Lx4sUIDAysk7jqq4oufyKxCOABIrFIo13+fH19sW3bNsTFxaGkpARz5sxBhw4d4ObmppHrV+bEiRO4du0aZDIZLC0tYWRkBD6fD0dHR/Tr1w8ff/wxnj59itLSUpw+fVrb4TZIlBCrQZcG1ZHKabv1iNQ/5smXYWIo/1+hiaEBzJMVp9Yi2nV6ZQQaef0NQ0EReDzAUFCERl5/4/RK5YPhaorH42H9+vVwdnaGlZUVPv/8c6xevRqDBw9GamoqhEIh17Wmb9++mDlzJnr06AGxWAyxWIywsLA6ias+a+PXBtOSpyG0LBTTkqdptMtfr169sGjRIgwbNgyOjo64d+8edu/erbHrV+bRo0cYPnw4LC0t0apVK3Tr1o2bmWLnzp0wMjJCy5YtYWdnh9WrV2s32AaKx/RkmTOBQICCgoJq3bdiqpiXR8camRtpdTDby//R0lyX5XTxedIlurTaoi7ZPqwtACC57TCuzO3qPgBAwL6aD5ap765JruHnuz9z20ObDdXa62ZL3w4wFBQplEsLzDDhyMUqn68mnwv67ubNm2jVqpW2wyCkSip73VILsRq0/TMPUY8uLaCia3RptUVdIysRVKlcn1S8bl6mzdcN31wxGa6snBBC1EUJsZq0+TMPUQ/19VaNviyolnO1Ncqk8tMqlkn5yLnaWksR6Y6YkBgYW8sPIDO2vqe1142s0KxK5YRoSr9+/SAUChVuLy/cIZFIlB7j5eWlxchJBUNtB0BIbRG5ispbQJWU6zv6sqCaoUEbZF8B0P7fsuwr7WHIpy+90rJrsGl/BQX4d8YNm/ZXkB2rnXiKM9+BuetZGBjKuLIyKR/Fme9oJ6Bqkkql+O2333Dw4EHEx8fj2bNnaNSoEby9vdGvXz8MGTIEhob08VyfHD58+LXH+Pn5wc/PTwPRkOqgFmLSYGh7Sh9dZmatvAVNVbk+6RXeCy9ymsqVvchpSq8bANZtb8glnwBgYCiDddsbWomn6+fBeJbwNqQFZmCsvO/ws4S30fVz5Qtq6KKNGzfCw8MDGzduRNOmTRESEoINGzYgJCQETZs2xaZNm+Dh4YENGzZoO1RC9Ap9BSUNRkU3Fho4Rqqi4vXx8sAxGiNQjm+ifMCZqvK6Vv6cfCr3Hn+vnr3HExMT8ddff8ktHFHhgw8+wJw5c/Dw4UN8/fXXWoiOEP1FCTFpUNr4talXH46aUpStfNCRqnJ9cxVXFbbbgF5HAltHFGQ9VFquLVdiv4Jl+1g0ag+UAbgSewVt/HZoLZ6qUifRdXR0xMqVKzUQDSGkAnWZIEQP8PjKV19SVa5PJBIJgoPlf3IPDg6GRCLRUkS6w/mtd6tUXte2fz4OLCkWfB4PPB4PfB4PLCkW2z8fp5V4aioxMRG//PILduzYgV9++QWJiYnaDokQvUUtxIToASZTPt24qnJ9EhISgsLCQrmywsJChISE6P0AmLTLZ6pUXtdk/yTDL+PxeJAlaWmUXzWlpqZi1KhRiI+PR9OmTSESiZCbm4t79+7B29sbu3fvpqXDCdEwtVqId+3ahZs3bwIAbt++ja5du6Jnz564detWnQZHSFXRSnXKicQqVltUUa5PUlNTFbpHtEEbbgUyfVaQ/ahK5XVN1QdWffupc/z48Xj33XeRlZWFa9eu4ezZs7h69SoeP36Md999l5Z8JrUuMDAQc+fO1XYYOk2t/0fmzp0La2trAMDnn3+Od955B127dsXHH39cp8ER5V5N8ijpK0eLT6hGM3Co1s26GwZioFzZQAxEN+tuWopIdwhsFAd+VVZe18qqWK6rLl68iMWLF8Pc3FyuXCAQYOHChbh4seqr7pHaJZVKtR0CUZOy50omkyk5snJqJcRPnjyBvb09iouLcfbsWYSHh2P+/PmIi4ur8gVJzejaylG6hBafUI1WW1TtPbwHYxjLlRnDGO/hPS1FpDts3T5QumiJrdsHWomH7/EmGJPv5sMYA9/jTa3EU10uLi74/fffle47dOhQg+4ukXT6IPZ+1Afbh3tj70d9kHT6YK1fw83NDStXrkTbtm0hEokwatQoFBcXAwA2bdqEZs2awdraGoMGDUJGRgZ3Px6Ph3Xr1qF58+Zo3rw5Tp48CWdnZ6xYsQJ2dnZwdHTE/v37cejQIXh6esLa2lpu4Q1lMjIyYGZmhpycHK4sNjYWtra2KC0tVXm/srIyLF68GGKxGHZ2dhg3bhyeP/933vizZ8+iU6dOaNSoEVxcXBAZGanyXBEREZBIJFixYgWEQiEGDhzIxTZs2DA0btwY7u7uWLNmDXefBQsWYMSIEfD394eFhQXatGmDxMRELF26FHZ2dnBxccHRo0e547t3747Zs2fjnXfegUgkwuDBg+UesyqqHsfz588xbtw4NG7cGGKxGIsXL0ZZWflX38jISHTu3BnTp0+HtbU1FixYgMDAQEyePBn9+/eHQCDAiRMnXnvtV6mVEDdu3Bh3797F4cOH8fbbb8PExATFxcUK/zGRukdJn2q0+ETlaLVF5aQ5yluCVJXrk7iNxci+0l6uLPtKe8RtLNZKPIZv9sGJ5GeQlTEwxiArYziR/AyGb/bRSjzVtXbtWgQFBaFLly745JNPMGfOHEyZMgVdunRBUFAQ1q1bp+0Q60TS6YM4vyGsfOYSxlCQ9RDnN4TVSVK8Z88eHDlyBPfv38fVq1cRGRmJ48ePY/bs2dizZw8ePnwIsViM0aNHy91v//79uHjxIm7cKJ9r+9GjRyguLkZ6ejoWLlyIiRMnIioqCpcvX8aZM2ewcOFCJCUlqYzDyckJHTt2xL59+7iyH374AcOHD4eRkZHK+0VGRiIyMhInTpxAUlIS8vPzMWXKFADl3bz69euHTz/9FE+ePEFcXBzatWun8lzBwcHw8/PDzJkzkZ+fjwMHDqCsrAwDBw6Et7c30tPTERMTg9WrVyM6Opq734EDBzB27Fg8ffoUb775Jvr06YOysjKkp6dj/vz5+Oijj+Sus2PHDmzduhUZGRkwNDTE1KlTVcb0usfx6aef4vnz50hKSsKpU6ewY8cObNu2jbvvxYsX4eHhgcePHyMkJISr15CQEOTl5aFLly6VXlsZtRLiefPm4a233sKECRPwxRdfAABiYmLg7e1d5QuSmqGkTzVafIJUh6qVDGmFw/L/VwrS5FsrC9Jctfb/TUhICHbEpmHC/usY/8t1TNh/HTti07gPxPqiV69euHfvHgICAmBkZITHjx/D0NAQAQEBuHPnDnr27KntEOvEFckayErkv0zJSopxRbJGxT2qb+rUqXBycoK1tTUGDhyIuLg4SCQSBAUFoX379jAxMcHSpUtx4cIFJCcnc/ebPXs2rK2tYWZW/rlhZGSEkJAQGBkZYfTo0cjKysJnn30GCwsLeHl5wcvLC1evXlURRTlfX1/s2rULQPkvGrt374avr2+l95FIJJgxYwY8PDwgFAqxdOlS7N69G1KpFBKJBO+99x7GjBkDIyMj2NjYVJoQK/P333/jyZMnmD9/PoyNjeHh4YGJEydi9+7d3DHvvvsu+vTpA0NDQ4wYMQJPnjzBl19+ydVFcnIynj17xh0/duxYvPHGGxAIBFi0aBH27NlTadcFVY9DJpPhxx9/xNKlS2FhYQE3Nzf873//w86dO7n7Ojk54dNPP4WhoSH3XA0ePBidO3eGgYEBTE1Nq1QfgJoJcWBgIB4+fIi0tDS8//77AIAOHTrIVdzrrF27Fj4+PjAxMXntgIFVq1bBwcEBIpEIQUFBKCkp4fbl5OTggw8+gEAggFgsxg8//KB2DA0BfXgTUruof7Vquvb/TcUAyGmYhlCEYhqm1dsBkDY2Npg4cSJWr16NzZs3Y/Xq1Zg4cSJsbW21HVqd0eQgzZcXPjE3N0d+fj4yMjIgFou5cqFQCBsbG6Snp3NlLi4ucuexsbEBn1/ebagi8bK3t+f2m5mZIT8/v9JYhg8fjgsXLiAjIwOnT58Gj8fDu+9WPnXhq7GKxWJIpVJkZmbiwYMHaNq0aSX3fr2UlBRkZGSgUaNG3G3JkiXIzMzkjnn1cdra2irUxcuP/eW6E4vFKC0tRVZWlsoYVD2OrKwsvHjxQuHxV/Y8qSqrCrUH5xYVFWHfvn1YsWIFgPJOzFXpdO7k5IS5c+ciKCio0uOio6OxbNkyxMTEIDk5GUlJSQgNDeX2f/LJJzA2NkZmZiYkEgkmT56MhIQEteOo7+jDWzVafIJURxu/NjDtKN+aYNrRlLqUQPf+v6kYANkIjcADD43QqN4OgLx58ybmzJmDwYMHo2fPnhg8eDDmzJnDzejUEGl7kKaTkxNSUlK47YKCAmRnZ6NJkyZcGY9X+3OzN2rUCL1798aePXvwww8/YMyYMa+9zquxpqamwtDQEPb29nBxccG9e/eqFMOr13NxcYG7uzuePXvG3fLy8nDo0KEqnfdlDx48kIvXyMio0i94qh6Hra0tjIyMFB7/656nmj53as1DfOrUKQwbNgw+Pj44d+4cZs6ciTt37mDlypU4cODA608AYOjQoQCAS5cuIS0tTeVx27dvx4QJE+Dl5QWgvLuGn58fli1bhoKCAuzbtw/Xr1+HUChEly5dMGjQIOzcuRPLli2r9PqlpaUICwtTK1adN1N+s3RmKX6++zN+DvtZ+fH6YoHqXQ3muSd145XGmrx38+g1U0GH/r/p/ml3hTJjGKM7uter52vXrl2YPHkyBg0ahK5du3LzEMfHx6NTp07YsGEDRo0ape0wa117v6k4vyFMrtsE38QU7f0q72taW3x9fTF69Gj4+vqiVatWmDNnDjp06AA3NzeNXHv58uVITU1FTMzrx/yMGTMGy5cvR79+/dC4cWPMmTMHo0aNgqGhIfz8/LBkyRLs2bMHQ4cOxfPnz/HgwYNKu03Y29vL9XV+5513YGlpieXLl2Pq1KkwNjbGzZs3UVRUhLfffrtajzEqKgrjxo2Dm5sb5s+fj+HDh3MtyspU9jhGjhxZ3kVqxw7k5OTgm2++weeff16tuNSlVgvxtGnT8OOPP+LIkSMwNCzPoTt06IC//vqr1gNKSEiQ65vs7e2NzMxMZGdnIzExEXw+H56ennL7VbUQR0REwMfHBz4+PrUeJyGEEFIdc+bMwcGDB7Fjxw7873//w4cffogZM2Zg+/bt+P333zFr1ixth1gnPLoOQKdJoeVLf/N4ENg6otOkUHh0HaCR6/fq1QuLFi3CsGHD4OjoiHv37lWp62dNDBo0CHfu3IG9vb1a46+CgoIwduxYdO3aFe7u7jA1NcV3330HAHB1dcWhQ4fw9ddfw9raGu3atUN8fHyl55swYQJu3LiBRo0aYciQIeDz+Thw4ADi4uLg7u4OW1tbfPjhh3IzWVTV2LFjERgYCAcHBxQXF8vNWqFMZY/ju+++g0AggIeHB7p06QJfX9/X9jCoKR5TY6oIKysrPH36FABgbW2NnJwclJWVoXHjxsjOzq7SBefOnYu0tDSVU4Q0bdoU69atQ9++fQGUt+waGxvj/v37ePDgAUaMGIFHj/7tb7Rp0yZIJBKcPHmy0usaGxvXu4EXhBBC6s6KFStQUFCg8esKhUI8efKE64f5ssLCQtjZ2b22X6q23bx5E61atdJ2GERHdO/eHf7+/vjwww+1HUqlKnvdqtVlonXr1oiOjkafPv9ObXPs2DG0aVP7feyEQiFyc3O57Yq/LSwsFPZV7LewsHjteY2MjOT6IlfFarfV5Ys9vEIkFmFa8rRqnbOmXv55sLqPq6GpmKP55WnpjMyNaL5dUqkvDL+AUCaU73KzAMjn5+Mr6Vdaiko3RA5tCx4PSG47jCtzu7oPjAGBP1c+sr4u1PZ7vGJMjKa9//77CAoKwuLFi+UGFd27dw/z58/nBq8TQjRHrS4TX3/9Nfz8/BAQEICioiJ89NFHCAwMxFdf1f6HhZeXl1zTf3x8POzt7WFjYwNPT09IpVLcuXNHbn9Ff+O6QlOd1Q+0+ASpDo9gD5Tilbm9UQqPYA8tRaQ7SouUT12kqryuNZT3+NatWwGUNzYJBAI4OTlBKBTCy8sLjDFuP6k/+vXrB6FQqHCrbOGOSZMmKb3PpEmTqhWDl5eX0vNJJJLqPqwak0gkSmOq67ytOtTqMgEA6enpkEgkSElJgYuLC/z9/eHs7Kz2hSpmpQgLC0NaWho2bdoEQ0NDrk9yhSNHjiAwMBDHjx+Ho6Mjhg0bhnfeeYcbNDd69GjweDxs3rwZcXFx6N+/P86fP//ayhUIBNX+aWyF7QqlMxWY2ZhhZtZMJfeoe9RCTKpKIpEgJCQEqampcHV1RXh4OPz8/LQdlk5Y//F6PLZ/zG3bZdph8veTtRiRbljpMgE27a8gtf0Qrsz1yn5kX2mPzx9s0V5gtaQmnwu1obCwEImJicjPz4dQKISnp6fCcs66irpMkPqoxl0mAKBJkyaYObP6yd/ixYvlkrioqCiEhoYiKCgIrVu3xo0bN+Dq6oq+ffti5syZ6NGjB4qKijBs2DC5+33//fcICgqCnZ0dbGxssH79ep38plGXXl2m+ZrkWr1rISGaJZFIEBwcjMLCQgDlc1AGBwcDACXFACZ/P1nu/xlKhsuVFHkg+wqAlxary77SHiVF1HpeG8zNzau8oAIhpG6o1UI8duxYlfO77dixo9aDqgs1aQkIMwgDlNUSDwgt02zrLNeHbuZLfehWUD9ZUjk3Nze5OR0riMViuVWa9FXS6YPYeeIStz22h4/GRr7rslHCUWhV0Aq8Bf/+/88WMNwU3MSP+T9qMbLaoe0WYmVevHiBli1bVrocsC64efMmWrZsWSfz9hJSFxhjuHXrVs1aiJs1aya3/ejRI+zdu1dvWpZEriLlg+q0sFpTTEiM3IASACgtLEVMSAwlxESlihW+eqEXRBDhOZ4jBjG4nnpd26FpXdLpgzi/IQxo8W8CfH5DeWuxvifFTgVO4EE+4eGBB6cCJy1F1PAxxurFl1RTU1NkZ2fDxsaGkmKi8xhjyM7OrnRJZ7USYmV9VCdMmFCvJkKviV7hvZSObNbGak00wI9URzfrbuiU3QnGMAYAboUvG2sbLUemfVcka+QWCgAAWUkxrkjW6H1CLIKKpZtVlDc0JSUl+Pjjj3Hs2DHk5OSgWbNmWLJkCfr166dwbGRkJCZMmCA3ldrvv/+O7t27Kxxb2WIFjLF6kWA6OzsjLS0NT5480XYohKjF1NS00rFvavchflW7du1w6tSp6t69XqloeY0JicHz1OcQuYrQK7yXVlpkdam1mtQf7+E9SCG/1LoxjPEe3tNSRLqjIPtRlcr1iZGNEaTZUqXl+kAqlcLFxQWnTp3iFhEYOXIkrl27pnR1s44dO+Ls2bOvPa+1tTW2bt2K1q1bK+wrKSmpkylNa5uRkRHc3d21HQYhtUathPj48eNy24WFhdi9e7fSN3ND1cavjU50SeBaq6H91mpSf0hzpLBuewUWHskAjwGMh7wkN+Rca//a+zZ0AhsHFGQ9VFqu7wZ9Owi/BP0C9tIgCp4xD4O+HaTFqDRHIBBgwYIF3PZ///tfuLu74/LlyzVa7vett95CVlaW3BzEFUpKSqDm5E+EkFqkVkI8YcIEuW2BQIB27dph165ddRIUUa0iKf/57s9cGQ2oI6/j0CkBJnb3wf0Sy2OwaHofxhYmWo1LF7T3m4qza+fJlfH4hmjvN1VLEekOZf/ffLD1gwbz/41UKoWPjw+3HRwczM2+okxmZiYSExNVzmwUGxsLW1tbWFtbY+zYsZg9e7bC1KJA+dz+RkbKW9lNTExw//79Kj4SQkhNqZUQ05tTt7Txa4Ofw36W2yakMqYOiQozpfB4/5QThT6b9aEPp6Y05P9vDA0NcenSpdcfCKC0tJRboKply5YK+7t27Yrr169DLBYjISEBo0aNgqGhIWbPnq1w7MOHD9GtWzeV1xKLxeo/CEJIrVC5Ul1ZWZlaN0JIPcBUvFdVleuRK5I1KJPKz9xSJi3FFckaLUWkW5JOH6x0Wx+UlZVh7NixMDY2xtq1a5Ue4+HhAXd3dxgYGKBNmzaYP38+9u7dq/TYr776Ck5OThgyZAg2bdqE9PT0ugyfEKIGlQmxoaEhjIyMVN4q9hOiSyQSCdzc3GBgYAA3NzetLlmpS3gGyt/qqsr1ibL+w5WV6xNuSrqXnN8QpldJMWMMEyZMQGZmJvbt26f25x6Px1PZFzg6OhopKSmYMGECrly5gs6dO8Pb2xtz5szB2bNnqbGJEC1Q2WWCukmQ+oZWY1PN8/3huB29R2m5vmOMBx5PMXFhjLpN0JR0wOTJk3Hz5k0cO3ZMbkq1Vx0+fBjt27eHvb09bt26hUWLFmHEiBEqjzc3N8fAgQMxcOBAAMD169dx6NAhhISE4NatW+jRowemT5+ODh061PpjIoQoUpkQUx8mUt+EhIRwyXCFwsJChISE6H1C/J/gubh9+U+wJ/+uVsdrLMZ/gudqMSpdoWpEP4301/fW85SUFGzcuBEmJiZwcPh31pGNGzfi3XffRevWrXHjxg24uroiJiYGgYGByM/Ph729Pfz9/TFnzhy1r/XGG2/gjTfewMyZM5Gbm4vo6Gjk5eXVxcMihCih9jzEv/32G06dOoWsrCy5n4Hqy9LNpOFLTU2tUrk+2bF0DkoeJcPE8N8uEiWPkrFj6RyMm71Ei5FpX9kLAfgmisv3lr0QaCEa3fKspAyNTBS71Twr0Y+f9MVicaVToOXn53N/r1y5EitXrlTrvOfOncNvv/2G5cuXK+z78ssvMWTIkEpblwkhtU+tDoRhYWH46KOPUFZWhp9++gk2NjaIjo5Go0aN6jg8QtRnbW1dpXJ98vTcb3LJMACYGBrg6bnftBSR7vDoHIAyqfzKYWVSPjw6B2gpIt3x49V0lEjlk98SaRl+vEqDwGpiyZIl6Nq1q9J93bp1Q3h4uIYjIoSolRBv3boVf/zxB1atWgVjY2OsWrUKBw4cqBfrrRNCAJGx8v6wqsr1SffZk+D+n4/kytz/8xG6z56kpYh0R4aBCNuupMmVbbuShgwD7a2M2RAGzsbFxaFv375K973//vu4fPmyhiMihKiVED979gxvvPEGAMDY2BilpaV455139GbpZlI/5OTkVKlcn2QXlVapXN+8mvxSMlwuPDwcV3PkXyNXc0q11oJZMXA2JSUFjDFu4Gx9S4pzc3Px4sULpftKS0up7zAhWqBWQty0aVMkJCQAKO/4v379euzcuRNWVlZ1GhwhVeHq6lqlcn0Sl5Gr0BeSMYa4jFwtRUTqg4qFKF4WEBCgtUGqlQ2crU9atmyJo0ePKt139OhRpQt/EELqlloJ8eLFi5GdnQ0AWLZsGdasWYMvvvgC33zzTZ0GR0hVhIeHw9zcXK7M3Nyc+uMB8HGxVroam48L9a8mqkkkEmzfvl2ubPv27VprkW0oA2enT5+Ojz76CD///DM353BZWRl+/vlnTJo0CTNmzNByhIToH7Vmmejfvz/39zvvvIO7d+/WWUCEVJefnx/OnTuHiIgIyGQy8Pl8rbZm6RJlMwVUVk4IoHtTGbq6uiIlJUVpeX3i6+uLR48eISAgACUlJbC1tUVWVhZMTU0RFhaGMWPGaDtEQvSOWp+GQ4YMwU8//YTi4uLXH0yIllS0ZslkMgCATCbTamuWLhHYOlapnBBA91pkG9KvQDNmzEB6ejoOHDiAlStX4sCBA0hLS8P06dO1HRohekmthLhbt2746quvYG9vj4CAAERHR9PSkkTnNJT+hXWhvd9U8E1M5cr4JqZo7zdVSxGR+kDX+uX7+fkhIiICYrEYPB4PYrEYERER9fZXIEtLS/Tp0we+vr7o06cPLC0ttR0SIXpLrYR4+vTp+Ouvv3Dp0iV4eHhg2rRpcHJywtSp9GFKdEdqair+4yzCyj4tsO2DN7CyTwv8x1lU7/oX1gWPrgPQaVJoeYswjweBrSM6TQrVm+V3SfXoYousn58fkpOTUVZWhuTk5HqXDL/99tv46aefVM4y8eLFC+zZs4eWbCZEw9ReqQ4AmjdvjtDQUAwZMgRffPEF1q1bhzVr1tRVbIRUyQBvDwx0NeUWoLAVGGN8e2fY2lJXH6A8KaYEmFRFRbL58riR+twiqwu2b9+O+fPnY/LkyWjfvj1atGgBCwsL5OXlITExEVeuXEHPnj0RGRmp7VAJ0Stqj6i5d+8eFi9eDC8vL/Tu3RvNmzeneYiJThnu5aB0NbbhXg5aioiQ+u/V5JeS4Zpp3bo19u7di+vXr2Ps2LEwMzNDVlYWzM3NMW7cOCQkJODHH39Eq1attB0qIXpFrRbit99+G4mJiRg8eDBWrlyJ3r17g8/nv/6OhGhSsYrJ7FWVE/KPVwdeSiQSSvxInXJwcMDYsWO1HQYh5B9qtRB//vnnePToEXbs2IF+/fpRMkx0kolQ+XKyqsoJAf5d/exl9XH1M0IIIdWnVkI8atQomJmZ1XUshNTIqyuxva6cEIBmJyGEEFKFPsSE6LoX+c+rVE4IoHtz7RJCCNE8SojrIWX9HQnAM1D+clZVrm8kEgnc3NxgYGAANzc3et38Q9fm2iWEEKJ5lCnUM9TfUTWmYrEYVeX6pOJ1k5KSAsYYUlJS6HXzD12ca5foB8YYNm3ahJ49e6Jt27YAgNOnT2PPnj1ajowQ/aNylomkpCS1TuDh4VFrwZDXq6y/o76PiucZGChNfqmFmF43laG5dom2zJ8/H3/88QemTZuGSZMmAQCcnZ0xffp0jBw5UsvREaJfVCbEzZo1A4/HA2MMPB6PK391WyaT1W2ERA71d1SNWohVo9fNa7QFcPeVbULqWGRkJGJjY2Fra4vJkycDANzd3dVukCKE1B6VTWdlZWWQyWQoKyvD5s2bMXr0aNy6dQvFxcW4desWfH19sWXLFk3GSkD9HSsjsHWsUrk+odeNapJrEgQfeKUb0oFgSK5RdxJSt2QyGYRCIQBwDU35+flcGSFEc9T6LXnevHnYvHkzmjdvDmNjYzRv3hwbN27E3Llz6zo+8grq76hae7+p4JuYypXxTUzR3m+qliLSHfS6US0kJgSFpa90JyktREgMTbtG6la/fv0wY8YMlJSUACj/BXbevHkYOHCgliMjRP+olRCXlZUhOTlZriwlJYW6S2iBn58fIiIi5Mqov2M5j64D0GlSaHmLMI8Hga0jOk0KhUfXAdoOTesqXjdisRg8Hg9isZheN/9Ifa6iO4mKckJqy6pVq/Dw4UOIRCI8f/4cQqEQKSkpWL58ubZDI0TvqLV08/Tp09GzZ0+MHz8eLi4uePDgASIjIzF9+vS6jo8o4efnh7CwMLltUs6j6wBKgFXw8/Oj14oSriJXpDxPUVpOSF2RyWTYu3cvdu3ahdzcXKSkpMDFxQUODg7aDo0QvaRWC/EXX3yBbdu2ITMzE7/99hsePXqErVu3YubMmXUdH1GC5iFWjebaJVUV3isc5kavdCcxMkd4L+pOQuoOn8/HjBkzYGpqCjs7O7z99tuUDBOiRWrPR9W3b19s2bIFhw8fxtatW9G3b98qXSgnJwcffPABBAIBxGIxfvjhB6XHlZSUYPr06XBycoKVlRU+/vhjlJaWcvu7d+8OU1NTCIVCCIVCtGjRokpx1Hc0D7FqNNcuqQ6/Nn6IGPhKN6SBEfBrQ63p+q6kpAQTJkyAWCyGhYUF3nzzTRw+fFjl8atWrYKDgwNEIhGCgoK4vsGqDBw4EAcOHKjtsAkh1aBWQlxSUoKQkBB4eHhAJBIBAI4ePYq1a9eqfaFPPvkExsbGyMzMhEQiweTJk5GQkKBw3LJly3Dp0iVcv34diYmJuHLlChYvXix3zNq1a5Gfn4/8/Hzcvn1b7Rgagsrmk9V3VDekul5NfikZJgAglUrh4uKCU6dO4fnz51i0aBFGjhypMKYGAKKjo7Fs2TLExMQgOTkZSUlJCA0NrfT8xcXFGD58OLp3746xY8di3Lhx3I0QollqJcTTp0/H9evXIZFIuKlhvLy8sH79erUuUlBQgH379mHRokUQCoXo0qULBg0ahJ07dyoce+DAAUydOhXW1tZo3Lgxpk6diq1bt1bhITVsNJ+salQ3hJDaJBAIsGDBAq4b1n//+1+4u7vj8uXLCsdu374dEyZMgJeXF6ysrDBv3jxERkZWev433ngDc+bMQY8ePdCsWTM0bdqUuxFCNEutQXW//PIL7t69C4FAAIN/Vv1q0qQJ0tPT1bpIYmIi+Hw+PD09uTJvb2+cOnVK4VjGGBhjcttpaWl4/vw51zo9e/ZsfPnll2jRogXCw8PRvXt3pdeNiIjgZmSQSqVqxarrXF1d4Sh7Jlf2H2cRHvIbaSUeXeLq6oqUFCWDo2iuXUKIElKpFD4+Ptx2cHCwQpe0l2VmZiIxMRFeXl4K+xISEjB48GBu29vbG5mZmcjOzoaNjY3S872uBZkQojlqJcTGxsYKCeWTJ09UvslflZ+fzyWzFUQiEfLy8hSO7devH7799lv06NEDMpkMa9asAVD+07dIJMLy5cvRunVrGBsbY/fu3Rg4cCDi4uKUfqN++T83gUCgVqy6buFHvij+8zc8fKlsfHtnmP5nkNZi0hXh4eEIDg6W6zZBc+0SUjOvLlAiuSZpMF1KDA0NcenSJbWOLS0thZ+fHwICAtCyZUuF/a9+zlX8nZeXp/Kz8vjx4yqv17NnT7XiIoTUDrUS4hEjRiAgIACrVq0CADx8+BDTpk3D6NGj1bqIUChEbm6uXFlubi4sLCwUjg0JCcGzZ8/Qrl07mJiYYOLEiYiNjYWdnR0AoEOHDtyxAQEB2LVrFw4dOoRPP/1UrVjqO/Pky2CG8j1dTAwNYJ6s+BOevqmYUiwkJASpqalwdXVFeHg4TTVGSDVVrOI3E//OKFSxql9DSYrVUVZWhrFjx8LY2Fjl2JlXP+cq/lb2OVdhwoQJcttPnjzBixcv4OzsTMs3E6JhavUhXrJkCdzc3NCmTRs8e/YMzZs3h5OTk9o/93h6ekIqleLOnTtcWXx8vNKfnczMzLB27Vqkp6cjKSkJNjY2eOutt8Dn85Wem8fjyXWxaOgKsh9VqVzf+Pn5ITk5mVtMhpJhQqqPVvEr77Y3YcIEZGZmYt++fTAyMlJ6nJeXF+Lj47nt+Ph42NvbV/pL6v379+Vuz58/R0hICKZMmVLrj4MQUjm1EmJjY2OsXr0a+fn5yMzMRF5eHlatWgVjY2O1LiIQCDB06FDMnz8fBQUFOHfuHH799VeMHTtW4dj09HRkZGSAMYY///wTixYt4hahePbsGaKjo1FcXAypVAqJRILTp0+jT58+VXjI9ZvARvk8larKCSGkumgVP2Dy5Mm4efMmDhw4ADMzM5XHjRs3Dlu2bMGNGzfw9OlTLF68GIGBgVW6Fp/PR0hICFasWFHDqAkhVaVWQnzjxg1kZmYCKG/BXbBgARYuXKgwxVVlvv/+exQVFcHOzg5jxozB+vXr4eXlhdTUVAiFQm4mgHv37qFTp04QCAQICAjAsmXL0Lt3bwDlfbjmzp2Lxo0bw9bWFt999x3279+vV3MRt/ebCr6JqVwZ38QU7f2maikiQkhDpWq1Pn1ZxS8lJQUbN25EXFwcHBwcuPnvJRKJwmdX3759MXPmTPTo0QNisRhisVhuRVF1/fHHH9zgdUKI5vCYGv0N2rVrhx9//BEtWrTApEmTcPv2bZiamsLW1lbp1Gm6SCAQoKCgQNth1Iqk0wex88S/A0HG9vCh5YoJqaGXkxca/V+O60Nc+m8f4hVGKxrMwiXa/lxwcXHhpjIFygePFxcXY926dQgICNBaXIToI7UG1SUnJ6NFixZgjOGXX35BQkICzMzM4O7uXtfx6QzJNQlCYkKQ+jwVriJXhPcK19oHgkfXAcBLCTElw4SQulDxf9zdn+9yZQ0lGdYFUVFRctsCgQCenp6wtLTUUkSE6C+1fpcxMTFBXl4e/vrrL7i4uMDW1hYmJiYoLi6u6/h0QkUrScrzFDAwpDxPQfCBYIXpiAghpKGhVfzqzt9//41u3bpxNx8fH1haWuKbb77RdmiE6B21EmJfX1/07NkTAQEB3CCBK1eu6E0Lsa6NtE46fbDSbUIIaagk1yRwW+0GgzADuK12q9cNEwsXLlRavnjxYg1HQghRq8vEqlWrcPToURgZGaFHjx4AAAMDA25e4oZOl0ZaJ50+iHPr5gOt/12I49y6+QCo6wQhpGGr+LWuooGi4tc6oH61XFcsyCGTyXDixAm5qUOTkpIqnbuYEFI31EqIAXAzPVR4ebnLhs5V5IqU50qWBNbCSOu/ti5HmbRUrqxMWoq/ti6nhJgQ0qBV9mtdfUqIKxbkKC4uRlBQEFfO4/Hg4OCA7777TluhEaK3VCbEffv2xZEjRwAA7777rtxI2JedPn26biLTIeG9wuVaJQDA3Mgc4b00vyRwSd6zKpXrG10a/EgIqV269GtdTdy/fx9A+dzFO3bs0HI0hBCgkoR43Lhx3N8ffvihRoLRVRUJlS4kWgwMPCh+OWHQn9X6VGkoP6fWFfqyQOo7Xfq1rjZQMkyI7lCZEPv6+nJ/03yI5QmVLiQPeQYyWJYpPm15BjItRKNbGsrPqXWBvixU7tWBWZJrEqoXHaRLv9bVhtzcXCxYsACnTp1CVlaWXF/iigU/CCGaoTIh3rp1q1oneLn/E6l7PzTKwIQcZ7myUpThh0YZ+FRLMemKhvJzal2gLwuqSa5JEPRrEOZgDlcW9Gv5/2v6Xje6Rpd+rasNH3/8MdLS0jB//nz4+/sjKioKX331FYYNG6bt0AjROyoTYnVWoOPxeJQQa9idu4bY4pWGvi+VbXFMw50EtcdHNlgN7efU2kRfFlT77PBneCF7IVf2QvYCnx3+rN4mWg2ZrvxaVxuOHj2KmzdvwsbGBnw+H4MHD4aPjw8GDhyI6dOnazs8QvSKyizqxIkTmoyDqOnbD7/F+FXj0Xfgv2WX/yzEtunbtBeUjmhoP6fWJvqyoFp2UXaVyvUNdSepO2VlZRCJRAAAoVCIZ8+ewdHREXfv3n3NPQkhtU2thTlexhhDWVkZdyOa5efnp5D8bpu+DX5+9AHl18YPAd4B4PP4AAA+j48A7wD68Eb5lwVzI3O5MvqyQF6nou/5y2iVztrj7e2NU6dOASifzemTTz7B5MmT4enpqeXICNE/aiXE6enp+OCDD2BjYwNDQ0MYGRlxN6J5rya/lAyXk1yTYHv8dshY+QBDGZNhe/x2+vBG+ZeFiIEREIvE4IEHsUiMiIER9GUBgI2ZTZXK9YmurdLZ0GzatAlubm4AgDVr1sDMzAzPnj2j2ScI0QK1EuJJkybB2NgYMTExEAqFuHLlCgYNGoQNGzbUdXyEqI0+vCvn18YPydOSURZahuRpyZQM/+Pbft/CyED+y72RgRG+7fetliLSHcq62VRWTtQnk8kQGRkJZ+fyQdKNGzfG5s2b8eOPP6J169Zajo4Q/aNWQnz+/Hls3boV7dq1A4/Hg7e3N7Zs2YKvv/66ruMjRG00cIxUh18bP2wb8ko3pCHb6AsDwHU/UrecqI/P52PdunX0SyshOkKthJjP58PQsHz8XaNGjfDkyRMIBAKkp6fXaXCEVIWqAWI0cIy8zqvJLyXD5Sq6H6lbTqomICCAfmklREeolRB36NABhw4dAgD06dMHo0aNwtChQ+Hj41OnwRFSFTRwrHKSaxK4rXaDQZgB3Fa7Ud9q8lq62L+6Ib2O//rrL3z22Wdwc3PDu+++i65du3I3QohmqTV57c6dO7kZJVavXo2VK1ciPz8f06ZNq8vYCKmShjZpf22ilepIQ9DQXscTJ07ExIkTtR0GIQQAj728VmQDJhAIUFBQoO0waoVEIpGbp7JZs2Y00wSplNtqN6UDocQiMZKnJWs+IB0UFhbG/R0aGqrFSHSHQZgBGBgWYAFXtgALwAMPZaGan3aztl/HDelzgRBSM2q1EEulUuzatQuxsbHIz8+X2xcREVEngRHlJBIJgoODMXPmTK4sOPifFhJKiokKNOCQVIeuLejS0F7HjDFs3rwZu3btQlZWFq5evYrTp0/j0aNHGDlypLbDI0SvqNWH2N/fH8uWLYOBgQHs7e3lbvoi6fRB7P2oD7YP98bej/og6fRBrcQREhKCwsJXphYrLERICE0tRlSjAYekOnStX35Dex3Pnz8fW7ZsQXBwMFJTy5N6Z2dnLF++XMuREaJ/1GohPnLkCB48eAALC4u6jkcnJZ0+iDPfzwNKpQCAgqyH5dsAPLoO0GgsFf9pqluubyTXJNSHWAla1ppUR8V75+7P/3bR0uaCLg3tdRwZGYnY2FjY2tpi8uTJAAB3d3ckJSVpOTJC9I9aLcStW7dGTk5OXceis85ELuWSYU6ptLxcw1xdVbSQqCjXJxUDblKep4CBcQNu6vMo9NpCK9WR6tKlKeka2utYJpNBKBQCAHg8HgAgPz+fKyOEaI5aLcRRUVH48MMP0bt3b4VuEuPGjauTwHQJe/4cPPCUlmtaeHg4xq8aL1dm9JYRwqfXzxaS2lTZSnX19QOzNvm18aN6IPVeQ3od9+/fHzNmzMCqVasAlPcpnjdvHgYOHKjlyAjRP2q1EEdGRuLMmTP48ccfsWnTJu62efPmuo5PJ2QblVapvE61BcoGyo/uLhtYBrTVfCi6pqENuCGEaN/atWvh4+MDExMTBAYGqjwuMjISfD4fQqGQu508ebLSc3/zzTfIyMiASCTC8+fPIRQKkZKSQn2ICdECtVqIv/32W8TGxqJVq1Z1HY9OumX5Ap2zjeRaiRkYblm+0Hgsnx3+DDLIrxIlgwyfHf6swbSaVJeujYgnhNR/Tk5OmDt3LqKjo1FUVFTpsR07dsTZs2fVPrelpSX279+Px48fIyUlBS4uLnBwcKhpyISQalCrhdje3l6v+6i2fmyq0GWCBx5aPzbVeCzZRdlVKtcn/Zv3r1K5vmlIK3wRoilDhw7FkCFDYGNTN6vzPXv2DH/88QdOnjyJmJgYPH36tE6uQwipnFoJ8fTp0+Hn54c///wTSUlJcjd9YGXAr1I50Y5Ddw5VqVyf0IBDQhRJpVL4+Phwt5rOq18xY4SnpycWLVoEqVRa6fHHjx+Hm5sb1qxZg7///hvfffcd3N3dERMTU6M4CCFVp1aXiU8++QQA8Ntvv8mV83g8yGQyZXdpUJ6/YGhkojio7vkLzS/yZ2Nmo7Q12Masblov6hPqQ6waDTgkRJGhoSEuXbpUK+fq2rUrrl+/DrFYjISEBIwaNQqGhoaYPXu2yvtMmTIFERERcotw/PTTT/jkk09w69atWomLEKKe17YQM8Zw584dvHjxAmVlZXI3fUiGASCrcUuUSOUHspVIy5DVuKXGY/m237cw5hvLlRnzjfFtv281HouuaWiT9tcmZX2rKysnhFSNh4cH3N3dYWBggDZt2mD+/PnYu3dvpffJyMjAsGHD5Mo++OADPHr0qC5DJYQo8dqEmMfjoW3btjAwUKt3RYO088QlbLuShqyCF2CMIavgBbZdScPOE7XTslAVfm38sHXwVrmyrYO3UisfdG9VLV3C5ynv3qOqXN+82nWEupLorvrSF57H44Gxyn9FHDduHNatWydXtn79er2YzpQQXaNWl4k333wTiYmJaNlS8y2iuiA1NRUpjOHPNPl5h3m8XK3E49fGD2E/h8ltk3/rgVaqUyRjyn/NUVWuTyr6V8/ETK4s+EAwAHpv6ZqK56qi+09FX3ig7p4rqVQKqVQKmUwGmUyG4uJiGBoawtBQ/uPz8OHDaN++Pezt7XHr1i0sWrQII0aMqPTcV65cwfr167FixQo0adIE6enpePz4MTp06ICuXbtyx50+fbpOHhsh5F9qJcTdu3dH3759ERgYCBcXF25FHQAICgqqs+B0haurK1JSlEznpcczb+iqhjRpf20Si8RKu0eIRWItRKNbqH91/aGN52rx4sUIC/u3ASIqKgqhoaEICgpC69atcePGDbi6uiImJgaBgYHIz8+Hvb09/P39MWfOnErPPXHiREycOLFO4iaEVI1aCfG5c+fg7u6OU6dOyZXzeDy9SIgrVocrfbcUEAF4DhidodXhSP0R3itcrmUNoO4kFWgwZv2hjedqwYIFWLBggdJ9+fn53N8rV67EypUrq3TugICAmoRGCKlFaiXEJ06cqOs4dFtbgDeIB1R0B2v0zzatDkfqCepOohot6FJ/NMTn6syZM4iNjZVLrgG8tnWZEFK71B4p9/TpU+zYsQNLly7Fjh07qjx5eE5ODj744AMIBAKIxWL88MMPSo8rKSnB9OnT4eTkBCsrK3z88ccoLS2t8nlqU0hMCF4w+VXpXrAXCIkJqfNrE1Jb/Nr4IXlaMspCy5A8LZmS4X/QYMz6o6E9V59++imGDx+O06dP4+bNm9yNplwjRPPUaiG+cOECBgwYgJYtW0IsFuP333/HtGnTcPDgQXTs2FGtC33yyScwNjZGZmYm4uLiMGDAAHh7e8PLy0vuuGXLluHSpUu4fv06ZDIZBg4cKNeHS93z1Cb6SZWQhqvii8Hdn+9yZREDI+gLgw5qaL90SCQSXL9+HU5OTtoOhRC9p1YL8bRp0/D999/j/Pnz2LVrF86dO4f169dj6tSpal2koKAA+/btw6JFiyAUCtGlSxcMGjQIO3fuVDj2wIEDmDp1KqytrdG4cWNMnToVW7durfJ5apO1oXWVyuta0umDlW4TQqrm1YSqviZY+qAh/dLh4uICExMTbYdBCIGaCXFiYqLcSjoAMHz4cNy9e1fFPRTvz+fz4enpyZV5e3sjISFB4VjGmNzcjYwxpKWl4fnz51U6T606BuDFK2Uv/inXsKTTB3F+Q5hc2fkNYZQUE0JIPbNlyxZMnDgRP/30E06fPi13I4RollpdJpo3b47du3fD19eXK/vpp5/QtGlTtS6Sn58PkUgkVyYSiZCXl6dwbL9+/fDtt9+iR48ekMlkWLNmDQCgsLCwSucBgIiICG5t+tetKV+ZnFM5QDaAXuBmmUAMkHM9p9rnrK4rkjWQlRTLlclKinFFsgYeXQdoPB5CCCHVc/nyZRw+fBinT5+GmZkZV87j8ZCaSl3yCNEktRLi1atX47///S/WrFkDsViM5ORk3LlzB7///rtaFxEKhcjNlV/EIjc3FxYWFgrHhoSE4NmzZ2jXrh1MTEwwceJExMbGws7ODo8ePVL7PAAQHByM4ODySdsFAoFasSrj6uqKlGspwLVXysWaH9lckK18SU9V5YQQQnTTnDlzcODAAbz33nvaDoUQvadWl4lOnTrh3r17mDJlCt566y18+umnuHv3Ljp16qTWRTw9PSGVSnHnzh2uLD4+XulAODMzM6xduxbp6elISkqCjY0N3nrrLa6rhLrnqU3h4eEwN39lZLO5OcLDNT+yWWDjUKVyQgghukkgEMitSEcI0R61p12zsrKCv78/Zs6cCX9/f1hbqz+gTCAQYOjQoZg/fz4KCgpw7tw5/Prrrxg7dqzCsenp6cjIyABjDH/++ScWLVrEzTBRlfPUJj8/P0REREAsFoPH40EsFiMiIgJ+fpofzFHY9S2U8Mrkykp4ZSjs+pbGYyGEEFJ9CxcuxLRp0/Do0SOUlZXJ3QghmlVpl4kePXrILdP8Kh6Ph5iYGLUu9P333yMoKAh2dnawsbHB+vXr4eXlhdTUVLnlL+/du4dx48bh8ePHcHFxwbJly9C7d+/Xnqeu+fn5aSUBftX8Jz/A0fkZ+r5Uts05DQ+f/IBxWKK1uAghhFRNxUqvGzdu5MoYY+DxeJDJZNoKixC9VGlC7O/vr7Q8PT0da9asQWFhodL9ylhbW2P//v0K5a6urnIr9HTt2hXJyclVPo++SH2eihQrJpcQ/2n1HLznuSrvQwghRPfcv39f2yEQQv5RaUI8YcIEue3s7GwsXboUmzZtwqhRozB//vw6DU6XSK5JdGIy+Ia4dCkhhOgjsVgMACgrK0NmZiYcHR21HBEh+kutPsS5ubmYN28emjVrhszMTFy5cgURERFwdnau6/h0guSaBMEHgpHyPAUMDCnPUxB8IBiSaxKNx9LQli4lhBB99ezZM/j6+sLU1BTNmjUDAPz222+YO3euliMjRP9UmhAXFRVh6dKl8PDwwM2bN3H27Fns3LlT7fmHG4qQmBAUlsp3DyksLURITIjGY/Fr44eIgRFyZbTMLCGE1D+TJk2CSCRCSkoKjI2NAQAdO3bEjz/+qOXICNE/lXaZcHd3h0wmw8yZM+Hj44PMzExkZmbKHdOzZ886DVAXpD5PxX+eijD8kQNsSo2QbVSKvQ6PcBHamTjdr40fwn4Ok9smhBBSv8TExCAjIwNGRkbcAPbGjRvj8ePHWo6MEP1TaUJsamoKHo+H9evXK93P4/GQlJRUJ4HpkgElHhiYZgoTVt6gbltqjPFpzrA1L37NPQkhhBDlRCIRsrKy5PoOp6amUl9iQrSg0oS4stke9MnwRw4Ak5/FwYQZlJcTQgghVbBr1y6MGTMGH374IYYNG4bw8HCUlZXhwoULmDNnDiZNmqTtEAnRO2ovzKHXcvOqVk4IIYSo8NFHHwEAZs2ahZEjR+KTTz5BaWkpgoKCMHjwYHz22WdajpAQ/VNpCzEpJ7BxQEHWQ6XlhBBCSFUwxgCUdzucNm0apk2bpt2ACCGUEKujvd9UnN8QBlnJv32G+SamaO83VYtREUIIqY9kMhlOnDjBJcbK6MOAdUJ0CSXEavDoOgAAcEWyBgXZjyCwcUB7v6lcOSGEEKKukpISTJgwQWVCrC8D1gnRJZQQq8mj6wBKgAkhhNSYQCCghJcQHUOD6gghhBBCiF6jhJgQQgjRoMr6DhNCtIMSYkIIIUSFtWvXwsfHByYmJggMDKz02FWrVsHBwQEikQhBQUEoKSlRelxeHk3ZSYiuoYSYEEIIUcHJyQlz585FUFBQpcdFR0dj2bJliImJQXJyMpKSkhAaGqqhKAkhNUUJMSGEEKLC0KFDMWTIENjY2FR63Pbt2zFhwgR4eXnBysoK8+bNQ2RkpGaCJITUGCXEhBBC9JJUKoWPjw93i4iIqPa5EhIS4O3tzW17e3sjMzMT2dnZtREqIaSO0bRrhBBC9JKhoSEuXbpUK+fKz8+HSCTitiv+zsvLe23rMiFE+6iFmBBCCKkhoVCI3NxcbrvibwsLC22FRAipAkqI6yGJpPJtQgghmuXl5YX4+HhuOz4+Hvb29tQ6TEg9QQmxmpJOH8Tej/pg+3Bv7P2oD5JOH9RKHBIJEBwsXxYcTEkxIYTUBalUiuLiYshkMshkMhQXF0MqlSocN27cOGzZsgU3btzA06dPsXjx4tdO00YI0R2UEKsh6fRBnN8QhoKshwBjKMh6iPMbwrSSFIeEAIWF8mWFheXlhBBCatfixYthZmaGZcuWISoqCmZmZli8eDFSU1MhFAqRmpoKAOjbty9mzpyJHj16QCwWQywWIywsTMvRE0LURYPq1HBFsgaykmK5MllJMa5I1sCj6wCNxvLP/71qlxNCCKm+BQsWYMGCBUr35efny23PmDEDM2bM0EBUhJDaRi3EaijIflSl8rrk6lq1ckLI61G/fEII0W+UEKtBYONQpfK6FB4OmJvLl5mbl5cTQqqO+uUTQgihhFgN7f2mgm9iKlfGNzFFe7+pGo/Fzw94de74iIjyckJI1VG/fEIIIZQQq8Gj6wB0mhQKga0jwONBYOuITpNCNd5/uMKryS8lw/+SSAA3N8DAoPxfauUjr0P98gkhhNCgOjVdePAMIdG3kZqaClfX5wjv+gwe2g6KyKn46buitS8l5d+fwulLA1HF1bX8taKsnBBCiH6gFmI1SCQSBAcHIyUlBYwxpKSkIDg4GBJqftQp9NM3qQ7ql08IIYQSYjWEhISg8JVMq7CwECGUaekU+umbVAf1yyeEEAKmJ8zNzat9Xx6Px8YA7D7AZP/8OwZgPB6vFiOsgqgo9lQkYmUAeyoSMRYVpZ04dIxYzNgYRLH7EDMZeOw+xGwMophYrO3IdERUVHkl8Xjl/9Lr5l/0nlJN1+qmFl/HNflcIIQ0LJQQq+FTGxuWDzD20i0fYJ/a2NRihGqKimLM3FwuFmZurv0PKR1wZnIUy4f5K8+TOTszmeqGXjeVoLpRTdfqppbjoYSYEFKBxxhj2m6l1gSBQICCgoJq3Tff1hbC7GzFchsbCLOyahpa1bi5KR8BJBYDycmajUXXUN2oRnWjGtWNarpWN7UcT00+FwghDQslxOowMChvi3gVjweUldUssPoci66hulGN6kY1qhvVdK1uajkeSogJIRVoUJ06dGm9ZF2KRddQ3ahGdaMa1Y1qulY3uhYPIaTBoIRYHbo0L5MuxaJrqG5Uo7pRjepGNV2rG12LhxDScGiqs3J2djYbMmQIMzc3Z66urkwikSg9rqysjIWEhDAnJydmaWnJunXrxq5fv87t79atGzMxMWECgYAJBALm6emp1vVrPHhCl0bo69qob12iS8+TrqG6UY3eU6rpWt3QLBOEkDqgsT7EY8aMQVlZGbZs2YK4uDgMGDAA58+fh5eXl9xxe/bswbRp03D27FmIxWLMnTsX0dHRuHLlCgCge/fu8Pf3x4cfflil6ze0vmJhYWHc36GhoVqMhJCGgd5TqjXUumlonwuEkOrTSJeJgoIC7Nu3D4sWLYJQKESXLl0waNAg7Ny5U+HY+/fvo0uXLvDw8ACfz4e/vz9u3LihiTBJAyCRlA9ENzAo/5cWEySEEELI62gkIU5MTASfz4enpydX5u3tjYSEBIVjR48ejbt37yIxMRGlpaXYvn07+vbtK3fM7NmzYWtri86dO+PkyZMqrxsREQEfHx/4+PhAKpXW6DFQoqX7JBIgOLh8VibGyv8NDqbnqgK9hgkhhBDlDDVxkfz8fIhEIrkykUiEvLw8hWMdHR3x7rvvokWLFuDz+XBxccHx48e5/cuXL0fr1q1hbGyM3bt3Y+DAgYiLi0PTpk0VzhUcHIzg4GAA5T+NVVdFolWxenNFogXQ8q66JCTk3+eoQmFhebm+P0/0GiaEEEJU00gLsVAoRG5urlxZbm4uLCwsFI4NCwvD33//jQcPHqC4uBihoaHo2bMnCv/5JO/QoQMsLCxgYmKCgIAAdO7cGYcOHarT+CtLtIjuSE2tWrk+odcwIYQQoppGEmJPT09IpVLcuXOHK4uPj1cYUFdRPmrUKDg7O8PQ0BCBgYF4+vSpyn7EPB4PdT0uUNnCSJWV17VXf+qmn77L0RSlqtGXBUIIIUQ1jSTEAoEAQ4cOxfz581FQUIBz587h119/xdixYxWOffvtt/HTTz8hMzMTZWVl2LlzJ0pLS9GsWTM8e/YM0dHRKC4uhlQqhUQiwenTp9GnT586jZ/Pr1p5Xar46ftl1E+2HE1Rqhp9WSCEEEJU09jCHN9//z2KiopgZ2eHMWPGYP369fDy8kJqaiqEQiFS/2mqmjVrFry9vdGuXTs0atQIq1atwr59+9CoUSOUlpZi7ty5aNy4MWxtbfHdd99h//79aNGiRZ3GLpNVrbwu0U/fqvn5ARERgFhcvpKrWFy+TX1k6csCIYQQUhmNDKoDAGtra+zfv1+h3NXVFfn5+dy2qakp1q1bh3Xr1ikc27hxY/z99991GaZSYrHy7hFiscZDoZ++X8PPjxJgZfz8gHPnyr8gyGTlv24EBFBdEUIIIQAt3awWXWpdo5++SXVIJMD27f/+qiGTlW9TVxtCCCEEmlu6WdtqukTnmclR7AFfzGTgsQd8MTszWTvLl0ZFMRZoJL+UaqBRlNZXU9UZtDyxUmIxY2MQxe6j/DV8H2I2BlFMLNZ2ZDpC15Yn1iW6VjcaXro5OzubDRkyhJmbmzNXV1cmkUiUHrdt2zZmYGDABAIBdztx4kS1YyOEaBYlxOqIimLM3Jyx8vUeym/m5tr5YIiKYqXG8rGUGmspFl2jS8+TjvFFFMuHfN3kw5z5guqGXjeV0LW6qeV41PlcGD16NBs5ciTLy8tjZ86cYZaWluz69esKx23bto117ty5WnEQQrSPx1gdz1mmI2q0Zr2bm+pOxMnJNQmrfseia6huVEozdIOzTLFu0vhiOEuTNR+QLqHXjWq6Vje1HM/rPhcKCgpgZWWF69evcyutjh07Fk2aNMGyZcvkjo2MjMTmzZtx9uzZKsdBCNE+6kOsBpaifMSaqvI6RaPqVKO6UamJTHkdqCrXK/S6UU3X6qaW45FKpfDx8eFuERERcvsTExPB5/O5ZBgAvL29kZCQoPR8sbGxsLW1haenJxYtWgSpVFqtuAghmqexWSbqs3S+q9LWtXS+K5w1HYyrq/IWEhpVh3xrVwizFesm39oVQi3Eo0t4YuWvG56YXjf0nqqErtVNLcdjaGiIS5cuqdyfn58PkUgkVyYSiZCXl6dwbNeuXXH9+nWIxWIkJCRg1KhRMDQ0xOzZs6sVGyFEs6iFWA2zZOEogPw0EwUwxyyZFqaZCA9HiaF8LCWGNKEsAMyB8udpDqhudGqqFF1DdaOartWNhuMRCoXIzc2VK8vNzYWFhYXCsR4eHnB3d4eBgQHatGmD+fPnY+/evXUSFyGk9lFCrIZzYj9MRASSIUYZeEiGGBMRgXNizU/i+vE5P4yXRuCZSAQG4JlIhPHSCHx8jiaUXZuj/Hlam0N1Q6uWVMLPD2cD5N9TZwOobgBwr5uX60arrxsNv449PT0hlUpx584driw+Ph5eXl6vvS+Px4OeDNEhpEGgQXVqqFgu+eUV4szNtfO5YGhYPofsggVhXNmCBaHg8wF9766ma+N/SP1Q8f6eOfPf99SKFaH0feElYWH/1k1oaKgWI6ld6nwujB49GjweD5s3b0ZcXBz69++P8+fPKyTFhw8fRvv27WFvb49bt25h+PDhGDFiRIOqL0IaMmohVoMuNa7p0jLSukbXft0l9QMth16/SCTlX34NDMr/revFZb7//nsUFRXBzs4OY8aMwfr16+Hl5YXU1FQIhUKk/jOgLyYmBm3btoVAIED//v0xdOhQzJkzp26DI4TUGhpUpyZdWRKYz1ee/PL5mo9F11Q8PyEh5YPOXV3Lk2FdeN6I7tK1iRSIaq/+WpeSUr4N1N373NraGvv371cod3V1RX5+Pre9cuVKrFy5sm6CIITUOUqI65ngYGD9euXlRHe+uOgiiYS+LChjbQ1kZysvJ7qlstZ8ei1rVmlpKdLS0lBcXKztUIieMzU1hbOzM4yMjGp0HkqI1aQrycT33yuWTZ6svJyQCtpoWSOktlFrvu5IS0uDhYUF3NzcwOPxtB0O0VOMMWRnZyMtLQ3u7u41Ohf1IVZDRTKRklK+VmhFMlHXfddUeTX5pWSYvA71k1UtJ6dq5UR7VE03TFNGa15xcTFsbGwoGSZaxePxYGNjUyu/VFBCrAZKJkh9Ry1rqlGSVX/QwFndQskw0QW19TqkhFgNlEyQ+o6SPtUoyao/dGnGH0JIw0IJsRoomSD1HSV9qlUkWS+jJOtfr3YN01ZXsQp+fuXzipeVlf9LzxMhpDZQQqwGSiZIfUcta5V7tR6oXspVjJ94mTbHTxBCFCUnJ4PH40GqxupcVTlW7zA9YW5uXqP7n5kcxR7wxUwGHnvAF7Mzk6NqKbJqiIpiT0UiVgawpyIRY1FajEXXREUxJhYzxuOV/0t18y+qG9XoPaWUWMzYGMjXzRhEMbFYi0HV4uu4pp8L+uzGjRvaDkElsVjM/vjjD22HoTH3799nAFhpaWmtHqvM7du32fDhw5mNjQ2ztLRkbdq0YV9//TWTSqXcMRKJhI0ZM4YxxtjEiROZp6cn4/F4bNu2bQrn++abb5i9vT2ztLRk48ePZ8XFxdy+7OxsNmTIEGZubs5cXV2ZRCJRGVdtvB4pIVZHVBRj5uaMlU8yUX4zN9fOh6YuxaJrqG5Uo7pRjepGpTGIYvmQr5t8mLMx0FLd1PJzRQlx9VFCrDs0lRDfvXuXNWrUiE2fPp1lZGQwxhi7desWGzNmDHv69Cl3nJ+fH9u5cydjjLG1a9eyY8eOsbfeekshIT5y5Aizs7Nj169fZzk5Oaxbt25s1qxZ3P7Ro0ezkSNHsry8PHbmzBlmaWnJrl+/rjQ2SoiroEb/8YnF8v8BV9y00UyiS7HoGqob1ahuVKO6USkZYqV1kwyxdgKq5eeKEuLqq3YCUse/VPn7+zMej8dMTU2ZQCBgy5cvZ4wxduHCBdaxY0cmEolY27Zt2YkTJ7j7dOvWjYWEhLCOHTsygUDA/vvf/7KsrCzm6+vLLCwsmI+PD7t//z53PAD27bffMnd3d2ZjY8M+//xzJpPJKo1r27ZtrFOnTmzatGlMJBIxd3d3du7cObZt2zbm7OzMGjduzCIjI7njnz17xsaOHctsbW2Zq6srW7RoEXcNqVTK/ve//zEbGxvm7u7O1q5dK5fkvvqFIDQ0lPn5+THGFBPiZ8+esaCgIObg4MCcnJxYSEiIXGvvy/z8/Fj//v0rfZwymYzZ2dmxJ0+eyJV37txZISEeM2YMmz17Nrd97NgxZm9vzxhjLD8/nxkZGbHbt29z+/39/eUS5pfVRkJMfYjVoUvTTOhSLLqG6kY1qhvVqG5UcoHyOlBVXufouarfNDCp/86dO+Hq6ooDBw4gPz8fM2fORHp6OgYMGIC5c+ciJycHK1euxLBhw/DkyRPufrt378bOnTuRnp6Oe/fuoWPHjhg/fjxycnLQqlUrhIWFyV3nl19+waVLl3DlyhX8+uuv2Lp162tju3jxItq2bYvs7Gz4+vpi9OjR+Pvvv3H37l1ERUVhypQp3HLgn376KZ4/f46kpCScOnUKO3bswLZt2wAAmzZtwu+//47Y2FhcunQJe/furXZ9BQQEwNDQEHfv3kVsbCyOHj2KzZs3Kz322LFjGD58eKXn++uvv+Dh4QFbW9vXXjshIQHe3t7ctre3NzIzM5GdnY3ExETw+Xx4enrK7U9ISFDzkVUdJcTq0KVpJnQpFl1DdaMa1Y1qVDcqZfCV14Gq8jpHz1X9pqVJ/aOiotC/f3/0798fBgYGeP/99+Hj44NDhw5xx4wfPx5NmzaFSCRCv3790LRpU7z33nswNDTEiBEjEBsbK3fOWbNmwdraGq6urpg2bRp27dr12jjc3d0xfvx48Pl8jBo1Cg8ePMD8+fNhYmKC3r17w9jYGHfv3oVMJsOPP/6IpUuXcqsB/u9//8POnTsBAHv27MG0adPg4uICa2trzJ49u1r1kpmZicOHD2P16tUQCASws7PD9OnTsXv3bqXHZ2dnw9HRsdJzHjx4EP3791fr+vn5+RCJRNx2xd95eXkK+yr25+XlqXXu6qCEWB26NM2ELsWia6huVDrbPxwFkK+bApjjbH+qG3rdqJYcrPx1kxyspboJD4fUWD4eqTE9V/WGllr4U1JS8NNPP6FRo0bc7ezZs3j48CF3jL29Pfe3mZmZwnZFy20FFxcX7m+xWIyMjIzXxvHqOZWV5efnIysrCy9evIBYLJa7Rnp6OgAgIyND4frVkZKSgtLSUjg6OnL18tFHH+Hx48dKj7exsZGrM2UOHTqkdkIsFAqRm5vLbVf8bWFhobCvYr+FhYVa564OSojVoUtzVv0TyzORCAzAM5GI5s+qoEvPk47xP+SHiYhAMsQoAw/JEGMiIuB/iOqG3lOqpXT2wyQD+bqZZBCBlM7aqRsJ/DCRvfI6ZhGQgJ6rekFDLfyvrlzm4uKCsWPH4tmzZ9ytoKAAX375ZbWv8eDBA+7v1NRUODk5Vftcr7K1tYWRkRFSUlLkrtGkSRMAgKOjo8L1XyYQCFD4Ukv8o0ePlF7HxcUFJiYmyMrK4uolNzdXZbeE9957D/v27VMZ96NHj/Dw4UO0b9/+9Q8SgJeXF+Lj47nt+Ph42Nvbw8bGBp6enpBKpbhz547cfi8vL7XOXR2UEBOiB6jrJamOkBBAViZfJivT3rL1ISFAZKkf3JEMPsrgjmRElvppLR5SRRr6Ncbe3h5JSUnctr+/Pw4cOIDo6GjIZDIUFxfj5MmTSEtLq/Y1vvrqKzx9+hQPHjzAt99+i1GjRtVG6AAAPp+PkSNHIiQkBHl5eUhJScE333wDf39/AMDIkSOxZs0apKWl4enTp1i2bJnc/du1a4fdu3ejtLS00j7Gjo6O6N27N/73v/8hNzcXZWVluHfvHk6dOqX0+LCwMJw/fx5ffPEFl2TfvXsX/v7+ePbsGQ4dOoS+ffvKfSF58eIFiouLwRhDaWkpiouLUVZW/p/KuHHjsGXLFty4cQNPnz7F4sWLERgYCKA8qR86dCjmz5+PgoICnDt3Dr/++ivGjh1bo7qtVI2H5dUTNO2aHoiKYqXG8nVTakx1wxhjn9oonz7rUxuqG3pPqearYto1Xy1Nu8bjKZ9kgser3vlolonq09VZJhhjbP/+/czFxYWJRCL21VdfMcYY+/PPP1nXrl2ZlZUVs7W1Zf3792cpKSmMsfJZJjZt2sTdPyQkhAUEBHDbf/zxB2vatCm3jZdmmbC2tmYzZsxQOTNDhW3btrHOnTtz23fu3GGvpmBNmjRhZ86cYYwxlpOTw/z8/JitrS1zdnZmYWFh3CwTpaWlbNq0acza2pq5ubkpzDJx79499s477zCBQMD69+/PPv3000pnmZg0aRJr0qQJs7S0ZO3atWO7du1S+Thu3brFhg8fzqytrZmlpSVr27YtW7VqFZNKpWzYsGHsp59+kju+W7duDIDc7eUZPr7++mtmZ2fHLCwsWGBgoMI8xIMHD2bm5ubMxcWlzuch5jHGWN2l27pDIBCgoKCgend2cysfDfsqsbh87VBN0qVYdEy+rRuE2Yp1k28jhjArWfMB6RCqm0rQe0qlB3w3uJQp1s0DAzFcZMkaj6e2n6oafS7ouZs3b6JVq1baDkMreDwe7ty5g2bNmmk7FJ0hlUrh4OCAe/fuKQyG04TaeD1Slwl16NLvzboUi44xz1ZeB6rK9YkwR3kdqCrXJyxFeR2oKtcnTcqU14Gq8rpG4x8J0U05OTlYtGiRVpLh2kIJsTp0aaofXYpFx6RCeR2oKtcr9LpRKV3FFGKqyvWJrr2naNws0WWTJk2CUChUuE2aNEnbodU5Ozs7TJ48Wdth1AglxOrQpWYJXYpFx3xjo3yKqG9sqG7odaPaLJny180sGdWNLr6n/PzKu0eUlZX/S8kw0TTGmNLuEhs2bEB+fr7CbcOGDVqIklQVJcTq0KVmCZoiSqUO3/phipH8lExTjCLQ4VuqG516DeuYc+LyKelefk9NRATOialuKt5TL9cNvadIBT0ZgkR0XG29DmlQXT318jKSoaGhWoxEt0gk5VMzpaaW9wYID6ecj1SuYjXZmTP/fU+tWBFK3xf+IZEAd+/+WzfNmoU2mHppaJ8LmpSYmAg3NzcYGxtrOxSi5168eIGUlBQ0b968RuehFmLSoNDPqaSqKhrPX0bJ8L9erQeqFwIAjRo1QmZmJjenLCHaUFZWhszMzFoZzGdYC/EQQki95ucHvPSjCyV9hLyGra0t0tLScPv2bW2HQvScQCCAra1tjc+jsYQ4JycHEyZMwNGjR2Fra4ulS5fC19dX4TjGGObNm4dt27YhPz8fb775JtatW8ct16fueQghhJCaqspnzqpVq7B8+XIUFRVh2LBhWL9+PUxMTDQcsWYYGBjAlWapIQ2IxrpMfPLJJzA2NkZmZiYkEgkmT56sdL3sn376CVu3bsWZM2eQk5ODjh07yi3Vp+55CCGEkJpS9zMnOjoay5YtQ0xMDJKTk5GUlETjOwipRzSSEBcUFGDfvn1YtGgRhEIhunTpgkGDBmHnzp0Kx96/fx9dunSBh4cH+Hw+/P39cePGjSqfhxBCCKmJqnzmbN++HRMmTICXlxesrKwwb948REZGaj5oQki1aKTLRGJiIvh8Pjw9Pbkyb29vnDp1SuHY0aNH48cff0RiYiLc3d2xfft29O3bt8rnAYCIiAhE/DNaprCwEAKBoDYfltZJpVIYGhpixYoV2g5F51TUDVFEdaMavadUa4h1U1hYCB8fH247ODgYwcHB3HZVPnMSEhIwePBgueMyMzORnZ0NGxubOnoEhJDaopFPxfz8fIURgCKRCHl5eQrHOjo64t1330WLFi3A5/Ph4uKC48ePV/k8gOJ/bg2Nj48PLl26pO0wdBLVjWpUN6pR3aimj3VTlc+cV4+t+DsvL48SYkLqAY10mRAKhcjNzZUry83NhYWFhcKxYWFh+Pvvv/HgwQMUFxcjNDQUPXv2RGFhYZXOQwghhNREVT5zXj224m/6fCKkftBIQuzp6QmpVIo7d+5wZfHx8dzMES+Lj4/HqFGj4OzsDENDQwQGBuLp06e4ceNGlc5DCCGE1ERVPnO8vLwQHx8vd5y9vT21DhNST2gkIRYIBBg6dCjmz5+PgoICnDt3Dr/++qvc7BEV3n77bfz000/chN87d+5EaWkpmjVrVqXz6IOG3B2kpqhuVKO6UY3qRjV9rJuqfOaMGzcOW7ZswY0bN/D06VMsXrwYgYGBmg+aEFI9TEOys7PZ4MGDmbm5OXNxcWESiYQxxlhKSgoTCAQsJSWFMcZYUVER+/jjj5mDgwOzsLBgb775Jjt8+PBrz0MIIYTUNnU/uxhj7Ouvv2Z2dnbMwsKCBQYGsuLiYm2FTQipIh5jjGk7KSeEEEIIIURbNLYwByGEEEIIIbqIEmJCCCGEEKLXKCHWQSUlJZgwYQLEYjEsLCzw5ptv4vDhw9z+mJgYtGzZEubm5ujRowdSUlK4fYwxzJo1CzY2NrCxscHMmTPREHvF3LlzB6ampvD39+fKqF7K7d69G61atYJAIEDTpk1x5swZAFQ/ycnJ6N+/P6ysrODg4IApU6ZAKpUC0K+6Wbt2LXx8fGBiYqIw6Ksm9ZCcnIwePXrA3NwcLVu2xLFjxzT1kAghpOa003WZVCY/P5+Fhoay+/fvM5lMxg4cOMCEQiG7f/8+e/LkCbO0tGR79uxhRUVF7PPPP2cdOnTg7rthwwbm6enJHjx4wNLS0lirVq3Y+vXrtfho6sb777/PunTpwvz8/BhjjOrlH0ePHmWurq7swoULTCaTsbS0NJaWlkb1wxjr168fCwgIYEVFRezhw4fsjTfeYN9++63e1c2+ffvYL7/8wiZNmsQCAgK48prWw3/+8x82ffp0VlhYyPbu3ctEIhF7/PixJh8aIYRUGyXE9USbNm3Y3r172caNG1nHjh258vz8fGZqaspu3rzJGGOsY8eObOPGjdz+zZs3y32oNQS7du1iI0aMYKGhoVxCTPVSrmPHjmzz5s0K5VQ/jLVs2ZIdPHiQ2/78889ZcHCw3tZNSEiIXEJck3q4ffs2MzY2Zrm5udz+Ll261OsvDoQQ/UJdJuqBzMxMJCYmwsvLCwkJCfD29ub2VfwsnpCQAAAK+729vbl9DUFubi7mz5+Pr7/+Wq5c3+sFAGQyGS5duoQnT56gWbNmcHZ2xpQpU1BUVET1A+Czzz7D7t27UVhYiPT0dBw+fBh9+/aluvlHTeohISEBHh4ecquyNdR6IoQ0TJQQ67jS0lL4+fkhICAALVu2RH5+PkQikdwxIpEIeXl5AKCwXyQSIT8/v173eXzZvHnzMGHCBLi4uMiV63u9AOVfnEpLS7F3716cOXMGcXFxiI2NxeLFi6l+AHTr1g0JCQmwtLSEs7MzfHx8MGTIEKqbf9SkHl53X0II0XWUEOuwsrIyjB07FsbGxli7di0AQCgUIjc3V+643NxcrmXm1f25ubkQCoXg8XiaC7yOxMXF4dixY5g+fbrCPn2ulwpmZmYAgE8//RSOjo6wtbXFjBkzcOjQIb2vn7KyMvTp0wdDhw5FQUEBsrKy8PTpU8yaNUvv66ZCTerhdfclhBBdRwmxjmKMYcKECcjMzMS+fftgZGQEAPDy8kJ8fDx3XEFBAe7duwcvLy+l++Pj47l99d3JkyeRnJwMV1dXODg4YOXKldi3bx/at2+v1/VSwcrKCs7OzkoTNX2vn5ycHDx48ABTpkyBiYkJbGxsMH78eBw6dEjv66ZCTerBy8sLSUlJci3CDbWeCCENlDY7MBPVPvroI9ahQweWl5cnV/748WNmaWnJ9u7dy4qKitjMmTPlBvisX7+etWzZkqWlpbH09HTWunXrBjOwpaCggD18+JC7/e9//2PDhg1jjx8/1ut6edm8efOYj48Py8zMZDk5OaxLly5s7ty5VD+MMXd3d7Z06VJWWlrKnj59yoYMGcJ8fX31rm5KS0tZUVER+/LLL5m/vz8rKipipaX/b+/+Q6K+/ziAP12HnZ4/TvS4eXWeNymdgv1gKdcP75QNKgYLC7JgWGxjc7MIQhgrsLFqy+L+8I82HFGYf9gGruXSwOx3LdawRje2VcN5zkPbhqvp/HE/Xt8/xj5fr/PU86xz3fMBgp/3z9fn/YZ49en9+eQOex0KCwtl586dMjQ0JE1NTfzKBBH9pzAhnoV++eUXASBz584VjUaj/DQ0NIiISFtbm2RnZ4tarRar1SqdnZ1KX5/PJ1VVVZKSkiIpKSlSVVUlPp8vQnfyeI39yoQI10VEZHR0VCoqKiQ5OVn0er1s27ZNhoaGRITrc/PmTbFaraLVaiU1NVU2bNggfX19IhJda1NdXS0A/H6qq6tFJLx16OzsFKvVKmq1WhYuXChtbW1P+M6IiKYvRuQpezOEiIiIiCgEPENMRERERFGNCTERERERRTUmxEREREQU1ZgQExEREVFUY0JMRERERFGNCTERERERRTUmxEREREQU1ZgQExHNkK+//hoWiwVWqxWbNm2C2+2OdEhERDQFTIiJiGaIyWTCuXPncPHiRTz33HP48ssvIx0SERFNARNimlUyMzNx9uzZSIfh56effsKSJUuQmJiI2traSIczoby8PFy4cOGxzrFlyxbs3r37ic0XipiYGGg0GuzatSsi8xsMBsTFxQEAVCoVnnnmnz9iS0pKoFarsXLlyojERUREE2NCTE9cZmYm4uLikJCQAL1ej61bt2JgYCDSYQVVU1MDm82Gv/76C9u3b490OBP6/vvvYbPZntr5puK7777Dvn37AAAffvgh1q5d61e/YMGCccsaGxuVa5fLhfnz5087hs7OTrS2tuLll18GAJw7dw6ffPLJtMcjIqLHiwkxRURzczMGBgbQ0dGBGzduYO/evZEOKaiuri7k5eWFPY7H45lS2eMQybkjqaioCFevXoXX6wUA9Pb2wu12o6Ojw6/s3r17KCoqUvq1tLRg9erV05rz4cOHKC8vx/HjxxEbGxv+TRAR0WPHhJgiat68eVizZg0cDkdA3UcffYSsrCwkJiYiNzcXX3zxhVKXmZmJQ4cOIT8/H8nJydi4cSOGh4eVepfLhfXr10On08FsNk941OGHH36AzWaDVqtFXl4eTp06pdSVlJTg/PnzqKysREJCAu7cuRNynAcOHEB+fj40Gg08Hs+4ZcHGOHjwINavX+8337Zt27Bjx45x72XskZNw5/7XzZs3sXTpUiQmJgas86NHXMLZs+7ubpSWlkKn0yE1NRWVlZUAQtvLRy1btgxutxu3bt0CAFy6dAnFxcXIzs72K8vKyoLBYFD6tbS0KE+RMzMzcfDgQWXNXnvtNfT19WHNmjVITEzEiy++iP7+fgD//CVj06ZN2LNnD7Kzs6ccJxERRZgQPWEmk0na2tpERMTpdEpubq7s3r07oO6zzz6Tnp4e8Xq90tjYKPHx8eJyuZR2y5Ytk56eHvnjjz8kJydHPv74YxER8Xq9snTpUnn//fdlZGREfv75ZzGbzXLmzJmAWEZHRyUrK0v27dsnIyMj0t7eLgkJCfLjjz8qbaxWq3z66adB72eyOBctWiROp1P+/vvvoGXBxnC5XBIfHy/9/f0iIuJ2u0Wn08m333476dqGO7eIyMjIiGRkZIjdbpfR0VH5/PPPRaVSya5duwLmC2fPPB6P5Ofny44dO2RgYECGhobk8uXLIe2liAgAuXv3rl+ZzWYTu90uIiLvvPOOHDlyRN577z2/sq1btyrtR0dHJTU1VR4+fKjEXVhYKL29vfLrr7+KTqeTJUuWSEdHhwwPD0txcbHs2bNHRETq6+slNTVVrFarWK1WaWxsVMY9evSorFixYty4iYgospgQ0xNnMplEo9FIcnKyZGRkSEVFhV/CNjbBGmvRokVy8uRJpd3x48eVuqqqKnnzzTdFROT69etiNBr9+u7fv1+2bNkSMOalS5dEr9eL1+tVysrKyqS6ulq5niwhnizOI0eO+NWPVzbRGKtXr5a6ujoREWlubpbnn38+aL9HE+Jw57548aKkp6eLz+dT6i0WS9CEeKKxJtqza9euSVpamrjdbr/+oeylyPgJcXV1taxbt05ERPLz8+XOnTvS2trqV3bs2DGl/dmzZ6WkpES5NplM0tDQoFyXlpbKW2+9pVzX1tbKK6+8EnQN/sWEmIho9uKRCYqIkydP4s8//0RXVxcOHz6svJk/Vn19PRYvXgytVgutVguHw4Hff/9dqX/22WeV3+Pj45UX87q6uuByuZR+Wq0W+/fvR19fX8AcLpcLRqNR+RoA8M+ns3p6eqZ8L5PFaTQaA/o8WjbRGOXl5WhoaAAANDQ04NVXX51ybOHO7XK5MG/ePMTExCjtTSZT0Pmmu2fd3d0wmUxQqVR+44Wyl8EUFRXhypUr6O/vx2+//YYFCxZg+fLluHbtGvr7++FwOALODz/60p1er1d+j4uLC7iezS+FEhHR5FSTNyF68rq6uvDGG2+gvb0dFosFc+bMweLFiyEik/Y1Go0wm824e/fupG0NBgO6u7vh8/mUpNjpdGLhwoUzFufYZHK8ssnGWLduHSoqKuBwOPDVV1+hpqZmSrHNxNzp6eno6emBiCj9nE4nsrKyprUWwRiNRjidTng8Hr+kOJS9DMZiseDBgweoq6vDihUrAABJSUkwGAyoq6uDwWCA2WxW2re0tAScoyYioqcbnxDTrDQ4OIiYmBjodDoAwNGjR8d98W48BQUFSEpKwoEDBzA0NASv1wuHw4EbN24EtC0sLIRGo0FNTQ3cbjcuXLiA5uZmlJWVPfY4pzqGWq3Ghg0bsHnzZhQUFCAjIyOk8cOZ22KxQKVSoba2Fh6PB01NTfjmm2+mNdZECgoKkJ6ejnfffReDg4MYHh7G1atXQ9rLYOLi4vDCCy/Abrdj1apVSvnKlStht9v9ng53dnZiZGQEOTk5Ux6fiIj++5gQ06yUm5uLnTt3wmKxQK/X4/bt28rTvcnMmTMHzc3NuHXrFsxmM9LS0vD666/jwYMHAW1jY2Nx6tQptLa2Ii0tDW+//Tbq6+unnBCFE2coY5SXl+P27dshHZeYibljY2PR1NSEY8eOISUlBSdOnEBpaem07yOYf/fs3r17yMjIwPz583HixImQ9nIiVqsV9+/f9/uPMVatWoX79+/7JcSnT58OOC5BRERPvxiZyr9nElFEOZ1O5OTkoLe3F0lJSZEOZ9ZSq9WYO3cutm/fjg8++CDk/mvXrkVlZeWMJ8UvvfQSrl+/joKCArS3t8/o2EREFD6eISaa5Xw+H+x2O8rKypgMT2Lsd42nw2azobi4eIai+b+2trYZH5OIiGYOnxATzWKDg4PQ6/UwmUw4c+bMuF+NICIiovAwISYiIiKiqMaX6oiIiIgoqjEhJiIiIqKoxoSYiIiIiKIaE2IiIiIiimpMiImIiIgoqjEhJiIiIqKoxoSYiIiIiKIaE2IiIiIiimpMiImIiIgoqv0P0LsugqY6R6oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# scatter plot normalised values vs. irradiance\n", + "fig_scatter = plot_scatter(\n", + " norm, mlfm_meas_file, qty_lfm_vars, save_figs)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [E] : LFM multiplicative factors (y) vs. poa irradiance (x)\n", + "\n", + "\n", + "# [F] Convert multiplicative to subtractive losses for a stack plot \n", + "\n", + " Multiplicative losses are easier to understand but to represent them on a graph \n", + "it's easier to show them as a stacked plot where the values are 'translated' \n", + "so the sum of the stacked losses is shown to equate to the product of the \n", + "multiplicative losses.\n", + "\n", + "LFM losses can be analysed as either \n", + "\n", + "- multiplicative pr_dc = 1/ff * PRODUCT(norm(i_sc), ... \\* stack(v_oc_t), stack(temp_corr) ). \n", + "\n", + "- subtractive pr_dc = 1/ff - SUM(stack(i_sc), ... stack(v_oc_t), stack(temp_corr) ). \n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# translate multiplicative to stack losses and add to\n", + "# dataframe stack add a gap between i and v losses\n", + "\n", + "stack = meas_to_stack_lin(meas, ref, qty_lfm_vars, gap=0.0) # gap = 0.01\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [G] Plot stack losses vs. measurement \n", + "\n", + "Fig 3 Shows how to quantify losses by loss parameters stack(i_sc, .. v_oc). \n", + "\n", + "![stack5D_0_4.png](mlfm_data/figs/mlfm_stack.png) \n", + "\n", + "Fig 3 Stacked losses by measurement \n", + "\n", + "- It plots them in a stacked format from the lossless limit 1/ff (top) \n", + " subtracting each loss value in turn until it reaches pr_dc (bottom). \n", + " \n", + "- This figure shows a typical c-Si module for four clear days for \n", + " different months July to Oct in AZ. \n", + " \n", + "- In the middle of the days the high irradiance results in the biggest \n", + " losses being due to r_oc (red, ~rseries, pink) and temp_module \n", + " (as the module heats to 60C). \n", + " \n", + "- Early mornings/late afternoons there is a slight Isc gain (purple, \n", + " top, due to spectral mismatch) but an Isc loss mid day due to soiling. \n", + "\n", + "Stack losses are indicated by their colours \n", + "(from top to bottom for lfm_4=matrix and lfm_6=ivcurve) \n", + "\n", + "![mlfm_data/figs/losses.png](mlfm_data/figs/losses.png) \n", + "\n", + "Graph options : \n", + "\n", + "is_i_sc_self_ref : boolean \n", + " = self corrects i_sc to remove angle of incidence, spectrum, \n", + " snow or soiling. \n", + " \n", + "is_v_oc_temp_module_corr : boolean \n", + " = calc temperature loss due to gamma, subtract from voc loss " + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAFFCAYAAADsEyV2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAADQrUlEQVR4nOzdd1xT1/vA8U8IBAJhg2xBwIl7K+6Bs+6JW1trrf22Vuuu4iiO2mXtUOuoiqNara0LVx2orduqOFEQF27ZM/f3Bz9TKcMgCWGcd195ldx77jlPiJon554hkyRJQhAEQRAEQRBKICNDByAIgiAIgiAI+iKSXUEQBEEQBKHEEsmuIAiCIAiCUGKJZFcQBEEQBEEosUSyKwiCIAiCIJRYItkVBEEQBEEQSiyR7AqlnpeXF3PmzDF0GEIRNnToUNq0aWPoMARBEIQ3IJLdEuCjjz6iQYMGmJubY2xsnGOZCxcu0KlTJxwcHLC0tKRbt25ERkZmK7dgwQI8PT0xMzOjVq1a7NmzJ8t5mUyW46NTp045tnvgwAHkcjm+vr7Zzv399980btwYMzMzXFxcmDx5MhkZGVnKXLt2jXbt2mFubo6DgwOjRo0iISFBcz45OZlhw4ZRq1YtFApFju28zsmTJxk7dmy+r3udw4cP06pVK1QqFSqVinr16hEREaE5v3TpUlq3bo2dnR0ymYywsLBsdSQmJjJ27FjKli2LUqnEx8eHGTNmZPk9BQUF5fie3LhxQ1MmNDSURo0a4eDggJmZGT4+PkybNo3U1FStX09cXBzvvPMO9vb2WFhY0KFDhyyv57+GDh2KTCbL9kVCm9dd1B0+fJiuXbvi6emZ42sUBEEQig6R7JYAGRkZBAYGMnr06BzPP3jwgJYtW2JnZ8fhw4cJCwsjIyODNm3akJSUpCn39ddfM2PGDGbPns3Zs2dp27Ytb731Fv/884+mzP3797M8jh8/DkC/fv2ytRsTE8OQIUNo27ZttnPR0dG0bduWihUrcvr0aX744QeWLFnC1KlTNWXi4+Np3bo1xsbGHDt2jF9++YXdu3czYsSILK9doVAwcuTIHGPQhqOjIxYWFm90bW52795Nhw4daNGiBceOHePcuXNMnz4dc3NzTZnExERatWrF559/nms9n3zyCb/88gs//fQTly9fZv78+Xz55ZcsWLAgSzkvL69s7025cuU0562srPjwww85ePAgV69e5YsvvmDp0qVMnDhR69c0aNAg9u/fz+bNmwkLC0OSJNq2bZvlz9BLP//8MxcuXMDV1TXbOW1ed36kpaVR2HvjxMfHU6VKFRYsWICzs3Ohti0IgiDkkyQUaY8fP5bc3d2l//3vf5pjMTExkrOzszRhwoQsZVeuXCnJ5fJsdSxbtkxSqVRSamqq5tiTJ08kQFqxYoUkSZKkVqslV1dXafLkyVmurVu3rjRkyJBc45syZYpkZ2cnJSUlZTmekZEhtW7dWpo7d640Y8YMycfHJ8v5yZMnS25ublJGRobm2OLFiyVzc3MpPj5ekiRJWrJkiWRmZiY9f/5cU2b79u0SIN28eTNbLDm1ow1PT09p9uzZmudpaWnSjBkzJC8vL8nU1FSqUqWK9OOPP2a5Ji4uTvrwww8ld3d3SaFQSJ6entJnn32mee3lypWTJk2apFX7t27dkgDpyJEj2c7VqFFD+vjjj7Mc69Gjh9StWzfN8zd93R999JFUs2ZNrcpevXpVAqTQ0FDNsadPn0oKhUJauXJllrLh4eGSk5OTdO3atWy/21fl9brzMmTIEKl169bSokWLJE9PT0kmk0lxcXHSnj17pObNm0u2traSlZWV1KxZM+nvv//Oci0gfffdd9LAgQMllUolubu7S/Pnz89S5unTp1KfPn0kc3NzqUyZMtLUqVOlwYMHS61bt84xntxe48s4v/jiC8nV1VVSKpVSjx49pEePHmUpt2HDBql27dqSqampZGdnJ7Vv3156+vRprq//xo0bUq9evSRbW1tJqVRK1apVk/744w9JkiTpxYsX0tChQyUnJydJoVBI7u7u0tixYyVJkqSlS5dKVlZWUmJiYpb65s2bJ7m6umb5uygIglCSiJ7dIs7e3p6QkBC+//57/vjjDyRJYtCgQXh6emp96zQ5ORkTE5MsQxzMzMwwMjLi8OHDAERGRnLv3j3at2+f5dr27dvneps5LS2NFStWMGTIEMzMzLKcmz17NjKZjAkTJuR47dGjRwkICMDI6N8/gu3btycxMZGzZ89qyjRq1Ahra2tNmZfXHD16VKvX/ibefvtttmzZwpIlS7h8+TLTp09n4sSJLF++HABJkujcuTO///473377LZcvX2b16tU4OjoCcObMGW7duoW7uzvNmjWjTJkyNGzYkK1bt+Y7liZNmrBr1y5u3boFwLlz5wgLC8s2bOTOnTu4u7vj7u5Ohw4dOHbsWJ71XrlyhV27dtGyZUut4jh69CgmJia0bt1ac8zW1pb69etn+fORmJhI7969+fzzzylfvry2LzPfTpw4wYEDB/jtt984f/48ZmZmxMfH8/777/PXX39x7NgxypcvT/v27Xny5EmWa2fOnEmzZs04d+4cn3zyCRMnTuTPP//UnB8+fDinT5/mjz/+4MCBA0RGRr7Re/cyzoMHD7J792527tzJP//8w/DhwzXnV65cycCBA+nWrRtnzpzhzz//pH379tmG87z04MEDGjduzLNnz/j999+5cOECs2fP1vw9mjZtGmfOnGHbtm1cv36djRs3UrlyZQD69OlDamoqv/32W5Y616xZw8CBA7P8XRQEQShRDJ1tC9oJCgqS7O3tpY8//liytrbOsWczt57dy5cvSyYmJtK0adOkpKQkKS4uTho1apQESAEBAZIkSdLRo0clQLp69WqWa1/2tuZk06ZNEiBdvnw5y/EDBw5Izs7O0v379yVJyrnnsXz58tl6kePj4yVA+uWXXyRJkqS2bdtK/fv3z9aug4ODtGDBgmzHddGze/PmTUkmk2V7TTNnzpRq1KghSZIk7du3TwKkkydP5ljfhg0bJECytbWVli1bJp09e1aaPXu2JJPJpD179mQrn1cPZ2pqqvTee+9JgGRsbCzJZDJp1qxZWcrs3LlT2rhxo3T+/Hnp8OHDUv/+/SUjI6Mc23Jzc5MUCoUESCNHjpTS09O1+h199tlnkouLS7bjvXr1kjp27Kh5PnToUGngwIGa5/rq2bW2tpbi4uLyLJeRkSHZ2NhIa9eu1RwDpA8++CBLuYoVK2p64a9fvy4BWX53KSkpkqur6xv17FpYWGS5MxEaGioB0rVr1yRJkiQPDw/p/ffff80r/te0adMkJycnzd2P/+rSpUued2L69u0rtW/fXvP89OnTEiBdvHhR6xgEQRCKm5xnMwlFzqeffkpoaChffvklGzZsyDIe83UqVapESEgIY8eOJTg4GCMjIwYOHEidOnWQy+WvvV4mk+V4fMmSJTRv3pxKlSppjj1+/JiBAweyYsWKfI9lfNlObu1pE1NBnTp1CkmSqFu3bpbj6enpmt/V6dOnsbW1zVbmpZe9cm+//TZvv/02ADVr1uSvv/7i22+/zXEMc26+//57du/eza+//kr58uU5ffo0Y8eOxcnJiZEjRwLQoUOHLNc0bdqUu3fv8vnnn2dr68iRI5re84kTJ+Ls7MzMmTO1jicnL9+LkJAQwsLCND3z+lS5cmVUKlWWY7du3WL69OkcP36chw8folarSUxMJCoqKku5mjVrZnnu5uZGTEwMAOHh4QA0btxYc16hUFCvXj3i4+PzHWeVKlWy3Jnw9/cH4PLly1hbWxMdHU1AQIDW9Z0+fZrGjRvnOsZ89OjR9OzZk1OnTtG6dWvat29Pu3btNL22gwcPpkuXLjx48ABnZ2fWrFlDnTp18PPzy/drEwRBKC5EsltM3L9/n2vXriGXy7l27Vq+r+/duze9e/fm4cOHmJqaYm1tjZOTE40aNQLAxcUFyLxNWqFCBc11MTExOSatN27cYP/+/axbty7L8YsXL3Lv3j3eeustzTG1Wo0kSRgbG7N69WoCAwNxcXHhwYMHWa59+fxley4uLkRHR2cpk5aWxtOnT/U2KUitVgNw7NixLJPJIGuCnVey/XJSVpUqVbIc9/PzY/fu3VrHkpyczIQJE1i9ejU9evQAoFq1akRHRzNr1ixNspuTRo0asWXLlmzHX35J8vPzQy6XM3DgQCZMmPDaCXouLi48fvyYjIyMLF+QYmJiNH9e9u7dS0REBDY2NprzGRkZzJgxgzlz5pCcnKz1a3+dnOLt3LkzDg4OfPfdd3h4eKBQKGjSpEm2FScUCkWW5zKZTPO+S4U80e1l+7oq365dO27fvk1oaCgHDx5k4MCBVKtWjf379yOXy2nXrh2Ojo6EhITw4Ycfsn79eqZMmVLQlyAIglCkiUFaxYBarWbgwIH4+fmxefNmZs2a9cbLNZUpUwZra2v27dvHw4cPNUmUl5cXrq6uhIaGZim/e/dumjRpkq2epUuXYm9vr7n+pXr16nHhwgXOnTuneYwaNQoPDw/OnTunGWvq7+/P3r17NUnGy7bMzc2pVauWpszx48eJjY3VlHl5zcseMl2rU6cOALdv38bX1zfLw8fHR1Pm6dOnnDp1Ksc66tati1Kp5OrVq1mOX716FS8vL61jSUtLIy0tLdtYSrlc/tqk7OzZs3h4eORZRq1Wo1arSUtLe20s/v7+pKWlceDAAc2x58+f8/fff2v+fHz22Wf8888/Wd57V1dX3n//fU6fPv3aNgriyZMnhIeHM2nSJNq1a0eVKlUwMzPj4cOH+arnZQ/nq2OeU1NTOXny5BvFdfny5Sx/fl/WW7lyZcqUKYO7u3u2v3N5qVOnDkePHs2y/N5/2dnZ0b9/f5YsWcKOHTs4dOiQpsdaLpcTGBjI6tWr2bNnD0+fPqV///5v9NoEQRCKDcOOohC0MWvWLMne3l6Kjo6WJEmSxowZI5UtW1YzY/v69evS2bNnpZkzZ0pyuVw6e/asdPbs2SxjGhcvXiydPHlSun79urRy5UrJxsYmy9hKSZKkr776SlIqldKaNWuky5cvSxMnTpQUCoV07ty5LOVSUlIkR0dH6ZNPPtEq/pzG0t6+fVuytLSUhg8fLl28eFHatm2bZGdnJ02cOFFTJi4uTnJ3d5c6deoknTt3Tjpw4IDk5eUl9e3bN0tdly5dks6ePSu9++67koeHh+b1p6SkaBXff8dcDh8+XHJ2dpZWr14tXb9+XTp37py0fPlyad68eZIkZa5c0bRpU8nb21v67bffpJs3b0phYWHSsmXLNHVMmDBBsrS0lNavXy/duHFD+uqrryQjIyNp//79mjL379+Xzp49K+3YsUMCpJUrV0pnz57VjHWWJElq1aqVVL58eWnPnj3SrVu3pM2bN0t2dnbSmDFjNGXGjh0r7d+/X4qIiJDOnj0rjR49WpLJZNLvv/+uKbNw4UJp+/bt0rVr16Tr169L69evl1xdXaUuXbpo9TuSJEnq2rWr5OPjIx08eFA6e/as1KFDB6lcuXLZZvfn9bvV9nXn5eUqB6/KyMiQHB0dpe7du0tXr16Vjh07JjVp0kQyNzeXZsyYoSkHSGvWrMlybevWrbOMc+3SpYtUvnx56cCBA9KlS5ekQYMGSZaWllnajIuL0/w5c3Fxkd5//33p7Nmz0vXr17PEaWlpKXXt2lW6cOGCdOjQIal8+fJSp06dNGWWLVsmGRsbS7NmzZLCw8OlixcvSt9++61mxYZvv/1Wqlixoqb8vXv3JEdHR6l169ZSWFiYdPPmTemPP/6Qdu7cKUlS5uoov/76q3TlyhXp2rVr0pgxYySVSpVl3PD58+clQKpZs2a+3n9BEITiSiS7RdzRo0clY2Njadu2bZpjycnJUvXq1aUePXpIkiRJzZs3l4Bsjz///FNzzbBhwyQHBwfJxMREKl++vDR37twcJyfNnz9f8vDwkBQKhVSjRg1p9+7d2cqsX79ekslkWT7Y85LbxLHjx49LjRo1kkxNTSUnJydp0qRJ2WK6cuWK1LZtW0mpVEp2dnbSyJEjs03O8fT0zPH137p1S6v4/puQpaenS/Pnz5cqVqwomZiYSPb29lKzZs00E+ckSZJiY2OlMWPGSM7OzpKJiYnk5eUlzZ07N0sdn376qeTm5iYplUqpdu3a0m+//Zbt95JT3K8mZw8fPpTeeecdyd3dXTI1NZW8vb2lSZMmZUkw+/Xrp5l49jIRejWpliRJmjt3rlS5cmXJ3NxcUqlUkp+fn/TZZ59JCQkJWv2OXr7mESNGaJa8ateu3Wv/DOSU7GrzuvOSU7IrSZJ08OBBqXr16pKpqalUoUIFafPmzZKPj0++k93Hjx9LvXv3lszNzSUHBwdp0qRJ2ZYe+/PPP3N8Dc2bN88W5+effy45OztLZmZmUrdu3aSHDx9maX/t2rVS9erVJYVCIdnZ2UkdO3aUnj17luV39aqrV69K3bp1k6ysrCSlUilVr15d2rFjhyRJmV+M/fz8JAsLC83yazlNAKxZs6YESJs3b87zdy0IglASyCTJAIPUBEEQSrihQ4dy584d9u3bZ+hQBEEQSjUxZlcQBEEQBEEosUSyK5Roo0aNQqVS5fgQyy39y8/PL9ff06hRowotjiNHjuQah0ql4siRI4UWi1C6XL9+HTMzMwYOHJhrma+++gpnZ2esra0ZPnw4KSkphRihIAhvSgxjEEq0hw8fZpkN/yoTExM8PT0LOaKiKSoqKtdVGaysrChTpkyhxJGUlMTdu3dzPe/m5oZSqSyUWITSJSAggKSkJDw9PVm7dm2286GhoQwePJgDBw7g6upK9+7dadiwIfPmzTNAtIIg5IdIdgVBEIRSbcOGDWzZsoUqVapw48aNHJPdwMBAvLy8CA4OBmD//v0MGDAg23rhgiAUPWIYgyAIglBqxcbGMn36dL744os8y126dIkaNWponteoUYOYmBiePHmi7xAFQSigErODmpGRkbi9KQiCIGSRmJio2SwGYOTIkVl2H/z0008ZMWLEazdhiY+Pz7L188uf4+LisLe313HUhpeWlsadO3d0uvOhYFhyuRwbGxscHByybVZU0pWYZFepVOa5q5AgCIJQ+lhYWOS62+G5c+fYt28fZ8+efW09KpUqy/j/lz9bWlrqJtAi5s6dO1haWuLl5ZXvLa2FokeSJNLS0oiJieHOnTuULVvW0CEVqhKT7AqCIAhCfhw8eJDIyEjNB398fDwZGRmEh4dz5syZLGX9/Pw4f/48ffr0AeD8+fM4OTmVyF5dgOTkZJHoliAymQyFQoGbm1u2rexLA5HsCoIgCKXSyJEj6devn+b5woULiYyM5IcffshWdvDgwQwdOpQBAwbg4uLCnDlzGDp06GvbuHbtGpcuXSIuLg5LS0v8/PyoUKGCLl+G3ohEt+QpbcMXXhLJriAIglAqmZubY25urnmuUqkwMzPD0dGR27dvU6VKFcLDwylbtizt27dnwoQJtGzZkqSkJHr27MnMmTNzrfv27dv07duX8+fP4+Pjg7W1NbGxsURERFCjRg02bNhQ6m4lC4KhlJilxywsLMSYXUEQBCELQ302tG7dmjp16hAUFJQloU5ISGDWrFmcPHmSAwcOFHpc2rp8+TKVK1c2dBiFSiaTcf36dXx9fQ0dil6VxvdW9OwKgiAIgo79/fff7Nq1C4VCkeW4hYUFs2bNws7OzkCRCULpUzoHbwiCIAiCHnl4eLB9+/Ycz+3cuVMMYSgE6enphg5BKCJEsisIgiAIOrZ48WKGDx9OkyZNeP/995kyZQpjxoyhSZMmDB8+nO+++87QIRZbXl5ezJ07lypVqmBra8uwYcNITk7m4MGDuLu7M3/+fJydnRk2bFie9Xz++ee4uLjg6urKihUrspxLSkpi3LhxeHp6Ym1tTZMmTUhKStLnyxL0SAxjEARBEAQda926NREREWzZsoVLly7x8OFDVCoVQ4YMoXv37jg4OBg6xGItJCSE0NBQLCwseOutt5gzZw5t2rThwYMHPH36lKioKNRqda7X7969m4ULF7J//37KlSvHO++8k+X8+PHjuXTpEseOHcPZ2Zm///671K5kUBKICWqCIAhCiSU+G95MUZ7E5OXlxaRJkxg1ahSQOSzkgw8+YPny5QQEBBAbG4uZmVmedQwfPpwyZcowb948IHOJuIoVK3L9+nW8vb2xsLDgr7/+yrJFdElRlN9bfRE9u4IgCIKgB5cvX2bNmjXZ1tkdNGhQqUs2dO3V7Z09PT25d+8eAI6Ojq9NdAHu3buXZRtpT09Pzc+PHz8mOTkZHx8fHUYsGJLokxcEQRAEHVu/fj2NGjXizp07NGvWjMDAQJo3b87du3dp3LgxGzduNHSIxVp0dLTm59u3b+Pq6gpovxGGi4tLtjpecnBwwMzMjIiICB1FKxia6NkVBEEQBB2bMmUKO3bswN/fP9u5o0ePMmDAAPr27WuAyEqG7777js6dO2Nubk5wcHC+f5d9+vRh2LBhDB48GC8vrywbhBgZGTF8+HA+/vhj1qxZg5OTEydOnKB27dqYmprq+qUIhUD07AqCIAiCjj169IjatWvneK5WrVo8fvy4kCMqWQIDAwkICMDb2xtvb2+mTZuWr+s7dOjARx99RKtWrfD19aVVq1ZZzi9cuJBq1apRr1497OzsmDhxYp4T3oSiTUxQEwRBEEosQ302dO/eHTMzM+bMmZNl7GdERATTp08nMTGRrVu3Fnpc2irKk5i8vLz46aefaNOmjaFDKZaK8nurL6JnVxAEQRB07OW6rVWqVMHCwgJXV1dUKhV+fn5IkpRtXVdBEPRHjNkVBEEQBB2ztbVl/fr1JCYmcu3aNeLj41GpVFSoUAFzc3NDh1cqBAcHExwcnO1406ZN2bVrlwEiEgxFDGMQBEEQSizx2fBmSuOt7tKiNL63YhiDIAiCIBSi1NRUvL29DR2GIJQaItkVBEEQhEIkSRKRkZGGDkMQSg0xZlcQBMHATv11CmdXZ9zLuhs6FEFH5HJ5ruckSdJ68wNBEApOJLuCIAgGdHDvQUK7hmKUboS6g5pBcwZRpVoVQ4clFJCdnR0rVqygSpXs72VKSgrVqlUzQFSCUDqJZFcQBJ4/f86pY6do01GsW1mYDu07xO5uu1EmKTMP/A4bt28koWkCPWb2oHHzxoYNUHhjderU4fHjx1nW2H0pJSWFEjI3XBCKBTFmV9C5n7/9mbU/rjV0GIKWnj55ysyGMwnrHMaktybx9MlTQ4dUKhw5cIRdXXehTFRmOW6kNsLykCV7W+xlbO2x7Ph1h4EiFAriiy++yHGrYABTU1Nu3bpVyBEJQuklkl1BZyRJYt4H87j14S0i3otgbJ2xXDh/wdBhCXl4/OgxsxvOxuaqDTJJhnK7krm+c1m3dJ2hQyvRwv4MY8dbO7Iluv9lc9aGU71OMbb8WNb8sAZ1htiutLjw8/OjQoUKuZ739PQsxGh0RCbT76MIadGiBT/99JOhw3gjxTl2fSm0ZHfx4sXUrVsXU1NThg4dmmu5DRs2ULFiRaytrSlTpgxDhgwhNja2UGKMi4tjS8iWQmmrpElPT2dyl8mkLE5BJmX+o2VzxoaNdTcy++3ZJCYmGjhC4b8ePXzEZw0/w+aGTZbjqucqrr97nXFNxhF1K8owwRmYJEmkpabppe6jB4+y/a3tr010X2Vzw4abo28y3n083835jpSUFL3EJgjFWVBQEAMHDjRY+yLJLLoKbcyuq6sr06ZNIzQ0lKSkpFzL+fv7c/ToURwcHIiPj+fdd99l2rRpLFq0SO8xpqWlcW7wOaIuRTE2eKze2yspnj9/zszWM7E5Y5PtnEm6Cerlaj79/VMaLmhI76G9Cz9AIZsH9x8wv/F8bCJtci1jddSKH6r+gMckD0ZPG11iZo/HxcVx8/pNbkfc5kHUA55EPyHubhzJMclkPMpA/lSO2XMz1HI1ZcaW4cPZH2Ik102/wLFDx/ij8x8oE7RPdF9l/cCax58+ZtoX03Ac6sjIGSOxsbHRSWyCIAglVaH17Pbo0YNu3bphb2+fZzkPDw8cHBw0z+VyOTdu3NB3eP+2p5YTOzeWyV0n661npyS5FXGLmTVzTnRfZfXIivBh4Xzc6GOuXb5WOMEJObp/9z7zG+ad6L6kTFTyePpjPq7+cYGHpEiSxN9H/yb4/WA+bvAxc8fM5a+wv/Q2Uef58+esW7qOyd0m81H1j/jY9WMmm0/mS6sv+a3Ob5zpc4Z7n9wjZVEKil8VWIVZYXvVFqtHVijSFJglmxE7N5ZxFcZx5MCRAsdz/MhxtnXa9saJ7qtUz1UkfZ3EFw5fMLbsWMa3HM+8/83j1zW/Eh0VXeD6JUni8sXLrP9pPcHvB/NJq08Y6zuWSW9N4vdffic9Pb3AbeTkzu07fD31az7y+4jnz5/rpQ2hZJg/fz5ubm5YWlpSsWJFduzYQXBwMBs3bkSlUlGjRg0AVq5cSeXKlbG0tMTb25slS5ZkqWfbtm3UrFkTKysrfHx82L17d7a27t+/T/Xq1Vm4cGGu8UydOpUjR44wZswYVCoVY8aMyTN+mUzG999/T/ny5bG0tOTTTz8lIiKCRo0aYWVlRZ8+fUhNTdWUX7ZsGb6+vtjZ2dGlSxfu3bunObd3714qVaqEtbU1Y8aMEZMfc1Do2wVPmzaNO3fusGrVqlzLhIWF0alTJ2JjYzE3N2fr1q0EBARkK7d06VKWLl0KwIULFwp8a+/p06d8a/+t5vnzas+Zsm8KjmUcC1RvSXXi2Ak2dd6E6pkqX9elKlKxeNuCjxd+jJnSTE/R5S45KZlt67fR+q3WODg6vP6CEuTO7Tt80eQLbKJt8n1tqkkqlqMsGbdwHCYKE62uSU5KZvvm7Zz+9TRpYWlYPrHMVibeNh6jhkZUfasqb/V/6417KiVJ4vjh4xzafIiYP2OwvGKJcYZubl6pjdSkd0tn/LLx2NrZ5vv6v8L+YmuHrZjHm+skntdJsEwgzSsNi0oWuNdyp1qjatRtlDmM7FWSJHHj2g3OHT9HxNkInoQ/If1mOsq7SkxTTHOpPbN+o+ZGNBrYiE49O2Fs/Oa/5wf3H7Dpx03c3HoTq0tWGKkz+2A+ePIBdnZ2b1zvS4baLvinn36iY8eOuLq6FnrbupDjlrL6vrujZTpy9epV2rRpw99//42rqyuRkZFkZGSwZs0abty4wdq1/06Q3rFjB5UqVcLb25vDhw/ToUMHwsLCqF27NidOnKBt27Zs3ryZ1q1bc//+feLi4qhUqRItWrRg4MCBtGnThoCAAMaPH8/IkSPzjOvlNW+//fZrX4NMJuOtt95i7dq1REdHU7t2bZo0acKyZcuwt7enUaNGTJw4kSFDhnDgwAH69OnDnj178PPzY/z48Zw/f57Dhw/z+PFjvL29WbFiBV27dmXx4sV88skn/Pjjj7nGURq3Cy6SS481adKEFy9ecPfuXZYtW4aXl1eO5UaOHKn5w2dhYaHzOGwu2DC3xlyG7BhCjdo1dF5/cfbbht/4e9jfqJLzl+gCKFIVpH2fxpQtU2j2VTO69eum+wD/IyUlha0hWzm97jTGR40xSzbjb7e/GblnJJWqVNJ7+0VB1K0ovmn6DTZ3bd7oekWagpRvU5jw+wR6rOhB01ZNc21n+5rtROyMwOycGaYpppj9/385UT1TwS64uesmX3zwBXGV43Bp5UKr/q2o26BunsMnYh7EsH39dq7svILspAyLF5n/DtiS/4Q0L0ZqIxRbFAQfCMZvlh9DxgzReljHyeMn2dqx8BJdAIs4C7gAXICYTTHEEEOoPJR4l3iMfI0wUhiRdjMN5R0lpsn/JrUqtPv7bBFnAdvh3PZzHLM8hqyZjIYDG9K5V2etEt9HDx+xaekmrv96HcsLlsgz5Nhg84avtuAGDhzI/v37SUhIwNnZmQkTJuSYKKxatYoRI0agVP7bO799+3ZatGiRrezJkyeZPXs2tra2dOrUiY4dO9K4ceMSMxzIkORyOSkpKYSHh+Po6JhrjgDQqVMnzc/NmzcnICCAI0eOULt2bZYvX87w4cNp27YtAG5ublmuDQ8PZ86cOcydO5f+/fvr/HVMnDgRKysr/Pz8qFq1KgEBAZptpDt06MDZs2cZMmQIISEhDB8+nNq1awMwd+5cbG1tiYyM5PDhw1SpUoVevXoB8NFHH/HFF1/oPNbirkgmuy+5ubnRvn17+vXrx5kzZwwSg/UDa9Y3XU/kiki69u1qkBiKmh+Df+Te9HuYZRSsV9b6gTXn+5/nyPdHGL1iND6+2dejLIi01DR+W/8bJ9eexOiYEcpEZZYPc+u71qxotIL2v7SnVbtWOm27qIm8Gcki/0VYP7AucF02UTbsbbuXvf32MnHJRMwtzAk7GMbBdQd5euAp1reskUkyrMl/W8YZxthetCX5YjI7F+1ko/1GjBsZU71LdTr36YxKpWL/7v0c33KcZ4efYXUzsydQ2yStoFTPVUT9L4qPV37MiFUjqFq9ap7lTx4/yaZ2mzKTQwOTZ8ixvmMNd3Rbr3mcOeyA8zvOc3zkcWgKDQc25K3eb2VJfJ8+ecqmZZu4svkKqnMqjDOMDZrgvmry5MksX74cU1NTrly5QosWLahVqxZ16tTJVrZRo0aEhYW9ts6Xt8svXLjAzp07mTx5MlevXqV169Z07NiR9u3bZxmyJ2jP19eXr7/+mqCgIC5dukS7du348ssvcyy7a9cuZs6cybVr11Cr1SQmJmo29IiOjqZjx465thMSEoKvr68mkdQ1Jycnzc9KpTLb8wcPHgBw7949TaILoFKpsLe35+7du9y7dw8PDw/NOZlMluW5kKlIJ7uQOcs/IiLCoDEoE5WcHnCaqPAo/jfzfwaNxZAkSWLOO3NQL1cjJ/etMPPL6ogVy6suRzlIiU89H8pWKEvFKhXfaPhIWmoaf2z6g7/W/IVRmBHKBCUW5J5oWMRasP+t/dz95i6D3htUkJdRZEXciOD7Jt9jHVPwRPcluVoO62BG6AxkGTJUzzOTTV0nL5ZPLGE7XN9+nQWjF5CuSNesYmDIRMnmrA0b6m5AOULJuK/GYWaW/Yvfqb9OFZlEt7CYx5nDTvhn5z/8NfIvaAru9dy5FXoL89PmmKSbFJkE91V+fn6an2UyGTKZjIiIiByT3fyqVq0a1apVY+LEibx48YLQ0FB27NjBhAkTKFu2LDNnzqRdu3YFbqe0CQwMJDAwkNjYWN59910mTpyIr69vljIpKSn07NmT1atX07VrV0xMTOjWrZtmTKuHh0ee+UVQUBC7d+8mMDCQDRs25LkFNKC3XntXV1eiov5dGSchIYEnT57g5uaGi4sL0dH/jtOXJCnLcyFToSW76enppKenk5GRQUZGBsnJyRgbG2e75RUSEkLTpk3x8PDg9u3bTJ06ldatW7+2/rS0NGbOnFnwQINyPixHzjOe6aaN4syDXH9HBWGKKWrUXL9/nev3r7P/0P4C1WfRyAIaaVdWgYKbD2+W6PfW6j0rvdRrSfYxuPpi8v//FRUmmJBOOvPnz8+1jMW40pPo/pc5mcM2nvIU6w7W0CF/13/77bevL6RDo0ePZtWqVSQlJVGrVq1ce/zOnj2Lg4MDdnZ2DBo0iMmTJ2s9Ztna2po+ffrQp08fIHOog5B/V69e5e7du/j7+2NmZoZSqUStVuPk5MTevXtRq9UYGRmRmppKSkoKjo6OGBsbs2vXLvbs2UPVqpl3ZEaMGEFAQACdO3emZcuWWcbsApiYmLBp0ya6devGoEGDWLt2LUZGuc/rd3Jy4ubNmzp/vYGBgfTr14/AwEAqV67MlClTaNCgAV5eXprJcFu2bKFLly589913mh5h4V+FthrDnDlzUCqVzJs3j7Vr16JUKpkzZw63b99GpVJx+/ZtIHOMTOPGjVGpVPj7+1OxYkWWLVtWWGEKgiAIJUh6ejp169bVPF5Oav6v77//nri4OI4cOUKPHj2yTeYDaNasGRcvXuThw4f8+uuvrF+/ns8//zzH+v744w/efffdHM+NGjWK3bt3U69ePerVq/fmL66wSZJ+H1pKSUlh0qRJODg44OzszMOHDwkODqZ378ylLe3t7alduzaWlpYsWrSIPn36YGtry7p16+jSpYumnvr167Ny5UrGjh2LtbU1zZs3z9KDCqBQKNiyZQsPHz5k+PDhqNW5b+zy4YcfsnnzZmxtbfnf/3R3F7h169bMnj2bnj174uLiQkREBBs2bADAwcGBTZs2MWnSJOzt7bl+/XquO/eVZoW+GoO+KBQKpk6daugwBEEQhCJkwYIF+V6NYdSoUVSpUuW1CcuGDRv4/PPPOX36dLZzLVu2ZNasWTRtmn0iZ1hYGNOnT+fAgQP5iqswlcYZ+6VFaXxvi/yYXW2ZmJgwY8aMAtURnxqP5Vztb8t6qD34eOfHvDj1QnPMupo1T+o+YY/bHk4Yn3ijOGSSjJ5JPWl8pjHxB+NRp2u3RaiJhQnKBkqiK0Wz22E3l40uv1H7AE5qJzzVntw3uk+0Uekb/9MyrSUdlncg8YFud34zMjHCsoYlsZVjueBygT3KPcTK3nyHQCPJiAbpDagdWxuP+x6Y3jBFnaBmZb+VXJRf1GHkglC44ibHoVIUfOLhggUL8n2NtnNFZDJZrmuahoeH55joQubmSZcuXcp3XIIgvJkSk+waQrRRNFM7TWVq+anEWsbyh9MfhMvDC1yvJJPYbL6ZzU0249PYh8DoQKz2WpFwJ3vvhFUFK5JqJ3Gm7Bl2KHeQLEsucPsAMUYxxBjF6KSu4uhPkz+5/859Rv46ktjwN09GZXIZVtWtiK0ayz8u/7BXubdAye1/qWVqjpsc57j9cbAH8l4cQBCE/3j48CEHDhygc+fOKJVK9u3bx/r161m3bl22srt27aJ27do4OTlx5coVZs+erbl1/l9JSUnExcVhaZnD2tLx8XnuJCoUXSpVzl/Adu3aleXLzZEjR+jQIeeB6vHx8XqJTcidSHYLKFGWyNSK+hs+EWEUwWzP2RiNMKJvYl/qn64PEkRXimaPwx7Re6dHV+RXmNN7Dp/++SkvDr94/QX/z8LDAqmuxGWvy+yy3MUDIzFZQBCKKplMxg8//MCoUaNQq9V4enry9ddf07VrV27fvk2VKlUIDw+nbNmy7N+/n6FDhxIfH4+TkxMDBw5kypQpOdZbq1YtNm/ezLBhw7Kd27JlCzVr1tTzKxP0QdtEtWnTpiKpLUJKzJhdXeySk99hDELpYCKZMOfiHJJ+zbknxkRlgrKuknsV7/Gn45+cNs4+fk8QhPzR1TAGQ+2gFhoaSp8+fZgxY4ZmYtH9+/f59ddfmT17Nhs3bsxxZ9CiojSO6ywtSuN7K3p2BeE10mRpTKw2kUl2k1Auz1zj1aqaFbHVYjntdppQs1BSZAXbqloQhJKlXbt2LF++nHHjxvHJJ59ojnt4ePDTTz8V6URXEEoakewKgpbmuc2jxaQWXDe+zl2ju4YORxCEIq5Xr1706tWLq1ev8uTJE+zt7alYsaKhwxKEUkcku4KQDwcVBw0dgiAIRVxqaioKhULzPLcENyUlJcf1fAVB0K1C21RCEARBEEqD6tWrs2DBAu7du5fj+fv377NgwQJq1apVyJEJQukkenYFQRAEQYfCwsKYN28eNWrUwNbWlooVK2JpaUlcXBzXrl3j+fPnDB06lMOHDxs61Hz5uWd1vdY/5Nd/9Fp/frRo0YKBAwfy9ttvGzoUQQdEsisIgiAIOuTg4MDChQsJDg7m77//5sKFCzx//hxbW1smTZpE/fr1MTExMXSYJU5QUBA3btxg7dq1hg5FKGJEsisIgiAIeqBQKGjatGmuO6kJglA4xJhdQRAEQRCKlfnz5+Pm5oalpSUVK1Zkx44dBAcHs3HjRlQqFTVq1ABg5cqVVK5cGUtLS7y9vVmyZEmWerZt20bNmjWxsrLCx8eH3bt3Z2vr/v37VK9enYULF+Yaz4YNG6hbt26WY1999RVdunTJ83W8ePGCwYMH4+joiKenJ3PmzEGtVmvOL1u2TBN/lSpVOHPmzGt/N0J2omdXEARBEIRi4+rVqyxevJiTJ0/i6upKZGQkGRkZTJkyJdswhjJlyrB9+3a8vb05fPgwHTp0oF69etSuXZsTJ04wePBgNm/eTOvWrbl//z5xcXFZ2oqMjCQgIIDx48czcuTIXGPq0qUL77zzDtevX6d8+fIArFu3jnHjxuX5Wj744ANevHjBzZs3efLkCQEBAbi4uDBixAg2bdpEUFAQv/32G3Xr1iUiIkIMf3lDomdXEARBEIRiQy6Xk5KSQnh4OGlpaXh5eeHj45Nj2U6dOuHj44NMJqN58+YEBARw5MgRAJYvX87w4cNp27YtRkZGuLm5UalSJc214eHhtGjRgpkzZ+aZ6AKYm5vTtWtX1q9fD8D169e5cuVKnj27GRkZbNy4kblz52JpaYmXlxfjxo1jzZo1APz0009MmDCBevXqIZPJ8PX1xdPTM1+/KyGTSHYFQRAEQSg2fH19+frrrwkKCqJMmTL069cv12Xedu3aRcOGDbGzs8PGxoadO3fy+PFjAKKjo3NNkgFCQkJwc3OjV69eWsUVGBioSXbXrVtHt27dMDc3z7X848ePSU1NzZLAenp6cvfuXa3iE7Qnkl1BEARB0JOUlBSmTp2Kt7c31tbWAOzZs4fFixcbOLLiLTAwkLCwMKKiopDJZEycOBGZTJalTEpKCj179mT8+PHExMTw/PlzOnbsiCRJQObWzREREbm2ERQUhIODA4GBgWRkZLw2poCAAB4/fsy5c+dYv349gYGBeZZ3cHDAxMSEqKgozbHbt2/j5uamVXyC9kSyKwiCIAh6MnbsWC5evEhISIgmGfPz8+OHH34wcGTF19WrVzlw4AApKSmYmZmhVCqRy+U4OTkRGRmpmeCVmppKSkoKjo6OGBsbs2vXLvbs2aOpZ8SIEaxcuZL9+/ejVqu5e/cuV65c0Zw3MTFh06ZNJCQkMGjQoCwTx3JibGxMr169+OSTT3j69Clt27bNs7xcLqdPnz5MnTqVuLg4oqKi+PLLLxk4cCAAb7/9NgsXLuT06dNIksSNGzeyJMaC9sQENUEQBEHQk61bt3Ljxg0sLCwwMsrsX3Jzc9Pcqi5OisqmDykpKUyaNInLly9jYmJC48aNWbp0KaampqxduxZ7e3vKlSvHmTNnWLRoEX369CElJYW33noryxja+vXrs3LlSsaOHcutW7dwcnLiu+++yzJuV6FQsGXLFjp37szw4cNZsWKF5n3MSWBgIM2aNWP06NEYG78+xfr222/54IMP8Pb2xszMjHfeeYfhw4cD0Lt3b548eUJgYCB3797Fy8uLNWvWiHG7b0AmvezPL+YsLCxISEgoUB3xqfFYzrXUUUSCIAjCm4qbHIdKoSpwPbr4bCgIT09P/vnnH6ytrbGzs+Pp06c8evSIhg0bFulb1JcvX6Zy5cqGDkPQg9L43ophDIIgCIKgJ71792bIkCHcunULyFyzdcyYMfTr18/AkQlC6SGSXUEQBEHQk+DgYLy8vKhWrRrPnz+nfPnyuLq6MmPGDEOHJrwBlUqV4+PlcmY58fPzy/GakJCQQoy8dBNjdoUcWSmsqGHcF6M0Sw6nfYVEiRjtUmBmxmYkpycbOgxBT+QyOSqFJRbGlqSqU3ic9NDQIQnFnEKh4Ouvv+brr7/m0aNHODg4ZFs1QCg+4uPj833NpUuX9BCJkB8i2RU0ZMioYd0ci2vDORPSkyOxmesD1u3fmogag3iW/NTAERqOlcKKmnHTOPnl+zQdFsI1txnEJN7Xa5tlVT7YyF14kfGAp6kxxKXGvf6i1zCVm+Jm7o29zBdlki/SE18Son15eMWXp9FOGBmpMTLOQGakxkiuRm6sRibP+P/jaozk/57LfGRgZh2LucMTFDaPMbF6AuZPUJs9Js3kCcmyxyRIT4hNf8yzlCekZqTmGZ9CrsBMrkRpbI7CSImpkTkKmRITzDHBHLlkigw5SHKMMEYmyZFJmc9fHpep5SAZa46jlkOaOVKKJeokS9ITLUlLUJEaZ0lKrCVJLyxJfGZJ/DMVKfFKXgAvAFOLZJpPns6RjC9QS3nPwhaEV928eTPXc6/u0OXt7V0Y4QhCqScmqL2itE5Qc7PwxDdhCBG/DuXOhXI5l6kShc07fbj04kQhR2dYRjIjGiuHcuX7YB5HOmmOK60Sqf/hl5xRLtBJEvoqX6uqOF6Zwt8r+qBOl2dp097zATZuMZg7PcDULgYjqweozR+QahJDvOwBLzIeEJf2nDKmHtjhi1miLxmPfIm/7UvMZV8eXHNHUhtu9JKFbRw2bk+wsH9OepIpKQlKUuLNSYpVkhRnnuX1FhV+7f4iKWAYN+OuvL6woDPFeYKakZERMpmMvD5eZTKZVmu3GkppnMRUWpTG91Yku68oTcmumbEZtZU9SDo2jLNbWoP0+ttqJmapNAoax+Hk0rEYejVrf9L++IYrB+rkWsbe4xF+o2dxPG0Jaeq0ArVX2boOluemcmJ1N63eD6HwmFok03DyDMIyviBDKhoJiouFO3bGblyNO026Ot3Q4ehccU52S4LSmBCVFqXxvS20Lp7FixdTt25dTE1NGTp0aK7lfv75Z+rUqYOVlRXu7u5MmDCB9PSS9w+5ofhZ16fpix9QfPOAY+NCOPtrG60Tq7RkBYcnfUujOxuxVJTcLwUuFu40uhfChbFheSa6AE+iHTk8+VtctoTT0LL3G7VXzdqfOpd3cXnsKU783F0kukVQSoIZh6bNp9LRo3hbFe6HhLGRMb5WVWmsGkiz5IXU/Gcftssec/+TaC6N/Qvzbx/T8M4G/FUDsTWzK9TYcmMqN6W6dROayyfS5Okymirfo4JVdYxkYk60IAiFr9B6drds2YKRkRGhoaEkJSWxatWqHMv98MMPVK1alQYNGvDo0SO6dOlC7969mTRpUp71G6pn18bUFkdTdyLiLhXJcX2uFh64GlfDIrY2d3b3I+K4n07qLVf3KvLAXtyIvaiT+t6Er1VV3JLbQqwbyWXCuJZ6uEDjipXGSuqnj+fEl5NIis19P/O8VGl7ApOOEzj/4tBry9a2bkPGwamc39bijdoSDENhnkKjyTMIUy/UeS+vlcIKL2V1bJJror5Xk8cXa3Lz76qkJppqdb2RcQZ+7Y9h13A70eZ/cDP2sk7jy42D0hEfE3/MHvnz5Kw/Vw/WIS1Zka2cleMLyrf8C1WVo8RaH+Va4t8kpOX873ZJ6dlt2rRprhPSDh8+XMjRaK809v69qkWLFgwcOJC3337b0KHoXGl8bwttglqPHj0AOHXqFHfu3Mm13Hvvvaf52c3NjQEDBvDnn3/qPb68WJhY4G5eHlt1eUzjK5AeU54XNytw90J5nt114DngXP4uFXqHcM9hNTdiC3/mpbWpDZ5m1bBJqYYUU43nV6sRdbIq9x5Zc08P7d06VRHltb/xn/4eR+NX66GF7JzNXfGRtUGKaMv10DbcuOXMDc3ZcSCTKN/kH1waHiTF5RDXUw/zNPmJVnU3tOxN9PLPORResJ1pwvfWh70HqTdgO8/qTMrxz0I9q84k7p7GmT0NCtSWYBipiaYc+nQeVdr2IKXDMCJiw9+4LjeLspST2pJxvQ13/q5H9AVv/ilAz746Xc6F7U1he1NgPmVrRODVbjtxLn9wMe5wgYfaQOZE1nJWlXBL90d92587x/yJOlOex1pcG/vImtO/tAPaAZnJeaWm5ylT9yhpzkeJVB/lfkLunw/F0X+TpQcPHrB8+XLNlrDFib4XkSho11tQUBA3btxg7dq1uglIKDGK/GoMhw8fxs8v597IpUuXsnTpUgCdDHWQSXLqW3VBmVSBjIfliYuswINLFYi54crV11z74LobD4InABOo1PI0ZdquJly+nsdJjwoc16tMjEwop6qCo7oaxk+rkXCzGnfOVOPBNXcKeyPHpFhzjo7/mSYfNuGU4/90viSXykRFZfMWKO+14e6RtkT8VYUHeV0gybh+pAbXj9QAPgSZhG/jC7g2PkSKy0FupB7mSXLWj+SK1jUx/fMb/vq9mU5jPxnSGaONHWjy3ipueMzgYdJ96lv25Om2KZw8VFOnbQmGEb63PoqjZ2g+KYgw6XOtenmtTW2oZNoSxZ22RP3Zhttny6PPTWNvn/fh9vkPgQ+xdIilTpdQ5FW281QejjEK5CgwQoFcUiDHFJlagZGkQKbO+iBDAelmJEZW48afjbl5157c1xvQnjpdzpU/a3Plz9rABwC4Vr6NZ9OjyDK0683WhYEDB7J//34SEhJwdnZmwoQJufboffXVV8yfP5+kpCR69uzJDz/8gKlp7rEOGTIk27GePXsybNgwpk+frrPXIAhC7gp9gtq0adO4c+dOrsMYXrVy5Uo+/fRTzp07h4ODQ55ldTKMIR4sdTgUVW6STu0+u5DXXs3ZxD9IyUjJ1/UyZHhalsdVqo/8QX2enK/PjaM1tb6lWZgqtjhLUufe3I5/8+0v5TI5la3qY/+iLU9PteHy3oakp5joLkiZhG+jS7g0Okia22GMo9pw9Nu39b46gZllEmV87nL7nK9e2xEMp3Kbk6R2HJqtl1chV1BF1RjrJ2149HcbrvxZt0iuOFEUxcWBquCjGLT6bLh06RK+vr6Ymppy5coVWrRowY4dO6hTJ+uY/dDQUAYPHsyBAwdwdXWle/fuNGzYkHnz5uUrpqSkJJydnXnx4kW+X09hyelWd1Hq2Z0/fz6LFi0iNjYWV1dXvvzyS7p3744kSZiamuLj48P58+dZuXIlCxYs4M6dOzg6OjJx4kTeffddTT3btm1jxowZ3Lx5E0dHR7777jvat2+fZRjD/fv3adeuHYMHD2b8+PE5xrNhwwYWLlzIqVOnNMe++uor/vzzT37//fdcX8fQoUMxNzfn1q1bHDlyhBo1avDrr78yb948fv75Z5ycnFi/fj21atUCwMvLi3fffZc1a9Zw//59unXrxg8//ICZmZnWv7vSOIyhyCa7v/32G++++y779u2jWrVqr623KCa7r7J2fkb1/ht5VnY1F18cz7GMk7kLnsb1UD6tT+yV+kQcqUdsjI1+AtIDK8cXVJ48jL9jt+Zaxt7MgTKmXlirvTBNKof6qReJ97x4drMc9y57kRynLMSIBUF3FOYpNJo0k/uqnTgntSbhn7aE72r2xuO/S7vCTHZfdfXqVVq0aME333xDnz59spwLDAzEy8uL4OBgAPbv38+AAQN48CD3e04rVqzI8jwxMZEtW7ZgYmJCaGhoPl5J4SrKye7Vq1dp06YNf//9N66urkRGRpKRkcGaNWuyDWPYsWMHlSpVwtvbm8OHD9OhQwfCwsKoXbs2J06coG3btmzevJnWrVtz//594uLiqFSpkibZbdOmDQEBAYwfP56RI0fmGlNiYiJOTk6cOXOG8uXLA1CvXj3GjRuX59bQQ4cOZfv27YSGhuLn50fHjh25desWM2fOZMCAAcyYMYOjR49qhnN6eXmhUqnYtWsXFhYWvPXWW7Rs2ZI5c+Zo98ujdCa7RXIYw+7du3nnnXfYsWOHVolucfDigS1HvhoFjKJszRuU67aaeOsTqOJrkhRRn9vH6vPgmjsxhg60AGIfWfP3x1toPvErkp3CME3ygmflMpPZW148uOLFk2cqtBtFKwjFS2qiKYemBwPBXDN0MEK+jR49mlWrVpGUlEStWrXo2LFjtjKXLl2ia9eumuc1atQgJiaGJ0+eYG9vn2O9a9asyfLcwsKCxo0bM3bsWN2+gFJELpeTkpJCeHg4jo6OeHl55Vq2U6dOmp+bN29OQEAAR44coXbt2ixfvpzhw4fTtm1bIHOe0KvCw8OZM2cOc+fOpX///nnGZG5uTteuXVm/fj3Tp0/n+vXrXLlyhS5durz29XTv3l1zF6F79+58//33DB48GIC+ffuyeHHW5T7HjBmDh4cHAFOnTuWDDz7IV7JbGhVaspuenk56ejoZGRlkZGSQnJyMsbExxsZZQzhw4AADBgxg69at1K9fv7DCK1S3z/ly+9wsQ4ehN4fmjwXEP+SCIBheeno6devW1TwfOXJkjj1033//Pd9++y3Hjx/n4MGDOY7DjY+Px9raWvP85c9xcXG5JruGnmBdEvn6+vL1118TFBTEpUuXaNeuHV9++WWOZXft2sXMmTO5du0aarWaxMRETSdadHR0jl9qXgoJCcHX15devXppFVdgYCDjxo1j+vTprFu3jm7dumFu/vo7O05Or2xYpFRme/7fLYpfJroAnp6e3Lunj2noJUuhLXo4Z84clEol8+bNY+3atSiVSubMmcPt27dRqVTcvn0bgNmzZ/PixQs6duyISqVCpVLRoUOHwgpTEARBKEGMjY05deqU5pHXrWi5XE6TJk24c+cOP/zwQ7bzKpWK2NhYzfOXP1v+Z/zbzZs3tXoIby4wMJCwsDCioqKQyWRMnDgx2xJvKSkp9OzZk/HjxxMTE8Pz58/p2LGjZmc7Dw8PIiJyn2cSFBSEg4MDgYGBWu12FxAQwOPHjzl37hzr168nMDCwYC8yF9HR0Zqfb9++jaurq17aKUkKrWc3KCiIoKCgHM+9+q1FfAsWBEEQDCk9PT3HJMjPz4/z589rxvKeP38eJyenbL26vr6+mu2CX03A/vu8KG8XXJRdvXqVu3fv4u/vj5mZGUqlErVajZOTE3v37kWtVmNkZERqaiopKSk4OjpibGzMrl272LNnD1WrVgVgxIgRBAQE0LlzZ1q2bJllzC6AiYkJmzZtolu3bgwaNIi1a9diZJR7H6GxsTG9evXik08+4enTp5rhEbr23Xff0blzZ8zNzQkODqZv3756aackEdvZCIIgCKXWw4cP2bBhA/Hx8WRkZBAaGsr69etp1apVtrKDBw9m+fLlhIeH8+zZM+bMmZPjjqBqtZqMjAzUajU//fQT/fr148qVKyQnJ3PlyhUCAwNZvnx5Iby6kiklJYVJkybh4OCAs7MzDx8+JDg4mN69M3extLe3p3bt2lhaWrJo0SL69OmDra0t69atyzKGtn79+qxcuZKxY8dibW1N8+bNiYqKytKWQqFgy5YtPHz4kOHDh6NW5715VGBgIPv27aN3797ZhmnqSmBgIAEBAXh7e+Pt7c20adP00k6JIpUQ5ubmBa4jLk6SMueDiod4iId4iIchH3FxOvhgkF7/2fDw4UOpWbNmkrW1tWRpaSlVrVpVWrp0qSRJkhQVFSVZWFhIUVFRmvJffPGFVKZMGcnS0lIaOnSolJycnGf9bm5uUmJiYpZjCQkJkpub2xu+osIRHh5u6BCEHHh6ekp79+4tUB2l8b0tkqsxCIIgCEJhcHR05NChnLf3Llu2bLbJQR9//DEff/yx1vWr1WoiIyOzLPUUFRUlhjAIQiESya4gCIIg6MnYsWNp1aoVw4YNw8PDg+joaFatWiWWHiumVLks/rxr1y6aNm2a4zk/P79swyMAlixZwoABA3Qan5AzkewKgiAIgp588sknVKtWjU2bNnH27FlcXFxYsWIF7du3N3Rowhv4b0+/Ni5duqSz9iMjI3VWV2kikl1BEARB0KP27duL5FYQDEisxiAIgiAIepKWlsaMGTPw9vbGzMwMb29vZsyYQWpqqqFDE4RSQ/TsCoIgCIKeTJgwgRMnTvDjjz/i6elJVFQUs2fPJjY2lq+++srQ4QlCqSCSXUEQBEHQk02bNnH+/HnNxhMVK1akdu3a1KhRQyS7glBIxDAGQRAEQdATSZLydVwQBN0Tya4gCIIg6Env3r156623CA0N5fLly+zevZtu3bppthwWBEH/3mgYw59//olcLqdZs2a6jkcQBEEQSowFCxYwZ84c3n//fe7du4erqyv9+/cvllu8ymQyvdYversFfdGqZ7d58+YcPXoUgPnz59OvXz/69+9PcHCwXoMTBEEQhOJMoVAwa9Ysbty4QWJiIjdu3GD27NmYmpoaOjRBKDW06tm9ePEiDRs2BGDZsmUcPHgQlUqFv78/U6ZM0WuAgiAIglCcRUZG8s8//2TbkCAwMNBAEQlC6aJVsqtWq5HJZERERCBJkmaP72fPnuk1OEEQBEEozubOncusWbPw8/NDqVRqjstkMpHsCkIh0SrZbdKkCWPGjOH+/ft0794dgIiICBwcHPQanCAIgiAUZ1988QWnT5+mSpUqhg5FEEotrcbsrlq1ChsbG6pXr05QUBAAV65c4cMPP9RnbIIgCIJQrNnb2+Pl5WXoMEqMkJAQVCoVKpWKDh06ZDt/+/ZtzXmVSpVjHX5+fprzR44c0XfIQhEgk0rI9EcLCwsSEhIKVEd8PFha6iggQRAE4Y3FxUEuuUq+6OKzoSB27dpFSEgIH330EWXKlMlyrmzZsgaK6vUuX76sGbL4kliNoWTI6b0t6bTq2U1JSWHq1Kl4e3tjbW0NwJ49e1i8eLFegxMEQRCE4iw1NZU9e/ZQv359vLy8NI9y5coZOjRBKDW0SnbHjh3LxYsXCQkJ0Xyz8/Pz44cfftBrcIIgCIJQnI0ePZrg4GBiY2NJS0vTPFJTUw0dmiCUGlpNUNu6dSs3btzAwsICI6PM/NjNzY27d+/qNThBEARBKM7S09MZNmwYcrnc0KEUmBhmIBRXWvXsKhQK0tPTsxx79OgR9vb2eglKEARBEEqC8ePHM2/ePJEoCoIBaZXs9u7dmyFDhnDr1i0A7t+/z5gxY+jXr59egxMEQRCE4mzRokUEBQWhUqkoW7ZslocgCIVDq2EMwcHBTJgwgWrVqpGYmEj58uV55513mDFjhr7jEwRBEIRia+3atYYOQRBKvXwvPfbo0SMcHBzyvQTJ4sWLWbVqFRcuXKB///6sWrUqx3IXL15k3LhxnD59midPnmh960csPSYIglBylJSlx7TRqVMnduzYYegwsiiNy1OVFqXxvdVqGEN4eDgxMTEAKJVKgoKCmDVrFomJiVo35OrqyrRp0xg+fHie5UxMTOjTpw/Lly/Xum5BEARBKK7ExgaCoF9aJbuBgYE8f/4cyBxsf/jwYY4fP867776rdUM9evSgW7dur53UVrFiRUaMGIGfn5/WdQuCIAiCIAhCTrRKdiMjI6lYsSKSJLF161Y2bdrE5s2bCQ0N1Xd8giAIgqA3KSkpjBgxAk9PTywtLalVqxa7du3KseyqVauQy+VZtqM9ePBg4QYsCEK+aTVBzdTUlLi4OMLDw/Hw8MDBwYH09HSSk5P1HV+eli5dytKlSwGyLY0mCIIgCK+Tnp6Oh4cHhw4domzZsuzcuZM+ffpw4cIFvLy8spVv1KgRYWFhhR+oIAhvTOthDK1atWLIkCEMHToUgDNnzhh8u8ORI0dy6tQpTp06hbGxVnm7IAiCIGhYWFgQFBSEl5cXRkZGdO7cmXLlynH69OlCi0GswVv0tGjRgp9++ilf13To0IGff/5ZTxEJBaFVhvjVV1+xZ88eTExMaNmyJQBGRkZ89dVXeg1OEARBEApTTEwM165dy3XeyNmzZ3FwcMDOzo5BgwYxefLkAne2TJkypUDXFxbZzPytwpRf0oyCJf1BQUHcuHHDYMu95Tb8RTA8rXp2AQICAjSJ7s2bN3F0dKRVq1ZaN/Ry2ENGRgYZGRkkJyfnOPRAkiSSk5M1+4YnJyeTkpKidTuCIAiC8FJ6ejp169bVPF4OfctJWloaAwYMYMiQIVSqVCnb+WbNmnHx4kUePnzIr7/+yvr16/n888/zbD81NZXp06dTvnx5LCwsKF++PJ9++mmWYYCTJ09+8xcoCMJraZXs9u/fn2PHjgGwcuVK/Pz8qFKlSr6WB5szZw5KpZJ58+axdu1alEolc+bM4fbt26hUKm7fvg1AVFQUSqVS861aqVRSsWLF/L4uQRAEQcDY2Fgz3O3UqVOMHDkyx3JqtZpBgwahUChYvHhxjmW8vb0pV64cRkZGVKtWjenTp7N58+Y823/vvfc4cOAAixYt4uTJkyxatIhDhw4xevToAr+20mz+/Pm4ublhaWlJxYoV2bFjB8HBwWzcuBGVSkWNGjWAzJylcuXKWFpa4u3tzZIlS7LUs23bNmrWrImVlRU+Pj7s3r07W1v379+nevXqLFy4MM+YtBn6sGrVKvz9/Rk7diw2NjZ4e3tz7NgxVq1ahYeHB2XKlMkyFGLo0KGMGjWKtm3bYmlpSfPmzYmKitL21yT8P63uvezfv1/zy//yyy/Zt28fNjY2dOvWjREjRmjVUFBQEEFBQTmei4+P1/zs5eUlxi8JgiAIhUaSJEaMGEFMTAw7d+7ExMREq+tkMtlrP69+++03IiIisLGxAaBKlSo0aNAAX19fVqxYUdDQS6WrV6+yePFiTp48iaurK5GRkWRkZDBlypRswxjKlCnD9u3b8fb25vDhw3To0IF69epRu3ZtTpw4weDBg9m8eTOtW7fm/v37xMXFZWkrMjKSgIAAxo8fn+sXpfz6+++/efvtt3ny5AkzZsygX79+vPXWW9y4cYNDhw7Rs2dPevbsier/d1UJCQlhx44dNGjQgAkTJjBgwAAxSTKftOrZTU1NRaFQcPfuXZ4+fYq/vz9+fn6ajSYEQRAEobh67733uHz5Mn/88QdKpTLXcrt27dJ87l25coXZs2fTtWvXPOt2dnbOtgFTUlISLi4uBQ+8lJLL5aSkpBAeHk5aWhpeXl74+PjkWLZTp074+Pggk8lo3rw5AQEBmk08li9fzvDhw2nbti1GRka4ubllGb4SHh5OixYtmDlzps4SXYBy5coxbNgw5HI5ffv2JTo6munTp2NqakpAQAAKhYIbN25keQ3NmjXD1NSUzz77jOPHjxMdHa2zeEoDrZLdmjVrMnfuXGbPnk2nTp0AuHv3LlZWVnoNThAEQRD0KSoqiiVLlnDu3DmcnZ016+eGhIRkG2a3f/9+qlevjoWFBR07dqRHjx6vnVw2aNAg2rdvz7Jly9i1axdLly6lY8eODB48mAMHDmgegvZ8fX35+uuvCQoKokyZMvTr14979+7lWHbXrl00bNgQOzs7bGxs2LlzJ48fPwYgOjo61yQZMntU3dzc6NWrl07jd3Jy0vz88svVf4+9esfbw8ND87NKpcLOzi7X1yvkTKthDMuXL+fTTz/FxMSEBQsWAHD8+HEGDBig1+AEQRAEQZ88PT3zHIrwatKxcOHC147b/K+XY0SDg4OzHP/xxx/58ccfgczhEDdv3sxXvaVdYGAggYGBxMbG8u677zJx4kR8fX2zlElJSaFnz56sXr2arl27YmJiQrdu3TTvt4eHBxEREbm2ERQUxO7duwkMDGTDhg3I5XK9vqbcvNqLGx8fz9OnT3F1dTVILMWVVsmuj48P69aty3KsV69eOv+2IwiCIAglya1btwwdQolz9epV7t69i7+/P2ZmZiiVStRqNU5OTuzduxe1Wo2RkRGpqamkpKTg6OiIsbExu3btYs+ePVStWhWAESNGEBAQQOfOnWnZsqVmzO7LoQwmJiZs2rSJbt26MWjQINauXYuRkdaLWOnMzp07CQsLo379+nz66ac0aNAgS2+v8Hpav2srV66kVatWVKxYkVatWrFy5Up9xiUIgiAIgpBNSkoKkyZNwsHBAWdnZx4+fEhwcDC9e/cGwN7entq1a2NpacmiRYvo06cPtra2rFu3ji5dumjqqV+/PitXrmTs2LFYW1vnuNKBQqFgy5YtPHz4kOHDh6NWqwv1tUJmL/bMmTOxs7Pj9OnThISEFHoMxZ1M0mLpg88++4zVq1czbtw4PD09iYqK4quvvmLgwIFMnTq1MOJ8LQsLCxISEgpUR3w8WFrqKCBBEAThjcXFwf9PRi8QXXw2FMT58+cZO3Ys586d0wyJkCQJmUymWU++KLp8+TKVK1c2dBil3tChQ3F3d2fOnDk6q7M0vrdaDWP46aefOHjwIJ6enppj7dq1o1mzZkUm2RUEQRCEoqZ///707NmTRYsW5bnSgyAI+qNVspuQkICjo2OWY/b29iQlJeklKEEQBEEoCR48eMCsWbOQyfS71a5QOFS53G7YtWsXTZs2BWDUqFE5blk8cOBAzaREoXBpNYxh8ODBxMXFMW/ePMqWLUtUVBRTp07F3NycNWvWFEacryWGMQiCIJQcJWUYw9ixY6lbt26xW72oNN7qLi1K43urVbIbGxvLmDFj+OWXX0hLS8PExIQ+ffqwaNEiza4whiaSXUEQhJKjpCS7MTExNGrUCKVSmWUtVaBIr69bGhOi0qI0vrdaDWOwsrJi9erVrFq1isePH+Pg4GCQ5TcEQRAEoTjp1asX5cqVo3v37mLMriAYSK7Jbl4LXL+6yLa3t7duIxIEQShlXF0yuHffMAvWC/p17tw5njx5gkKhMHQoglBq5Zrs+vr6IpPJ8txZRiaTkZGRoZfABEEQSjoP93QGNP+DislzOGP8Nd9ubGrokAQda9q0KeHh4dSsWdPQoQhCqZVrsmuIhZMFQSg4T490Hj6Wk5QkZn8XVWXKqBnQaj9V06cjT8ocT1on7X0+7PcN32xoaeDoBF0qV64cAQEBdO/ePduY3VmzZhkoKkEoXbQasysI+uZXKYXe9TYQFtmJfUccDB1OsVWnRgKjK7RHpk7liXknIpNbc+luZU5fsCUuTiS/hmZjIzGg7XFqySZjnPos2/laqR/ycb8v+HJDWwNEJ+hDYmIinTp1IjU1lejoaEOHIwilklarMRQHYjWG4sncXOLtzoepmTEeIykFgBiLgaw/9wHnLojJHPnh653GJ/V7Ypoame2cJDPhmXl7olLbEn7fj1MXHHj2TCS/hcXCQqJ/wDkaKCZhknb/teUvmi3gi/XtkKTS+x6VlNUYiqucZuzPlM3Ua5szpBl6rT8/WrRowcCBA3n77be1vqZDhw7069ePIUOG6DGyghOrMQhCIWrd5Ak9y47FPPlcluNOCWv5sHwIN2tMZPWhPkRFiz+mr1OmjJqxDd/BNDkyx/MyKQ27hD+w4w9qOUBgSxmx5m2ISm/H5ZjqnL5YhoePxAorumZqKtE74CpNLSZhmnoT0rS7rmryBD7pn8Hn6zuW6oS3pLh8+TKbN28mJiaGxYsXc/XqVVJSUqhevbqhQytRgoKCuHHjRo4bOhSGXbt2GaRd4fVEFlFKKEghFVNDhwGAi3MG77Zdg1fCl5CccxkZEj6J85je4Fv+aTyX1Xuai57IXKhUEpPbTcEi4YzW18iQsE7cS3X2Ut0W+jaFFEV5UoxdSJGVIQVHkiV7EjNsSUyzIiHVivgUC+KTlMQlmPE8TsGLWGOevzASY4NzIJdLdG8bSWu7aSiTL0Bq/uuokjyZiYHpzF/XRSS8xdimTZsYPXo0PXv2ZN26dSxevJi4uDgmTZrEvn37DB2eIJQKoiunFKgtP8lXTTrhJjPseDEjI4nAzleZ1axdZqKrBbk6gVpp/2N+QEeGdL2IqWmJGHWjMyYmElO6f4ttws4C12Waeh2rxMM4JmzGPeEHfBPnUD1lHA3V79DauC9dLTozwKE1ozz9mVS1HnMb1+L7DjWZO+hL2jV/iFwu3huAzq3v802/UXQ275qZ6BZApaRPmRS4FSMj8bstrqZPn87evXv58ccfkcszl5erUaMG58+fN3Bkxdv8+fNxc3PD0tKSihUrsmPHDoKDg9m4cSMqlYoaNWoAsHLlSipXroylpSXe3t4sWbIkSz3btm2jZs2aWFlZ4ePjw+7du7O1df/+fapXr87ChQvzjKlFixb89NNPeZa5ceMGzZs3x9raGgcHB/r27as5d+nSJdq2bYudnR1OTk4EBwdr++sQXkOrZPf8+fO0atUKOzs7FAoFCoUCExMTsW5gMdDE5CCjA0ZjUeYhH/hNQoZhVtmo5pfM5wM+JUDRG5P0h/m+XpF2l5byQL7qOZQube4ik4kPf4AJfTfjmpD3P676JEPCJWEV/e3bsLhPIO/0OI2TU+lcyUWlkpgxcDW9rNuhSjqus3orJgUxJXCT+DJRTD18+FCTeMlkMs3/X/4s5N/Vq1dZvHgxJ0+eJC4ujtDQUCpVqsSUKVPo27cv8fHxmi8TZcqUYfv27cTGxrJy5UrGjh3LmTOZd8FOnDjB4MGD+fzzz3n+/DmHDx/Gy8srS1uRkZE0b96cMWPGMH78+ALH/umnnxIQEMCzZ8+4c+cOH3zwAQBxcXG0adOG9u3bc+/ePW7cuEHr1q0L3J6QSatkt3///vj7+3P48GEuX77M5cuXuXLlCpcvX9Z3fEIBtDP9g2HtxmKszJz45VzhAoOsl7zmKt1SqSQ+6neAjyv5Y5/we4HrM08+Sw+rDnwxcBqN68XqIMLi6/3exyifONvQYWgoUy7hzzDmNm3I9IEhNKgTZ+iQCk0F31SCu31AucS8e37elG/iHKb0Xy8S3mKoTp06rFmzJsuxDRs2UL9+fQNFVPzJ5XJSUlIIDw8nLS0NLy8vfHx8cizbqVMnfHx8kMlkNG/enICAAI4cOQLA8uXLGT58OG3btsXIyAg3NzcqVaqkuTY8PJwWLVowc+ZMRo4cqZPYTUxMiIqK4t69e5iZmdGkSRMAtm/fjrOzM+PGjcPMzAxLS0saNGigkzYFLZPdBw8eMGvWLKpWrYqPj0+Wh1A0dbdYR7/205Arsm760bzpUiobXSyUGAKaPeLzLgOpmfoRMknLmTlaskv4g5EeTZgz6Efq1Ch9M637d75OvYxRhg4jR0bqZLwT5/Oepz/fDPyIfp1uoFKV3CStY6sHTKjVDqvEw3ptxydxHtP6r8XYuOT+LkuiRYsWMW3aNJo3b05CQgLt2rXj008/5auvvjJ0aMWWr68vX3/9NUFBQZQpU4Z+/fpx7969HMvu2rWLhg0bYmdnh42NDTt37uTx48cAREdH55nHhISE4ObmRq9evXQW+4IFC5Akifr16+Pn58eKFSu0ikUoGK2S3SFDhrBu3Tp9x1LqKJX6+dAaaP0jXdrORZZDL5BckcGoupNQkKKXtgEc7NXMHPgTgQ6tCzxm8XXcE77nA59GfBc4lDF9wqjml8uMtxKkXfOHBJj2MXQYWrFOPEB70x583bEN4/rvplIF/f25K2zGxhIf9v2TPjYBGGc8KZQ2yyV+zrT+KzExEQlvcVGpUiWuXLnC+++/z5w5cxg2bBgXLlygfPnyhg6tWAsMDCQsLIyoqChkMhkTJ07MNjQkJSWFnj17Mn78eGJiYnj+/DkdO3bU7Azr4eFBRERErm0EBQXh4OBAYGCgznaLdXZ2ZtmyZdy7d48lS5YwevRobty48dpYhILRajWGSZMm0ahRI4KDg7PtAHPgwAG9BGYIJkbJ/K/v3+w61YjrEfoZj6xUSnRqHkkTx+8xT73IkaQv2bCrEmlpuhm/NcphPg2bhQC512ftfpt3oxbwbcynOmnzVVZWElM7TtHJhKn8sEg+Q11GU7cixNdsSHjqcP78pxaXrxaNFSh0pX7tePqU6Y6smG3TbZz+iGrpE6hWFWIaBHLmSR/SMowxkadpHsbyNIxlqf///xSMjVIwlqUilyVnPieZOLUr/9yrz/GzTjx/brgxj05OasYFzKdMwvpCb9sr4Ws+7ZfBnI1vk5oqxn0Wdf/73/9YtGgRffpk/YL60Ucf8fXXXxsmqGLu6tWr3L17F39/f8zMzFAqlajVapycnNi7dy9qtRojIyNSU1NJSUnB0dERY2Njdu3axZ49e6hatSoAI0aMICAggM6dO9OyZUvu379PXFycZiiDiYkJmzZtolu3bgwaNIi1a9diZFSwef2bNm2iUaNGuLu7Y2tri0wmQy6X07lzZz7++GO+/vpr3nvvPVJTUwkPDxdDGXREq00lmjZtikKhoHv37iiVWRf6HzFihN6Cyw9dLByelpTIuoENAYix6MfxB4MIDXPXydJK5bzS6NLgKH7MR5F2N8u5eGVDfr8zhz2Hyrxx/TLUjHWdTvWG2o2LldSwZPt3/JXe9I3b/C8zM4mZfebjFF907gLEKptzKWUwf56rwbUbxXtCZcXyqYyv3Q2TtDuGDsXgJJkJj827cS2hIyevV+b8RWWhLc/VoHY8wyoOwyzlaqG0l5s7FqOZ/cu7pKSUzIS3pGwqYWVlRWxs9vkF9vb2PHlSOHcE3kRR3njgn3/+4e233+by5cuYmJjQuHFjli5diqmpKV27duXSpUuUK1eOM2fO8N133zFr1ixSUlJ46623SEtLw9fXlzlz5gCwdetWZsyYwa1bt3BycuK7776jXbt2WTaVSE5OpnPnzri7u7NixYpcE15tNqKYMGECISEhvHjxAicnJyZOnKgZD3zx4kU+/PBDzpw5g6mpKR999BGTJk3S+e+vKL+3+qJVsmtpacmTJ08KtPrC4sWLWbVqFRcuXKB///6sWrUq17JfffUV8+fPJykpiZ49e/LDDz9gapp3D52uk13NMRMXrhh9TOi55ly8bJav+mQyiRaNntHaZwNuicuQSXn3xsWoAgk5/SH/XMrfzmHGpDGp3Dh8ax3MuYAkUd6sDI9iH/Lc9N8PxsTHDkw6vJVYrPPVXo4xGEvM6L8Uj4TvClyXvrwwb8uFxIHsP1OVW5Emhg4nX1ycM/i01RDMk/8xdChFUqrCi9vGgVyIacLxc6562yBjUJfLtDQZrNntz9Bilc25kdaLf+5U49Q/tsTHl5zEt7gnuy/HYo4ZM4bFixdnOXfz5k02bdrE1auG/cKUl9KYEJUWpfG91SrZ7dixI8HBwdSsWfONG9qyZQtGRkaEhoaSlJSUa7IbGhrK4MGDOXDgAK6urnTv3p2GDRsyb968POvXV7L7qifmb3Hi6Qh2HilHXFzuHyq2thJdmoVTX/UlFkkn8xWDhIzrplNZta8r9x69/ha8GUlMrfABHlVP5HjeOF1Nk1b98fxwKkgS91Z+R/jvP3PXKBlkMq6faclnkd/kK8b/kskkpgzYRPnEOQWqpzA9s+jEnfQWPIj35M5jJ6LuWnL7jhy1uuglC1ZWErO6foJNwh5Dh1IsSMh4Zt6BGyldOB1RjdP/qEhPL9j7qlJJfNxtHd6J83UUpe6pZaY8MX+Lm0lt+SeqCqcvWJGcXPT+PGuruCe7LVu2BODIkSM0bfrvHTSZTIaTkxMffvghDRvm/nljaKUxISotSuN7q1Wy+/7777Np0ya6d++ebczurFmz8tXgtGnTuHPnTq7JbmBgIF5eXprFlPfv38+AAQN48OBBnvUqFAqmTp2ar1gEQRCEkm3BggV5JrspKSmMHj2affv28fTpU3x9fQkODqZDhw45ls/vncdp06ZpbpkXJ6UxIdKGKpdvYLt27dJ8qRk1alSOWxYPHDiQH3/8Ua/xaaM0vrdaTVBLTEykU6dOpKamEh397y5c+lgU+9KlS3Tt2lXzvEaNGsTExPDkyRPs7e2zlF26dClLly7VeQyCIAhC6ZCeno6HhweHDh2ibNmy7Ny5kz59+nDhwoVsGwyEhoYyb968LHceZ8yYkeedx+KY6Aq5i4+Pf22ZH3/8sUgktcK/ck12Fy9ezJgxYwCYOnUqvr6+hRJQfHw81tb/jiF9+XNcXFy2ZHfkyJGagd1iNzdBEAQhvywsLAgKCtI879y5M+XKleP06dPZkt2ff/6ZESNG4OfnB2TuhjVgwIDXDrMrriRJEju9lTBqdenc4TLXZHfq1KmaZLd27do5zibVB5VKlaWtlz9bWlrmeZ2JiQkzZswoUNuvG7NbFERfrI+9803MHR5nOydTS9Sv1IRKwd/DG/wD1af1KTYdqKtV2W5to+lq2RkZJWO9T5ncmNaTF+FWq4lW5R/fj6N725uEXaqh81j83K+y+Q8bKtXMHDL0rH1LfrcourO2taW0tsfd0gn3yMe4HvgL4/iivxnII/+67HQqGpPRCpPayIx403o8k9XmUWol7j734O5jO9wcn1LJ4TTu/IFF0ql813vXYiTBW94nIeH1/z7paszuggUL8lU+JiaGa9euaRLaV+XnzmNxZ2ZmpnldIuEt/iRJIi0tjZiYGCwsLAwdTqHLNdn18fFh3Lhx+Pn5kZaWpplZ+l/Dhw/XaUB+fn6cP39esybh+fPncXJyKnH/kLyp3CaimaZl0LzX/3AZ/O4b1738Vz+Oe0dz55lHnuXaNH1MF6seyF4/3LvYaDxqhtaJLoCDiyWHzlfj4yEn+XZdLdSSViOC8iQjg7d7nOG79bUwUfxbn62FHbZOFjyLuV3gNgqVTIaDsxfu6aa4n7uO/ZaDho4o3xyOn8F0QCNSEkrX1tRG6mSsko5gxRE8gboq4GXimfTm9bolLGVWjxjm7pzJ4yf6WTHjv9LT06lb998v8a/eEfyvtLQ0BgwYwJAhQ7JsG/tSfu48Fnfu7u7cuXOHR48eGToUQUeMjY2xtrbGwcHB0KEUulw/oTds2MCCBQtYv349aWlp2fb2hswxu9omu+np6aSnp5ORkUFGRgbJyckYGxtjbJw1hMGDBzN06FAGDBiAi4sLc+bMYejQofl7VaWMTYpEq+lLsazvX6B6LG2U/LwyjYDuaWRIOS/N1cjrJv2dB2GUUXJ6u2r2H4Nvq66vL/gfRnIjvl5bj0bNwnnnf67Epdi8cQx25o9Y+u1jeg6vl/2kvz8+4cfIfz9a4TMxM8fF0RP3R4m4Hz6F8k7xXipNplbjYudOZEK4oUMpMewTthHU/iELDn/H7ejcvyRmJMTrpGvX2NiYU6de/7dHrVYzaNAgFApFtqXCXnrTO4//dfv2bdzc3JDL5fm6rjCZmJhQrlw5Q4chCDqh1WoMrVu3Zv/+/QVqKCgoiJkzZ2Y5NmPGDIYPH06VKlUIDw+nbNmyAHz55ZdZZrv++OOPBltnt6jzUCtp+uM2TJycdVbn/wJP8O36+tmO15CfZkz7MZiYFv3bz9qqENCbRu8WfCe5K+di6NIhjusP8j+2vVGlC2za5YGbl03OBf7+m6Te3dnUwAlJXfR2TrO0d8bd1A736/dwOvg38pRUQ4ekU9cHvMWxpEhDh1GiGJuZo7BpwIwtU7j8wCnHMk9vPcLWy7HAbWnz2SBJEsOHDycyMpKdO3dm2zzppcDAQMqVK8dnn30GZO4gGhgY+NrVgv7LyMgILy8vJk+ezDvvvJOvawVByD+tkt3ioDQmu9XsfKn1/UZkJrrdICEtNZ2aPjcJv1NBc6yC7Arj2gzH1PL1M1GLC496LWnxyZcY6ah3JTEuhf4dLvL70TpalTcxSmH8iH/4bEndvMfEpaWBtTX73unE3TtFZxF6UwsrGseaUXZbwb4IF3UJXu5srm1r6DCKJZmRHCt7Z2zNrLFJVmP74Cm2V26hunYLmSTxyNiG1ha7uPAi+7+7hZnsjho1inPnzrFv375cl5YC2L17N0OHDuXAgQO4uLjQs2dP6tevn+8JalFRUURHR3Po0CGxZKYgFIJck10PDw+tBqXfvl00xhGWpmRXnqHGv3F3yk2Yrbc2Lpy4T31/K5LTLXBQxfBN7QGkOTzUW3tvSmYkx65cReQKM+TGJhiZKJCbKDAyNkH+ys9GJibIjf//uYkCY4Up5dv0xNg0f7viaWPu+NPM+NqPtIzc63a1uUPImlRadPbWrtLmzbnpouJIWvTryxaCMm4+NNt+GotbRSMefds2qgPPH4ptmvOiMLfEztYJW0mB7bNE7G7eweb8FeSJeQ/yTZSZ0t5mK0eeZV3XtrCS3aioKLy8vDA1Nc0yrG7JkiU0bdpUJ3ceBUEwrFyT3UOHDmlVQfPmzXUa0Jsq6cmuPEONKl2GpYk5NYaNx6FLb723Oe+T08xd7M2BPfHYhv3AkVPb9d6mtozNlPi26k6VzgOxdHI3dDjZ7P8tgv6DLHgUn314SYcGZ1i3vRI2DubaVzhlCunfLuKXLlVJS07UYaT5I5MZUa1MRWos/RWjjKI3pEJfTo7pR/i9S4YOo0iQyYywtHfGTmmDbZIau/tPsL10HYubb/7FJx0ZfexXsfXJYM2xwuzZ1Ze0tDT++usvzp8/z/Pnz7GxsaFGjRo0bNgQEx3fkRMEIXdiGMMrDJ3smqZlYKk2xlJphaWtE5buXliWr4JljbooK/ohK+TJDJIkcflMDFXqOKNOTWFrjzrEmxbODOrcKG0cqNSxPxXb9cVUZWXQWF7nbuRzura5y+mIzCWMzIwT+GziNT6eUyv/le3YAZ07E/ZhPyKiDZN0Ka3saHovA5c9YQZp35DudmjOPuVTQ4dRqOQmpljaOmJlqsIqzQirF4nYRt7D5txljBN0/4VLAkY7zOfHxxOA4p3sPn78mHnz5vHzzz9jZ2dHpUqVsLS0JC4ujsuXL/Ps2TOGDBnCpEmTSuXMeEEobAVfL0l4I/IMNVVd/LApXwXLStWxrFkPhWvR6qGUyWRUqZPZM2mkMKVarVYcDz9okFis3X3w6zIY72adkJsUjw1E3Lxs+OuyJaN6n+TICVs2/mpOzUZvkOgCNG4MMhk+l+8QoYO1R/PL1b0CTX4NQ3k3pvAbLwKcDp9E3rkKGWklZxUSyOyltbB1xMrcGivJGKu4FKwePMU64jYWEZeQFeIC9DLgh8cTcbZ/wKyn+Vsbt6hp2rQpI0aM4Ny5c7i5uWU7f+/ePUJCQmjWrBnh4WKlD0HQN9Gz+4rC6tk1TlfTqscYXIaM0ntbupSREM+v/RqQpCi8HmbnqvXw6zIUt9pNivXC5jrZicjPD+nKFX4d2oKE54Wz9qVMbkxtGx/8fvq1RK2r/Cb2/q8n9+5cM3QYb0xhbomDnQuOqXLsHjzD6tYdLK/dQp6UbOjQsllq25/+/yzC0r3gvZ6G6NlNTU3ValdPbcsJglAwome3kJmkqWkzaAJleg9+feEiRm6hwq9CQ05FntRrOzK5MZ4N21C161Dsfarota3CopNE3d8fWXg45cwcuYj+k12VXRmaXY3FcdNmvbdVHLgmwD1DB6ElmZEcG0c3HI1VOD5JwPHCdawuHi82X1hGPlsPNksNHcYb0zaBFYmuIBQOkewWItPUDNq+Nwf7jt0NHcobqzBlHheGtSDFRPe9u8Zm5pRv04MqnQaiKuOq8/qLPX9/WLYMn2MXuOit3951T4/KNA7Zi+LxM722U5y4nrkC5Qw7Zj03Sis7HKzL4JioxvHmfexP/oNJ7DlDh1Xq/fLLLxw9ehQ/Pz+GDRuWZVLa6NGj+f777w0YnSCUHrkOYxg0aJBWvVGrV6/WeVBvoqgPY1CmZhDw8ZfYtGynl/oL0/nR/TgXo9txZkYmCjoGr8Heu7JO6y1RbtyA8uUB+GN0Z54+iNJ5E3ITU+qauVPp5990XndJsGlYCxJfPDF0GEDme1XP1A23Y+dQ3dD9nwWDi4vTyQ5qhlqNYeHChSxevJiuXbty5MgRJEli586duLi4AGBlZZVlNzZBEPQn124KX19ffHx88PHxwdramt9++42MjAzc3d1Rq9Vs27YNGxubQgy1+LJIUdN+2pISkegCVJo8H5N03U5cqTf0E5Hovo6vL5QpA4BPsu5vf1o5uNLxZqpIdPPgaqW7nQoLwsTMnDaPFVRcva1kJrolwA8//MCePXv45ptvOHPmDF26dKFJkyZERWW+XyVkuowgFAu5DmOYMWOG5ud27dqxY8cOmjZtqjkWFhbG7Nn629SgpLBKURMwdw0W1d5wFn4RZOrhSQUHHy49v6WT+rz821OpfV+d1FXi+fvD1q2UCz3KqcauSBnpOqnWysGVzr8cx+S56GnKi+u959wwcAymFla0iUjC4djfBo5EyMujR4/w9f13+/CZM2fi6OhI06ZN2bt3b7GecCsIxY1WA9D++usvGjbMenu/QYMGHD9+XC9BlRS2KRLtv9xUohLdl/wmBCPPKHjvrpWrJ43fm/H6gkImf38AlHdjcHP10UmVchNTmp+5JxJdLbgeOolMZrhxu+bW9rS/8AyHY2cMFoOgHU9PT/75558sx8aMGUNQUBAtWrQgJaVkLWMnCEWZVv9q16pViylTppCUlLntY1JSElOnTqVmzZr6jK1Ys0+R0e7731FWKJm35pUV/fBVZV8/Mj/kClOaj/sCE6WFjqIqBf4/2QXwvhevkyrrKdywO3VBJ3WVdKYPn2Dv7GmQti3tnelwNAqbc2Jd1uJgyJAh7Nu3L9vx4cOHs3DhwhzX3xUEQT+0SnZXrVrF0aNHsba2xsnJCWtra8LCwvj555/1HV+x5JQqp93yUEzLljN0KHpV9ePZyNRvPu6s/ohJ2HlV0GFEpUDt2mBmBkDZHYcwURZsAo+XRxUqrtmmi8hKDVe1WaG3aVvGgw67L6K6ppuhQ4L+jR8/nvHjx+d4bsCAAdy8ebOQIxKE0kurpce8vLw4duwY0dHR3Lt3DxcXF8qWLavv2AqfDnYLck03peWaUIxt7HQQUNGmql0fb4U9Een530bVu1lnKrTpqYeoSjiFAurVgyNHkCcm4WXvyfU7b7Z9sKW9M41W79ZxgCWf6+Uo/inEv96OLt60/uUIpo9K13bFgiAIuqL14LMnT55w8OBBDh06RNmyZbl37x537tzRZ2yFL6lg+72XlSxote7PUpHovlTt/Wn5Xqje2t2bhu9O01NEpcCrQxku3X6jKoyMTWh+4TGKZy90FVWp4Xj0dKENvXFxr0DbNftFoltMSZLEhx9+aOgwBKHU0yrZPXToEBUrViQkJESzAsP169d577339BpcceJtZEPzdQeQWxR8XcjixLpZGzxk2r9mY1Mzmo9biImZuR6jKuEaN9b86HTgOBa2ZfJdRV0LT+z/OqvLqEoWe3twdMzxlFFaOi4O+r+zVdajMq2X7cAkVjdjs4XClZ6eTmBgIE+fii8qgmBoWiW7H330ERs3bmT37t0YG2eOfGjQoAEnTpzQa3DFgVGGmmp2PjRZtx8jM6WhwzGI6kPHaV22wTtTsS3r+/qCQu4aN4b/X7ZIJkl4mzrk6/KyHpWpvHKrPiIrXmxtoX59GDAAgoIgJAROnICnT+HxY8hjaUXXZ/qdSe/j4Ufzxb8iT0rWazuCfsTHx9OhQwfS09NZtWqVocMRhFJPqzG7kZGRtG7dGkCzNqBCoSA9XTdrfBZHMknC28Semp9+jqpmPUOHY1D2b/XC9ad53DNOzbOcb6tu+LbsWkhRlWD29lCxIly5AoDPkXNcKK/dJhMquzL4h+zVZ3S6I5eDjw/4+UGVKpn/d3KCpCRITHz9/1/+nJSUeV358lkfdq8ZblS/fq6n3P76B6rq5y5OZTc/6i3amO/hQULR8fXXX5OYmMju3buRy/W7tbcgCK+nVbJbpUoVQkNDadfu3x3A9u3bR7Vq1fQWWFHmrlZS+/0Z2LbpaOhQioxqfUZxb8uiXM/blPWlwdtTCjGiEs7fX5PsWl+4in2zt3hyPzLPS4zkxjS78gLF42eFEGA+yOWZu8O9TGhf/r9iRTA1NVxc1aqBUpmZLP+H6totrFq0I/bxPZ02WaNMJWp+u0GndQqFr1GjRixcuJC9e/fSvn17Q4cjCKWeVsnuF198QefOnenUqRNJSUm8++67/PHHH2zbVrqWLCqTKqf2wA9x6jvU0KEUOc6BIyiz6UceyrP37hqbmdNi3BcYmxb+kk0llr8/LF+ueeqTaMyT11xSy9obx02/6jeu1zExyewxbdYMqlfPTGwNndTmxtg4c6m3o0dzPO1qakMsOkp2ZTLqWftS5cdNuqlPMKjWrVvzxx9/0LdvX9atW0eLFi0MHZIglGpaJbsNGzbk/PnzhISEMHz4cDw8PDhx4gTu7u76jq9IsEmRqN1hEB6jP9GMlRT+QyajWvv+7N+bfe3lRu9+irV7yV5zuNC9siIDQLldYZxq6o46l+2D3T0q4rfIAImuXA516kCrVtCyZWbcFsVoE5EGDXJPdiMfccVEN81UL1OJKj/8opvKhCKhadOm7N69m969e3P16lVDhyMIpZpWye6XX37Jxx9/zIQJEzTHJEli+PDhrFixQm/BGZpFipqaDTrgMykYmYmOPtVKMPd3P8YubBtPk55rjpVv0xPvZp0MF1RJVaFC5moBjx4BYPbgEW6uLYiOvpKtqLm1Pf4bDhbOGFAjI6hRIzOxbdUKmjYFKyv9t6sveYzbdT50AqP2FVCnpxWoCXtnL2os21KgOoSiqXr16uzZs8fQYQhCqadVsvvzzz9jbW3NiBEjgMxEd+DAgTz6/w/aksY0LYNq5RtQKehr5JbF+IO6sMlkVGvQnkMHM8cc2npVpMGISQYOqgRr3BheGUrkfSeW6P8UkRnJaRaVglnMY/3EIJNljq9t2TLz0bz56yd+FScNGuR6yiQ2njJOXjy4e/2Nq5ebmNLk6A2M0krvZN+SztPTMNtLC4LwL62S3d27d9OiRQssLS3p2bMn/fv3JyEhgT/++EPf8RUqmbEx1ezLU3XmIhQuYt/yN+E56hOs/vmTpKR4WoxbiFxRBMdilhT+/lmSXY+dh1D0rEVq4r/rsta088Vp82b9tO/jAz//nG1IRYni5QVlysDDhzmedk024kEBqq9lURab86JXt6RLTEzkxo0bxMdnXTO58StrZguCoD9arbPr4uLCnj17mDhxIi1atCAtLY1t27Zhmo9JJU+fPqV79+5YWFjg6enJunXrciyXkpLC2LFjcXV1xdbWltGjR5OWVrDbhNoytrGj9tJfRaJbADITE6p2Hkzj94KwchU9Gnr1nyRTnpSMl92/v3MX9wpU+0lPidS778L58yU70X0pryXIzr95r66zmy9VxHrHJd7q1atxdnamVatW9O3bV/Po16+foUMThFIj157dnMbi9ujRg3Xr1jFw4EBWr14NwPDhw7Vq6P3330ehUBATE8O5c+fo1KkTNWrUwM/PL0u5efPmcerUKS5evEhGRgZvvfUWc+bMYebMmfl5XYIB+b41AJmR1jtRC2+qTp3MVQxS/t3gwPtCJNdsQWllR9Nfw5Cp1bpt09U1cxWI0rScUoMGsH17jqdsT/6DWZWmJMfmbzk3E6UF/rvPirV0S4EJEybw66+/0rZtW0OHIgillkyScv7XtmXLlq+/WCbjwIEDry2XkJCAra0tFy9epEKFCgAMGjQINzc35s2bl6Vs3bp1mThxIr179wZg3bp1TJw4kejo/45GzMrCwoKEhITXxiIIJUqTJllWC5BkMra+3ZZGUYm47AnTbVv9+sH332fuPFaa7NkDr6wx/l9HPuzLzejwfFXZWOlF+ZCSNQxM5+LiQFXwjTte99mwePFiVq1axYULF+jfv3+uO56tWrWKESNGoFT+u1Pm9u3bX7usWNmyZYmIiMBETHIWBIPJtWf3zz//1Fkj165dQy6XaxJdgBo1anDo0KFsZSVJ4tX8W5Ik7ty5w4sXL7C2ttZZTIJQIvj7Z0l2ZZJEm2ORWF26prs27Owyk9y+fXVXZ3FSv37mRLxcemFdY+K5mY/qPDwqUf4bsZ5uUeHq6sq0adMIDQ0lKYcNRF7VqFEjwsLy9yVy9uzZfPzxx8yYMQMHh/xt7S0Igm5oda95z549XLuW9cPz2rVr7N2r3baj8fHx2RJVa2tr4uLispXt0KED33zzDY8ePeLBgwcsWpS5K1diYmK2skuXLqVu3brUrVu3VG9dLJRiOYyZ1Wmi27EjXLxYehNdABubzO2Fc+F65JTW62+bWdrQaPNhHQUm6EKPHj3o1q0b9vb2eqm/QoUK/P777zg5OSGXy5HL5RgZGYlthAWhEGmV7L7//vtYWlpmOaZSqXj//fe1akSlUhEbG5vlWGxsbLY6AaZOnUqtWrWoWbMmjRs3plu3bpiYmFCmTJlsZUeOHMmpU6c4deoUxsZaLSwhCCWLvmZzq1SwZAns2AEuLvppozjJYwky5d0Y7JzKalVNwzglyrsxuopKKGRnz57FwcGBChUqMHv2bK06WQYNGsTgwYM5f/48165d49q1a1y/fj1bB5IgCPqjVbL78OFDXP7zgefi4sKDB9otulOhQgXS09O5fv3fmcvnz5/PNjkNQKlUsnjxYu7evcvNmzext7enTp064luwIOTEwSFzu11datIkc6WFkSN1W29xlkeyC+DK63eF83avgucWscFAYUtPT9fcAaxbty5Lly59o3qaNWvGxYsXefjwIb/++ivr16/n888/f+11T548YdasWVStWhUfH58sD0EQCodWya63t3e2iWgHDx6kXDnttoC1sLCgR48eTJ8+nYSEBI4ePcq2bdsYNGhQtrJ3797l3r17SJLEX3/9xezZs8VKDIKQF10t/2VqCvPnw6FD4O2tmzpLijyWHwNwvX4nz/MWNo40WBuqy4gELRkbG2vuAJ46dYqRb/glztvbm3LlymFkZES1atWYPn06m7VYw3rYsGGsWbPmjdoUBEE3tLr3HxQURI8ePRgxYgQ+Pj5ERESwcuVKVq5cqXVD33//PcOHD6dMmTLY29vzww8/4Ofnx+3bt6lSpQrh4eGaWauDBw/m4cOHeHh4MG/ePAICAt74BQpCiefvDwXdttvODg4cyNzqV8iuRo1sy7y9qszhkxj3qEl6Sg4TnGQy/O+koXj6XL8xCoVKJpORy2JGWZw4cYLFixfz2Wef4eTklOXc4cNi/LYgFAatkt2uXbuyZ88eVqxYwY4dO/Dw8CA0NJR69epp3ZCdnR2//fZbtuNly5bNsqtMs2bNiIyM1LpeQSj1CtqzK5fDhg0i0c2LQgE1a8Lff+d4Wp6SinMZT+5EX8l2rpJrZVy+3ajnAIU3lZ6eTnp6OhkZGWRkZJCcnIyxsXG2eSC7du2idu3aODk5ceXKFWbPnq1ZIjMv77zzDu+8846+whcEQQtaz+qqX78+9V9zK08QBAOoWDFz7O7jx292/bx5IBa8f70GDXJNdgFcY9P572AGKwdX6qwQ6+kWZf/dtGjt2rXMmDGD4cOHZ7nruH//foYOHUp8fDxOTk4MHDiQKVOm5FrvTz/9RMeOHRkyZEhhvAxBEPKQ66YS/3Xu3DmOHDnC48ePs9y6mTVrlt6Cyw+xqYRQqnXtCr//nv/rAgMhJET38ZRE69bBgAG5no71q8DWiv9uoS6TG9PxnhEOR08XRnQlTyFtKqEv7777Lrt378bW1pZOnTrRsWNHGjdujEzLZeoEQdAdrSaoLV26FH9/fw4cOMD8+fO5cOECX3zxBTdu3NB3fIIgaONNhjLUqgU//aT7WEqq19zZsrp0DZXdv2MyqzmUF4luKbZkyRKioqJYs2YNVlZWTJ48GWdnZwIDA1m7di2P3/ROjCAI+aZVsrtgwQJ2797N1q1bUSqVbN26lc2bN4vtDwWhqMhvsuvgAFu3witbnwqv4esLr9l4wNU8c4csO2dPaizfWhhRCUVctWrVmDhxIocPH+batWt069aNvXv3Ur16dRo2bEhoqFilQxD0TathDFZWVppNIezt7Xn06BFGRkbY2dnx9OlTvQepDTGMQSjVUlLA2jrX1QKyMDaGPXugZUv9x1XSdOgAu3fnejqqe1uOKJ7R+WoiNufCCzGwEqiYD2NQq9UYGeXdn3Ty5EmAfE32FgQh/7Tq2XV3d9eskFChQgW2bdvGkSNHUCgU+oxNEARtmZpC7dralV24UCS6b+o1m0u4HDxBHfOyItEVsLa2pn379gQHBxMWFkZaWlq2MvXq1ROJriAUAq1WY5gwYQKXL1/Gy8uL6dOn06tXL1JTU/nmm2/0HZ8gCNry94fjx/MuM2QIfPhh4cRTEr1m3K7i2Qsqr9xSSMEIRdnu3bs5cuQIR44c4fPPPyclJYUGDRrQrFkzmjVrRuPGjVGKYUSCUCi0Xo3hVampqaSmpqLSwS0mXRHDGIRS77ffoHv33M/XqweHD4OZWaGFVOI8fgyOjoaOonQo5sMYXiVJEufPn+fw4cMcOXKEgwcPEhcXR3JyskHjEoTSQqthDLVq1cryXKFQoFKpqFu3rl6CEgThDTRunPs5JyfYskUkugXl4AA+PoaOQihmXrx4QXR0NLdv3yYqKgqA1q1bGzgqQSg9tBrGkNMSY5IkcfPmTZ0HJAjCGypTBsqXh+vXsx43MYHNm8Hd3TBxlTT160NEhKGjEIq4zZs3c+jQIQ4fPsyzZ8/w9/enSZMmDB48mGrVqon1dgWhEOWZ7A4ePBjIHLbw8ueXIiMj8fPz019kgiDkn79/9mT3m2+gSRPDxFMSNWgA69cbOoqSx9QUbG3Bzi7z/8Zab/BZJPXp04fKlSszceJE+vbti6mp6esvEgRBL/L818Tnldt1r/4sk8nw9/fXal9wQRAKkb8/rFr17/N33oH33jNYOCWS2DZdOwoFVK4MlSplrk/8Mol9NaF99f8lbLJWWFgYhw8fZuPGjUyYMIHy5cvTtGlTmjZtir+/P1ZWVoYOURBKDa0mqIWGhtKuXbvCiOeNFYVJCIJgcJcvQ5UqmT83agQHD2YmHYLuJCeDlRXksJRUqeXpCdWqZT6qV8/8f8WKRaJ3tih8Nrw6QS0sLIxDhw7h6urK2bNnDRqXIJQWWv1LpFAouHXrFuXKlePBgwdMnDgRuVxOcHAwzs7O+o5REARtVaqU2UtmZga//ioSXX0wM8tM6E6Xwq2Ara2zJrTVqkHVqpnHhVy9nKAWHR1NZGQkT58+FTuQCkIh0qpnt3LlyoSGhlK2bFkCAwMBUCqVPHr0iN9//13vQWqjKHx7F4QioVcv+OST126AIBTA++/D998bOgrdksvB2Rk8PLI/3N2hbFlwcTF0lPlmqM+GVyeoXbp0ibJly9K0aVPNOrvly5cv9JgEobTK13bB6enpODk5ERUVhUKhwNXVlcePHxdGnK8lkl1B+H/PnmWOgxT0Z/XqzA06ihtX13+HGPw3oXVxKRLDDnTNUJ8NlSpV0iS2zZs3x8PDo9BjEAQhk1b/sllZWRETE8PFixepUqUKKpWK1NTUHLc/FATBwESiq39FfZKauTn4+WUON3g55KB69cyJYkKhuHLlCgD37t3D1dU12/mzZ89mW8O+KElLS+POnTti4wuhWJDL5djY2ODg4ICRUfYtJLRKdj/44APq1atHamoqX3/9NQBHjx6lUqVKOg1WEAShWKhYEWxs4Plzw8Yhk4G3d/ak1scHcvgHXyh8AQEBHD58GDs7O82xEydO0LVrV+7fv2/AyPJ2584dLC0t8fLyEmsCC0WaJEmkpaURExPDnTt3KFu2bLYyWiW7EydOpHv37sjlcs0SZG5ubvz000+6jVgQBKE4kMmgbl3Yt89wMXTuDD/9lLk7nlBkjRw5koCAAA4ePIhKpeLYsWP06NGDFStWGDq0PCUnJ4tEVygWZDIZCoUCNzc3rl69mmMZrQdoVahQIc/ngiAIpUqDBoZJdpVK+OILsX5yMfG///2PFy9e0LFjRyZPnszQoUMJCQmhTZs2hg7ttUSiKxQnOQ1feKnkzUYQBEEoDIYYt1urFoSEZG7WIBQbn376Kc+fP6dv375s376dZs2aGTokQShVxKAuQRCEN1GYS7vJZJnLyf31V6lIdCVJIi45ztBhvDEPDw/Kli2b5bFx40bUajUDBw7UHBNKBi8vL/ZpcZfn4MGDuLu7v1EbkZGRyGQy0tPTcy0zefJkzbyqgrSlT/v372f27NnExeXv73dKSgqVKlXi4cOHb9SuSHYFoYhJz0jn52M/U3t2bX44+IOhwyl17j2/x4cbPsRvuh/3n+cxgcjJKXPnMH1zd88cLrFgQYnfJESSJPaF76Ppgqb0+L6HocN5Y2vXrmXNmjVZHiEhIezYsSPLMUHQlUePHrF69Wrefffd15atWLEiv/zyi+b50aNHkclk2Y6pVKosyfXIkSNZunTpG8d45MgRevTowc6dO+nevTupqalZzn/++edUrVoVS0tLypUrx+eff645Z2pqyvDhw5k/f/4btS2GMQhCEZGekc7av9YyZ8ccIh5FZP7jc+oX3mshxmYWhrvP7jJv1zyWHVlGakYqkiRx8OpB+jfon/tF9etDVJT+gurVC5YuLfHLyUmSxL7L+wj6PYhjEcdwt3VncofJSJJULMeNNm/e3NAhCKXMqlWr6NixI0ql8rVlmzVrxqFDh+jTpw8Ahw8fplKlStmONW7cGONX1t7evXs306dPf6P4/vnnH/r06cO6desICAigX79+DBo0iPXr12vG2kqSxOrVq6levToREREEBATg4eFBv379AAgMDKRmzZoEBwdjamqar/ZFz64gGFhaehorj66k0qeVGLZqGJZmlvz2/m+82+xdTkedRq1WGzrEEu3O0zuMWTcG7yne/Hj4RwY2HMiVWVcwNTblVNSpvC/W11AGlQpWroRNm0p0oitJEqEXQ/Gf70/AVwFEP4vm+wHfc+OzG4xuObpYJroAixYtIiUlJc8yKSkpLFq0qJAiKlm8vLyYO3cuVapUwdbWlmHDhmVZD3jZsmX4+vpiZ2dHly5duHfvnubchx9+iIeHB1ZWVtSpU4cjR468tr2kpCSGDBmCra0tlStXZsGCBbkOEUhJSeGjjz7C1dUVV1dXPvroo2x/FoKDg3FwcMDLy4uQkBDN8R07dlCrVi2srKzw8PAg6P/au+uwKLMvDuBfuksQFxUGwUZBBQMsQCwUcxUVMRG71l1dO3BX18IObBHsXMVEFzswUDEQEUZQcQGla5jz+4NlfiCNw7wMcz/PM8/jvHHPgWWZw31vLFlS5u/JhQsXSvwja+PGjWjatCmio6PRqVMn3LhxQ3Tu5s2bmDNnTqFj+ceWP3v2DLq6uqhbty727duH9u3bY+bMmdDV1YWZmRnu3LmDffv2wdjYGIaGhti/f7/o3sjISAwcOBAHDx5Er169oKSkhCNHjkBRURHTp08XXTd79my0atUKioqKaNSoEfr27Yvbt2+LztetWxd6enq4d+9emb8vIiQh8fHx1K9fP1JXVycTExPy8/Mr8jqhUEjz58+n2rVrk7a2NnXu3JlevHhRavvq6uriTplhKlVWdhbtvrmbzOaaETxALZe1pDNPzpBQKCQiot03dxM8QG8+veE40+qJH8+nSQcnkfIEZVIcr0ge+z0o4kuE6HzbP9pS51WdS27kxg0iQLyvtm2JwsMr94vnmFAopAvPL1C7P9sRPEDGs41p+z/bKSMrQ+yxuPhsmDt3LtWtW5c8PT3Jz8+PgoOD6c2bNxQcHEz+/v7k6elJxsbGNH/+fInnVlYvX77kOoVi8Xg8srCwID6fT/Hx8WRnZyf6XgYGBpK+vj49evSIMjIyaMqUKdSxY0fRvb6+vhQXF0fZ2dm0Zs0aqlWrFqWnp5cYb86cOdSpUydKSEigDx8+UPPmzalOnToF8rly5QoRES1cuJDatm1LsbGx9OXLF7K1taUFCxYQEdH169dJQUGBZs6cSRkZGfTPP/+Quro6vX79WnT+2bNnlJOTQyEhIWRoaEinTp0iIqL3798TAMrOzi4yRwMDA3rw4IHo/fXr10U5Llu2jFq2bElfvnwhIqKoqCiSk5Oj+Ph4ysnJoZo1a1JaWhrVrVtXdExHR4eCgoJE7a1YsYJ+//13IiLau3cvKSgo0J49e0ggEND8+fPJ2NiYJk2aRBkZGXTp0iXS1NSk5OTkUv5LFk8oFFKLFi1o27ZtBY67uLjQhg0bir2vuJ9biRW7Q4YMocGDB1NycjLdvHmTtLW1iyxijxw5QkZGRvTu3TsSCAT0+++/U8uWLUttnxW7jLTIys6iXTd2Ub3f6xE8QNZe1nT26VlRkZvnKf8pwQPkd6/oPwyZiuHH82niwYmiInfc/nH0/t/3ha6bdHASaU3RopycnOIbS00lUlQUT5GroEC0cCFRMR9m1YFQKKSAZwHU9o+2BA+QyWwT2hG0gzKzMystZmmfDZs2bSJra2tSVlamkSNHlnjtunXrqFatWqStrU2jR4+mjIzii/N///2XVq9eTY6OjlSzZk1SUlIiQ0NDcnJyonXr1lFcXFxFvhyJ+b5omH5oOnVe1blSX9MPTS9Tbjwer0ARdP78eTIzMyMiojFjxtBvv/0mOpecnEyKior0/v37ItvS1dWlp0+flhivXr16dPHiRdH7nTt3FlvsmpmZ0fnz50XnLl68SDwej4j+X+ympKSIzg8aNIiWLVtWZNzp06fTjBkziKj0YldRUZFevXolen/9+nWqXbs2zZw5k9q3b0/fvn0rcD2Px6PTp0/T48ePyc7OjoiIXF1dRcdUVFQK/Hx36NCBbty4QUS5xW79+vVF5549e0YA6PPnz6JjNWrUoCdPnhSZa1ksWrSILC0tC/0/NmzYMFq6dGmx9xVX7EpkGENqaipOnDgBLy8vaGpqokOHDujTp0+RA/Tfv3+PDh06wMzMDAoKChg+fDhevnwpiTQZplJlCbKw6+YuNFzQEB4HPKCvoY+/p/yNh/MfwsXKpdAj26ZGTaGqpIpHUY84yrh64cfzMfHgRJjPM8eum7sw2m40wv8Ih88IH5gamBa63sbUBskZyXj75W3xjeZty/uj6tQBgoKAZcsAxeo3lYKIEPA8AG3/bAvnjc74nPQZPu4+ePvHW3h28oSyIncT72rXro0FCxZgzJgxJV536dIlrFy5EoGBgYiMjERERAQWL15c7PUGBgb49ddfERgYiC9fviArKwuxsbG4cuUKZs6cCX22dfMPMTY2Fv2bx+OJhip8/PgRvHwTRzU1NaGvr4+YmBgAwNq1a9GkSRPo6OhAV1cXiYmJiIuLKzHWx48fC8TL/++irs0fP39uAKCnpwcNDY0iz9+/fx8ODg6oWbMmdHR0sH379lJzy9/u9yscfPv2DT4+Ppg7dy50dHQKnMsbynDjxg107NgRANChQwfRsbZt24rGxX779g2vX7+GnZ2d6P5a+TazyRsn/P2xlJSUMuX+vc2bN+PAgQM4f/58obG5ycnJ0NXVLXebEvmtGhYWBgUFhQIbUVhZWSEoKKjQtUOGDMGRI0cQFhaGevXqYf/+/ejRo0eR7fr4+IhmBpa0HAdTMUSE9Kx0qKuoc52KVMsWZGPfnX34I+APRMVHobVpa2xx24KezXqWOCZRSVEJVnWtWLH7g/jxfPwZ8Cf23M7dsWpsh7GY23MuTPRLXvrJmmcNAHgU9QiNfmpU/IVt2wIhIRVPUFkZOHUKaN264m1UUXlF7pKzSxAcFQxTfVPsHLETI2xHcFrg5jdgQO6qD8HBwYiOji72uv3792Ps2LGw+O+Pm4ULF8LNzQ0rV66USJ5cWz9kPdcpFPDhwwfRv/l8PmrXrg0g94+XqHyTRlNTUxEfH486derg5s2b+OuvvxAYGAgLCwvIy8tDT08PRFRiLCMjI0RHR6Np06aFYn8vL37ez0n+3ADg69evSE1NFRW8fD4fzZo1A5A7AWvKlCm4cOECVFVVMWPGjDIXu5aWlggLC0PrfL9H9PT0cPDgQQwePBinTp1C+/btRec6deqEHTt2gMfjYfTo0QCAjh07Yv/+/eDxeAXG6166dAldunSBgoJCmXL5EXv27MHKlStx48aNIsdFv3r1CrNmzSp3uxLp2U1JSSn0V4WOjk6R66wZGRmhY8eOaNSoEdTU1HDs2DF4e3sX2a6npyeCg4MRHBxcYMYg8+MyszPRb0s/1J9fH1mCrNJvYIqUmpmKHht6wNPXE7W0ayFgWgDuz7sP5+bOZZp8Y2Nqg8f8x2ySWgXdDr8Ni8UW2HtnLzw6eiD8j3BsG76t1EIX+H/PenBkJU9SW7262ha60w9PR+9NvRGfGo9dI3YhbHkYPDp6VJlCtzxCQ0NhZWUlem9lZYXY2FjEx8dzmJXs2rJlC6Kjo5GQkIA///wTrq6uAHILxr179+Lp06fIzMzEvHnz0LZtW5iamiI5ORmKioqoWbMmBAIBli1bhqSkpFJjDR48GCtWrMDXr18RExODzZs3F3vt0KFDsXz5cvz777+Ii4vDsmXLMHz48ALXLF68GFlZWbh58ybOnTuHQYMGAcjttaxRowZUVVXx4MED+Pv7l/n74ezsXGQHor29Pfz8/NC/f3/cv39fdLxTp0548uQJgoKCREVw8+bN8f79e1y/fr1AsXv+/Hk4OzuXOZeK8vPzw7x583DlyhWYmZkVOh8TE4OEhAS0a9eu3G1LpNjV1NQs9AOVlJQELS2tQtcuXboUDx8+xIcPH5CRkYHFixfD0dERaWlpkkiVQW6hO3DbQJwNOYtPiZ/w9MNTrlOSSqmZqei9qTf+efMPdo/cjXtz76Fn85J7c79nzbMu/VE6U6Rbb2+h+/ruqK1bG2+83mCr29YyFbl5FBUU0cK4BR7xS+lZ/5Gd1AYOBKZNq/j9VRQRYeqhqdh0bRNmOM3AG683GNtxLJQUlSSei0AggI2NjehV0XVCv++0yft3eRfHZ8Rj2LBh6NatG8zMzGBmZoYFCxYAALp06QIvLy8MHDgQRkZGePfuHQ4fPgwA6N69O3r27ImGDRuCx+NBVVW1xCEJeRYtWoS6deuiXr16cHJyws8//1zs0lcLFiyAjY0NLC0t0bx5c7Rq1UqUGwD89NNP0NPTQ+3ateHm5obt27ejcePGAICtW7di0aJF0NLSwrJly0TLgJXFiBEjEBAQgPT09ELnunbtir1796JPnz549Cj391nDhg1haGgIIyMj0bAAeXl5tGnTBklJSaIhC0SEK1euFPuEXZwWLFiA+Ph4tG7dGpqamtDU1MSECRNE5/39/TFy5MhyLzsGQDKrMaSkpJCSkhKFhYWJjrm7u9OcOXMKXdurVy9av359gWM6Ojr08OHDEmOwCWrikZ6VTs4bnAkeoCVnlhA8QOuvrC/9RqaAlIwUsl9tT/Lj5Ong3YMVbufZh2cED/xQG7LoxpsbpDFZgxotaEQxX2Mq3M4UvymkOVmz5ElqOTlEWlrln5BmZkb03aSR6kAoFNKkg5MIHqBfj/5aaOKlpJX1s2H+/PklTlCztLSkI0eOiN7HxcURgCo/0ayiqvpqDHkTwriwdetW6tSpE2fxizN37lzy9vYWa5v379+n1q1bi7XNisjIyKBGjRpRbGxsiddxOkFNQ0MDAwYMwKJFi5Camorbt2/jzJkzcHd3L3Rt69atcezYMcTGxkIoFMLX1xfZ2dmoX7++JFKVaRnZGRiwdQACngfAx90Hi/sshnENY9yNuMt1alIlNTMVvTb2wo2wG/Ad6wu3dm4VbquJUROoKauxcbvlcCPsBnpu7AljPWNcn3UdtXVrl35TMax51kjJTEFYbFjxF8nLA9bW5WtYRSV3Dd3vhndJO6FQiMn+k7H1n62Y3X02Vv28SmrXyv2ehYUFQvKNzQ4JCUGtWrWKnGgmFArL9GKkw6dPn3D79m0IhUK8efMGa9euRf/+/blOq5A///wTM2bMEHu7S5cuFXub5aWiooLXr1/D0NCwQvdLbFOJrVu3Ij09HYaGhhg6dCi2bdsGCwsL8Pl8aGpqgs/nAwDmzJkDKysrtGjRArq6uvD29saJEycqNPuOKbuM7Az039ofF15cwM4ROzGu0zgAgK2ZLe6+Y8VuWaVkpMB5ozNuvr2Jg2MPYljbYT/UnqKCIqzqWpW+uQEDAAh6EwTnjc65he6v12Gka/RD7eVNUhP75hLr1gGtWlUwq6opr9Dd9s82zOkxBysHrpSKQlcgECAjIwM5OTnIyclBRkZGkROeR4wYgd27d+Ply5f4+vUrli9fjlGjRhXZpqKiIpSUlIp95Z1nqo6ePXuKHp3nf/3555/IysrC+PHjoaWlBUdHR/Tt2xeTJk3iOmWJaNOmDXr27Ml1Gj+uMrqbucCGMVRcelY6dffuTnLj5GjXjV0Fznlf8SZ4gKITojnKTnokpydTx786koKnAh1+cFhs7eY9ShfkCMTWZnV0/fV1Up+kTk0WNqFP3z6Jpc1sQTapTVKjGYdnlHzhiRNlH74weLBYcqtKcnJyyPOAJ8ED9PuJ3zkfupBfaZ8NixcvJgAFXosXL6aoqCjS0NCgqKgo0bVr164lQ0ND0tLSolGjRhW7zm5kZGSZXlVZVR7GwDDF4XxTicrGit2KSctMo27rupHcODnafXN3ofP33t0jeICOBR/jIDvpkZSeRB1WdiAFTwU68uBI6TeUw95bewkeoJcf2YdPcfIK3aYLm9LnxM+l31AOtitsqcPKDiVfFB1dtkK3QQOipCSx5se1nJwcGrd/HMEDNO/kvCpV6BKxz4aKYsUuI42K+7ll63XJsPSsdPTd0hdXX13F7pG7Mbr96ELXtDRpCRVFFdx9dxc/W//MQZZVX3JGMnpu6Il7EfdwaNwhDLIZJNb2bUxtAOSu99rEqIlY264Orr++jl6beqGefj1c+/UaamnXKv2mcrDh2WDP7T3IEeZAQb6YdSbr1Ml9/bdwfZFUVXPH6RaxCo20EgqFGH9wPHbd3IX5zvPh1c9LKoYuSNrZs2cRFBSEuLi4Amu6HjhwgMOsGEZ2SGzMLlO1pGWmoc/mPrj66ir2jtpbZKELAMqKyrAxtWGT1IqRlJ6EHut7VFqhCwCNf2oMNWW10td7lUHXXl1Dr029YGZghuu/Xhd7oQvkjttNzUzFm89vSr6wtCXINm4E8q3TKu2EQiE8fT2x6+YuLOi1gBW6xVi6dCnGjx8PoVCIY8eOQV9fH5cuXWLzUBhGglixK4PSMtPQZ0sfBL4OxN5RezHSbmSJ19ua2eJR1CNkZmdKKEPpkJSehB4beuBB5AMc8TxSKYUukDtJraVxS7Yiw3cCXwWi16ZeMK9pjmuzrsFQu2KzdEtjw/t/z3qJSpqk5uYGjBsnxqy4JRQKMe7AOOy+tRsLey/Esr7LWKFbjD179uDKlSvw9vaGsrIyvL298ffffyMyMpLr1BhGZrBiV8akZabBZbMLrr2+hn2j9pVa6AKArbktsgRZeMJ/IoEMpUNeofsw8iGOeB7BQOuBlRrPmmeNJx+eIEeYU6lxpMXVl1fRe1NvNDBsUKmFLgA0NmoMdWX10ovd4np2GzcGduwQf2IcEQqF8DjggT2392Cxy2JW6Jbi27dvou1glZWVkZ2djTZt2hS52xXDMJWDFbsyJK/Qvf7mOvaP3o8RdiPKdJ+tmS0AsKEM/0lMS0T39d3xMPIhjnoexYBWAyo9pg3PpmyP0mXAlZdX4LLZBQ0MGyBwViBqatWs1HgK8gpoadKy9OXHbGxy19zNT109d5yuhkblJShBOcIcjN0/Fntv78Vil8VY0mcJ1ylVeebm5ggNDQUANGvWDNu2bYOvry/09PQ4zoyRFpGRkZCTkytySbwfuVaWsGJXRuTfuvbAmANwty28oUdxjHSNwNPn4c67O5WYoXTIK3SDo4Jx1PMo+reSzMLieeu9yvpQhsuhl9Fncx80rNUQ12Zdq/RCN481zxpP+KX0rGtpAU2bFjy2eTPwX6+etMsR5mDsvrHYd2cflrgsYYVuGS1fvhzx8fEAgBUrVmDjxo347bffsG7dOo4zk16mpqa4evUq12lUW926dcPly5cLHb9+/TocHBygo6MDU1PTQucjIyPh4OAAdXV1NG7cuNB/I39/f/B4PGhoaKBfv35ISEiorC+hEFbsyoC8QjcoLAgHxhzA8HbDy92GnbmdzG8ukZiWiG7ru+Ex/zGOTzgusUIX+P+jdFneXCKv0G1UqxECfwmEgZaBxGLb8GyQlpWG159el3xh/qEMo0YBo4ue+CltcoQ5GLNvDPbf3Y+lfZZicZ/FXKckNZydndGpUycAQNu2bREeHo7Pnz9jwIDKfyLEMOWVmpqKR48eoXPnzoXOaWhoYMyYMVi9enWR9w4dOhQtW7ZEfHw8/vjjD/z888/4999/AQChoaEYP348fH19ERsbC3V1dYluzMGK3WpOXFvX2prZIuZbDD4kfBBzhtLhW9o3dPXuiif8Jzg24Rj6tugr0fh5j9JltWf34ouL6LO5Dxr/1BiBsyRb6ALl6FnPm6RmYQFs2VLJWUlGjjAHo/eOxoG7B+DV1wuLXBZxnZLUefv2Lf744w9MnjwZf/zxB96+fct1SlLL3d0dfD4fLi4u0NTUxKpVqwAA9+7dg52dHXR1dWFlZYV//vlHdI+9vT0WLFgAOzs7aGpqwsXFBfHx8XBzc4O2tjZat25dYMKgnJwcNm7cCDMzMxgYGOC3334rdXvnffv2oX379pg5cyZ0dXVhZmaGO3fuYN++fTA2NoahoSH2798vuj4xMREjRoxAzZo1wePxsHz5clGMnJwc/PrrrzAwMICZmRnOnz9fINb3PdtLlizB8OFFd2IlJiZi7NixMDIyQp06dbBgwQLk5BT/hCowMBDt27eHiopKoXNt2rSBu7s7zMzMCp0LCwvD48ePsXTpUqipqWHgwIFo3rw5Tpw4AQDw8/ODi4sLOnXqBE1NTXh5eeHkyZNITk4u4bsqPqzYrcbEuXWtrfl/43ZlsHf3a+pXdF3XFU8/PMWJiSckXujmseHZlP4ovRq68PwC+m3ph6a1myJwViD0NfUlnkOjnxpBQ0Wj9J71Nm1yx+ceO5Y7XlfK5QhzMHLPSPje88XyfsuxoPcCrlOSOv7+/mjZsiWePXsGDQ0NPH/+HK1atYK/vz/XqUklX19fmJiY4O+//0ZKSgpmz56NmJgY9OrVCwsWLEBCQgLWrFmDgQMHinoVAeDw4cPw9fVFTEwM3r17B1tbW4wePRoJCQlo0qQJli5dWiDOqVOnEBwcjMePH+PMmTPYs2dPqbndv38flpaWiI+Px7BhwzBkyBA8fPgQ4eHhOHjwIKZMmYKUlBQAwNSpU5GYmIiIiAgEBQXhwIED2Lt3LwBg586dOHfuHJ48eYLg4GAcP368wt+vkSNHQlFREeHh4Xjy5AkuX76MXbt2FXt9QEAAevXqVe44oaGhMDMzg1a+dcStrKxE49VDQ0NhlW/pRXNzcygrKyMsLKzcsSqCbSpRTeUVurfDb8PPww9D2gz5ofas6lpBTVkNdyPuYnDrwWLKsur7mvoVXb274nnMc5yceBK9rXpzlos1zxobAjfg9afXsKhjwVkekhTwPAD9t/aHRW0LXP3lKmpo1OAkDwV5hbIt/9akCeDllbtf2suXkkmukghyBJh3ch4ePz+PHV2mw7Nef8l+TaqqQBE9SNJmwYIFCAgIEA1lAICbN2/C3d0dw4ZVvANC4mbMAJ4+rdwYLVoA69eX+7aDBw/C2dkZzs7OAICuXbvCxsYGAQEBGDkyd8Wh0aNHw9zcHADQs2dPvHz5Ek5OTgCAQYMGYeHChQXanDNnDmrUqIEaNWpgxowZOHToEDw8PErMo169ehj939AlV1dX/PHHH1i0aBFUVFTQrVs3KCsrIzw8HM2bN8eRI0fw5MkTaGlpQUtLC7NmzYKvry/Gjh2Lo0ePYsaMGTA2NgYAzJ07t0BPdVnFxsbiwoUL+PbtG9TU1KChoYGZM2fCx8cH48ePL/KeCxcuYP78+eWOlZKSAh0dnQLHdHR0EPPfRjvFnZdUzy4rdquh5IxkOG9wxt2Iu/Af5w/X1q4/3KaSohJseDYy1bP7faHby7L8f+2KU96j9OCoYJkods8/O48B2wagWe1muPLLFc4K3TzWPGv43PSBIEcARYUifnVmZgJOTsCtW5JPrhIoAlj13wsnNgDYINkErK2BYOkfo56cnAxbW9sCx9q1a4fU1FSOMqp+oqKicOzYMfz999+iY9nZ2XBwcBC9r1Xr/xvOqKmpFXqf1+OaJ6/QBAAej4ePHz+Wmsf3bRZ1LCUlBXFxccjKygKPxysQI68w/PjxY6H4FREVFYXs7GwYGRmJjgmFwgJt5/f8+XNoa2sXe74kmpqaSEpKKnAsKSlJ1NNb2vnKxordaqYyt661NbOF91VvZGRnQFVJVWztVkUJqQnouq4rXnx8gVOTTsG5uTPXKYkepT+KelSm9ZGl2bmQcxi4fSCa12mOKzOvQE+D+2WabExtcnvWP79GszpFrLAwbVpuobtihVT3SOYIc7D52mbcfncHbm2GoW9LbobtoJoszfXLL79g3rx58PLygqqqKtLT07F48WL88ssvXKdWPhXoca0s36/rbGxsDHd3d+zcuVNsMT58+AALi9xOBT6fj9q1a4utbQMDAygpKSEqKgpN/1vBhc/no06dOgAAIyMjfPjw//kxfD6/wP0aGhpIS0sTvf/8+XORcYyNjaGiooK4uDgoKpZe7lV0CAMAWFhYICIiAsnJyaICNiQkRPT0wsLCAiEhIaLrIyIikJmZiYYNG1YoXrlRNaGurs51CpxLSk+i9ivbk4KnAh19eFTs7Z9+cprgAbr19pbY265K4lPiqeWylqQ8QZnOPzvPdToFdFjZgWxX2HKdRqU6+/QsKY1XIhsvG0pISeA6HZGXH18SPEB7b+0tfHL7diKAaO5cieclTtmCbHLd4UrwAP114S+u0xELLj4b6tatS8bGxmRsbEx169YlRUVFUlJSIkNDQ1JSUiJFRUUyNjaWeF7l8fLlS65TKFbbtm1px44dovd8Pp9q1apFFy9eJIFAQOnp6XT9+nX68OEDERF17tyZdu7cKbp+/vz5NHLkSNH7K1eukLm5ueg9AHJ0dKSEhATi8/nUqFGjAvGKsnfvXmrfvr3o/du3b+n7EqtOnTp08+ZNIiJyc3Ojfv36UVJSEkVGRlKjRo1EOW7dupWaNGlCHz58oISEBHJ0dCQAlJ2dTUREw4YNo6FDh1JWVhY9fPiQ9PX1yc3NjYiI3r9/X+DaPn360LRp0ygxMZFycnIoPDyc/vnnnyK/ho4dO1JQUFCxX2NOTg6lp6dTQEAAmZiYUHp6OmVmZorOt23blmbNmkXp6el08uRJ0tHRoS9fvhAR0YsXL0hLS4tu3LhBKSkp5ObmRq6uriV+TyuiuJ9b1rNbTSSlJ6Hnhp64//4+Dnsexs/WP4s9hmhziXd30b5+e7G3XxXEp8TDaZ0TXn16hTOTz6BHsx5cp1SAjakNdtzYUfyjdCl39ulZ/Lz9Z7QwboHLMy9DV12X65REGtZqCE0VTTyKeoRR7Uf9/8StW8DUqUDPnrnjdaWUIEcAt11uOBp8FKt+XoXfuv/GdUpS6+DBg1ynUK3NnTsXU6dOxezZs7FgwQL8+uuvOHPmDGbPno2hQ4dCQUEBbdq0wbZt2yoco2/fvrC2tkZiYiJGjRqFsWPHivErADZt2oSpU6fCzMwMqqqqGDduHMaMGQMAGDduHMLCwmBlZQVtbW38+uuvuHbtmuheLy8vDB06FHp6eujcuTOGDRtW7Jq1Bw4cwO+//46mTZsiOTkZZmZmmDNnTqHrEhMT8erVK9jZ2RWb840bNwoMDVFTU0Pnzp1F44kPHz6MUaNGQU9PDyYmJjh+/Dhq1sxdC93CwgLbt2+Hm5sb4uPj4eTkJJqQJwlyREQSi1aJNDQ0ZHYMVP6taw+PO1ypW9eazzNHC+MWODHxRKXF4Epcchyc1jnh9efXODP5DLo36851SoUcvHcQ7rvd8XzJ86IfpUuxM0/PYND2QWhp0hKXZlyqUoVunk6rOkEgFODO7/9tsBIdnbtzmrY28OABoKvLaX4VlS3IhtsuNxx7dAxrBq3BrG6zuE5JbGT5s+FHvHr1Ck2aNOE6DU7Iycnh7du3qF+/PtepSMzRo0dx/PhxHD16lOtUfkhxP7ds6TEp9/3WtZVZ6AK5vbt33t1BNfkbSSQuOQ5d1nWp0oUukLv8GAAER0r/xJ38Tj85jZ+3/4yWJi1xeUbV6tHNz4Zng6cfnkKQIwAyMoCBA4HUVOD0aakudIfuHIpjj45h7aC11arQrQqys7OxePFiUQ+emZkZFi9ejKysLK5TYxgRXV1dzJw5k+s0Kg0rdqUYF1vX2prb4nPiZ0TFR1V6LEnJK3TDYsNwdsrZKlvoAgUfpVcXpx6fwqAdg2BtYo3LMy5DR12n9Js4Ys2zRnpWOl59fAlMnJjbm3vgQOFtgqVEXqF74vEJrBu8Dr90k7JJU1Jg9uzZuHr1KrZv346QkBBs374d165dK/JRMlO1TZgwAZqamoVeEyZM4Dq1H9atW7dCq4ZUJ9Vv0J+M+Jb2Dd3Xd8dj/mMcG38M/Vr2k0hcO/Pc8Tx3392FqYGpRGJWpn+T/0WXtV3w9stb/D3lbzg1deI6pRLJy8ujFa9Vtdk2+OTjk3D1cYUNzwaXZlyCtpo21ymVyMY0t2c91XsVsM8PWLQI6C+5baPFKUuQhSE+Q3DqySl4u3pjhtMMrlOqlo4dO4aQkBDo6+duhtKoUSO0atUKVlZW8Pb25jg7pijFPbncvn07tm/fLuFsGHFgPbtS6FvaN3Tz7oYn/Cc4PuG4xApdAGhepzk0VDRwN0L619v9kvQFjmsdpabQzWNtYv3/R+lS7MSjExi8YzBam7aWikIXABoYNkCPeDW03uAPuLgAixdznVKFZAmy4LrDFaeenMJ61/Ws0K1ExRVO1W0oGMNUZazYlTJ5hS5XW9cqKiiitWlrqd9cIq/QfffvO5ybek5qCl0gt3cxIzsDLz9J7w5dxx8dh6uPK9rWa4uL0y9KRaELAPLR0fC/LMAHfRXg4EFAXvp+hWYJsjB4x2CcfnoaG4dsxHSn6VynVK0NGjQILi4uuHTpEl69eoWLFy+iX79+GDy46u9EyQpyRpqU9PMqfb+pZdjX1K/ouq6rqNB1sXLhJA9bM1s8jX6K9Kx0TuL/qLxCNyIuAuemnEOXJl24Tqlc8nZSk9Zxu8eCj2GIzxC0M2uHizOkp9BFejrQvz9UhXLo00WIbHU1rjMqt7xC98zTM9g0dBOmdpnKdUrV3qpVq+Dk5ITJkyfD2toaU6ZMgYODA/766y+uUyuRgoICsrOzuU6DYcosPT0dSkpKRZ5jxa6UyNu69lnMM5yceJKzQhfInaQmyBFI5YoAsUmxcFjjgIi4CJyfeh6OTRy5TqncGhg2gJaqllR+/48+PIqhO4einVk7XJh+AVqqktkq8ocRAZ6ewJMnuO81Fc81s6SuZz0zOxM/b/8ZZ56eweZhmzHFcQrXKckEZWVlLFu2DOHh4UhLS0N4eDi8vLygoqLCdWol0tXVRWxsLIRCIdepMEyJiAhpaWmIiYmBoaFhkdewCWpSIP/WtScnnkQvy4pt5ycu7czaAQDuvLuDjg07cppLeXxO/AzHtY6Iio9CwLQA2Dey5zqlCpGXl0crk1ZS17N75OERuO1yg525Hc5POy89hS6Qu1XqwYOAlxdquw0GFq7Fo6hHsDK24jqzMskrdM89O4ctw7ZgksMkrlOq1vJvAFASR8eq+8e2gYEBoqOj8ebNG65TYZhSKSkpoVatWtDWLvpJocSK3YSEBIwdOxaXL1+GgYEBVqxYIdozOb8JEyYU2H0mOzsbysrKSE5OllSqVUpCagKc1jkh9GMoTk06BefmzlynhJpaNdHAsIFUTVL7nPgZDmscwE/gI2BaADo36sx1Sj/EmmeNLde3IFuQDSXFoh/bVCWHHxyG2y43dGjQAeennoemqibXKZVdYCDw66/AgAHAvHmoD+T2rEcFY0yHMVxnV6rM7EwM3DYQ55+fxza3bZhgL/3LJFV1ZdltS05ODhERERLIpmLk5eVhYmLCdRoMIxYSG8YwefJkKCsrIzY2Fn5+fpg4cSJCQ0MLXbd9+3akpKSIXkOHDsWgQYMklWaVEp8Sjy5ru+Dlx5c4Pel0lSh089ia2+Luu7tSMYHh07dPcFjjgA9fP+DC9AtSX+gCuZsbZAoypeJR+qH7h6S30H3/HnB1BRo3BvbtA+TlIS8vD2uetVT0rOcvdLcP384K3WIkJCSgf//+0NDQAI/Hg7+/f5HX7du3DwoKCgXWWM3bKjW/9+/fl/qqyoUuw1Q3Eil2U1NTceLECXh5eUFTUxMdOnRAnz594OvrW6b7Ro4cKYk0q5T4lHg4rXPCq0+vcHryafRs3pPrlAqwNbPFl+QveB/3nutUSvTp2yc4rP2v0J12AZ0aduI6JbGQlklq/vf9MXz3cHRs0BEB0wKkq9BNTc1dQzcnBzhzBtD6/7ALa541Qj6EIFtQdSfwZGRnYMC2ATj//Dx2uO/A+M7juU6pyiprZwwA2NraFuiQsbe3l2yyDMOUm0SGMYSFhUFBQQENGzYUHbOyskJQUFCJ9504cQI1a9ZEp07Vo0Apq7jkODitc6rSW9famufutHL33V2Y1TTjOJuiffz2EQ5rHPDx20dcnH4RHRp04DolsalvWB/aatpFP0qPigKSkrhJLJ9zIefw1+n5GMmzxmbHv6AeJmU9WcuXA8+eAQEBQP36BU7l9ayHfgxFC5MW3ORXgozsDPTf2h8XX1yEj7sPxnUax3VKVVZep8qLFy8KdcasXLnyh9s3NjaGnJxcoeMqKiqoW7cuBgwYgIkTJ0JRkU2hYZjKIpH/u1JSUqCjU3ALUB0dnVLH4e7fvx8jRowo8hcFAPj4+MDHxwcAIBBI9wL7eb7furabRTeuUypSszrNoKmiibsRd+HWzo3rdAopUOjOuIj29dtznZJYFTtJbccOoIpsXdn7vxcQDKxrx20yFbVyJdCjR6HD+XvWq1qxm7/Q3TliJzw6enCdUpVW3s6YJ0+ewMDAADVq1IC7uzvmzp1bYqE6bdo0HDx4ENOmTYOxsTH4fD62bNmCQYMGoUaNGli7di0+fPiAVatWif1rYxgml0SKXU1NTSR919OUlJQELa3iZ2N/+PABQUFB2LlzZ7HXeHp6wtPTEwCgoaEhnmQ5lH/r2rNTzqJr065cp1QsBXkFtKnXBnfe3eE6lUJivsbAYY0DPiV+qpaFbh4bng02Xdv0/0lqt24BU6YA3brlLpPFkaA3Qdh0fROa1W6GuT3nQkWpai+xVKwaNYBiHlGb1zSHjpoOgqOCMbZj6ZORJCUjOwP9tvTD5ZeXsWvEriqVG1cEAgFsbGxE7/N/bgDl64zp1KkTXrx4AR6Ph9DQULi6ukJRURFz584tNv6+fftw5coV1K5dW3SsZ8+e6NatG0JDQ+Hg4AAnJydW7DJMJZJIsduwYUMIBAK8ffsWDRo0AACEhITAwsKi2HsOHDgAOzs7mJlVzUfk4pa/0JWWrWvtzO2w4sIKpGamQkOlavyxEZ0QDYe1DohNisWlGZdgV9+O65QqjTXP+v+P0uUNgJ9/BurVA44cAXR1Oclp/539GH1pMxx7dsHsyWehoqLOSR6VrSou/5aelY5+W/rhyqsr2DVil1SsFCEJioqKCA4ufk3q8nTG5P88at68ORYtWoTVq1eXWOx++vQJmpoFx6praGjg48ePAHI/H799+1aWL4VhmAqSyAQ1DQ0NDBgwAIsWLUJqaipu376NM2fOwN3dvdh7Dhw4gFGjRkkiPc7l7egV/m+4VG1da2tuixxhDh5GPuQ6FQC5ha79GnuZKHSB3G2DAeBJ2N3cZbFSU4HTpzkrdPfd3ofR+0ajS+MuODv5LNSraaGbx8bUBiHRIcgSZHGdCtKz0tF3S19ceXUFu0fuZoVuOeTvjMlTWmdMHjk5uVJXpHFxcUHfvn1x9epVvH79GlevXsXAgQPh4pK7MdDdu3dhamr6Q18DwzClIAmJj4+nvn37krq6OhkbG5Ofnx8REUVFRZGGhgZFRUWJrr1z5w6pq6tTUlJSmdtXV1cXe86SEJsYSxaLLEhtkhoFvgzkOp1yiU+JJ3iA/jz/J9epED+eT+ZzzUl7qjbdDb/LdToSIRQKSWeKNt3p0JAIIDp1irNc9tzaQ3Lj5Kjruq6UlpnGWR6SdPjBYYIH6HHUY07zSM1IJae1TiQ3To723d7HaS5VUVk+G1xdXWnIkCGUkpJCt27dIm1tbXrx4kWh6wICAujz589ERPTq1SuysLCgJUuWlNh2eno6zZkzh8zMzEhVVZXMzMxozpw5lJqaSkREnz59KvD5xzCM+Ems2K1s0ljsfk78TE0XNiW1SWp07dU1rtOpkEYLGpHLJhdOc+DH88lsrhlpT9Wme+/ucZqLpG3s2yC30F28mLMcdt/cTXLj5Kjbum4yU+gSEb2NfUvwAPkE+XCWQ2pGKnVZ24UVuiUoy2dDWTtjZs2aRYaGhqSurk716tWjhQsXUlZW1g/nuGLFih9ug2GY4skRScGuAGWgoaGB1NRUrtMos9ikWDiucURkfCTOTzsvtVvXjt47GueencOXdV+KXTWjMvHj+XBY64C4lDhcnnEZbc3aSjwHzvzzD3K6OCLABOj+Jg3KyqoST2H3zd0Y5zsO3Zp2w6lJp6CmrCbxHLhCRNCbrochrYdgu/t2icdPy0yDy2YXXH9zHftG7cMIuxESz0EaSMNng7a2dqFxwwzDiI/EdlBj/u9z4mfYr7ZHZHwkAqYFSG2hC+ROUotLiUP4l3CJx46Kj4L9GnvEp8TjyswrslXo8vnAoEFINTGCWyfCCw52Utt1cxc8DnigW9NuOD35tEwVukDueE1rnjWCo4qf/FRZUjNT0XtTb/zz5h/sH72fFbpSrpr0OTFMlcWKXQmrblvX5t9cQpKi4qNgv9oeCakJuDLzCtrUayPR+JxKSwP69QOysvDNbx+SlSW/k9rOGzsx7sA49GzWE6cnn4aqkuR7lasCG54Nnsc8l+gktbxCNygsCAfGHIC7bfETfRnpwMVTMYaRJazYlaDquHVtU6Om0FbTxt0IyRW7kXGRsF9tj2/p33D1l6toXa+1xGJzjih3Dd2nTwF/fxjbOkFXXVeixa7PDR94+nrCubkzTk46KbOFLpC7/FuWIAsvYl5IJF5eoXsj7AZ8x/pWyQ1dGIZhqhpW7ErIx28fYb/GHtFfo3Fh2gV0bNiR65TEQl5eHm3rtZVYz25kXCTs1/y/0M1bfktmeHsDfn6AlxfQq5fEH6XvCNqB8b7jcwvdibJd6AL/X/5NEt//lIwUOG90FhW6w9oOq/SYjGSwYQwMU7lYsSsBBbaunX6x2hS6eWzNbPE85jmSM0re/vlHvf/3PTqv7oyk9CQE/hIo2rJVZly9Cvz2GzBwIDBvnuiwtYk1nkU/Q2Z2ZqWG3/bPNkw4OAG9mvfCyYknpXdnNDGqZ1APeup6ld6znlfo3np7C34efqzQrWY6dqxenwkMU9VIZAc1WSYLW9famttCSEI8eP8AXZp0qZQYEf9GwGGNA5IzknH1l6toxWtVKXGqrPfvAVdXoGlTYN8+IN8YPxtTG2TnZOPFxxeV9gfA1utbMdl/MlysXHBs/DFW6P5H1LMeWXk9u3mF7p13d+A/zh+urV0rLRZTObKysvDmzRvExcUV6MV1dHQEAAQEBHCVGsPIBFbsViJZ2bq2nVk7ALmT1Cqj2I34NwL2a+yRmpmKwFmBaGnSUuwxqrTU1NwJaUJh7g5p3209mlfgPop6VCnF7pbrWzDFfwordIthzbPGuivrkJmdKfbvTXJGMpw3OONuxF34e/hjcOvBYm2fqXy3bt3CoEGDkJmZiaSkJGhrayM5ORnGxsaIiIjgOj2GkQlsGEMlkaWta3XVddHUqGmlTFJ79+UdOq/unFvo/iKDhS4RMGYM8OIFcPgwYG5e6JK8R+mV0bu4+dpmTPGfgj5WfXB8wnFW6BYhr2f9ecxzsbabnJGMnht64m7EXRwad4gVulJq5syZmD17NhISEqClpYWEhAQsXLgQkyZN4jo1hpEZrNitBB8SPsB+jT3+TfkXl2dcFi3PVZ3ZmtviXsQ9sU60CP8SDvs19kjPTse1WdfQwqSF2NqWGqtWAUePAitWAN27F3lJ3qN0cY8b3RS4CVMPTUXfFn1xbMIxKCsqi7X96sLa5P896+KSlJ6EHut74F7EPRz2PIxBNoPE1jYjWWFhYZg+fXqBY7///ju8vb05yohhZA8bxiBmeYWurO3oZWtmi923diMsNgyNFGoAMTE/1B4/gY9J+z1gLsjCDvcdaBRPQPxT8SQrLUJDgblzc8fq/vZbiZfamNpg7eW1YnuUvjFwI6Yfno7+LfvjsOdhVuiWwNTAFDU0aiA4KhjjMf6H20tKT0KPDT3wMPIhjngewUDrgWLIkuGKjo4OkpKSoKurCyMjI7x8+RL6+vpISUnhOjWGkRms2BUjWd661tbcFnVTAOGkScD5W0DWjy2ybwLgct4b/yE/mp70srICdu8uMCGtKNY8a9Gj9B9djm391fWYeWQm+rfsjyOeR6CkqPRD7VV34uxZT0xLRI8NPRAcFYwjnkcwoNUAMWTIcGnAgAEICAjAsGHDMHbsWDg4OEBJSQmDBrHeeoaRFFbsiklUfBQc1jjI5o5efD6arNiE8KOAgtw/wFgPoEePUgu0osR8/YiFZxZAkCOAV18v8Ax44s9XWsjJAfb2gIZGqZfmPUoPjgz+oWLX+4o3fjn6Cwa0GoDD4w6zQreMrHnWWHN5DTKyMyq89nBiWiK6r++OR/xHOOp5FP1b9RdzlgwX1q9fL/r3rFmz0LZtWyQnJ6N7McOSGIYRP1bsikHe1rVf077iyswrsrOjV1RU7ljSPXsgB+BqO2NsaK2Gy+t3VKi5sM9hsF8zCQIzRVybdQO8Os3Em281lvco/RG/4r2L6y6vw6xjszCw1UAcGneIFbrlYMOzgSBHgOfRzyv0/3/+QvfY+GPo17Kf+JNkOMXn8xETEwMTExOYmJhwnQ7DyBQ2Qe0HCIVCHH90HJ1WdZKtrWujooDx44EGDYC9ewEPDyA8HI9+98DVtLdITEssV3M5whz43fND5zWdIRAKcG3WNTRjhW65/Mij9M+JnzHVfypmHZuFQdaDWKFbAfmXfysPIsL119dhv8Yej/mPcXzCcVboVjOfPn1C586dUb9+fQwYMAD169dH586d8fHjR65TYxiZwYrdChAKhTgWfAxWy6wwaPsgqCmrycbWtZGRgKdnbpG7bx8wbhwQHg5s3QqYmMDW3BZEhAeRD8rUnCBHgIP3DqLpoqYYvns4amrWxPVZ11mhW0E2PBs8j3mOjOyMMl3/6dsnzDwyE/Xm1sPWf7Ziov1E+Hn4sUK3Anj6POhr6pd522AiwrVX19B5dWc4rnVEbFIsTk06hb4t+lZypoykTZw4EVZWVvj69Ss+ffqEr1+/okWLFpgwYQLXqTGMzGDDGMohryd32bllCP0YisY/NYafhx9cW7tCQV6B6/Qqz/v3wJ9/5ha48vK5Be/vvwN16xa4rG29tpCTk8Pdd3fRtWnXYpsT5Ajgf98fy88vx9svb2FZ1xLHJxxH/5b9IS/P/v6qKGuedZkepX/69gl/XfwLO27sQHZONtzbuWN+r/mob1hfgtlWL3JycrA2Kb1nnYhw7fU1LDm7BLfCb6G2bm1sGroJHh09KjzWl6nabt26hU+fPkFJKfePSA0NDaxatQp16tThODOGkR2s2M3v9GkgLq7QYaFQiOCoYJx7dg4fv31Cf92fsMdyHGyMbSD/PA14vlfyuUrK3bvAgQOAggIwcSIwZw5QzC9pbTVtWNS2KHZzCUGOAH73/bD8/HKEfwmHVV0rnJx4En1b9GVFrhjkPVkIjgoustiN+RqDvy7+BZ8bPhAIBRhhOwLznefD3LDwRhVM+dmY2mDVpVVFTlIjIlx9dRVL/16K2+G3UUe3DjYP24yxHcayIrea09PTw8uXL2FlZSU69ubNG+jq6nKXFMPIGFbs5rd8OfCocM+MPIA2/71yfQbO7QSwU2KpcUZFBZg0KbfIrV271MvtzO1w5OERCIVCUQGbN1xh+fnlePfvO7QwboFTk06hj1UfVuSKkUkNE+hr6hfqXYz5GoOVF1Zi582dEAgFGGk7EvN7zYdZTTOOMq2e8nrWn0U/E63GQkS48vIKlv69FHfe3UFdvbrYMmwLxnYYy3ajkxGzZ8+Gk5MTxo4dCx6Ph6ioKOzduxdeXl5cp8YwMoMVu/mdPw9kZyNHmIOzIWex4eoGhP/7Do1qNcSMLjPQy7KX7BVnOjqAllaZL7c1s4XPDR+8/vwaDQwbwPeeL/4I+AMR/0agpUlLnJ58Gn2s+kCuAsuSMSWTk5ODDc9GtG1wdEI0Vl7MLXKFJMQou1GY13Me6tWsx3Gm1ZMN77+e9chgtDZtjcuhl7Hk7yW4F3EPxjWMsc1tG0a3H82KXBkzbtw4mJubw9/fH8+ePUPt2rVx6NAhODo6cp0aw8gMORLn/q4c0tDQQGpq6g+1kSPMweEHh+F13gtvPr9BszrNsNhlMQa0HCB7RW4Fvfn8Bo0XNoZra1c8eP8A7+Peo5VJKyzpswS9LXuzIreSzT81H6surYJHBw/sub0HQhJitN1ozHOeB1MDU67Tq9aICIa/GKLxT42RnZON++/vw6SGCeY5z8Mou1GsyOWIOD4bGIaRbqxn9z9EBNsVtngY+RDN6zRnE6YqqGGthtDX1MeRh0dgw7PBxiEb0cuyFytyJSRvvdfdt3ZjdPvRmNtzLityJUROTg42pja4+OIiePo8+Lj7YKTdSLbVsozLysrC8uXLcejQIXz8+BG1a9fGkCFDMH/+fKiqsvHaDCMJrGc3nx1BO1BTqyb6tejHitwfcO3VNWTlZKG7RXdW5EpYtiAbe27vQY9mPcDTl+Hd5zjyIuYFnkc/x0DrgazIrSK47tkdO3Ys3rx5g/nz54vG7K5YsQL169fHnj17OMuLYWQJK3YZhmGYaovrzwZ9fX28e/euwOoLCQkJqF+/PhISEjjLi2FkCeu+ZBiGYZhK8tNPPyEtLa3AsfT0dBgZGXGUEcPIHokVuwkJCejfvz80NDTA4/Hg7+9f7LURERHo3bs3tLS0YGBggNmzZ0sqTYZhGEbGlOfzydvbGz/99BN0dHQwZswYZGZmlti2u7s7evTogZ07d+LChQvw8fGBs7MzRowYgWvXroleDMNUHokNYxg6dCiEQiF2796Np0+folevXrhz5w4sLCwKXJeVlYUmTZpg8uTJGD9+PBQUFBAWFgZLS8sS2+f6URXDMAxT9ZTls6Gsn0+XLl0SFam1a9dG//790a5dO6xcubLYtuvVK32pPzk5OURERJTtC2IYptwkUuympqZCT08PL168QMOGDQHk/rVbp06dQr8kfHx84Ovri5s3b5YrBit2GYZhmO+V9tlQns+nYcOGwdTUFH/++ScAIDAwEG5ubvj8+XPlfQEMw/wwiQxjCAsLg4KCgugXCQBYWVkhNDS00LX37t2DqakpevbsCQMDA9jb2+P58+eSSJNhGIaRMeX5fAoNDS2w7a+VlRViY2MRHx8vkVwZhqkYiayzm5KSAh0dnQLHdHR0kJycXOja6OhoXL9+HWfPnkWXLl2wYcMG9O3bF69fv4aycsGlfHx8fODj4wMASEtLg4aGxg/nKhAIoKhY/m9LRe6TZKyK3sdyFM99LEfuYlX0PpajeO6TdI7fS0tLg42Njei9p6cnPD09Re/L8/n0/bV5/05OToa+vv4P58owTCUhCXj8+DGpqakVOLZmzRrq3bt3oWv79OlD9vb2ovdCoZC0tbXp6dOnlZ4nEZG1tbXE7pNkrIrex3IUz30sR+5iVfQ+lqN47pN0juVVns8nS0tLOnLkiOh9XFwcAaC4uLhKz5NhmIqTyDCGhg0bQiAQ4O3bt6JjISEhhQb/A4ClpSXbiIBhGIaRiPJ8PllYWCAkJKTAdbVq1WK9ugxTxUmk2NXQ0MCAAQOwaNEipKam4vbt2zhz5gzc3d0LXTt8+HDcu3cPV69eRU5ODtavXw8DAwM0adJEEqkyDMMwMqQ8n08jRozA7t278fLlS3z9+hXLly/HqFGjJJ80wzDlIrF1drdu3Yr09HQYGhpi6NCh2LZtGywsLMDn86GpqQk+nw8AaNSoEQ4ePIgJEyZAT08PZ86cwdmzZwuN160s+cdyVfZ9koxV0ftYjuK5j+XIXayK3sdyFM99ks6xIsr6+dSjRw/Mnj0bDg4O4PF44PF4WLp0qcTyZBimYqrNdsEMwzAMwzAM8z22XTDDMAzDMAxTbbFil2EYhmEYhqm2WLHLMAzDMAzDVFsyXey+evUK8+bNQ9++feHo6Ii+ffti3rx5ePXqVaXE4/P5OHXqFMLCwgqdO3ToUKXEzM/GxgYJCQlibfP27dv49OkTACAzMxMLFy6EtbU1rK2tsWTJEmRlZYk1nlAoxObNmzFx4kScPXsWADBnzhxYWlpixIgRiIuLE2s8hilNWFgYTp06hQMHDhT7/3d1sXr1aqSlpVVqjDdv3mDTpk3YtGlTtf5eMgwjOTI7Qe3QoUOYOHEi+vTpAysrK+jo6CApKQkhISE4e/Ystm/fDldXV7HFu3jxIgYPHox69erh7du3GDVqFDZt2gQFBQUAgLa2NpKSksQSa8SIEUUeP378OHr37g1VVVUcOHBALLEaNGiAGzduwMjICFOnTsWTJ0/wyy+/AADWr18Pa2treHt7iyUWAEydOhVBQUHo0aMHLly4gNatWyMhIQGjR4/G/v37oaSkhCNHjogtHpBbzISGhiI5ORlaWlqwsLAosLVodbJ69WpMnjwZ6urqlRbjzZs3uHz5MgCge/fulfK9jIuLw7t372BpaQk1NTU8e/YMV69ehaWlJZycnMQSg8/nw9XVFSEhITA3Nxf9Dnn37h2srKxw+PBhmJiYiCUWAHz+/BmjR4/GnTt3YGFhgTVr1sDOzk50Xpy/Q65du1bk8cGDB8PHxwe6urpwdHQUSyx7e3t4e3ujZcuWOHnyJEaOHAkHBwcAQFBQEHx9fdGnTx+xxGIYRkZxu6cFd0xNTenWrVtFnrt16xbxeDyxxmvVqhWdO3eOiIg+f/5MTk5O1KtXL8rMzCQiIk1NTbHFUlVVpU6dOtHSpUtpyZIlopempib9+uuvtGTJErHF0tDQEP3b2NiY4uPjRe8TEhLIyMhIbLGIiIyMjCg2NpaIiKKjo0leXp4SEhKIiOjr169Us2ZNscWKioqidu3akZqaGjVr1ozat29PzZs3J3V1dbK1taWoqCixxSIi+vTpE/Xo0YO0tbXJ1taWbt++XeC8lpaW2GIFBgYW+dLX16cTJ05QYGCg2GJ17tyZHj9+TEREJ06cIE1NTXJxcSEXFxfS1tamM2fOiC0WEdHp06dJXV2datasScbGxhQQEEBGRkbUr18/MjAwIG9vb7HEcXR0pN9++41SU1MLHE9JSaHZs2eTg4ODWOLkGTx4MI0ZM4YeP35M3t7eVKNGDfLz8xOdF+fvEDk5OapTpw6ZmpoWeCkoKJCxsTHVq1dPbLF0dXVJKBQSUe4OZUFBQaJzt27dIgsLC7HFYhhGNslssauhoUFpaWlFnktNTS1QxImDtrZ2gffZ2dnk6upKXbp0odTUVLF+UIWFhVG3bt3I1dWVoqOjRcd/+uknUaEoLk2aNKEHDx4QEVH9+vULtP/lyxfS1dUVazw9PT3KysoiIqK0tDRSVFQUvRcIBKSnpye2WKyYEQ9JFzMWFhZ0/vx5IiI6deoUaWho0MOHD4kod2tYc3NzscTR0NAQ/bH6vYyMDFJXVxdLnDyGhoaUnp4ueh8SEkJ16tQhHx8fIhLvH0NLliyh5s2b04ULFwocr4zfIQYGBqI/kg0MDCg7O1t0TiAQiPXnnmEY2SSzxW6/fv1oyJAhFB4eXuB4eHg4DRs2jPr16yfWeDwej/h8foFjQqGQRo8eTba2toX2ZheHQ4cOUcOGDWn16tWUnZ1doFdUnDFMTU1pz549tHLlSmrdujX5+vqSr68vtWnThiZNmiTWeM7OzjR69Gi6cOECjRgxgqytrWnFihWUlJREf/31F9nb24stFitmxEPSxUz+PyxzcnJIUVGx2PM/onHjxnTixIkiz508eZIaN24sljh5atSoQcnJyQWOvX37lkxNTWnNmjVi/fkgInr37h317NmT+vXrJ3qKURk/HxMnTqShQ4dScnIyzZw5k5YtW0ZCoZBycnJo+fLlZGtrK9Z4DMPIHpktdhMSEmjIkCGkrKxM6urqZGRkRBoaGqSiokJDhw4VPRoXl7Fjx9LSpUuLPDd+/HiSk5MTa7w8iYmJNH36dLKwsCBNTU2xf1AREV2+fJns7OxIWVmZ5OTkSE5OjoyNjWnRokUFChtxiIyMJGdnZ2rSpAnt2LGDXr16RSYmJiQvL0/m5uYUEhIitlismBEPSRczTZo0oUuXLhER0dmzZ0lTU1M0jOLp06dUv359scS5evUq6ejoUPv27WnSpEk0d+5cmjx5MrVv3550dXXFOhSEiKhr1650/PjxQscjIyPJ3Nyc5OXlxRovz9GjR6lBgwbk5eVFNWvWFPvPR1paGrm5uZGOjg41b96c5OTkSEVFhVRUVKhBgwb08uVLscZjGEb2yOwEtTxpaWkICwtDSkoKNDU10bBhw0qZnJOVlQWBQFBs23w+X6yTWb739OlTBAUFYfz48VBVVa2UGEKhELGxsVBTU4Ourm6lxCgKESEhIQH6+vpibTcwMBADBw5Es2bNCkxifPr0KUJDQ3HixAmxTdIBgG7dumH8+PEYOHBggeNRUVHo0qUL3r9/j5ycHLHFy3Ps2DHMnz8fI0aMwMaNG/HixQsYGhqKrf309HSMGzcO586dA4/Hw/Pnz0Xbf5uYmOD06dNo2rSp2OIdPXoU7u7u0NPTQ5MmTeDu7o7Zs2ejc+fOuHnzJpYsWYJJkyaJJVZ8fDxOnjyJ0NBQ0e8QCwsL9O/fHwYGBmKJkef+/fv4+vUrevToUehcTEwMdu/ejUWLFok1Zp6UlBQsWbIEgYGBuHbtGvT09MQeIywsDPfv30d0dDTU1NRgaWmJTp06QVFRUeyxGIaRLTJf7DJMSapKMfPx40fs2rWr0oqZ1NRULF68uNoUMx8/fkR0dDRsbGwgLy+Pq1evIiQkBK1bt0anTp3EFofP5+PRo0dFrtBx6NAhDB06VGyxJB2vusZiGEYGcdqvzDBSSiAQFDssRdrjVddY4o534cIF0tLSIktLS1JTU6OJEyeSQCAQnRf3sBNJxssfS1VVVWKxJPF9ZBhG9rCeXYapgMzMTKirq1fKsAKu41XXWOKOZ21tjWXLlqFXr16IjY3F8OHDoaKigpMnT0JZWRlaWlpITk4WQ9aSj1ddYzEMI5tYscswxRgzZkyx5wQCAfz8/MRapEkyXnWNJcl4Ojo6SExMLND28OHDERcXh7Nnz6JWrVpiLdIkGa+6xmIYRjbJ9HbBDFMSf39/qKmpoU6dOoVedevWlep41TWWJOPp6enhw4cPoveKioo4dOgQTExM4OTkJPbeaknGq66xGIaRUdyOomCYqsvGxqbY3b3S09PFvlycJONV11iSjCfp5QQlGa+6xmIYRjaxNV0YphijRo2CUCgs8pySkhIWL14stfGqayxJxtu6dSsEAkGR57Zv34558+aJJQ4X8aprLIZhZBMbs8swDMMwDMNUW2zMLsMwDMMwDFNtsWKXYRiGYRiGqbZYscswDMMwDMNUW6zYZRiGYRiGYaotVuwyDMMwDMMw1db/ANrNFqsfiSeQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot stack loss vs. time (or measurement) chart\n", + "fig_stack = plot_stack(\n", + " dstack=stack, # dataframe measurements\n", + " fill_factor=ref['ff'], # dataframe reference STC\n", + " title=mlfm_meas_file, #\n", + " xaxis_labels=12, # show num x_labels or 0 to show all\n", + " is_i_sc_self_ref=False, # is isc self referenced?\n", + " save_figs=save_figs # save the figure?\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [G] Stacked loss values (y) s. date and time (outdoor) or matrix measurement (x)\n", + "\n", + "# [H] Fit mpm to measured weather and normalised losses \n", + "\n", + "Perform a Mechanistic Performance Model (MPM) fit to the lfm parameters \n", + "poa_global (W/m$^2$), temp_module (C), wind_speed (ms$^-$$^1$). \n", + "\n", + "\n", + "mpm_a = c_1 +c_2\\*(t_mod-25) +c_3\\*log10(g) +c_4\\*g +c_5\\*ws +c_6\\/g (deprecated) \n", + "\n", + "mpm_b = c_1 +c_2\\*(t_mod–25) +c_3\\*log10(g)\\*(t_k\\/t_stc_k) +c_4\\*g +c_5\\*ws\n", + "\n", + "\n", + "Report the fit (coeffs) and error (errs) coefficients. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Choose which normalised lfm parameter to model e.g. pr_dc or i_sc..v_oc " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "lfm_sel = 'pr_dc'" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nfev = 22 \n", + " \n", + " mesg = `ftol` termination condition is satisfied. \n", + " \n", + " ier = 2 NOTE : if ier in (1,2,3,4) then fit found\n" + ] + } + ], + "source": [ + "# add selected variable to measured data frame to ensure data indexes match.\n", + "meas_temp = meas.copy()\n", + "meas_temp[lfm_sel] = norm[lfm_sel]\n", + "\n", + "# try to fit measurement data and print outputs \n", + "\n", + "\"\"\"\n", + "# full_outputboolean, optional\n", + "If True, this function returns additioal information: \n", + " infodict, mesg, and ier.\n", + " \n", + "https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html\n", + "\n", + "mesgstr (returned only if full_output is True)\n", + "A string message giving information about the solution.\n", + "\n", + "ierint (returnned only if full_output is True)\n", + "An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. \n", + "Otherwise, the solution was not found. In either case, \n", + "the optional output variable mesg gives more information.\n", + "\"\"\"\n", + "\n", + "try:\n", + " \n", + " if mpm_sel == 'a':\n", + " cc, coeffs, ee, errs, infodict, mesg, ier = mpm_a_fit(meas_temp, lfm_sel) \n", + " \n", + " if mpm_sel == 'b':\n", + " cc, coeffs, ee, errs, infodict, mesg, ier = mpm_b_fit(meas_temp, lfm_sel) \n", + " \n", + " \n", + " # store calculated value of LFM variable\n", + " norm['calc_' + lfm_sel] = cc\n", + "\n", + " # store residual difference of LFM variable\n", + " norm['diff_' + lfm_sel] = norm[lfm_sel] - norm['calc_' + lfm_sel]\n", + " \n", + " # show infodict data, uncomment fvec to show per row\n", + " print('nfev =', infodict['nfev'], '\\n \\n', \n", + " # 'fvec =', infodict['fvec'],'\\n \\n',\n", + " 'mesg = ', mesg, '\\n \\n',\n", + " 'ier = ', ier, \"NOTE : if ier in (1,2,3,4) then fit found\")\n", + " \n", + "except:\n", + " print(\"CAN'T FIT DATA\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [I] Plot heatmap of mean residual vs. temp_module and poa_global\n", + "\n", + "Show a heatmap of the average residual (meas - fit) error \n", + "for each irradiance (100W/m^2) and tmod bin (5C)." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_heatmap(dnorm, fit, y_axis, x_axis, z_axis,\n", + " title, save_figs, clip=0.02,):\n", + " \"\"\"Plot a heatmap of Z vs. binned X and Y axes.\n", + "\n", + " Parameters\n", + " ----------\n", + " dnorm : dataframe\n", + " Normalised multiplicative loss values (values approx 1).\n", + "\n", + " fit : string\n", + " fitted parameter e.g. 'pr_dc'.\n", + "\n", + " x_axis : string\n", + " binned x axis e.g. 'poa_global_bin'.\n", + "\n", + " y_axis : string\n", + " binned y axis e.g. 'temp_module_bin'.\n", + "\n", + " z_axis : string\n", + " value as a colour surface plot e.f. 'diff_pr_dc'.\n", + "\n", + " clip : value\n", + " clipping of z axis usually 0.02\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + "\n", + " \"\"\"\n", + " df_piv = pd.pivot_table(\n", + " dnorm,\n", + " index=y_axis, # e.g. 'temp_module_bin'\n", + " columns=x_axis, # e.g. 'poa_global_bin'\n", + " values=z_axis, # value to aggregate\n", + " fill_value=0, # fill empty cells with this ?\n", + " aggfunc=[np.mean], # e.g. min, np.sum, len->count\n", + " margins=False, # grand totals hide\n", + " dropna=True # hide missing rows or columns\n", + " )\n", + "\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " # force z limits to be -2% to +2% if desired\n", + " df_piv = df_piv.clip(lower=-clip, upper=+clip)\n", + "\n", + " im = ax1.imshow(\n", + " df_piv,\n", + " cmap='RdYlBu',\n", + " origin='lower'\n", + " )\n", + "\n", + " cbar = ax1.figure.colorbar(im, ax=ax1, shrink=0.75, label=z_axis)\n", + "\n", + " # Y AXIS : show only 1 of each y_skip labels\n", + " y_ticks = df_piv.shape[0]\n", + " plt.yticks(np.arange(0, y_ticks), rotation=0)\n", + " yax2 = [''] * y_ticks\n", + " y_skip = 2\n", + " y_count = 0\n", + " while y_count < y_ticks:\n", + " if y_count % y_skip == 0:\n", + " yax2[y_count] = df_piv.index[y_count]\n", + " y_count += 1\n", + "\n", + " ax1.set_yticklabels(yax2)\n", + " ax1.set_ylabel(y_axis)\n", + "\n", + " # X AXIS : show only 1 of each x_skip labels\n", + " x_ticks = df_piv.shape[1]\n", + " plt.xticks(np.arange(0, x_ticks), rotation=90)\n", + "\n", + " xax2 = [''] * x_ticks\n", + " x_skip = 2\n", + " x_count = 0\n", + " while x_count < x_ticks:\n", + " if x_count % x_skip == 0:\n", + " xax2[x_count] = df_piv.columns.levels[1][x_count]\n", + " x_count += 1\n", + "\n", + " ax1.set_title(title)\n", + "\n", + " ax1.set_xticklabels(xax2)\n", + " ax1.set_xlabel(x_axis)\n", + "\n", + " ax1.grid(color='k', linestyle=':', linewidth=1)\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(\n", + " os.path.join('mlfm_data', 'output', 'heatmap_' + title[:len(title)-4]),\n", + " dpi=300\n", + " )\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Residual LFM fit heatmap vs. poa_global and temp_module" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEICAYAAAAEBx5BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAABu6ElEQVR4nO2deVyN2R/HP7fI0qYkKkmWLCFLGPs2yBgMxhpZsvPDMGMNISPrGGObyr4bu8leWbLTgiylRSiR0B7V+f1x516uyr1H93Y6dd6v13nJ85x7ns/z3Oe55znnfBcJIYRAIBAIBALBN6PFWoBAIBAIBLwjOlOBQCAQCPKJ6EwFAoFAIMgnojMVCAQCgSCfiM5UIBAIBIJ8IjpTgUAgEAjyCded6fDhw/H9999/tc62bdtQokQJtR/b1dUVNWrUUHu7n6Mp7QL1ceHCBUgkEjx//py1FEEhRiKRYNeuXaxlCDQI153pn3/+iX/++Ye1DK4JCQlBv379ULNmTWhpaWHUqFG51vPy8kL9+vVRtmxZVKlSBa6ursjOzlaoExsbi/79+8PAwAAGBgYYOHAgXr16Jd+/bds2SCSSXEte3+Pw4cMhkUjg5uaWY9/y5cthZWWF0qVLo1GjRjh79myOOtu2bUOtWrVQqlQp1K5dG7t371bYf+nSJfTq1QtWVlZ5HudrtGzZErGxsTA3N6f6nDKysrLg7u4u125qaorRo0fL96enp2PEiBFo1KgRdHR08nyxCwwMRNeuXWFsbAwDAwO0atUK586dU6hTtWrVHN9H69atFer8+uuvqF27NvT09GBoaIiWLVvC29ub6pxu3LiBli1bonTp0jAzM8Ps2bORlZWVa924uDhUqlQpx4uKqudd2FmyZAnatGkDAwMD8TJWRGDWmX748CHfbRgaGsLIyEgNaoovqampqFKlCubPnw87O7tc63h6euJ///sffv31V9y/fx/r1q3Dpk2bMG/ePHmd7Oxs/Pjjj4iMjMS5c+dw9uxZhIaG4qeffoIsLsiAAQMQGxurUH755RcYGBjghx9+yHHc7du34969e7l2VGvWrMGCBQuwePFiBAYGonPnzujRowfu3r0rr3P06FE4Oztj3LhxCA4OxujRo+Hk5IRTp07J6yQnJ6Nu3bpYvnw5KlWqRH39dHR0UKlSJWhpqfdRGjFiBLy8vLB06VI8fPgQ586dU7hGWVlZ0NHRwZgxYzBw4MBc20hNTUWXLl1gaGiIy5cv4/bt22jYsCF69OiBqKgohbozZ85U+F6OHz+usN/W1hbr169HcHAwbty4gbZt26JXr164c+eOSufz7NkzdO7cGbVq1cKdO3ewceNG/P3335g7d26OutnZ2XB0dESzZs1y7FPlvGlRx28RLRkZGejZs2eu5y/gFFJAtGvXjowcOZK4uLiQSpUqERMTExIWFkb69OlDDA0NSbly5Ujnzp3J3bt35Z95//49GT58OKlYsSLR0dEhlStXJr/88ot8/7Bhw0inTp3k/8/OziYuLi6kQoUKRFdXlwwYMICsXr2aaGtry+ssWLCAVK9eXUHb5cuXCQASGRlJCCEkISGBODo6EktLS1K6dGliY2NDVq5cSbKzs7/aTl74+fkRAMTb25t89913pHTp0qRx48bk/v375P79+6RVq1akTJkypGnTpiQkJET+ua1btxJtbW1y7tw5UrduXVKqVCnStGlTcufOHZWOu3//flKyZEly48YN+bbt27eTUqVKkYCAgBz127VrR5ydnXNsb9WqFRk7dqzCttWrV5OyZcuS5ORkQgghZ86cIQDIo0eP5HXu379PABA/P79c9WVlZRFLS0syYcKEHPsePHhAKlasSEJDQ4mVlRVZvHixfF92djYxNzcns2fPVviMvb09GTZsmPz/LVq0IIMGDVKo8/PPP5N27drlqufL46iC7Lt99uyZfJuy+5oQQm7fvk26du1K9PX1ia6uLmnatCm5fv06IYQQX19foq2tTe7fv6+ShrzuxcDAQAJA4diJiYkEADl69Gi+zpsQQsqVK0fWrFmjUt3Zs2cTCwsLkpWVJd+2bt06hXtIhqurK3FwcCC+vr45ru3n0DyDnwOA/Pnnn2TQoEHEwMCA/Pzzz4QQQubMmUNq165NypQpQypXrkzGjh1L3r17J/+c7Hn09/cnjRo1ImXKlCH29vbk9u3bCu37+vqS+vXrk1KlSpH69evLz2Pnzp05tOR2/3yuc82aNaRPnz6kbNmyxMzMjKxatUqhTlJSEpkyZQqpXLky0dHRIVZWVmTJkiVfPf99+/aRxo0bk1KlShFjY2Pi4OBAEhISCCHS38KWLVsSPT09oqenRxo0aEBOnz5NCCGkZcuWZPTo0Tnaq1OnDpk5c+ZXj1kcKNCR6YEDB/D69Wv4+Pjg4MGDaN26NUxNTXH58mVcv34dtWrVQvv27fH69WsAgIuLCwICAnDs2DGEhYVh//79qFOnTp7tr127FqtXr8aKFSsQEBCAxo0bY+HChdQ6MzIyUL9+fRw9ehQPHjzAvHnzsGDBAmzbtu1bTx0AMHfuXCxZsgR37tyBjo4OBg0ahPHjx2PhwoXybSNGjFD4THZ2NmbMmIENGzbg5s2bMDU1Rffu3ZGamqr0eP3798ewYcMwaNAgJCYmIjQ0FBMnTsSKFSvQqFEjlXWnp6ejdOnSCtvKlCmD1NRU3L59GwBw5coVWFtbo1atWvI6tra2qFy5Mvz9/XNt19vbG8+ePcPYsWMVtqempqJfv35YsWIFatasmeNzUVFRiImJgYODg8J2BwcH+bE+fPiAW7du5Vrn+vXreU4v5pe4uDil93VISAjatm0LIyMj+Pr6IjAwEL/88ot82vzQoUOoVq0azp8/jxo1asDS0hL9+/dHdHQ0lZaaNWuiYsWK2Lp1K9LS0vDx40ds2rQJxsbGaNGihULddevWoXz58rC1tcXkyZPx5s2bPNvNzMzEzp07kZycjDZt2qik5cqVK+jSpYvCCN7BwQGpqakIDAyUb/Pz84Onpye2b98OiURCdb40LFy4EC1atEBAQACWLFkCQHpPe3h44MGDB9i2bRsuXLiAyZMnK3wuOzsbs2fPxp9//omAgAAYGRmhf//+yMzMBADExMTgxx9/RJMmTRAQEIBVq1ZhypQp+dLZvn17BAYGYubMmZgxYwYOHz4MACCE4Mcff8Tx48fx119/4eHDh9ixYwcqVKiQZ3tbt27FkCFD8NNPPyEgIAB+fn5wcHBAVlYWsrKy0LNnTzRv3hwSbUtkZRsj7Mk79O4zBmV1rRAY9By7dp9BWV0reWnRogUePnwIJyenbz7HIkNB9drt2rUjNWvWlL+ZLliwgDRv3lyhTnZ2NqlWrRr5448/CCGE9OzZU2Gk8SVfjkwtLCzInDlzFOr07duXemSaG5MnTybff//9V9vJC9nb55EjR+TbDhw4QACQgwcPyrcdPnyYACBJSUmEEOmbMABy/vx5eZ2EhASiq6tLPD09VTp2amoqqVu3LunXrx9p2LAh6dWrV5518xqZuri4ECMjI+Lv70+ys7PJgwcPiI2NDQFA9uzZQwghZPTo0aRFixY5Pmtvb5/ryJMQQrp3706+++67HNuHDx9OhgwZIv//lyOnK1euEADk8ePHCp+TjXQIIeTFixcEADlz5oxCnX///ZcAIK9evcpxXHWMTFW5r4cMGUIaNGigMEr7HAcHB1KqVClib29P/Pz8yJUrV0j79u1J9erVSVpaWo76X7sXHz9+TGxtbYlEIiHa2trEzMyM3Lp1S6HOqlWriK+vL7l37x7Zv38/qVmzJrGxsSGpqakK9U6cOEF0dXWJlpYWKVeuHDlx4oRK14gQQmrWrJljJiE5OZkAIAcOHCCEEPLy5Utibm5Ozp49Swj5+qhN2Xl/DQBk5MiRSusdPnyY6OjoyL8n2fP4+czQtWvXFGZk5s6dS6pUqUI+fvwor3PixIlvHpl+/hwQQsigQYNIq1atCCGEnD9/ngDI8X1+DUtLSzJx4sRc9yUkJMhnksrqViGNv9ugtJiamhJ7e3uVj1+UKVBT0SZNmsjfTG/duoU7d+5AT09PoU5aWhrCwsIAABMmTEDfvn1x+/ZtdOrUCQ4ODujatWuu61OJiYl48eIFWrZsqbC9devWOHr0KJXO7OxsLF++HPv27cPz58+Rnp6Ojx8/wsrKiqqdL/l8TVK2PtegQYMc2169eqVwXT4fRRgZGaFOnTp48OCBSscsU6YM9u/fj4YNG6JixYrw8fGh1u3i4oLXr1+jQ4cOyM7ORrly5TBlyhTMnz8f2traSj+f2wgjOjoap06dwubNmxW27969G/7+/gqjFRpUHc1oatSjyn19584dODg45LnOmpWVhYyMDGzfvh1169YFAOzfvx9mZmY4efIk+vTpo5KWtLQ0jBgxAnXr1oWXlxdKliwJDw8P9OjRAzdu3ECVKlUAANOmTZN/pl69emjSpAlq1qyJI0eOYPDgwfJ9HTp0QFBQEN6+fYt//vkHTk5OOH/+PBo3bqz6BfoM2Xcg+9fR0RFOTk7o3LnzN7VHQ27rsYcPH8aaNWvw5MkTJCYmIjs7Gx8+fMDLly/l6/YSiUThObawsAAgnZGoVasWHjx4gGbNmilY4X9pzEXDlzMIrVq1wunTpwFI7yMjIyPY29ur1NarV6/w7NkzdOnSJdf9RkZGGDVqFLp27YoSOpUgKan82U5ISFCwnSjOFOg0r66urvzv7OxsdOrUCUFBQQrl8ePHcHV1BQB07doV0dHRmDt3LtLT0zFkyBB07Ngx1yk68p+Ri7IfSS0tLXldGR8/flT4/6pVq7B06VL873//w7lz5xAUFIRRo0bl21ChZMmS8r9lOnPb9qWV7Jd8qV8ZsqnPd+/eKVjXqkqpUqWwadMmpKamIioqCrGxsWjSpAkAoHr16gAAMzMzvHz5MsdnZVaZX+Lp6QkDAwMMGDBAYfu5c+cQHh6OcuXKoUSJEihRogSePn2KBQsWyKeazczMACDH8T4/lomJCUqUKJFrnVKlSmnMcE2V+xr4+n1qbm4OiUSC2rVry7eZmprCxMQET58+VVnL3r17ce/ePezevRvfffcdmjRpgk2bNkFXVxceHh55fq569eowNTXNYaSkq6uLGjVqoGnTpli+fLn8X1XI7f6Q/V/2nfn4+GDFihXy771Tp04ApNbGXy4F5JfPf4sAqaVxv3790LZtWxw5cgQBAQHYtGkTAEUDJS0tLYUXyC+fWUJIju9WnS9uXz7739L21z7j6en5n1GZBBJt5SUrK0tthmC8w8ya197eHiEhIbCwsECNGjUUyudz/sbGxhg0aBD+/vtveHt74+LFi7mOygwNDWFhYYErV64obP/y/6ampnj16pVChxwQEKBQ59KlS3BwcICzszMaNWqEGjVqyEcVLLh+/br873fv3uHRo0dfXTv+nJCQEEybNg1///03unXrhoEDByIjI+ObdJQoUQKVK1dGyZIlsWfPHlhbW8vXXlu1aoXIyEiF6/Tw4UM8e/Ysx5t5ZmYmtmzZAicnJ5QpU0Zh35IlS3D37l2Fjsjc3BwTJ06UW45WrVoV5ubmOHPmjMJnT58+LT+Wjo4OmjZtmmud7777TqUR9begyn3dpEkTnD9/Ps+XpjZt2oAQonAt37x5g/j4eFStWlVlLSkpKZBIJAojYIlEAm1t7a++kL148QKvX7+GpaXlV9vPzs5W+V6SueR8fs6nT59G2bJl5ffQvXv3FL53Ly8vAMCZM2ewYMEClY7zrfj7+8PExARubm5o3rw5bGxsvsldxdbWFjdu3FD4fcnLZkAVPn/2AeDatWvyZ79JkyZISEiQ2y0ow9TUFJUrV87xTHxJvXr1AAkg0ZIoLYaGhjAxMfm2kytqFNR88pfrcS9fviRmZmakS5cu5NKlSyQyMpJcvnyZzJkzh1y5coUQIrWuO3ToEHn06BEJDQ0lkyZNInp6enILuy/XTFevXk10dXXJjh07SGhoKFm5ciUpV66cwprpo0ePiJaWFpk9ezZ58uQJOXDgALG2tlZYM50+fToxNTUlvr6+5PHjx2Tu3LnEwMCAWFlZydv5ljXTz9dFclunla2/hIWFEUKkazQSiYQ0adKEXLx4kdy9e5f06NGDmJqa5rCAzI20tDRSr149MmDAAEKIdE2kSpUqZNKkSfI6GRkZJDAwkAQGBpImTZqQ3r17k8DAQAWr4rCwMLJt2zby+PFjcvv2bTJ+/HhSokQJcurUKXmdrKws0rhxY9KsWTNy48YNcv36ddKkSRPy3XffKVhBE/JpbVhVa9Xc1jL/+OMPUqZMGbJz507y8OFDMnPmTKKjo0OCgoLkdY4cOUK0tbXJmjVryKNHj8iqVauItrY2OXnypLxOUlKS/PzNzMzIxIkTSWBgoPw7UMaX360q9/Xdu3dJmTJlyMCBA8mtW7fk9+HVq1cJIYSkpKQQa2tr0qpVK3L79m0SHBxMHBwciI2NjcKaaUhICAkMDCRjx44llpaW8vPIyMgghEjXS0uXLk2GDRtG7t+/Tx49ekR++eUXoq2tLbccvnr1KlmxYgW5c+cOiYqKIqdPnyYNGzYkVatWla/dv3z5ksyfP59cv36dREVFkaCgIDJz5kwikUjI4cOHVbpO0dHRRF9fn4wcOZLcv3+fHDt2jBgbG3/VCjSv9URl560M5LJ+eeLECSKRSIiXlxcJDw8n27dvJxYWFgrPqMya93OePXumYLH+/PlzUqZMGTJy5Ejy4MEDcv78eWJnZ5fjmE+fPiWBgYHE09NTvrYfGBhI3rx5o6DTyMiI/PXXXyQ0NJSsXbuWaGtrk3/++YcQIl2Lb9OmDalWrRo5evQoiYiIIP7+/gr2FB07diSzZs2S/9/T05OUKFGCLFq0iDx48IDcv3+f/PXXX+T169ckLCyMzJgxg1y+fJmU1bcizTp7KS3fsmZdVGHWmRJCSFRUFBk8eDAxMTEhOjo6pEqVKsTR0ZFEREQQQghZtGgRsbW1Jbq6usTAwIC0bduWXL58Wf75LzvTrKwsMnv2bFK+fHlStmxZ0rdv3xyuMYQQsnnzZmJtbU1Kly5NHBwcyN69exUemnfv3pF+/foRfX19YmxsTCZMmEBcXFyYdKba2trkzJkzpHbt2kRHR4fY29urbHAwbtw4Ym1trWDef/nyZVKiRAly7NgxQgghkZGRBECO8vm5Pn78mDRp0oSULVuW6Orqkvbt25OLFy/mOF5MTAz5+eefiZ6eHtHX1yf9+/cncXFxOep17dqVtG7dWqVzICRvw6Bly5YRS0tLoqOjQ+zs7OQm/J+zdetWUrNmTVKyZEliY2OT40dU9t18WfJyn/mS3L5bZfc1IYTcuHGDdOrUiZQtW5bo6enJX0JkhIeHkx49ehA9PT1iYmJCfv75ZxIdHZ3juuSm/fN7ys/Pj7Rr146UK1eOGBgYkObNm8u/e0IIuXPnDmnRogUxMjIiOjo6pFq1amTcuHEkNjZWXichIYH07NmTmJmZkZIlS5KKFSuS77//XuFlShWuXbtGWrRoQUqVKkUqVqxIZs2aRTIzM6murarn/TVy60wJkRramZqakrJly5Ju3bqRPXv2UHemhEgNg+rVq0d0dHSIra0t8fHxyXHMYcOG5XoOW7duVdD5xx9/kF69epEyZcqQSpUqkeXLlyscPzExkUyaNIlUqlSJlCxZklStWpUsXbpU4Vp9acS5a9cu0qBBA6Kjo0OMjY3JDz/8QN6+fUtiYmJI7969iYWFBdE1qEqa/7BVaWncuLFK17w4ICGEcgFOIBAIBBpHIpFg586dGDJkSIEfW6+cNeq3cVVa72PsXypPMxd1ROBXgUAgEORAoq05P9+iCNexeQsLtra20NPTy7WMGzdOY8ft1q1bnsft1q2bxo5bnMjr+urp6eH3339nLa9QcPny5a9ep8uXLxeYlnHjxuWpw9bWtsB0cI+KBkiCT4hpXjXw9OnTHO41MgwMDGBqaqqR47548QJpaWm57itTpozcB07w7Tx58iTPfcbGxjA2Ni5ANYWTtLQ0vHjxIs/9FhYWOay2NcWrV6+QmJiY676SJUvm21e8uKBnXA0NOytP+pAevlpM8/6HmOZVA6weUNFZah5es5IUJGXKlCk018nU1FRjL6/FCYlETPPSIjpTgUAgEORATOPSUWw6U5NyZVC1kqHa241LSEFFY13lFb+B9DLqzZEp482rVyivgbf30uSt2tsEgLjXiahYwUAjbWe/StBIu6+SP8BUT0cjbWcm576kkF9ef8hEBR31/ySUKKOZn5lXKR9gqquZaywpqRlzkrikDFTUL6X2dp++TUV8ihpTyUkkYmRKSbHpTKtWMsRNz6GsZVDxpP4i1hKoqJl1kLUEatLX7GMtgZq4K3mvTxZGKtTjL0KOtplmXpA1Rav1F9XepqSEZqKEFVWENW8+8TgezFoCNfu3bVZeqRDhsd2PtQRqNgfQpUsrDOyJyTvtWmFky32+XioAYPPNKNYSVOO/NVNlRfAJ0ZnmkzuP41hLoOZ+UIDySoWI20GRrCVQExD7nrUEau4lKs+RW5gIeJW71W5hJuAFH/eFBMrdYsSaqiLFZppXU/z9W+7pjAozi9esZy2BCo8/RrKWQM367vVZS6Bmae2vB7YvbKzrqFqyh8LE+t52yisVBiQAtMVYiwZxtfJJx8n8rbkN/bErawlUdOjJX3CErjuuK69UyBgYmLdPbWHE4fAd1hKo6eJ5RXmlwoAE0CqppbQIPiFGpvlk/oiWyisVMibNmstaAhULZvRmLYGauW1rspZAzdSqOfPOFmbmNKvGWgI1Lp1qsZagImIalxbxapFPbCz5i4BTtXrhcLBXFZvqfP3IA0CN8nxZgwKAdVn1u2xokprlyrKWQE0NEz3WElRDjQZICQkJ6N27N3R1dWFlZYU9e/bkWfePP/5ApUqVYGhoiJEjR8rz5WZkZMDZ2RlWVlbQ19dHo0aNcOrUKbWcqroQnWk+aTZ6J2sJ1PTt2Fp5pUJE0+81mxhaE7TezMl03mf0vB3KWgIVbQ7cZC2BGk24sGgCCQCJlpbSogoTJ06Ejo4O4uLisHv3bowfPx4hISE56p05cwbu7u7w8fFBVFQUIiIi5EnhMzMzYWlpiYsXL+L9+/dYvHgx+vfvj6ioKDWedf4QnWk+eX5kPGsJ1Pg/jGAtgYoXIWtZS6AmYmon1hKoudGKr0DwT0a2YS2BmsjZnNgrSCQoUUJLaVFGSkoKDh06hMWLF0NPTw+tW7dGz549sXNnzkHI9u3b4ezsDFtbWxgZGWHevHnYtm0bAEBXVxeurq6oWrUqtLS08OOPP8La2hp37hSedXPRmeaT1ftusZZAzZZ1f7KWQMWq9YVrOkcV/rzO1wsLAHhGv2ItgYq1AU9ZS6BmzWU+jLwkaprmDQ0Nhba2NmxsbOTb7Ozsch2ZhoSEwM7OTqFeXFwc3rzJ6f8cFxeH0NDQQpUJSHSm+SQmPpm1BGpevYxlLYGKmJeaCVOoSWKTMlhLoCbuQyZrCVTEqjN8XgERm5TOWoLKaGlJlJbXr1/D3t5eXjw8PBTaSE5OhqGhYhhXQ0NDJCUl5Tjel3Vlf39Z9+PHj3B0dMSwYcNQu3ZtdZ1uvhHWvPlk5aQOrCVQM8vNnbUEKlYtHsxaAjXunfnzgXSpoZlY0JpiaRv+LKaX/VCPtQTVkEg7U2VUqFDhqynY9PT0cqTES0xMhL6+vtK6sr8/r5udnY2hQ4dCR0cH69atU6qvIBEj03zSdBR/Bkh92vPlzmPfcT5rCdS09PJnLYGaHrf4MkBqvY8/A6SW63gxQJKgRAltpUUZNjY2yMzMRFhYmHxbcHBwrtOztra2CA4OVqhXsWJFlC9fHgBACIGzszPi4uJw6NAhlCxZUg1nqj5EZ5pPNv3WmbUEahatKVxvdMr4e/UI1hKoWcdhBKTfa1dmLYGKvzoWnik+VVnHSQQkiQTQ0pYoLcrQ1dVFnz59MH/+fKSkpODKlSs4duwYhg7NmXTEyckJmzdvxoMHD/D27Vu4ublh+PDh8v3jx4/Hw4cPceLEiQJLNk+D6EzziX5ZzaSA0iS6ejmnWAoz+nqlWUugRl+Hv4wbutp8adYryd8qlX4pfjSrsmaqChs2bEBaWhpMTU0xaNAgbNy4Eba2toiOjoaenh6io6VJIRwcHDBjxgx06NABVlZWsLKywsKFCwEAT58+xd9//42goCBUqlQJenp60NPTw+7duzV2/rSIzjSf9Jx5hLUEasYN7MtaAhU9Bq9mLYGavvvzXkcqrDjf5csCud+/QawlUNNn+w3WElRDArUFujc2NsbRo0eRkpKC6OhoDB4stYGoUqUKkpOTUaVKFXndadOmIS4uDomJidi6dStKlZIGErGysgIhBOnp6UhOTpYXR0dH9Z/7N8LPa1Ih5dEeZ9YSqDlz+y5rCVQ8vrmCtQRq7k5oz1oCNX7f8WU0FTSUr7V/ALg3nQ//Y8l/fqYC1RFXK58s3MJfpJu/3N1YS6DCddlh1hKocbvIlzEPAKyJfMlaAhVLbvA1kgYAt/OPWEtQCQnUs2ZanBAjU4FAIBAooqJrjOATojPNJwtGtmItgZr/zXJhLYEK15l9WEugxqWdjfJKhYyp1nwlFJjbnMOsMd/zYoEsgZaKsXcFUsTVyie1B29mLYGarvYNWEugolaz31hLoKbBhgusJVDT4fpD1hKoaLjzKmsJ1NRf5cNagkpIJIB2CS2lRfCJIn01PDw85GGunjx/K1/frD14M0KfJeDO45fyoAu/rvOTx9mt3HsjYuKTcSEwWp78e+yKs/A4LnUoNuz6J5JSP+DElXBYVJCmVHJc9C/2nJP+GGm3XQkA2HPuIRwX/QsA6DnrME5cCUdS6gcYdpXGxvU4HoyxK84CkCYZvxAYjZj4ZFTuvRGANIauu8ssANJAC/eDAhD5JEzeGf7l7iZf/+xq3wCRT8JwPyhAHpTB3WWWPA5v6zrVEBcbgxv+l6BvWA4AMG/qROzfJn0ZaGRpiuSkJPie8pZb+04fNRwn/tkPAKhlJE13deKf/Zg+ajgAqVWw7ylvJCcloZGlqfSctvthzC9bAEiTel/wf4iY2LewsJ0MQBpnd/o8aQom+47zcScoEqFPYuUdpuuyw/I10lrNfkPok1gsnd9fHrhh+rw98li9FraTERP7Fhf8H8oTiI/5ZQs8tvsBAAysxiApKQ0nTgei538WwY5jNmDPQemPsJaJEwBg//0XGH4kEIDUCtc7NA5JGZkwXX4GALA5IBoTve9Jr/OO67gU9QYxSemotkb6w/jn9QjM+u+7b+nlj4DY91jVta68Q3W7GCpfQ22w4QLC3iQjIPa9PLDDrHMP5bF8q63xQUxSOi5FvZEnGJ/ofQ+bA6TuA6bLzyA5Mwvn49/D+W4kAGBKyFMci5OGXLT2k96jx+LeYkqINHat891InI9/j+TMLNS7JD2PPTFvMPvRMwDSpODX3yZjWW1LNL8ijZnqGf0Kbk9iAEiDOdxLSkVEaoa8w10T+VK+xtrh+kNEpGbgXlKqPPCD25MYeazfGlsuIzY5A5eev5Un9J7k+xBb7r8AAFTadAFJHzJxMvI1+p2Q6h9x5j4OPJa2r/eX9DofePwSI87cBwD0OxGMSQ2rIOlDJiptkl7nLfdfYJKvVJ/D4Tu49PwtYpMzUGPLZQDSWL6zL0uDB7TedxOBrxIR9jZV3ikvuREhX4etv8oHYfHJCHjxTh5oYebJ+/LYutZLzyAmMR2XIuLlCb8nHgnG5ptRAIAKrt5IysiE98OX6LtDasE7bN8dODezAgCUmXMcALAv6DmG7ZNek747bsD74UskZWSigqs3AGDzzShMPCK9Jl08r+BSRDxiEtNhvVR6b665/AQzT0qviboRa6Z0SAghhLWIgsC+diXc9MzpKJxf7jx+iSa1NDM99qT+Io20ez8oAPUaNlZ7uzWzDqq9TQC4ExSJJg2tNdJ2+pp9Gmk3IPY9GpsZKq/4DcRdeaGRdu8lpaK+vvpzhFaoZ6L2NgEg8FUiGpkaaKRtbTPN5KMNePEOjS3Kqb3dVusv4s7zd2prz9S6Dn523aG03s2/xn81nGBxokiPTAuCcSvOsZZAzfypk1hLoGLstK2sJVAz6b+RLE/MefSctQQq/ufLh2Xs50w6Eqy8UqFAecAGYaCkiDBAyie3vNQ/2tU0hy/wtdZ021czI3RNcnUUXwnYAeBEU76MpvwHNmMtgZqrk9qxlqAS0jVTviJisUaMTPPJr+v8WEugRrYOywuyNVaekK2h8oRsjZQXZOufPKGp9U21o6bYvMUJMTLNJ+YmeqwlUGNayYy1BCrMKxmxlkCNmX4p1hKoqajD18+BmS5/cbHN9PmIMy2BmMalha+npxAybWBT1hKoGTlpCmsJVEyf2I21BGqmfMefD+ToKqasJVAxubEVawnUTG1Tg7UE1RBBG6gR07z5RObGwhOt6/D1Qy9zq+EJmdsMT8jcYnhB5vLCEzKXlsKOBEAJbS2lRfAJMTLNJ5pwt9E0h3z5Slx96/xC1hKo8XfmLzLWcXu+DJAu9+fPAOnKRD4MkMTIlB7xapFPQp8lsJZATVT4E9YSqAgN5ysAOwA8eZPCWgI1kakZrCVQEfYulbUEap7EJ7OWoBISSKCtpbwIPiE603yyaCtfbiYAsM59CWsJVCxczl/O2CWX+LM0XRPF10vL7zc5zBrj85i1BJWQSMQ0Ly1imjef+K4dyFoCNTv/5WPdRobf8TmsJVBzxuk71hKo2deIE+OY/zjdpwlrCdScHc3P9L+Y5qVDvFrkE1lsXZ6YN3UiawlUyGL98sREDiMgyWL18oIsDi9PTOQmAhJEBCRKxMg0nzSpVZG1BGo0EZdXk9hrKC6vJtFUXF5NUt9A/XF5NUljDcXl1SSNLfi4LyQSQGRgo0N0pvlkTE871hKoGTDcmbUEKsYM68BaAjXOjauwlkDNYPPyrCVQMbKeBWsJ1Dg3q8pagkpIIEFJsSZKhbha+USWTo0nZOnSeMHAagxrCdTI0rfxhCw9Gy/IUq/xhCy1WqFHIqZ5aaEemb569QrJyYrm3dWq8RUEQJ08PzKetQRqLj8IZy2Bihf3+XthCZ/SibUEaq63rMtaAhVhI/lLJhAxuytrCSohAaAlEZ0lDSqPTE+fPg0LCwuYmZmhRo0a8lKzZk1N6iv0XAjky2gDAG76X2ItgYoLV/hLtXXp6RvWEqi5/o4PH0gZl1+8ZS2BmksR8awlqIwYmdKhcmc6ceJEzJs3D8nJycjOzpaXrKwsTeor9Hie4Mc6T8aB7XxZx3ru4C8zzxYOX7L2xvAVgGTrfb6y3ADAlltPWUtQCYlEgpIltJQWwSdUnuZ9+/Ytxo4dC4kY+itw3L0PawnUbNp3iLUEKo7vmcZaAjWHBtizlkDN5gZ8WU3/04M/479DTs1ZS1AZMc1Lh8qvFs7Ozti6dasmtXCJ46J/WUugZvqo4awlUOE4ZgNrCdQMPxLIWgI1U0L4GDXJGHGGk9ygnzFs3x3WElRCIgyQqFF5ZHr9+nWsXbsW7u7uqFSpksK+S5f4WoNTJ91bVGctgZr2XflKada9S0PWEqjpVpMvi2kA6GjCl99mt6omrCVQ0602P37porOkQ0IIIapU3L59e577hg0bpjZBmsLevjZu3vJkLYOKxWf4+rFoX4+vpOMAUM8kkbUEarQkmawlUFEu9QZrCdS8Lt2etQQqurRyQFCA+uw3rG3tsHDvKaX11o7sidu3b6vtuDyj8siUhw6TBdpabZGVzdfI3LVbXbieesBahsq0tzTChWd8WW6alLFCfBpf06bGpasjIZ0ftykt48HITtjDWgYVFcuaIy618BtOSSBGprR8tTPduXMnhg6V5uvcsiVvC9CRI0eqVxVH8NaRAuCqIwXAXUcKgLuOFABXHSkA7jpSAFx0pAAACUSKNUq+aoC0d+9e+d87d+7MtezatUvjIgsze/acYy2Bmrt+fBlNnT/yD2sJ1Bzcd5S1BGoO7jvOWgIVew5eYS2BmkP7D7OWoBKyoA3KiuATX+1MT548Kf/bz88v1+Lr66txkYUZb+9rrCVQE3rzImsJVFzz4S8039lTPqwlUHPmJF/PsvcZ/iymz506z1qCakgkKFFCeRF8QmUDJAB49+4dvL29ERMTA3Nzc3Tv3h3lypXToDz1IQyQNI8wQCoYhAGS5inuBkg16jfEiiPKZ92WDOwmDJD+Q2U/U19fX1StWhVr167FrVu38Ndff6Fq1arw8eHvDVyd9Ow5i7UEavYsmMBaAhWzR/CXgH1wX/7sCAb1Gc1aAhU9B61gLYGaIX2dWEtQGS2J8iL4hMrWvJMmTYKHhwf69+8v3/bPP/9g4sSJePSIv9ip6mL06B6sJVDTpFs/1hKo6DGYP0typ5GDWUugZpgzXy8to4d1ZC2BmqEjh7CWoBIi0D09Ko9MY2Ji0LdvX4VtvXv3xsuXL9Uuiifat2/EWgI1VRs0Yy2BioYt+MsO0qrtd6wlUNOqLT+h7gCgfSu+stwAQKu2LVlLUA0JUEJLorQIPqFyZ+rk5IT169crbNu4cSOcnPiZttAElS16s5ZAzaoh7VhLoKKvPX8/mvWq8fXCAgC21pz80P+Hhe1E1hKoaVCdj5dvCQBtiURpEXziq9O8bdq0kQe2z87OxsaNG7F8+XJYWFjgxYsXiIuLw3ff8fcGrk7eJ/JnaTrnMF8GA6ce8ZeB5elrvnx5ASA6/i5rCVQkRvOV/QgAIl6FsZagMmLgScdXR6ajRo2Cs7MznJ2dMXr0aHh5eWHJkiWYMGEClixZAi8vL4waNaqgtBZKPDz48s0DgNsnD7CWQMWJ3dtYS6Bm+2b+Agps89qrvFIhwmMbf8aPOzbz4ZcvgXIfU1XXVBMSEtC7d2/o6urCysoKe/bk/Wz88ccfqFSpEgwNDTFy5EhkZGTI961btw729vYoVaoUhg8fnt9TVDtfHZnShhCcMGECNmzgL8NHfrhz+zEwhrUKOmLCQlhLoOLx3SD0cGStgo6ggLsY5syXEVJQwD0Ag1jLUJnbQREYg06sZVARHBAMOBd+IyTJf2um6mDixInQ0dFBXFwcgoKC0L17d9jZ2cHW1lah3pkzZ+Du7g5fX1+Ym5ujd+/eWLBgAdzd3QEA5ubmcHFxwZkzZ5CWlqYWbeqEys9UGQYGBkhMLJx+e8LPVPMIP9OCQfiZap7i7mda264RvE5dUFpvas9OX/UzTUlJgZGREe7fvw8bGxsAwNChQ2FhYSHvJGUMHjwYVatWxe+//w4A8PHxgaOjYw4jVxcXFzx//hzbtm2jOykNo9ZU6Wrsl7mhY4fJrCVQs3UGX64mU/r9yFoCNT27DGAtgZoenfkaSXfosZi1BGp6d+2rvFIhQRU/09evX8Pe3l5ePDw8FNoIDQ2Ftra2vCMFADs7O4SE5JwdCwkJgZ2dnUK9uLg4vHnzRnMnqUZU9jNVBUkxtO6av2AEawnUtB/ClxXk8Gn8BcaY4TKVtQRqZrrw9WK4YCY/HZOMX+dOZy1BJVT1M61QocJXR6bJyckwNDRU2GZoaIikpCSldWV/JyUloXz58ioqZ4daO9PiiI2NJWsJ1JS3qMpaAhWW1vwlYK9eoxprCdRUr2nNWgIVNtX5W1bg5b6QSNTjR6qnp5dj6S8xMRH6+vpK68r+zq1uYURM8+aTZk35CsEGAB6T+YqANLY7f5Fuvm/F39R0p1Y/sZZARdNOc1lLoKZL626sJaiMOqx5bWxskJmZibCwTy5BwcHBOYyPAMDW1hbBwcEK9SpWrMjFqBRQc2c6ZEjht1JTN89fHGEtgZpfd/OVNebQnYesJVATEnmLtQRqHkTylQHpxQP+PAfuRvCT6UYdsXl1dXXRp08fzJ8/HykpKbhy5QqOHTsmz5P9OU5OTti8eTMePHiAt2/fws3NTcEFJjMzE+np6cjKykJWVhbS09ORmVl4jPFU7kwJIfD09ETHjh3RoEEDAMClS5dw4MAnn8WNGzfm+fn27dujdOnS0NPTg56eHmrVqiXf5+Pjg9q1a6Ns2bLo0KEDnj7NO7Eyjc9SQbB61T6mx/8Wrh7ayloCFfv/XsdaAjXr13gor1TIWLfGi7UEKlat82YtgZqNf25iLUEl1JnPdMOGDUhLS4OpqSkGDRqEjRs3wtbWFtHR0dDT00N0dDQAwMHBATNmzECHDh1gZWUFKysrLFy4UN6Om5sbypQpA3d3d+zatQtlypSBm5ubWs53x44duHtXMWhJcHAwdu7cqXIbKnem8+fPx+bNmzFmzBj5yVeuXBnLli1T+WDr1q1DcnIykpOT8fjxYwBAfHw8+vTpg8WLFyMhIQH29vYYMCBvS8jPfZZ2796N8ePH52oZVlDExMQzO/a3kpTwirUEKt7E8Rf/+WVsHGsJ1LyM5eu+iHn5lrUEani5LyQSoKSWRGlRBWNjYxw9ehQpKSmIjo7G4MFSq/EqVaogOTkZVapUkdedNm0a4uLikJiYiK1bt6JUqVLyfa6uriCEKBRXV1e1nO+8efNgaalo/2JpaQkXFxeV21DZz9TS0hKBgYEwMTGBkZER3r59C0IIjI2N8fat8pu6ffv2GDJkSI6ISR4eHti2bRuuXr0KQOqXZGJigsDAQNSuXVuhLo3P0pcIP1PNI/xMCwbhZ6p5irufab1GjXHI74rSeo7ftykS+UyNjIwQHx8PbW1t+basrCwYGxvj/fv3KrWh8sg0KysLenp6AD65wCQnJ8u3qcLs2bNhYmKCVq1a4cKFCwBy+hbp6uqievXquY42aXyWCoqm9vyFU/z7fz+zlkDFmB/as5ZATceW3VlLoKZDi56sJVBh32EOawnUdG7ZlbUElZBO8xaffKZ169bFoUOHFLYdOXIEderUUbkNlTvTH374AdOmTZPHSiSEYN68eejRQ7V8nsuWLUNERARevHiBMWPGoEePHggPD8+XH9LX6gLSUa/MmfjJk+dY6CoNjF271mCEhj7DnTuP5Z3hr9PXydc/K1v0RkxMPC5cCJQHZRg7ZoU8Dq+hQVckJaXixIkrKFu2NADA0XER9uyRZqbX1moLANiz5xwcHRcBkCYRP3HiCpKSUmFo0PU/fccxdow0wXHHDpNx4UIgYmLi5Zlorh7aijOe0mn0v//3M2LCQhD/PAprR0ktAv12rYPfLul64tpR3RD/PAoxYSHyzvKM5zL5+uhKx3ZIfPMKkXdvyq/P8T8XyOP0/t7HHhmpKXh83U+ePPzgst9w1+9fAIBrN2nmlrt+/+Lgst+k57dgAh5f90NGagp+72MPQBpHd+XMqQCkwRYCr/kj/mUs+jaR3pT7/16HDYukUydjfmiPx3eD8CziCYa0lX5+62p3bF0tnWUY0tYezyKe4Gfn8fIOdcMiF/kaat8mdRD/MhaB1/zlgR1Wzpwqj+XbrbYlUpOTcPXcKXmC8cWTRuH8kX8AAO0tjaTnue8oxgz7HwBpUu/T3ueRlJQMqwrSc96+eQ9+mSj1de3ZZQD8L11DbEwcbK2bApCuj86bKQ0g0LFldwQF3MO0Gf9Ds/pSzcvc/sAytz8AAM3qt8eTsAgEBdyTd7jzZi6Wr7HaWjdFbEwc/C9dkwd++GXiLHmsX6sKdZGUlIzT3j7yZN6jnabi4D7pvWlcuvp/53Qco52k38OgPqNx2tsHSUnJqGIitXfY5rUXUydIO6MenQfD/+J1zHWdjrrWLQBI109dZkoj0XRo0RNBAffwJCwSTetJw/e5L/4T7ov/BAA0rdcJT8IiERRwT94hu8z8Xb4Ga1F3AmJi3+KC/wN5oIUxUz3lsXUNqoxEUlIaTpy+I0/47Th6HfYclI6MtIyl04J7Dl6B42jpd99z0Ao49muNpKQ0GFSRJmL32OaDMVOls08deizGBf8HiIl9C4u60vt51TpvTHeRxsa17zAHd4IiEPokFrWaTgMAuLofhKv7QQBAiwatER4WjuCAu/IOcMGshfI1zwbVGuFlzEtcuXRVHohh+sTf5LF3q5nWRHJSMs54n5UnBB83fAJ+6PkDAKBiWXMAwKH9hzFuuFTfkL5OOON9FslJyahmWhOANJbv9InS56131764cukqXsa8RINq0uwzG//chAWzPq0rqg/1xeblgWXLlmHUqFHo27cvZsyYgT59+sDZ2RmrVq1SuQ2Vp3kTExPh5OSE06dP4+PHjyhdujS6dOmCHTt2fJMfkIODA7p3744nT57g48ePCjF969evD1dX1xz5UwMDA9GqVSukpqbKt61atQoXLlzAiRMnvno8TU3zhoY+05ivqaameeOfR8GkclW1t6upad5nEU9gWa2GRtrW1DTvk7AI1KipGZ9CTU3zPgmLRA0N+Jpqapo39EksbGpo5p7T1DRveFg4qtdUv9+0uqd5GzRughOXriqt17d9qyIxzQsA0dHR2LNnD549ewZLS0s4OjrmWEf9GiqPTA0MDHD06FE8ffoU169fR3h4OI4cOfLNDrUSiQSEkBy+RSkpKQgPD8/VD4nGZ6mg6NljJrNjfyt7XMezlkDF7OEDWUugZnCfkawlUDOoN19LFj3+G8XyxJC+vITyJJAgW2kpSlSpUgWzZs3C+vXrMWvWLKqOFFASASk7O+fFqlChAipUqKCwX0vr633yu3fvcOPGDbRr1w4lSpTA/v37cenSJaxZswbGxsb47bffcOjQIXTv3h2LFi1CgwYNchgfAYo+S15eXggKCsKxY8fkxkssePSYv1Rbk71OsZZAxa5L/L353rx3gbUEam7d5yul2eNbq1lLoObaXX/WElRGIilaneWXDB06VKUQuDt27FCpva/2giVKlEDJkiXzLLL9yvj48SNcXFxQoUIFmJiY4K+//sLRo0dRq1YtVKhQAYcOHcLcuXNhZGSEGzduYN++T76bv//+O7p1+xQ1JC+fJVbI1mF5QrbOyguyNVSekK2R8oRsDZQXZOubPLHCbSVrCSohAYEWspQWnqlRowaqV6+O6tWrw9DQEEePHkVWVhYqV66M7OxsHDt2DOXKlVO5va+OTCMjI/OrF4B0NHvrVt4RYb7//ns8evQo131z5iha7Ml8lgQCgUCgKQh3Lli0LFiwQP53165d4e3tjTZt2si3+fv7Y/Fi1TMTqTWfaWFG+JlqHuFnWjDw9iMn/Ew1j7oNkOwaN8SZK+eV1vuxjUORMEAyNDREfHy8wkzrx48fUb58eZVzdKtsgDR06FA4OTnlWooztWvxlQMSgNy1hhdkbjM8IXOL4QmZ2wsvyFxaeKJFg9asJahEcZjm/ZxGjRphzpw5SEtLAwCkpaVh7ty5aNiwocptqJyCrUYNRdeEly9f4uDBg3B0dFT5YEWR4ydUD6dYWBjsmncM5cLI0m38xT/ec5i/tfS9R/iKzXti72+sJVCz69B21hJUQ8LfDEh+2LZtGwYPHgxDQ0N5hD97e3uq2O8qd6afzy/LcHZ2VghEXBxJSkpVXqmQ8SEthbUEKlKTk1lLoCY5ia9rDADJSXxd56TkNNYSqOHnviBF3pr3c6pWrYqrV6/i2bNniImJgZmZmULMYAC4cuUKWrVqlWcb+UrB1rBhQ1y8yFc6L3Uzbix/vm4n1uZ8MSrMrJo1lbUEaqZNmsVaAjW/TOQrP+jYX/gaSQPAr5P4GU1LkKW0FDUsLS3RvHnzHB0pAAWvktxQeWTq6+ur8P/U1FTs27cPdevWVbWJIsmt2/w90GP/4sulwOPkBdYSqPG9yl96ML9rx1lLoOK23++sJVBz7uoZ1hJUQgICrWI0MlUFZba6Ko9MnZ2dFcqsWdI377179+ZPIef8Op0vn00A8ni/vCCL5csTsli9PCGLxcsLsji7PKGZOLqaQOoao6wUJ5QFeFB5ZKoun9Oihrk5X+4rAKBvbMpaAhXlK1ZiLYGaSmYVWUugppIZX/eFeSUj1hKo4eW+kABFchpXk3zVzzS3cIK5oSycYGFA+JlqHuFnWjDwNiIQfqaaR91+po2b2OLSjQNK67X/bliR8DNVBQMDg6/6nOYrnKCsFGdk6dJ4YqVjO9YSqJClb+MJWXo2npClX+MFWWo1npClTuMBLWQrLUUBQggiIiKQlfX1kbiyNVOVwwl6e3vj4MGDmD17NqysrPD06VMsW7YsR5q04gZvo10AGLP2H9YSqPjb21d5pULG+Sv/spZAjc+Vo6wlUHHLZwlrCdSc9ecjyYREUvTDCcqQSCSoX79+nnmxZSjb/9XO1MrKSv736tWrcfv2bXngXxsbG3ni7fHj+UrppU5CQ59xt2765kUUDMrzsz72LDIcJpX4mkIOfxIBM3M+1sdkhIdFcqU5NDwW5mZ8rZuGP4lAJXM+bACK05ppo0aNEBoammu2MlVRebHz/fv3Ckm5Aal7zPv377/54EWBRQu3spZAzYVd61lLoGIbh1ljlrutYS2BmmVua1lLoGLhskOsJVCzcskq1hJUROoao6wUFdq3bw8HBwe4urpi8+bN2LJli7yoisrWvMOGDcP333+PqVOnwtLSEs+ePcPatWsxbBgvyW41g68fXz9AADBiOSchzf7jz3/4mzI9fnY/awnUnDjHV25evxPzWEug5sgZfl4Ailry769x5coVWFtb5whCJJFIMHLkSJXaUHlkunz5ckyePBn79+/HtGnTsG/fPkyaNAnLly+nU13EGDuGvwhIx//kKwLSyplTWUug5peJ/EVAmjphjvJKhYgxU/mzV5g+kY8ISNKgDR+VlqKCn59fruXLYEVfQ+WRqZaWFsaNG4dx48Z9k9iiShP7WqwlUGNek10y9W+hVoOGrCVQ07BxA9YSqGnYuD5rCVTYN6zGWgI1do3tWEtQkeIVmxcA3r17B29vb8TExMDc3Bzdu3enSg5Olc9069at2LlzJ168eAELCwsMHToUI0aM+BbdBU4TSyNcndaRtQwqLvT2YC2Bii6l+JnCkvFyAn/hILvHDGctgYqZd/5kLYEag7CrrCVQMblnJ4TdC1Jbe/b2tXD71ibl9Zr+ViT8TH19fdGnTx/UqlULVlZWiI6OxqNHj3Do0CF06qRaakKVp3mXLFkCd3d3DBw4EGvXrsXAgQOxfPlyLFnCn3m6OjGZzVc8UwDoXc9KeaVChEHNyawlUFPz3zusJVATfJuv/KDDs8JYS6Cmb32Onj2SrbwUESZNmgQPDw/cuHEDBw4cwPXr1+Hp6YmJEyeq3IbK07xeXl64cOGCgrtM165d0bZtW8ydy1e2CXUSuYCvRNsAsPv6fdYSqHgRyN+6fGDXhqwlUFOvEV+xeTdqVWctgZqd1zh59ggBsouPa0xMTEyOmAm9e/fG6NGjVW5D5ZFpSkoKKlSooLCtfPny8szkxZVL4fGsJVBz9/oV1hKouHD1MWsJ1FyN/7qDd2EkOZGvkd4D8JdL+N4Njp69YjQydXJywvr1ii6DGzduhJOTk8ptqNyZOjg4wNHREY8fP0ZaWhoePXqEYcOGoWvXrqorLoJsvsZfAoBTe3ewlkCF567LrCVQsyvqFWsJ1MS/9mctgQqfbP583Pl59giQna28FBECAgIwffp0VK5cGc2bN0flypUxffp0BAYGom3btvLyNVSe5l23bh0mTZoEOzs7fPz4ESVLlkT//v2xdi1/fpbq5PColqwlULNwM1/+hMd3TGItgZodLWxYS6Cmug1fkcxmaFuwlkCNqxdHz14RGnkqY/To0VRTurmhcmdqYGCAHTt2YNu2bYiPj4eJiQkX2WI0jdPOm9gxtBlrGVS4TxmDWX/yYynsOMELuzeMYi2Digm3w7HBnq81vagnW1G1Bh/W+QCwNjsWk7X4CjO5bMoYzOTh2SMEyC4esXkBqBR8aMKECV+tp3JnCkjDBz558gTJycl48uSJfHvLlvyNztTFD3X5epgBoHnHLqwlUNH9e/58Nr+vWI61BGoMytVjLYGKxtBlLYGaZjw9e0VoGlcd7Nq1Cxs2bMhzv8qd6Y4dOzBp0iTo6OigTJky8u0SiQTR0dH5U8kxA5tYspZATYdeP7OWQMXgPnyN/AGgj2V51hKoMTbhK21cay0D1hKo4efZI9LRqUCOspAMKs/TzpgxA4cOHUJ8fDyePXsmL8W5IwWA0tMOs5ZAjYM1X1lutMzHspZAjfnRW6wlUBN4U3WfusLAwKxQ1hKo+aEaJ88eQbGy5lUFiUTy1f0qj0x1dHTQvn37/OopcqSv7sNaAjWnI/ly58mO+Zu1BGpifuJrlAcAjZrxlU1onzZ/Rl4nI3h59ghIMVozVQcqj0wXL16MadOmIT6el5uhYNh35xlrCdT4HTvIWgIVew7fZC2BmsPP3rCWQE1CPF+jaf/sRNYSqOHm2SMoVq4xqqC2aV4bGxscP34cFStWhLa2NrS1taGlpQVtbe18i+SZkw9iWUug5obvWdYSqPA+f5e1BGrOx71jLYGaxHecROf5jwCksJZAzU1unj1S5Kd5BwwYIP9761bleamHDBny1f0qB7qvUaMGBg0ahAEDBigYIAFA9eqF3wVABLrXPCLQfcEgAt1rnmIf6L6hNW6dX6i0XlOHtdwGui9Xrhzevn0LiUQCAwMDJCbmb6ZD5ZHpmzdvsGjRItSrVw/Vq1dXKMWZPl58PXQAsMB5MGsJVPR0WsdaAjVO1/gzjgkP3chaAhXLs16wlkCN6yhenr3//EyVFRVISEhA7969oaurCysrK+zZk3fgij/++AOVKlWCoaEhRo4ciYyMjG9qRxXatGmDFi1awMnJCenp6XBycsq1qIrKBkgjRozAzp07qRovDji3sGYtgZpug/j6DkcPacNaAjVDqpqylkCNSYXWrCVQ0UnLkLUEarh59mRrpmpg4sSJ0NHRQVxcHIKCgtC9e3fY2dnB1lYxr/KZM2fg7u4OX19fmJubo3fv3liwYAHc3d2p2lGVf/75BwcPHsTTp08hkUjyPTBUuTO9efMm1q1bhyVLlqBixYoK+y5dupQvETzTtjonpu6f0eC7VqwlUNG+JX8J2Fua6LOWQI2eQU3WEqioi7KsJVBTvzkvzx5Ry5poSkoKDh06hPv370NPTw+tW7dGz549sXPnTnknKWP79u1wdnaWd47z5s2Do6Mj3N3dqdpRFS8vL0yaJA1VGhISggULFuTrXFWe5h09ejQ8PT0xZ84cODs7K5TijPXCU6wlUOP4HV+RbiwazWAtgZpGZ4JYS6DmfuAc1hKoGJ8dzloCNUNbcPTsqWCA9Pr1a9jb28uLh4einUdoaCi0tbVhY/PJjcnOzg4hISE5DhcSEgI7OzuFenFxcXjz5g1VO6ryeerQf//995vbkaHyyFTV2IVfC7dUFIlf2pO1BGqO3H/KWgIViWH8JVMI+7EJawnU2NmvZi2Bim3afI2kAeDQPU6ePUKALOX5TCtUqPBVA6Tk5GQYGipOxxsaGiIpKWeKwi/ryv5OSkqiakdVqlevjunTp8PW1hYfP37Eli1bcq03cuRIldpTa6T6Xbt2qbM5LvDiMAXbyT3bWUugwmMXf8sIXKZge8VXCrbz2e9YS6Dm1F6Onj01uMbo6enlsJJNTEyEvn7OZZAv68r+1tfXp2pHVfbt24f3799j7969+PjxI3bu3Jmj0PRpVIHulaGil02RIuDZW4AzIySpCb3ymYbCwu3gpxjzdRevQkfw21QMqcpaBR2pKXyFBo1AhvJKhYywe0HoNoiTZ08Na6Y2NjbIzMxEWFgYataUziQEBwfnajRka2uL4OBg9O/fX16vYsWKKF++PEqXLq1yOzTavLykrnGdOnWCj4/PN7cFqHlkqix2YVFkQ//GrCVQM2XpH6wlUOGxYihrCdSsaFSVtQRqqljz4rYhZYxWReWVChmTf+fk2SPqSQ6uq6uLPn36YP78+UhJScGVK1dw7NgxDB2a85l2cnLC5s2b8eDBA7x9+xZubm4YPnw4dTvfQn47UkDNnWlhw8PDQ74w/iQ+GYtPPwAA1Ft6FmGvkhDw7C1arPYFAMw8dhdrLoQBAKxdTyLmfRouPnmNzuulU4wTDgTIp3RNZh9HUvpHeIfEwtzlBABpXlNZaEFZ8Pt9d57Baac0FF4fr6vwDolFUvpHmMw+DkA6RTzhQAAAoPP6S7j45DVi3qfB2vUkAOCQ53p4uM0DAEzq0RFh94LwPOIJnDtIs6jsXLMMO9csAwA4d2iG5xFPEHYvCJN6SINTeLjNwyFPabzVwc1t8SYuFsHX/dG3QTUAwJ+zf5FP+fauZ4XU5CRcP39a7ofqPmWMPPyZLDi+37GDcJ8yBoDUX/X6+dNITU5C73pW0mPuuoQxv+0EAHTouwoXrj5GzMt3ciOiVZvOYfrCfwAA9l2X4M7dpwgNj0Ot1tLzdF15Aq4rpde0Vut5CA2Pg33XJbDvugQAMH3hP1i16RwAqWFSzMt3uHD1MTr0XQUAGPPbTvm0sEHNyUhKTseJs8FyX1XHCV7y8ISyAPqHn73BhNtSYxana6E4G/sOyR+zUPPfOwCkU7a/BUYBAPpefoSrrxPxMu0DGp0OAgBsCnuJhfeko7qufiG4+y4FP1x4gNbnpJGbVj58gZUPpT6Rrc/dRXhyOu6+S0FXP6nxxMJ70dgU9hIA0Oh0EF6mfcDV14noe/kRAOC3wCj5tHHNf+8gKysd79/ek/uFRj3ZKg8FKAtWnxB/C1FPpFFdwkM34v3be8jKSkfw7WkApFO60ZFSP72wh2uQlBiKxyErce8/I6S42PN4Hi0NwvHovjtSU6KRnhaHB8FSR/7Y596Ife4NAHgQvBDpaXFITYnGo/tSy8rn0YcQF3seADA+KxwJJBMhJBULs6TPiEd2nHyadnhWGNJINu6QZLnv6NrsWHm4QFlAe//sRKzNlkYcW571Ar9mRSGNZGN4lvS5PZ/9Dh7ZcdJrmvUMISQVCSQT47Ok3+2/2QnYmf0aADA76ykiSDpiyAdMzZI+1/9kx+OfbGm41FEdPz1Pk3tKnyfPJfNw2Ev6PA35Tvo83b3uj5mDpHYTa+f8Ip/G7Vtf+jzd8Dkt9y1dNmUMxnZuAeBTwHu/Ywex7L/nyXXUYNzwkT5PfetLn6dTe7dj7ZxfAAAzB/XE3ev+eBMXiyHfSUdkh73Ww3OJ9NlRLwTIzFReVGDDhg1IS0uDqakpBg0ahI0bN8LW1hbR0dHQ09OTJ0txcHDAjBkz0KFDB1hZWcHKygoLFy5U2s63UqdOHfnflpaWqFKlikKRbVMVlSMgqYK+vn6+FoQ1iaYiIF188hrtalRQe7uA5iIgBV/3h9136vcp1FQEpAtXH2vMPUZTEZCuvk5EywqaSRGmqQhISYmh0DdQf/B4TUVACiGpsJVoxj1GUxGQ7l73RwMNPHtqj4BUrzJuHZqstF5TxwPcRkDy9/dH69bS7+LixYt51mvXrp1K7al1zVRZ7MKiSM0KeqwlUFPZmq+oVTbV+JvOq6ZXmrUEakqX5ivQhBl0WEugxoKnZ6+IB7I/e/Yszp5VHitZ1c6Uapp3y5Yt6Ny5M2xtbdG5c2ds3rxZweho40a+wpGpg1Z/+LGWQM3/en7PWgIVTbv9zloCNd0uPmAtgZpHIctZS6BibjYnbiafMaUXJ8+emtZMCzOf5+UOCwuDu7s7fHx88OTJE/j6+sLd3R1hYWEqt6fyyHTGjBk4duwYpk6dCisrK0RHR2PlypV4/Pgxli/n6yFUJ5GuP7CWQM2eG9/u6MyCF4H83V+BDg1ZS6CmfiO+Xlo2anM0yvuPXdc5evZUXBPllc8zxQwcOBB79+5F37595dsOHz6Mf/75R+X2VB6Zbtu2DT4+Phg/fjx++OEHjBs3DmfPnlUpdU1RRma0xBMyoyRekBkc8YTMoIgnZAZDvPBvdgJrCdTIDJgKPcVgZPo5p06dwk8//aSwrVevXjh58qTKbajcmerr6+dwkNXX14eBgWaMLHgh9n0aawnUvInj64c+hsPcoHHpH1hLoObjx/esJVDxFsoj9BQ2uHr2sonyUkSoUaMG1q9XfNHZsGEDVfB7lad5p06dij59+mDWrFmoXLkynj17hhUrVuCXX35BRESEvF61atVUPnhRYFmvBqwlUDPGZTFrCVSsWtCPtQRqFtRX3aS+sFC5Sl/llQoRQ7U0Y0WvSUbP5eTZI6TIT/N+jpeXF3r37o3ly5fDwsICL168QIkSJXD48GGV21C5M50yZQoAwM9P0eDGx8cHkydLTaglEgmyVIjnWJRosdoX1zhLOj6pR0esO+HLWobK2Hddgttn5iqvWIjo6heCMx2+3QeOBY/uu6N2vVmsZajM7KynWKptxVoGFZN7dsTa43w8e0QNEZB4oVGjRggLC8P169cRExMDMzMztGjRAiVLllS5DZU70+wiND+uTtb3a8RaAjVTfucroPnfK/hzuRIRkDTPaA4jIP1vCSfPnmzNtBhRsmRJtGnz7bmT1epnWhzRL8XfJSyjy5dvrL4ufz6buiW0WUugRkurFGsJVJTmMIAbV89eMetM84vKd2N0dDScnZ3RuHFj2NjYKJTiTO/N11hLoEYWLpAXegxbx1oCNcOuhbKWQE1E6CbWEqhYnv2CtQRqZKEFCz2EAJlZyotAjsrDqn79+qF27dpYtGgRypQpo0lNXHF/dhfWEqjZ7HeTtQQqHvtzYrTxGf6d+TNMq2u3gLUEKtZo85WtCQC8fDl69sTIlAqVR6aPHj3C1q1b8eOPP6JTp04KpTgjC57PE7Lg+LwgC3zPE7LA9jwhC1zPC7Kg9Dyxi5dnj6BY+ZmqA5U70x49enw1GLBAIBAIigrFK2iDOlB5mnft2rVo2bIlqlevjooVFa3otmzZonZhvDDPoS5rCdQMnTqTtQQqXH/twVoCNb/WsWAtgRqzyt1ZS6Cin5YJawnUDOHl2StmfqbqQOWR6YgRI6CtrY06derAwsJCoRRn6i1VnnWgsCHLh8oLslynPCHLZcoTslylvCDLQ8oTozpy9OwVowhI6kDlkamvry9iYmJyhBQs7hxxbsFaAjULN+9hLYGKE9snsZZAzfYW/Fm5V7MZx1oCFTO0+HuRd/Xi5NmTrZkKVEblkWmDBg3w5s0bTWrhkqQM/qZC0lKSWUugIiklnbUEalI4dBvIzs5gLYGKdPD3Y8/PsyfWTGlRuTPt2LEjunTpgqVLl2LLli0KpTgz8Z9A1hKo+XPONNYSqBj72y7WEqj5LTCKtQRqoiM5GTX9h2d2HGsJ1Pw1l5NnjwDkY5bSIviEytO8/v7+sLCwyJGZXCKRYOTIkWoXxgu8xeUFwFVcXgDcxeUFwF1cXgBcxeUFwF1cXgDcxOUFINZEKVF5ZOrn55dr8fXl6ObQADOP8Wdo4uHGl0HP9IWqJ+gtLCy8F81aAjXPow+xlkDFzuzXrCVQ47mEk2ePECBLhSKQQxVY9s2bNzh58iRevnyJ3377DTExMcjOzkblypU1pU+9aODLN9MvrbGb6o11S420WxoJeLPZR+3tflhTX+1tAkDFl3H4cEAzVtPpbzWzTlieaGms7Z/dNBMoxf/gU7T+Wf1t9yv7VO1tAsCzvTfRb5BmrGMlOpp5gQsxfwUHDbRtqPVWre0RAESMTKlQeWR68eJF1KpVC7t378aiRYsAAGFhYRg/frzGxPHA1HY1WUugpjuMWUugYmoH/ixjR1nyl2uz9c98LddM01BHqkmmj/2etQTVyAbwIUt5EchRuTOdOnUq9u/fj9OnT6NECemAtnnz5rh5k6NYkxrAevEp1hKomYhw1hKosJ7PV5g7APjuGn9hJt0Hfnv6KRZU7rWetQRqLJrwsi5NQLKVF8EnVJ7mjYqKksfhlUgkAAAdHR1kFvMoGVcmt2ctgRo38GW4cWU6f0ZexxrzN2MxYf1B1hKouLnZibUEam55c9KZEog1UUpUHpnWrVsXZ86cUdh2/vx51K+vmXUyXgiL58Vv7BOx+MBaAhVhr/i7xpFpfPlsAkD88yjWEqgIjVbvOmFBEBrxirUE1RERkKhQuTNdvXo1HB0dMWzYMKSlpWHs2LEYPnw4VqxYoUl9hR63s49YS6DmMPgKvuHGYWaeP6P484H03clX3thFW66wlkDNwtX/spagGoQIP1NKVO5ML1++jLt378LW1hYjR46EtbU1bt68icuXL2tSX6Hn3Hi+1pkAwAWWrCVQce5/7VhLoGZvw+qsJVAzauVO1hKo8F03iLUEavwO8hO0QbjG0KFyZ7po0SKYm5tjxowZWL9+PWbNmoXKlSvDzc1Nk/oKPRMO8hcByQt8jZom7L/DWgI1c0Kfs5ZAzZE/OPGB/I+xy06zlkDNmBm7WUtQGWGARIdSAyRZUIasrCz4+fmBkE8XMCIiotgHvm9cuRxrCdRUQynWEqhobGnEWgI19fXKsJZAjYVNPdYSqGhSuxJrCdTYN6jCWoJqCAMkapR2ps7OzgCA9PR0hbCBEokElSpVwl9//aU5dRww6jtr1hKo6YhyrCVQMaplNdYSqBlkXp61BGqadR/AWgIVY3o1ZC2BmjFDOFkWIgTkowhkT4PSad7IyEhERkbC0dFR/ndkZCQiIiJw9epV9OzZsyB0FlpMXE6wlkCNM8JYS6DCZOYx1hKoqe9/n7UEahb2asxaAhWGnf9gLYEag1pTWUtQnaxs5UUgR2U/0x07dmhSB7dEujiwlkDNOvBlHBO58AfWEqi59l0d1hKombX3EmsJVDw/NoG1BGpe3HFnLUElCBHhBGlR2QBJkDuXIuJZS6DmIVJZS6Di0hP+AprfeJfCWgI1EcF8RTO7EPCMtQRqLlwLZS1BRUSge1pEZ5pPNl+PYi2BGl+8Zy2Bis3XIllLoGZvLF++vABw6+QB1hKo8DwezFoCNZ67/VlLUA0CkI/ZSovgE1RZYwQ5OTyyBWsJ1PwKC9YSqDg8uhVrCdR41efPMM1p8SbWEqg4vrwvawnUHN/GydQ0gYhwRIkYmeYTp923WEugZh1iWUugwmkHX9OPADDlIX/5TPcvnc5aAhWOrvwZ/zlO3MxagooQYYBEiRiZ5pMf6vLn69YIuqwlUPGDLX/XuKMxf/7XtZu3Zy2Biu4t+TKkA4Du33MSy1wYIFEjRqb5ZGAjvkLzAUArGLCWQMXAJpw4un9Gr4r8BZqw69iDtQQqBnepy1oCNYN7c5KDtQDXTBMSEtC7d2/o6urCysoKe/bs+Wr9P/74A5UqVYKhoSFGjhyJjIxPSSXWrVsHe3t7lCpVCsOHD1eLPlURnWk+Kf3bEdYSqHEELxaFUkpPPcRaAjXVLt5lLYGauV1qs5ZAhXbr5awlUKNVeTxrCSpDsojSog4mTpwIHR0dxMXFYffu3Rg/fjxCQkJyrXvmzBm4u7vDx8cHUVFRiIiIwIIFC+T7zc3N4eLiohBgqKAosM40rzeGqKgoSCQS6OnpycvixYvzbIf2LUbTpK/ozfT438Ju2LCWQEX6Gv4MTSLaNWAtgZolnGVAyvKfwVoCNdnPN7KWoBKEFExy8JSUFBw6dAiLFy+Gnp4eWrdujZ49e2LnztyTLmzfvh3Ozs6wtbWFkZER5s2bh23btsn39+nTBz/99BPKly/4CGQF1pkqe2N49+4dkpOTkZycjHnz8g64TfMWUxDsC+TP1+0KEllLoGLfHf6MeY7F8ZdrM9iXL4OePWf5S8235wg/xnTZWURpyS+hoaHQ1taGjc2nF3w7O7s8f9NDQkJgZ2enUDcuLg5v3rB3RSuwzlQdbwy0bzEFwckHL5kd+1sJBF8BBU6G8HeNfROSWEug5tGNC6wlUOF9NZy1BGq8z99jLUElCAGyM7OUltevX8Pe3l5ePDw8qI6TnJwMQ0NDhW2GhoZISsr9+fmyvuzvvOoXJIVmzdTKygqVK1fGiBEjEB+fe1Qh2reYgmCHY1Nmx/5WJsGMtQQqdjhxYrTxGX/W4c9oasDsVawlULHblS+DKQDYvd6ZtQTVIMrXS0kWQYUKFXD79m15GTNmjEIz7du3h0QiybW0bt0aenp6SExUnClLTEzMMxvZl/VlfxeG7GXMO1MTExPcunULT58+xZ07d5CUlARHR8dc69K+xXh4eMjfmJ7EJ2Px2YcAgHrLziLsdRICnr9FizV+AICZJ+5hzUVpAHjrxacQ8z4NF8Nfo/NGafLzCQcD4XVdGonHxOUEktI/wvtBLKosPAlA6m8qm/KVGSXtC3wm90Pts+UavB/EIin9ozw4vtf1SHk+1M4bL+Ni+GvEvE+D9eJTAABvJGAXpKH05uIpIpGOWHzAdEh1HEI8DkH64jEdkYjFB0QiHXPxFACwC6/hjQQAwESE4y0y8QCpGIsn0uMjDr54B0Aa/D4N2QhAMlbiBQCpP6psSlhmtHQFiXI/1ZV4gQAkIw3Z8uD5Xlcj5PlHO/91ERfD/jun+d4AgDV+oZh5VGqc02KlDwKevUXYqyTUW3IGALD41AMsPiWdvqu35AzCXiWh09oLaLHSR/o9Hb2LNX5SLdbzvaXfU9hrdP7rovR72n8HXlcjpN/TzGPS7+l+DPp4XpF+TztuyqeNZYZNx+Leyv1CR92LhE98IpIzs+TB6vfGvJHnJx0UFI7r75IRl/ER312T6vR69hpLwmMAAD3vhOFeUioGB4Wj403pGuSaqJdYEyUdXXe8+QgRqRm4l5SKnnek12xJeAy8nkm/5++uPUBcxkdcf5eMQUHSkdec0OfYGyOdxqrvfx8Zqcl4eM0XO+aNAyD1D5VN0cqMiIJ9T8j9RnfMG4eH13yRkZosD2Z/03u/PH+p169DERF8A1tmjoD7QGlWE/+DW3Dyb2kc2fUT+uBF6H3EP4/E6hFdAQA+O/6Czw5pxqjVI7oi/nkkXoTex/oJfQAAJ/92h//BLQCAyr3WIyY+CRcCotFx0l4A0lykHseCAEgD1ielZuCE/xP0nCH9ThxdT8incWWGRnvOPpD7lvaccQjNR+1AUmqGPOC9x7EgeY7TjpP24kJANGLik1C513qpzr038etf0pSSTUdux51HLxEanYDaAz0BAAs3+2PhZmmEolptFiA0Ig537j6FfbffAQDTFx3Eqr/PAwAsmsxCzMt3uHA1FB1+Xg1AmqvUY5f098Kg1lQkJafjxLm76Dl8g/ScJm5GEwdpWzJDpD1Hbsp9T3sO34AT5+4iKTldHhDfY9dleQ7UDj+vxoWroYh5+Q4WTWYBAFb9fR7TFx2EJlDHmumFCxek66+5FH9/f9jY2CAzMxNhYZ+SbwQHB8PW1jbX9mxtbREcHKxQt2LFikzWSL9EQj5PUFoAuLi44Pnz5wqLxp/z8uVLmJmZ4f379zAwUHThCAwMRKtWrZCa+im27KpVq3DhwgWcOPH19Z4mlka4OqVDvvV/ifeDWHSvq5mR3qHfNDPiDkAyGkNP7e32XaMZHzrv+zHoXs9cI23HHNFMBh2f+ER0MtGMC9LeuZoJ+/fwmi/qtOio9nZnld2i9jYB4IT/E/RoXUMjbUuqaiaC1Ylzd9Gjs/qN05r+sBS3g5+qrb2Gxno410W5zm5PPuD27dv5OtbAgQMhkUjg5eWFoKAg/PDDD7h69WquHerp06cxfPhw+Pr6wszMDH379kWzZs3g7i598cvMzERmZiYWLlyI58+fw9PTEyVKlECJEpoPqcB8ZPolEokEAJBbH0/7FlMQtK1mwuzY30odlGUtgYq2NSqwlkBN83J8BcYAgGp2fE2nt2/Mn493+xZ8WNITAmRlZist6mDDhg1IS0uDqakpBg0ahI0bN8p/06Ojo6Gnp4foaOnMkYODA2bMmIEOHTrAysoKVlZWWLhwobwtNzc3lClTBu7u7ti1axfKlCkDNzc3tehURoF1ppmZmUhPT0dWVhaysrKQnp6OzMxM3LhxA48fP0Z2djbevHmDyZMno3379jmmcwFAV1cXffr0wfz585GSkoIrV67g2LFjGDp0aEGdRg6s3U4zO/a3Mgl8GW5YLzjJWgI1La4/ZC2BGvdBbVlLoKJyrw2sJVAjm54t/Ki2ZqoOjI2NcfToUaSkpCA6OhqDBw+W76tSpQqSk5NRpconG4Rp06YhLi4OiYmJ2Lp1K0qVKiXf5+rqmmM62dXVVS06lVFgnWlebwwRERFwcHCAvr4+6tWrh1KlSmHv3r3yz/3+++/o1q2b/P9fe4thQbwbf0YQm1GTtQQq4pf1Yi2Bmnut67GWQM2CYwGsJVDx/twvrCVQk/h4DWsJqkHUs2ZanCiwzjSvN4ZBgwYhMjISKSkpiI2NxY4dO1Cp0qdYrHPmzMGpU6fk///aWwwLZEZJPCEzOuIFmUERT8gMhnjipvd+1hKokBkw8YTMQKmwQwiQ/TFbaRF8otCtmfJGwPN3rCVQE4EM5ZUKEQHP+AuAcC85jbUEal6E3mctgYo7j/jzP759l5cAJAQkO1tpEXxCZI3JJxt+bsRaAjWjUJG1BCo2DGjCWgI1v9tUZi2Bmt6/5B3GszDy90wH1hKo8Vieu9tfoYNAbWuixQUxMs0nMj9UnnADXyEQZT6kPCHzEeUJr1/ZGfJ9CzKfVZ6Q+aTygFgzpUOMTPOJC2eZNgCgD9g7ONPg4sBfqq0pVfka/QNAx6GTWEugYv7IVqwlULNg2o+sJagEIUCWWBOlQnSm+aSmifqDH2gaM+iwlkBFTVP+rrF1mVLKKxUyTCpXZS2BCpsq/OWMtalmylqCahAx8qRFTPPmk1ZrL7CWQI0L1BcppSBotcqXtQRqegVoJrKSJtkw8WfWEqho5ryDtQRqmnZ3Zy1BZQrKz7SoIEam+SRyXjfllQoZ61GdtQQqIhd1Zy2Bmust+JuanrWPr/X/58cmspZAzYs7nHSm//mZClRHjEzziSw4Pk/Igt/zgiywPU/IAtfzhCwwPS+s3stPblAZskD5hR3hZ0qPGJnmk9jEdNYSqHmLLNYSqIh9z981jvvwkbUEahLfvGItgYqY+GTWEqiJiXvHWoKKEGSrMjIVwzE5ojPNJ8t6aCZTiiYZAr4Cxy/7Sf1ZNjTN3OqayXKjSX4Yy0vcWCkr/6f+DDeaZtV8PtalCQARk4EO8V6RT2T5UHliLmcGSLJcpjwhy1XKE7JcpLzQdOR21hKokeVGLfQQaWeqrAg+IUam+WT9zw1ZS6CGtwhI6wc0Zi2BmiU2FqwlUPPT1EWsJVCxaUZX1hKo+XsZHxGQCIBMvlaDmCM603yiX4q/S1iaswkJHq+xrrY2awnUlCrLVw5W/bJ8+UsDgL5eadYSVIOIkSctfP2qFkJ6b7nGWgI1K/GCtQQqenteZS2BmlH3+csmtGPeONYSqOg54xBrCdT0GMZHDlbZmqmY5lUd/l75Cxn3Z3ZhLYGaVbBmLYGK+3P5m87zbcZfmMlpW8+wlkDFo32jWUug5vHlhawlqIYYmVIjRqb5ZPHZh6wlUHMI8awlULH41APWEqhZE8VfejCfHX+xlkDFws3+rCVQ47rqX9YSVIIAyMxUXgSfkBBCikWYCxMTE1StWlXt7b5+/RoVKvDlasKbZt70AkJzQcCbXkBzmqOiohAfr76X5No6peFZsarSer9U1MPt27fVdlyeKTbTvOq80T7H3t6eu5uJN8286QWE5oKAN70AP5qFnyk9xaYzFQgEAoGKiDVTakRnKhAIBAIFCIAskRWGCtGZ5pMxY8awlkANb5p50wsIzQUBb3oBjjSLkSk1xcYASSAQCASqYVOiNNYaWCmt51JNn4s14IJAjEwFAoFAoIAwQKJHdKYCgUAgUIAQ4UdKi+hMBQKBQKCIWDOlRnSmAoFAIMiBKrnBBZ8QnalAIBAIFBBrpvSI2LyCQoWHhwdatmwJQ0NDaGtrw9DQEC1btoSnpydraUUKcZ0Lhjdv3sDDwwNTpkzByJEjMWXKFHh4eODNmzespX0V2ZqpiM2rOqIzpUT8CGmOmTNn4s8//8SoUaPg6+uLx48fw8/PD6NGjcKff/6J2bNns5ZYJBDXuWDw8fFBjRo1sGvXLmRnZ8Pc3ByEEOzevRs1a9aEn58fa4lfRaRgo0P4mVIwc+ZM/Pvvv5g+fTrs7OxgaGiIxMREBAUFYfXq1ejRoweWLl3KWia3VKhQAXfv3oWZmVmOfTExMWjQoIHGYiwXJ8R1Lhjq1q0LNzc39OnTJ8e+I0eOYM6cOXj4sHBmnXJwcFDpHjAxMcHp06cLQFHhR3SmFIgfIc1iYmKCe/fu5Xl969evX+inx3hAXOeCQVdXFwkJCShVqlSOfRkZGTAyMkJqaioDZQJNIKZ5KVD23iHeS/KHs7MzOnbsCC8vL9y6dQuhoaG4ffs2Nm/ejM6dO2P0aP6SQRdGxHUuGJo3bw4XFxekpKQobE9JScG8efPQvHlzRsoEmkCMTCmYOXMmjh8/nmOaNzg4WD7N6+7uzlom1/z999/YsWMHQkJCkJycDD09Pdja2sLJyQljx45lLa/IIK6z5nn69CkGDRqEwMBAVKtWTf57ERERgYYNG2Lfvn2oUqUKa5kCNSE6U0rEj5BAIKAhNDQUDx48UPi9qFmzJmtZAjUjOlNBoSM0NBQhISFISkqCvr4+6tWrJ358NIC4zgKB+hBBG74B8SOkGaKjozFgwAAEBwejevXq8mmx8PBw2NnZiWkxNSGuc8Hh4eGBbdu25ZjJGjFihFibLmKIzpQC8SOkWUaMGIE2bdrAx8cHZcuWlW9PSUnBokWLMHz4cPj6+jJUWDQQ17lgUOZKFxERIVzpihBimpeCTp06oUmTJnB1dc31R+jWrVviRygf6OnpISEhATo6Ojn2ZWRkwNjYOIdlpIAecZ0LBuFKV7wQrjEU3LhxA25ubgodKSD1J1u0aBFu3LjBSFnRwNLSEv/++2+u+06ePClG/WpCXOeCQbjSFS/ENC8Fsh+h3CKaiB+h/LNu3Tr07dsXq1evzjEtFhISgkOHDrGWWCQQ17lgkPnz5uVKJ9ZMixZimpcCHx8f9O3bF/Xq1cvzR6hjx46sZXJNfHw8jhw5omCwUa9ePfz0008wMTFhLa/I8ObNGxw+fFhcZw0jXOmKD6IzpSS3HyFbW1v07t1b/AhpCHt7e5w9exbGxsaspRQJsrOzsWHDBoSEhMDBwQG9evXCzJkzcerUKTRs2BCrV68W97JAQInoTNVEVlYWlixZgvnz57OWwi1OTk65bj906BC6d++O0qVLY8eOHQWsqujxv//9DxcvXoSDgwNOnTqFpk2bIiEhASNGjMD27dtRsmRJ7N+/n7XMIk90dLRYGipCiM5UTWRkZKBs2bLIyspiLYVbypQpg2bNmqFTp04KxhkrV67EuHHjoKenhwULFjBUWDQwNzdHUFAQTE1N8eLFC1SpUgXx8fEwMjLCu3fvYGNjg1evXrGWWaQRvxdFD2GARMHIkSPz3JcpMuXmm7t372LSpEl48OABVq1aBQsLCwDApk2b8Ntvv8HU1JSxwqJBeno6jIyMAADGxsbQ0tKCnp4eAEBfX1/cy2ri0qVLee7LyMgoQCWCgkB0phTs2bMHzs7Oua7diTfM/FOzZk2cOXMG+/btQ8eOHTF69GhMnToVEomEtbQiRYsWLTB27Fj0798fe/fuhZ2dHVatWoWJEydi48aNsLOzYy2xSNC+fXuYmZlBS0t4IBYHxDQvBU2bNsW8efPQs2fPHPvS09NRtmxZZIv082ohMTER8+fPx/nz5/H06VOEh4eLkamaePr0KSZMmIDIyEhMnToVbdu2RdeuXfH8+XNYW1vj8OHDaNCgAWuZ3GNtbY3du3ejZcuWOfalp6dDV1dXvIQXIcTIlILhw4fn2VmWLFlSrOepEQMDA6xZswZBQUG4ePEiDAwMWEsqMlhZWcHb21thW1RUFBISElC+fHlGqooe9vb2uH37dq6dqZaWljA+KmKIkalAIBBogI8fPwKQvmgLij5iMl8gEAg0QMmSJfPsSLOysrBo0aICViTQJGJkKhAIBAWMcI0peog1U4FAINAAwpWueCE6U4FAINAAwpWueCGmeQUCgUADCFe64oUwQBIIBAINIFzpihdiZCoQCAQCQT4RI1OBQCAQCPKJ6EwFAoFAIMgnojMVCCipWrUqzp8/r7TehQsXULly5W86RlRUFCQSiVIXivbt28PLyyvXfdHR0dDT0xOWowJBASBcYwSCIkqVKlWQnJzMWoZAUCwQI1OBQCAQCPKJ6EwFXFC1alUsXboUdevWhZGREUaMGIH09HQAgKenJ2rUqAFjY2P07NkTMTEx8s9NmTIFlpaWMDAwQJMmTXD58mWlx0pLS8OwYcNgZGSEOnXqYPny5XlO12ZkZGDq1KkwNzeHubk5pk6dmiPx8++//w4TExNUrVoVu3fvlm/39vZGo0aNYGBgAEtLS7i6un7DlQHCw8PRrFkzGBoaolevXkhISACQc6q4ffv2mDdvHlq1agV9fX106dIF8fHx33RMgUCgiOhMBdywe/dunDlzBuHh4QgNDYWbmxt8fX0xe/ZsHDhwALGxsbCyssLAgQPln2natCmCgoKQkJCAwYMHo1+/fvJOOC8WLlyIqKgoRERE4Ny5c9i1a1eedZcsWYLr168jKCgIwcHBuHnzJtzc3OT7X758ifj4eLx48QLbt2/HmDFj8PjxYwCArq4uduzYgXfv3sHb2xsbN27E0aNHqa/Ljh07sGXLFsTExKBEiRKYPHlynnX37NmDrVu34tWrV/jw4QNWrlxJfTyBQJALRCDgACsrK7Jx40b5/729vUm1atXIyJEjyW+//SbfnpSUREqUKEEiIyNzbadcuXIkKCjoq8eytrYmp0+flv/f09OTWFhYKGg5d+4cIYSQatWqEW9vb/m+06dPEysrK0IIIX5+fkRbW5skJyfL9/fr148sWrQo1+NOmTKFTJ06lRBCSGRkJAFAPn78+FWt7dq1IzNnzpT/PyQkhJQsWZJkZmbmaKNdu3Zk8eLF8rrr168nXbt2/Wr7AoFANcTIVMANlpaW8r+trKwQExODmJgYWFlZybfr6emhfPnyePHiBQBg1apVqFOnDgwNDVGuXDm8f/9e6dRmTEyMwrE+/zu3up8fX6ZLhpGREXR1dXPdf+PGDXTo0AEVKlSAoaEhNm3a9E3Trl9el48fP+bZTqVKleR/ly1bVhgoCQRqQnSmAm549uyZ/O/o6Gj5OuXTp0/l21NSUvDmzRtYWFjg8uXLWLZsGQ4cOIC3b9/i3bt3MDQ0BFES9MvMzAzPnz/P9bhf8uXxZbpkvH37FikpKbnuHzx4MHr27Ilnz57h/fv3GDdunFJtufHldSlZsiRMTEyo2xEIBN+O6EwF3LB+/Xo8f/4cCQkJ+P333zFgwAAMHjwYW7duRVBQEDIyMjBnzhw0b94cVatWRVJSEkqUKIEKFSogMzMTixYtQmJiotLj9O/fH0uXLsXbt2/x4sULrFu3Ls+6gwYNgpubG16/fo34+HgsWrQIQ4YMUaizYMECfPjwAZcvX8a///6Lfv36AQCSkpJgbGyM0qVL4+bNm9izZ883XZddu3bhwYMHSE1Nxfz58/Hzzz9DW1v7m9oSCATfhuhMBdwwePBgdOnSBdWqVUO1atXg4uKCTp06YfHixejbty/MzMwQHh6Offv2AQC6du2Kbt26wcbGBlZWVihduvRXp2xlzJ8/H5UrV4a1tTW+//57/PzzzyhVqlSudV1cXGBvb48GDRqgfv36aNy4MVxcXOT7K1WqBCMjI5ibm8PR0RGbNm1C7dq1AQAbNmzA/Pnzoa+vj0WLFqF///7fdF2GDh2K4cOHo1KlSkhPT8fatWu/qR2BQPDtiED3Ai6oWrUqvLy88P333xf4sTdu3Ih9+/bh4sWLBX5sgUDAB2JkKhB8QWxsLK5cuYLs7Gw8fvwYq1atQu/evVnLEggEhRjRmQqKJd26dYOenl6O8vvvv+PDhw8YO3Ys9PX10bFjR/Tq1QsTJkxgpjU3nXp6eioFoBAIBAWDmOYVCAQCgSCfiJGpQCAQCAT5RHSmAoFAIBDkE9GZCgQCgUCQT0RnKhAIBAJBPhGdqUAgEAgE+UR0pgKBQCAQ5JP/A5aUTfAbd15tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot heatmap\n", + "heatmap_plot = plot_heatmap(\n", + " dnorm=norm,\n", + " fit=lfm_sel,\n", + " y_axis='temp_module_bin',\n", + " x_axis='poa_global_bin',\n", + " z_axis='diff_' + lfm_sel,\n", + " clip=0.025,\n", + " title='residual_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [I] Residual LFM fit heatmap vs. poa_global bin (x) and temp_module bin (y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_fit(dmeas, dnorm, fit, title, save_figs, coeffs):\n", + " \"\"\"Scatter plot fit to normalised measured.\n", + " \n", + " Parameters\n", + " ----------\n", + " dmeas : dataframe\n", + " measurements, must include 'poa_global_kwm2'\n", + "\n", + " dnorm : dataframe\n", + " normalised multiplicative lfm loss values 'i_sc' .. 'v_oc'\n", + " where pr_dc = 1/ff * product('i_sc', ... 'v_oc').\n", + "\n", + " fit : string\n", + " name of fitted variable e.g. 'pr_dc'.\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + " \n", + " \"\"\"\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " plt.title(title)\n", + "\n", + " plt.ylabel('fit ' + fit + ' * poa_global kW/m^2')\n", + " ax1.set_ylim(0, 1.2)\n", + "\n", + " plt.xlabel('meas ' + fit + '* poa_global_kW/m^2')\n", + " ax1.set_xlim(0, 1.2)\n", + "\n", + " plt.plot(\n", + " dnorm[fit] * dmeas['poa_global'] / G_STC,\n", + " dnorm['calc_' + fit] * dmeas['poa_global'] / G_STC,\n", + " 'c^',\n", + " label=fit\n", + " )\n", + "\n", + " # plot 1:1 line to show optimum fit\n", + " plt.plot((0, 1.2), (0, 1.2), 'yo-')\n", + " \n", + " # plot LIC, NOCT and STC irradiances\n", + " for x in (0.2, 0.8,1): \n", + " plt.plot((0, x), (x, x), 'k--')\n", + " plt.plot((x, x), (x, 0), 'k--')\n", + "\n", + " plt.legend(loc='upper left')\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(\n", + " os.path.join('mlfm_data', 'output', 'fit_meas_' + title[:len(title)-4]),\n", + " dpi=300\n", + " )\n", + " \n", + "\n", + "\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAFUCAYAAABPx8fsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAABvbUlEQVR4nO3dd1gUV9sG8HvpvfcuKqiooGLBiiXGbiwBu6ixYfLZGxY02GJFoxLRBBU1sSVRYseGolFRUSPVQpOi9F73fH8g+7rSFmEZWJ7fdXHFnTm7c+9A9tkp5xweY4yBEEIIIeVIcR2AEEIIaaioSBJCCCGVoCJJCCGEVIKKJCGEEFIJKpKEEEJIJahIEkIIIZWgIllLbm5u0NfXB4/Hg4WFBVq0aMFJDkdHR3z33XecbJuIxsXFBQMGDOA6BmnADh8+DBkZGa5jkE9QkayFBw8eYPPmzfD29kZCQgJevHiBf//9V7B+w4YNsLCw4C5gHfP29kb//v2hpaUFHo+Hu3fvlmuTnJyM2bNnw9TUFIqKiujSpQtu3bpVrt3FixdhZ2cHeXl5WFhYYOfOnULrHR0dwePxyv0oKytXmC0pKQkGBgbg8XiIi4sTWpeQkAAnJyeoqalBTU0N48aNw/v374XaZGVlYebMmdDW1oaysjIGDx6M169fC7XZuHEjevXqBTU1tQq3U53du3fj9OnTNXqOKKKjozFx4kTo6OhAQUEBVlZW+PvvvwXrAwICMHLkSJibm4PH42HDhg0Vvs7+/fvRpk0bKCkpwdDQEFOnTkVSUpJg/a1btyr8nRw6dEjQJjY2FgMHDoSRkRHk5eVhZGSEKVOm1Hhfbd26Febm5lBQUECHDh1w9erVStseOXIEPB6v3BcQUd93Q5aQkICJEyfCxsYGMjIy9CWLA1QkayEyMhJSUlIYOXIkDAwMoKqqCh0dHa5jiU1ubi769euHbdu2VbieMYZRo0bh8ePHOHnyJJ4/f46BAwdi0KBB+O+//wTtgoKCMHLkSAwaNAjBwcFYt24d3Nzc8Msvvwja/Pnnn0hISBD8xMfHw8TEBOPGjSu3XT6fj4kTJ6JLly4Vrhs2bBjevn2La9eu4erVq4iIiMA333yDT8fRmDx5Mq5fv44zZ87g7t27YIzhq6++Ql5enqBNQUEBRowYgVWrVn3R/lNXV4empuYXPbcy7969Q7du3cAYwz///IOwsDAcPHgQpqamgjbZ2dlo06YNtm7dCgMDgwpf5/Tp05g/fz4WLVqEkJAQnD59Go8fP8aUKVPKtX3y5InQ72bixImCdTIyMhgzZgz8/PwQGRmJU6dOISIiAsOHDxf5PXl6esLd3R0eHh54+vQpvvrqKwwfPhzPnz8v1zYkJAQrV65E7969y60T5X3XBGMMRUVFtX6dmigoKICWlhYWLVpEBZIrjHyRqVOnMgBCP+7u7qx58+aMMcZ8fHwqXC/K6/bv35/t2bOHGRsbM2VlZTZjxgxWWFjIvLy8mJmZGdPQ0GAzZ85kBQUFguf16dOHTZs2jS1fvpxpa2szVVVVNmPGDJabm1vtNvl8PhsyZAizt7dnhYWFjDHGSkpKWP/+/Vn37t1ZUVGRUPu3b98yAOzOnTtCyyMjIxkAdv/+faHl7du3Z1OmTBE8Hj9+PHNwcBBqs2TJEmZhYVFpxqtXrzIA7OHDh+XWrVu3jg0aNIjduHGDAWCxsbGCdVeuXGEAWFhYmGDZf//9xwCwmzdvMsYYCw8PZwDYlStXBG1SU1OZnJwc8/HxKbe9mzdvltuOKMp+t5/6/fffma2tLZOXl2fm5uZs4cKFLDs7W6jN3r17WevWrZmcnBzT1dVlY8aMEaybMmUK69atm8gZzM3NmYeHR7nl8+fPZx07dhRatmfPHqahoSF4/KXv+++//2YAWHp6erVt+Xw+MzIyYitXrhRabm9vz6ZOnSq0LCcnh9nY2LATJ05UuG8/Vdn7roqPjw+TlpZmN27cYHZ2dkxWVpb5+fmxN2/esFGjRjFDQ0OmqKjI2rZty44ePSr03D59+rAZM2awH3/8kenr6zNNTU02depUod8tn89nq1evZrq6ukxZWZk5OzuznTt3Mmlp6QrzVPYey3Jeu3aNtWnThsnLy7POnTuzx48fC7ULCgpiX3/9NVNVVWXKysqsc+fO7N9//630/WdlZbH58+czExMTJicnx8zNzdnGjRsF6zdu3MiaNWvG5OTkmI6ODhs4cCDLzc1lERERDAALDAwUer1///2XAWChoaGV7/QGiI4kv9Du3bvh6ekJaWlpwTfqTzk7O2P58uUwMTERrF+yZIlIr/3o0SMEBQXh2rVrOHHiBI4dO4aRI0fi3r17uHTpEnx9feHr64tff/1V6HlnzpxBSkoK7ty5g+PHj+P8+fNYvnx5tdvj8Xg4fPgw4uPjsXLlSgDA5s2b8eTJE/z+++8iXyPJz88HACgoKAgtV1RUREBAgOBxYGAgBg0aJNRm0KBBiIqKqvS03C+//IIOHTqgc+fOQstv3ryJgwcPCk65fS4wMBDNmjWDtbW1YJmNjQ1MTEwEp4sDAwMhKyuL/v37C9poamqiS5cuFZ5SriuHDx/G3LlzsXjxYoSEhODo0aPw9/fHnDlzBG3c3d2xfPlyuLq64sWLF7h8+TLs7OwAlB4l//3333BwcMD48eOhp6eHdu3aYfPmzSguLq5Rlp49eyI0NBS3bt0CYwyJiYk4c+YMhg4dWmFbPT09dO/eHUeOHBE6Iv9ccnIyfH190bFjR6irq1ebIyoqCvHx8RX+fXz+u5g3bx66du2K8ePHi/gua47P52PZsmXYsWMHwsLC0LVrV2RnZ6N///64fPkyXrx4gVmzZmHatGm4efOm0HPPnDmD1NRU3Lp1CydOnMDff/+NrVu3Ctbv2bMHO3fuxLZt2/DkyRN07NgR69evr1XO/fv34+HDh9DT08PQoUORm5sLAHj58iV69+4NTU1N3LhxA0+fPsXChQvB5/MrfD3GGIYNG4bz58/j559/RmhoKI4ePQpdXV0ApWd6tmzZgt27dyMyMhLXrl3D4MGDAQAtW7ZEt27dcOTIEaHX9PX1RZcuXdCqVasveo+c4bhIN2pl3+DKfHokyRhjHh4ezNzcvEavOXXqVKarqyt0lDhkyBCmra3N8vPzBctGjBghdETRp08fZm5uzoqLiwXLDhw4wOTk5ModmVTmxo0bTFpamq1bt47JyMiws2fPVtiusiPJoqIi1qxZMzZkyBCWlJTEioqKmI+PD+PxeExOTk7QTlZWlh04cEDouWVHdxUdKSYkJDAZGRn2yy+/CC1PTExkRkZG7OrVq4yxio90Zs6cWe6olbHSIxNXV1fGWOk3YkNDw3Jtxo4dy4YMGVJueV0dSZqbmzMvLy+hNrdv32YAWGpqKsvOzmYKCgps27ZtFb5eYmIiA8Dk5eXZ0qVL2ZMnT9ixY8eYpqYmc3Nzq/A5VR1RHTx4kCkoKDAZGRkGgA0bNkzoby4sLIx5eXmxR48esUePHrF169YxWVlZtnr16nKvNW7cOKaoqMgAMAcHB/b+/ftq9w9jjAUGBjIALDw8XGj53r17mZKSkuDxkSNHWKtWrQR/2+I6kgTAAgICqm07YsQI9t133wke9+nTh7Vr106ozezZs4WO+o2Njcv9nsaMGfNFR5IAmL+/v2BZamoqU1ZWZgcPHmSMMTZp0iTWvn17VlJSUu17YYwxf39/BoA9evSowvU7d+5kLVu2FJx5+pyXlxfT0NAQ/P0UFhYyHR0dtnfvXpG235DQkWQD1Lp1a8jJyQkeGxgYwNraGvLy8kLLPr/5pEuXLpCWlhY87tGjBwoLC8vdgFKZvn37YvHixVi3bh2+++47jB49uka5ZWRk8Ndff+H9+/fQ19eHgoICvL29MXHiRKFcVanoaPDXX3+FgoICJkyYILR84sSJmDJlCr766qsa5axqW1/S5kt8+PAB0dHRWLRoEVRUVAQ/Zd/GX716hZcvXyI/Px8DBw6s8DVKSkoAAO3bt8fWrVvRoUMHTJw4EW5ubti7d2+N8ty5cwerVq3C9u3b8fjxY1y8eBFv377F9OnTBW2sra0xZ84c2Nvbw97eHu7u7lixYgV27dpV7lrdrl278PTpU1y6dAkAMG7cOEHeL1X2uwgPD8fChQvxxx9/VHojV136/OxFbm4uVqxYARsbG2hpaUFFRQUXL15EdHS0ULuyI/4yxsbGghuhMjMz8e7dO3Tv3l2oTc+ePb84p4ODg+DfmpqaaN26NUJCQgAAjx8/Rv/+/SElJdpH/uPHj6GpqQl7e/sK1zs5OaGoqAjm5uZwcXGBr68vsrKyBOudnZ2Rl5eH8+fPAyi9US8zM7PCewoaOiqSDZCsrKzQYx6PV+Gyyk6VlGE1nOClpKQEgYGBkJaWxqtXr2r8fACwtbXFo0ePBB8C9+7dQ0FBAZo3by5oY2hoiMTERKHnlX14fH6DBZ/Px8GDBzFx4kSoqqoKrbt+/Tq2bdsGGRkZyMjICE6XWlhYYPbs2ZVuq2x7ZdsyNDREcnJyuQ/xT9vUtbLf3e7duxEcHCz4efbsGSIjI9GuXTtB28oKta6uLmRlZdGmTRuh5TY2NsjMzERaWprIeVatWoXRo0dj3rx5aN++PQYPHgwvLy+cOHECr169qvR53bt3R05ODj58+CC0vOyL3aBBg3D27FncuHED165dqzaHoaEhAFT491H2u7h//z5SU1PRqVMnwe/+6NGjuHHjBmRkZBAYGCjy+66OtLR0ucsHS5cuxbFjx7B27VrcvHkTwcHBGDJkCAoLC4XaffpFFxD+f7bs/y1xfQn7dBufbr8mqmpvbGyMsLAw/Pbbb9DT04OHhwesra0RGxsLoLRIDx8+HEePHgUAHD16FEOHDoW2tnYN3wX3qEiKkZycXK2/PdfEo0ePhLZ3//59yMnJCRWoqqxbtw4REREIDAzE48eP8dNPP31xFlVVVejr6yMlJQVXrlwROirt0aMHrly5ItT+8uXLMDc3h4mJSbnl0dHRgqL3qRcvXggVmLKuCFeuXIG7u7tgW2/fvkVkZKTgeaGhoYiNjRV8a+/RoweKiopw48YNQZv09HQ8ePCgVt/sq6Kvrw9TU1OEh4ejRYsW5X4UFBTQpk0bKCgolNtXZWRlZdG1a1eEh4cLLQ8PD6/xnbQ5OTnljjLKjv6r+rL09OlTKCoqVnlXd1lhKCgoqDaHhYUFjIyMKvz7KPtdfPPNN+V+9yNGjEDXrl0RHByMDh06VLud2ggICMDEiRPh7OwMW1tbWFpaIiIiokavoa6uDmNj43IFvTYF/tPuZ+np6QgLC0Pr1q0BAJ06dYK/v3+1X6zLdOrUCampqQgKCqq0jby8PAYNGoStW7fixYsXyM3NFep6NGXKFFy+fBnh4eG4cOECpk6d+mVvjGPUa1WMmjVrhsTERNy/fx8tW7aEkpISlJSUxLa9lJQUzJs3D/Pnz8ebN2+wZs0azJw5U6RTUrdv38bmzZvh5+eHrl274uDBgxg/fjwcHR3RrVs3AKXf7hMTExEfHw+g9JSgiooKDAwMBN/yz549Cw0NDVhaWiI8PBxLly6FsbExli5dKtjWwoUL0b17d6xatQqTJ0/Gw4cP8fPPP2PXrl3lch04cACdO3eu8IOvbdu2Qo+Tk5MBlJ4WNDIyAgAMGDAAHTt2xKRJk/Dzzz+DMYZ58+ahW7du6NOnDwDAysoKI0eOxNy5c/Hrr79CXV0dbm5uMDY2hrOzs+D1Y2JikJqaKjiyCgkJQXJyMszMzKClpVXtPv7cxo0bMWPGDGhoaOCbb76BrKwsQkNDcenSJRw4cAAqKiqC09+KioqCLikXL14U3GC1cuVKDBs2DD/++CMmTJiAkJAQbNy4EfPnzxdsJzs7W5C5sLAQiYmJCA4OhoqKimDwi2+++QabN29Gly5d0Lt3b8TFxWHBggVo37694EvWrl27YGZmBhsbG/B4PFy5cgUeHh6YN2+e4Kjp7NmzyMnJQceOHaGqqorIyEi4u7vDxMQE/fr1q3af8Hg8LF26FG5ubmjdujXs7e1x+PBhPHv2DAcPHgQAaGhoQENDQ+h5GhoayM7OFvqbEOV9fwlra2ucO3cOY8aMgYqKCnbu3In4+Hjo6+vX6HUWL16MNWvWoFWrVujWrRvOnz8Pf3//cu2Cg4MBAKmpqcjOzhY8/vR0Lo/Hw7Jly7Bz505oampi1apVUFZWFlyiWLZsGbp27YqJEydi8eLF0NTUxJMnT2BiYgIHBwc8fPgQU6ZMwdGjR9GlSxf069cPvXr1grOzM3bu3In27dsjPj4eoaGh+O677/Drr7+Cz+ejS5cu0NDQwPXr15GVlSV0VmPw4MHQ0tLCuHHjoKqqiiFDhtRsRzcUXF4Qbeyqu3GnsLCQjR8/nmlqata4C8inZsyYwfr06SO0bPbs2axHjx6Cx2VdQJYsWcK0tLSYiooKmzZtGsvJyal2mykpKczExIQtWrRIaPmsWbOYhYWF4NZ9d3f3ct1aPn9fe/fuZWZmZkxWVpYZGBiwOXPmsA8fPpTb5j///MPat2/P5OTkmJmZGduxY0e5NnFxcUxaWpodOnSo2vfAWOU31MTHx7OxY8cyFRUVpqqqypycnFhSUpJQm8zMTDZjxgymqanJFBUV2ddff80iIyOF2lTU7QdAhd1EKlLR7/avv/5i3bp1Y4qKikxVVZXZ2tqy9evXC9bz+Xzm6enJrKysmKysLNPT02Njx44Veo0//viD2djYMHl5edaiRQu2efNmoW47Zfvl859P/6aKi4vZxo0bmZWVFVNQUGCGhoZswoQJLDo6WtBm69atzMrKiikqKjI1NTXWsWNH5u3tLXQziJ+fH+vatStTV1dn8vLyzNLSks2ZM4fFxMSItI/K/PTTT8zU1JTJyckxW1tbdvny5RrvW1Hed1U+//+7TExMDBs4cCBTUlJiBgYGbO3atWz69OlCr1vWBeRTn9/IV1JSwlauXMm0tbWZkpISGzNmTIVdQCp6D59+dJflvHLlCmvVqhWTk5Nj9vb25W66efDgAevfvz9TUlJiKioqrEuXLuzBgwdC+6qsWxRjpf9PfP/998zAwIDJysoyCwsLtnnzZsYYY2fPnmUODg5MQ0ODKSoqMhsbmwr/P12wYAEDwL7//vuqd3YDxmPsCy48EUIIaRAOHz6M7777rsbdfoho6JokIYQQUol6K5J79+6Fvb095OXl4eLiUmm7I0eOoFOnTlBTU4OJiQmWLVsmMd+Q7ty5I3S7/+c/d+7cEct2Y2Jiqtzu8ePHxbLdpuT48eNV7uOYmBiuIzYIc+bMqXQf2djY1GuWqn5fmzZtqtcspOGqt9Otf/75J6SkpHDlyhXk5eXh8OHDFbbz8vJC27Zt0bVrV3z48AEjRozAt99+ixUrVtRHTLHKy8vDu3fvKl1vbGwMRUXFOt9ucXExoqKiKl2vr69frnsFqZmsrCyhwcA/Z2FhQbM7AHj//j0yMzMrXCcrKwtzc/N6y1JV1xYtLa0vuhmLSJ56vya5evVqxMXFVVokP7dz507cvHkTfn5+4g1GCCGEfKbBX5MMCAio99MwhBBCCNDA+0n6+PggKChIaL66T3l7e8Pb2xsAEBYW1vgGziWEEFLnsrIeC/6dmAhkZHz5CdMGWyT//vtvrFixAv7+/pWO5jFr1izMmjULAGBvb1/l6BCEEEIkW3FxJl69WoDExP8VyQoG66qRBnm69fLly5g5cyb8/PyExrAkhBBCKpKefgdBQbZITDwCbe1vICVVN6Ob1VuRLC4uRn5+PkpKSlBSUoL8/PwKu3bcuHEDEydOxNmzZyucaZ4QQggpw+cX4PXrFQgO7gNAGh063EW7dn/B2tob8vK1v1u63orkhg0boKioiC1btuDYsWNQVFTEhg0bBH34yvqReXh4ICMjA0OGDCk3fRAhhBBSJjv7Pzx+3BWxsT/B0HAm7O2Doa5eOmWYvv5EODhEQVW1U622ITHD0tE1SUIIaRoY4yMuzhNv3qyEjIwGrK1/hY7OsArb1rY2NNgbd+oKn89HcnIy0tPT63XaqsZIQUEBJiYm5eauJISQhiI/PwZhYS5IT78Jbe2RsLY+CDk5XbFtT+KLZFxcHHg8HiwsLCArKyvWSU4bM8YYUlJSEBcXh2bNmnEdhxBChDDGkJR0HJGR8wDwYW39KwwMpon9M13ii2ROTg6sra3LTShLhPF4PGhra5ebYZ4QQrhWVJSKiIg5+PDhNNTUeqB166NQVLSsl21LfJEEQAVSRHSUTQhpaFJTryIszAVFRclo1mwzzMyWgseTrrftN4kiSQghpHEpKcnFmzfL8e7dXigptUG7dhegqtqh3nPQIZaE4vF4Vc5yQAghDVVmZhAeP+6Ed+/2wsRkITp1esxJgQToSJIQQkgDwecXIyZmC6Kj10NOzgC2tv7Q1OzPaSYqko1EcXExzUdICJFYubmvEBY2GZmZ/0JPbwJattwLWVlNrmPR6dbqJBQUoM/Tp0gsKBDL61tYWGDz5s1o06YNNDU1MW3aNOTn5+PWrVswMTHBTz/9BAMDA0ybNq3K19m2bRsMDQ1hZGSE3377TWhdXl4eFi9eDHNzc6irq6Nnz57Iy8sTy/shhJCaYIwhPt4bQUG2yM0NQ+vWv6NNm+MNokACdCRZLY+oKNzNyIBHdDT2WVmJZRvHjx/HlStXoKysjOHDh2PDhg0YMGAAEhMTkZqaiujoaPD5/Eqff/nyZWzfvh3Xr19Hs2bNMHPmTKH1S5YswcuXL3Hv3j0YGBjgwYMHdMcvIYRzBQWJCA//DqmpF6CpOQDW1j5QUDDhOpYQ+qSsQkJBAXySksAH4JOYKLajye+//x6mpqbQ0tLCqlWr8PvvvwMo7bqyfv16yMvLQ1FRsdLnnzp1CtOmTUPbtm2hrKyMdevWCdbx+Xz89ttv2L17N4yNjSEtLY3u3btDXl5eLO+FEEJE8eHD3wgKaof09Oto0WIP2re/0uAKJEBFskoeUVHgfxzatoQxeERHi2U7pqamgn+bm5sjPj4eAKCrqwsFBYVqnx8fH1/uNcokJycjPz8fzZs3r8PEhBDyZYqLMxEWNh0vX46CvLwZOnV6DBOTH8DjNcxy1DBTNQBlR5GFH4tkIWNiO5qMjY0V/DsmJgZGRkYARO/cb2hoWO41yujo6EBBQQGvX7+uo7SEEPJl0tPvCuZ8NDNbhY4d70NZuQ3XsapERbISnx5FlhHX0eS+ffsQFxeH1NRUbNq0Cc7OzjV6vpOTEw4fPoyQkBDk5uZi/fr1gnVSUlKYPn06Fi1ahPj4eJSUlOD+/fsoENOpY0II+RyfX4g3b1YiOLg3ACl06HAHlpYbICUlx3W0alGRrMT9zEzBUWSZQsZwLyOjzrc1YcIEDBw4EJaWlrC0tMTq1atr9PzBgwdjwYIF6NevH1q0aIF+/foJrd++fTvatWuHzp07Q0tLC8uXL6/yRiBCCKkrOTkv8eRJV8TEbEGQ7Dcwa/8Q6urduY4lMomfTzI0NBStW7fmIJFoLCwscOjQIQwYMIDrKAAa/v4ihDQOpXM+7v4456M6bqisw7q01phjZCS2ngIVqe18knQkSQghpE7l58fi2bOv8Pr1ImhpfQ0z2yBsyrARe08BcaAi2Uhs2rQJKioq5X4GDx7MdTRCCAFQNufjCTx61A6ZmQ9gbX0Ibdv+jc3vcuulp4A40GACHIuKihKpnZubG9zc3MQbhhBCvlDpnI+u+PDhJNTUun+c87F5pT0F1pibw6AR9NemI0lCCCG1kpp6DY8etUNy8lk0a7YJHToEQFGxtG92ffYUEIcmcSTJGKMJhUUgIfdwEULqSemcjyvw7t3PUFJqjXbt/KCq2lGoTX32FBAHiS+SsrKyyMvLg5KSEtdRGryioiKaaYQQIpKsrMcIDZ2E3NwwGBvPh6XlZkhLlx8+82nnzhykqzsSf7pVT08P7969Q25uLh0pVYHP5yMpKQnq6upcRyGENGB8fjGiozfiyZNuKC7OQvv219CypWeFBVISSPxhg5qaGoDS8U2Lioo4TtOwKSsrQ0dHh+sYhJAGKi/vNUJDJyMz8z709MajZct9DWZKK3GR+CIJlBbKsmJJCCGkZhhjSEg4hFevFkJKShatW5+Avv54rmPViyZRJAkhhHyZwsIkhId/h5SUf6Ch0R+tWh1ukFNaiQsVSUIIIRVKTj6H8PCZKC7ORIsWnjA2brhTWokLFUlCCCFCiouz8OrVQiQm/goVlQ6wszvW4Ke0EhcqkoQQQgQyMgIRGjoZ+fnRMDNzg4WFe6OY0kpcqEgSQggBn1+IqKh1iIn5CQoKFujQIQDq6j24jsW5pnVymRBCCBIKCtDn6VPBbBz/m/NxMwwNp8PePpgK5Ed0JEkIIU2MR1QU7mZkwCPqLVYoXcabNysgI6OGtm3PQUdnBNfxGhQqkoQQ0oSUzcqhhQ9okbAYr/EEKppD0b71r5CT0+c6XoNDRZIQQpoQj6go9Ob743vsggyKsQ1LYKHwHfZRgawQFUlCCGki4nISoZfgCifcwH+wwWasRDyMoZCUhDUWFo1ifsf6Vm837uzduxf29vaQl5eHi4tLlW137doFAwMDqKurY/r06Sj4eHGZEELIl0lN9cfzx3boids4hBmYj92IhzEAoJDPbzTzO9a3eiuSRkZGWL16NaZPn15luytXrmDLli24fv06oqKi8ObNG7i7u9dTSkIIkSwlJXmIjJyP58+/QhZTxDzsw3FMAh/SgjZ8AD6JiYK7Xcn/1FuRHD16NL755htoa2tX2e7IkSOYMWMGbGxsoKmpiTVr1uDw4cP1E5IQQhqRz7tyfC4r6wkeP+6Ed+/2wNj4/zC2ZwjCHWdjrqEh5D6biL6EMTqarECDuyb58uVLjBw5UvDY1tYWSUlJSElJqbLAhoeHw9HRUWiZk5MTXF1dkZubiyFDhpR7jouLC1xcXJCcnIyxY8eWWz937lw4OzsjNjYWkydPLrd+8eLFGD58OMLDwzF79uxy61evXo0BAwYgODgYCxYsKLd+06ZN6N69O+7duwc3N7dy6z09PWFnZwd/f39s2LCh3PoDBw7A2toafn5+2LFjR7n1vr6+MDU1xcmTJ+Hl5VVu/ZkzZ6Cjo4PDhw9X+EXk4sWLUFJSwv79+3Hq1Kly62/dugUA2L59O/755x+hdYqKirh06RIAwMPDA9evXxdar62tjbNnzwIAVq5cifv37wutNzExwbFjxwAACxYsQHBwsNB6KysreHt7AwBmzZqFiIgIofV2dnbw9PQEAEyaNAlxcXFC6x0cHLB582YAwJgxY5CSkiK0vn///lizZg0AYPDgwcjLyxNaP2zYMCxZsgQAyv3dAfS3R397ngDE/7dn36sX4gsL0UleHi0VS+dzdHJywpw5sxARsQFJSRshK6uH9u2vQkvrK8Fr3M/MROFn8+sWMoZ7GRkgwhpckczOzhaa+Lfs31lZWeWKpLe3t+CPleaKJIQ0JQkFBUj4+LmXWFgIc3l5yElJobDwA4KD+8DF5R7k5XVx794LyMpqCT33aefOXERulHiMffZ14jOnTp1CYGAgbGxsMG3aNMjKygrWubq6Yv/+/TXa4OrVqxEXF1fpKVRbW1usWrUKTk5OAICUlBTo6OggOTm5yiNJe3t7BAUF1SgLIYQ0Vq7h4fg1MRGFjEGOx8N3BgZYpXoHr14tAI8ng+XLjSAnpyc46m6qalsbqrwmuX37dixbtgwA8Msvv6BLly5ISEgQrC87JVGXbGxs8OzZM8HjZ8+eQV9fv9prmYQQ0lSUDQhQdspUiaXCJGEGIiJmQk2tKzp3fgE5OT2OU0qGKoukl5cXrl69it27d+PJkycYMWIEevbsieiPF3erOQgVUlxcjPz8fJSUlKCkpAT5+fkoLi4u127KlCn49ddfERISgrS0NGzYsKHaLiOEENKUeERFgf/x87c7AvEbpqMTHiJYbSVsba9BQcGU44SSo8oi+eHDB7Ro0ULweP369Vi4cCF69eqF8PBw8D67O6oqGzZsgKKiIrZs2YJjx45BUVERGzZsQExMDFRUVBATEwMAGDRoEJYtW4a+ffvC3Nwc5ubmWL9+/Re+PUIIkTz3MzMhzXKwGNuxEauRDB3MxgEcKRnV5CZFFrcqr0m2a9cOvr6+sLOzE1r+22+/YdWqVUhNTW0wHf3pmiQhpKnIyLj3cc7HtzAzWwELi3Xl5nwsu1/E1dWVi4gNRm1rQ5V3t06dOhX+/v7liuT06dMhLy8vuE2ZEEKI+JXO+bgeMTFboKBgBju7AGho9KywbVMvjnWl2rtbGws6kiSESLKcnBCEhk5CdvZTGBhMR4sWuyAjo1Zp+9zcXACAkpJSfUVskMR6JEkIIYRbjPHx7t1evHmzHNLSKrCx+Qu6ut9U+7yyQSyaeheQ2qr2Ci9jDPPnz6+PLIQQQj6Rnx+H58+/xqtX86GpOQCdO/8nUoEkdafKIllcXIwJEyYgNTW1vvIQQkiTU9EYrElJfyAoqB0yMu7Dysobbduep0mROVBpkczOzsbgwYNRXFxMA4wTQogYeURF4W5GBjyio1FUlIaQkIkIDR0PJaVWsLcPhpHRzBp1uSN1p9Jrkp6ensjNzcXly5chLS1dWTNCCCG1UDZ6Dh/Ak4QLeJC8AyVFSWjWbANMTZdDSopuHeFSpUeSDg4OePnyJa5du1afeQghpEnxiIqCDD8frtiHzWwRUvny6NjxX5ibr6pVgSybaYbUTqW/gf79+8PPzw/Ozs44ceJEhdMBEUII+XLBWVm4nhCAn7ERFojGnxgF35I5CJVrC9VavjYVyLpR5Y07vXr1wuXLlyucr44QQsiXY6wER58vx164Qhk5WIqt+Bn/h1zI18nkx8nJyUhOTq6DpE1btcfy7du3x9WrV+sjCyGENAl5eW/wPGQSRhTdxy30wU4sQhZKBwaoq8mPyybzpn6StSPSCW9zc3Nx5yCEEInHGENi4m949WoB8vg87MQqXEF/yPGk4GpoiH1WVlxHJJ8R+apwbm4uXr16hezsbKHl3bt3r/NQhBAiaQoL3yM8fBZSUs5BSa0PJmbNQyx0S9cxBp/ERKwxN4eBvDzHScmnRCqSR48exffffw85OTkoKioKlvN4PMEUV4QQQiqWnOyH8PDvUFycgebNd2JzziAkZb0H8L+hs0sYg0d0NB1NNjAiFclly5bh7Nmz+Oqrr8SdhxBCJEZxcTZev16EhISDUFa2ha3tdaiotMX9R49Q+NncEnV1LZLULZGKpJycHHUBIYSQGsjIuP9xzsc3n8z5WHoq9WnnzmLf/ty5c8W+jaZApCmsPTw8sGjRIrqdmBBCqsHnF+Ht2zV4+rQngBLY2d2GpeVmQYGsL87OznB2dq7XbUoikYqklZUVzp8/D319fUhLS0NaWhpSUlI0XB0hhHwiJycUT544IDp6AwwMpsLe/hk0NHpxkiU2NhaxsbGcbFuSiHS6dfLkyZgyZQqcnZ2FbtwhhBBSNufjPrx5s+zjnI9/Qld3FKeZJk+eDID6SdaWSEUyJSUFP/74I41CTwghnykoeIewsGlIS7sGLa2hsLY+BHl5A65jkToi0unWadOmwdfXV9xZCCGkUXn//iQePWqHjIxAWFn9gnbt/KhAShiRjiQfPnyIvXv3YuPGjdDXF570MyAgQCzBCCGkoSoqSkNk5Pd4//4EVFW7onVrXygpteQ6FhEDkYrkzJkzMXPmTHFnIYSQBi8t7TrCwlxQUJAAC4sfYWa2kuZ8lGBV/mYPHTqEIUOGYOrUqfWVhxBCGqSSkny8feuGuLhdUFS0RseO96GmJv7+jl9q8eLFXEeQCFVek3z06BEcHBxgZ2eHVatWITAwEOyzUSIIIUSSJBQUoM/Tp0gsKBAsy8oKxuPH9oiL2wVj4+9hb/+kQRdIABg+fDiGDx/OdYxGr8oieeDAAURHR8PX1xdqampYuXIlDAwMMGHCBBw7dowGFyCESByPqCjczciAR3Q0GCtBTMxPePKkC4qLU9G+/WW0bPkzpKWVuI5ZrfDwcISHh3Mdo9HjsRoeGmZkZODKlSu4cOECrl27BjMzM6xfvx5ff/21uDKKxN7eHkFBQZxmIIQ0bgkFBbB88AD5fD4seEn4Q2UP8rLuQVf3W1hZeUFWVpvriCIrG0q0qfeTrG1tqPKaJJ/Ph5SU8MGmuro6nJyc4OTkBKD0lCwhhEgCj6go8Pl8DMIl/MB+Rma2NNq18oW+/kTqJ95EVVkk1dXV0aNHD/Tu3Ru9e/dG165dISsrK9Smcz0M1EsIIeKWUFCAPxPDsRrb0At38RR28IQbHmiOoALZhFV5TfLy5ctwdHREYGAghg8fDnV1dfTt2xfu7u64fv068vLy6isnIYSI1aEwH3gxF3TFA+zHXCzGDiRCDx7R0VxHIxyq8kiyR48e6NGjB1asWAHGGJ49e4aAgADcuXMH+/fvR1ZWFvLz8+srKyGE1LnSOR8Xo1eaN17DEouxHW9hCYDmeCQiDiYAlN6wExsbi5iYGER//GbVv39/sQUjhBBx+3TOR1PTZejd7EfMqOcprcRl9erVXEeQCFUWyTNnzuD27dsICAhAWloaevTogZ49e2LKlClo164dnacnhDRKfH4RoqN/RHT0JqTx9GFrcxWWugO4jlWnBgyQrPfDlSqLpJOTE1q3bo3ly5fD2dkZ8vKS8Q2LENJ05eSEITR0ErKzH+Ot4ij8X94MTEkzwz5drpPVreDgYACAnZ0dpzkauyqL5N27dxEQEICTJ09i2bJlaNmyJXr16oVevXqhR48eUFNTq6+chBBSK4yxj3M+LoWUlDKMrP7A4FeGyAcfPomJWGNuDgMJOhBYsGABAOonWVtV3t3avXt3rFixAhcuXEBCQgJ+/vlnGBgYwMfHBy1btkSHDh3qKychhHyxgoJ4PH8+CK9e/QANjX7o3Pk/eGbZgf9xLJUSxuguVlIhkeaTBP53405sbCyioqKQmpqKDx8+iLyh1NRUjBo1CsrKyjA3N8eJEycqbMcYw+rVq2FsbAx1dXU4Ojri5cuXIm+HEEI+9f79aTx61BYZGXfRsqUX2rX7B6nQhE9SEgo/FslCxuCTmCg0XishQDVF8syZM/jhhx9ga2sLHR0dzJ8/H+/fv8fs2bMREhKCuLg4kTc0b948yMnJISkpCcePH8fcuXMrLH6nT5/Gb7/9hjt37iA1NRUODg6YPHlyzd8ZIaRJKypKR2joZISEOEFRsSXs7Z9CSmcaHIODsfL1a8FRZBk6miQVqfKa5OrVq9G7d28sXboUffr0gamp6RdtJCcnB2fPnsV///0HFRUV9OzZEyNGjICvry+2bNki1Pbt27fo2bMnLC1L+ylNmjQJu3bt+qLtEkKaprS0mwgLm4qCgnhYWKyHmZkbpKRksCQ8HHczMvBSRkZwFFmG+kSSilRZJMPCwgAA8fHxMDIyKrf+6dOnIl2XjIiIgLS0NKysrATLbG1tcfv27XJtx40bh5MnTyIiIgLNmjXDkSNHMGjQoGq3ER4eLhjQt4yTkxNcXV2Rm5uLIUOGlHuOi4sLXFxckJycjLFjx5ZbP3fuXDg7OyM2NrbCo9nFixdj+PDhCA8Px+zZs8utX716NQYMGIDg4GDBRfRPbdq0Cd27d8e9e/fg5uZWbr2npyfs7Ozg7++PDRs2lFt/4MABWFtbw8/PDzt27Ci33tfXF6ampjh58iS8vLzKrT9z5gx0dHRw+PBhHD58uNz6ixcvQklJCfv378epU6fKrS+7IWD79u34559/hNYpKiri0qVLAAAPDw9cv35daL22tjbOnj0LAFi5ciXu378vtN7ExATHjh0DUHoDQtmdemWsrKzg7e0NAJg1axYiIiKE1tvZ2cHT0xNA6Retz896ODg4YPPmzQCAMWPGICUlRWh9//79sWbNGgDA4MGDy40uNWzYMCxZsgQAyv3dAfS3x9XfHmN8ALFYvz4KiopWQnM+JhQUwCcpCXwAuXw+EhwcJOpGnc9t2rSJ6wgSQaTBBAYOHIiAgABoaWkJlj18+BAjR45EQkJCtc/Pzs6Gurq60DJ1dXVkZWWVa2toaIhevXrB2toa0tLSMDU1xY0bNyp8XW9vb8EHZVFRkShvhRAioUpKspGbGwoZmVwsX24EBQV93L79v7GlPaKiyt2os++TL+6Spnv37lxHkAxMBLt372adOnViWVlZjDHGAgMDmb6+Prtw4YIoT2dPnjxhioqKQsu2b9/Ohg0bVq6tm5sbc3BwYLGxsayoqIj5+PgwCwsLlpOTU+U2OnXqJFIWQohk4fOLWXT0FnbrliwLDDRgycmXWJ8+fVifPn0EbeLz85nC7dsMN28KfhRv32YJ+fncBRezwMBAFhgYyHUMztW2Noh0d+v//d//YeTIkRgyZAguXbqEUaNG4dixYxWeRqqIlZUViouLERkZKVj27Nkz2NjYlGv77NkzODs7w8TEBDIyMnBxcUFaWhpCQkJELPuEkKYiLy8KwcF98ebNCmhrj0Dnzv9BW7v85ZlPjyLLSPqNOm5ubhWeSic1I3IXkDVr1qBz585wdnbG6dOnazTkkbKyMkaPHo21a9ciJycHgYGBOHfuXIXXWjp37ozTp08jKSkJfD4fvr6+KCoqQosWLUTeHiFEsjHGkJBwGEFB7ZGd/QytWh2Fjc3pSidFvp+ZSTfqkC9S6TVJU1PTcmOz8vl88Pl8TJo0SbAsJiZGpA3t378f06dPh56eHrS1teHl5QUbGxvExMSgTZs2CAkJgZmZGZYvX47379/Dzs4OOTk5aNGiBc6ePQsNDY0ve4eEEIlSWPgBERGzkZz8F9TV+6B16yNQUDCv8jlPad5b8oUqLZJldxbWFS0tLfz999/llpuZmSE7O1vwWEFBAfv27cO+ffvqdPuEkMYvJeUCwsJmoLg4DZaW22Bqugg8XvkTYk5OThykI5Ko0iLZp0+f+sxBCCGVKinJwevXSxAf/wuUldvB1vYqVFTaV9re1dW1HtMRSSbyfJKEEMKFzMwHCA2dhLy81zA1XYpmzTwgVc2cj7m5uQAAJSWl+ojYIJX1Eya1Q0WSENIglc75uAHR0RshL28MO7ub0NAQ7QxX2Z33TXkGDJoiq25QkSSENDi5ueEIDZ2ErKwg6OtPRcuWuyEjo179E4mAv78/AJp8ubaoSBJCGoz4/HzsCl6HYYV7IC2lBBubM9DVHcN1rEapbDhBKpK1U2mRnDx5crkuIBU5evRonQYihDRNBQXxuP3UGUML7iJevjdGd/wD8vKGXMciTVylRZI67xNC6sv792cQFjEbmsU52IUFuFb4DfpCCwZcByNNXqVF0t3dvT5zEEKaoOLiDERG/oCkJF+kyLbDUizDW5hADqjVAOQuLi51mpM0XSJfkywsLER4eDiSk5PBPhneqV+/fmIJRgiRbGlptz7O+fgO2iarMexdX+R8HCmzkDH4JCZijbn5F01nRUWS1BWRiuTdu3fx7bffoqCgAJmZmVBTU0NWVhZMTU3x5s0bcWckhEiQkpJ8vH27GnFxO6Go2AIdOwZiRYIGipAI4H9fwGsznVVycjIAQEdHp65iNzoHDhzgOoJEEKlILly4EMuWLcPChQuhqamJ1NRU/Pjjj026oy4hpOays58jNHQScnJewMhoLpo33wZpaWXcD39UpwOQl01k3ZT7SVpbW3MdQSKIVCQjIiIwf/58oWUrVqxAs2bNBLOzE0JIZRgrQWzsTrx9uxqyslpo1+4itLUHC9bTAOR1z8/PDwAwfPhwjpM0biIVSXV1dWRmZkJDQwOGhoYICQmBtra20MDkhBBSkby8KISFTUVGRgB0dEbDyuoA5OSa7mnQ+rJjxw4AVCRrS6T5JEePHo2LFy8CAGbMmIG+ffuiU6dO+Pbbb8UajhDSeDHGkJh45OOcj0/RqtUR2NicoQJJGhWRjiQ/HSh38eLF6Nq1K7KysvD111+LKxchpBErLEz+OOfjn1BX741WrY5AUdGC61iE1FiNhqV79+4d4uPj0axZMxgbG4srEyGkEUtJuYTw8OkoKkr9OOfjQvB40vWaYe7cufW6PSK5RCqSMTExmDhxIu7fvw8tLS2kpqaiW7duOH78OMzNq54RnBDSNJTO+bgU8fFeUFZuh/btr1Q556M4OTs7c7JdInlEuiY5depUdOrUCRkZGXj//j3S09PRuXNnTJ06Vdz5CCENSEJBAfo8fYrEggKh5ZmZDxAU1AHx8b/A1HQJOnZ8yFmBBIDY2FjExsZytv2GwNfXF76+vlzHaPR4jH3WOakCampqSElJgaysrGBZYWEhtLW1kZWVJdaAorK3t0dQUBDXMQiRaK7h4TiQkIA5RkbYZ2X1cc7HjYiO3gB5eWO0anUEmpqOXMeEo2NphqbcT5KUqm1tEOlIslu3bnj48KHQsqCgIDg4OHzxhgkhjUtCQQF8kpLAB+CTmIjo9Bd4+rQHoqPXQ19/Ajp3ft4gCiQpdfLkSZw8eZLrGI1epdck165dK/h38+bNMWTIEAwdOhSmpqaIjY3FxYsXMWHChHoJSQjhnkdUFPiMAWAYzP8Lkc9+gYK0Etq0OQU9PeoO1tB4eXkBoOuztVVpkfz8fP7o0aMBAO/fv4e8vDxGjRqF/Px88aYjhDQIZUeRKiwZy7AVXfEQQawLnG3/gJ5qM67jESI2lRZJHx+f+sxBCGnAPKKi0J1/C/+HHZBHATwxH5fwDd4mFGGfKtfpCBEfkftJRkZG4vfff8e7d+9gbGyM8ePHo2XLluLMRghpAIqLM9DswyI44SJC0QqbsRKxMAOALx6AXNwWL17MdQQiIUQqkn5+fpg4cSKGDRsGc3NzhIeHw97eHr6+vhgxYoS4MxJCOJKefhuhoVPQufgdzM3d0dt8FeZKyVb/RI7ReKWkrohUJN3c3HDu3Dn07dtXsOzWrVv4/vvvqUgSIoH4/AK8fbsGsbHbBXM+qql15TqWyMLDwwE07emizpw5w3UEiSBSkYyLi0OvXr2ElvXs2RNxcXFiCUUI4Y7wnI9z0Lz5dkhLK3Mdq0Zmz54NoGn3k2zKE07XJZH6SdrZ2QmmXSmzc+dO2NnZiSMTIYQDjJUgJmY7Hj/ujMLC92jX7gKsrLwaXYEkpQ4fPozDhw9zHaPRE+lI0svLC8OHD8fu3bsF/SSVlZVx/vx5cecjhNSD/PxohIZORUbGbejojPo456Mu17FILZQVSBcXF05zNHYiFclWrVohNDQU9+/fR0JCAoyMjNC1a1ehYeoIIY0PYwxJSb6IjPwBAIO1tQ8MDKaCx+NxHY2QBkHkLiAyMjLlrksSQhqv0jkf5yA5+SzU1Xt9nPORBgYg5FOVFklTU1ORvk3GxMTUaSBCiPilpFxGePg0FBWlwNLyJ5iaLq73OR/FafXq1VxHIBKi0iJ57Nix+sxBCKkHpXM+LkN8/H4oK7dF+/aXoaJiy3WsOjdgwACuIxAJUWmR7NOnT33mIITUoYSCAowLCcHJNm1gIC8PAMjMfIjQ0MnIy4uEicliNGu2AdLSChwnFY/g4GAAaNJ34F+8eJHrCBJBpGuSn84I8il5eXmYmJhg0KBB0NfXr9NghJAv5xEVhbsZGfCIjsbPLSwRE7MJUVE/Ql7eCLa216Gp2bf6F2nEFixYAKBp95NUUlLiOoJEEKmfZEREBH766SfcvHkTr169ws2bN/HTTz/h6dOn8PLygqWlJS5fvlzla6SmpmLUqFFQVlaGubk5Tpw4UWnbN2/eYNiwYVBVVYWOjg6WLVtWs3dFSBP26byPVxMe4eGT7oiKcoe+/gTY2z+X+AJJSu3fvx/79+/nOkajJ9KRJJ/Pxx9//IFRo0YJlp07dw4nTpzAv//+iyNHjmDFihUYNGhQpa8xb948yMnJISkpCcHBwRg6dChsbW1hY2Mj1K6wsBBfffUV5s2bh5MnT0JaWhoRERFf+PYIaXo8oqLA5/MxHOfhyryQmSMPO5rzsck5deoUAMDV1ZXjJI2bSEeSV65cKTdG67Bhw3Dp0iUAwKRJk/D69etKn5+Tk4OzZ8/Cw8MDKioq6NmzJ0aMGAFfX99ybQ8fPgwjIyMsWrQIysrKUFBQQPv27WvynghpMhIKCtDn6VMkFhQIHv+dGIL1WIFF2IUXaIsZ+BV8dRpjmZAvIVKRbN68uWCW6zK//PILmjdvDgBITk6GsnLlQ1dFRERAWloaVlZWgmW2trZ4+fJlubb//vsvLCwsMHjwYOjo6MDR0REvXrwQ6c0Q0tR8eu0RAH4L9YYXc0EHPMVu/B+WYSveQ0ewnhBSMyKdbj106BBGjx6Nn376CcbGxnj37h2kpaXx559/Aigdcd/Dw6PS52dnZ0NdXV1ombq6OrKyssq1jYuLw82bN3H+/Hn0798fu3fvxsiRIxEWFgY5OTmhtt7e3vD29gYAfPjwQZS3QojE+PTa48mEV5hR5IEe6ccQBmtsgptgzsdCxhrsvI/ismnTJq4jEAkhUpHs2LEjIiMj8e+//yI+Ph6GhoZwcHAQDEvXu3dvWFpaVvp8FRUVZGZmCi3LzMyEqmr5Kc0VFRXRs2dPDB48GACwZMkSbNiwAaGhobC1Fe7PNWvWLMyaNQsAYG9vL8pbIURieERFgc8Y2uMZVrLNyPjwARbma9DbfA3mNII5H8Wpe/fuXEcgEkLkYelkZWWrHJauTZs25QphGSsrKxQXFyMyMhItW7YEADx79qzcTTsA0L59ewQGBooai5AmKaGgAMcSYzGNHYITTiEeRljE24tLRtMh1cQLJADcu3cPQNMulk25+0tdEumapCgYY5WuU1ZWxujRo7F27Vrk5OQgMDAQ586dw+TJk8u1nTRpEv7991/4+/ujpKQEnp6e0NHRQevWresqKiGN3p7IK/BkczAOJ/EPhmEmDiIEbeja40dubm5wc3PjOgaRAHVWJKsb53X//v3Iy8uDnp4exo8fDy8vL9jY2CAmJgYqKiqCMWCtra1x7NgxzJkzB5qamjh37hzOnz9f7nokIU0RY3zExu5A/+Sx0EAqVmITdmER8qHYJK89kspt374d27dv5zpGo8djVR0C1oCamlqlp1vrg729PYKCgjjbPiHilp8fg7CwqUhPvwUdnW9gZeVNcz5WwtHREUDTPuVI+6BUbWuDyNckCSHcKJ3z8TgiI+cB4MPa+jcYGLjQnI+E1IM6K5J1dEBKCPlEUVEKIiLm4sOH01BX74lWrY7SnI+E1KM6K5IhISF19VKENHkJBQVY9ewQphdtRElxMiwtt8DUdIlEzfkoTp6enlxHIBJCpCKZmZmJdevW4fbt20hOThY6aiy74cbU1FQ8CQlpYkpKcvHPs5mYknsCKTIt0a/jRaiq2nEdq1FpylNklVFUVOQ6gkQQ6e5WV1dXPHnyBGvXrkVqaip+/vlnmJmZYeHCheLOR0iTkpn5CP8+skPL3BM4hW8xpWQfcuSo+1NN+fv7w9/fn+sYnLp06ZJgfG3y5US6u1VPTw+hoaHQ1taGhoYG0tPT8e7dOwwfPhxPnjypj5zVortbSWPG5xcL5nzMldLFOv4yPEIHyPF4+M7QEPs+GfeYVI/u7CRlalsbRDqS5PP5grFXVVRUkJ6eDkNDQ7x69eqLN0wIKZWbG4mnT3siKsodqjrfYgo7hEfoAKB03FWfxETBLB+EiMrDw6PKMbWJaEQqkra2trh9+zYAoFevXpg3bx7mzp0rNKsHIaRmGGOIjz+AoCA75OVFoE2bP/Cr7DpkQUWoXQljNJIOqbHr16/j+vXrXMdo9EQqkgcPHoSFhQUAYM+ePVBQUEB6ejqOHj0qzmyESKyCgkS8eDEMERFzoK7eA507v4CenjPuZ2ai8LMrIDSSDiHcEenu1k9n+NDV1cWvv/4qtkCESLoPH/5CePhM8Pk5aNFiD4yN54HHK/2++rRzZ47TEUI+JXI/SR8fH/j6+uLdu3cwNjbG5MmTMW3aNHFmI0SiFBdn4tWrBUhM9IGKSke0bn0Mysp056o4HDhwgOsIREKIVCQ3btyIo0ePYvHixTA3N0d0dDS2bt2K+Ph4rFq1StwZCWn00tPvICxsCvLzY2Buvhrm5msgJUWD9ouLtbU11xE4p62tzXUEiSBSF5BmzZrh1q1bMDc3FyyLjo5G7969Ed1AbiigLiCkoUgoKMC4kBCcbNMGerLA27fuiI3dCgUFS7Ru7Qt1dQeuI0o8Pz8/AMDw4cM5TkK4Vi8DnOfk5EBXV3i2AW1tbeTl5X3xhgmRVB5RUbibkYHdr65hdO5q5OQ8g6HhLDRvvgMyMirVvwCptR07dgCgIklqT6S7WwcNGoSJEyciPDwceXl5CAsLw9SpU/H111+LOx8hjUpCQQEOJyZgDE6h34fRyC9MQNu2frC2PkAFktSrlStXYuXKlVzHaPREKpJ79+6FqqoqbG1toaysLPjvzz//LO58hDQqO17fwya2CK7wwiN0wZ9a56CjM4zrWKQJun//Pu7fv891jEZPpNOtampqOHr0KA4fPozk5GTo6OhASkqk+kpIk8AYQ8S7I3B8/wOkUIKtWIpLGAzFD4VYblkAA3l5riMSQr6AyF1AIiMjcerUKcTHx8PIyAhOTk5o2bKlOLMR0igUFaV+nPPxFKLQFpuwEgkwAvC/0XJo7FVCGieRDgdPnDiBDh064Pnz51BWVsaLFy/QsWNHnDhxQtz5CGnQUlOv4tGjdkhO/gv/yM7DfHgKCiRAo+VwxdfXF76+vlzHIBJApCPJ1atX4+LFi+jdu7dg2Z07dzB58mRMmDBBbOEIaahKSnLx5s1yvHu3F0pKbdCu3T/oo9oB27kORgDQ/LYAYGJiwnUEiSBSkczKyoKDg3Dfrm7duiEnJ0csoQhpyDIzgxAWNhm5uWEwMVmAZs02QVqaJrhtSE6ePAkAcHZ25jgJd44dO8Z1BIkg0unWRYsWwc3NDfn5+QCAvLw8rFq1CosWLRJrOEIaEj6/GFFRG/D0qQNKSrJha+uPFi12UYFsgLy8vODl5cV1DCIBRDqS3L9/PxITE7F7925oamoiLS0NjDEYGhoK/SHGxMSILSghXMrNfYWwsMnIzPwXenoT0LLlXsjKanIdi5BKLViwAADg6enJaY7GTqQiSYftpKlijCEh4SBevVoIKSk5tG79O/T1x3Edi5BqBQcHcx1BIohUJPv06SPuHIQ0OAUFiQgP/w6pqRegqTkA1tY+UFCgmyEIaUpE7idJSFPy4cPfiIiYiZKS7HJzPhJCmg4qkoR8org46+Ocj799nPPRF8rKbbiORWrozJkzXEcgEoKKJCEfpaff/TjnYzTMzFbBwmItzfnYSOno6HAdgXNWNMpTnai2SD58+BBdunQp929CJAWfX4ioKHfExPwEBYVm6NDhDtTVu3Mdi9TC4cOHAQAuLi6c5uCSt7c31xEkQrVF0t/fHwkJCZCWlsbz58+pSBKJkpPzEqGhk5CdHQxDw+/QvPlOyMioch2L1BIVSVJXqiySMTExcHZ2xpw5cyAlJQUvLy/ExMTAzMysvvIRIhaM8REXtxtv3qyEjIwa2rY9Bx2dEVzHIqTOzJo1CwAdUdZWlUXSx8cHABAXFwcejyfoL7l27VrxJyNETPLzYxEW5oL09BvQ1h4Ba+uDkJPT4zoWIXUqIiKC6wgSocoi6e7ujrt376KoqAg8Hg/9+vVDz5496ysbIXWKMYb3739HRIQrGCuGtfUhGBhMB4/H4zoaIaSBqvaa5J07d7Bq1SowxrB7924qkqRRKp3z0RUfPpyEmlp3tG59FIqKzbmORQhp4KotkitXrqzw34Q0Fqmp1xAW5oKiovdo1mwTzMyWgceT5joWEaOLFy9yHYFIiHobQiQ1NRWjRo2CsrIyzM3NRZqwuV+/fuDxeCguLq6HhEQSJBQUoM/Tp0gsKEBJSR4iI/8Pz58PhIyMOjp2fABz85VUIJsAJSUlKCkpcR2DU3Z2drCzs+M6RqNXb4MJzJs3D3JyckhKSkJwcDCGDh0KW1tb2NjYVNj++PHjVBxJjXlEReFuRgZ+jryAkbmrkJsbBmPj+bC03ExTWjUh+/fvBwC4urpynIQ7NPtH3aiXI8mcnBycPXsWHh4eUFFRQc+ePTFixAj4+vpW2D4jIwPr16/H1q1b6yMekRAJBQU4kvgO43EMfZOdUFichfbtr6FlS08qkE3MqVOncOrUKa5jEAkg0pFkcHAwtLW1YWpqKlgWExODtLQ02NraVvv8iIgISEtLCw2TZGtri9u3b1fY3s3NDXPnzoWBgYEo8UgTl1BQgHEhIWgvnYRtbAna4CVuoh8ytLbAU6sz1/EI4cSkSZMA0FSHtSXSkeSkSZNQVFQktKyoqAiTJ08WaSPZ2dlQV1cXWqauro6srKxybYOCghAYGIgffvih2tf19vaGvb097O3t8eHDB5GyEMnj8fYt1DKOY0jqKJgiGh5YjR+xBt7v85BYUMB1PEI4ERcXh7i4OK5jNHoiFcmYmBhYWloKLWvevDmioqJE2oiKigoyMzOFlmVmZkJVVXj4Lz6fD1dXV+zevRsyMtUf5M6aNQtBQUEICgqCrq6uSFmIZInNioF54nQsxg6EoA1m4FfcQH8AQAlj8IiO5jghIaQxE6lImpiY4MmTJ0LLnjx5AiMjI5E2YmVlheLiYkRGRgqWPXv2rNxNO5mZmQgKCoKzszMMDAzQuXNnwfbv3Lkj0rZI05GcfA4vn3ZABwRhL+ZhKbbhA/43ck4hY7iXkcFhQkJIYyfSNcmFCxdi5MiRWLZsGZo3b47Xr19j+/btWLVqlUgbUVZWxujRo7F27VocOnQIwcHBOHfuHO7duyfUTl1dHfHx8YLHsbGx6NKlCx4/fkxHikSgdM7HhUhM/BVxaIkN2IFoWAAAFKWk8KZrVxjIy3MbknDq1q1bXEcgEkKkIjlz5kxoaGjg119/RWxsLExNTbFjxw6MHTtW5A3t378f06dPh56eHrS1teHl5QUbGxvExMSgTZs2CAkJgZmZmdDNOvn5+QAAfX19kU6/EsmXkRGI0NDJyM+PRojybCzNGYvcT/6My06x7qO59EgT5+DgwHUEicBjjDGuQ9QFe3t7BAUFcR2DiEnpnI/rPs75aIHWrY/CMUIOwTk55draKSvjaWe6q7Up2759OwBgyZIlHCchXKttbaj08Oy3334T6QWmT5/+xRsnpDoJBQX44cU/WMw2oCBHeM7Hp1QHSSX++ecfAFQkSe1VWiQ/7ejPGENgYCAMDAxgamqK2NhYJCYmomfPnlQkidgwxscfL3/ErOxtyJBShX3bv6GjM5LrWIQ0CmPGjAEAnD17luMkjVulRfLmzZuCf//www/45ptvsGDBAsGy3bt34/Xr12INR5qu/Pw4PA+dgg6ZN3EPDtjLluGJ6iCuYxHSaKSkpHAdQSKIdDfMsWPHkJycLLTs+++/h46ODvbs2SOWYKTpSkr6HZGRrsgrKcReLMF5DIEcpOiGHEJIvROpn6SBgQHOnz8vtMzPzw96ejSbO6k7RUVpCAkZj9DQCZBRaIXZOIjzGAqAh0LG4JOYSCPoEJEoKipCUZHG6yW1J9KR5J49ezB27Fhs27YNpqamiImJQUhICE6fPi3ufKSJSE31/zjnYxKaNduArXnf4F1OMoD/3XxN3TuIqC5dusR1BCIhRCqSX331Fd68eYOLFy8iPj4eQ4cOxdChQ6GtrS3ufETClZTk4c2bFXj3bg+UlFqhXbtzUFXthHuPHqHws95JNIIOIaLr378/1xEkQp31k1RTUys3Pmt9on6SjUfZrB1HzArw/vV05OaGwtj4/2BpuYWmtCJ1wsPDAwCwZs0ajpMQrtW2NtTZfJISMiYBqQcb3r6GWcY+vHnRC8XFGWjf/ipattxNBZLUmevXr+P69etcxyASoM7GeuPxeHX1UkSCRWeEok2iM2zwH26jH75rfwxaKoZcxyJE4gwePBgAXZ+tLRoQldQLxhgSE39DRMT/wRw8eGA17vIG4H18FvZZUZEkpK7l5eVxHUEi1NnpVkIqU1j4Hv/99w3Cw7/DS9YK0/EbbqA/desghDR4dE2SiFVy8nk8etQWqalX8FRtJVZgu9CcjzQxMhEHbW1tuvue1IlqT7eWlJTAysoKISEhkK9ijj46700+VVychdevFyEh4RBUVOxgZ3cTC0JyUQDhWTuoWwcRBxqvlNSVaouktLQ0pKWlkZ+fX2WR7NmzZ50GI41XRsa9j3M+voWZ2QpYWKyHlJQczdpBSD0aNmwY1xEkgkg37ixYsABOTk5wc3ODiYmJ0J2slpaWYgtHGpfSOR/XIyZmCxQUzGBnFwANDfryROrfypUrAQCbN2/mOAl3aJqwuiFSkfz+++8BANeuXRNazuPxUFJSUvepSKOTkxOC0NBJyM5+CgOD6WjRYhdkZNS4jkWaqPv373MdgUgIkYokn88Xdw7SSDHGx7t3e/HmzXJIS6vAxuYv6Op+w3UsQpo8R0dHAMCtW7c4zdHY1aif5Lt37xAfHw9jY2MYGRmJKxNpJPLz4xAePg1paf7Q1h4Ga+tDkJPT5zoWIYTUGZG6gMTExKBXr14wNzfH0KFDYWZmhp49eyKabt1vst6/P4mgoHbIyLgPKytvtG17ngokIUTiiFQkp06dik6dOiEjIwPv379Heno6OnfujKlTp4o7H2lgSud8nIiQkHFQUmoFe/tgGBnNpGEJSYNiYmICExMTrmMQCSDS6dbHjx/j6tWrkJWVBQCoqKjgp59+os66TUxa2nWEhbmgsDARFhYeMDNbASkpGtmQNDzHjh3jOgKRECJ9wnXr1g0PHz5Ejx49BMuCgoLg4OAgtmCk4SgpycPbt26Ii/OEoqI1OnS4DzU1e65jEUKq4OTkxHUEiSBSkWzevDmGDBmCoUOHwtTUFLGxsbh48SImTJiAtWvXCtr9+OOPYgtKuJGV9RShoZOQmxsCY+MfPs75qMR1LEKqtGDBAgCAp6cnpzm45OrqynUEiSBSkczPz8fo0aMBAO/fv4e8vDxGjRqFvLw8xMbGAqCpsiQNYyWIidmKqCh3yMrqon37K9DSGsh1LEJEEhwczHUEzuXm5gIAlJToS21tiFQkfXx8xJ2DNCB5eW8QGjoFmZmB0NX9FlZWv0BWVovrWISQGhgyZAgA6idZW3TXBREom/Px1asFAKTRuvUx6OlNoLMEhJAmi4okAVA652N4+CykpJyDhkZftGp1GAoKZlzHIoQQTlGRJEhO9kN4+HcoLs5A8+Y7YWIyHzwezcdNGi8rKyuuIxAJIVKRTExMhIGBgcjLSeNQXJz9cc7Hg1BWtoWt7XWoqLTlOhYhtebt7c11BCIhRCqSVlZWyMzMLLe8TZs2SE1NrfNQRPwyMu5/nPPxDUxNl6NZs/WQkqp8vlBCSOPi4uLCdQSJIFKRZIyVW5aZmQkpKTol19jw+UWIjv4R0dGbPs75eBsaGr24jkVInZo1axaApn1ESUWyblRZJE1NTcHj8ZCXlwczM+GbOFJSUjB+/HixhiN1KycnFKGhk5Gd/RgGBtPQooUnzflIJFJERATXETiXnJwMANDR0eE4SeNWZZE8duwYGGMYMmQIfH19Bct5PB709fVhbW0t9oCk9krnfNyHN2+WfZzz8U/o6o7iOhYhRIzGjh0LgPpJ1laVRbJPnz4ASr+R0KgNjVNBwTuEhU1DWto1aGkNhbX1IcjL081WhBAiikqL5MaNG7Fq1SoAwJYtWyp9ARqvteF6//4kIiLmgs8vgJXVLzA0nEUDAxBCSA1UeudNXFyc4N+xsbEV/nzapjqpqakYNWoUlJWVYW5ujhMnTlTY7siRI+jUqRPU1NRgYmKCZcuWobi4uAZviRQVpQvmfFRUtPo45+NsKpCkybCzs4OdnR3XMYgEqPRI0sbGRvDvVatWoUWLFrXa0Lx58yAnJ4ekpCQEBwdj6NChsLW1FdoOUDoor6enJ7p27YoPHz5gxIgR2L59O1asWFGr7UuqhIICjAsJwck2bWAgL4+0tBsIC5uKgoIEWFj8CDOzlTTnI2lymvLsH6Ru8VhF/TsAqKurIyMjAwCgpqZWYT9JUeXk5EBTUxP//fefYCSMyZMnw9jYuMpTuQCwc+dO3Lx5E35+flW2s7e3R1BQ0BdnbKxcw8NxICEBrobamC/tg7i4XVBUtEbr1r5QU+vMdTxCCEdOnjwJAHB2duY4CbdqWxsqPcRo3rw5Fi9eDBsbGxQVFeG3336rsN306dOr3UhERASkpaWFhoqytbXF7du3q31uQEBAuaPNioSHh8PR0VFomZOTE1xdXZGbmysYEf9TLi4ucHFxQXJysuBOsE/NnTsXzs7OiI2NxeTJk8utX7x4MYYPH47w8HDMnj273PrVq1djwIABCA4OFsxv96lNmzahe/fuuHfvHtzc3Mqt9/T0hJ2dHfz9/bFhw4Zy6z1+/hm/paZC795ZXDt1EGM8C2BkNA/Nm2+lOR9JkzZp0iQApXfoN1VNvTjWlUqL5B9//IGtW7fi999/R1FRkVAXkDI8Hk+kIpmdnQ11dXWhZerq6sjKyqryeT4+PggKCsKhQ4cqXO/t7S3oLFxUVFRtDknjFReDMYrnYY1D+OkVH9OWWuHto71cxyKEczW5X0JSlc31a2pqynGSxq3S062f6t+/P65fv/7FG3n69Cl69OghmAQUAHbs2IFbt25Vehr177//xuzZs+Hv74927dpVu42mdro1OiMMfk+d0BYvcAt9sGFBMviQQfyDBzCQp+HlSNNWdlapKfcRpH1Qqra1QaRx5WpTIIHSsV+Li4sRGRkpWPbs2bNKT6NevnwZM2fOhJ+fn0gFsqlIKChAnydPEBbrjYjgTrDAG2yEG9bDHSWQAQPgER3NdUxCCJEY9TL4qrKyMkaPHo21a9ciJycHgYGBOHfuXIXX+W7cuIGJEyfi7Nmz6NKlS33EazS2vn6CrzLnI/H1bLzltcIM/Ap/fAXgf107bqelcReQEEIkTL2NUL5//37k5eVBT08P48ePh5eXF2xsbBATEwMVFRXExMQAADw8PJCRkYEhQ4ZARUUFKioqGDx4cH3FbLAiE/9C7/dD0QUPcJDninvaR5DOEx45hwegj6YmNwEJaUAcHBzg4ODAdQwiAeqtA52Wlhb+/vvvcsvNzMyQnZ0teHzz5s36itQolM75uBgJCd5IQ3Msxna8Q3OopqWj8NPLyY6OYADufey2Q0hTtnnzZq4jEAlBvcwboLIBAg6bZuH96xnIy3uN0xiPg3BBEeQAxpDL5yPBweF/N+l81v2FENK0LV68mOsIEoGKZAO04W0kWmTsQlTGcSjIm+KG1lEcSjNF0SdHjiWMwSM6Gvs+9j0tu3OYBqInBBgzZgwA4OzZsxwn4c7w4cO5jiARqEg2MFHpz2Gb6AQrhOMaBsG1/VH4hUShkOUItStkTOjUatlgCU39dm9CgNL5bpu68PBwAKApDWuJimQDwRjDu3f78OrVEuhDHu5Yh395jkh/l4annWl4OUJIzZSNAkZfnGun3u5uJZUrKIjH8+eD8OrVD3gKO0zHbwhAHxQyBp/ERCQWFHAdkRBCmiQqkhx7//40Hj1qi4yMu3istg6rsQWp0BasL7v2SAghpP7R6VaOFBWl49WrH5CUdAyqql3QurUv5r/MQCGqvvZICKle//79uY5AJAQVSQ6kpd38OOdjPCws1sPMzA1SUjJ4WotLjy4uLnWWj5DGbs2aNVxHIBKCimQ9KinJx9u3qxAXtxOKilbo2PF+nc35SEWSEPKp1atXcx1BIlCRrCfZ2c8QEjIRubkvxTLnY3JyMgBAR0enzl6TkMaqbCjLS5cucZyEOwMGDOA6gkSgIilmjJUgNnYH3r5dDVlZbbRrdwna2oPqfDtlk0bT7d6EAHl5eVxH4FxwcDAAwM7OjtMcjR0VSTHKy4tCWNgUZGTcgY7OGFhbH4CsrHb1TySEkFpasGABAPriXFtUJMWAMYbExCN49er/APDQqtVR6OtPAo/Hq/a5hBBCGg4qknWssPADIiJmIzn5L6ir90br1kehoGDOdSxCCCFfgIpkLZXN2HGyTRvIZvsjLGwGiovTYGm5DaamC8HjSXMdkZAmZ9iwYVxHIBKCimQtJBQUoFNQENKLMnHh2VY0z/0DysrtYGt7FSoq7es1y9y5c+t1e4Q0ZEuWLOE6ApEQVCRrYcWbN9Aoeoat2ASj3HhoGS1C2xabICUlX+9ZnJ2d632bhJCGa9OmTVxHkAhUJGuo7PTq7ubmkE7agp9xDB+gi6XYiW4Ygn0cFEgAiI2NBQCYmppysn1CGhLHj5OQN+U7O7t37851BIlARbKGPKKiEJXxAsFPJ2IKQnEZX2MvvkcOVBCamIg15uYwkK//Qjl58mQATftDgRDyP/fu3QNAxbK2qEiKKKGgAKNfvIBx9nEcgBcKWOmcjwHoI2hTzOfDIzoa+6ysOExKCCGAm5sbAPriXFtUJEW07fUDjMpegi54hAfogq1YJjSlFQAUATRjByGESBAqkiKIiP8dju/nQA4F2IUFOI8RAMoPDGCnrIynnetmwHJCCCHcoyJZheLiDERG/oCkJF/EoxU2YSViYSZYL8fj4TtDQzq9SkgD4+TkxHUEIiGoSFYiLe3Wxzkf3+EYXHAYE1Hy2e5qSBMiL168mOsIhDQYrq6uXEcgEoKK5GdK53xc/XHOxxbw1z4B31R9lDAmaNMQjyCHDx/OdQRCGozc3FwAgJJS3U1H19h4enpyHUEiUJH8RHb2c4SGTkJOzgsYGc1F8+bbMOdJCApZjlC7hnQEWSY8PBwAYG1tzXESQrg3ZMgQAE37zk6aIqtuUJFE2ZyPOz/O+aiFdu0uQlu7dNLWxnIjzuzZswE07Q8FQsj/+Pv7A6DJl2uryRfJ0jkfpyIjIwA6OqNhZXUAcnI6XMcihJBa2bBhAwAqkrXVZIskYwxJSUcRGfkDAKBVqyPQ159Mcz4SQggRaJJFsrAwGRERc5CcfBbq6r3QqtVRKCpacB2LEEJIA9PkimRKyiWEh09HUVEKLC23wtR0Ec35SIiEcXFx4ToCkRBNpkiWlOTg9euliI/3grJyW7RvfxkqKrZcx6ozq1ev5joCIQ0GFUlSV5pEkczMfIDQ0MnIy3sFU9MlsLDwgLS0Atex6hRdnCfkf5KTkwEAOjpN9ya8AwcOcB1BIkh0keTzixAdvRHR0RsgL28MW9sb0NR05DqWWAQHBwOgvlGEAMDYsWMBNO0uUdRnum5IbJHMzQ1HaOhkZGU9gr7+ZLRs+TNkZNS5jiU2CxYsANC0PxQIIf/j5+cHgEbjqi2p+tpQamoqRo0aBWVlZZibm+PEiROVtt21axcMDAygrq6O6dOno6CgQOTtMMbw7t1+BAV1QF7ea7RpcwqtWx+V6AJJCCGf27FjB3bs2MF1jEav3orkvHnzICcnh6SkJBw/fhxz587Fy5cvy7W7cuUKtmzZguvXryMqKgpv3ryBu7t7ta+flfUY9+6ZICjIDpGR86Cu3hudO7+Ant634ng7hBBCmoB6KZI5OTk4e/YsPDw8oKKigp49e2LEiBHw9fUt1/bIkSOYMWMGbGxsoKmpiTVr1uDw4cMibaew8B1ycp5DX38q2re/BHl5ozp+J4QQQpqSerkmGRERAWlpaVh9MmuGra0tbt++Xa7ty5cvMXLkSKF2SUlJSElJgba2tkjbS0+/RSPnENKEzZ07l+sIRELUS5HMzs6GurrwNUF1dXVkZWVV27bs31lZWeWKpLe3N7y9vQEAiYnAxzG+AURDVdW+7t5AI/HhwwfY2ze99/2pDx8+QFdXl+sYnKP9ULoPtm3bxnUMTtFnAhAWFlar59dLkVRRUUFmZqbQsszMTKiqqlbbtuzfFbWdNWsWZs2aBQCwt7dHUFBQXcZudGgf0D4oQ/uB9gFA+wBArb8k1Ms1SSsrKxQXFyMyMlKw7NmzZ7CxsSnX1sbGBs+ePRNqp6+vL/KpVkIIIaSu1EuRVFZWxujRo7F27Vrk5OQgMDAQ586dw+TJk8u1nTJlCn799VeEhIQgLS0NGzZsoCGmCCGEcKLeuoDs378feXl50NPTw/jx4+Hl5QUbGxvExMRARUUFMTExAIBBgwZh2bJl6Nu3L8zNzWFubo7169dX+/plp12bMtoHtA/K0H6gfQDQPgBqvw94jDFWR1kIIYQQiVJvR5KEEEJIY0NFkhBCCKlEoymS9TX2a0Mn6n44cuQIOnXqBDU1NZiYmGDZsmUoLi6u57TiUZO/hTL9+vUDj8drkvvgzZs3GDZsGFRVVaGjo4Nly5bVY1LxEXUfMMawevVqGBsbQ11dHY6OjhUOidkY7d27F/b29pCXl6/2BkdJ/VwUdR986WdioymS4h77tbEQdT/k5ubC09MTycnJePDgAa5fv47t27dzkLjuiboPyhw/flxiimMZUfdBYWEhvvrqK/Tr1w+JiYmIi4vDpEmTOEhc90TdB6dPn8Zvv/2GO3fuIDU1FQ4ODhXeWd8YGRkZYfXq1Zg+fXqV7ST5c1HUffDFn4msEcjOzmaysrIsPDxcsGzSpEls+fLl5dqOHz+erVy5UvDY39+f6evr10tOcavJfvjcjh072LBhw8QZr17UdB+kp6ezli1bsvv37zMArKioqL6iik1N9sGBAwdYz5496zNevajJPtiyZQv79ttvBY//++8/Ji8vXy8568uqVavY1KlTK10vyZ+LZarbB58T9TOxURxJVjb2a0XfGl++fAlbW1uhdmVjvzZ2NdkPnwsICKhw8IbGpqb7wM3NDXPnzoWBgUF9RRS7muyDf//9FxYWFhg8eDB0dHTg6OiIFy9e1GdcsajJPhg3bhxevXqFiIgIFBUV4ciRIxg0aFB9xuWcJH8ufilRPxMbxaTL4hr7tbGpyX74lI+PD4KCgnDo0CFxxqsXNdkHQUFBCAwMxO7duxEXF1dfEcWuJvsgLi4ON2/exPnz59G/f3/s3r0bI0eORFhYGOTk5Oorcp2ryT4wNDREr169YG1tDWlpaZiamuLGjRv1FbVBkOTPxS9Rk8/ERnEkKa6xXxubmuyHMn///TdWrFiBS5cuQUdHR9wRxU7UfcDn8+Hq6ordu3dDRqZRfBcUWU3+DhQVFdGzZ08MHjwYcnJyWLJkCVJSUhAaGlpfccWiJvtg/fr1ePToEWJjY5Gfnw93d3f069cPubm59RWXc5L8uVhTNf1MbBRFksZ+LVWT/QAAly9fxsyZM+Hn54d27drVV0yxEnUfZGZmIigoCM7OzjAwMEDnzp0BACYmJrhz5069Zq5rNfk7aN++vUROG1eTffDs2TM4OzvDxMQEMjIycHFxQVpaGkJCQuozMqck+XOxJr7oM7EW10nrlbOzMxs3bhzLzs5md+/eZWpqauy///4r1+7SpUtMX1+fvXz5kqWmprK+ffuKdGNLYyHqfrh+/TrT0tJit2/f5iCleImyD/h8PktISBD8PHz4kAFgcXFxrKCggKPkdUfUv4OwsDCmqKjIrl27xoqLi9nOnTuZpaVlk9oH69atYz169GCJiYmspKSEHT16lCkpKbG0tLT6D13HioqKWF5eHluxYgWbNGkSy8vLq/DmNEn+XBR1H3zpZ2KjKZIpKSls5MiRTElJiZmamrLjx48zxhiLjo5mysrKLDo6WtB2x44dTE9Pj6mqqjIXFxeWn5/PVew6J+p+cHR0ZNLS0kxZWVnwM2jQIC6j15ma/C2Uefv2rcTc3cpYzfbB2bNnWfPmzZmqqirr06dPhYWkMRJ1H+Tl5TFXV1dmYGDAVFVVWYcOHdilS5e4jF5n3N3dGQChH3d39yb1uSjqPvjSz0Qau5UQQgipRKO4JkkIIYRwgYokIYQQUgkqkoQQQkglqEgSQgghlaAiSQghhFSCiiQhhBBSCSqShNRAVFSURM1L+bl169aJPJWWhYUF/P39v2g7jo6O1Y6befjwYfTs2fOLXl+czp49i23btkns3wARRkWSEDGqbiJcUnPFxcVQUVHBw4cPBcuOHz8OHo9XblmrVq2Enjtw4EBcvXr1i7d98uRJfPfddzh+/DimT5+Oz7uZL1myBC1btoSqqipatWqFo0ePfvG2SMNARZI0eXV9RMAYw5w5cxAdHQ0ASElJwaxZs5CTk1On22mqZGRk4ODggNu3bwuWBQQEoFWrVuWW9e7dW/A4JycHjx8/Rp8+fb5ou/7+/liwYAGuXbuGgIAAvHnzBsuWLRNqo6ysDD8/P2RkZODIkSOYP38+7t2790XbIw0DFUlSaxYWFti2bRvat28PZWVlzJgxA0lJSRg8eDBUVVUxYMAApKWlCdr/+++/6N69OzQ0NGBra4tbt24J1vn4+KB169ZQVVWFpaUlDhw4IFiXnJyMYcOGQUNDA1paWujVqxf4fH6FmXg8Hvbs2QNLS0vo6Ohg6dKlgraHDx9Gjx49sHDhQmhpaWHdunWVvreSkhIsWbIEOjo6sLS0xIULF4TWp6amYtq0aTAyMoKmpia++eYb8Hg8rFy5Eu7u7rhz5w7mzp2L77//HsrKyuVef926dRg7diycnZ2hqqqKjh07Cg1EHRoaCkdHR2hoaMDGxgbnz58XrLtw4QI6dOgANTU1mJqaVvk+PnX06FGYm5tDW1sbHh4eVZ42PX/+PGxsbKChoQFHR8dys4c8evQIbdq0gaamJqZNm4b8/HwAQFpaGoYNGwZdXV1oampi2LBhtZ6ubOnSpejZsycyMjLQu3dvBAQECNbduXMHy5cvL7fs0yJ5/fp19OjRA/Ly8li3bh2+/fZbTJo0CaqqqmjXrh0iIiKwefNm6OnpwdTUVOiIMygoCLNnz8aVK1dgb28PNTU1XLlyBU+ePBGa3X79+vVo1aoVpKSk0LVrV/Tq1Qv379+v1fsmHBPnmHqkaTA3N2ddu3ZliYmJLC4ujunq6rIOHTqwJ0+esPz8fNa3b1+2bt06xhhjcXFxTEtLi124cIGVlJSwq1evMi0tLfb+/XvGGGP//PMPe/XqFePz+ezWrVtMUVGRPX78mDHG2IoVK9js2bNZYWEhKywsZAEBAYzP51eYCQBzdHRkKSkpLDo6mrVs2ZIdPHiQMcaYj48Pk5aWZnv27GFFRUUsNze30vfm5eXFrK2tWUxMDEtJSWGOjo5CY8AOGTKEOTk5sdTUVFZYWMhu3brFGGMsKiqKubi4sGbNmjEnJyf24sWLCl/f3d2dycjIsNOnT7PCwkK2bds2ZmFhIXiPzZs3Zxs3bmQFBQXs+vXrTEVFhYWFhTHGGLt58yZ7/vw5KykpYc+ePWN6enrsr7/+qvJ39fLlS6asrMzu3LnDCgoK2OLFi5mMjAy7du2aIM/EiRMZY4yFh4czJSUldvXqVVZYWMh++ukn1rx5c8Hg6Obm5szGxkawb7p3785WrVrFGGMsOTmZnTlzhuXk5LDMzEw2duxYNnLkSEGOPn36CH4flfHx8WE9evRgJSUl7LvvvmMDBw5kOTk5jDHGbt26xTQ1NVlJSQn78OEDMzMzYzk5OUxPT0+wjMfjCY1dOnv2bPbLL78I3qe8vDy7fPkyKyoqYpMnT2YWFhZsw4YNrLCwkHl7ezMLC4sq81UnNzeXGRgYSMw4sU0VFUlSa+bm5uzYsWOCx6NHj2Zz5swRPN6zZ4/gA3LLli1s0qRJQs8fOHAgO3z4cIWvPXLkSObp6ckYY2zNmjVsxIgRLDIystpMAIQ+nPbt28f69evHGCv98DU1NRXpvfXt25d5eXkJHl+5ckVQJOPj4xmPx2OpqalCz+Hz+Wz27NksKiqKTZ06lX348IHNnDlT8AH/KXd3d9a1a1fB45KSEmZgYMACAgJYQEAA09fXZyUlJYL148aNY+7u7hVmnT9/PluwYEGV72f9+vVs3Lhxgsc5OTlMVla2wiL5448/sm+//VYom5GREbt58yZjrPT3/um+uXDhArO0tKxwu0+fPmUaGhqCx6IWyS5dujAnJyc2evRooZlL8vLymLy8PAsODmZ//vknmzBhAmOMsa5duwqWfV7kzMzMWExMjOB9DhgwQLDu/PnzTFlZmRUXFzPGGMvMzGQAajVTyJQpU9jXX39d6Rc50jjQ6VZSJ/T19QX/VlRULPc4OzsbABAdHY3Tp09DQ0ND8HP37l0kJCQAAC5duoRu3bpBS0sLGhoauHjxIpKTkwGUnm5r0aIFBg4cCEtLS2zZsqXKTKampoJ/m5ubIz4+vsJ1VYmPjy/3OmViY2OhpaUFTU1NoefweDz88ssvgrY6Ojrw9vaGkpJStTmlpKRgYmKC+Ph4wbalpP73v6m5uTnevXsHAHjw4AH69u0LXV1dqKur45dffhHsK1Hfj5KSUqVzCsbHxwu9XykpKZiamgq2/3n2T/dxbm4uZs+eDXNzc6ipqaF3795IT09HSUlJlfk+9+rVK5w7dw7u7u6Qk5MTLFdQUECXLl0QEBCAgIAA9OrVCwDQs2dPwbJPT7W+ePFCcFq6zOd/ozo6OpCWlhY8BiD4u62ppUuX4r///sOpU6ckcj7PpoSKJKlXpqammDx5MtLT0wU/OTk5WLFiBQoKCjBmzBgsWbIESUlJSE9Px5AhQwR3EKqqqmLHjh148+YN/Pz8sHPnTly/fr3SbcXGxgr+HRMTAyMjI8FjUT+4DA0Ny73Op+8lNTUV6enplT7/8OHD1W7j09fn8/mIi4uDkZERjIyMEBsbK3TdNSYmBsbGxgCACRMmYMSIEYiNjUVGRgbmzJlT7m7Lit7Pp9cG8/LykJKSUmFbIyMjwc1HQOkNSbGxsYLtf5790328Y8cOhIeH48GDB8jMzBRcK6wu3+dat24NHx8fDB48GOHh4ULryq5L3rlzR1Ake/XqJVj2aZG8ePEihg4dWqNtfyl3d3dcunQJV69ehZqaWr1sk4gPFUlSryZNmgQ/Pz9cuXIFJSUlyM/Px61btxAXF4fCwkIUFBRAV1cXMjIygg+aMv/88w9evXoFxhjU1NQgLS0t+OZfkW3btiEtLQ2xsbHYvXs3nJ2da5zXyckJe/bsQVxcHNLS0oSOXg0NDTF48GC4uroiLS0NRUVFQjeOiOrx48f4888/UVxcDE9PT8jLy6Nbt27o2rUrlJWVsXXrVhQVFeHWrVvw8/PDuHHjAABZWVnQ0tKCgoICHj58iBMnTlS7rbFjx8LPzw/37t1DYWEh3N3dKy1cTk5OuHDhAq5fv46ioiLs2LED8vLy6N69u6DNvn37EBcXh9TUVGzatEmwj7OysqCoqAgNDQ2kpqZi/fr1Nd4vZcaPH49NmzZhwIABeP36tWB57969cfPmTcTGxqJNmzYASo8kb926heDgYKEieeHCBQwZMuSLM4hq8+bNOHHiBK5du1bpETppXKhIknplamqKc+fOYdOmTdDV1YWpqSm2bdsGPp8PVVVV7NmzB05OTtDU1MSJEycwYsQIwXMjIyMxYMAAqKiowMHBAa6urnB0dKx0WyNHjkSnTp1gZ2eHoUOHYsaMGTXOO3PmTHz99dewtbVFx44dMXr0aKH1vr6+kJWVRatWraCnpwdPT88ab2PkyJE4efIkNDU14evriz///BOysrKQk5PD+fPncenSJejo6MDV1RVHjx4V9P3bv38/1q5dC1VVVfz4449wcnKqdls2Njb4+eefMW7cOBgaGkJVVRV6enqQl5cv19ba2hrHjh3DDz/8AB0dHfj5+cHPz0/otOeECRMEp78tLS2xevVqAMCCBQuQl5cHHR0ddOvWDYMGDarxfvnU1KlTsXbtWvTr1w9RUVEAgO7duyMjIwNdu3YVnBnQ1taGrq4u9PT00LJlSwBARkYGQkNDhYq7uLi5uSEmJgYtW7aEiooKVFRUsGnTJrFvl4gPTbpMJBKPx0NkZCRatGjBdZQqrVu3Dq9evcKxY8c42X52djY0NDQQGRmJZs2acZJB3E6dOoUzZ87g1KlTXEchjRAdSRLSxPj5+SE3Nxc5OTlYsmQJ2rVrBwsLC65jiY2GhgYWLlzIdQzSSFGRJE3enDlzBKfGPv2ZM2cO19G+yPHjxyt8PzY2NgCAc+fOCW4MioyMxB9//MHZHZj1se8HDhwIBweHOns90rTQ6VZCCCGkEnQkSQghhFSCiiQhhBBSCSqShBBCSCWoSBJCCCGVoCJJCCGEVIKKJCGEEFKJ/wfal+fsEJu3OAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot fit vs. measured, include a 1:1 line for comparison\n", + "fit_plot = plot_fit(dmeas=meas,\n", + " dnorm=norm,\n", + " fit=lfm_sel,\n", + " title='fit_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " save_figs=save_figs,\n", + " coeffs=coeffs\n", + " )\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [J] scatter plot of 'fit_lfm_sel * poa_global# (y) vs. 'measured_lfm_sel * poa_global' (x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [K] Read in complete (G,T) Matrix to fill with MLFM predicted values \n", + "\n", + "Read in a matrix with complete values of \n", + "Irradiance (G=100,200 .. 1100,1200) and module temperature (T=0,5 .. 65,70) \n", + "to predict all MPM values " + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "# read in the complete matrix data\n", + "matr = pd.read_csv(os.path.join(root_dir, 'mlfm_data', 'ref', 'mlfm_matrix.csv'),\n", + " index_col='id')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict performance from MPM fit coefficients \n", + "\n", + "1. generate predicted mpm data \n", + "2. create a pivot table mpm(g,t) \n", + "3. show as a heat map" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('b', array([ 1.05189853, -0.00280426, 0.13154376, -0.05404106, 0.01 ]))" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# show model coefficients\n", + "mpm_sel, coeffs" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
midpoa_globaltemp_modulewind_speedpr_dc
id
1matrix100000.996087
2matrix100500.979860
3matrix1001000.963633
4matrix1001500.947405
5matrix1002000.931178
6matrix1002500.914951
7matrix1003000.898723
8matrix1003500.882496
9matrix1004000.866269
10matrix1004500.850041
\n", + "
" + ], + "text/plain": [ + " mid poa_global temp_module wind_speed pr_dc\n", + "id \n", + "1 matrix 100 0 0 0.996087\n", + "2 matrix 100 5 0 0.979860\n", + "3 matrix 100 10 0 0.963633\n", + "4 matrix 100 15 0 0.947405\n", + "5 matrix 100 20 0 0.931178\n", + "6 matrix 100 25 0 0.914951\n", + "7 matrix 100 30 0 0.898723\n", + "8 matrix 100 35 0 0.882496\n", + "9 matrix 100 40 0 0.866269\n", + "10 matrix 100 45 0 0.850041" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# populate pivot table from predicted mpm data\n", + "if mpm_sel == 'a':\n", + " matr[lfm_sel] = mpm_a_calc(matr, *coeffs) # not mpm_sel\n", + " \n", + "if mpm_sel == 'b':\n", + " matr[lfm_sel] = mpm_b_calc(matr, *coeffs) # not mpm_sel\n", + "\n", + "\n", + "matr.head(10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [L] Plot heatmap of predicted LFM values vs. temp_mod, poa_global bins" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_contourf(df, x_axis, y_axis, z_axis, title,\n", + " vmin=0, vmax=1.2, levels=5,\n", + " save_figs=False):\n", + " \"\"\"Plot filled contour plot Z vs. X and Y bins.\n", + "\n", + " Parameters\n", + " ----------\n", + " df : dataframe\n", + " measured or normalised data containing weather columns\n", + " (poa_global, temp_module and wind_speed).\n", + "\n", + " x_axis : string\n", + " binned x axis e.g. 'poa_global'.\n", + "\n", + " y_axis : string\n", + " binned y axis e.g. 'temp_module'.\n", + "\n", + " z_axis : string\n", + " measured value as a colour surface plot.\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + "\n", + " vmin, vmax : float\n", + " minimum and maximum values for contour chart ###\n", + " \n", + " \"\"\"\n", + " piv = pd.pivot_table(\n", + " df,\n", + " index=y_axis,\n", + " columns=x_axis,\n", + " values=z_axis,\n", + " fill_value=0, # fill empty cells?\n", + " aggfunc=[np.mean], # min, np.sum, len->count\n", + " margins=False, # grand totals\n", + " dropna=True # hide missing rows or columns\n", + " )\n", + "\n", + " piv = piv.clip(vmin, vmax)\n", + "\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " cs = plt.contourf(\n", + " piv,\n", + " cmap='RdYlBu', # or 'nipy_spectral',\n", + " # origin='lower'\n", + " # nchunkint=1,\n", + " levels=levels,\n", + " vmin=vmin,\n", + " vmax=vmax\n", + " )\n", + "\n", + " cbar = fig.colorbar(cs, ax=ax1)\n", + " cbar.ax.set_ylabel(z_axis,\n", + " rotation=90,\n", + " va='bottom',\n", + " labelpad=+30)\n", + "\n", + " plt.title(title)\n", + " # # get_yaxis().set_major_formatter(FormatStrFormatter('%.2f'))\n", + "\n", + " y_ticks = piv.shape[0]\n", + "\n", + " plt.yticks(np.arange(0, y_ticks), rotation=0)\n", + "\n", + " # show only 1 of each y_skip labels\n", + " yax2 = [''] * y_ticks\n", + " y_skip = 2\n", + " y_count = 0\n", + " while y_count < y_ticks:\n", + " if y_count % y_skip == 0:\n", + " yax2[y_count] = piv.index[y_count]\n", + " y_count += 1\n", + "\n", + " ax1.set_yticklabels(yax2)\n", + " ax1.set_ylabel(y_axis)\n", + "\n", + " x_ticks = piv.shape[1]\n", + " plt.xticks(np.arange(0, x_ticks), rotation=90)\n", + "\n", + " # show only 1 of each x_skip labels\n", + " xax2 = [''] * x_ticks\n", + " x_skip = 2\n", + " x_count = 0\n", + " while x_count < x_ticks:\n", + " if x_count % x_skip == 0:\n", + " xax2[x_count] = piv.columns.levels[1][x_count]\n", + " x_count += 1\n", + "\n", + " ax1.set_xticklabels(xax2)\n", + " ax1.set_xlabel(x_axis)\n", + "\n", + " ax1.grid(color='k', linestyle=':', linewidth=1)\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(os.path.join('mlfm_data', 'output', 'contourf_'+ title[:len(title)-4])\n", + " , dpi=300\n", + " ) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "# REMOVE LOW TEMPERATURE DATA WHICH MAY CONTAIN SNOW\n", + "\n", + "matr2 = matr[matr['temp_module'] >= 10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Contour plot of predicted lfm_sel + vs. poa_global and temp_mod. " + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAFlCAYAAAAgfnsKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAACN1ElEQVR4nO2dd1hUx9fHv4gUKSIKCFhAUUQw2DYaW+zR2GKJLTbURIn6Ro2xJRZEY0jsJRYUC/aCiSF2RbEjIqCASJGiUqSoLFXKvH/sb29YWNgF9hZ25/M8+8jeO3e+c/aud/acOTOjRQghoFAoFAqFIijq8N0ACoVCoVAo5aEdNIVCoVAoAoR20BQKhUKhCBDaQVMoFAqFIkBoB02hUCgUigChHTSFQqFQKAKk1nTQbm5uaNWqFd/NqDJ9+vTBt99+W+F7LomPj4eWlhbu3r1bqzUoNUdLSwtHjx7luxkUAcPns4oigbcO+vXr19DS0sKtW7eUKv/TTz/h4cOH7DaKA86dO4fNmzcrXb5Vq1Zwc3Njr0G1kPz8fEyfPh0dO3aErq5uhT/c7ty5gz59+qBBgwZo2LAhpk6dioyMDJkyhYWFWLJkCaysrFCvXj307NkTQUFBzHnpDw55r7lz58rVPXz4MLS0tDBgwIBy5y5evIgOHTpAT08Ptra2cr8LAQEB6N69O/T19WFlZYXly5ejuLiYOZ+cnIxJkybByckJdevWlaujiOTkZHz99ddVvk4Rf//9N7p27QoDAwOYmJigV69eyMrKYs7/+uuv6NWrF+rXrw8tLS28fv26XB1paWmYMWMGrK2tUa9ePbRt2xY7duyQKePi4iL3nhQVFTFljhw5gs6dO8PU1JSpZ9OmTajK0g/JyckYN24c6tevj/r162PChAl4+/at3LIlJSXo37+/3B8/ytgtdP766y98+eWXsLS0pD/wOELwHnRJSQmKi4thZGQEMzMzzvUJISgsLFRZfQ0bNkT9+vVVVp8mUlxcDF1dXcyaNQsTJkyQWyYsLAwDBw5Ely5d8OjRI1y6dAnR0dEYOXKkzAN68eLF8PLywt69exEYGIiWLVtiwIABSElJAQA0a9YMycnJMq8zZ84AgFztiIgILF++HJ9//nm5c48fP8ZXX32FwYMHIyQkBG5ubvj555+xZ88epsyrV68wcOBAtGnTBkFBQdi9ezf27t2LX375hSlTUFCAhg0b4scff6xW5wwAlpaW0NfXr9a1FeHl5YWpU6di0qRJCAoKQkBAAH744Qdoa2szZQoKCjBixAgZe8ri4uKCwMBAnDlzBhEREVi4cCEWLlyIEydOyJTr1atXuXtTt25d5ryFhQVWrlyJ+/fvIzw8HMuWLcOqVauwfft2pewpKSnBsGHDEBcXh2vXruHq1auIiooq9x2S4u7uDgMDA7l1KWN3Vfj48aNK6qkK2dnZ6NKlC3bv3s25tsZCFNC7d28yY8YM8ssvvxBzc3NiYmJCfv75Z1JcXEzWrFlDLCwsiJmZGfn5559lrjt27Bjp0qULqV+/PmnUqBEZMmQIefHiBXMegMzLxsaGEELI6tWriZ2dHTl58iRp06YN0dbWJs+ePWOOE0JISUkJGTJkCBGJROTjx4+EEEKKi4tJ//79Sffu3UlhYaFcWw4ePEi0tbXJtWvXiKOjI9HT0yOffvopCQoKKlfGz8+PdOjQgejo6BBfX19SWFhIVq9eTWxtbYmenh5xdHQke/bskak/Pj6eDBo0iOjr65NmzZqR7du3k969e5OZM2fKfJ6l3xNCyM6dO0nbtm2Jrq4uMTc3J2PGjGHKlv2c4uLiCCGEREdHk9GjRxMTExPSoEEDMnDgQPL06VOZek+dOkXs7OyInp4e6datGzl//jwBQO7cuVPpPS99j7Zv307GjRtHDAwMSLNmzciZM2fI+/fvyTfffEOMjIxIixYtyNmzZ5lr4uLiCADi7e1N+vXrR/T19YmtrS05evSoUprR0dHE2NiYbN68mTkWERFBDAwMyK5du8qVL/29KM0vv/xC2rRpI3PsyZMnBADx8/MjhBCSlZVF9PT0yN69e5kyRUVFpHHjxmT16tUVtvGbb74hjo6O5Y7n5OQQJycncvz4cTJt2jTSv39/mfMTJ04k3bp1kzn2008/EVtbW+b98uXLSZMmTUhxcTFzbOfOncTAwIBkZ2eX05SnowwAyJEjR5j3YrGY/PDDD8Ta2prUq1ePdOjQgfj4+Mhck5qaSlxcXIiFhQXR09Mj9vb2xMvLixBCyIcPH4ixsXG5/xMVcfPmTQKAvHr1qtw5ExMTsn37dpljnTp1IgsWLGDeV9fukSNHkpEjRypV9sqVKwQAiYyMZI6FhYURAOTmzZsyZf38/EizZs1Ienp6uc+2NJXZXRnS5/CKFSuIpaUlMTMzI4Qofs5K/z+eOnWKDBs2jNSrV4+0aNGCeHt7y9SvzLOrNBXZ2Lt3bzJ9+nSydOlS0qhRI2JsbExmzpxJcnNzZcpV9MyriMePH5NBgwYRY2NjYmhoSD799FPy8OFDQgghr169IqNHjyaNGjUi+vr6pEWLFuSPP/4ghBDy888/E3t7+3L1ubq6kq5du1aqKQSU8qDPnj2LwsJC3L17F5s3b8b69esxbNgwZGdn486dO9i4cSPWr1+PS5cuMdcUFBRg5cqVePLkCa5duwZtbW0MHTqU+eX35MkTAICPjw+Sk5MRGBjIXJuUlIRdu3bh0KFDiIiIgI2NjUx7tLS0cOjQISQlJWH58uUAgN9++w1PnjzBiRMnZH5Fl6WkpARLlizBrl278OjRI1hYWGDo0KHIzc0tV2bTpk2IjIxE165d8e233+LcuXPYu3cvnj9/jlWrVmHp0qXw8vKS/tDBqFGjkJGRgVu3buGff/7BP//8w9hZEatXr8bSpUsxZ84cPHv2DJcvX0aHDh0ASMLhtra2WLRoEeMhNGvWDKmpqejZsycsLCxw584dPHz4EG3atEGfPn2QlpYGAAgODsaECRMwduxYhIaG4qeffsL8+fMrbYs8fv31VwwZMgShoaEYNmwYpk6digkTJmDgwIEIDg7G0KFD5YaOly5dihkzZiAkJASTJk3ClClT8PjxY4V6rVq1wu7du7Fs2TI8efIE+fn5GD9+PAYPHozvv/9e6Xbn5+eX8xDr1asHALh9+zYAiUdbUFCAwYMHM2W0tbUxcODACsfQ09PT4ePjg9mzZ5c7N3fuXHTt2hUTJ06Ue+29e/dktABg8ODBiI+PZ0Ke9+7dwxdffIE6derIlMnNzUVwcLAis6sFIQTDhw9HaGgoTp06hbCwMHz//feYMGECbty4AQDIy8tD7969ERoaimPHjiEiIgI7duxgPMarV69CLBajXr16EIlEaNy4Mfr06YM7d+5UuT09e/aEj48PUlNTQQiBn58fXrx4gS+//FKm3KNHj2BpaYkWLVpgzJgxCA8Pr9TGR48e4d69e+jbt69S7bh37x5atGiBNm3aMMecnJzQtGlTme9HamoqpkyZAm9vbzRq1KiK1irP6dOnkZaWhhs3bsDPzw+A4ueslGXLlmHKlCl4+vQpxo0bh+nTpyM6OhpA9Z9dFXH27FlkZGTgzp07OHbsGP755x8sXbqUOV/ZM08e4eHh+Pzzz2Fqago/Pz8EBwdj4cKFKCkpAQDMmTMHHz58wPXr1/H8+XN4eXmhadOmAIBp06YhKioKDx48YOr7+PEjTp8+jWnTplXLPk5R1IP37t2btG/fXuaYo6MjadeuncwxZ2dnsmjRogrrycjIIADI3bt3CSGSXz2Q80t09erVREtLiyQkJJQ7XtZT8vPzI9ra2sTNzY3UrVu33C/+shw8eJAAINevX2eOZWZmEkNDQ7Jv3z6ZMrdv32bKvHz5kmhpaZHnz5/L1LdmzRrms7l27RoBIPPr9e3bt0RfX79CDzo7O5vo6+uTDRs2VNhmOzu7ct7c6tWry/36KykpIS1btiRbtmwhhBAyadKkct7ajh07quxBz58/X8YeAGTevHnMsczMTAKA+Pr6EkL++8W+YsUKmbq6detGJk2apJQuIYS4uLiQ1q1bExcXF2JjY0PevXsnt1xFHvT169cJALJnzx7y8eNHkp6eTkaOHEkAkFmzZhFCJN4HAFJQUCBz7U8//STXQyaEkA0bNpB69eqRzMxMmeOHDx8mDg4OjJcrz8PT0dGR8dYJ+c8je/ToESGEkNatW5Ply5fLlMnOziYAyOnTp8u1RxUe9M2bN4menh55//69TJnp06eTr776ihBCyP79+4menl6Fnp+HhwcBQJo2bUpOnTpFgoKCyLx584iOjg4JCwsrV74yTzIrK4uMGjWKACB169Ylurq6jKcu5cSJE+T8+fPk2bNn5Nq1a2TgwIGkXr165NmzZzLl3r9/TwwNDYmOjg6pU6cOWbNmjdKf0XfffVfu/xAhhIhEIjJnzhxCyH+Ru5UrVzLnwZIH3bp1a5nIijzKPmel/x83bdrElCksLCSGhoZMtEPZZ1dpKrKxd+/exMbGhhQVFTHH9u7dS3R1dUl2drZSz7yyTJ48mTg7O1dou7Ozc6URr65duxJXV1fmvY+PD9HV1SUZGRlKt4EvKnY1S9G+fXuZ95aWlrC0tCx3rHTyREhICNasWYOQkBCkp6czYzYJCQno0aNHpXqNGzdG8+bNFbarb9++WLRoEdzc3ODq6orRo0crYw66devG/G1qaoq2bdsiIiJCpsynn37K/P348WMQQiASiWTKFBUVMeNrERERMDMzg729PXPe3Nxc5td3WcLDw5Gfn48vvvhCqXZLCQwMRFBQEIyMjGSO5+XlMb+KIyIi0L9/f5nzPXv2rJIOIHvvzc3Noa2tDWdnZ+aYqakpdHV1yyXOlP6MAaBHjx6MN6YMO3fuxCeffAJvb2/cvXsXDRo0qFK7+/fvjx07dmD58uWYO3cu6tatiwULFqBx48YyY6IVoaWlVe4YIQSenp4YN24cTE1NmeMvXrzAwoUL4efnB0NDwyq1szK9sucqK1MTAgMD8fHjRzRp0kTm+MePH9G6dWsAQFBQEBwdHRnPpCzSJLbly5dj3LhxAIBOnTrh1q1b2Lt3r9LjvoBkxsbLly9x6dIlWFtb49atW/i///s/NG7cGEOHDgUgO/7frl07fP7553B0dMT27dvh6enJnDM2NkZISAhyc3Nx//59LF++HNbW1jXOTpbei/Xr1yM/Px+rV6+uUX3K0LlzZ5nICqD8c7a0h1q3bl00btwYqampAKr37KqMLl26yPwf69GjBz5+/IjY2Fjk5+dX+ZkXFBSEwYMHl7NdyoIFCzB79mxcunQJffr0wdChQ2VyQKZOnYoVK1Zg27Zt0NXVxZEjRzB8+HA0bNiwWvZxiVIdtI6Ojsx7LS0tucekIYfc3Fx88cUX6NmzJw4cOMB05k5OTkolNyj7kCsuLsa9e/egra2NmJgYEEKq9RAjZRI+tLW1ZcKjUrvu379fLglEqldd7dJ1KIs0W3Tnzp3lzpmYmNS4PaUpe5/lHSt97yui7GesiJiYGCQlJUFLSwsxMTHlOnxlmDdvHubOnYuUlBTUr18fhBBs2LABdnZ2AAArKysAQEpKiswPwtTU1HI/QAHAz88P0dHR8Pb2ljn+4MEDZGZmonPnzswx6edRt25d+Pv7o0ePHrCysmKSz0prAWD05JWRvpfXJlVQUlICExMTmWEmKbq6uszflX2frK2tAQCOjo4yxx0dHZGQkKB0W2JjY7F582Y8fPgQXbt2BQA4OzsjNDQUv/32G9NBy2unSCRCfHy8zPE6deowWf7Ozs549+4dVqxYoVQHbWVlhevXr5c7Xvr7cf36dTx48AB6enoyZaZNm4Z169YhMjJSoY6ylH0uVuU5W/o+ArL/Z1X1rKgIef/3q6pXWfnp06dj8ODBuHz5Mm7evIkvv/wSo0aNYrLMJ0yYgIULF8LX1xd9+/bFxYsXmURPocNKFvfz58+RlpaGX3/9FX379kXbtm3x7t07mRsl/cKUnj5SVdzc3BAVFYV79+4hKCgIv//+u1LXlZ6u9f79e0RGRqJt27YVlpc+eBMTE9GqVSuZl/Rh7+TkhLS0NMaDBSTjlVFRURXW6+joCH19fVy5cqXCMrq6uuU+I5FIhPDwcDRp0qRce8zNzZn23Lt3T+a6su/ZpOyUuAcPHlT6GZcmNzcXEyZMwNdff40tW7Zgzpw5Mp9rVdDS0oKVlRUMDQ1x8uRJAMBXX30FQHJf9fT0ZD7/kpISXL9+XW60Ye/evXB2dsZnn30mc3zkyJF49uwZQkJCmNeIESPQtWtXhISEoGPHjgAknkTZe3358mXY2NgwnmmPHj1w7do1mR88ly9fhoGBAVOPqhGJRHj//j3y8/PLfZ+kP1w6d+6M8PDwCqcH9erVC4AkmlCaFy9ewNbWVum2SHNBynpL2tralf7IKy4uxtOnT9GsWbNK6y8pKUFBQYFSbenRowfi4uJkvnvPnz/Hq1evmO/HwYMHERoaKnPvAUnuhq+vr1I61UWZ56wyVOfZVRmBgYEyz6wHDx5AV1cXdnZ2Sj3zytK5c2dcv369UifAysoK06dPh7e3N7y8vHDs2DFmel/Dhg0xbNgweHt74+TJkzAxMSmXzyBYFMXA5WXy9e/fn0ybNk3m2KBBg5gxxrS0NKKnp0e+//57EhMTQ65fv05EIhHR0tIiBw8eJIRIxm6MjIzIkiVLSHJyMjOmV9GYYtnjt27dItra2uTixYuEEELOnj1LdHR0yIMHDyq05eDBg0RLS4t07tyZ+Pv7k6dPn5Lhw4cTCwsLZuxQmsVdlhkzZhBLS0vi7e1NoqOjSUhICPHy8iIeHh6EEMkYcPv27UmXLl1IQEAACQ4OJl988QWTxVjR5/nLL78QQ0NDsnPnTvLixQsSEhJC1q9fz5wfMmQI6du3L0lISCBpaWmkuLiYpKSkECsrK/LFF1+Q27dvk7i4OHLnzh3y888/k3v37hFCJFmPWlpa5OeffyYvXrwg586dIy1atKjyGHTZcSZtbW3mHkrR09NjxvClY17W1tbk2LFj5MWLF2TlypVES0uLGWdVxIwZM0irVq1IVlYWIYSQ4cOHk06dOsmMFYeHh5Pg4GAye/Zs0qxZMxIcHEyCg4Nlyvzxxx8kJCSEPH/+nGzdupXo6+uXGxufP38+MTMzI76+viQsLIxMmzaNNGjQgCQlJcmUS01NJTo6OuTPP/9UygZ5Y8OPHj0idevWJT///DN5/vw5OXz4MNHX1ye7d+9myiQmJhJjY2MyY8YMEhYWRs6fP08aNmxIli5dKlOX1N7hw4eTrl27Mu+VpfS9LSkpIQMGDCCtW7cm586dI7GxseTx48dk+/btxNPTkxAiyVC3t7cnHTt2JNeuXSMvX74k169fJydPnmTqHDduHLG2tiYXLlwgUVFRZNmyZURPT49EREQwZRISEkhwcDDZt28fAUCuXLlCgoODmfHAwsJCYm9vT7p06ULu3r1LXr58Sby8vIienh7ZuHEjIUSScb5w4UJy9+5dEhcXRwICAsjXX39N9PT0ZGZkrFq1ily7do3ExsaSyMhI4unpSYyNjckPP/yg1GdUXFxMOnXqxPyffvjwIencuTP57LPPSElJiVKfrbJ2K0Lec1iZ56z0/2PZ//Olc1uUfXZlZGQw3zMA5NdffyXBwcEy+UK9e/cmxsbGZPbs2SQiIoL8+++/pHHjxmTu3LlMGUXPvGXLlpF+/fox758+fUrq1atHJkyYQAIDA0lMTAw5ffo0uX//PiGEkLlz55ILFy6QmJgYEhYWRsaOHUuaNWsmc4/Onz9PdHR0iJOTk9L3Xwiw0kETQsiZM2dIq1atiJ6eHunQoQPToZZ+uB8+fJjY2tqSunXrlptmVZbSxzMyMkjTpk3Jjz/+KFNm1qxZxNbWtlyyixRp53vlyhXi4OBAdHV1iUgkIoGBgeXKlKWoqIj8/vvvpE2bNkRHR4c0atSIfP755zKJO3FxcWTgwIFET0+PNGnShGzdulXhNKuSkhKydetWYm9vT3R0dIiFhQX5+uuvmfOBgYGkU6dORF9fX2aaVXx8PPnmm2+ImZkZ0dXVJc2bNyeTJk0iL1++ZK49ceIEadmyJdHV1SVdunQhf//9N2cdtLe3N+nduzfR09MjNjY25aZ1VMSpU6eIrq4uefz4MXMsPT2dWFtbk4ULFzLHbGxsyk1BK/35EELIwIEDSYMGDYiuri755JNPmM6mNB8/fiSLFy8mjRs3Jnp6eqR79+4y3wcpv/32GzE0NCQfPnxQyo6Kkrf+/fdf4uzszNyz0sk7Uh48eEC6detG9PT0SOPGjcmyZctkkm4IKT9NUfpSlrL3Njc3lyxdupTY2toSHR0d0rhxYzJo0CBy48YNpkxycjKZMmUKadSoEdHT0yNt2rSR+S7k5OSQefPmEXNzc2JkZER69uzJJCuV/lzktbt0PbGxsWT8+PHE0tKS6OvrkzZt2pA//viDSRLKzc0lgwYNIo0bNyY6OjrE2tqaDB8+XKZzJoSQBQsWEDs7O6Kvr08aNGhAOnXqRHbu3Fnus6yMpKQk8vXXXxMjIyNibGxMxo0bR1JTU6v02Sprd2VUNOVJ0XNWmQ5aWk7Rs0uaQFv2VbovkE6z+umnn0jDhg2JkZERmT59OsnJyWHKKHrmTZs2jekPpAQEBJD+/fsTAwMDYmRkxPyYIISQOXPmkNatWxN9fX3SsGFDMmTIkHKJiR8/fiTm5uYEgMyzRehoEVLFeEgt5tChQ/j2229lVhuiUCgUimro06cPWrVqhf379/PdFLVA8CuJUSgUCoWiiahNB21kZCTz0tbWxv/93/8x52/cuMGsady3b98qZZaqI66uruU+M+nLycmJNd3169dXqFt22hilenz55ZcVfr61JjmGAyr7Hq5fv56zdhw7dqzStiQmJnLWFqGyc+dOiEQi6OnpwcXFpdKyW7ZsgaWlJUxMTDBjxgyZpMA+ffpAX1+f+WyrO5WMK9QyxJ2Tk4PGjRvj4sWL+Pzzz5Geng47Ozvs378fw4cPx8qVK5kVuDSVt2/fymxiUBodHZ1yq7episzMTGRmZlZ4vjbuWCY03rx5g7y8PLnn6tWrV26+s6YSExNT4bmGDRtyNk9WLBYz0+3kYWtrW+nqiJrAuXPnUKdOHVy5cgV5eXk4dOiQ3HJXrlzB1KlT4efnB2tra4waNQqfffYZPDw8AEg66MmTJ9eaXbrU8q6fPXsWFhYWzNSPc+fOwcnJCWPHjgUgmZ5lZmaGyMhIODg48NlU3rCwsICFhQXnulw++DQV2gErh1B+DBobG8PY2JjvZgga6SJUjx8/rnQnsMOHD2PmzJlMFHDlypWYNGkS00HXNtQmxF2aw4cPY+rUqczk9vDwcJkVsQwNDWFnZ1fp2r0UCoVCqV2Ufda3b98eqampMnsFLF++HGZmZujRo4fS2x3zhdp50ImJifD392c2sQAk26RJF/CQYmJiArFYLLcOT09PZrnA4KAgWNTThaWhLp5n5qClST0UlwCv8grQ1qo+XmfmQqduHTSur49nr9/Dwao+8gtLkPw+D/aWxkjMyIGBbl2YGeshJPEdPmnaANn5RUjLLkArCyPEpeXAxEAHDQ118SThHazMjKCvWxcfsvPRwtoUMa8zYdbAAMYGunga8xYd7S2R9j4HufmFsLFsgBeJGbD+3zXP49Ph3KoxUjOz8bGoBM0s6uN5fBpsLBugTh0txLzKRDs7CySlS+y2NjNGSFQKHGzNUFJCkJDyHm1tzfHqbRZ069ZB44ZGeBqTira2Zsj/WISk9Gy0ad4ICSnvYaCvA/MGhgiOSoFzKwuIC4H0jCy0amGJuIS3MKlvgIamRggKjUPn9i2Q+S4bH7Jy0cLGAmGRr9DUuhGMjfTxNDwRHT+xRVpGFnLzPsKmqRlexCTD2rIB9PV08DwqCc5OzZGa9gEfC4vQzLoRnke9gU0zM9SpUwcxcSlo59AMSSnvJDZZmiIs8hVatbBESUkJEl6lw6S+AYpLSqCrUxeNzU3wNDwRbe2tkV9QiKSU92jTygoJr9NhUE8X5o3qI/hZPJydmkOcna+0TTFxKTBrVJ+xqbG5CXR0tFmzqa19E7xKymBsCn4Wj3YOTVm1qfR90qmrDXF2frVsInXqwsrKAhHhMbBr1QzFxSVITEiGQ9uWePM6BTo6OrBo3AjPnkXBwaEFCgo+IjkpDUbGBigsLIKBQT2YmZkiNCQSnzi3hlici/T0d7Cza474uNcwMTGGaUMTBD+JQMdOjniX+QEfPohh26IpYmMTYWZmCmNjAzx7Go32HRyQnv4Oubl5aN7cGtFR8bCyNoeeni4iwmPRvoMD3qZmoLCwEE2aWiLy+Us0t7GCtnYdxMa8gqNTKyQnS5a5rY5Nre1tkZiYxNgUEvwczu3tWbMpMjIOn3xiz9hUXKyF9PR0lT1/GzR2RlGB/OdqRdg0MWA2sgGAWbNmYdasWdXSz87OZlZTBP5bWVEsFqNRo0b4/fff4ejoCF1dXZw8eRLDhw9HSEgIs+CU0FC7Dtrb2xs9e/ZEixYtmGNGRkblxluzsrIqDCuV/oK0aWCIgK8/LVfG8DMrFbZaQt32rRD0PBmd26q+7opQiZ5d1YYJgkLi0LlDC8UFVQTXenxoCk0vv347lWs+CYpAp86OigvWUj0+NHt9NlOl9RUViOHcZ02Vrvn4ertSO90pQ9lnvfRv6bNeunwsIFmO9cSJE7h48aJMQrGQUMsOetmyZTLHnJyccPjwYeZ9Tk4OYmNjlcpW1pYzCMBG5yzF2EBXcSGh6FWxY2Y0jfQVF1IhXOvxocm1nq6lM/Lrs5NIWBHGxtXbiKS26PGlqU44OTkhNDSU2bAlNDQUjRs3rnAbUC0trSovjcolajUGff/+fbx584ZJBpMyatQohIWFwcfHB/n5+XB3d4ezs7NSCWIvP8jPhlU1ddtLElaG/3iKEz0p1darZucMAMO/2VTta2uDHh+abOrl129X7jVmJPceB9eammBjbaGoqAj5+fkoLi5GcXEx8vPz5S44NXXqVHh5eSEiIgLv3r3DunXrmGlZ79+/x5UrV5hrjx07htu3b2PQoEEcW6M8ajXNavbs2cjNzcWRI0fKnbt+/TrmzZuHhIQEdO3aFYcOHVJqEf+O5sa4+dV/uxSx5T1LO+haQQ06Z4pwYSMsTRE2vT6bqbLwMgAYNWjBSojbzc0Na9bI1rt69WrMmDEDjo6OiIiIYDZ22bx5M37//Xfk5eVhzJgx2LNnD/T09JCWloYhQ4YgMjIS2tracHBwwNq1azFw4MCqGckhauVB7927V27nDAADBgxAZGQk8vLycOvWLaV32EnJUbw9Zk0p3Tm7efqzrleaKunZOaikc3b73afGdQhZjw/NqurJ84qrwjr33VUqrwq41tQEG2sLbm5uIJK9I5iXm5sbmjdvjuzsbJntYn/88UekpqYiKysLBw8eZLYCNTc3R2BgIMRiMd6/f4+HDx8KunMG1HAMmk3YHHsWPNRrrrVQz5hCqZ2oVYibDUqHuNnK3BY0tGOuNdCOmFJVakuIW1NRqxA3GzzPzAHAnffcZswuTnSU0mOpc27T5SdW6hWKHleapcPT9p/9zLpeaZwdR3Cqx4emJthIETY0xK2Alib1FBeqJvK8Z9/N41nTk0eFeix6zr7HF7FWtxD02NKszEP2+XuHyvUqg2s9PjQ1wUaKsKEdtAKKS7gdexbnsp+UVqkeByFtcXY+6xp86qlKsyoha7E4p8Z6VYFrPT40NcFGirChIW4FvGLp4V7R2PPs3y6wolcRMnocjTfP/tFLcaFarFddzZpkVc/7fm2V9WoC13p8aGqCjRRhQ5PEFNDZtiEerlD9RHZBJYfRRDBeoEldFL6hSWLChnrQCnidmavyOivrnBdtvaZyvcpYdCiIUz0AWLTymFrrVaZZXQ9ZEcsWc7tyGdd6fGhqgo0UYUPHoBWgU5fb3zDW5hzuC2vnAGvLl9zp/Q9rS1O11iutyZWXbGVtrrhQLdbjQ1MTbKQIGxriVoCqQ9yCCW3TsDYr0LA1pTZBQ9zChoa4FfDs9XtO9ZoM2cq+SKnOuYnjPPb1ysC1Jtt68sLWLZtzu4SguuvxoakJNlKEDQ1xK8DBqr7K6lLGew48rNr9WctRxnMOvMF91ijXmmzoKfKU7z7kdtxb3fX40NQEGynChnrQCsgvLOFULyoxg73K5YS1o2KT2dOrAK41VamnbIJXTHSCyjSVQd31+NDUBBspwoZ20ApIfq+a/aCVHXtes++2SvSUZc0f5zjV40OzpnrVybz+1X1PjTSrirrr8aGpCTZShA1NElOAqpLEeE8Oo0lhVYIme1E0AZokJmyoB62AxIyaL71Xlc551noWVhKrpHOetZD7Vba41lRWT5VzlOe6ute4DqrHr6Ym2EgRNrSDloOnpydEIhFEIhGyC4rh/s8zAIDjLxcQlZKFJwmZ6Lr2CgBgyelgbLkaCQCw+elvJL3Pg/+LVAzYcAMA8L33I3j+9QQAUL/PHxDnFMD3ThRG/HgKADBpxV84fjkMAFCnyzqI2lrh+OUwTFrxFwBgxI+n4HsnCuKcAtTv84ekfX89YTryvq7euBUUj6Q0MZMBvunYQ2bBE9F3RxEUEoeomGRmhyW3333g9rsPAOCfS0GIiklGUEgcRP1WAJAssrHpz4sAJBnQScnvcOtuBPqOWAdA0uF5HvaT2NT8W4jFefC9/AQjvpEssjBp1p84fva+xKZGkwEAx8/ex6RZfwIAAh7HwPfyE4jFeajf/FuJTYf9mI6074h1uHU3AknJ75gM7E1/XmQW/xD1W1GpTW26/CRjk6hDiwpt6j1qC/Lrt8PMJefgte8sAMDCtDvE4hxc+NcfY0b+AABwmbIMp05IrjfQ6QAAOHXiIlymLAMAjBn5Ay786w+xOAcWpt3RqbMjvPadZR64g/rPxG3/QCQlvWUydbdt8WYWpujeZSKeBEUgOiqB2dFonfturHPfDUCyy1F0VAKeBEWge5eJACSLWmzb4g0A8Dl7FUlJb3HbPxCD+ksSDee6uqvUJgCMTZ06O7JuU8vmA2Vs6tTZkVWbyt4nn7NXWbep7H06fvRfVm2Sd58owoWGuBVQ0xA3r6FtGtaWCw1fUygSaIhb2FAPWgEhie841ZN6yTVGyc5Z6sFyCdeaUj02ltisCKknwxXqrseHpibYSBE2dB60Aj5p2qDa11bHe35zYX619Riq4Dm/Ced+/1kuNfPrt0PsqxvINzbkTBMAYhO5XVNd3fX40NQEGynChnrQCsjOL+JU79aTGs6DrGJY+9a95zXTqwZcaJb2lm/7cx8+41pT3fX40NQEGynChnbQCkjLLqjWddUde973V3C1rgNQrTHnfd43q69XTdjUlBfGPrDfhzW9iuBaU931+NDUBBtVjY6hDixF1lV6USqGJokpoLpJYpwnh2l4QhhN/KJQqo6qk8RMm9ij7/e7qnRN4t/LaJJYBVAPWgFxaVWfB12Tzlk6vapK1KBzlk594hJVaiqT+CWdjsIlXGuqux4fmppgI0XY0CQxBZgY6HCqN7Rn66pdUEPPeegXHWt0PV+aVfGYvxzyeY31qgrXmuqux4emJthIETY0xK2Aqoa4OQ1ta2BYm4ayKRTVQUPcwoaGuBXwJIHbedB1uqxTrqCKOmfpSl9cUlXNmi7BKV19iUu41lR3PT40NcFGirChIW4FdLIxVbqsKrznkkcrFBdSoedcknFUZXWpWlNV3nJuYYhK6hGyprrr8aGpCTZShA31oBWQmfORUz3putyc6f1vzWwhaap6xS/pOsZcwrWmuuvxoakJNlKEDe2gFfAht1Cpcqoae75wN7ryAioed75wtQbzrlWsydZSnJcucrvHNh+a6q7Hh6Ym2EgRNjRJTAHKJolxkhympklhNPGLQuEHmiQmbKgHrYCYt9kKy6iyc5ZuQ1kOljpn6RaRXCLV5GrzCum2fVzCtaa66/GhqQk2UoQN7aAVYG6kV+l5VXvO342SM0eYRc/5u6l9Wau7Iqa5unDqNc/4dgxnWnxpqrseH5qaYCNF2NAsbgUY6XP7EfXpZCN7gOWwdp8ebVmtvzTSTvnz3lVfna0mfN5bxKkeH5rqrseHpibYSBE21INWwLPX7ys8x8a4c5Oh2/57w8GYcxOn/2NdA5AdZ7ZrPpATTb70+NBUdz0+NDXBRoqwUbsO+uTJk2jbti0MDQ1hZ2eHO3fuAABu3LgBBwcHGBgYoG/fvkhIUG5bxw7NlZ8HrQqybi2R/MFRQlhW4n7WNcqGs9++43ZqF9d6fGiqux4fmppgI0XYqFUHfe3aNSxduhQHDx6EWCzG7du30bJlS6Snp2P06NFYu3YtMjMzIRKJMH78eKXqTBfL326Sraxtz7+ecJqt7XnYj7W6K0oC89p3ljVNeXCtx4emuuvxoakJNlKEjVp10KtXr8aqVavw2WefoU6dOmjSpAmaNGmCc+fOwcnJCWPHjoW+vj7c3NwQGhqKyMhIhXXmfizioOX/8fhNHrd6IXGs1FtZEtiToAhWNIWix4emuuvxoVnbbUzMtlf4oggbtZkHXVxcjHr16sHd3R379+9Hfn4+Ro4ciQ0bNmDZsmX4+PEjdu/ezZRv164d1qxZgzFjKs+alDcPmrU5z2owz5nOaaZoAurSuU0a0IvOgxYwauNBp6amorCwEGfPnsWdO3cQEhKC4OBgrFu3DtnZ2TAxMZEpb2JiArFYLLcuT09PiEQiiEQihL56D/d/ngEAHH+5gKiULAQ9T4ZoqmTsdtHWa9h07CEAoMmQrUhKE+NWUDz6unoDAGatvyAJWwOo3+cPiHMK4HsnipnvPGnFX8zynnUaTUbfEetw/Ox9Zs/kEd9sgu/lJxCL81C/+beS9h32w6yFXgCAviPW4dbdCCQlv0MTx3kAgE1/XsSilccAAKJ+KxAUEoeomGS06fITAMDtdx+4/e4DADBsMh1RMckIComDqJ9kHfBFK49h05+SJQebOM5DUvI73Lobgb4jJBt5zFroxYTG6zf/FmJxHnwvP8HQqZ4AJHvaSpcslC7+f+rERWav26aNe+PCv/4Qi3NgYdodgCS0N9fVHQAwqP9M3PYPRFLSW7T8X9LMti3eWLZYMn+6e5eJeBIUgeioBDg7jgAArHPfjXXukh9gzo4jEB2VgCdBEejeZSIG9Z+JZYs3YdsWyT1p2XwgkpLe4rZ/IAb1nwkAmOvqzoQXLUy7QyzOwYV//Zl5qYpsGjPyBxmbBvWfyapNAGRsamD4Kes2lb5Pg/rPZN2msvdpUP+ZKrHp0JloRCRbwcy0JxKz7bFh5x1M+3YbErPt0bvP/+HM5RQERhvBxKALErPt4eZxCXMWHEBitj1EIhdcvJuNuJhoDBI5AwB2eKzDDg/J/41BImfExUQjLOQJRveRfGYeK5bhwE5J8mevti2RmpyEgLu3MWWY5If/ygVzceqQ5P+zYyNjZIvF8Lt0Aa4TJM7Dom9d4HtG8rxwMDUAAPieOYVF37oAAFwnjIHfpQvIFovRqZmFxOZDXli5YC4AYMqwQQi4exupyUno1bYlAODAzm3wWEH3nhY6auNBv3v3Dg0bNsShQ4cwbdo0AICPjw/WrVuHzz//HIWFhdi1679fdp988gnc3NwUetD2lvURvm4o855t7/nW3Qj06enIjoYcVKFXVa/5tn8gPu/9aY00hazHh6a661WkyaYnG3D3Nrr25HZ/Zq41qQctbNRmHrSpqSmaNm0KLS2tcuecnJxw+PBh5n1OTg5iY2Ph5OSksF59HW6DDPZ2VrVKrzoh7VatbRQXUiFc6/GhqU56FXW69ayNkJhtzZpuWWztONzbnUdNinBRmxA3AEyfPh07duzA27dv8e7dO2zduhXDhg3DqFGjEBYWBh8fH+Tn58Pd3R3Ozs5wcFA85huZnMX8zcXY86f9V7KjUQHV1avJMp09P5tUreuqC9d6fGjWJr3qJi593a9ntTWrA9d6fGlShIvaeNAAsHLlSqSnp8Pe3h76+voYN24cfvnlF+jr68PHxwfz5s3D5MmT0bVrV5w8eVKpOj9p2oDdRpfhTcROwevVNBHsZeK1Gl0vdD0+NIWix2bI+c7zl6zVLQQ9vjQpwkWtPGgdHR3s2rUL79+/R0pKCrZv3w59fX0AwIABAxAZGYm8vDzcunULtra2StWZmpUPgLvMbWlyFldURU9Vm1tIk4C4gms9PjS51JMmTnE9bUeaaMUVXOvxpUkRLmrVQbNBYVEJp3pJKe8EqafK6VPJSWkqq0uIenxosqFXWQj6bUqyyvUUwbWmJthYW8jMzMSoUaNgaGgIGxsbHD9+XG65goICLFy4ENbW1jA1NcWcOXNQWFjInH/+/Dn69esHExMTtGrVCn/99RdXJlQLtcniZovOtg3x+MxcdiqvBfOe6bxm9Udd5vRSqk5tyeKeOHEiSkpK4OXlhZCQEAwdOhT3798vl+i7Zs0aXL9+HefPn0dxcTGGDx+OQYMGYc2aNSgqKoKjoyNcXV0xf/58+Pv7Y/jw4QgODoa9vTD/D1APWgHPSyWJcYF0LrIQ9NjqnKVzXrmCaz0+NJXRU+VqUtI5vlzCtaYm2FgbyMnJgY+PD9auXQsjIyP07NkTI0aMwJEjR8qV9fX1xQ8//ICGDRvC3NwcP/zwAw4cOAAAiIyMRFJSEhYuXAhtbW3069cPPXr0kFuPUFCrJDE2sLVmabOMCrznvZtnsqNXARXpsek579zNbaY613p8aJbW48Ijdt/KbTIjH5qaYKOq0TfQQdv2VZu6GbQvDSLRf9tszpo1C7NmzWLeR0VFQVtbW8bLbd++Pfz9/cvVRQhB6aAwIQSvX7/Ghw8fIC9YTAhBWFhYldrLJbSDVkCdOuXnVbOJsZE+r3pchLSNjQ1Z1+BTj0tNaWcs1tZCYnZrTjQBwNDImDMtvjQ1wUYhYG5uXmmIuyorQX755ZfYtm0b+vbti+LiYmzfvh0AkJubCwcHB1hYWGDDhg1YuHAhbt68CX9/f/Tt21e1BqkQGuJWQMyrTNVXWsnY8/BvNqlerxJK63E13jxmJDd7UPOlx6ZmReFp6bKQXMG1Hh+ammBjbcDIyAhZWbJDjVlZWTA2Lv9j5pdffkHHjh3RoUMHdO/eHSNHjoSOjg4sLCygo6ODv//+GxcuXIClpSU2bdqEcePGoWnTplyZUmVokpgCRG2tEeit4rCzwJLDaCKYcKEJXBQ2UXWSmFVrJ8zYfLpK11xZM63SNuTk5MDU1BTh4eFo3VoSJZo6dSqsra3h4eFRad2enp44ePAgHjx4IPd89+7dMW3aNMyePbtKbeYK6kErICld/oYa1UZB5yzdxIIrVmy9w6keAGazBHXVq4lmdRO4pJs1cAXXenxoaoKNtQFDQ0OMHj0aq1atQk5ODu7du4fz589jypQp5cq+efMGSUlJIITg4cOHWLt2LdasWcOcf/r0KfLz85Gbm4uNGzciOTkZLi4uHFpTNWgHrcFQz5lf6P68FIpy7Nq1C3l5ebCwsMDEiROxe/duODk5ITExEUZGRkhMTAQAxMbGonv37jA0NMS0adPg4eGBL774gqnnyJEjsLKygoWFBW7cuIFr165BT0+PL7MUQkPcClBpiFtAoW3aOXMP7YApQqM2hLg1GepBKyAs9i2netI9m9mkdOcs3aeXS7jW5MtGLr1j6d7EXMG1Hh+ammAjRdjQaVYKaNWsoWoqUtJ79j2+SDV6FVDWc/b5ewerevLgWpNLPWlHvOO4L2eaALDnJLe5C1zr8aGpCTZShA3toBVQUsLtCIA4O5+1uuWFtcXiHNb0KoJrTbb15HnHOdkqTi5UgLrr8aGpCTZShA0NcSsgIeV9zSupwtjz7B+9aq4nh4rGnOd9v5YVvcrgWpMNPUWh61UL5qlcszLUXY8PTU2wkSJsaJKYAlSSJMZzchhNCFMNNMmLom7QJDFhQz1oBbx6W8PNMqrYOS9aeaxmemVQ1DkvW8ztymV8aNZEr7pJXh4rllVbszqoux4fmppgI0XY0A5aDp6enhCJRBCJRMjKzoebp2RR9jZjdiEqIQNBz5MhmrofALBo6zVsOvYQANBkyFYkpYlxKygefV29AQCzFnrB87AfAKB+828hFufB9/ITjPjfEpuTZv2J42fvAwDqNJoMa0tTHD97H5Nm/QkAGPHNJvhefgKxOA/1m38rad9hP8xaKAmF9x2xDrfuRiAp+R2aOErCY5v+vIhFK48hv347dO8yEU+CIhAdlcBkM69z380spHHsqC+ioxLwJCiC2RFp2eJN2LZF0v6WzQciKektbvsHYlB/SSRhrqs7vPadBQBYmHaHWJyDC//6Y8zIHwAALlOW4dSJiwAAA50OAIBTJy7CZYrk4XP1yj1c+NcfYnEOLEwlu/d47TuLua7uAIBB/Wfitn8gkpLeomXzgQCAbVu8mY5WkU3OjiNkbLKyNq+STWamPRGRbIVDZ6KZpRcXfesC3zOnAAAOpgYAAN8zp7DoWxcAkiUa/S5dQLZYjE7NLGBhaYVTh7ywcoFkq9IpwwYh4O5tpCYnoVfblgCAAzu3MQ/k0X26IyzkCeJioplM3h0e65iFKwaJnBEXE42wkCfMjkceK5bhwM5tAIAz3geRmpyEgLu3MWXYIADAygVzceqQ5HvSqZkFssVi+F26UG2bADA2WVhasW5Tr7YtZWyysLRi1aay9+mM90HWbSp7n47t28OqTfLuE0W40BC3AmoU4uYxtE3D2spDQ9cUTYWGuIUN9aAV8DQmlVM9qRdcE6rSOUs9VC7hWlOeHtvzk6WeCleoux4fmppgI0XY0GlWCmhra1a9C6vpPQfeqFnGcVU957sPVTvmLURNqR6XnvJZv7ucaWmCHh+ammAjRdhQD1oB+R+Lqn5RDULbUbHJ1b62OmHtmOiEautVF6417z0t4TyMHR8bQ/VquaYm2EgRNrSDVkBSejanemv+OFet66o75vyr+55qXVcTuNAsHcLe6fEr63pl4VpT3fX40NQEGynChiaJKaDKSWI8JIbRhLD/oAlfFIry0CQxYUM9aAWoZCWxKiCdPqUsNe2cpVObuIQNzcoSvqTTTbiEa0111+NDUxNspAgbmiSmAAN9HeULq8B7FnVooXRZVXjOnTo71rgOPjWV8ZjbdeikMj1l4VpT3fX40NQEGynChoa4FVClEDeH4W1ND2vTUDaFUnNoiFvY0BC3AoKjUpQrqKLOWbpaGFdIV/KqDZrVnbssXV2JS7jWVHc9PjQ1wUaKsKEhbgU4t+L2P8ybcMV7F6vSe45NvKayutjSrKm3fDsitkbX1wZNddfjQ1MTbKQIG+pBK0Cc+1FxIRWGtm/de17peVWHtm/7cx9aUlZTVSt9Pbp7u8Z1CF1T3fX40NQEGynChnbQCkh/n8up3j7vmxWeY2Pc+cB+H5XXWVNNVS/BefrwAZXVJVRNddfjQ1MTbKQIG5okpgCFSWIcJYZpQlIYTfyiULhF1Ulidu06wMPnapWu+X3SEJokVgHUg1ZAXNI7TvWk20yWhs3OWboFJJeU1WRz0woAzLZ8XMK1prrr8aGpCTZShA1NElOAiZF+xSdZ8J6HftFR5j3bnvOXQz5ntf6KNLn0lvsM+pIzLb401V2PD01NsJEibGiIWwGVhrhZDm+rY1ibhrEpFOFAQ9zChoa4FRAUWcHuUix1znUaTQbAXedsoNOBEx3gv87ZwdSAM00+9PjQVHc9PjQ1wUaKsKEhbgV0drDiVK8k4yinnnNuYQjrGmW95sh33GbGc63Hh6a66/GhqQk2UoSNWnnQffr0gb6+PoyMjGBkZIQ2bdow527cuAEHBwcYGBigb9++SEhQbk/izKy88gdZDG0fvpDIWt3yOHXiIqv1ywtp+545xaom33p8aKq7Hh+ammAjRdioVQcNADt37kR2djays7Px4sULAEB6ejpGjx6NtWvXIjMzEyKRCOPHj1eqvg/Z+bIHWOyc8+u3w6WL3C5UwJZeZZnZt65cYkWzIrjW40NT3fX40NQEGynCRq2SxPr06YPJkyfj229l17P29PTEoUOHcP/+fQBATk4OzMzMEBwcDAeHyjvcckliLHfQ6gBNBKNQagc0SUzYqJ0HvXz5cpiZmaFHjx64desWACA8PBzt27dnyhgaGsLOzg7h4eFy6/D09IRIJIJIJEJodCrcPP0BAG0m7kdUTDKCQuIg6rcCALBo5TFs+lMSJm7iOA9Jye9w624E+o5YB0Cyv7PnYT8Ako0wxOI8+F5+ghHfbAIgmfd8/Ox95NdvBwOdDhgz8gecOnGRmSs8ZuQPuPCvP8TiHGaTCa99Z5k9lQf1n4nb/oFISnqLls0HAgC2bfHGssWS+rt3mYgnQRGIjkqAs+MIAMA6991Y574bAGDWoBuioxLwJCgC3btMBAAsW7wJ27Z4AwBaNh+IpKS3uO0fiEH9JT9U5rq6w2vfWQCSjS/E4hxc+NcfQ4YtR2K2PRZ968KE6qRJL75nTjFzPHvY28Dv0gVki8XM5gCnDnkxe+FOGTYIAXdvIzU5Cb3atgQAHNi5DR4rJJ/J6D7dERbyBHEx0RgkcgYA7PBYhx0eks98kMgZcTHRCAt5gtF9usN1whh4rFiGAzu3AQB6tW2J1OQkBNy9jSnDBgGQ7MN76pBkL+5OzSyQLRbD79IFuE4YI7nPCmxynTBGxibXCWNYtQmAjE3Olqas21T6PrlOGMO6TWXvk+uEMazaVPY+OVuasm5T2fvkZGbMqk3y7hNFuKiVBx0QEABHR0fo6uri5MmTmDdvHkJCQrB+/XqYm5vDw8ODKdujRw989913cHFxqbTOVs0aIvrc/zZR58B7vvCvP4YO682aTllUpVcVr9nv0gX0+3JojTWFqseHprrr8aGpCTZSD1rYqFUWd9euXZm/p02bhhMnTuDixYswMjJCVlaWTNmsrCwYGxsrrNPYQFfyB0eh7c97i1jTkUdN9aoTzu7Sk9vFUbjW40NT3fX40ORS72mqGABgaN+J+ZtCUasOuixaWloghMDJyQmHDx9mjufk5CA2NhZOTk4K63ga85bNJpbDrvlAvH13v1boVXes+XNHOzx5xd3nyrUeH5rqrseFZtmOcWqnlvB+8pI1PXnM/tyZc02KcFGbDvr9+/cICAhA7969UbduXZw6dQq3b9/G1q1b0bBhQyxevBg+Pj4YOnQo3N3d4ezsrDBBDAA62ltymhjGZedcXb2aJoFx/WDnWo8PTXXXU0ZT1Z4nHx0l7ZwppVGbJLHCwkKsWLEC5ubmMDMzw44dO/D333+jTZs2MDc3h4+PD3755ReYmpoiICAAJ0+eVKretPc5rLVZXta2NPmKK6qqp4oMbWlCDFdwrceHprrpPU0Vl3tt3v6n3OPSl6q5fspb5XUKUZMiXNSmgzY3N0dgYCDEYjHev3+Phw8fYuDAgcz5AQMGIDIyEnl5ebh16xZsbW2Vqje3kNscuidBEYLUU+WOU2EhT1RSj1D1+NCsLXqVdbCKOtvYsNCaNLnKcK3HlyZFuAgqi5sQgv379+PEiRNIT0/H06dPcfv2baSkpGDcuHG8tEnUoSUC/daqvN7aMueZzmmmKAtNbqp9qDqDmmZxqxZBedCrVq2Cl5cXZs2ahcREyZKXTZs2xe+//85bm17EVLBZBktI5xoLQY+tzlk6/5MruNbjQ5MLvdIe7ugvBrAeYi6L25RRrGvwqceXJkW4CCpJ7NChQwgODoaZmRm+//57AECLFi3w8iV/iRPWlg1UXmdl3vMvq1xVrlcZ8vTY9prnLfuF1fr51uNDU1V6yna0Y+f9pBK9qsC1pibYSBE2guqgi4uLYWRkBEAyRQoAsrOzmWN8oK+nw6leq9Y2vOpxEdK2tWvFugafenxoVlWvph6vla1dja6vDZqaYCNF2AgqxD1kyBD8+OOPKCgoACAZk165ciWGDx/OW5ueRyWptD5FY889P5ukUj1FSPVUmQSmiK/79eREhy89PjQr0mMr43n511/UuA6ha2qCjRRhI6gksaysLEydOhWXL19GYWEh9PX18cUXX8Db21upVb/YQNVJYkJMDqOJYLUbmpxFqS40SUzYCMqDrl+/Pv7++28kJCTg4cOHiI2NxV9//cVb5wwAqWkfVFaXMp2zdJMKrnDz4H57O+nGAeqqx7amPG/Y98Bu1vTkwbUeH5qaYCNF2PA+Bl1SUlLumLm5OczNzWXO16nDz2+Jj4VFnOolJ6VxppWYbY+3KQc405PyNoXbzHiu9VSpqax3/O5tikr0lIVrPT40NcFGirDhPcRdp04dJiFMHoQQaGlpobi4mMNW/YeqQtxCC23TsLYwoeFqCpfUlhB3ZmYmZs6ciatXr8LMzAy//fYbvvnmm3LlCgoKsGzZMpw6dQp5eXmYOHEitm3bBh0dSbLv5MmTcePGDeTk5MDS0hJLlizBt99+W6X2cgnvIe64uDi8fPmywpf0PF88j3rDqZ50T2Y2Kd05S/es5RKuNYVqoyqTt5aOHqi4kArhWo8PTU2wsbYwd+5c6OrqIjU1FceOHcP333+P8PDwcuU8PDzw+PFjhIWFISoqCk+ePMG6deuY88uXL0d8fDyysrLwzz//YMWKFQgKCuLSlCrBe4jbxobbaUVVxaaZWY3rqIr3vHP3yhrrVUZZz9l9605W9eTBtaZQbGTTO57tvpG1uoWgx4emJthYG8jJyYGPjw/CwsJgZGSEnj17YsSIEThy5Ag8PDxkyvr6+mLp0qVo2LAhAOCHH37A0qVLsWbNGgCQ2cFQS0sLWlpaiI2NRefOnbkzqArw3kGXZsqUKRWGu729+VlEnuuxb2NjQ9bqlhfWNjTiPgGPa00+bHydXwclHIar9Q25XSuAaz0+NDXBRlVTT6cOnBtX7f9bWloaRKL/9qWfNWsWZs2axbyPioqCtrY27O3/e361b98e/v7+5eoihKD0qC0hBK9fv8aHDx9gYmICAJgzZw4OHTqEvLw8dOzYEUOGDKlSe7mE9xB3aVq1agU7OzvmZWhoiEuXLjG/hvggJq5mSRtVHXseM/L/aqRXERWNObtOGMOKXmVwrcmVXulQ9e+ukznRlKLuenxoaoKNQsDc3ByPHz9mXqU7Z0CyWJW0c5ViYmICsbj8D+Avv/wS27ZtQ1paGlJSUrB9+3YAQG5uLlNm165dEIvFuHPnDkaPHg09PT0WrFINvCeJKeLx48dYs2YNfH19edGvaZKYEJLDaEIYe9CkLkptRtVJYu06doLPzXtVumbSgF6VtiE4OBg9evSQ6WQ3bdqEW7dulesX8vLysHjxYvz111/Q09PDd999h9WrVyMvLw/a2trl6nZ1dYWjoyN++OGHKrWZKwTlQcujQ4cOckMZXJGU8q7a11anc17nrtp5kIo65x0e6yo9zwZca6paT5mkrtM7NqhUUxHqrseHpibYWBuwt7dHUVERoqOjmWOhoaEy48lS6tWrh507d+LNmzd4+fIlGjVqhM6dO8vtnAGgqKgIsbGxrLW9pghqDNrPz0/mfW5uLk6ePAlHR0eeWlR9qOesPlAvmULhD0NDQ4wePRqrVq3C/v37ERISgvPnz+P+/fvlyr558wZaWlqwsrJCQEAA1q5dCy8vLwDA27dv4efnh2HDhqFevXq4fv06Tpw4gePHj3NtktIIyoOeOXOmzGvZsmUAgBMnTnDaDk9PT4hEIohEIuTmFcDtdx8AQJsuPyEqJhlBIXEQ9VsBAFi08hg2/XkRANDEcR6Skt/h1t0IZhvHua7u8Np3FgBgYdodYnEOLvzrjzEjJSEVlynLcOqE5HoDnQ5Ysep7nDpxES5TJLaPGfkDLvzrD7E4Bxamkqk7XvvOYq6rOwDJdpG3/QORlPQWLZtLpmhs2+KNOQskC5CM7tMdYSFPEBcTjUEiZwASj1LqVf579jTiYqIRFvKEmRrksWIZsxJWr7YtkZqchIC7t5ktDVcumItThyRf+k7NLJAtFsPv0gVmrHfRty7wPXMKAOBgagAA8D1zCou+dQEAhIcEw+/SBWSLxejUzAIAcOqQF1YumAtAsnViwN3bSE1OQq+2LQFIVubyWLFMKZsGiZxlbPq/ZSuqbFNAbDIOnDiLb0Z9JflMF7nirq/kezDOoTEA4K6vD7YtkuwG5uE6GY/9riAvOxtTO7XEuP9bjOunvLF35SIAkm0EwwPuITM1BbN7Sdrse2A3vD1WA5BMr3kZFoqkuFjMH9QNgMSbknpU8wd1Q1JcLF6GhTJTcbw9VjMrT904fQSZqSkID7jHbFm4d+UiXD8lSa6c2qkl8rKz8djvCjz+N85ZVZsAMDaN+7/FrNs0u5ezjE3j/m8xqzaVvU83Th9h3aay9+nfg7tZtUnefaoN7Nq1C3l5ebCwsMDEiROxe/duODk5ITExEUZGRsz2xLGxsejevTsMDQ0xbdo0eHh44IsvJOuba2lpYffu3WjatClMTU3x008/YevWrfjqq6/4NK1SBD8GzTf6+jrISzpUpWtq4j07O47A04h/qn09UDXPeZDIGVceP62RXlXhWlNZPVV6yvMHdcO2Kw9UVp+m6/GhqQk21oYxaE2G9xC3vKU+5cHXUp+tWlhyqufz944aXV/VsPaekz410qsOXGtWpsdW+HrpnqOs1KupenxoaoKNFGHDewddt27dSpf6lMLXUp/K/oCQUtOxZ7E4p9rXVmfMOSeb+/FVrjVL63E1npyfk82Jjqbo8aGpCTZShA3vY9Cll/rcsWMHevfujcuXL+P58+e4fPky+vbti507uV8JSkrCq3RO9eZ9X70pXdVNCFu1YF61rqsJXGsunjtHZfsgK8veVT9xpqUJenxoaoKNFGEjqDHoVq1a4fHjx2jQoAFz7N27dxCJRLylwldlHjRfmds0W1s+NPuaQqkcOgYtbHj3oEvz4cMHmcnogGSq1YcPqtuTuaq8SsrgVG/Z4k1VKl/TzlmaGc0lbGuW9Zb5yFblWlPd9fjQ1AQbKcKG9zHo0kybNg0DBgzAggUL0KxZM7x69Qrbt2/HtGnTeGuTro5yH5GqvGcra3Oly6rCc7awtKpxHULQrMxbNrXgNtGPD0111+NDUxNspAgbQYW4S0pK4OnpiTNnziApKQlWVlYYN24cvvvuuwpXgmEbZUPcXIe3aVhbAg1jUyjVh4a4hY2gQtx16tSBq6srbty4gefPn8PPzw+urq68dc4A8DQ8UWEZVXbO0sVGKkOVnbN0IRAuUYVmVZK+pIszcAnXmuqux4emJthIYY+CggIUFhbKHCssLERBQYHSdQiqgwaAgwcPol+/fmjTpg369euHgwcP8tqetvbWlZ5Xted89+GxSs+r2nM+63dXpfWxqanMGtjy+O3s1Wrp1QSuNdVdjw9NTbCRwh4DBw5EUFCQzLGgoCAMGjRI6ToE1UH/+uuv8PDwwIQJE7B9+3ZMmDABf/zxB3799Vfe2pRfUKi4kAqJiU6o8BwbYe342BiV16lqzZpOkUqO534GANea6q7Hh6Ym2Ehhj2fPnqFr164yx7p06YLQ0FCl6xBUB71//35cvXoVs2bNwqBBgzBr1ixcvnwZnp6evLUpKeV9hefYGHf+1X2P3ONsjTnv9OD+x4+ymqqau3xm58Ya1yF0TXXX40NTE2yksIeJiQlSU1NljqWmpsLQ0FDpOgSVJGZhYYH4+HgYGBgwx7Kzs9GyZUu8ffuWlzZVliTGVWKYJiWE0aQvCoU7aJIYeyxatAjBwcHYvn07WrZsidjYWPz444/45JNPsHnzZqXqEJQHPXjwYEyaNAkvXrxAXl4eIiMjMW3atCrF7FVNwmv5K4mx1TlLd6mSwnbnLN1BikvkabK50pd0Vx8u4VpT3fX40NQEGyns8euvv6Jt27bo0qULjI2N8dlnn6FNmzZYv3690nUIqoPeuXMnjI2N0b59exgZGaFDhw4wNDTEjh0120CiJhjU0+VUr1Nnyd7Xidn2nHjO7Tp0Yl2jMk0uluC0a9ee1fqFoKnuenxoaoKNFPbQ19fHn3/+iZycHKSkpCA7Oxs7d+6Evr6+0nUIKsQtpaSkBOnp6TAzM+NtFysp8kLcbIe2NSGkTUPZFAr/0BC3ann58qVS5Vq2VG6qqaA8aECytGdYWBhiYmLw8OFD3L9/H/fv3+etPcHP4jnVMzPtyalep2YWnOo9TRWjQxPlV0tTBdJN7NVZU931+NDUBBspqqVVq1Zo3bo186/079LvW7durXR9glrq09vbG/PmzYOuri7q1avHHNfS0kJiouIFQ9jA2am5zHu2vefbEdxOs+BKr7THvPf2U040+dLjQ1Pd9fjQ1AQbKaql9PbEBw8exPXr1+Hm5gYbGxskJCTA3d0d/fv3V7o+QXnQS5YsgY+PD9LT0/Hq1SvmVdXOOTo6Gvr6+pg8eTJz7MaNG3BwcICBgQH69u2LhISK5xuXRpydz/zNRWj70d3brGqUhQu9suHs8EdVC4HVFK71+NBUdz0+NDXBRgp7rFy5Evv370fr1q2hq6uL1q1bY+/evVixYoXSdQiqg9bV1UWfPn1qXM/cuXPx6aefMu/T09MxevRorF27FpmZmRCJRBg/frxSdaVnZNW4PcogHXc+ffgAJ3pS2NSrKAHs+ukjrGnKg2s9PjTVXY8PTU2wkcIeJSUliI+PlzmWkJCA4uJipesQVJLY4cOH8fjxY6xevRpmZmbVquPkyZM4d+4cHB0dERMTg6NHj8LT0xOHDh1ixrJzcnJgZmaG4OBgODg4VFqfNEmMJoYpD00Ao1BqBzRJjD02bNiAzZs3Y/r06czujIcOHcKCBQuwZMkSpeoQlAdtb2+Pf/75B40bN4a2tja0tbVRp04dpTfLyMrKwqpVq7Bpk+yeyuHh4Wjf/r/pC4aGhrCzs0N4eLjcejw9PSESiSASifA0PBFuv/sAAJwdRyA6KgFPgiLQvctEAJL9m7dt8QYg2egiKektbvsHYlD/mQAk85q99p0FAFiYdodYnIML//pjzMgfAAAuU5bhz4PBAAAHUwMs+tYFvmdOYdG3LgAA1wlj4HfpArLFYiah69QhL2Yu8ZRhgxBw9zZSk5OYTSgO7NzG7Lk8uk93hIU8QVxMNAaJJAvx7/BYhx0e6wAAnZtZIC4mGmEhTzC6T3cAkv2aD+zcBkCysUVqchIC7t7GlGGS+egrF8zFqUNeACRJZtliMfwuXYDrhDF4mirGtkWuuOsr+czGOTQGANz19cG2Ra4AgNmft8djvyvIy85mkmKun/Jm5oC6TRmF8IB7yExNYTYP8D2wm9krd+nogXgZFoqkuFjMH9QNAHB6xwac3rEBADB/UDckxcXiZVgolo4eiG2LXOHtsRq+B3ZL9Hs5IzM1BeEB9+A2ZRQAyfzT66ck93Fqp5bIy87GY78r8HCVDJMossnDdbKMTdsWubJqEwAZmya1t2HdptL3adsiV9ZtKnufti1yZdWmsvdpUnsb1m0qe58mODVh1SZ590mV6NYpQHOjqCq91JXFixfj4MGDSE1NxT///IOUlBQcOHBA6c4ZEJgH3apVK0ycOBHjx4+XSRIDADs7O4XXz58/H9bW1li6dCnc3NwYD3rmzJkwNzeHh4cHU7ZHjx747rvv4OLiUmmdLW0sEB57rVr2KEtp79n3zCkMH6tc+F0VqEqvKl7zXV8f9Bw+psaaQtXjQ1Pd9fjQ1AQbVe1Bd+rshHsBx6t0Ta/PZqqlB60MQ4cOxYULFyo8L6gs7oyMDLi7u0NLS6vK14aEhOD69esIDg4ud87IyAhZWbJjyVlZWTA2NlZYb0NToyq3pSqUDW1z2TmrSq+qIW2uH3pc6/Ghqe56fGhqgo0Ufrlz506l5wUV4p4+fTqOHKleksStW7cQHx+P5s2bw9LSEhs3boSPjw86deoEJycnmR1EcnJyEBsbCycnJ4X1BoXGVas91cXB1EBxIYHoVXcVMGmYjiu41uNDU931+NDUBBspwkZQIe6ePXvi0aNHaNGiBRo3lv2i3r5d+XSg3NxcGS9548aNiI+Px+7dkrGfVq1a4cCBAxg6dChWr14Nf39/PHz4UGGbqhOyUZbamhhGk8AoFPWAhrj5pX79+uWiu6URlAf93XffYd++ffj5558xc+ZMmZciDAwMYGlpybyMjIygr68Pc3NzmJubw8fHB7/88gtMTU0REBCAkydPKtWmd5kfampWlfA9c0rQeqronKUJL1zBtR4fmuqux4emJthIETaCGoOeNm2awjJz5szBrl27FJZzc3OTeT9gwABERkZWuU0fPrDjLVbkPd+6conTcWhl9VTpNQfdusbpWBvXenxoqrseH5pV1QuJSqux5nXff2HU5vMa1yOPDvbcLrFLUYyiALagQtzKoCgkoGrYCnHXpvA2DWlTaiOq6DDVnStrptEQNwsUFxdjxowZ8PT0hJ6eXoXlfvvtNyxfvrzC84IKcSsD178nYmNVvwZ4ZZ2z6wRuvZLK9NjaClI6v5MruNbjQ1Pd9EKi0sq9fp4yTu7xil415fRa7vdK50OTonq0tbVx9epVhbsxVtY5AwILcStDdaZg1QQzM1OV1qfIcx43bYZK9RQhT49tj3nAuCms1s+3Hh+atUGvpp1mx0Fja3S90PX40qSww8KFC7F69WqsWbMGOjo61aqj1nXQXGNszO20py492Rl/UlaPi3C2U5cerGvwqceHJl96XIaRm7f7VHGhWqzHlyaFHXbs2IGUlBRs3rwZ5ubm0NLSAiGkSrsz1roOmusQ97On0SqrS5lx588d7fDk1VuVaSqrx+U48+zPneH9RLmNzWujHh+abOrJ64Q3ju+Cn049YkWvInZM78upJtd6fGlS2OHo0aM1rqPWJYl9//33zNxmLlBlkpgQE8NoAhiFJlNpLjRJjD0+fvyIdevW4cSJE0hKSoK1tTUmTJiAX375Bfr6+krVIbgksQMHDmDgwIFwcnLCwIED4eXlJeM1c9k5A0B6+juV1KNs5yzdhIILnqaKmUX6uYRrTWqj/KSrmiRTBV8+U63ragLXmppgI4U9vv/+e/j5+WH79u0IDAzE9u3b4e/vjzlz5ihdh6BC3EuWLMH58+exYMEC2NjYIDExERs3bsSLFy/wxx9/8NKm3Nw8TvXCQp5gPBQvzFJTpJ5zbFgoBnC7/Dfnmppio1lH7jzh5JhwdAS3CU1ca2qCjRT2+PvvvxEbG4sGDRoAABwdHdG1a1dmVUtlEFSI28LCAk+ePEHTpk2ZY69evUKnTp2QlsZPGE4VIW6hhbZpWLv2Q8PSFFVAQ9zs4eTkhGvXrsHa2po59ubNG3zxxRcVbnVcFkGFuI2NjcvtMGVsbIz69evz1CIgOiqeUz3pnstsUbZzlu5JyyVca9Z2G5UJSx/92UVlesrAtR4fmppgI4U9pkyZgsGDB2Pfvn24dOkSPD09MWTIEEydOhV+fn7MqzIEFeJesGABRo8ejWXLlqFp06Z49eoVNmzYgIULF+Lly/8yVFu2bMlZm6ysa7Y8XlW953nLfqmRXmXI85zHzvuJNb2K4FqzNtlYXc+410Tlx7VUAdd6fGhqgo0U9ti7dy8AYP369TLH9+zZgz179gCQrOtRum8ri6A66Pnz5wMAbt68KXP8xo0b+OGHHwBIDCouLuasTXp6utW+tjqhbVu7VtXWq4yKwtpWtnas6FUG15pCtVGVYeqG1rYqq0uIenxoaoKNFPaIi6v5VsWCCnGXlJQofHHZOQNAZCS3+0F/3a+nyuusbMx5+ddfqFxPEVxrCsVGVS9FWZqDi7jNguNajw9NTbCRImwElSQmRKqbJCaUxDCaEMYPNImLUhugSWLCRlAedGJiImbOnIlOnTrB3t5e5sUXb1MzONU7sHObyupSpnP2PcDtvHI+NLnQK+sdB/x1iHXN0qi7Hh+ammAjRdgIagx67NixcHBwgLu7O+rVq8d3cwAAhYWFVb6mJt7z25Tkal9bGmU953dvU1SiVxW41mRLrzIvWZzJrQet7np8aGqCjRRhIygPOjIyEgcPHsSwYcPQv39/mReXeHp6QiQSQSQSIb/gI9a5SzwwZ8cRiI5KwJOgCHTvMhEAsGzxJmzbIlnFqWXzgUhKeouAu7eZ6VIrF8xlVgfr1MwC2WIx/C5dYLZ5XPStC3zPnAIAOJgaYNk6D/ieOYVF37oAkGwH6XfpArLFYnRqZgFAstrYygWSbemmDBuEgLu3kZqchF5tJdntv/72B7w9VgMAlo4eiJdhoUiKi8X8Qd0AAKd3bMDpHRsAAEE3ryIpLhYvw0KxdPRAAIC3x2rG65zdyxmZqSkID7jHTB3au3IRs3LV1E4tkZedjcd+V5gtCLctcsVdXx8AwDiHxgCAu74+2LbIFQCQFB+Lx35XkJedjamdJG2+fsobe1cuAiCZohQecA+ZqSmY3csZgMQLVtam+YO6ydg0ddkaldh0bN8hhESlYZxDY4REpSHc/wL+3rhEor92LqIf3UJBbg42ju+CATMXI/jyGVzc6QZAMn0m4dkjiDPeYrtLXwASb+m6l6TNBxaOQ3JMODLexGOP61AAwO3jf+L28T8BAHtchyLjTTySY8JxYOE4yWfmtYHxuCLuXIQ44y0Snj1ipupc3OnGrEy1cXwXFOTmIPrRLWZLw783LkG4/wUAwPoR7QCgUpsAMDYNmLmYdZu2u/SVsWnAzMWs2lT2PkXcuci6TWXvU8jVM6zaJO8+UYSLoMagJ0+ejJkzZ6Jv3758N4XBwKAeMrIeKl2+pmPPo/t0x7lb96t9fVXHnJeOHojfz12rtl514FqzJnrVHUs+sHAcZmw5Xa1rqZ4wNDXBxtoyBp2ZmYmZM2fi6tWrMDMzw2+//YZvvvmmXDlCCFauXImDBw8iOzsbHTt2xJ9//gknJycAgJGRkUz5vLw8zJkzBzt27KhSm7lCUCHu7du3o3v37rCzs0Pjxo1lzim7NJqqaW5jxame+9ad1b62Oglhs903VluvunCtWRU9VSV3fTl3tUrqoXr8aWqCjbWFuXPnQldXF6mpqQgJCcHQoUPRvn17puOVcubMGRw4cAB3796FjY0NVqxYgSlTpuDJkycAgOzsbKZsTk4OGjdujLFjhbu0qqA66OnTp0NbWxtt27YVzBi0trbyowCqyNw2NDJWXEgO1c3W1jc0UlxIxXCtqUiPjYxr3XqGKq9Tk/X40NQEG2sDOTk58PHxQVhYGIyMjNCzZ0+MGDECR44cgYeHh0zZuLg49OzZk1nMavLkydiyZYvces+ePQsLCwv06tWLdRuqi6DGoP38/PDw4UNs3LgRa9eulXnxRWzMK6XKqWpalXRsuirUZCrV7/8bY+USrjXl6bE1H1nKmf+NH3KFuuvxoakJNtYGoqKioK2tLTObp3379nLXs54wYQJiYmIQFRWFwsJCHD58GIMHD5Zb7+HDhzF16lRoaWmx1vaaIigP2tnZGRkZGeXW4+YTRyd2VvaqiCuPn1apfE3nOW+78qBG19cGzW1XHnA+L9l1zwWqV8s1NcFGVVOnOA/6WWFVuiYtLQ0ikYh5P2vWLMyaNYt5n52dDRMTE5lrTExMIBaXf/ZZWVmhV69eaNOmDbS1tdGsWTO5610nJibC398fXl7cbe9bHQTlQffr1w9ffPEFfvvtNxw4cEDmxRfJyW8VllHloiQ7PNYpXVYVi5BIM5+5hCtNqYe83c2NE73SSLN6qV7t1dQEG4WAubk5Hj9+zLxKd86AJLErKytL5lhWVpZcR27NmjUIDAzEq1evkJ+fj9WrV6Nfv37Izc2VKeft7Y2ePXuiRYsWqjdIhQjKg7579y6aNGmCq1evyhzX0tLCjBkzeGqVMKErhFUMXcWLQlEf7O3tUVRUhOjoaLRu3RoAEBoaWi5BTHp8/PjxzJbFLi4uWLBgASIiImS8dG9vbyxbtowbA2qAoKZZCRFF0wb4WNKTds7yoR0zhVI1VD3NStShJQL9qpYz9OkXWxS2YcKECdDS0sL+/fsREhKCIUOG4P79++U66TVr1uDatWvw8fGBubk5jh07BldXV7x58wYNGjQAANy/fx8DBw5ESkqKoIZT5SGoEDcAZGRk4MiRI9iwQRIGTUpKwuvXr3lrT0R4DKd6g0TOlZ5XdecsXeiDS1SpqUyyl3RBCS7hWlPd9fjQ1AQbawu7du1CXl4eLCwsMHHiROzevRtOTk5ITEyEkZEREhMTAQBLly5F+/bt0aFDBzRo0ABbtmyBj48P0zkDkuSw0aNHC75zBgTmQfv7+2PMmDEQiUS4d+8exGIx/P39sXHjRvj6+vLSJqd2rfA4xEfuOTa857iYaLRo1brccba85qS4WFi34HY7RlVoVsVbzngTj0ZNbGukV1W41lR3PT40NcHG2uJBayqCGoNesGABTp06hf79+8PU1BQA0LVrVzx69Ii3NhUXl8g9zlZoOye7fEfMZkg7PydbcSGBaFY3hP0xL6da19UErjXVXY8PTU2wkSJsBBXijo+PZ9bdls5N09XVRVFREW9tSkxQzeYVyrJqwTyZ92yPN+9d9ROr9atCs6bzlS/9uaba19YWTXXX40NTE2ykCBtBhbh79OiBVatWYdCgQWjYsCEyMzNx9epVrF+/Hrdu3eKlTfKSxLhKDNPkZDCa8EWhsA8NcQsbQXnQmzdvxqRJkzBt2jTk5eVh9uzZcHFxYRLG+ODNa263RvRYIUn956pzlu4QxSWVabKxuhcfu/ZwranuenxoaoKNFGEjqA76zp07ePr0KZycnDBjxgy0aNECjx49wp07d3hrk46Ojsx7tr1nC0srTj1nUwtLzrQq02Rz2U3jhuas1CskTXXX40NTE2ykCBtBhbjr169fbsUYAEy4mw/KhrjZ7qA1KaxNw9gUCr/QELewEYQH7efnBz8/PxQXF+PmzZvMez8/P+zfv5/X+WrPnkUxf3PROc/uVfk8aFXDtR4AzOjejtPOWbpJPZdwranuenxoaoKNFGEjCA9auh5qYmIimjdvzhzX0tKCpaUlli1bhhEjRvDStk+c7fHoyRlOEsOepoqRmZqCho25CztzqSftlMUZb2HcyIITTT70+NBUdz0+NDXBRupBCxtBeNBxcXGIi4vDpEmTmL/j4uLw8uVL3L9/X+nOefLkybCyskL9+vVhb2+P/fv3M+du3LgBBwcHGBgYoG/fvkhISFCqzoKCj9WyqapIQ9vJ8bGc6EnhQq/s+HJmUjzrmqXhWo8PTXXX40NTE2ykCBtBdNBSvL29a3T98uXLER8fj6ysLPzzzz9YsWIFgoKCkJ6ejtGjR2Pt2rXIzMyESCTC+PHjlaozOSmN0/W2z+zcyJkWF3ryQtl3TuxiVZNvPT401V2PD01NsJEibAQR4maDFy9eoE+fPti2bRvev3+PQ4cO4f79+wCAnJwcmJmZITg4GA4ODpXW06mzE07cYDf8oo6JYTQBjEIRPjTELWwE5UGrgjlz5sDAwAAODg6wsrLCkCFDEB4ejvbt2zNlDA0NYWdnh/DwcIX1xSekstnccuxduahW6ykzXeriTjeVaiqCaz0+NNVdjw9NTbCRImzUroPetWsXxGIx7ty5g9GjR0NPTw/Z2dkwMTGRKWdiYgKxWL7n6unpCZFIBJFIhNycHOzwWAdAstNUXEw0wkKeYHSf7gAkC4sc2LkNANCrbUukJich4O5tTBk2CACwcsFcnDrkBQDo1MwC2WIx/C5dgOuEMQCAmZMn4a6vZDOOcQ6NYdeuPe76+mDbIldJ/a6T8djvCvKyszG1U0sAwPVT3kzH6jZlFMID7iEzNYXJyPY9sJtZDGTp6IF4GRaKpLhYZhep0zs24PQOyYIIj/0uIykuFi/DQrF09EAAkoVEfA/sBiDJ8s5MTUF4wD24TRkFQNKpXz8lGY6Y2qkl8rKz8djvCn6eMg4A8PfGJQj3vwAAWD+iHQAg3P8C/t64BADw5sVTRD+6hYLcHGwc3wUAEHz5DPNwOvqzCxKePYI44y2T1Rrw1yFmEYcDC8chOSYcGW/imd1/bh//k9nsfo/rUGS8iUdyTDgOLBwHq1ZOuO61AQF/HQIgyZQVZ7xFwrNHOPqzCwDJgzH48hkAwMbxXVCQm4PoR7dweu1cpWw6vXaujE1WrZxYtQmAjE3P715m3abS98mqlRPrNpW9T1atnFi1qex9en73Mus2lb1Pz27+w6pN8u4TRbiobYgbAFxdXeHo6IjY2FgUFhZi167/xnc++eQTuLm5YcyYMZXW0a5jJ/jcvMdK+9QltE3D2RRK7YSGuIWN2nnQpSkqKkJsbCycnJwQGhrKHM/JyWGOK+L501CFZVSJ1EuuDXrVXf1L+iufK7jW40NT3fX40NQEGynCRm086Ldv38LPzw/Dhg1DvXr1cP36dYwePRrHjx9H9+7d0apVKxw4cABDhw7F6tWr4e/vj4cPHyqs19G5A/66/UDl7a3Ie87LzkY9IyOV61VEdfVq4jUX5OZAz8Cw2tcLXY8PTXXX40NTE2ykHrSwURsPWktLC7t370bTpk1hamqKn376CVu3bsVXX30Fc3Nz+Pj44JdffoGpqSkCAgJw8uRJpeqVtz8zm4Q/Yiecrio9VayZnRgWWKPrha7Hh6a66/GhqQk2UoSN2nTQ5ubm8Pf3x/v375GVlYVnz57hu+++Y84PGDAAkZGRyMvLw61bt2Bra6tUvZkZ6Spva2Vjz9dPH1G5XmUoq6fKzSyCr5xRST1C1eNDU931+NDUBBspwkZtQtxswUaSWG1LDqNJYBSKekJD3MJGbTxotngdH6/S+hR1ztLpVVxRmR5bW0BKp4dwBdd6fGiqux4fmppgI0XY1OW7AULHuMz86ZqgjOfcuc9Alekpgzw9tj3m1p/2ZrV+vvX40FR3PT40NcFGirChIW4FqDLEXRtC2zScTdEEnocm890ETmnb3krucZWHuNtaI9B7ZpWu+fT7SzTEXQHUg1ZAeEiwSupRtnMe59AYpyO5W15Uqsdlx7x+RDv8/E+Y2urxoamOemU70b9WDsSotddY1eRTj01NTftBoi5QD1oBqvKgheo9U4+ZwgW0gxAmiX8vox60gKFJYgr48O5djeuoSucsXZebC0Ki0pg1frmEa01qo+q56n0Mz0OTlX6pglehfiqpR6h6fGlShAvtoBUg/vCBU72gW9yE1KSec3SgPyd6peFak9pYdRR1uCkvFK/Cp2q41tQEGynChoa4FVDTELcQQ9s0rE2hIWcKQEPcQod60ApIeBlb7Wur0zl7uE6utp4ylO2cpVvacQnXmppoI9sh5wdHV9a4DqFraoKNFGFDs7gV0LCRGad6A8ZNYa1ueZ5zx0FjWdOrCK411dXG0h2tmX1/Tr1iW9EQzrT40tQEGynChnbQCjA0Mq7WddUNbTt16VGt6xRRUVi7ebtPWdGrDK411cFGRZ2vWYv2KtVTBNd6fGhqgo0UYUND3Ap4Ef6MU73ZnzurvM7Kxpx3TO+rcj1FcK1Z22ysTkj68h8Tqq1XHbjW40NTE2ykCBuaJKaA6iSJCSkxjCaECReaqEXhG5okJmyoB62Ad+lV226ypp3z9VPeNbpeirIbXQRf5mFLPY41hWAjW3ODpcQFcjsPmms9PjQ1wUaKsKEdtALy8nI51YsNC61xHVXxmpNjwmusV1W41uRa73loMp4/CmStM5bH+6Qo1jX41ONDUxNspAgb2kHLwdPTEyKRCCKRCIWFhdjhsQ4AMEjkjLiYaISFPMHoPt0BAB4rluHAzm0AgG72LZCZmoLwgHtwmzIKALB35SLGK57aqSXysrPx2O8KM51q2yJXZvWwcQ6NMXvtJtz19WG2gfRwnYzHfleQl52NqZ1aApB42XtXLgIAuE0ZhfCAe8hMTcHsXs4IiUpDwF+HcN1rAwDgwMJxSI4JR8abeOxxHQoAuH38T9w+/icAIDEsEBlv4pEcE44DC8dJ6vfagIC/DgEAtrv0hTjjLRKePcLRn10AABd3ujEe4sbxXVCQm4PoR7eYqT5/b1zCrGy1fkQ7AJKVrqRb6WW/S0P0o1soyM3BxvFdAEg8zos73QAAR392QcKzRxBnvMV2F8lYblVs2uM6VMamIfPcWLXpeWgyDiz+Fn6nzuHpo1j4rh2Bjl8tRFzgBQSf3wIAuOO1CGlxocjLSselP8YDAKLvncGzS3sAADd3z8G7N1EQp7/G1a2SNj3388ZzP8l35+pWF4jTX+Pdmyjc3D0HAPDs0h5E35O0OeXFQ+RlpSMtLhR3vCTfjeDzWxiPzHftCBQW5CI58gEzlSfw9Hpm5aq/Vkp2NXsV6ofA0+sBSKb8JEc+QGFBLnzXjgAAxqaOXy1k3aZLf4yXsanjVwtZtansfZIuGsKmTWXv0+unN1m1Sd59oggXOgatAEMjYzx5/VapsqoYe3abMgpuR/6q1rXVGW8++rMLJq8/VC296sK1Jht6irziO16L0GvmJpVqarIeH5qaYCMdgxY2dJqVAiys5G/TVhZVJYaNnfdTta6rbjJYr4lzqnVdTeBaUxV6VQ1TO/SbWmNNqsevpibYSBE2tINWgJ6eHqd6VrZ2Vb6mJpnaDa1tq31tbdGsjl5Nx42NGjWp0fVUj39NTbCRImzoGLQCYl9EKiyjymlVy7/+okrlazqN6uCi8TW6vjZoKqunyqSuW3u4XepT3fX40NQEGynCho5BK0DRPGg+5zzTOc41g85Dpmg6dAxa2FAPWgHpb5VLEFMVvgd2K1VOVZ2zNLOZS7jWlOqxOQ+5LNKsXa5Qdz0+NDXBRoqwoWPQCigqLKzwHBve87u3KQrLqNJzFmdy74Vzqfk8NBkJL+JQn2NvOT8rg+rVck1NsJEibGiIWwGVhbj5CG/TsLZiaOiaQlEOGuIWNjTErYCKksTY6pyXjh4o97iyS3dWFeniJFzClmZFoWvpghFcwrWmuuvxoakJNlKEDQ1xK8C6WfNyx9j0nGe7byx3jE2v+cu5q1mrmwtNZbzlDiMWqExPWbjWVHc9PjQ1wUaKsKEetAK0tbU51dM3NJJ5z3ZIW7eeIav1s6VZlUSvunoGNdarKlxrqrseH5qaYGNtITMzE6NGjYKhoSFsbGxw/PhxueUIIVixYgWaNGkCExMT9OnTB+Hh/63Fv3PnTohEIujp6cHFxYWj1lcf2kErIOFlrMx7tsedf//fGt0AN+PNZ9ZyP++yuprVzcB+cHRFtfRqAtea6q7Hh6Ym2FhbmDt3LnR1dZGamopjx47h+++/l+l4pZw5cwYHDhzAnTt3kJmZiW7dumHKlCnMeWtra6xYsQIzZszgsvnVhiaJKaBskhhXiWE0Gew/aNIXhcIOtSFJLCcnB6ampggLC4O9vT0AYMqUKWjSpAk8PDxkyv7+++8ICgrC6dOnAQDh4eHo3Lkz8vPzZcqtWLECr1+/xqFDh6rUVq6hHrQC3qb81zlw0Tmf3rGB085ZugMUlyijqcr5ytKdhriEa0111+NDUxNsVDUkLx9FoTFVeqWlpTG7B4pEInh6esrUGRUVBW1tbaZzBoD27dvL9aAnTJiAmJgYREVFobCwEIcPH8bgwYNZt5staJKYknDlOadk5MBecTG1hHrKFIrmYW5uXqkHnZ2dDRMTE5ljJiYmEIvLP5OtrKzQq1cvtGnTBtra2mjWrBn8/PxU3mauoB20AiwsldvNShWERKXh82+4HRPmWk+eJtsdc1sedgjiWlPd9fjQ1AQbawNGRkbIysqSOZaVlQVjY+NyZdesWYPAwEC8evUKlpaWOHr0KPr164fw8HAYGNS+BDwa4lZA9PMIThck2eM6lDMtPvSkmlwtuQkAV7e6sK7Bt6a66/GhqQk21gbs7e1RVFSE6Oho5lhoaCicnJzKlQ0NDcX48ePRtGlT1K1bFy4uLnj37h0iIiK4bLLKoB20AmxaVn37x+ogHXceu5LbMWGu9Z6HJqPTWDdONbtNXsepHh+a6q7Hh6Ym2FgbMDQ0xOjRo7Fq1Srk5OTg3r17OH/+vEx2tpRPP/0UZ86cQWpqKkpKSnDkyBEUFhaiVatWAICioiLk5+ejuLgYxcXFyM/PR1FREdcmKQ3toBWQW1DxWtyqonRS2Me8HNb1SsOVXmlvuagglxNNKVzr8aGp7np8aGqCjbWFXbt2IS8vDxYWFpg4cSJ2794NJycnJCYmwsjICImJiQCApUuXon379ujQoQMaNGiALVu2wMfHBw0aNAAArFu3DvXq1YOHhweOHj2KevXqYd064f4oUpsOuqCgADNnzoSNjQ2MjY3RsWNHXLp0iTl/48YNODg4wMDAAH379kVCQoJS9aYlvWaryXK59OcatdKTF8YO+Wcrq5pl4VqPD0111+NDUxNsrC00bNgQf//9N3JycpCYmIhvvvkGANC8eXNkZ2ejeXPJio/6+vr4888/kZycjKysLDx58kQmi9vNzQ2EEJmXm5sbHyYphdrMg87JycGGDRvg4uKC5s2b4+LFi5g4cSKePXsGIyMj2NnZYf/+/Rg+fDhWrlyJO3fu4OHDhwrrtWvXAR4+V1lrtzrPd6ZZ2RSKsFH1POjOtg3xcMWgKl3TbU803SyjAtTGgzY0NISbmxtsbW1Rp04dDBs2DC1atEBQUBDOnTsHJycnjB07Fvr6+nBzc0NoaCgiI+VvhFGajJQkDlr/H9e9NtR6PUXJX88u7VG5ZmVwrceHprrr8aGpCTZShI3adNBlSU1NRVRUFJycnBAeHo727dsz5wwNDWFnZyd3ojsAeHp6MpPmc8VZOL1D0onNH9QNSXGxeBkWyuw65e2xGr4HdgMAZvdyRmZqCsID7sFtyigAwN6Vi3D9lGTxgamdWiIvOxuP/a7Aw3UyQqLS8PfGJQj3vwAAWD+iHYwbmiPc/wL+3rgEAHB67VxEP7qFgtwcbBzfBQAQfPkMLu50AwAc/dkFCc8eQZzxFttd+gIAAv46xHS8BxaOQ3JMODLexDMZ27eP/8ksFvLs5j/IeBOP5JhwZpep614bEPDXIQDAdpe+EGe8RcKzRzj6swsA4OJONwRflmwsv3F8FxTk5iD60S0cWPwtnocmI/D0erwKlcw9/Gul5HN6FeqHwNPrJfcmOhDJkQ9QWJAL37UjAABxgRcQfH4LAOCO1yKkxYUiLysdl/4YD0Cykb304XVz9xy8exMFcfprJuv1uZ83s8jD1a0uEKe/xrs3Ubi5ew706zfCs0t7EH1P0uZLf4xHXlY60uJCccdrkeQzPb8FcYGS++C7dgQKC3KRHPkAD46uBACFNj04ulLGJv36jVi1CYCMTfFBl1i3qfR90q/fiHWbyt4n/fqNWLWp7H2KD7rEuk1l79PLgH9YtUnefaIIF7UJcZemsLAQX375Jezs7LB3717MnDkT5ubmMsvC9ejRA999953CBdPZCnGrU2ibhrIplNoJDXELG7XzoEtKSjBlyhTo6upi586dAKo20b0sCS/ke9lsIfWCa4tedTpn6a94ruBajw9NddfjQ1MTbKQIG7XyoAkhmDFjBuLj43Hx4kXUq1cPgCRkffjwYdy7J9n0IicnB+bm5njy5AkcHBwqrdPGwQkbz99UaTsr857FGW9h3MhCpXqVUV29mnjNeVnpqFffrNrXC12PD0111+NDUxNspB60sFErD/r777/H8+fP4evry3TOADBq1CiEhYXBx8cH+fn5cHd3h7Ozs8LOGQAKCwrYbHI5MpPiBa2nitW/sjPe1Oh6oevxoanuenxoaoKNFGGjNh10QkIC9u7di5CQEFhaWsLIyAhGRkY4duwYzM3N4ePjg19++QWmpqYICAjAyZMnlar33dsUlbZT0djznRO7VKqnCGX1VLksZyTHO/ZwrceHprrr8aGpCTZShI1ahbjZQJVJYrU1MYwmgVEo6gkNcQsbtfGg2SIt6RWnetLpU0LQY2szC+n0D67gWo8PTXXX40NTE2ykCBu63aQC9OqpZosyZb1nq1bld2hhE3l6bHvMDay53fGaaz0+NNVdjw9NTbCRImxoiFsBqgpx14bwNg1lUyiaBQ1xCxsa4lZA3PNnNa6jKp2zdLUwrpDqcdk5S1c7Ulc9PjTVXY8PTU2wkSJsqAetgBaOn+CPv25U+/qqes4FuTnQMzCstl5VefooFjp6qgnjK0thQS6nmlzr8aGp7np8aGqCjdSDFjbUg1ZAXk42p3qJYYGcaT0PTUZ6XChnelK41qQ21n49PjQ1wUaKsKFJYgoQZ2ZU+9rqjDsHXzmD1l36VFtTWaQh7fjHF2Hl0I11vdJwrUltrL16KY//203uxcNz0Mq2YV2TLz02NS1F1iqvk8I+NMStgJokiQkxMYwmglG4pnQnSxEWH19vpyFuAUND3ApIfZ1Qreuq2zlLt5lkA3mds3TLOi7hWpPaqBpSHicxr9t7Vsq8r+ylKqIe71ZZXULU40uTIlxoiFsBhsb1q3xNTTzn1p/2rva1lVGR52zZ5jNW9CqDa01qo2Kq2pGaWnaokV514FpTE2ykCBvaQSvAyMSUUz2n3kNVXmdlYe1m7fupXE8RXGtquo1shJjNm3I7ps+HpibYSBE2NMStgJfhVcuqrOm48/oR7Wp0fVkUjTn/tXKgSvWUgWtNdbcx5XES/lo5kPUQc2kenJ/GSr1C0tQEG1VNSU4hch4mV+lFqRiaJKaAqiaJCSkxjCaEqRc02YqialSdJNbR3Bg3v+pcpWsGhGTTJLEKoB60ArI/vFO6rCo653D/CzWuA1C+c34V6qcSvarAtWZts7E6nnDa6wfV1qsOXOvxoakJNlKEDe2gFZAjzlKqnKo85+hA/xrXURXPOeXFwxrrVRWuNYVqoypD0u9SQqp1XXXhWo8PTU2wkSJsaIhbAcqGuIUS2qZhbWFCw9MUIUJD3MKGetBy8PT0hEgkgkgkQnxkOE7v2AAAmD+oG5LiYvEyLBRLR0uSgLw9VmPv75Lz2136QpzxFgnPHuHozy4AJPstB18+A0CyMUVBbg6iH93C6bVzAUjmPUvD2utHtMPptXMR7n+BmQ99eu1cRD+6hYLcHGZji+DLZ5h9nI/+7IKEZ4/w5M4zbJ70OQAg+t4ZPLu0BwBwc/ccvHsTBXH6a1zdKmnTcz9vPPfzBgD84z4c4vTXePcmCjd3zwEAPLu0B9H3JG2+9Md45GWlIy0uFHe8Fkn0z29BXKCkzb5rR6CwIBfJkQ/w4OhKAJI5udIQrzRZ6lWoHzNX96LHWCRHPkBhQS6zOUBc4AVmL9w7XouQFheKvKx0XPpjfJVturrVRcamB0dXsm7Tg6MrkRz5AG8exOK823Dc2rkYoWeP4d7+dUh5nITwu7/hQ/pzfMx7h8eX5wMAkmIuIT7sBADg6a1VyH4fh7zsFARfl9z7V5F/4VXkX5L2XV+CvOwUZL+Pw9NbqwAA8WEnkBRzCQDw0HcmPua9w4f05wi/+xsAIDbkAFLjbwIAAv6djeLCPGSmBCPyoeRzjnq8mwmpSpOT0l4/YObiRj7cgsyUYBQX5iHg39kAgNT4m4gNOYDIh1tYt+nx5fkyNkU+3MKqTQBkbHroO5N1m8repwf/TGfVJnn3iSJcqAetAEubFthxNaDSMqr0nqMf3aryUp818ZqTIx9wvgwm15ps6lXkGWemBKOhZUdWNDVRjw9NTbCRetDChs6DVkA9Q6NKz6s6tN283adVKl/TkLZZi/Y1ur42aKpST9lQtUkjB5VpUj1+NDXBRoqwoSFuBSS8iKjwHBvjzjum91W6rCrGmy//MaHGdQhdsyZ61U3genxlQbU1q4O66/GhqQk2UoQNDXEroLIkMT4Tw2gyGDvQZC6KJkFD3MKGetAKyHonf7tJtjpnaUJZZaiyc5YmRnEJ15qV6bG16pY06Ycr1F2PD01NsJEibGgHrYCCvFxO9ZJjwis89zw0WeWe8/ukKJXWJ0TNsnpsL4MJANnv41irWxP1+NDUBBspwoaGuBUgL8TNR2ibhrSrDw1bUyjyoSFuYUM9aAUkxcXIvGe7c5bOny4Nm52zdB4wl3ChWdpLls435RKuNdVdjw9NTbCRImzoNCsFmFpYcqrXa+Icmfdse84O/aayWj+XmhV5yk0dRrKiVxlca6q7Hh+ammAjRdjQDloBOnp6zN9chLYbWtsyf3MR1jZq1IR1DTY1lQlf1zPk9kcWH5rqrseHpibYSBE2NMStgDexkgQjrsadDy6SLG3J1ZjzrT1zOdFRtWZVkrye+rvVWK+qcK2p7np8aGqCjRRhQ5PEFCBNEuMyMYwmhMmHJntRKKqFJokJG+pBK+B9+ltOO+d/dm3nTAsAs4GEUDVVMSVKulEBl3Ctqe56fGhqgo0UYUPHoBVQXFTEmdbz0GTkZ8lfGIUtuNZTVlOV3vLH/Pcqq0uomuqux4emJthIETY0xK0Aq9ZOmLH5NOs6NKxNQ9gUCtfQELewoSFuBaS/esmpnnRPZnXVK6vJxape0n15uYRrTXXX40NTE2ykCBsa4laAibk16xqlvecOIxawrlcarvUAoFnrSZx6yy07TOdMiy9NddfjQ1MTbKQIG9pBK0CrDrtBhrKh7bp6BqzqlYVLPWmnrF23HmeafOjxoanuenxoaoKNFGGjViHunTt3QiQSQU9PDy4uLjLnbty4AQcHBxgYGKBv375ISEhQqs53yYkstLRiHhxdoXZ6ZUPYkQ83s65ZGq71+NBUdz0+NDXBxtpCZmYmRo0aBUNDQ9jY2OD48eNyy7m6usLIyIh56enpwdjYmDnfp08f6OvrM+fbtGnDlQnVQq2SxM6dO4c6dergypUryMvLw6FDhwAA6enpsLOzw/79+zF8+HCsXLkSd+7cwcOHDxXWyWaSmCYkhtHELwpFuNSWJLGJEyeipKQEXl5eCAkJwdChQ3H//n04OTlVep2Liwvq1KmDAwcOAJB00JMnT8a3335bpTbyhVp50KNHj8bIkSPRqFEjmePnzp2Dk5MTxo4dC319fbi5uSE0NBSRkZEK68zO4Hbnqud+3mqhV1ni16vIv1jRrAiu9fjQVHc9PjQ1wcbaQE5ODnx8fLB27VoYGRmhZ8+eGDFiBI4cOaLUddOmTeOopapHI8agw8PD0b59e+a9oaEh7OzsEB4eDgcHh3LlPT094enpCQAozM3ClTXc3eDctDQkZkWorR4A1MlLw8fXr9RWjw9NddfjQ1MTbFTGSakKjTv3wICQ9Cpdk5eXB5FIxLyfNWsWZs2axbyPioqCtrY27O3tmWPt27eHv79/pfX6+PjA3Nwcn3/+uczx5cuXY9myZWjTpg1+/fVX9OnTp0rt5RKN6KCzs7Nhbm4uc8zExARisVhu+dJfEJFIxOkcPXXX40OT2lj79fjQ1BQbVcnly5dVWh8geX6bmJjIHKvs+S3l8OHDmDp1KrS0tJhjv//+OxwdHaGrq4uTJ09i+PDhCAkJgZ2dncrbrQrUKsRdEUZGRsjKypI5lpWVJZM8QKFQKBThUZ3n96tXr+Dv74+pU2W3tu3atSuMjY2hp6eHadOmoUePHrh48SIr7VYFGtFBOzk5ITQ0lHmfk5OD2NhYhQkGFAqFQuEXe3t7FBUVITo6mjkWGhpa6fPb29sb3bt3R8uWLSutW0tLC0LOk1arDrqoqAj5+fkoLi5GcXEx8vPzUVRUhFGjRiEsLAw+Pj7Iz8+Hu7s7nJ2d5Y4/l6X0WAgXqLseH5rUxtqvx4cmtVEYGBoaYvTo0Vi1ahVycnJw7949nD9/HlOmTKnwGm9v73JTbd+/f48rV64w/cKxY8dw+/ZtDBo0iGULagBRI1avXk0AyLxWr15NCCHk2rVrpE2bNkRfX5/07t2bxMXF8dpWCoVCoShHRkYG+eqrr4iBgQFp1qwZOXbsGCGEkISEBGJoaEgSEhKYsvfv3ycGBgYkKytLpo63b98SkUhEjIyMiImJCenatSu5evUqp3ZUFbWaB02hUCgUirqgViFuCoVCoVDUBdpBUygUCoUiQGgHTaFQKBSKAKEdNIVCoVAoAoR20BqGp6cnunfvDhMTE2hra8PExATdu3fHvn37+G6ayqA21n7U3T4pGRkZ8PT0xPz58zFjxgzMnz8fnp6eyMjI4LtpFAGgEUt9KounpycOHTqE8PBwZGdnw8jICE5OTpg+fTq+++47vptXY5YuXYp///0XixYtQvv27WFiYoKsrCyEhIRg8+bNePnyJX777Te+m1kjqI2130Z1t0/KjRs38PXXX+OTTz5B+/btYW1tjaysLBw7dgzLli2Dj48P+vbty3czKXzC9zwvobBkyRLi6OhIvLy8yOPHj0l0dDQJCgoiXl5exMnJiSxbtozvJtYYMzMzkpSUJPfcmzdvSKNGjThukeqhNtZ+G9XdPilt27YlPj4+cs+dO3eOODg4cNwiitCgHvT/OHDgAJ4+fQorKyuZ4506dcLgwYPh7Oxc63+1EwVT3hWdrw1QG2u/jepun5SEhAQMHTpU7rkhQ4Zg0qRJHLeIIjRoB/0/NOGhMHPmTPTr169c6DA0NBSbN29WizA+tbH226ju9knp2rUrVqxYATc3NxgaGjLHc3JysGbNGnTt2pXH1lEEAV+uu9BYsmQJcXBwIPv27SOPHj0iL168IIGBgWT//v3E0dGRLF26lO8mqoQ9e/aQ7t27ExMTE6KtrU1MTExI9+7dyZ49e/humsqgNtZ+1N0+QgiJj48n3bp1I/r6+sTR0ZF069aNODk5kXr16pFu3brJLF9J0UzoUp+l2Lt3L7y9vcsliU2dOhWzZ8/mu3kUCkUNiYqKQkREhMwzp3Xr1nw3iyIAaAetgURFRSE8PBxisRjGxsZo166d2j0QqI21H3W3j0JRBB2DLoM6PxQSExMxfvx4hIaGws7Ojhnbi42NRfv27XHy5Ek0b96c72bWCGpj7bdR3e0rjbpP7aTUEH4j7MIhISGBfPbZZ6RevXqkXbt2pEePHuSTTz4hBgYGajMe1K9fP7J48WKSk5Mjczw7O5ssWbKE9O3bl6eWqQ5qY+23Ud3tk6IJUzspNYOGuP9H//790blzZ7i5ucHAwIA5npOTA3d3dwQGBsLPz4/HFtYcIyMjZGZmQldXt9y5goICNGzYEDk5OTy0THVQG2u/jepunxRzc3O5UzsBICkpCc7OzkhPT+ehZRShQJf6/B8BAQFYt26dTOcMAIaGhnB3d0dAQABPLVMdzZo1w7///iv33MWLF9UibEhtrP02qrt9UhT5RtR3otAx6P8hfSiMHj263Dl1eSjs3LkTY8aMwebNm8stoRgeHg4fHx++m1hjqI2130Z1t0+Kpsz3plQfGuL+Hzdu3MCYMWPQrl27Ch8K/fr147uZNSYjIwPnzp2TSUpp164dRo4cCTMzM76bpxLk2ejk5IRRo0ZRG2sJZe0zNjaGo6Oj2tgnhU7tpFQG7aBLoe4PPQAIDg5GbGwshgwZAl1dXezevRsvX75E//79MWzYML6bp3Li4uJw4cIFAMDgwYPRqlUrnltEUYaYmBgcOXIEYWFhyM3NRdOmTdGlSxe4uLhAR0eH7+ZRKJxAO2glKC4uxq+//opVq1bx3ZQa4eXlhRUrVkBLSwvW1tYYPXo0Xr16haKiIpw8eRLbtm3DjBkz+G5mjWjbti2eP38OAPD398eIESPQo0cPAMCdO3dw/vz5Wh8JmT9/PsaNG8fYpW78/fffmDx5Mnr06AFCCPz9/TF+/HjExsYiJSUF165dQ8uWLfluJuskJiaqxdAapQbwlD1eq8jPzyd16tThuxk1pk2bNuTFixckMjKSaGlpkXv37jHnLl++TJydnXlsnWowMjJi/u7Zsyc5fPgw8/7o0aOkW7dufDRLpWhraxNjY2NiZ2dH1qxZQ+Lj4/lukkpp3bo18fPzY95fuXKFDB48mBBCyIYNG8iQIUP4ahpnqMszh1IzqAf9PyrzHIuKinDs2DEUFxdz2CLVY2Jigg8fPgCQZKdnZ2dDS0sLAFBSUoKGDRvi/fv3PLaw5tSvXx9ZWVkAAAsLC7x584YJiRYXF8Pc3ByZmZl8NrHGGBsbIzU1FWfOnIG3tzdu376Nnj17wsXFBV9//bXMxgu1kQYNGuDdu3fMd7OoqAhWVlZIS0tDbm4uLC0tmXtcm7l9+3aF5woKCjB48OBa/8yh1Ayaxf0/jh8/jpkzZ6Jhw4blzqnLfxJDQ0MUFhZCR0cHLi4uzAMQAPLy8lCnTu2fdVdYWIiDBw+CEAItLS18/PiR6aCLiorU4l5qaWnBwMAA06ZNw7Rp05CYmAhvb2+sX78e8+bNw5gxY3Do0CG+m1ltOnfujO3bt2P+/PkAgK1bt8LJyQkAoK2tjbp11eOx1adPH1hZWanF/zsKS/DswQsGkUhEzp8/L/dcXl4e0dLS4rhFqmfy5MkkIiJC7rmTJ0+S3r17c9sgFujduzfp06cP83r06BFz7sqVK+TTTz/lsXWqwdjYuMJz9+7dI7Nnz+awNarn+fPnxN7enhgbGzOh/GfPnhFCCHn69ClZvHgxzy1UDba2tjLDTKXJy8ujIW4KDXFL+fPPP9GkSROMHDmy3Lni4mKsW7cOq1ev5r5hHJGWlgYtLS21yVaXx4cPH1BYWFjrbTQ2NoZYLOa7GaxSXFyMyMhIEELg4OCgNl5zacaOHYtevXrhhx9+KHfu48ePaNOmDeLi4nhoGUUo0A6aQqFQeKCwsBAA6LQxSoXQwQ8KhULhAR0dnQo75+LiYri7u3PcIorQoB40hUKhCIyCggIYGBioRVIjpfqo38AOhUKh1AIUTe2kUGgHTaFQKDygCVM7KTWDhrgpFAqFBz799FOsXLkSI0aMKHcuPz8fBgYGKCkp4aFlFKFAk8QoFAqFB1xcXCrsgHV0dNR6WidFOagHTaFQKBSKAKEeNIVCoVAoAoR20BQKhUKhCBDaQVMoAsXW1hbXr19XWO7WrVto2rRptTTi4+OhpaVFp/VQKAKEdtAUCoVCoQgQ2kFTKBQKhSJAaAdNoZTC1tYWv/32GxwdHWFqaorp06cjPz8fALBv3z60atUKDRs2xIgRI5CUlMRcN3/+fDRr1gz169dH586dcefOHYVaeXl5mDZtGkxNTdG2bVv88ccfFYaqCwoKsGDBAlhbW8Pa2hoLFixAQUGBTJn169fDzMwMtra2OHbsGHP8woUL6NixI+rXr49mzZrBzc2tGp8MhULhGtpBUyhlOHbsGK5cuYLY2FhERUVh3bp18PPzw/Lly3H69GkkJyfDxsYGEyZMYK759NNPERISgszMTHzzzTcYO3Ys07FXxJo1axAfH4+XL1/i2rVrOHr0aIVlf/31Vzx8+BAhISEIDQ3Fo0ePsG7dOuZ8SkoK0tPT8ebNGxw+fBizZs3CixcvAACGhobw9vbG+/fvceHCBezevRt///13zT4kCoXCPjztQ02hCBIbGxuye/du5v2FCxdIy5YtyYwZM8jixYuZ42KxmNStW5fExcXJradBgwYkJCSkUq0WLVqQy5cvM+/37dtHmjRpItOWa9euEUIIadmyJblw4QJz7vLly8TGxoYQQsjNmzeJtrY2yc7OZs6PHTuWuLu7y9WdP38+WbBgASGEkLi4OAKAFBYWVtpWCoXCPdSDplDK0KxZM+ZvGxsbJCUlISkpCTY2NsxxIyMjNGrUCG/evAEAbNq0CW3btoWJiQkaNGiADx8+ID09vVKdpKQkGa3Sf8srW1pf2i4ppqamMDQ0lHs+ICAAffv2hbm5OUxMTLBnzx6FbaNQKPxDO2gKpQyvXr1i/k5MTGTGfRMSEpjjOTk5yMjIQJMmTXDnzh38/vvvOH36NN69e4f379/DxMQERMEifVZWVnj9+rVc3bKU1Ze2S8q7d++Qk5Mj9/w333yDESNG4NWrV/jw4QNcXV0Vto1CofAP7aAplDL8+eefeP36NTIzM7F+/XqMHz8e33zzDQ4ePIiQkBAUFBTg559/RteuXWFrawuxWIy6devC3NwcRUVFcHd3R1ZWlkKdcePG4bfffsO7d+/w5s0b7Ny5s8KyEydOxLp165CWlob09HS4u7tj8uTJMmVWr16Njx8/4s6dO/j3338xduxYAIBYLEbDhg2hr6+PR48e4fjx4zX7gCgUCifQDppCKcM333yDL774Ai1btkTLli2xYsUK9O/fH2vXrsWYMWNgZWWF2NhYnDx5EgAwaNAgfPnll7C3t4eNjQ309fUrDVdLWbVqFZo2bYoWLVpgwIAB+Prrr6Gnpye37IoVKyASieDs7IxPPvkEnTp1wooVK5jzlpaWMDU1hbW1NSZNmoQ9e/bAwcEBALBr1y6sWrUKxsbGcHd3x7hx41TwKVEoFLahm2VQKKWwtbXF/v37MWDAAM61d+/ejZMnT8Lf359zbQqFIjyoB02h8ERycjLu3buHkpISvHjxAps2bcKoUaP4bhaFQhEItIOmUFjkyy+/hJGRUbnX+vXr8fHjR8yePRvGxsbo168fvvrqK8yZM4fvJlMoFIFAQ9wUCoVCoQgQ6kFTKBQKhSJAaAdNoVAoFIoAoR00hUKhUCgChHbQFAqFQqEIENpBUygUCoUiQGgHTaFQKBSKAPl/FYxxav1xPpMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "contour_plot = plot_contourf(\n", + " df=matr2,\n", + " y_axis='temp_module',\n", + " x_axis='poa_global',\n", + " z_axis=lfm_sel,\n", + " title='matrix predicted_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " vmin=0.7,\n", + " vmax=1.05,\n", + " levels=9,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [L1] Contour plot (colours) of predicted lfm_sel vs. poa_global (x) and temp_mod (y)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFlCAYAAADYnoD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9FklEQVR4nO2dd1RUx9/GH3pbQJCOgBSxoKARNWIXexJj7xQbETWxa2LBWKImthQjir1gbBg1sVckGhUNoICKogiKoAhKR8q8f/Cyv11ZYBfu7i3M55w9uvfOnfk+e5d5duZOUSOEEFAoFAqFQmENdbYDoFAoFAqlvkPNmEKhUCgUlqFmTKFQKBQKy1AzplAoFAqFZagZUygUCoXCMtSMKRQKhUJhGWrGSuD777+Hi4uL+P3u3buhqamp9HL9/f3Rq1cv3pdBqRsff/8olI+5evUq1NTU8OLFC7ZDofw/1IxVwMiRI/Hy5Uu2w+ANf/75J/r37w8rKyuoqalh//79ldLk5eXh22+/hZOTE3R1ddGqVSscPXq0Urpbt27By8sLurq6sLa2xnfffYfS0lLxeX9/f6ipqVV6qaur4/Xr15Xyy8/Ph5ubG9TU1PDPP/9IncvJycHkyZPRsGFDGBgYoH///khMTJRKU1xcjPnz58Pa2hp6enro3Lkz7t69K5UmJCQE3t7eMDU1lVlOTcydOxc3b95U6Bp5yMjIQGBgIGxsbKCjowNHR0ds2bJFfD4uLg7Dhw9HkyZNoK6ujkmTJsnM58iRI2jbti1EIhEsLCwwZMgQPHnyRHw+KSlJ5j1ZvHixOE1BQQE+//xz2NvbQ1dXF5aWlhg0aBDi4+MV0rR79240bdoUOjo6aNasGUJDQ6tMe/nyZWhoaFT6oSOvbi5TWFiI8ePHo02bNtDW1qY/5ligXprxhw8fVFqenp4eLC0tVVomn8nNzUX79u0RHBxcZZqAgAAcOXIEW7duRVxcHAICAjBq1CicO3dOnCYlJQW9e/dG06ZNcffuXQQHB2Pr1q1YtGiROM0vv/yCV69eSb06dOiAHj16wMLColK5U6dOhbOzs8yYfHx8cOnSJRw9ehT//PMPCCHo3bs3CgoKxGnmzZuHHTt2YOvWrYiMjISTkxN69eqFtLQ0cZr8/Hz07NkTa9euVehzq0AkEsHMzKxW11ZFbm4uunbtiidPnuCPP/7Ao0ePcODAAbRo0UKcJj8/H/b29ggKCoKHh4fMfG7duoVRo0Zh6NChuHfvHk6fPo23b9/is88+q5T2xIkTUvfl22+/FZ9TU1ND7969cfjwYTx69AinTp1CSUkJvL29UVhYKJem48ePY+LEiZgyZQpiYmIwefJk+Pr64syZM5XSpqenw8/PD7179650Th7diqLqOqq0tBTa2trivyMKC5AaOH/+POnWrRsxMTEhRkZGpGvXruTWrVvi82PGjCG9e/eudF2/fv3IyJEjxe83btxIbG1tiZ6eHunTpw/Zu3cvAUBSUlKqLLtbt25k4sSJZPny5cTS0pKYmJgQPz8/kpubK05TVlZG1q5dSxwdHYmWlhZxcnIiGzdulMrHwcGBLFq0iAQGBhJTU1Pi6elJrly5QgCQU6dOkU8//ZTo6uqSTz75hMTGxpLY2FjSqVMnoqenR9q1a0fi4uLEeWVmZpKxY8cSOzs7oqurS1xdXcm6detIWVmZOM3SpUuJs7Oz+P2uXbuIhoaG+P379++Jv78/sbS0JNra2qRRo0Zk1qxZUjH/+uuvpGnTpkRHR4e4uLiQlStXkuLiYqk4RowYQfT19YmFhQVZtGgR8fX1Jd7e3lV+npJUxHjo0CHi4uJC9PT0yJdffknev39PwsLCiKurKxGJRGTo0KHk3bt34uv8/PyIt7c3Wb9+PbGxsSF6enpkyJAh5M2bN3KVO2XKFOLg4ECysrLEx/z9/YmLiwvJzs6ulB4A2bdvn9SxgoICoqmpSf744w+p4wMHDiRdu3YVv//uu++Ira0tKS0tFR/btGkT0dfXl/oOSfLo0SMCgBw+fLjSud27dxMPDw/y8OFDAoBERERUuu7cuXPiY5mZmURbW5vs2rWLEEJIdnY20dHRIVu3bhWnKSkpIZaWlmTp0qWVynv27FmlcuTh4+8fIeV/x15eXkRXV5fY2NgQf39/kpGRIZXm4MGD5JNPPiE6OjrE1NSU9OvXj2RmZhJCCAkKCiIODg6ksLBQrhgq/nY/ZuPGjcTU1FTq2MmTJwkA8festrqjo6MJABIdHS1X+o4dO5LRo0dLHRs2bBjp1q2b1LHS0lLi7e1NVq9eLfOzlaQq3dVRURf9/fffpFOnTkRHR4f89ttvctU1FX+PW7duJfb29sTQ0JAMHDiQvH79WqqMX3/9Var+3bNnT5X1b1UaK+I8efIkadeuHdHR0SEtWrQg58+fl0r35MkTMmzYMGJiYkL09PRIq1atyF9//VWl/uLiYrJs2TLi5OREtLW1iY2NDZk+fbr4/LZt20izZs3E38suXbqQlJQU8v79e6Knp0dCQ0Ol8ktNTSXq6urkzJkz1X/wHKNGMz527Bg5fPgwefToEYmNjSUTJ04kJiYm4j/ks2fPEnV1dfLixQvxNWlpaURDQ4OcPn2aEEJIWFgY0dDQID///DNJSEggu3btItbW1nKZsbGxMZk5cyZ58OABOXPmDDE2NiZBQUHiNJs2bSK6urpk69atJCEhgQQHBxMdHR2yfft2cRoHBwdiaGhIli5dSh49ekTi4uLEX6zWrVuTS5cukbi4OPLpp5+SVq1akS5dupCLFy+S+Ph40qlTJ9K+fXtxXq9evSJr1qwhd+/eJU+fPiX79u0jBgYGZOfOneI0NZnx119/Tdzd3cnNmzfJ8+fPyfXr10lISIjU9fb29uTYsWPk6dOn5NSpU8TOzo4sXrxYnGbQoEHE2dmZXLp0icTGxpKxY8cSQ0NDhcxYX1+fDBgwgMTExJCrV68SMzMz0rt3b9K/f38SHR1Nrl27RiwsLMj8+fPF1/n5+RFDQ0PyxRdfkHv37pErV64QFxcX8sUXX8hVbkFBAWnVqhUZNmwYIYSQ0NBQoq2tTe7cuSMzvSwzzs7OJmpqauTPP/+UOj5y5Eiira1NPnz4QAghpGvXrmT8+PFSaZ48eVJtRT979mxiYWEhzqOC+Ph4Ym5uTh48eCDTLHbu3Em0tLRISUmJ1HWdO3cWV86XL18mAMjz58+l0owbN07mfWPKjC9dukT09PTIr7/+ShISEsjt27dJ9+7dSZcuXcQV+86dO4mmpiZZvnw5iYuLIzExMeTnn38W/8hyc3MjY8eOJYGBgcTKyoo0bdqUzJ07l+Tl5cmMoSpTunXrFlFXVyeHDh0ipaWlJCsriwwfPpx06tSpkm47OzvSsGFD0rZtW7J+/fpK90SS7OxsMn36dGJra1tlTJIUFRURTU1NsmfPHqnj27dvJzo6OlL38fvvvye9evUipaWlSjXjpk2bkhMnTpCnT5+SlJQUueoaPz8/YmRkREaNGkXu379Prl+/Tuzt7Ymvr684zfHjx4mGhgZZv349efToEdm+fTuxsLCotRm7uLiQv/76i8THx5MJEyYQXV1dcf3/6tUrYmFhQby9vUlERAR58uQJOX78ODl16lSV+n19fYm5uTnZu3cvefLkCfn333/Jhg0bCCGE3Llzh2hoaJA9e/aQpKQkcu/ePbJt2zZx3KNGjSJ9+vSRym/t2rXE2tq60t8i16nRjD+mtLSUNGjQgOzfv1/83sbGhqxZs0acZv369cTKykr8YXh5eZFx48ZJ5bNgwQK5zLhVq1ZSx7766ivy6aefit83atSIzJs3TyrNzJkziaOjo/i9g4MD6dmzp1Saii+WZIV++PBhAoAcPXpUfOzYsWMEAMnJyakyzm+++Yb06tVL/L4mMx44cCDx8/OTmVdeXh7R09Or9Ktuz549xNjYmBBCyOPHjwkAqV+kRUVFxMbGRiEz1tDQkGrRTp06lairq0v9qv7mm29I27Ztxe/9/PyIgYGBVGv53LlzBABJSEiQq+z4+Hiir69Pvv32W2JoaCj+w5OFLDMmpNzkPD09ybNnz0hpaSk5ffo00dXVJQBIamoqIYSQJk2akO+++07qutzc3CpbvoWFhaRhw4bk22+/lTqel5dH3NzcyI4dOwghsk3yhx9+INbW1pXyHDZsGBkwYAAhpPyHBwBSVFQklWbu3LmkRYsWla5lyoy7detGFixYIJXm+fPnBACJiooihBBiZ2dHpk2bVmWeurq6REdHh/j6+pLIyEhy4sQJYmdnR8aMGSMzfXWmdPLkSWJiYkI0NTUJANKhQwepVvqbN2/IunXryM2bN0lUVBT5+eefiaGhYaU6hBBC5s+fTwwMDAgA0qxZM/L48eMqNUjy8uXLSj0ZhBDy999/EwDiv4HLly8TKysr8urVK0JI1UYlj+6qqKiL9u7dW2Paj+saPz8/YmZmJtVjsXr1amJlZSV+36lTp0r3ac6cObU2Y8mGTnFxMbG3tyeLFi0ihBCyePFiYmlpWWXP08dU1GVHjhyRef7YsWPEyMiIvH//Xub5M2fOEA0NDfLy5UvxMXd3dzJ37ly5yucSNT4zfvbsGXx8fODi4gIjIyMYGRnh/fv3eP78OQBAXV0dY8eOxb59+8TX7Nu3D2PHjoWGhgYAID4+Hp9++qlUvh07dqypaABA69atpd7b2toiPT0dAJCdnY0XL16ga9euUmm6deuGpKQk5Ofni4+1b99eZv6Sz3isrKwAAO7u7pWOVQzmKSsrw5o1a9C6dWuYmZlBJBJhy5Yt4s9DHqZOnYqjR4+iZcuWmDFjBs6cOYOysjIA5YNBCgoKMHToUIhEIvHrq6++wvv37/HmzRvxIBUvLy9xntra2mjXrp3cMQDln6Xks0UrKytYWVnB3Nxc6tjHA5latGgBY2Nj8ftOnToBAB48eCBXuc2bN8e6deuwZs0adO7cGTNnzlQobgDYv38/jI2N4eTkBG1tbcydO1c8cKbieycLNTU1qX8lOXr0KDIzMzF58mSp49988w1atmyJCRMmKBxnVWXVJk1tiYyMxM8//yz1fap41vv48WO8fv0aKSkp6NOnT5V5lJWVoWHDhtixYwc8PT0xcOBAbNiwAQcOHEBmZqbcsTx8+BCBgYGYNWsWIiMjcfnyZWhpaWHw4MHigXVmZmaYM2cOOnTogNatW2PGjBn4+eefsX///koDIefNm4eoqChcuXIFzs7OGDx4MHJycmrxKUmjpqaGjIwMjBs3Djt37hTXA8rk4zpK3rqmefPm0NHREb+XrCOB8vpXsq4AgM6dO9c6Tsm6W1NTE+3btxfXSXfv3oWXlxcMDAzkyuu///4DgCq/e71794aTkxMcHR0xatQohISEICMjQ+q8hYWFeOBdTEwM7t27B19f31ppY5Mazfjzzz9HcnIyfv/9d9y8eRPR0dGwsLCQGmDg5+eHuLg43L17F7GxsYiOjq70YdS2stHW1q6UT4VxVZU3kbERVVVfDi0trUr5yDpWUeb69euxevVqfP3117hw4QKio6MxadIkhQZc9O3bF8nJyVi0aBEKCwsxbtw49OzZE6WlpeJyjhw5gujoaPHr/v37ePz4MUxNTWXqqw2SOiu0yjr28efNBNeuXYOGhgaSk5PlHnAjiYODAy5evIjc3FwkJycjLi4Oenp6MDIyEv/AsLa2lhoYBUD8XlblumXLFvTp0wdOTk5Sxy9evIgjR45AU1MTmpqa4pGm3bt3R9++fcVlZWRkSI3UBsoH/lSUZW1tLRWDrDTKoKysDAsWLJD6PkVHR+Px48fo37+/OF11f6PW1tZo0qSJ1BQ9Nzc3AFDoh+iqVavQqlUrLFmyBK1bt0aPHj1w4MABRERE4MqVK1VeV2EmH5dlZmaGJk2aoHv37jh27BiSkpKqHREteZ2mpqbMe6GjowMTExPExsYiNTUVX3zxhfjeL1++HImJidDU1MSBAwfk1i0PH9dR8tY1surIj+sIZf7YU2ZZIpEId+7cwZ9//glXV1ds2bIFLi4u4hkIGhoaGDt2LPbu3QsA2Lt3L9q0aYNWrVoxFoOqqNaM3759i/j4eHz77bfo27cvWrRoAV1d3UotJTc3N3zyySfYu3cv9u7di9atW0u1Llu0aIF///1X6hompl4YGRmhUaNGCA8Plzp+7do1ODo6Ql9fv85lfMy1a9fQr18/TJw4EW3atIGLiwseP36scD6mpqYYPXo0tm7dilOnTiE8PBzx8fFwc3ODrq4unj59ChcXl0ovDQ0NcSV448YNcX4fPnxAZGQkYzqr48GDB8jOzha/r4ijefPmcl2/Y8cOHD9+HOHh4cjPz8esWbNqHYu+vj5sbGzw4cMHHD16FIMGDYK6evnXulOnTrhw4YLUj4mzZ89CX18fbdq0kconPj4e//zzD7766qtKZZw/fx4xMTFiEzt9+jQAYNeuXdi6dau4rOLiYly+fFl83bt373Dr1i1xK6Rt27bQ0dGRGvFdVlaGixcv1qmlUhOenp6Ii4uT+X2qmF7UqFEjqbg+pkuXLkhMTJT6sfHo0SMAQOPGjeWOJS8vT3x/KqjoyajuR2ZUVBQAoFGjRtXmTwhBUVFRjXFU9CR9rPns2bP49NNPoaGhgXbt2uH+/ftSP2CmTJkCOzs7REdHyxwBziRM1TUtWrTA9evXpY59/F4RJOvukpISREZGiv/227Zti+vXryMvL0+uvD755BMA5X9jVaGhoYGuXbti+fLluHv3LqytraV+CPn5+SE2NhZ37tzBH3/8AT8/v9rIYp1qV6IwMTGBubk5tm3bBmdnZ7x9+xbz58+Hnp5epbR+fn5YuXIltLS0MHfuXKlzc+bMwciRI9G+fXv0798fN27cEP+SqeuvqO+++w5z5swR/zq+fPkygoOD8fvvv9cp36po2rQp9u3bhytXrsDW1hZ79+7FrVu3YGJiInceixYtQtu2beHm5gZ1dXWEhoZCJBLB3t4eIpEICxcuxMKFCwGUd8OUlJTg/v37iIqKwo8//ggXFxcMHDgQ06ZNw9atW2FpaYk1a9Yw0j0nD2pqavD19cXKlSuRmZmJadOm4bPPPkOTJk1qvPbRo0eYMWMGNm7ciE6dOuGPP/5A586d0bt3bwwdOhQAkJmZieTkZPE1ycnJiI6OhqmpKezt7QEAFy5cwIcPH9C8eXOkpKQgKCgIBQUFWLVqlfi6wMBAbNq0CZMnT8bs2bORmJiIJUuW4Ouvv67UCtm6dSusra3xxRdfVIrZ1dVV6r1IJAIAODo6io3I1dUVX375JQIDA7Fjxw4YGxtj4cKFsLW1xciRIwGU/3icMmUKFi5cCGtrazg6OmLt2rUoKCiQ+hGQlpaGtLQ0pKamAgCePHkCkUgkfoygKMuXL0efPn0wa9Ys+Pn5wdDQEI8fP8aRI0ewadMm6OnpYenSpQgMDISlpSWGDRuGsrIyXLlyBaNGjYKZmRnmzp2Lw4cPY/r06Zg5cyZSU1Mxd+5c+Pr6ir/7Hz58EHdX5ubmIjMzE9HR0dDW1hZ3iw8aNAj+/v7YuHEjBg4ciKysLCxcuBA2Njbo0KEDgPK5vxoaGvjkk0+gq6uLiIgIzJs3D8OGDRPf/6tXr+LBgwfw8vKCiYkJUlJS8OOPP0JdXR2DBw+W63OZP38+hg0bhvbt26Nfv344deoUjh07hr/++gtAeUu1ZcuWUtdYWFhAW1tb6rg8umsDE3UNUF7/Dh8+HO3bt8eAAQPwzz//SD1WrCA+Ph4fPnxAWloaPnz4gOjoaADlZi7Z+l6zZg2srKzg6OiIDRs2ID09HYGBgQDKH8Ft3boVX375JZYtWwYbGxvExcVBQ0MD/fv3x8uXL+Ht7Y3Vq1dj8ODBcHFxwdixYzF16lQUFhaiY8eOyMzMxI0bNzBjxgycOHECT58+RdeuXWFubo67d+8iJSVF6nNt2bIl2rRpg8mTJ+PNmzcYPXp0LT5tDlDTQ+WrV68Sd3d3oqOjQ1xdXcnRo0eJs7NzpakYb968IVpaWkRTU5OkpaVVymfDhg3ExsaG6Orqkj59+pCtW7cSAJWmV0giazDEihUriIODg/h9WVkZ+emnn0jjxo2JpqYmcXR0lDm1acWKFVLHKgYjSA5giIiIIADIs2fPxMf+/fdfAkA8MOTdu3dk+PDhxNDQkJiampKpU6eSxYsXS8VU0wCu5cuXEzc3N2JgYCCeLvbxIJ3t27cTDw8PoqOjQxo0aEDat29PNm/eLD6fkZFBhg8fTvT19YmZmRn59ttvazW1SZKPP1tCygeD2Nrait9XTKVYu3YtsbKyIrq6umTQoEGVplLIorCwkLRu3ZoMGTJE6viqVatIgwYNSFJSEiGk/PMCUOklOejt6NGjxMXFhWhraxNTU1MyevRo8fWS/Pvvv6Rjx45ER0eHWFpakm+//bbSKMv8/HzSoEEDqdHq1VHVwKrs7GzxbAM9PT3St2/fSgOKPnz4QObNm0csLS2Jjo4O8fLyIpGRkVJpli5dKlO/rOlPspB1b69du0a8vb2JSCQi+vr6pFmzZmTGjBlS0+X2799P3N3dxZ/pgAEDpKagXbx4kXh6ehIdHR3i4OBQaTR1xefy8evj79SWLVtIq1atiL6+PjE3NydffPEFuX//vvj8nj17SMuWLYmBgQHR19cnbm5u5Mcff5QapHTz5k3StWtXYmpqSrS1tYm9vT0ZO3as1DREedi1axdp0qQJ0dLSIq6urjIHC0oi67OVV3dVyKqLCJGvrqn4e5Rk37595OOq/eeffxbXv97e3mT37t2VynRwcJCpo6I+rIjzxIkT5JNPPiHa2tqkefPm5OzZs1JlPXr0iAwaNIgYGRkRPT094u7uLh5NXfFZVUz3I6T8b6JCl5aWFrG1tSUzZswghBASHh5OevToQczMzMTTPFevXi01vatCHwDy+eefy/WZcxE1Qhh6AKkgy5cvxy+//IK3b9+yUTyFQqFQFODq1avo0aMHUlJSanxcQFEc5S+YjPIlANevX48BAwbAwMAAV65cwdq1azFt2jRVFE+hUCgUCqdRyXKYampquHr1Kry9veHm5ob169dj4cKFWLlypSqKr3ckJydLTWP5+CXPaNPaUl25ks9zKbUjIiKi2s84IiKC7RA5wapVq6r9nFSJm5tblXFMmTJFpbHwgU2bNsHT0xM6Ojrw9/evNu3GjRthZWUFY2NjTJgwQebgvcePH0NXVxfjxo1TUsTMwFo3NUV5lJSUICkpqcrzlpaWMDQ0VErZkgv+f4ypqSlMTU2VUm59oaCgoNpNR2xtbWUOsKxvZGZmVjv/WZUbITx//hzFxcUyzxkZGclcA70+c+zYMairq+PcuXMoKCjA7t27ZaY7d+4cfH19cfnyZdjY2GDw4MH49NNPsWbNGql0ffr0QUFBARwcHGRuOsMVqBlTKBQKhXMsXrwYL168qNKMx4wZg8aNG4t73C5duoSxY8dKzR0/ePAgjh07hhYtWuDJkyecNuN6uWsThUKhUPhNXFyc1AqKHh4eSE9PFw8Kzs7ORlBQENavX89WiAqhkgFcXCYkJAQhISEAgKi7d2GmpQkLbU0k5BfBQVcbZYTg5YdiuOjp4NWHYujqasFCpIP76dloZi5CUUkZXuUUoklDEZLf50NfSxNm+tqISXuPVpZGyCkqQUb+BzibGiApKx/Gupow0dNG1Kv3aGNtjKyCD3hfWILGJvpIzMyDmb42DHU0cT89Gx5WxsjI/4D84hLYG+vj8dtcWBvqQkdTHQ/f5KKVpRFe5xahuKwMtkZ6eJiRAwebBtBQV8OTF+9gaqQr1mljJkLs0wy4NGqA0jKC5LRsNG/cECmvc6CtqQ5LUwPce/IGzRo3RNGHEqRm5KKpvSmep2VDX1cT5g30EZXwGu4u5sjJ/4CMd/lwaWSCp6nv0UCkA1MjXdx9lI62TS2RmV2Id7lFcLIxxpMXWTBroA9DfW3ce/IGbVwt8OZdPvILS+BgZYRHyZmwMRNBR1sTD5Pewt3FHOmZefhQUgY7C0M8SHoLeysjwWp6+DwTrZtYIDUjt+6ajAxgbmaEqJhn8GjZGDm5BXiTkQ0XZys8S3oNYyN9mJqKcDfqKdq2cUJmZi7eZ+fDsbEFniSmwdzMCIYiPcTEJqGNhyPeZGQjP78IDvbmePQ4FTZWJtDV0caDRy/g3soB6envUVxcgkaNGuLBwxdwsDdHxtscZOcUoGULO6S+yirXZG2C2PgUuDhZoaysDM+T36B5s0Z48eIttLQ0YWlpjHv3n6N500YoLPqA1LQsNG1ig+fJb6Cvr8OqJn19HVhaNMCTp2mC0JSU/F5qOcm60ND+ExQXZtec8CPszHWkHqUEBAQgICBA4Xxyc3OlluWt+H9OTg4aNmyIJUuWYOLEibCzs1M4bzao92Ys+UVw0dPB2dZVL1xh27exiqKqHTq9pFfAuvsoDW2bKn9NXVUiNE3V6VH3+FTmcS5zNyoRbdvI3u+ZjwhNj2eP1YzlVVyYDc/h6xS+LvvWSty5c6fO5YtEIqmVACv+b2hoiOjoaFy8eFG8chsfqPdmLIl6NauB8c2IAcBQT1tGSn4jBE2SJmusnwr1JjYsRsMshiJhDR4Tmh4h4ebmhpiYGIwYMQJA+SYRlpaWaNiwIfbt24ekpCTxim25ubkoLS1FfHy8eHMKrkGfGUvwvFD2Zg98NGIAGLjgTxVHonz4pEnd41OZL0k+H8FcS4ULUD2UulJSUoLCwkKUlpaitLQUhYWFKCkpqZTO19cXO3bsQHx8PLKysrBy5UrxVKiAgAAkJiZKrSn+2WefVbv+OtvQlrEErvo6lY7x1YgB4OEfE1UYiWrgmqa6diUnRP3GUCTcgOqh1JWVK1di2bJl4vf79+/H0qVLMWHCBLRo0QLx8fGwt7dHv379MH/+fPTo0UO87WzFdfr6+lIbBYlEIujq6kptD8s16NQmCSy1tXC9bVPxez4bMQAs23kdSyd0UlE0qoENTcp8dvv9qkP4fuFIpeWvaqgebuPZYzUjz2sBwMjChdVnxkKDtoyrgO9GTFEMPg6WolAowoG2jCVoJdLDn62cqRELGGq6lPoMbRlzFzqAS4KE/CJBGXGz0TuUGAk7yKOpqoFTXDRi1zZfsx0Co1A9FErtoN3UEriYGdSciEUUbRGf/FG+Tdb5RIUmLhprbfj78Hdsh8AoVA+FUjuoGUtQyuEO+9p0TecUyJ6qxUcqzDevLBHqHsJZhCEnt4DtEBiF6qFQagftppYg+X0+2yHIpLbPiKf8dIHhSFTPx93LATO2shgN81A93EZoeijchZqxBM3MlLOtYF2oy2CtyB0+DEaiemR1Rd+99hMLkSgPqofbCE0PhbtQM5bgZTa3uqTqOmp67qYrDEWiWqobbDVn4R4VR6NcqB5uIzQ9FO5CnxlLoKXOnd8mTExfsjETMRCJ6pBnUJaNtYkKIlEdVA+3EZoeCneh84wl+MSmAa4HdGY7jHo3j1goI6MpFK5D5xlzF+40BTnA/XTF9+ZkGiaNuNGgYMbyUhaKGrGN62QlRcIOVA+3EZoeCneh3dQSNDNnt1uX6Rbx7e3cHcBV29bwnfAfGY6EXagebiM0PRTuQlvGEhSVlLFWtjK6phNSMhnPs67UdSWshCepDEbDPlQPtxGaHgp3oWYswaucQlbKVdYz4uU7bygl39rA1HKU368+zEA03IHq4TZC00PhLnQAlwRsDOCqD4O16AAtCoUb0AFc3IW2jCVQ9Qpcyjbir346r9T8a0IZmzMEfLOF0fzYhurhNkLTQ+EudACXBPpaqvs4VNEibtvMUullyEKZLWHPNsJZlxqgeriO0PRQuAs1YwnM9LXZDoFRAgZ6qLQ8VXRHB4zvrfQyVAnVw22EpofCXWg3tQQxae9VUo6qnhMb9/lFJeUAqnsubGgzTiXlqAqqh9sITQ+Fu9CWsQStLI2UXoYqB2y9OB6o9DJUPTgr9dE2lZanbKgebiM0PRTuQlvGEuQUlSg1f1WPnL4alaK0vJUxOEserv4Tp/IylQnVw22EpocPbNq0CZ6entDR0YG/v3+1aTdu3AgrKysYGxtjwoQJKCoqEp/LzMzE4MGDYWBgAAcHBxw4cEDJkdcNasYSZOR/UFrebExh2nYyhvE82TLhCkJ28X+PZkmoHm4jND18wMbGBosXL8aECROqTXfu3DmsWbMGly5dQlJSEp4+fYqlS5eKz0+bNg3a2tpIT09HaGgoAgMDERfH3R9XdJ6xBMqaZyyUucR0vjCFwm/4NM948eLFePHiBXbv3i3z/JgxY9C4cWOsWrUKAHDp0iWMHTsWaWlpyMvLg4mJCWJjY+Hq6goA8PHxga2tLdasWaNwzKqAtowlSMpifp4xm0Y8dtnfjOTDdmtYkjETfmY7BEaheriN0PQIibi4OHh4/G/GiIeHB9LT0/H27VskJCRAQ0NDbMQV57ncMqYDuCQw1mX242C7RfyZV93mSHLFgCX5vF9btkNgFKqH2whFz2tN5nv89I100NbbSeHrDv/9Bp6enuL3AQEBCAgIUDif3NxcGBsbi99X/D8nJ6fSuYrzOTk5CpejKqgZS2Cix9w8Y7aNGADG9K5dDFw04QrGjOjCdgiMQvVwGy7qUYaxqhJzc3NGuspFIhGys/+37W3F/w0NDSudqzhvaGhY53KVBTVjCaJeMTPPmAtGDAAaXdahNGKuQtdw2YgBQM1oGEj2UbbDYAyqh9uoQg/fzZUt3NzcEBMTgxEjRgAAYmJiYGlpiYYNG0JXVxclJSV4/PgxmjRpIj7v5ubGZsjVQs1YgjbWxjUnqgGuGDEAhYyY6yZcgZAqeoDq4TqK6qHGWndKSkpQUlKC0tJSlJaWorCwEJqamtDUlLYrX19f+Pv7Y+zYsbC2tsbKlSvFU6EMDAwwZMgQBAUFYfv27YiOjsaJEydw4wZ3drL7GDqAS4KsgrpNbeKSEQPAgQsPakzDpcFZ8nDgcATbITAK1cNtgsNe47VmZ7lflLqzcuVK6OnpYc2aNdi/fz/09PSwcuVKJCcnQyQSITk5GQDQr18/zJ8/Hz169ICDgwMcHBywbNkycT6bN29GQUEBLCwsMHr0aAQHB9OWMV94X1j7RT+4ZsQAcOpGYpXPjflkwJL8ffYuJ5/j1RaqRzXU1igvnAnE0JFDGI6GUh3ff/89vv/+e5nncnNzpd7Pnj0bs2fPlpnW1NQUx48fZzg65UHnGUtQ23nGXDTi6uCrEVMotPVZNwZ0+YyxecZWLm7w+ekPha+7smoC3c9YBrSbWoLEzDyFr+GyEQ9ccEzqPd+6pGXxxYjVbIfAKPVVjyJdv2x2A48b6qPyMin1E9pNLYGiWyhy2YgBYPL/b6HIdwOWRGhb2glBj6RJjpg4Q1CtV58J1IwpqoGasQSGOvJ/HFw3YgDo6TME6oZ6bIfBKN07c3cARm3guh5FjbVTVy8lRcIOQtND4S7UjCW4n55dcyLww4jVPT6Fjc045KTuZzsURrFpOllQmtjUo4wWrLuzB56+TmQ8X7YQmh4Kd6FmLIGHVc3zjPlixAAEZVoVCE2TMvSw2U0sNOMSmh4Kd6EDuCSoaQtFPhkxIMzt34SmSVE9XBzkJMneHftYLZ9phKaHwl2oGUuQX1z1PGO+GTEA3IkS3q96oWmS1MN1o5WHmP+Y30ObTYSmh8Jd6DxjCaqaZ8xHI6ZwEz4YKkW40HnG3IW2jCV4/Da30jE+G3H3AUEqjkT58EWTvC3bwX0HsxCd8qB6KJTaQQdwSWBtqCv1ns9GDADffzdChZGoBq5pqmtLd+4ixXbV4jpUD4VSO6gZS6Cj+b+OAr4bMQC4utioKBLVwaYmZXQxO7s4M54nm1A9FErtoN3UEjx8U95NLQQjBgDPbgtUEIlqUYUmVQ6e6tO5r1LyZQuqh0KpHbRlLEErSyPBGDEApCZsU3IkqodJTVwYTHXvqbBG61I9FErtoC1jCd6UlLIdQo0oMmp6/W8nlRgJO9RWE1enCQX/Esx2CIxC9VAotYO2jCX4UFLGdgjVouj0pdRXWUqKhD1q0sQVk5WXtFdpbIfAKFQPhVI76DxjCTybWeH2dm7u0kLnEUvDN9OlULgAnWfMXWg3tQQPkt6yHYJMamvEbbvOZzgS9qjoWvboulxQRtzbqw/bITAK1UOh1A5qxhLYWxmxHUIl6tIiDvnlKwYjYQ9J8123aS2LkTAP1cNthKaHwl3oM2MJNNTV2A5Birp2TRuK+L2XsawWsMhQxEIkyoPq4TZC00PhLrRlLMGTF+/YDkEME8+IPx+xmoFIVE91o53HDeXmM/3aQvVwG6HpoXAXasYStHQyYzsEAMwN1kqI+o2RfFSFPFOO/r13Q0XRqAaqh9sITQ9fyMzMxODBg2FgYAAHBwccOHBAZrqioiLMmjULNjY2MDExwdSpU1FcXCyV5uDBg2jevDkMDAzg7OyMiIgIVUhQGGrGEqRmVN4oQtUwOWr6+1WHGMtL2cg7KGvtSmE9w6N6uI3Q9PCFadOmQVtbG+np6QgNDUVgYCDi4uIqpVuzZg3u3LmD2NhYJCQk4L///sPKlSvF5y9cuIAFCxZg165dyMnJwbVr1+Dk5KRKKXJDzZhD1MfpS1xagINCobBPXl4ewsLCsGLFCohEInTu3BkDBw7Evn37KqX966+/8M0338DU1BTm5ub45ptvsHPnTvH5pUuXIigoCJ9++inU1dVha2sLW1tbVcqRGzqASwIbM/YGayjDiL9fOJLxPJmitgY8b/E8hiNhF6qH2whND5MY6mmha2vFN245/OYNPD09xe8DAgIQEBAgfp+QkAANDQ24urqKj3l4eCA8PLxSXoQQSC6VQQjBixcv8P79e4hEIty5cwcDBw6Ei4sLCgsLMWjQIKxduxZ6etwb3EpbxhLEPs1gpVxltYhd23ytlHzrQl1bwh3dvRiMhn2oHm4jND1cwNzcHHfu3BG/JI0YAHJzc2FsbCx1zNjYGDk5OZXy6t+/P3755Re8efMGaWlp+PXXXwEA+fn5SE9PR3FxMY4ePYqIiAhER0cjKipKqhubS1AzlsClUQOVl6nMrum/D3+ntLwVhanu6P1hlbuq+AzVw22EpocPiEQiZGdnSx3Lzs6GoaFhpbSLFi1CmzZt0Lp1a3h5eWHQoEHQ0tKChYWFuPX79ddfw9raGmZmZpg9ezZOnz6tEh2KQs1YgtIy1a4MquxnxDm5BUrNX16YfCacm8P+IDsmoXq4jdD08AFXV1eUlJTg8ePH4mMxMTFwc3OrlFZPTw+bNm3Cy5cv8fTpUzRs2BBt27aFhoYGTExM0KhRI6ipcWv9iKqgZixBclp2zYkYQhWDtQJmbFV6GdWhjMFZc6cL6xke1cNthKaHDxgYGGDIkCEICgpCXl4erl+/jhMnTsDHp/Kc75cvXyI1NRWEENy8eRMrVqzAsmXLxOfHjx+P3377Da9fv0ZWVhZ+/vlnfP7556qUIzfUjCVo3rihSspR1ajpu9d+Ukk5H6PMEdIXbpxXSr5sQfVwG6Hp4QubN29GQUEBLCwsMHr0aAQHB8PNzQ3JyckQiURITk4GACQmJsLLywsGBgbw8/PDmjVr0KfP/9YTX7JkCdq1awdXV1c0b94cbdq0waJFi9iSVS3UjCVIeV15gADTqHL60pyFe1RWFqCaaUpLv12q1PxVDdXDbYSmhy+Ympri+PHjyMvLQ3JyMsaMGQMAsLe3R25uLuzt7QEAXbt2RVJSEvLz8/Ho0SOMHTtWKh8tLS1s3rwZ7969Ew/w0tXVVbkeeaBmLIG2pnI/DlXPI7axNlFZWaqaK2xlbaWSclQF1cNthKaHwl3ofsYSKHM/Y6Eu6EEX7KBQ+AOT+xk3adUaG05cVPi6ZSP60f2MZUBbxhLce/JGKfmyZcQ2rpOVljdbK2e5O3movExlQvVwG6HpoXAXugKXBM2UMICLzRbxnfAfGc+T7Zbw+X/OsVo+01A93EZoeijchbaMJSj6UMJofmx3TSc8SWUsL66sIZ34JJHtEBiF6uE2QtND4S7UjCVgctcmto0YAL5ffZiRfLhgwhWs+2Ed2yEwCtXDbYSmh8JdaDe1BE3tTRnJhwtGDABXTy+v0/VcMuEK/jz3J9shMArVw22EpofCXWjLWILnDKzAxRUjBoCAb7bU6jqudEnLYs60uWyHwChUD7fhm55brzSqfVG4C20ZS6CvW7ePg0tGDACebZwVSs9VA5bE4xNhjW6lergNl/RQMxU21IwlMG+gz3YIjBIwvrfcaflgxADgO1E588DZgurhNqrSQ42WQs1YgqiE17W+lmutYgAwtBmHnNT91abhiwlX4GThjKevhTPClerhNkzooUZLkQdqxhK4u5jX6jouGjEApD7aVuU5vplwBfcSY9gOgVGoHm5Tkx5qtBSmoGYsQU7+B4Wv4aoRA8DVf+LwRX9PqWN8NeEKrl+7gb6f9ak5IU/gsx5ZRnT70k209+7LQjTKQWh6KNyFjqaWIONdvkLpuWzEABCy64L4/1weIa0I+3buYzsERuGyntqMzD13cK+Ko1QuQtND4S60ZSyBSyP5dzniuhEDwF+HvwPA/9awJPvDuGtetYFNPcroYl2yLZTxPNlEaHoo3IW2jCV4mvpernR8MGIAGDIpVFBGDABT/APZDoFRlKmHjTmn62Z+pZR82UJoeijchbaMJWgg0qkxDV+M+LVmZ/TuX/vR4Vyld3/5p2vxgbro4eLgoXY9+fn8uyqEpofCXagZS2BqpFvteT4ZMQAMHTmE5UiYR2iaqtPDRbOtiW4Dh7IdAqMITQ+FuyjFjF+/fo3cXOlNF5ycnJRRFKPcfZRe5Tm+GTEAWOpbIT0/jcVomEdImm690sBAZ3OcTFTOPtpsQPVQKLWDUTM+e/YsJk6ciLS0NBBCxMfV1NRQWlrKZFFKoW1TS5nH+WjEAARjWpLwVVNVrVyhVfRUD4VSOxgdwDVt2jQsWbIEubm5KCsrE78UMeLu3btDV1cXIpEIIpEITZs2FZ+7dOkSmjVrBn19ffTo0QPPnz+vMp/MzEwMHjwYBgYGcHBwwIEDB2osOzO7sNIxvhoxAIQdOsZCJMqFD5oUGSwVfjJMhZEpH6qHwgTy1t9FRUWYNWsWbGxsYGJigqlTp6K4uFh8buLEiXBwcIChoSHatGmDM2fOqFKGQjBqxllZWfjqq6+gp6dXp3w2bdqE3Nxc5Obm4tGjRwCAjIwMDBkyBCtWrEBmZiY8PT0xcuTIKvOYNm0atLW1kZ6ejtDQUAQGBiIuLq7act/lFkm957MRA8CFMxdkHuczXNNU11HKkZfPKykydqB6KEwgb/29Zs0a3LlzB7GxsUhISMB///2HlStXAgBKSkpgZ2eH8PBwvH//HitWrMCIESOQlJSkYjXyoUYk+5PryLx589C8eXNMmDCh1nl0794d48aNw6RJk6SOh4SEYPfu3bhx4wYAIC8vD2ZmZoiKikKzZs2k0ubl5cHExASxsbFwdXUFAPj4+MDW1hZr1qypsmzPZla4vb18YXi+GzGFefg4oIpCkWTZiH64c+cOI3k1adUaG05cZDwGRepvT09PLFiwAMOHDwcAHDhwAAsWLEBKSorMvN3d3bF06VIMHcq9gXmMtoxv3ryJwMBAuLq6omvXrlIvRfjuu+9gZmaGTp064erVqwCAuLg4eHj8bzszAwMDODs7y/y1lJCQAA0NDfGNBAAPDw+ZaUNCQuDp6QlPT0/EPHmNZTuvQ93jU7i2+RoJj1NxNyoRbbvOBwDMWbgH6387CQCwcZ2M1FeZuBoRi+4DggCU7x9cseqVoc045OQU4K8zd/DFiNUAgDETfsaBwxEAADWjYQCAA4cjMGbCzwCAL0asxl9n7iAnpwCGNuPK49t1QbwvcfcBQbgaEYvUV5mwcZ2M15qdEfxLMJZ+uxQA0NurD2L+i0Hi40R0dPfCuKE+WLtyLdauXAsA6OjuhcTHiYj5Lwa9vcqnbCz9dimCfwkGALg7eSAtNQ3Xr13H4L6DyzVPm4u9O8oXpnCycEZuTi7OnTqPcUPLf7RM8Q8Udx1b6lsBKO9Krpg/O26oD86dOo/cnFw4WZRv6bh3xz7xPrGD+w7G9WvXkZaaBnen8vvLNU23Xmngp63HxXNOV0wei9uXziE/Nxcj3RsDAM7+sRebFs4GACwc8yXu37yOt+lp8O/YEgDw5/bN2LGq/Hsya6A3ntyPwctniRje0qH8e/DLTzjwy0/l5Xt3wMtniXhyPwazBnoDAHasCsKf2zcDAPw7tsTb9DTcv3kdC8d8CQDYtHA2zv5RvlrUSPfGyM/Nxe1L57Bi8lgA5fNlK7pcBzqXr8EefjKMcU2Lxg7CFO8OgtH07cgv8PJZomA0MYmBFkEH61KFX2/evBHXuZ6enggJCZHKV5H6mxAiNT6JEIIXL17g/fvKa0akp6cjISEBbm5uDH4KzMFoy3jPnj1VnvPz85Mrj1u3bqFFixbQ1tbGwYMHMX36dERHR2PVqlUwNzeX+mXUqVMnTJ48Gf7+/lJ5REREYPjw4UhL+99gn23btiE0NFRs7rJwaWSCJw+2yxUn28jTIj536jxv1z2uCmVrUnXr9/alc4Ja+5jq4TZMtoxbf+KB89cV78Yf0OWzamNQpP5evHgxrly5guPHj6O0tBRffvklbt++jdTUVFhbW4vTFRcXo3///nB2dsbWrVsVjlkVMDqaWl7DrY4OHTpI5ffHH3/g9OnTEIlEyM7OlkqbnZ0NQ0PDSnkoklYSo4byL4fJBzp19WI7BMZhWhPbXc8tO3RitXymoXoodUWR+nvRokV49+4dWrduDR0dHUyePBlRUVGwsLAQpykrK4OPjw+0tbWxadMmpcdfW+rcTb1v3//W1t25c2eVr9qipqYGQgjc3NwQE/O/7czy8vKQmJgos8vB1dUVJSUlePz4sfhYTExMjd0TMbFJtY5Tlcj7nNjd2aPmRDyDCU3KXhJSEcZ7tWQ7BEaheih1RZH6W09PD5s2bcLLly/x9OlTNGzYEG3btoWGRvnfNiEEEydORHp6OsLCwqClpaUyHYpS527qAQMG4PTp0wCAHj16yC5ETQ2XL1+uMa93797h1q1b6NatGzQ1NXHo0CEEBATgv//+g6mpKVxcXLBz50589tlnWLp0KcLDw3Hz5k2ZeY0aNQpqamrYvn07oqOjMWDAANy4caNaQ/b8xBl3wn+SQzV70AFbisMF06VQuAAfuqkB+evvly9fQk1NDdbW1rh16xaGDx+OHTt2oE+f8kdZU6ZMQXR0NC5evAiRSKRwrKqkzi3jCiMGgCtXrsh8yWPEQHm//uLFi2Fubg4zMzP89ttvOH78OJo2bQpzc3OEhYVh0aJFMDExwa1bt3Dw4EHxtatWrUL//v3F7zdv3oyCggJYWFhg9OjRCA4OrrFl/CYju9rzbKOoEVcMUhIS8mhSxYYITFExmEcoUD0UJqiq/k5OToZIJEJycjIAIDExEV5eXjAwMICfnx/WrFkjNuLnz59j69atiI6OhpWVlXjtitBQbu7ExfhymO/evcOpU6eQmpoKGxsbfPbZZ2jQoIFc15qbmyMyMrLK87169cLDhw9lnlu4cKHUe1NTUxw/flzesAEA+flFNSdiidq0iGP+iwEm+ighGvaoShPXTbcqntyPBkb7sh0GY1A9FCaoqv62t7eXWmq5a9euVc4bdnBwAIPjk5UOo6OpL1++jCFDhqBp06ZwcHBAcnIyHj58iLCwMHh7ezNVjNLgajc17ZquDF/Nl0JhE750U9dHGJ1nPH36dISEhODWrVs4fPgwbt68iW3btmHatGlMFqM0Hj1OZTsERqmYVysUbr3SgHePIYIy4or5p0KB6qFQagejZpyamlppZZPBgwdLzRfjMjZW3JvaVJdW8dxFcxmMhD0kn/2O/mY+y9EwC9XDbYSmh8JdGDVjX19f/P7771LHgoOD4evLj2cuujrabIcgRV27p51dnBmKhD0+bgXbOPJfkyRUD7cRmh4Kd6mzGXfp0kW85OV///2HOXPmoFGjRujQoQMaNWqE2bNnIyoqiolYlc6DRy/YDkEME8+J+3Tm78pBVY2EnjOoFwvRKA+qh9sITQ+Fu9R5NPXHGzpMnjy5rlmyhnsrB7ZDAMDcgK17T2NqTsQxanoevPvfWBVFohqoHm4jND0U7lJnM1Z0CcypU6di8+bNdS1WKaSnV15cXNUwOXI6+JdgBM4IZCw/ZSPPwKw/t2/G4ElTVRCNaqB6uI3Q9FC4C6PPjOVh//79qi5SboqLS9gOgVHSXvFj4Jwii3NkvuaHJnmheriN0PRQuAuj84zlwdDQEDk5OaosUm7Ynmdc3+YTC2mKEoXCB+g8Y+6i8paxmpqaqouUmwcP2RvApQwjrtjfl4vU1ogr9o0VClQPtxGaHgp3YXw5TD7jYG/OSrnKahGv27RWKfnWhbq2hqf9sIGhSLgB1cNthKaHwl1U3jLm8lqh6uoq/ziU2jUtMuTWLiVMdEvrcXznFUWheriN0PRQuIvK3WfcuHGqLlJunjwV1mCNcUO5sUkEk7snrZg0hpF8uALVw22EpofCXRg1Y0IItm3bhp49e8Ld3R0AcO3aNRw+fFicJjg4mMkiGaVlCzuVlqfsAVv/3ruh1PxrQhlbGG65dIvR/NiG6uE2QtND4S6MmnFQUBB27NiBgIAA8X6TjRo1wo8//shkMUoj9VWWyspSxcjptSvZe2asrJHSB37h3q5adYHq4TZC00PhLowO4Nq9ezeioqJgZmaGwMDyxSYcHR3x9OlTJovhPUKewkSnK1EoFIriMNoyLi0thej/BzxUTGHKzc0VH+M6NtbK37VJlUY8b/E8lZUFqMaIx8wQ1i46VA+3EZoeCndh1IwHDBiA2bNno6ioCED5M+QlS5bgiy++YLIYpREbn6LU/FXdIu7o7qWScpTxbLgqpnh3UEk5qoLq4TZC00PhLoya8YYNG5CamgpjY2O8f/8eIpEIz58/580zYxcnK7ZDYJT9YfuUmr8qTbiCJdsPqLQ8ZUP1cBuh6aFwF0afGRsZGeH48eNIT09HcnIy7OzsYGXFH4MrKytTWt5sPCfOzclVWt5sPRsuyFWeJjageriN0PRQuEudW8ZlZWWVXubm5mjbti0sLCzEx/jA8+Q3SsmXrQFbc6cz/8yYjdawJL8vms1a2cqA6uE2QtPDFzIzMzF48GAYGBjAwcEBBw7I7qEghGDx4sWwtbWFsbExunfvjri4OPH5pKQkDBgwACYmJrCyssL06dNRUsLNDYHqbMaamprQ0tKq8lVxng80b9aI8TzZHDl94Ybii7hXBxdGSm88eYntEBhFSHquRacKSg8grPvDJ6ZNmwZtbW2kp6cjNDQUgYGBUiZbwZEjR7Bz505EREQgMzMTHTt2hI/P/xY7mjp1KiwsLPDq1StER0cjPDycs1v41tmMnz17hqdPn1b5qjjPB168eMtofmxPYVr67VJG8mG7NSzJjlVBbIfAKELQcy06FdeiUwEAy2bOFv9fCAjh/vCNvLw8hIWFYcWKFRCJROjcuTMGDhyIffsqj4F59uwZOnfuDCcnJ2hoaGDcuHGIj4+XOj9ixAjo6urCysoK/fr1k2nqXKDOz4wdHByYiIMTaGkJa98MK+u6Pa/nigFLYmrBnzEI8sB3PR8br8jUXOp419Y2Ko+JSfh+fyRh+keSJnJhUfKPwte9efMGnp6e4vcBAQEICAgQv09ISICGhgZcXV3Fxzw8PBAeHl4pr1GjRuHQoUNISEiAo6Mj9uzZg379+onPz5gxAwcPHkT37t2RlZWFM2fOYMWKFQrHrAoYdR8fH58qt0jcu3cvk0UpBUtLY8byYrtVDACBMwJrfS0XjRgABk+aynYIjMJXPVVV7O0G+slMx1dT5uv9kYRrPRXm5ubV7mecm5sLY2PputjY2Bg5OTmV0lpbW6NLly5o2rQpNDQ0YGdnh8uXL4vPd+vWDdu2bYORkRFKS0vh5+eHQYMGMaaFSRid2uTi4gJnZ2fxy8DAAGfOnIGpqSmTxSiNe/efM5IPF4wYANydPBS+hktd0rLw79iS7RAYhW96JLukZRE8qVetruMqfLs/kvD1MxeJRMjOzpY6lp2dDUNDw0pply1bhsjISKSkpKCwsBBLly5Fz549kZ+fj7KyMvTt2xdDhgxBXl4eMjIykJWVhQULFigl7qKiIhQXF0sdKy4uFq+7UROMmvHSpUulXsHBwThz5gwSExOZLEZpNG9a9wFcXDFiADj/zzmF0nPZhCtYf/wi2yEwCp/0yFOx+/xU/bxcvhkEn+5PBXz7jD/G1dUVJSUlePz4sfhYTEwM3NzcKqWNiYnByJEj0ahRI2hqasLf3x9ZWVmIj49HZmYmUlJSMH36dOjo6KBhw4YYP348Tp8+rZS4e/fujbt370odu3v3Lvr27SvX9UrfQrF169Yy+/q5SGHRhzpdzyUjBoDEJ/L9COJ6a1iS1Gf8+GEnL3zQo0jlnpkqX+8SXwyDD/cH+N/nyYfPtCYMDAwwZMgQBAUFIS8vD9evX8eJEyekRklX0K5dOxw5cgTp6ekoKyvDvn37UFxcDBcXF5iZmcHR0RHBwcEoKSnBu3fvsGfPHnh4KN5jKA/3799Hhw7SK7a1b98eMTExcl3PqBlfvnxZ6vX333/D398fLVq0YLIYpZGaVvtdm7hmxACw7od11Z7nkwlX8MevwtpFh8t6alO53zi8RellqBIu3x+A+59fbdm8eTMKCgpgYWGB0aNHIzg4GG5ubkhOToZIJBLvCrhgwQJ4eHigdevWaNCgATZu3IiwsDA0aNAAAHDs2DGcPXsW5ubmcHFxgaamJjZu3KiUmI2NjZGeni51LD09HQYGBnJdr0YIIUwF4+joKPXewMAArVu3xooVKyqd4yKenzjjTnjt/vi4aMbVwTcTpqgONit3vg70UjW1vUdXVk2odvCUItS2vvTssZqxGLjEnDlzEBUVhV9//RVOTk5ITEzE7Nmz0apVK2zYsKHG6xltGT979kzqFRsbi/379/PCiIHar8DFVSOeM21upWN8bA1LsmmhsFZE4pqeuhrx+eDldS6fS609Lt4frnw2FGl++OEHNG/eHO3bt4ehoSE+/fRTNG3aFKtWrZLr+jpPbZJ3qUt1daU/nq4z+vo6Cl/DVSMGAI9PpJ+N8NmEK3Bp1ZrtEBiFK3qYquAtnZl7JMWFaVFCuz8U5aGrq4vff/8dmzZtQkZGBszMzKqc6iuLOpuxpqamXAWWlpbWtSilY25mpFB6LhsxAPhOLB/wIAQTrqDfaF+2Q2AUtvUwXcl79BnGaH4Au6YstPtDYZbqVpeUnBft5ORUY151NuNnz56J/3/q1CkcPXoU3333HRwcHMTbJw4dOrSuxaiEqJhnNSf6f7huxADQ2NwZh+4lsR0Go4x0bywoTWzqUUZF/8vYjpgR+i/j+QLsmDIb94caMH9wcXGBmpoaCCHiRmnFMCzJRqo8jVFGl8PcsGED7ty5Ix7J5urqCk9PT3h6eiIwsParQakKj5aN5UrHByO+9UoDu27Esh0G4whNExt6lFnZB25X/rxcVZqyKu8PNWH+IfmYdteuXbh48SK+//57cWN0+fLl8Pb2lisvRh/kvn//Hvn5+VLH8vPz8f79eyaLURo5uQVsh8Aosbeusx0C4whNkyr1qGLwT0pspFLzl0QVelRxf+igLGGwZMkSbN++HU2aNIG2tjaaNGmCrVu3YvHixXJdz6gZ+/n5oVevXggJCcGZM2cQEhKCvn37ws/Pr+aLOcCbjOwa0/ClVQwA5w5yfz1wRRGaJlXoUWVlH3MhTCXlSKJMfcq8P9SEhUVZWRmSkpKkjj1//lzu8VKMbhTx008/wcXFBYcOHUJqaiqsra0xffp0TJ48mclilIaLc/U7tPDJiAFgybZQFiNRDkLTpGw9qq7shyz8TaXlSaKM7mtl3B9qwMJk1qxZ6NmzJ8aPHw87OzukpKRg9+7dmDVrllzXM9oyVldXx5QpU3Dp0iU8ePAAly9fxpQpU6ChwY/RvM+SXld5jm9GDADrZn7FUiTKQ2ialKWHrVbX3xu/VXmZH8OkdibvD20JC5t58+Zh165dSE9Px8mTJ5GWloadO3di/vz5cl3P+Aa+u3btwr59+/Dy5UvY2trCx8cH48ePZ7oYpWBspC/zOB+NGADa9ezDQiTKRWiamNbDdmXv7NmV1fIlYaKlXNf7w/b9oKiWfv36Se2n/DGfffYZTp06JfMco2b8ww8/YO/evZgzZ454NNlPP/2E1NRULFq0iMmilIKpqYjtEBil20B+TClTBKFpYlIPFyr+5l0GsB1CJepiyrW9P1y4FxTuERERUeU5Rrupt2/fjvPnzyMgIAB9+/ZFQEAAzp49i5CQECaLURp3oypP4OZrqxgABjqbqzgS5SM0TUzo4VL357qhytkRhwlq8zkpen+4dC8o/ILRlnFeXh7MzaW/vA0bNkRBAT+mDLVtI71KCp+NGABOJtZurW0uIzRNddHDxUp/bph828WxiSItZXnvDxfvBYVfMNoy7tevH8aOHYtHjx6hoKAADx8+hJ+fn9ybK7NNZmau+P98N2IACD+p+mkmykZommqjh8utrwcRytm4XRnI8znWdH+4fC8o/IJRM960aRMMDQ3h4eEBkUiE1q1bw8DAAL/9xt50B0V4n12+YIkQjBgAIi+fV0EkqkVomhTVw/WKP/HONbZDUJjqDFXW/eHazlIU/lDdjsWM7mdcQVlZmXjXCj7s1lSB5yfOOH39Btth1IiQNn6gyAet+FVHVd3XQrgHdD9j5VBaWooJEyYgJCQEOjpV7/63evVqfPfddzLPMe6U+fn5iI2NxZMnT3Dz5k3cuHEDN25w3+AA4EliGtshMMqKyWPZDoFxhKapJj18a4EdW/U12yHUGcnPfMXksby7BxTVo6GhgfPnz9fY+KzKiAGGB3Dt3bsX06dPh7a2NvT09MTH1dTUkJyczGRRSsHEzILtEGpEkVZx31HC2m4QEJ6m6vTw0QA8egtn6tm16FQ0av8Z22FQeMKsWbOwdOlSLFu2DFpaWgpfz6gZz58/H2FhYejduzeT2aoMkSG35xkr2j3dskMnJUXCHkLTJEsPH024AruW7dgOgVGEpoeiPH777TekpaVhw4YNMDc3l9paUZ7GKKNmrK2tje7duzOZpUqJvx/PdghVUpvnxOO9Wgpq719AeJok9fDZhCsIntRLafsZs4HQ9FCUx/79++t0PaPPjFesWIHZs2cjIyODyWxVRiuPlmyHIJPaDtgSkmlVIDRNh+4lCeqZpNCMS2h6+EJmZiYGDx4MAwMDODg44MCBAzLTEUKwePFi2NrawtjYGN27d0dcXFyldI8fP4auri7GjRuntJg7duyIS5cuYdKkSRgwYAAmTZqEixcvokOHDnJdz6gZu7q64uTJk7C0tISGhgY0NDSgrq7Om40i3mZksh0Co5z9Q1jbDQLC0/TbT7+yHQKjxJw/ynYIjCI0PXxh2rRp0NbWRnp6OkJDQxEYGCjTZI8cOYKdO3ciIiICmZmZ6NixI3x8fGTm166dch85BAYG4vLly/j1118RGRmJX3/9FeHh4Zg6dapc1zPaTe3j4wNfX1+MHDlSagAXX8jPz2c7hErUZRrTk/vRwGhhDXjio6bqWr3pidx9NFIbqB5KXcnLy0NYWBhiY2MhEonQuXNnDBw4EPv27cOaNWuk0j579gydO3eGk1P56onjxo3Dxo0bpdIcPHgQDRo0gJeXF548eaK0uI8fP47ExEQ0aNAAANCiRQt06NABLi4u2LlzZ43XM2rGb9++xfLly6GmpsZktirDzr4R2yFIUdf5xNNXbWAoEu7ANU117V7uExjEUCTcgOqh1JWEhARoaGjA1dVVfMzDwwPh4eGV0o4aNQqHDh1CQkICHB0dsWfPHqldk7KzsxEUFIRLly5hx44dSo3bysoK+fn5YjMGgIKCAlhbW8t1PaNmPH78eOzbtw++vvxquVTw5HEi2yGIYWJhj4VjvsSqAycYiIY7qFKTKp7jHgyaiFHLlVtJqBKqpx6Rn4eymJsKX/bmzRt4enqK3wcEBCAgIED8Pjc3F8bGxlLXGBsbIycnp1Je1tbW6NKlC5o2bQoNDQ3Y2dnh8uXL4vNLlizBxIkTYWdnp3CciuLj44N+/frh66+/RqNGjZCSkoLff/8dvr6+UjH17NlT5vWMmvHt27exadMm/PDDD7C0tJQ6d+0a95fJs7K2YjsEAMytsDX6G/k2teYTTGriwqAprxFT2A6BUageSk2Ym5tXuwKXSCRCdna21LHs7GwYGhpWSrts2TJERkYiJSUFVlZW2L9/P3r27Im4uDgkJCTg4sWLiIqKYlyDLLZu3QoAWLVqldTxLVu2YMuWLQDK19x4+rTy7oAAw2Y8efJkTJ48mcksVUp1y5jxERtHZ7ZDYBx5NXHBaOXB1MaB7RAYheqh1BVXV1eUlJTg8ePHaNKkCQAgJiYGbm5uldLGxMRg5MiRaNSo/BGjv78/Zs6cifj4ePzzzz9ISkqCvb09gPIWd2lpKeLj4/Hff/8xHvezZ8/qdD2jZuzn51djmqlTp2Lz5s1MFssYCQ8T2A6B0XWn5wzqhd3/xjKWHxeYM6gXJgQLZ7OIffPHIHD7RbbDYAyqh1JXDAwMMGTIEAQFBWH79u2Ijo7GiRMnZC6r3K5dOxw5cgSjRo2Cubk5QkNDUVxcDBcXF7Ro0QKjRo0Sp123bh2SkpIQHBysSjlyw6gZy8P+/fs5a8ZurVqwWj7TG0AIxYglW7lCMmIAgqvoqR4KE2zevBkTJkyAhYUFGjZsiODgYLi5uSE5ORktWrRAfHw87O3tsWDBArx+/RqtW7dGXl4eXFxcEBYWJh5Epa+vL85TJBJBV1cX5ubmLKmqHpVvqaSETaIY4/Vr9jauV8ZOTH9u5+aPHnmRtRhG5Mk9LEWjHKgebiM0PXzB1NQUx48fR15eHpKTkzFmzBgAgL29PXJzc8Vdz7q6uvj999/x6tUrZGdn47///pMaTS3J999/X+dVspSJylvGXJ72VFJczEq5ytoSMfM1P3ehqu55b24mez+YlIGQ9Ny99FRQegBh3R8Kt+HPZsMqwMZW9j6mfGXiwuVsh6AQ8iwL2cN/roqiUQ1C0XP3UvkIUSO7IeL/CwGh3B8K96Hd1BIkPHys8jKV1SoGgFkDvZWWN5Mosjbzvnmjak7EI4SgR9J8I4/MqXSMzwjh/lD4gcrNWJkLddeVRipegUuZRgwA037g1mpVH1ObDRJ6TxHWikh81/Ox6TbrNrXKc3yE7/eHwh8YN+OdO3eid+/ecHNzQ+/evbFjxw6p1jBXh5UDgIaG6n6bKNuIAUBPxM39meuyS5G2nn7NiXgEX/XcvfRUptlqaOtWSsdn+Hp/KPyDUfeZP38+fvzxRwwZMgRr167F0KFDsW7dOixYsIDJYpTG08S6TdqWF1UYMQCsmDRGJeXICxNbBf656muGouEGfNRTncHeO/WDzPR8NWU+3h8KP1EjDD7EtbCwwH///SdeDQUAUlJS8Mknn+DNG+6PSmz9iQfOX1f+PFZVmTFX4MtqWJSaqauptvV2YigSSm24smpCtUtRKoJnMyvc3l55u8KaaD/zCmMxCAlGW8aGhoaV1g81NDSEkZERk8UojbRX6UovQ5VGfOCXn1RWliyYaAl/zPVD3H3MURv4pEceI352+2Cd8+ASfLo/FH7D6DzjmTNnYsiQIfj222/Fu1asXbsWs2bNklocu2LvyfpGfWkR05awsGDaQO9eekpbyBTKRzDaTa2uXnNDW01NDaWlpUwVySjK7KauD0ZMTVh4KLMlSw1Z9dBuau7CaDd1WVlZjS+uGjEAPIh/qJR82TLiKd4dVFKOMrqjq2LH9C9UUo6q4LKe2hjxzdCpNSeSyJ/r3dZcvj8UYUFX4JLAydmR7RAYZcn2A0rNX5UmXMHghb+ptDxlw1U9tTVJ988WqawsVcDV+0MRHow+M05OTsayZcsQFRWF3NxcqXMJCexvT1gTpaVljOfJZvd0wUf3gCnY7I7+UJDPWtnKgIt66mKOpR8Ka10mF7utuXh/aguXf/RQGDbj4cOHo1mzZli+fDn09PSYzFolvEh+wWh+bD8n/n3RbGw8eYmx/LjwTPjCluXwWVv9iF0+wSU9TFTWD8M3o93w9bUun2uGzKX7U1uoCfMDRgdwGRsbIysrS66BXFyEyQFcbBsxk3DBhCnKhWsVNtdMma98fF+zb62kA7g4CqOu+cUXXyA8PJzJLFVK6ktmTIcrRrxjVe3X1a14Hsw1I76yex3bITAKF/QwacRPru9iJB+u/Djgwv2pDXwYHEeRhtFu6l9//RVeXl5wdnaGpaWl1LmdO3cyWZRS0NTSqnMeXDFiADC1sFL4Gq6Z78eITM3ZDoFR2NbDdIWtbWDKWF5c6LZm+/7UBmrC/IRRMx4/fjw0NDTQvHlzXj4ztrDg3x9edQyeJP80E66bcAXtBvqxHQKjsKlHGZW2fesvGc2PbUPm0/eNmjC/YdSML1++jNTU1EpLYvKFuPvxdbqeS61iAPDv2BK7/42tNg1fTLiC4Em9ELj9ItthMAYbepRZaV/fPQGd/JntBauIlw1T5sv3jRox/2HUjN3d3fH27VvemrFrM9daX8s1IwaA9cerrkT4ZsIV+Pyk3LnTqkbVepRdaXsOV94zVjZayVz/vlETFg6MDuDq2bMn+vTpg9WrV2Pnzp1SLz5QVFRUq+u4aMQAkPossdIxLg7KUoTM1Odsh8AoqtSjioo7/51yv1uqNh8uf9+EbMSZmZkYPHgwDAwM4ODggAMHZP8oIoRg8eLFsLW1hbGxMbp37464uDiF8+ECjJrxP//8A1tbW5w/fx779u0Tv/bv389kMUoj7VWawtdw1YgB4I9f/7drE99NuIIbh7ewHQKjqEqPqirupEjlz8lVpQlx8ftWH0ZKT5s2Ddra2khPT0doaCgCAwOlTLaCI0eOYOfOnYiIiEBmZiY6duwIHx8fhfPhAozOM+Y7tZlnzGUzBvjbHU1hDiFX3GyPtlY1db2XfJhnnJeXBxMTE8TGxsLVtfzRoY+PD2xtbbFmzRqptD/++CPu3r2Lw4cPAwDi4uLQtm1bFBYWKpQPF2B8dY63b99i3759WLt2LQAgNTUVL14wu7KVskhRcAUurhvx4q+msB0C45wPXs52CIyibD2qNuKHVzertDxl6+PS903IP6okSUhIgIaGhthAAcDDw0Nmi3bUqFF48uQJEhISUFxcjD179qBfv34K58MFGDXj8PBwNG3aFKGhoVi+vPxL/PjxYwQGBjJZDKOEhITA09MTnp6eyM/Lx9qV5T8iOrp7IfFxImL+i0Fvrz4AgKXfLkXwL+Wbjbs7eeBtehru37yOhWPKp3NsWjgbZ//YCwAY6d4Y+bm5uH3pHFZMHgsAWDfzK4SfDAMADHQun0YVfjIM62Z+BQBYMXksbl86h/zcXIx0bwwAOPvHXmxaOBsAsHDMl7h/8zrepqfBv2NLAMCf2zeLF/eYNdAbT+7H4OWzREzx7gBL5xa4fihYvEH6julfIDM1CWmJ8dg3bxSA8kUNIk/uAVA+cjQ38zWSYyNxMGgigPLKKOb8UQDAL2M74kNBHhIjr+LYqq8BAH9v/BYPIk6X6xvqAQB4EHEaf2/8FgBwbNXXSIy8ig8FefhlbEcAQMz5o+JK7mDQRCTHRiI38zWCJ/UCAESe3CNebGHfvFFIS4xHZmoSdkz/QnCankReAQClaDq34xDunfoBABB3YQPSE66V57V5MAAgPeEa4i5sAADcO/UDMpIiUfKhANe2jQYApMadF5tr1PHFyHoZi6K8TFzfPQEAkBx9QrzIR+SROch5nQhdAzPxzk3Pbh/Es9vl3dY3Q6ci/91L5LxOROSROQDKFwhJjj5Rrn/3BBTlZSLrZSyiji8GUG7sqXHlPVXXto1GyYcCZCRFytSkrPukZ2Qi/u4p6z7J+91r6+2E57c21uk+MUlZdiGKLj5Q+PXmzRtxnevp6YmQkBCpfHNzc2FsbCx1zNjYGDk5OZVisLa2RpcuXdC0aVPo6enhyJEj2Lhxo8L5cAFGu6nbtGmDdevWwdvbGyYmJsjKykJhYSEcHByQnp7OVDFKQ5Fuaq63igHaRV3fqS8tKaD+dVfLQp77zWQ39Sc2DXA9oLPC13X5O63aGKKiotCpUyfk5/9vk47169fj6tWr+Ouvv6TSLlq0CFeuXMHhw4dhZWWF/fv3Y9myZYiLi8OjR4/kzocLMNoyTkpKgre3NwBATU0NAKCtrY2SkhImi1Ea92Oqn5PLNypaA0JCaJqEpqeitSYU+HR/2no7yXzxDVdXV5SUlODx48fiYzExMXBzc6uUNiYmBiNHjkSjRo2gqakJf39/ZGVlIT4+XqF8uACjZtyiRQucO3dO6tjFixfRqlUrJotRGi1atWA7BEbhw2IFiiI0TcrSw1ar2MuPnWmMytIrhO8b34zZwMAAQ4YMQVBQEPLy8nD9+nWcOHFCapR0Be3atcORI0eQnp6OsrIy7Nu3D8XFxXBxcVEoHy7AqBlv2LABY8eOhZ+fHwoKCvDVV1/B399fPJiL6+TmyLf/L1+6qFNiI9kOg3GEpkloet6lCqt3SWj3hy9s3rwZBQUFsLCwwOjRoxEcHAw3NzckJydDJBIhOTkZALBgwQJ4eHigdevWaNCgATZu3IiwsDA0aNCg2ny4CKNmHBERgXv37sHNzQ0TJkyAo6Mjbt++jYiICCaLURpvM96yHQKjxFwIYzsExhGaJmXoYfNZccWAKzZQhm6hfd/4gqmpKY4fP468vDwkJydjzJgxAAB7e3vk5ubC3t4eAKCrq4vff/8dr169QnZ2Nv777z/xaOrq8uEijA7gMjIyQnZ2dqXjpqamyMzMZKoYpSHPAC4+tIoBOnirPlOfBm7Jgi/dsWxwZdUEzg/gqq8w0jK+fPkyLl++jNLSUly5ckX8/vLly9i+fTtv1qp+npTMdgiMUjHFQ0gITZPQ9FRMlRIKQrs/FO7CyEYREyeWz6ErLCzEhAkTxMfV1NRgZWWF3377jYlilI6RsRHbITCKs2dXtkNgHKFpYloP261iMwdPVssHmN1QQmjfNwp3YcSMnz17BgDw9fXF3r17mciSFUxMGlR7ni9d1BU07zKA7RAYR2iahKbH0lVY5iW0+0PhLowO4OKzEQNATNQ9tkNglIoVfISE0DQJTU/F6l5sw1QPgdDuD4W7ML42NZ/xaOPOdgiMMjcshu0QGEdompjUw3YXNQD0mPon2yEwitC+bxTuQs1Ygqysd1We41sXNQDxGrdCQmiahKanYq1oLsDEjxOh3R8Kd6FmLEH2+8rTsvhM4h3uVIxMITRNQtOT8ZxbU1bqashCuz8U7kLNWAKHxvZsh8Aon8/i3p6ddUVompjSw4UuagBw6z2b7RAYRWjfNwp3oWYswdPEZzKP87GLGoB4WzYhITRNQtNTsb0hl6jLDxWh3R8Kd6FmLEFDs4Zsh8AoHr2Hsh0C4whNExN6uNIqBgAbtz5sh8AoQvq+dW1tw3YIlGqgZiyByFDEdgiMYteyHdshMI7QNAlNTwOblmyHIJPa/mAR2v2hcBdqxhLE34+vdIyvXdQAEDypF9shMI7QNAlNz409E2pOxCOEcn9oq5j7UDOWoJUHN3/V15YZof+yHQLjCE1TXfVwqYsaALpO/oPtEKqkNp+V0L5vFO5CzViCtxnSO0vxuVUMADHnj7IdAuMITZPQ9LC5haI8KGrIQrg/tFXMD6gZS5Cfn892CIxQsX1iemLlbne+IzRNQtOT/eYJ2yEwitDuD4W7UDOWwM6+EdshMEqfwCC2Q2AcoWmqix6udVEDQLPuU9kOoUYU+dz4/n2jrWL+QM1YgiePE8X/53sXNQAcDJrIdgiMIzRNQtMTdXwx2yEwCp/vDzVifkHNWAIrayu2Q2AUrxFT2A6BcYSmSWh6GrcbxXYIciFv61ho94fCXagZS6Cjo8N2CIxiauPAdgiMIzRNtdXDxS5qANBvIKzWGF+/b7RVzD+oGUuQ8DABgDC6qAFg3/wxbIfAOELTJDQ9d47MZTsEuZHnB43Q7g+Fu1AzlsCtVQu2Q2CUwO0X2Q6BcYSmSWh6OvnvZDsEhajJkPl4f4TQKs7MzMTgwYNhYGAABwcHHDhwQGa6KVOmQCQSiV86OjowNDSUSnPw4EE0b94cBgYGcHZ2RkREhCokKAw1Ywlev37DdgiMEnlyD9shMI7QNNVGD1e7qAEgOfoE2yEwipC+bx2sS9kOQW6mTZsGbW1tpKenIzQ0FIGBgYiLi6uUbsuWLcjNzRW/Ro8ejeHDh4vPX7hwAQsWLMCuXbuQk5ODa9euwcnJSZVS5IaasQQlxcWC6aIGgNxMYf24AISnSWh6PuRl1pyIY1T344Zv90cIreK8vDyEhYVhxYoVEIlE6Ny5MwYOHIh9+/bJdZ2fn5/42NKlSxEUFIRPP/0U6urqsLW1ha2trbIl1ApNtgPgEja2/P8iS9LDnz/P7+RFaJoU1cPlVjEAuHQaz3YIjCKU75syWsXF2UV4eS5J4evevMmBp6en+H1AQAACAgLE7xMSEqChoQFXV1fxMQ8PD4SHh1ebb1hYGMzNzdG1a1cAQGlpKe7cuYOBAwfCxcUFhYWFGDRoENauXQs9PT2F41Y2tGUsQcLDx2yHwCj75vFjmokiCE2T0PREHpnDdgi1oqofOXy6P1W1irnWPW1ubo47d+6IX5JGDAC5ubkwNjaWOmZsbIycnJxq892zZw98fX2hpqYGAEhPT0dxcTGOHj2KiIgIREdHIyoqCitXrmRWEENQM5agoY0d2yEwSu8p/F49SBZC0yQ0Pc26cX8FLkXgy/0RQvd0BSKRCNnZ2VLHsrOzKw3MkiQlJQXh4eHw9fUVH6to/X799dewtraGmZkZZs+ejdOnTysn8DpCzVgCdQ1hfRzaevpsh8A4QtOkiB6ud1EDgIa2Ltsh1BpZny/fv29caxXLg6urK0pKSvD48f96KmNiYuDm5lblNXv37oWXl5fU4CwTExM0atRI3FLmOsJynzryKon7lZ0i/Lnqa7ZDYByhaRKannunfmA7BEbhw/0RUqsYAAwMDDBkyBAEBQUhLy8P169fx4kTJ+Dj41PlNXv37oW/v3+l4+PHj8dvv/2G169fIysrCz///DM+//xzJUZfe6gZS+Dg2pztEBhl4qa/2A6BcYSmSWh6Ph27me0Q6sTHrWM+3x8+toor2Lx5MwoKCmBhYYHRo0cjODgYbm5uSE5OhkgkQnJysjjtv//+ixcvXkhNaapgyZIlaNeuHVxdXdG8eXO0adMGixYtUqUUuaFmLMHb12lsh8Ao1w8Fsx0C4whNk7x6+NBFDQDPbh9kO4Q6I/lZc/37JrRWcQWmpqY4fvw48vLykJycjDFjyldCs7e3R25uLuzt7cVpO3bsiLy8PJnPlLW0tLB582a8e/cOaWlp+PXXX6Gry81HKdSMBUbFXsYUCqX+wudWcX2FmrEEDS2EtWtTp5GBbIfAOELTJDQ9ju35MxWoOipax1y+P0JtFddXqBlL8DzhAdshMMqO6V+wHQLjCE2TPHr40kUNADdDhTW1iY/fN9oq5ifUjCWwbszNNUtry+CFv7EdAuMITZPQ9Lh/xs3BMbXh7qWnnL0/tWkVW5T8o4RIKExBzViCstIytkNglA8F+WyHwDhC01STHj61igGg9EMh2yEwCt++b1W1iqkRcx9qxhK8eZnCdgiMcmHLcrZDYByhaRKanofh/J7a9DFcvD98WfaSohjUjCWwc3GtORGP8FnL/2kmHyM0TULT0274erZDYBSu3R/aPS1cqBlL8CZNWNOCruxex3YIjCM0TdXp4VsXNQA8ub6L7RAY5dDyJWyHIBe0Vcx/qBlLoKmpxXYIjCIyNWc7BMYRmiah6dE2MGU7BEbhkh7aKhY21IwlMDETVsXYbqBfzYl4htA0CU2Pfesv2Q6BUfigh7aKhQE1YwmePYxjOwRGCZ7Ui+0QGEdomqrSw8cuagC4vnsC2yEwClf00Fax8KFmLIHgBnD9dIDtEBhHaJqEpsdzuLCe6XNdD20VCwdqxhJ8KCpiOwRGyUx9znYIjCM0TULTk/9OWIMguaCHtorrB9SMJcgU2K5NNw5vYTsExhGaJll6+NpFDQBJkdyaClRXuKyHLvAhLKgZS9DI0YXtEBhl1PIdbIfAOELTJDQ9bQatZDsERmFbD5MLfJTF3KxrOBQlQs1YgtcCW4HrfDD3Vg+qK0LTJDQ9D68KawUuNvXQ7un6BTVjCXT09NkOgVEsnVuwHQLjCE3Tx3r43EUNAEbmwupd4qIe2ioWJtSMJTA2bch2CHXiWrT0YBOPPsNYikR5CE2T0PTYuPVhOwRGYUsPbRXXP6gZS5AYf5/tEBjll7Ed2Q6BcYSmSVIP31vFAHBt22i2Q2AUrumhrWLhQs1YAsdmbmyHwCiB2y+yHQLjCE2T0PR4+e1kOwRGYUMPbRXXT6gZS1CQl8t2CIySEhvJdgiMIzRNQtPzLjWW7RAY5V1qLGd6LOpTqzgzMxODBw+GgYEBHBwccOCA7MVxpkyZApFIJH7p6OjA0NAQAFBUVISJEyfCwcEBhoaGaNOmDc6cOaNKGQpBzViC95lv2Q6BUWIuhLEdAuMITVOFHq5U+HUlNe482yEwiqr10FZxOdOmTYO2tjbS09MRGhqKwMBAxMVVXq54y5YtyM3NFb9Gjx6N4cOHAwBKSkpgZ2eH8PBwvH//HitWrMCIESOQlJSkYjXyoUYIIWwHwRWatGqNDSf422348QAuCn8QihkLlbbeTiopR9F5xdUZsaxWcfuZV3Dnzp3aBfcRrUR6+LOVs8LXjSrWrTaGvLw8mJiYIDY2Fq6u5UsU+/j4wNbWFmvWrKn2OisrK/z999/o1q2bzDTu7u5YunQphg4dqnDcyoa2jCVISxHW0oR/b/yW7RAYR2iahKYn7sIGtkNgFFXq4dsCH3l5BLdvFiv8evPmDTw9PcWvkJAQqXwTEhKgoaEhNmIA8PDwkNkyliQsLAzm5ubo2rWrzPPp6elISEiAmxs3xwZpsh0AlzAwNGI7BEZx9pT9peQzQtPk7NlVUK1iMwdPtkNgFFXpqU/d0+bm5tW2jHNzc2FsbCx1zNjYGDk5OdXmu2fPHvj6+kJNTa3SueLiYowdOxZ+fn5o1qxZ7QJXMrRlLIFhAxO2Q2CU5l0GsB0C4whNk9D0WLoK68cS23q42ipWJiKRCNnZ2VLHsrOzxQOzZJGSkoLw8HD4+vpWOldWVgYfHx9oa2tj06ZNjMfLFNSMJXgSG8N2CIyybqgH2yEwjtA0CU3Plc2D2Q6BUVShR1Wt4qKLDxS+hg1cXV1RUlKCx48fi4/FxMRU2728d+9eeHl5wclJ+tk+IQQTJ05Eeno6wsLCoKWlpbS46wo1YwlcWgqrYpwbJqwfF4DwNPWY+ifbITAK1cMc9bFVDAAGBgYYMmQIgoKCkJeXh+vXr+PEiRPw8fGp8pq9e/fC39+/0vHAwEA8ePAAf/31F/T09JQYdd2hZixBzrsstkNglAcRp9kOgXGEpik94RrbITAK1aMYtFUsm82bN6OgoAAWFhYYPXo0goOD4ebmhuTkZIhEIiQnJ4vT/vvvv3jx4oV4SlMFz58/x9atWxEdHQ0rKyvxXOTQ0FBVy5ELOoBLgryc7JoT8YjEO9cE90xSSJruXnqKjOd3WH8uySRUDzPU11ZxBaampjh+/Hil4/b29sjNlV6cqWPHjsjLy6uU1sHBAXyauUtbxhJY2TmwHQKjfD6r6jl5fEVomtx6z2Y7BEaheuSHtoopklAzliD1+TO2Q2CUY6u+ZjsExuG7pruXnopfAHDv1A8sR8QsVE/dYbJVTI2YP9Buagn4voXix3j05t4qM3WFj5qqm0dMtxzkNsrSw2SrWEjd0/UZasYS6BmI2A6h1shaCtOuZTsWIlEufNIkz2IeDWxaqiAS1UH11I3aLHtZFbRVzC9oN7UEzx5Wv9wa3wie1IvtEBiH65o+7oauiRt7Jig5ItUiVD1MrpLGt2UvKaqBtowlcG7Riu0QGGVG6L9sh8A4XNRUl4q66+Q/GIyEfaieGvKjg7YoVUBbxhIIbgvF80fZDoFxuKRJkRZwVdAtB7mNqvTQVjGFtowlKCrIZzsERklPjGc7BMZhWxPTmzpkv3kCGwhn0BPVUzW0VUypDmrGEljY2rEdAqP0CQxiOwTGYUOTMndVatZ9qtLyZgOqR3FU1Sp+eS4JgK7C11FUA+2mluDFsydsh8AoB4Mmsh0C46hKk6IDsWpL1PHFSs1f1VA9sqGtYkpN0JaxBKYWVmyHwCheI6awHQLjKFuTqvcWbtxulErLUzZUj2KoaoGP8lYxhctQM5ZAW0eH7RAYxdRGWMt7AsrRpGoDlkS/geItJi5D9VSG7QU+qBHzA9pNLUHKkwS2Q2CUffPHsB0C4zClSVXd0DVx58hcVstnGqpHfugCHxRJaMtYAsdmVW9ezUcCt19kOwTGqasmts33Yzr572Q7BEaheqRhe4EP2irmD7RlLEFWxhu2Q2CUyJN72A6BcWqjiSutYFkkR59gOwRGoXr+Bx20RVEE2jKWoKSkmO0QGCU3U1g/LgD5NXHReGXxIS+T7RAYheqpGdoqpsiCmrEE5lbCGnzSw19Yz++AmjXxxYQrcOk0nu0QGIXqKYe2iimKQrupJRDcAK55wppmAsjWxOVu6JqIPDKH7RAYRch6mPh+0VYxpSpoy1gCc4GtwNV7ivBW4KrQxEfjlUWzbgJbsYrqoa1iSq2gZiyBugY/Owpk7WUMANp6+iqORLncvfQU+e/e4mWSMIwYADS0hbU8IdVTNWy3im/fLAbaCuv+CAlOuc+mTZvg6ekJHR0d+Pv7i48nJSVBTU0NIpFI/FqxYkWV+WRmZmLw4MEwMDCAg4MDDhw4IFf5rwRUyQPAn6u+ZjsExrl36ge2Q2AUqofbKKqH7VaxULqnFanDnz59is8//xyGhoYwMzPD/PnzxeeSkpIwYMAAmJiYwMrKCtOnT0dJSYkqJCgMp1rGNjY2WLx4Mc6dO4eCgoJK59+9ewdNzZpDnjZtGrS1tZGeno7o6Gh89tln8PDwgJtb9fOIHVyb1zp2LjJx019sh8AYFd3Sn47dzHIkzEL1cBum9Khq2cuquH2TXzNF5K3DP3z4gN69e2PatGk4dOgQNDQ0kJDwv7E/U6dOhYWFBV69eoV3796hd+/e2Lx5M7755htVS6oRTrWMhwwZgkGDBqFhw4a1ziMvLw9hYWFYsWIFRCIROnfujIEDB2Lfvn01Xvv2dVqty+Ui1w8Fsx0C4zy7fZDtEBiF6uE2iuihy14ygyJ1+O7du2FjY4PZs2fDwMAAurq6cHd3F59/9uwZRowYAV1dXVhZWaFfv36Ii4tTpRy54VTLuCYcHBygpqaG3r17Y+3atTAzM6uUJiEhARoaGnB1dRUf8/DwQHh4uMw8Q0JCEBISAgDIf/8Oy0b0U07wLPDmzRtcSYxkOwxGKXvzBtm3hLO7FtXDbT7Wc+VW1WmvqCCe6qnmefD/Pyt++PAhY6W59u2ODRkZCl9XUFAAT09P8fuAgAAEBASI3ytSh9+8eRONGzdG//79ERkZiZYtW+K3335Dq1atAAAzZszAwYMH0b17d2RlZeHMmTPVPuJkE16YsZmZGSIjI9G6dWu8ffsW06ZNw9ixY3Hu3LlKaXNzc2FsbCx1zNjYGDk5OTLzlvwieHp64s6dO8wLYAmh6QGEp4nq4TZC1MMUZ8+eZSwvSRSpw1+8eIErV67g5MmT8Pb2xi+//IIvv/wSDx8+hLa2Nrp164Zt27bByMgIpaWl8PPzw6BBg5QSd13hVDd1VYhEInh6ekJTUxOWlpbYtGkTzp8/j+zsbJlpPz6enZ0NQ0NDVYVLoVAolFqiSB2up6eHzp07o3///tDW1sbcuXPx9u1bPHjwAGVlZejbty+GDBmCvLw8ZGRkICsrCwsWLFCVFIXghRl/jJqaGgCAEFLpnKurK0pKSvD48WPxsZiYmBoHb1EoFAqFfRSpw93d3cV+8DGZmZlISUnB9OnToaOjg4YNG2L8+PE4ffq00mKvC5wy45KSEhQWFqK0tBSlpaUoLCxESUkJbt26hUePHqGsrAxv377FN998g+7du1fqygAAAwMDDBkyBEFBQcjLy8P169dx4sQJ+Pj41Fi+5HMLISA0PYDwNFE93IbqUT2K1OHjxo3DzZs3cfHiRZSWluLnn3+GmZkZmjdvDjMzMzg6OiI4OBglJSV49+4d9uzZAw8PDxZUyQHhEEuXLiUApF5Lly4lBw4cII0bNyb6+vrEysqK+Pj4kFevXomv++GHH0i/fv3E79++fUu+/PJLoq+vT+zs7EhoaCgbcigUCoVSC6qqw58/f04MDAzI8+fPxWnDwsKIs7MzMTQ0JN26dSOxsbHic1FRUaRbt26kQYMGpGHDhmTYsGEkPT1d5XrkQY0QGX29FAqFQqFQVAanuqkpFAqFQqmPUDOmUCgUCoVlqBlTKBQKhcIy1IwpFAqFQmEZasYUzhISEgIvLy8YGxtDQ0MDxsbG8PLywrZt29gOjQJ6f/jA27dvERISghkzZmDChAmYMWMGQkJC8PbtW7ZDo3xEvTZjWplwlwULFuCXX37BpEmTcPnyZTx69AhXrlzBpEmT8Msvv+C7775jO8R6Db0/3OfSpUtwcXHB/v37UVZWBhsbGxBCEBoaiiZNmuDKFfZX06b8j3o7tWnBggX4+++/MWfOHHh4eMDY2BjZ2dmIjo7Ghg0b8MUXX2D16tVsh1lvMTc3x71792BtbV3pXGpqKtzd3ZFRi0XqKcxA7w/3adGiBVauXIkhQ4ZUOvfnn39i4cKFePBA8e0YKcqh3poxrUy4jZmZGe7fv1/l/WnVqhXtamMRen+4j4GBATIzM6Gjo1PpXFFREUxMTJCfn89CZBRZ1Ntu6pp+g9TT3yicYeLEiejZsye2b9+OyMhIJCQk4M6dO9ixYwd69+6NyZMnsx1ivYbeH+7ToUMHLF68GHl5eVLH8/LysGTJEnTo0IGlyCiyqLct4wULFuDkyZOVuqljYmLE3dRr1qxhO8x6zdatW7F3717ExcUhNzcXIpEIbm5u8PX1xVdffcV2ePUeen+4zfPnzzF69GhERUXByclJXMc9ffoUrVu3xsGDB2Fvb892mJT/p96aMUArEwqFInwSEhIQHx8vVcc1adKE7bAoH1GvzZjCfRISEhAXF4ecnBwYGhqiZcuWtCLhEPT+UCjMoMl2AGxDKxNukpycjJEjRyImJgbOzs7iLrbExER4eHjQLjaWofeHH4SEhGD37t2Vev/Gjx9Pn+tzjHprxrQy4Tbjx49Hly5dcOnSJejr64uP5+XlYfny5fD398fly5dZjLB+Q+8P96lp+ubTp0/p9E0OUW+7qb29vdG2bVt8//33MiuTyMhIWpmwiEgkQmZmJrS1tSudKyoqgqmpaaVRohTVQe8P96HTN/lFvZ3adOvWLaxcuVLKiIHyuXnLly/HrVu3WIqMAgB2dnb4+++/ZZ47ffo07bVgGXp/uA+dvskv6m03dUVlImt1GlqZsM+mTZswdOhQbNiwoVIXW1xcHMLCwtgOsV5D7w/3qZgLXtX0TfrMmFvU227qS5cuYejQoWjZsmWVlUnPnj3ZDrNek5GRgT///FNq8EnLli0xaNAgmJmZsR1eveft27c4duwYvT8chk7f5A/11owB2ZWJm5sbBg8eTCsTjuLp6Ynz58/D1NSU7VDqNWVlZdi8eTPi4uLQr18/fPnll1iwYAHOnDmD1q1bY8OGDfRviEJRgHptxlVRWlqKH374AUFBQWyHUm/x9fWVeTwsLAyfffYZdHV1sXfvXhVHRang66+/Rnh4OPr164czZ86gXbt2yMzMxPjx47Fnzx5oaWnh0KFDbIdJqYbk5GT6OI5DUDOWQVFREfT19VFaWsp2KPUWPT09tG/fHt7e3lIDTdatW4cpU6ZAJBJh6dKlLEZYv7GxsUF0dDQsLCzw8uVL2NvbIyMjAyYmJnj37h1cXV3x+vVrtsOkVAGt47hHvR3ANWHChCrPlZSUqDASiizu3buH6dOnIz4+HuvXr4etrS0AYMuWLZg3bx4sLCxYjrB+U1hYCBMTEwCAqakp1NXVIRKJAACGhob0b4gDXLt2rcpzRUVFKoyEIg/11owPHDiAiRMnynz2SH8tsk+TJk1w7tw5HDx4ED179sTkyZMxc+ZMqKmpsR0aBUDHjh3x1VdfYcSIEfjjjz/g4eGB9evXY9q0aQgODoaHhwfbIdZ7unfvDmtra6ir19sZrLyi3nZTt2vXDkuWLMHAgQMrnSssLIS+vj7KyspYiIzyMdnZ2QgKCsLFixfx/PlzJCYm0pYxyzx//hxTp07Fs2fPMHPmTHTt2hV9+/bFixcv4OjoiGPHjsHd3Z3tMOs1jo6OCA0NhZeXV6VzhYWFMDAwoA0PDlFvW8b+/v5Vmq2WlhZ9HskhjIyM8PPPPyM6Ohrh4eEwMjJiO6R6j4ODA06dOiV1LCkpCZmZmWjYsCFLUVEk8fT0xJ07d2Sasbq6Oh28xTHqbcuYQqFQhExxcTGA8sYFhfvQhwkUCoUiQLS0tKo04tLSUixfvlzFEVGqg7aMKRQKpZ5BpzZxj3r7zJhCoVCEDJ2+yS+oGVMoFIoAodM3+QXtpqZQKBQBQqdv8gs6gItCoVAECJ2+yS9oy5hCoVAoFJahLWMKhUKhUFiGmjGFQqFQKCxDzZhCURKNGzfGxYsXa0x39epVNGrUqFZlJCUlQU1NrcapKt27d8f27dtlnktOToZIJKIjbCkUFqFTmyiUeo69vT1yc3PZDoNCqdfQljGFQqFQKCxDzZgiKBo3bozVq1ejRYsWMDExwfjx41FYWAgA2LZtG1xcXGBqaoqBAwciNTVVfN2MGTNgZ2cHIyMjtG3bFhERETWWVVBQAD8/P5iYmKB58+b46aefquxuLioqwsyZM2FjYwMbGxvMnDmz0gbvq1atgpmZGRo3bozQ0FDx8VOnTqFNmzYwMjKCnZ0dvv/++1p8MkBiYiLat28PY2NjfPnll8jMzARQuau7e/fuWLJkCTp16gRDQ0P06dMHGRkZtSqTQqHIBzVjiuAIDQ3FuXPnkJiYiISEBKxcuRKXL1/Gd999h8OHD+PVq1dwcHDAqFGjxNe0a9cO0dHRyMzMxJgxYzB8+HCxiVfFsmXLkJSUhKdPn+LChQvYv39/lWl/+OEH3Lx5E9HR0YiJicHt27excuVK8fm0tDRkZGTg5cuX2LNnDwICAvDo0SMAgIGBAfbu3Yt3797h1KlTCA4OxvHjxxX+XPbu3YudO3ciNTUVmpqa+Oabb6pMe+DAAezatQuvX7/Ghw8fsG7dOoXLo1AoCkAoFAHh4OBAgoODxe9PnTpFnJycyIQJE8i8efPEx3NycoimpiZ59uyZzHwaNGhAoqOjqy3L0dGRnD17Vvx+27ZtxNbWViqWCxcuEEIIcXJyIqdOnRKfO3v2LHFwcCCEEHLlyhWioaFBcnNzxeeHDx9Oli9fLrPcGTNmkJkzZxJCCHn27BkBQIqLi6uNtVu3bmTBggXi93FxcURLS4uUlJRUyqNbt25kxYoV4rS///476du3b7X5UyiUukFbxhTBYWdnJ/6/g4MDUlNTkZqaCgcHB/FxkUiEhg0b4uXLlwCA9evXo3nz5jA2NkaDBg3w/v37GrtmU1NTpcqS/L+stJLlV8RVgYmJCQwMDGSev3XrFnr06AFzc3MYGxtjy5Ytteo2/vhzKS4urjIfKysr8f/19fXpAC8KRclQM6YIjpSUFPH/k5OTxc9pnz9/Lj6el5eHt2/fwtbWFhEREfjxxx9x+PBhZGVl4d27dzA2NgapYXE6a2trvHjxQma5H/Nx+RVxVZCVlYW8vDyZ58eMGYOBAwciJSUF79+/x5QpU2qMTRYffy5aWlowMzNTOB8KhcI81IwpguP333/HixcvkJmZiVWrVmHkyJEYM2YMdu3ahejoaBQVFWHhwoXo0KEDGjdujJycHGhqasLc3BwlJSVYvnw5srOzayxnxIgRWL16NbKysvDy5Uts2rSpyrSjR4/GypUr8ebNG2RkZGD58uUYN26cVJqlS5fiw4cPiIiIwN9//43hw4cDAHJycmBqagpdXV3cvn0bBw4cqNXnsn//fsTHxyM/Px9BQUEYNmwYNDQ0apUXhUJhFmrGFMExZswY9OnTB05OTnBycsLixYvh7e2NFStWYOjQobC2tkZiYiIOHjwIAOjbty/69+8PV1dXODg4QFdXt9ou5wqCgoLQqFEjODo6olevXhg2bBh0dHRkpl28eDE8PT3h7u6OVq1a4ZNPPsHixYvF562srGBiYgIbGxuMHTsWW7ZsQbNmzQAAmzdvRlBQEAwNDbF8+XKMGDGiVp+Lj48P/P39YWVlhcLCQvz666+1yodCoTAP3SiCIigaN26M7du3o1evXiovOzg4GAcPHkR4eLjKy6ZQKPyGtowplFry6tUrXL9+HWVlZXj06BHWr1+PwYMHsx0WhULhIdSMKZRq6N+/P0QiUaXXqlWr8OHDB3z11VcwNDREz5498eWXX2Lq1KmsxSorTpFIJNcCJhQKhV1oNzWFQqFQKCxDW8YUCoVCobAMNWMKhUKhUFiGmjGFQqFQKCxDzZhCoVAoFJahZkyhUCgUCstQM6ZQKBQKhWX+DwKoEwN1JcYzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "contour_plot = plot_contourf(\n", + " df=norm,\n", + " y_axis='temp_module_bin',\n", + " x_axis='poa_global_bin',\n", + " z_axis=lfm_sel,\n", + " title='avg normalised_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " vmin=0.7,\n", + " vmax=1.05,\n", + " levels=9,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [L2] Contour plot (colours) of measured lfm_sel vs. poa_global (x) and temp_mod (y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References \n", + " \n", + "The Loss Factors Model (LFM) and Mechanistic Performance Model (MPM) \n", + "together known as \"MLFM\" have been developed by SRCL and Gantner Instruments \n", + "(previously Oerlikon Solar and Tel Solar) since 2011 MLFM and 2017 MPM \n", + " \n", + ".. [1] J. Sutterlueti(now Gantner Instruments) and S. Ransome \n", + " '4AV.2.41 Characterising PV Modules under Outdoor Conditions: \n", + "What's Most Important for Energy Yield' \n", + "26th EU PVSEC 8 September 2011; Hamburg, Germany \n", + "http://www.steveransome.com/pubs/2011Hamburg_4AV2_41.pdf \n", + "\n", + ".. [2] Steve Ransome and Juergen Sutterlueti(Gantner Instruments) \n", + " 'Choosing the best Empirical Model for predicting energy yield' \n", + " 7th PV Energy Rating and Module Performance Modeling Workshop, \n", + " Canobbio, Switzerland 30-31 March, 2017 \n", + "\n", + ".. [3] S. Ransome and J. Sutterlueti (Gantner Instruments) \n", + "'Checking the new IEC 61853.1-4 with high quality 3rd party data to \n", + "benchmark its practical relevance in energy yield prediction' \n", + "PVSC June 2019 Chicago, USA \n", + "http://www.steveransome.com/PUBS/1906_PVSC46_Chicago_Ransome.pdf\n", + "\n", + ".. [4] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) \n", + "'5CV.4.35 Quantifying Long Term PV Performance and Degradation \n", + "under Real Outdoor and IEC 61853 Test Conditions \n", + "Using High Quality Module IV Measurements' \n", + "36th EU PVSEC Sep 2019 \n", + "http://www.steveransome.com/PUBS/1909_5CV4_35_PVSEC36_Marseille_Ransome_PPT.pdf\n", + "\n", + ".. [5] Steve Ransome (SRCL) \n", + "'How to use the Loss Factors and Mechanistic Performance Models \n", + "effectively with PVPMC/PVLIB' \n", + "PVPMC Webinar on PV Performance Modeling Methods, Aug 2020 \n", + "https://pvpmc.sandia.gov/download/7879/ \n", + "\n", + ".. [6] W.Marion et al (NREL) \n", + "'New Data Set for Validating PV Module Performance Models' \n", + "https://www.researchgate.net/publication/286746041_New_data_set_for_validating_PV_module_performance_models \n", + "https://www.nrel.gov/docs/fy14osti/61610.pdf\n", + "\n", + ".. [7] Steve Ransome (SRCL)\n", + "'Benchmarking PV performance models with high quality IEC 61853 Matrix\n", + "measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode)'\n", + "http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf\n", + "\n", + ".. [8] Juergen Sutterlueti (Gantner Instruments)\n", + "'Advanced system monitoring and artificial intelligent data-driven analytics \n", + "to serve GW-scale photovoltaic power plant and energy storage requirements'\n", + "https://pvpmc.sandia.gov/download/8574/\n", + "\n", + "Many more papers are available at www.steveransome.com \n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# =============================================================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "## TEST CODE CAN DELETE AFTER HERE IF NOT NEEDED \n", + "\n", + "test = False\n", + "\n", + "if test: \n", + " # save meas data to csv\n", + " meas.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'meas.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save norm data to csv\n", + " norm.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'norm.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save matr data to csv\n", + " matr.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'matr.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save ref data to csv\n", + " ref_data.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'ref_data.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " \n", + "if test:\n", + " # print mlfm fit coeffs\n", + " print(coeffs[0],coeffs[1],coeffs[2],coeffs[3],coeffs[4],) # coeffs[5], )#coeffs[6],)\n", + " \n", + "\n", + "if test:\n", + " # only works with mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041.\n", + " #\n", + " # check data for test \n", + " \n", + " n= norm.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n n= \\n', n)\n", + "\n", + " \n", + " n= norm.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n n= \\n', n)\n", + "\n", + " s = stack.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n s= \\n', s)\n", + "\n", + "\n", + "if test:\n", + " # show all versions\n", + " import sys \n", + " \n", + " for name, module in sorted(sys.modules.items()): \n", + " if hasattr(module, '__version__'): \n", + " print (name, module.__version__ )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# whos\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (Spyder)", + "language": "python3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "toc-autonumbering": true, + "toc-showmarkdowntxt": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/tutorials/mlfm_2.html b/docs/tutorials/mlfm_2.html new file mode 100644 index 0000000000..cbe1a7025c --- /dev/null +++ b/docs/tutorials/mlfm_2.html @@ -0,0 +1,16931 @@ + + + + + +mlfm_2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/tutorials/mlfm_2.ipynb b/docs/tutorials/mlfm_2.ipynb new file mode 100644 index 0000000000..11df072f9a --- /dev/null +++ b/docs/tutorials/mlfm_2.ipynb @@ -0,0 +1,1913 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MLFM for PVLIB \n", + "ver: 221212t18\n", + "### Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) \n", + "Corrections and additions for comments by : \n", + "Cliff Hansen, Kevin Anderson, Anton Driesse and Mark Campanelli\n", + "\n", + "## Tutorial overview.\n", + "see details for each function in mlfm.py\n", + "\n", + "I) The Loss Factors Model (LFM) 2011 ref [1] quantifies normalised losses \n", + "from module parameters (e.g. pr_dc, i_sc, r_sc, i_mp, v_mp, r_oc and v_oc) \n", + "by analysing module measurements or the shape of the IV curve and comparing \n", + "it with STC reference values from the datasheet. \n", + "\n", + "II) The Mechanistic performance model (MPM) 2017 ref [2] has \"meaningful, \n", + "independent, robust and normalised\" coefficients which fit how the LFM values \n", + "depend on irradiance, module temperature (and windspeed) and time. \n", + "\n", + "III) This tutorial shows how to take module measured and weather data, \n", + "(either outdoor or IEC 61853-like matrix data), normalise it, generate MLFM \n", + "coefficients, fit them with the MPM then analyse module performance looking for \n", + "loss values, degradation and allowing performance predictions as shown in fig 2. \n", + "\n", + "Fig 1 illustrates the loss factors model (LFM). \n", + "\n", + "Depending on the number of measurements available the LFM is defined \n", + "with a suffix number x = 1..12 LFM_n as in ref [4] - \n", + "\n", + "It uses the shape and values from dc measurements to quantify the values of each \n", + "of the loss factors (coloured arrors on the y=current or x=voltage axes\n", + "going from (1) ref\\_p\\_mp to (6) meas\\_p\\_mp. \n", + "\n", + "![mlfm_data/figs/lfm_220914t15.png](mlfm_data/figs/lfm_220914t15.png) \n", + "\n", + "Fig 1: Loss Factors Model \n", + "\n", + "\n", + "![mlfm_data/figs/flow_1024.png](mlfm_data/figs/flow_1024.png) \n", + "\n", + "Fig 2: MLFM overview flow chart of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Explanations of the Loss factors model in fig 1.\n", + "\n", + "1) ref_p_mp = Initial datasheet value at STC.\n", + "\n", + "Multiply by 1/FF to get to (ref_i_sc * ref_v_oc) to start to analyse current and voltage losses \n", + "\n", + "2->3) Three 'current' losses get from ref_i_sc to norm_i_mp\n", + " - norm_i_sc = measured / expected isc corrected for poa_global (purple)\n", + " - norm_r_sc = loss caused by 'shunt resistance' slope at i_sc (orange)\n", + " - norm_i_ff = loss caused by 'current part' of fill factor (green). \n", + " \n", + " \n", + "4->5) Three 'voltage' losses (plus a temperature coefficient) get from from ref_v_oc to norm_v_mp \n", + " - norm_temp_corr = optional temp correction subtracted from v_oc (red). \n", + " - norm_v_oc_t = measured / expected v_oc temp_corrected (brown) \n", + " - norm_r_oc = loss caused by 'series resistance' slope at v_oc (pink)\n", + " - norm_v_ff = loss caused by 'voltage part' of fill factor (blue)\n", + " \n", + " \n", + "6) These losses cause the performance to fall to pr_dc (= meas_p_mp / ref_p_mp) \n", + "\n", + "pr_dc = 1/ff \\* \n", + " (norm_i_sc \\* norm_r_sc \\* norm_i_ff ) \\* \n", + " (norm_v_ff \\* norm_r_oc \\* norm_v_oc_t \\* norm_temp_corr ) \n", + "\n", + "Note: \n", + "The gamma temperature correction is just subtracted from voc for simplicity. \n", + "In reality there will be temperature dependencies for i_sc and ff but they are smaller." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# import mlfm \n", + "\n", + "from pvlib.mlfm import meas_to_norm, mpm_a_fit, mpm_b_fit, meas_to_stack_lin\n", + "from pvlib.mlfm import mpm_a_calc, mpm_b_calc\n", + "\n", + "from pvlib.mlfm import plot_scatter, plot_stack # , mpm_calc\n", + "\n", + "# FIND AND SHOW INSTALLATION CURRENT WORKING DIRECTORY\n", + "import os\n", + "root_dir = os.getcwd()\n", + "\n", + "# uncomment to see root dir\n", + "# print(root_dir)\n", + "\n", + "# STANDARD DEFINITIONS (also in mlfm.py)\n", + "G_STC = 1000.0 # STC irradiance [W/m^2]\n", + "T_STC = 25.0 # STC temperature [C] temperature_ref\n", + "\n", + "# https://matplotlib.org/stable/tutorials/introductory/customizing.html\n", + "plt.rcParams['figure.figsize'] = [7, 5] # setup fig size inches ~[7, 5]\n", + "plt.rcParams.update({'font.size': 12}) # setup fontsize ~12\n", + "plt.linewidth = 1.5 # line width in points ~1.5\n", + "plt.linestyle = '--' # solid line ~'--'\n", + "plt.marker = 's' # the default marker square ~'s'\n", + "plt.markersize = 9 # marker size, in points ~9\n", + "plt.bbox = 1.4 # offset --> to not overwrite ~1.4\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get user choices " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# save graphs as png files to the output directory?\n", + "save_figs = True" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# select which mpm to model : must be 'a original 2017' or 'b advanced 2022'\n", + "mpm_sel = 'b' # 'a' or 'b'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [A] Select MLFM measurement data file\n", + "\n", + "Three default files are included (\\* = version number ) \n", + "\n", + "(0) g78\\_T16\\_Xall\\_F10m\\_R900\\*.csv (6 LFM params) \n", + "(1) n05667\\_Y13\\_R1k6\\_fClear\\*.csv (4 LFM params) \n", + "(2) x19074001\\_iec61853\\*.csv (4 LFM params) \n", + "\n", + "(Some variants are added to the IEC 61853 with fewer data points \n", + "or added scatter to test the fit algorithms)\n", + "\n", + "Essential default column names in meas( ) are :- \n", + "\n", + "meas { \n", + "'date\\_time', 'module\\_id', \n", + "'poa\\_global', 'temp\\_module', \n", + "'v\\_oc', 'i\\_sc', 'i\\_mp', 'v\\_mp', \n", + "'r\\_sc', 'r\\_oc', <-- optional for LFM_6 \n", + "'wind\\_speed', 'temp\\_air', <-- optional \n", + "}\n", + "\n", + "\n", + "File naming conventions can be used to help identify files, for example \n", + "`x81_T1906_D3_Fh.csv` \n", + "\n", + "where \n", + " - x = source e.g. (G)antner, (N)rel, (S)andia, matri(X), ... \n", + " - 81 = module id/channel number \n", + " - T1906 = (T)ime started = yymm(dd) \n", + " - D3 = (D)uration in days \n", + " - Fh = (F)requency e.g. (h)ours or (10m)10 minutes \n", + " - etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Uncomment just one line to select a file from \n", + "# directory ''\\pvlib-python\\docs\\tutorials\\mlfm_data\\meas_gtw'\n", + "\n", + "# PTS COMMENTS \n", + "\n", + "# 0) LFM 6 outdoor Gantner Instruments \n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041.csv' # 900 <<< raw data with rsc and roc\n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041_4param.csv' # 900 deleted rsc,roc\n", + "# mlfm_meas_file = 'g78_T16_Xall_F10m_R1_041.csv' # 1 test record only\n", + "\n", + "# 1) LFM 4 outdoor NREL \n", + "# mlfm_meas_file = 'n05667_Y13_R1k6_fClear_041.csv' # 1600 <<< raw data no rsc,roc measured \n", + "\n", + "# 2) IEC 61853 CFV : either raw data or fewer points and/or added scatter error\n", + "mlfm_meas_file = 'x19074001_iec61853_041.csv' # 27 <<< raw data no rsc,roc measured \n", + "# mlfm_meas_file = 'x19074001_iec61853_041_6pts.csv' # 6 raw but fewer points\n", + "# mlfm_meas_file = 'x19074001_iec61853_041_rand5pc.csv' # 27 rand 5% rmse\n", + "# mlfm_meas_file = 'x19074001_iec61853_041_rand1pc.csv' # 27 rand 1% rmse\n", + "# mlfm_meas_file = 'x19074001_iec61853_041_rand5pc_6pts.csv' # 6 rand 5% rmse fewer points\n", + "\n", + "\n", + "# extract module id from filename e.g. 'g78'\n", + "mlfm_mod = mlfm_meas_file.split('_')\n", + "\n", + "mlfm_mod_sel = mlfm_mod[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import measured data (outdoor or matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "meas = pd.read_csv(\n", + " # root_dir + '/mlfm_data/meas_gtw/' + mlfm_meas_file,\n", + " os.path.join(root_dir, 'mlfm_data', 'meas_gtw', mlfm_meas_file),\n", + " index_col='date_time'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [B] Read all reference datasheet values at STC" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# user must keep updated with their modules from their measurements\n", + "\n", + "\n", + "ref_file_name = os.path.join(root_dir, 'mlfm_data', 'ref', 'mlfm_reference_modules.csv')\n", + "\n", + "ref_data = pd.read_csv(\n", + " ref_file_name, index_col='module_id')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Select module stc data from reference database" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " ref_data = ref_data[\n", + " ref_data.index == mlfm_mod_sel]\n", + "\n", + "except IndexError:\n", + " print(\"You must define module ref data to use this module ...\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Put relevant data into a dict for easy use\n", + "# ignore any other columns that may be database specific\n", + "# as they aren't needed\n", + "\n", + "ref = dict(\n", + " # module_id=ref_data['module_id'].values[0],\n", + " i_sc=ref_data['i_sc'].values[0],\n", + " i_mp=ref_data['i_mp'].values[0],\n", + " v_mp=ref_data['v_mp'].values[0],\n", + " v_oc=ref_data['v_oc'].values[0],\n", + "\n", + " alpha_i_sc=ref_data['alpha_i_sc'].values[0],\n", + " beta_v_oc=ref_data['beta_v_oc'].values[0],\n", + " alpha_i_mp=ref_data['alpha_i_mp'].values[0],\n", + " beta_v_mp=ref_data['beta_v_mp'].values[0],\n", + " gamma_pdc=ref_data['gamma_pdc'].values[0],\n", + "\n", + " p_mp= ref_data['p_mp'].values[0],\n", + " \n", + " \n", + " ff=ref_data['ff'].values[0],\n", + ")\n", + "\n", + "# uncomment to show ref data\n", + "# ref" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate useful data columns for meas" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
module_idtemp_modulepoa_globali_scv_oci_mpv_mpp_mpwind_speedpr_dcv_oc_temp_corrpr_dc_temp_corr
count27.027.00000027.00000027.00000027.00000027.00000027.00000027.00000027.027.00000027.00000027.000000
mean19074001.042.222222581.4814813.45092665.0548153.19440754.227778175.6372600.00.92229067.5661480.964306
std0.023.588350358.4550582.1237154.6831761.9747404.486576110.6985940.00.0782152.5557010.038515
min19074001.015.000000100.0000000.59500054.6000000.54100044.32000024.0657600.00.74667761.2652870.856461
25%19074001.025.000000200.0000001.20300061.5950001.09450049.87500062.0912000.00.84904866.0724550.948074
50%19074001.050.000000600.0000003.54200065.7800003.29800054.250000177.9447800.00.92624168.5026700.974878
75%19074001.062.500000900.0000005.33750069.3050004.94650058.400000269.2324200.00.99668369.5434330.994383
max19074001.075.0000001100.0000006.57800071.8500006.06100060.210000354.1569500.01.02699270.4400001.000051
\n", + "
" + ], + "text/plain": [ + " module_id temp_module ... v_oc_temp_corr pr_dc_temp_corr\n", + "count 27.0 27.000000 ... 27.000000 27.000000\n", + "mean 19074001.0 42.222222 ... 67.566148 0.964306\n", + "std 0.0 23.588350 ... 2.555701 0.038515\n", + "min 19074001.0 15.000000 ... 61.265287 0.856461\n", + "25% 19074001.0 25.000000 ... 66.072455 0.948074\n", + "50% 19074001.0 50.000000 ... 68.502670 0.974878\n", + "75% 19074001.0 62.500000 ... 69.543433 0.994383\n", + "max 19074001.0 75.000000 ... 70.440000 1.000051\n", + "\n", + "[8 rows x 12 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate p_mp and pr_dc as they might be missing\n", + "meas['p_mp'] = meas['i_mp'] * meas['v_mp']\n", + "\n", + "meas['pr_dc'] = (meas['p_mp'] / ref['p_mp']\n", + " / (meas['poa_global'] / G_STC))\n", + "\n", + "# temperature corrected v_c and pr_dc\n", + "meas['v_oc_temp_corr'] = \\\n", + " (meas['v_oc'] * (1 - ref['beta_v_oc']*(meas['temp_module'] - T_STC)))\n", + "\n", + "meas['pr_dc_temp_corr'] = \\\n", + " (meas['pr_dc'] * (1 - ref['gamma_pdc']*(meas['temp_module'] - T_STC)))\n", + "\n", + "# show some meas data\n", + "meas.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Select LFM_n model by counting variables in the meas data \n", + "usually LFM_4 = matrix (i\\_sc, i\\_mp, v\\_mp, v\\_oc) \n", + "and LFM_6 = iv (i\\_sc, i\\_mp, v\\_mp, v\\_oc + r\\_sc, r\\_oc) " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def get_qty_lfm_vars(dmeas):\n", + " \"\"\"Find the quantity of LFM variables in the measured data.\n", + "\n", + " (e.g. I_MP+V_MP=2, MATRIX=4, IV_CURVE=6).\n", + "\n", + " Parameters\n", + " ----------\n", + " dmeas: DataFrame\n", + " Measured weather and module electrical values per time or measurement\n", + "\n", + " Returns\n", + " -------\n", + " qty_lfm_vars : int\n", + " number of lfm_values present in data usually\n", + "\n", + " 2 = ( i_mp, v_mp ) from mpp tracker\n", + " 4 = (i_sc, i_mp, v_mp, v_oc) from matrix\n", + " 6 = (i_sc, r_sc, i_mp, v_mp, r_oc, v_oc) from iv curve.\n", + "\n", + " \"\"\"\n", + " # find how many lfm variables were measured\n", + " qty_lfm_vars = 0\n", + " for lfm_sel in ('i_sc', 'r_sc', 'i_mp', 'v_mp', 'r_oc', 'v_oc'):\n", + " if lfm_sel in dmeas.columns:\n", + " qty_lfm_vars += 1\n", + " # print(qty_lfm_vars, lfm_sel)\n", + "\n", + " return qty_lfm_vars" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "qty_lfm_vars = get_qty_lfm_vars(meas)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [C] Normalise LFM values from meas and ref to norm dataframes \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
poa_globaltemp_modulewind_speedpr_dcpr_dc_temp_corri_sci_mpv_ocv_oc_temp_corrv_mp
date_time
01001500.9360420.9085171.0079880.9126050.9368450.9139710.844634
12001500.9783610.9495911.0020580.9239220.9654710.9418990.851158
24001501.0070650.9774510.9969760.9282070.9919610.9677430.853123
\n", + "
" + ], + "text/plain": [ + " poa_global temp_module ... v_oc_temp_corr v_mp\n", + "date_time ... \n", + "0 100 15 ... 0.913971 0.844634\n", + "1 200 15 ... 0.941899 0.851158\n", + "2 400 15 ... 0.967743 0.853123\n", + "\n", + "[3 rows x 10 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm = meas_to_norm(meas, ref)\n", + "\n", + "# show some normalised data\n", + "norm.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make irradiance and temperature bins for pivot tables " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# poa_global bin e.g. 100, 200 .. 1100W/m2\n", + "norm['poa_global_bin'] = \\\n", + " norm['poa_global'].round(-2)\n", + "\n", + "# temp_module bin e.g. 5, 10 .. 75C\n", + "norm['temp_module_bin'] = \\\n", + " (5 * round(norm['temp_module'] / 5, 0))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [D] Perform sanity checks on meas and norm data \n", + "\n", + "It's easier to sanity check and study normalised data than raw values. \n", + "1) Remove bad, missing, unwanted or outlier data \n", + "2) User defined limits may depend on data scatter and degradation \n", + "3) Can either select on values e.g. '0.5 x stdev from mean' \n", + "4) Possible to select on dates if desired. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# select by irradiance poa_global range e.g. 100-1100 W/m2\n", + "norm = norm[(norm['poa_global'] >= 100) &\n", + " (norm['poa_global'] <= 1100)]\n", + "\n", + "# remove specific lfm values outside limits e.g. <0.5 or >1.5\n", + "norm = norm[((norm['pr_dc'] > 0.5) &\n", + " (norm['pr_dc'] < 1.5))]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# remove all mlfm values outside x~3 stdevs\n", + "if qty_lfm_vars == 6:\n", + " # only needed for outdoor data as indoor ought to be less scattered\n", + " # remove all mlfm data > x stdev usually 3\n", + " stdevs = 3\n", + "\n", + " for lfm in ('i_sc', 'r_sc', 'i_ff', 'v_ff', 'r_oc', 'v_oc'):\n", + " norm = norm[\n", + " ((norm[lfm] - norm[lfm].mean()) /\n", + " norm[lfm].std()).abs() < stdevs\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filter only matching rows from meas and norm data\n", + "like an inner join but leave data in separate norm and meas frames" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# drop meas rows that aren't in norm\n", + "meas_not_in_norm = ~meas.index.isin(norm.index)\n", + "meas = meas.drop(meas[meas_not_in_norm].index)\n", + "\n", + "# drop norm rows that aren't in meas\n", + "norm_not_in_meas = ~norm.index.isin(meas.index)\n", + "norm = norm.drop(norm[norm_not_in_meas].index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [E] Plot normalised LFM data vs irradiance \n", + "\n", + "For outdoor data - \n", + "LFM values norm() should be narrow, smooth lines (around 70-120% on the yaxis).\n", + "\n", + "For matrix data - \n", + "LFM values norm() should be close, almost parallel lines (around 70-120% on the yaxis).\n", + "\n", + "1. Higher values are always better (unlike measured values such as \n", + " Rseries or Io where lower is better)\n", + "1. Accurate measurements and a stable module result in narrowest lines \n", + "1. v_oc and r_sc tend to fall at low light levels ( / left) \n", + "1. r_oc tends to fall at high light levels ( \\ right) \n", + "1. i_ff and v_ff are usually fairly flat ( - ) \n", + "1. i_sc may vary the most due to spectral sensitivity, soiling, shading \n", + " and/or snow (if not properly corrected). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Normalised lfm values vs. irradiance.\n", + "\n", + "All traces should be thin, smoot lines usually around 0.9 ± 0.1 \n", + "i\\_sc may be more scattered if there is uncorrected soiling, spectral and angle of incidence ###" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFaCAYAAAAZ0UstAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAACSfElEQVR4nOzde1zT1f8H8NcY9w0HDLkJDFDRXEoZ5c80r5m3vOQllaEoJql5rzRFRVS8lKWZeSEvqCzNtCzzVmLezbwAKV5QEBBQDBBh3IRxfn/w5ZOTDYfANtj7+XjsATufs8/n/Tkb7L2z8zmHxxhjIIQQQgghxEiZ6DsAQgghhBBC9IkSYkIIIYQQYtQoISaEEEIIIUaNEmJCCCGEEGLUKCEmhBBCCCFGjRJiQgghhBBi1CghJsTAeXp6YunSpfoOgxBCCGm0KCEm9W7GjBno0KEDrK2tYWpqqrbO1atX0b9/fzg4OMDGxgaDBw9GcnJylXqff/45JBIJLC0t8eqrr+L3339X2c7j8dTe+vfvr/a4x48fB5/PR4sWLapsu3DhAt58801YWlrCxcUFc+fOhVKpVKmTkJCA3r17w9raGg4ODpg4cSIKCgq47cXFxRg3bhxeffVVmJubqz3O81y8eBEzZ86s8eOe59SpU+jRoweEQiGEQiFef/11JCYmctsjIiLQs2dP2Nvbg8fj4cyZM1X2UVhYiJkzZ8LDwwNWVlZo3rw5QkNDVdpp0aJFap+TO3fucHWOHj2Kjh07wsHBAZaWlmjevDnmz5+PJ0+eaH0++fn5mDBhAsRiMQQCAfr27atyPs8aO3YseDxelQ8b2pw3IYSQxoUSYlLvlEol/P39MXnyZLXbHzx4gO7du8Pe3h6nTp3CmTNnoFQq8fbbb6OoqIirt2bNGoSGhmLJkiWIiYlBr169MGDAAPzzzz9cnfv376vczp8/DwAYOXJkleNmZmYiMDAQvXr1qrLt3r176NWrF1q1aoXLly9jw4YN2LRpE0JCQrg6CoUCPXv2hKmpKc6dO4c9e/bgyJEjGD9+vMq5m5ubIzg4WG0M2mjatCkEAsELPVaTI0eOoG/fvujWrRvOnTuH2NhYLFy4ENbW1lydwsJC9OjRA1988YXG/Xz66afYs2cPNm/ejBs3bmDlypX46quv8Pnnn6vU8/T0rPLceHl5cdubNGmC6dOn48SJE7h16xa+/PJLREREYM6cOVqf0+jRoxEdHY29e/fizJkzYIyhV69eKq+hStu3b8fVq1fh6upaZZs2500IIaSRYYTUQlZWFnNzc2PTpk3jyjIzM5mzszObPXu2St1t27YxPp9fZR/fffcdEwqF7MmTJ1xZdnY2A8C2bt3KGGOsvLycubq6srlz56o81s/PjwUGBmqMb968ecze3p4VFRWplCuVStazZ0+2fPlyFhoaypo3b66yfe7cuaxZs2ZMqVRyZevWrWPW1tZMoVAwxhjbtGkTs7S0ZLm5uVyd3377jQFgSUlJVWJRdxxtSCQStmTJEu5+aWkpCw0NZZ6enszCwoK1adOGbdy4UeUx+fn5bPr06czNzY2Zm5sziUTCwsPDuXP38vJin332mVbHv3v3LgPATp8+XWWbr68vmzVrlkrZkCFD2ODBg7n7L3reM2bMYK+88opWdW/dusUAsKNHj3JlOTk5zNzcnG3btk2l7vXr15mTkxNLSEio0rZPq+681bl06RLr3bs3s7GxYQKBgL3++uvsr7/+Yowxdu/ePTZkyBAmFouZpaUl8/LyYp9//jljrOI16uPjU2V/EydOZB06dNDq2IQQQmqHeohJrYjFYsjlcqxfvx4HDhwAYwyjR4+GRCLRetxrcXExzMzMVIZTWFpawsTEBKdOnQIAJCcnIyMjA3369FF5bJ8+fTR+pV1aWoqtW7ciMDAQlpaWKtuWLFkCHo+H2bNnq33s2bNn8c4778DE5L8/kT59+qCwsBAxMTFcnY4dO0IkEnF1Kh9z9uxZrc79RXzwwQf46aefsGnTJty4cQMLFy7EnDlzsGXLFgAAYwzvvvsufv31V3zzzTe4ceMGduzYgaZNmwIArly5grt378LNzQ1dunSBo6Mj/u///g8///xzjWPp3LkzDh8+jLt37wIAYmNjcebMmSpDVNLS0uDm5gY3Nzf07dsX586dq3a/N2/exOHDh9G9e3et4jh79izMzMzQs2dPrszOzg5vvPGGyuujsLAQw4cPxxdffIGWLVtqe5rPFR8fjy5dusDOzg7Hjx9HTEwMZs6cifLycgDA5MmT8fjxYxw7dgw3btzAli1b4ObmBgAIDAxEQkIC920GADx58gR79uxBYGBgncVICCFEM/UDOgmpgS5dumD+/PkYN24cAgMDceHCBcTExMDMzEyrx7/99tuYNWsWFi5ciJCQEJSVleHTTz9FeXk5MjIyAFQMhQAAZ2dnlcc6Oztz2571yy+/4MGDBwgODlYp//PPP7Fx40bExMSoJLxPu3//Pjp16lTlWE/Hcv/+/SrxmJmZwd7eXmNMtXX37l3s2LED169fR+vWrQEAXl5euHXrFr755huMHz8ex48fx8mTJ3Hx4kX4+fkBALy9vdGlSxcA4MbVLliwAJ9//jn8/Pzw22+/YejQoTh69KjaISSarF69GtOnT4e3tzdMTU2hVCoRFhaGDz74gKvToUMH7NixA61bt8bjx4+xYcMGvPXWWzhy5EiVY7m5ueHff//FkydPEBwcrPWwhfv378PBwQF8Pl+l/NnXx0cffYRXX30Vo0eP1voctbFixQq0aNECcrmce009nXCnpKTgvffewyuvvAKgYghJJR8fH66NOnbsCAD47bffoFAoMGLEiDqNkxBCiHqUEJM6sWDBAhw9ehRfffUVdu/erTI+9Hlat24NuVyOmTNnYtmyZTAxMUFAQABee+21KgmOOjweT235pk2b0LVrVy5xBICsrCwEBARg69atVZJZbY+j6XjaxFRbly5dAmOMS3QrlZWVcW11+fJl2NnZValTqfKCtw8++IBLXF955RX89ddf+Oabb2qUEK9fvx5HjhzBvn370LJlS1y+fBkzZ86Ek5MT90Gkb9++Ko956623kJ6eji+++KLKsU6fPs31ws+ZMwfOzs4ICwvTOh51Kp8LuVyOM2fOcD38deny5cvo06ePxg9YM2bMwIcffojDhw+jW7du6N+/P/cBBQDGjBmD+fPn4+uvv4a5uTl27tyJAQMGwN7evs5jJYQQUhUlxKRO3L9/HwkJCeDz+UhISKjx44cPH47hw4fj4cOHsLCwgEgkgpOTE9dj5uLiAqDiAjwfHx/ucZmZmWoT2zt37iA6Ohrff/+9Svm1a9eQkZGBAQMGcGXl5eVgjMHU1BQ7duyAv78/XFxc8ODBA5XHVt6vPJ6Liwvu3bunUqe0tBQ5OTk1Tra1VfkV/Llz51QugANUk/DqEvLKC8natGmjUi6VSnHkyBGtYykuLsbs2bOxY8cODBkyBADQtm1b3Lt3D4sXL67SM/+0jh074qeffqpSXvlBSiqVgs/nIyAgALNnz37uRYUuLi7IysqCUqlU+RCVmZnJvV7++OMPJCYmwtbWltuuVCoRGhqKpUuXori4WOtzV6e6Nh83bhz69OmDI0eO4M8//0Tfvn3x3nvvISoqCkDFRZ8zZ87EgQMH0L17dxw6dAg//vhjreIhhBCiPRpDTGqtvLwcAQEBkEql2Lt3LxYvXvzCU1U5OjpCJBLh2LFjePjwIZdoeXp6wtXVFUePHlWpf+TIEXTu3LnKfiIiIiAWi7nHV3r99ddx9epVxMbGcreJEyfC3d0dsbGx3NjXTp064Y8//uAS0MpjWVtb49VXX+XqnD9/Hnl5eVydysc8O9yirrz22msAgNTUVLRo0ULl1rx5c65OTk4OLl26pHYffn5+sLKywq1bt1TKb926pfJV/vOUlpaitLS0Sq8on88HY6zax8bExMDd3b3aOuXl5SgvL0dpaelzY+nUqRNKS0tx/Phxriw3NxcXLlzgXh/h4eH4559/VJ57V1dXfPTRR7h8+fJzj1Gd1157DceOHVN5vTzLxcUF48aNw44dO7BlyxbI5XLutWNvb493330XO3bswO7duyESiar0rBNCCKlHer2kjzQKixcvZmKxmN27d48xxtiUKVOYh4cHy8nJYYwxdvv2bRYTE8PCwsIYn89nMTExLCYmhuXn53P7WLduHbt48SK7ffs227ZtG7O1tWUBAQEqx1m9ejWzsrJiO3fuZDdu3GBz5sxh5ubmLDY2VqVeSUkJa9q0Kfv000+1il/dLAipqanMxsaGBQUFsWvXrrFffvmF2dvbszlz5nB18vPzmZubG+vfvz+LjY1lx48fZ56enmzEiBEq+4qPj2cxMTHsww8/ZO7u7tz5l5SUaBXfszMhBAUFMWdnZ7Zjxw52+/ZtFhsby7Zs2cJWrFjBGKuYkeOtt95i3t7ebP/+/SwpKYmdOXOGfffdd9w+Zs+ezWxsbNiuXbvYnTt32OrVq5mJiQmLjo7m6ty/f5/FxMSwgwcPMgBs27ZtLCYmht2/f5+r06NHD9ayZUv2+++/s7t377K9e/cye3t7NmXKFK7OzJkzWXR0NEtMTGQxMTFs8uTJjMfjsV9//ZWrs2rVKvbbb7+xhIQEdvv2bbZr1y7m6urKBg4cqFUbMcbYoEGDWPPmzdmJEydYTEwM69u3L/Py8mKFhYVat6225/3ZZ5+xHj16cPf/+ecfZmVlxUaOHMkuXrzI7ty5w/bs2cPOnTvHGGPso48+YgcPHmR37txh165dY8OHD2fu7u6svLyc28cvv/zCzMzMmFQqVZm1hRBCSP2jhJjUytmzZ5mpqSn75ZdfuLLi4mLWrl07NmTIEMYYY127dmUAqtz+/PNP7jHjxo1jDg4OzMzMjLVs2ZItX76clZWVVTneypUrmbu7OzM3N2e+vr7syJEjVers2rWL8Xg8dvv2ba3OQdO0YOfPn2cdO3ZkFhYWzMnJiX322WdVYrp58ybr1asXs7KyYvb29iw4OJiblq2SRCJRe/53797VKr5nk7aysjK2cuVK1qpVK2ZmZsbEYjHr0qUL27NnD1cnLy+PTZkyhTk7OzMzMzPm6enJli9frrKPBQsWsGbNmjErKyvWvn17tn///irtoi7u0NBQrs7Dhw/ZhAkTmJubG7OwsGDe3t7ss88+U0lCR44cyZo1a8bMzc1Z06ZNWc+ePVUSb8YYW758OXvppZeYtbU1EwqFTCqVsvDwcFZQUKBVG1We8/jx45mdnR2zsrJivXv3fu5rQF1CrM15BwYGMolEovK4CxcusJ49e3Ln8MYbb7ALFy4wxhibPHkya9myJbO0tGT29vasX79+7Nq1ayqPf/LkCWvatCkDwC5duqT1eRNCCKk9HmPP+W6TEEIIIYSQRozGEBNCCCGEEKOms4R43bp18PPzg4WFBcaOHaux3rVr19C7d284ODiovWo7JycH7733HgQCASQSSZVZBAhpSCZOnAihUKj2JpVK9R2ewZBKpRrbaeLEifoOjxiB27dvw9LSEgEBARrrrF69Gs7OzhCJRAgKCkJJSYkOIySE1IbOhkz89NNPMDExwdGjR1FUVITIyEi19W7duoUzZ87AwcEBgwcPrnK1+qhRo1BeXo4tW7ZwswKcO3eOkgfSID18+FBlloqnmZmZQSKR6Dgiw5SSkqJxtokmTZrA0dFRxxERY/POO++gqKgIEomEmy7vaUePHsWYMWNw/PhxuLq64r333sP//d//YcWKFXqIlhBSUzofQzx//nykpaVpTIgr3blzBy1btlRJiAsKCmBnZ4dr165xc4uOHj0azZo1o386hBBC6sXu3bvx008/oU2bNrhz547ahNjf3x+enp5YtmwZACA6OhoymazKfOaEEMPUoBbmqFz44emFGXx9fXHy5Em19SMiIhAREQGgYiWpZxcyaMie7i3TdolkQohm9DelWWNtm8LCQm5ubwAIDg6usqBMXl4eFi5ciOjoaGzZskXjvuLj4zFo0CDuvq+vLzIzM5GdnQ2xWFz3wetZeXk50tLSUFBQoO9QCNGKQCCAm5ubxhVFG1RCrFAoIBKJVMpEIhHy8/PV1n/6n5tAIGhUf7hPL2cbGhqqx0gIaRzob0qzxto2AoFA4wI2lRYsWIDx48c/dyGZZ9+fKn/Pz89vlAlxVlYWeDweWrVqpTHBIMRQlJeXIz09HVlZWRqH2DWohFgoFFYZb5mXlwcbGxs9RUQIIaSxio2NxbFjxxATE/Pcus++P1X+3ljfn3Jzc+Hp6UnJMGkQTExM4OTkhJSUlMaREPv4+KCsrAy3b99Gy5YtAQBxcXF0QR0hhJA6d+LECSQnJ8PDwwNARS+wUqnE9evXceXKFZW6UqkUcXFxeP/99wFUvDc5OTk1yt5hAFAqlY1q+Axp/MzMzFBWVqZxu84+2pWVlaG4uBhKpRJKpRLFxcVqA2OMobi4GE+ePAEAFBcXc1PXCAQCDBkyBAsXLkRBQQHOnj2LX375BaNHj9bVaRBCCDESwcHBSExMRGxsLGJjYzFx4kT0798fR48erVJ3zJgx2LJlC65fv45Hjx5h6dKl1U4x2hiomxqVEEP1vNerzhLipUuXwsrKCitWrEBUVBSsrKywdOlSpKamQigUIjU1FUDF9EpWVlZcr6+VlRVatWrF7Wf9+vUoKiqCo6MjRo0ahQ0bNlAPMSGEkDpnbW0NZ2dn7iYUCmFpaYmmTZtWee/q06cPZs+eje7du0MikUAikaiMvSaEGDadDZlYtGgRFi1apHabQqHgfvf09Kwy9/DT7O3tsX///jqOjhBCCKne0+9hHh4eKu9dADBr1izMmjVLx1ERXeHxeLh9+zZatGih71BIPaDR8IQQQggh9Sg5ORk8Hq/aMaxEvyghJoQQQojRoeS0bqhrx4bYtpQQE0IIIUQn5HI5N12bp6cn5HJ5nR/D09MTy5cvR5s2bWBnZ4dx48ahuLgYJ06cgJubG1auXAlnZ2eMGzeu2v188cUXcHFxgaurK7Zu3aqyraioCB9//DEkEglEIhE6d+6MoqIijfvq0qULAMDW1hZCoRDnz58HAGzduhUvvfQS7Ozs0Lt3b6SkpHCP4fF4WL9+PVq2bAkbGxssWLAAiYmJ6NixI5o0aYL333+fm4Cg8tyWLVsGBwcHrdu2uvP49ddfIZVKYWtri27duuHGjRsqbbxy5Uq0a9cOAoEAd+7cAY/Hw5YtW+Dh4YEePXo899iGpkFNu0YIIYSQhkkulyM4OBiFhYUAKi6ir1w8SyaT1fmxjh49CoFAgAEDBmDp0qV4++238eDBA+Tk5CAlJQXl5eUaH3/kyBGsWrUK0dHR8PLywoQJE1S2f/LJJ4iPj8e5c+fg7OyMCxcuVDsn86lTp+Dl5YXc3FyYmlakXvv378eyZctw4MABtGzZEitWrMCoUaNw7tw5lTguX76Me/fuoX379jh37hzkcjnEYjE6duyIXbt2ITAwEADw4MEDZGVlIT09HX/99Rf69esHPz8/lYkJnqXpPBISEjBq1Cjs378f3bp1w+rVqzFgwABcv34d5ubmAIBdu3bh4MGDcHBwQGZmJgDg5MmTuHHjRoOcn7rhRUwIIYSQBickJIRLhisVFhYiJCSkzo81ZcoUuLu7w97eHiEhIdi1axeAigUawsLCYGFhASsrK42P37NnD8aNG4eXX34ZAoFA5YLK8vJybN26FV9//TWaNWsGPp+PN998ExYWFjWKcdOmTZg7dy5eeuklmJqaYt68eYiNjVXpJZ4zZw6aNGkCqVSKl19+Ge+88w68vb0hEonQt2/fKovGLFmyBBYWFujatSv69++PPXv2aDx+defxww8/oH///ujVqxfMzMzwySefoKioSCVZnzZtGtzd3VXacdGiRRAIBNW2raGihJgQQggh9a5yijpty2vj6aW2JRIJMjIyAABNmzaFpaXlcx+fkZFRZR+VsrKyUFxcjObNm9cqxpSUFEyfPh22trawtbWFvb09GGNIT0/n6jg5OXG/W1lZVbn/9EwndnZ2EAgEKjFXnrc61Z1HRkaGyjmbmJjA3d1dJTZ1y5k/b4lzQ0YJMSGEEELqXeWKf9qW18a9e/e431NTU+Hq6gpA+8VEXFxcquyjkoODAywtLZGYmKh1POqO6+7ujk2bNiE3N5e7FRUV4c0339R6v0979OgRCgoKVGKuPG91qjsPV1dXlZ5qxhju3buHZs2aVXtODXmxFkqICSGEEFLvwsPDYW1trVJmbW2N8PDwOj/Wt99+i7S0NOTk5GDZsmUYMWJEjR7//vvvIzIyEtevX0dhYaHKIismJiYICgrCrFmzkJGRAaVSifPnz3Or6qrTtGlTmJiYICkpiSubOHEili9fjvj4eADA48eP8eOPP9bwTFWFhobiyZMnOH36NH777TcMHz5cY93qzuP999/HwYMHER0djdLSUnz55ZewsLB44WS9IaCEmBBCCCH1TiaTISIiAhKJBDweDxKJBBEREXV+QR0A+Pv7c+Ntvb29MX/+/Bo9vm/fvpgxYwZ69OiBFi1aVJk1YdWqVWjbti1ef/112NvbY86cOdVepGdtbY2QkBB06tQJtra2+Ouvv/Dee+9hzpw5GDlyJJo0aYKXX34Zhw8ffqHzBQBnZ2fY2dnB1dUVMpkMGzduROvWrat9jKbzaNWqFaKiojB16lQ4ODjgwIEDOHDgAHdBXWPEY9UtC9eICAQCla8SGrqnP62GhobqMRJCGgf6m9KssbZNY3tf0KUbN27gpZde0ncYanl6emLz5s14++239R2Kzpw4cQIBAQFIS0vTdygGrbrXLfUQE0IIIYQQo0YJMSGEEEKMzrJlyyAUCqvc+vbt+0L7k8vlavcnlUrrOPKakUqlauOqj0VRGjJamIMQQgghjUZycrJW9ebNm4d58+bV2XFlMlm9jIfWRrdu3TQOl6i8aI9Uj3qICSGEEEKIUaOEmBBCCCGEGDVKiAkhhBBCiFGjhJgQQgghhBg1SogJIYQQQohRo4SYEEIIIaSeLFu2DB988IG+wyDPQdOuEUIIIYTUk7qc2o3UH+ohJoQQQgh5SllZmb5DIDpGCTEhhBBCdEJ+VQ7PNZ4wCTOB5xpPyK/W/Wppnp6eWLVqFdq1aweRSIQRI0aguLgYAPDdd9+hRYsWsLe3x8CBA5GRkcE9jsfj4dtvv0XLli3RsmVLnDhxAm5ubvj888/h6OgIFxcX7N+/H4cOHYKPjw/s7e2xbNmy58azaNEiBAQEVFsnOTkZPB4P27Ztg7u7O+zs7LBx40ZcvHgR7dq1g62tLaZMmcLVj4yMRKdOnTB16lSIRCK0bt0a0dHRL9hiBKAhE4QQQgjRAflVOYIPBKOwtBAAkPI4BcEHggEAsrZ1u8Lbnj17cOTIEVhaWqJTp06IjIyEj48P5s6di99//x1SqRSffPIJRo4ciVOnTnGP279/Py5cuAArKytcuHABDx48QHFxMdLT0xEZGYkJEyagV69euHz5MlJTU/Haa69h5MiR8Pb2rpO4L1y4gNu3b+PUqVMYOHAg+vTpg2PHjqG0tBSvvvoqhg8fjq5du3J1hw0bhqysLPz0008YMmQI7t69C3t7+zqJxdhQDzEhhBBC6l1IdAiXDFcqLC1ESHRInR9r2rRpcHV1hb29PQYMGIDY2FjI5XIEBQWhffv2sLCwwPLly3H+/HmVpZ7nzp0Le3t7WFlZAQDMzMwQEhICMzMzjBw5EllZWZg+fTpsbGwglUohlUrxzz//1FncCxYsgKWlJd555x0IBAKMGjUKjo6OaNasGd566y3ExMRwdR0dHTFjxgyYmZlhxIgRaNWqFQ4ePFhnsRgbSogJIYQQDQICAuDi4oImTZrAx8cHmzdvVlsvMjISfD4fQqGQu504cUK3wRq41MepNSqvDWdnZ+53a2trKBQKZGRkQCKRcOVCoRBisRjp6elcmbu7u8p+xGIx+Hw+AHBJspOTE7fdysoKCoWizuJ+dt/VHatZs2bg8XjcfYlEojIEhNQMJcSEEEKIBnPnzkVycjLy8vLw66+/Yv78+bh8+bLauh07doRCoeBu3bp1022wBs5D5FGj8rrm6uqKlJQU7n5BQQGys7PRrFkzruzpBNPQpaengzHG3U9NTYWrq6seI2rYKCEmhBBCNJBKpbCwsABQkSzxeDwkJibqOaqGKbxnOKzNrFXKrM2sEd4zXCfH9/f3x7Zt2xAbG4uSkhLMmzcPHTp0gKenp06OX9cePnyItWvXorS0FD/++CNu3LiBfv366TusBosSYkIIIUaprKwMfn5+3C0iIkJtvcmTJ8Pa2hqtW7eGi4uLxqQjJiYGDg4O8PHxwZIlS2jqrmfI2soQMSACEpEEPPAgEUkQMSCizi+o06Rnz55YsmQJhg4dChcXFyQmJmL37t06OXZ96NChA27fvg0HBweEhIRg7969EIvF+g6rweKxp/vbGzGBQICCggJ9h1FnwsLCuN9DQ0P1GAkhjQP9TWnWWNumJu8LSqUS58+fx4kTJzBnzhyYmZmpbE9KSgKPx4NEIkF8fDxGjBiB0aNHY+7cufURut7duHEDL730kr7DMFqRkZHYvHkzzpw5o+9QGpTqXrfUQ0wIIYQ8B5/PR+fOnZGWloYNGzZU2e7t7Q0vLy+YmJigbdu2WLhwIfbu3auHSAkhL4ISYkIIIURLZWVlWo0h5vF4MJIvYAmAvn37qswwUnl7euEOuVyuto5UKtVj5KQSLcxBCCGEqPHw4UMcP34c7777LqysrHDs2DHs2rUL33//fZW6hw8fRvv27eHk5ISbN29iyZIlGD58uB6iJvpw+PDh59aRyWSQyepmvPTYsWMxduzYOtkXqUA9xIQQQogaPB4PGzZsgJubG+zs7PDJJ59gzZo1GDRoEFJTUyEUCpGaWjGHbnR0NNq1aweBQIB+/fphyJAhmDdvnp7PgBCiLeohJoQQQtRo2rQpTp48qXabh4eHyiIJq1atwqpVq3QVGiGkjlEPMSGEEEIIMWo6S4jXrVsHPz8/WFhYPHfcy+rVq+Hs7AyRSISgoCCUlJRw27p16wZLS0tuMHqrVq3qOXJCCCGEENKY6SwhdnV1xfz58xEUFFRtvaNHj2LFihWIjo5GcnIykpKSqsx7uW7dOm5pzFu3btVn2IQQQgghpJHTWUI8ZMgQDB48+LmrqGzfvh3jx4+HVCqFnZ0dFixYgMjISN0ESQghhBBCjI7BjSGOj4+Hr68vd9/X1xeZmZnIzs7myubOnQsHBwd06tQJJ06c0EOUhBBCCCGksTC4hFihUEAkEnH3K3/Pz88HAKxcuRJJSUlIT09HcHAwBgwYoHGS9IiICG6NelpTnhBCCCHaoJzB+BhcQiwUCpGXl8fdr/zdxsYGANChQwfY2NjAwsICgYGB6NSpEw4dOqR2X8HBwbh06RIuXboEU1OaYY4QQgjRJ7kc8PQETEwqfsrldX8MT09PrFq1Cu3atYNIJMKIESNQXFwMAPjuu+/QokUL2NvbY+DAgcjIyOAex+Px8O2336Jly5Zo2bIlTpw4ATc3N3z++edwdHSEi4sL9u/fj0OHDsHHxwf29vYqK9Gpk5GRASsrK+Tk5HBlMTExcHBwQGlpqcbHRUZGolOnTpg5cyZsbW3h7e2Nc+fOITIyEu7u7nB0dMT27du5+mPHjsXEiRPRq1cv2NjYoGvXrkhJSXnRJjRKBpcQS6VSxMXFcffj4uLg5OSkcewxLY9JCCGEGD65HAgOBlJSAMYqfgYH109SvGfPHhw5cgR3797FP//8g8jISBw/fhxz587Fnj17cP/+fUgkEowcOVLlcfv378eFCxdw/fp1AMCDBw9QXFyM9PR0LF68GBMmTEBUVBQuX76M06dPY/HixUhKStIYh6urKzp27Ih9+/ZxZd9//z2GDRsGMzOzas/hwoULaNeuHbKzs+Hv74+RI0fi4sWLuHPnDqKiojBlyhSVubDlcjkWLFiArKwsvPLKK3W2Kp6x0FlCXFZWhuLiYiiVSiiVShQXF6v9SmLMmDHYsmULrl+/jkePHmHp0qXcNG25ubk4evQo91i5XI5Tp06hd+/eujoNQgghhLyAkBCgsFC1rLCworyuTZs2Da6urrC3t8eAAQMQGxsLuVyOoKAgtG/fHhYWFli+fDnOnz+P5ORk7nFz586Fvb09rKysAABmZmYICQmBmZkZRo4ciaysLEyfPh02NjaQSqWQSqX4559/qo3F398fu3btAgAwxrB79274+/s/9xy8vLwwbtw48Pl8jBgxAvfu3cPChQthYWGBd955B+bm5rhz5w5Xv3///ujSpQssLCwQHh6O8+fP4969ey/QesZJZwnx0qVLYWVlhRUrViAqKgpWVlZYunRpleUv+/Tpg9mzZ6N79+6QSCSQSCQICwsDAJSWlmL+/Plo2rQpHBwc8M0332D//v00FzEhhBBi4P73Nq91eW04Oztzv1tbW0OhUCAjIwMSiYQrFwqFEIvFSE9P58rc3d1V9iMWi8Hn8wGAS5KdnJy47VZWViq9tOoMGzYM58+fR0ZGBk6dOgUej4e33nrruefw7HGed+ynYxcKhbC3t1cZEkKqp7OBtYsWLcKiRYvUbnv2xTRr1izMmjWrSr2mTZvi4sWL9REeIYQQQuqRh0fFMAl15brg6uqqMq62oKAA2dnZaNasGVfG4/Hq/Li2trZ45513sGfPHty4cQOjRo2ql+M83RusUCiQk5MDV1fXOj9OY2VwY4gJIYQQ0viEhwPW1qpl1tYV5brg7++Pbdu2ITY2FiUlJZg3bx46dOgAT09PnRx7x44d2Ldvn1bDJV7EoUOHcObMGTx58gQLFixAhw4dqvR4E80oISaEEEJIvZPJgIgIQCIBeLyKnxERFeW60LNnTyxZsgRDhw6Fi4sLEhMTsXv3bp0ce+DAgbh9+zacnJxU1lqoS/7+/ggLC4O9vT0uX74MeX1crdiI0VxkhBBCCNEJmaz+E+CnL5IDoDJcc+LEiZg4caLaxz07Y1W3bt2QlpbG3Tc1Na1S58yZM1rFZGVlxa2noI2xY8dyEwoAQIsWLaoc++nYAMDBwQEbN27U+hhEFfUQE0IIIYQQo0YJMSGEEEJILfTt2xdCobDKrbqFOyZOnKj2MZp6sEn9oiEThBBCCCG1cPjw4Ro/ZuPGjXU2xCEyMrJO9mPMqIeYEEIIIYQYNUqICSGEEEKIUaOEmBBCCCGEGDVKiAkhhBBCiFGjhJgQQgghhBg1SogJIYQQQohRo2nXtHRVfhXRIdF4nPoYIg8Reob3RFtZW32HRQghhBADtmzZMiQlJWHz5s36DoVUg3qItXBVfhUHgg/gccpjgAGPUx7jQPABXJVf1XdohBBC6lFAQABcXFzQpEkT+Pj4VJvUrF69Gs7OzhCJRAgKCkJJSYkOIyWGat68eZQMNwCUEGshOiQapYWlKmWlhaWIDonWU0SEEEJ0Ye7cuUhOTkZeXh5+/fVXzJ8/H5cvX65S7+jRo1ixYgWio6ORnJyMpKQkhIaG6iFiw3ZVfhVrPNcgzCQMazzXGGzHUllZmb5DIDpGCbEWHqc+rlE5IYSQxkEqlcLCwgIAwOPxwOPxkJiYWKXe9u3bMX78eEilUtjZ2WHBggW0etgzdPVtq6enJ1atWoV27dpBJBJhxIgRKC4uBgB89913aNGiBezt7TFw4EBkZGRwj+PxePj222/RsmVLtGzZEidOnICbmxs+//xzODo6wsXFBfv378ehQ4fg4+MDe3v7apdmrrRo0SIEBARUW6e4uBgBAQEQi8WwtbXF66+/jszMTABATk4Oxo0bB1dXV9jZ2WHw4MEv3jhEI0qItSDyENWovL49+8/DUD9hE0KIISsrK4Ofnx93i4iIUFtv8uTJsLa2RuvWreHi4oJ+/fpVqRMfHw9fX1/uvq+vLzIzM5GdnV1v8Tc0uvy2dc+ePThy5Aju3r2Lf/75B5GRkTh+/Djmzp2LPXv24P79+5BIJBg5cqTK4/bv348LFy7g+vXrAIAHDx6guLgY6enpWLx4MSZMmICoqChcvnwZp0+fxuLFi5GUlFTreLdv347Hjx/j3r17yM7OxsaNG2FlZQUAGD16NAoLCxEfH4+HDx9i5syZtT4eqYouqtNCz/CeOBB8QOUP2czaDD3De+o8lspP2Jj9X9mB4AMAQBf5EUJIDZiamuLSpUvPrbd+/Xp88803OH/+PE6cOMH1GD9NoVBAJPqvk6Ty9/z8fIjF4roLugHT5bet06ZNg6urKwBgwIABiI2NxcWLFxEUFIT27dsDAJYvXw47OzskJyfD09MTQMUQGXt7e24/ZmZmCAkJAZ/Px8iRIxEcHIzp06fDxsYGUqkUUqkU//zzD7y9vWsVr5mZGbKzs3Hnzh20a9cOr732GgDg/v37OHz4MLKzs2FnZwcA6Nq1a62ORdSjHmIttJW1hW+gL3h8HgCAx+fBN9BXLwkojWcmhBDd4/P56Ny5M9LS0rBhw4Yq24VCIfLy8rj7lb/b2NjoLEZDp8tvW52dnbnfra2toVAokJGRAYlEwpULhUKIxWKkp6dzZe7u7ir7EYvF4PP5AMD12Do5OXHbraysoFAoah3v6NGj0bt3b4wcORKurq6YPXs2SktLce/ePdjb23PJMKk/lBBr4ar8KuK2x4EpGQCAKRnitsfpZagCjWcmhBD9KSsrUzuGWCqVIi4ujrsfFxcHJycn6h1+Ss/wnjCzNlMp0+W3ra6urkhJSeHuFxQUIDs7G82aNePKeDyeTmJ5lpmZGUJDQ3H9+nWcO3cOv/32G3bs2AF3d3fk5OQgNzdXL3EZE0qItWBIvbKGNp6ZEEIaq4cPH2L37t1QKBRQKpU4evQodu3ahR49elSpO2bMGGzZsgXXr1/Ho0ePsHTpUowdO1b3QRuwtrK2GBAxACKJCOABIokIAyIG6OzbVn9/f2zbtg2xsbEoKSnBvHnz0KFDB264hD79+eefuHr1KpRKJZo0aQIzMzPw+Xy4uLigb9++mDx5Mh49eoTS0lKcOnVK3+E2SpQQa8GQemX1/Qnb0DWUKX0IIYaPx+Nhw4YNcHNzg52dHT755BOsWbMGgwYNQmpqKoRCIVJTUwEAffr0wezZs9G9e3dIJBJIJBKEhYXp+QwMT1tZW8xInoHQ8lDMSJ6h06GHPXv2xJIlSzB06FC4uLggMTERu3fv1tnxq/PgwQMMGzYMTZo0wUsvvYSuXbtyM1Ps3LkTZmZmaN26NRwdHbFmzRr9BttI8RhjTN9B6IJAIEBBQcELPXaN55qKaWKeIZKIMCN5Ri0jq7mDkw/iktN/F4L4Zfqh//r+Oo/D0FRecPjsxY+67IEgDdfTyQvNH6uqsbZNbd4XjN2NGzfw0ksv6TsMQmqkutct9RBroWd4T/DN+SplfHO+3maZiNsep1Kmr/HMhsaQhrYYIuo9J4QQQtSjhFhLz3ak66tjnZI+zQxpaIuhoeXHq0dzezcc9MGOGKK+fftCKBRWuT29cIdcLldbRyqV6jFyUonmIdZCdEg0ykvLVcrKS8sRHRKt86/iKenTTOQhUj+0hS44rPaDlLEPJ6G5vaun7sOCvtrl2WFRlR/sgIb1XJWVleHXX3/FwYMHERcXh9zcXNja2sLX1xd9+/bF4MGDYWpKb88NyeHDh59bRyaTQSaT6SAa8iKoh1gLhpSE0iwTmtEFh5oZ0mvY0NC3LppxHxaeos9vFhrDc7Vp0yZ4e3tj06ZNaN68OUJCQrBx40aEhISgefPm+O677+Dt7Y2NGzfqO1RCjAp9BNWCIfU8cqvmQf+r5hmayh6i6JBoPE59DJGHCD3DezaonqP6YkivYUNDHxY0M7RvFhrDc5WQkIC///5bZeGISu+99x7mzZuH+/fv48svv9RDdIQYL0qItWBISzdXvgn9dOcnroxmUfhPW1lbags1DOk1bGjow4JmhpaANobnSptE18XFBatWrdJBNISQSjRkQguGtHRzZTzV3TdmdMGNevqeEN+Q0VAbzQxtiFZje64SEhLw888/Y8eOHfj555+RkJCg75AIMVrUQ6wFTUs3e3TyoITCgDSWC26IbrWVtUXq2VRcwn9ze+vzA68h6RneE78E/QIllFyZvqacBBrPsKjU1FSMGDECcXFxaN68OUQiEfLy8pCYmAhfX1/s3r0bHh4e+g6TEKOiVQ/xrl27cOPGDQDArVu30KVLF/To0QM3b96s1+AMRWO4kMMY0POkGU27phnN7V09Q5lysjEZN24c3nrrLWRlZeHq1as4c+YM/vnnHzx8+BBvvfUWLflM6tzYsWMxf/58fYdh0LRKiOfPnw97e3sAwCeffII33ngDXbp0weTJk+s1OENhaOPoiHr0PGlGHxY0o7bRrLopJ/WhsXywu3DhApYuXQpra2uVcoFAgMWLF+PChQt6ioxUKisr03cIREvqniulUqmmZvW0Soj//fdfODk5obi4GGfOnEF4eDgWLlyI2NjYGh+wITK0cXREPXqeNKMPC5pR22hmaG0THRINc/tEuPU+BMl7++DW+xDM7RMb3IcXd3d3/Pbbb2q3HTp0qFEPl0g6dRB7P+yN7cN8sffD3kg6dbDOj+Hp6YlVq1ahXbt2EIlEGDFiBIqLiwEA3333HVq0aAF7e3sMHDgQGRkZ3ON4PB6+/fZbtGzZEi1btsSJEyfg5uaGzz//HI6OjnBxccH+/ftx6NAh+Pj4wN7eXmXhDXUyMjJgZWWFnJwcriwmJgYODg4oLS3V+Ljy8nIsXboUEokEjo6OGDNmDB4//u/v7syZM3jzzTdha2sLd3d3REZGatxXREQE5HI5Pv/8cwiFQgwYMICLbejQoWjatCm8vLywdu1a7jGLFi3C8OHDERAQABsbG7Rt2xYJCQlYvnw5HB0d4e7ujt9//52r361bN8ydOxdvvPEGRCIRBg0apHLOmmg6j8ePH2PMmDFo2rQpJBIJli5divLyig/nkZGR6NSpE2bOnAl7e3ssWrQIY8eOxaRJk9CvXz8IBAL8+eefzz32s7RKiJs2bYo7d+7g8OHDeP3112FhYYHi4mKj+erM0C7kODj5YLX3jZWhPU+GhD4saEZto5mhtU1Z+VWI21+BqaAIPB5gKiiCuP0VlJU3rB7idevWISgoCJ07d8ZHH32EefPmYcqUKejcuTOCgoLw7bff6jvEepF06iDObQxDQdZ9gDEUZN3HuY1h9ZIU79mzB0eOHMHdu3fxzz//IDIyEsePH8fcuXOxZ88e3L9/HxKJBCNHjlR53P79+3HhwgVcv34dAPDgwQMUFxcjPT0dixcvxoQJExAVFYXLly/j9OnTWLx4MZKSkjTG4erqio4dO2Lfvn1c2ffff49hw4bBzMxM4+MiIyMRGRmJP//8E0lJSVAoFJgyZQqAijHoffv2xdSpU/Hvv/8iNjYWr7zyisZ9BQcHQyaTYfbs2VAoFDhw4ADKy8sxYMAA+Pr6Ij09HdHR0VizZg2OHj3KPe7AgQMYPXo0Hj16hFdffRW9e/dGeXk50tPTsXDhQnz44Ycqx9mxYwe2bt2KjIwMmJqaYtq0aRpjet55TJ06FY8fP0ZSUhJOnjyJHTt2YNu2bdxjL1y4AG9vbzx8+BAhISFcu4aEhCA/Px+dO3eu9tjqaJUQL1iwAK+99hrGjx+PTz/9FAAQHR0NX1/fGh+wITKkK/QPTj6ISxsuqZRd2nCJkmIY3mwghoQ+LGhGbaOZobWNfbvrMDFV/SrUxFQJ+3bX9RLPi+rZsycSExMRGBgIMzMzPHz4EKampggMDMTt27fRo0cPfYdYL67I10JZUqxSpiwpxhX5Wg2PeHHTpk2Dq6sr7O3tMWDAAMTGxkIulyMoKAjt27eHhYUFli9fjvPnzyM5OZl73Ny5c2Fvbw8rKysAgJmZGUJCQmBmZoaRI0ciKysL06dPh42NDaRSKaRSKf75559qY/H398euXbsAVIzB3717N/z9/at9jFwux6xZs+Dt7Q2hUIjly5dj9+7dKCsrg1wux9tvv41Ro0bBzMwMYrG42oRYnYsXL+Lff//FwoULYW5uDm9vb0yYMAG7d+/m6rz11lvo3bs3TE1NMXz4cPz777/47LPPuLZITk5Gbm4uV3/06NF4+eWXIRAIsGTJEuzZs6faoQuazkOpVOKHH37A8uXLYWNjA09PT3z88cfYuXMn91hXV1dMnToVpqam3HM1aNAgdOrUCSYmJrC0tKxRewBaJsRjx47F/fv3kZaWhl69egEAOnTooNJwz7Nu3Tr4+fnBwsLiuRcMrF69Gs7OzhCJRAgKCkJJSQm3LScnB++99x4EAgEkEgm+//57rWOojbaytpiRPAOh5aGYkTxDb0nW5YjLNSo3JppmA2lo4wvrA31Y0KzyA+/TaEq6Cm1lbdGkS7pKWZMu6XprG75FQY3KDZlYLMaECROwZs0abN68GWvWrMGECRPg4OCg79DqTUH2gxqV18bTC59YW1tDoVAgIyMDEomEKxcKhRCLxUhP/+817u7urrIfsVgMPp8PAFzi5eTkxG23srKCQqGoNpZhw4bh/PnzyMjIwKlTp8Dj8fDWW29V+5hnY5VIJCgrK0NmZibu3buH5s2bV/v450lJSUFGRgZsbW2527Jly5CZmcnVefY8HRwcqrTF0+f+dNtJJBKUlpYiKytLYwyaziMrKwtPnjypcv7VPU+aympC63mIi4qKsG/fPnz++ecAKgYx12TQuaurK+bPn4+goKBq6x09ehQrVqxAdHQ0kpOTkZSUhNDQUG77Rx99BHNzc2RmZkIul2PSpEmIj4/XOo6GrjLZ07bcmNDFUZrRh4XqnTl7ptr7xipi3EwIzM+plAnMzyFi3Ey9xMMzUf+WpanckN24cQPz5s3DoEGD0KNHDwwaNAjz5s3jZnRqjATiqqvzVVde11xdXZGSksLdLygoQHZ2Npo1a8aV8Xi8Oj+ura0t3nnnHezZswfff/89Ro0a9dzjPBtramoqTE1N4eTkBHd3dyQmJtYohmeP5+7uDi8vL+Tm5nK3/Px8HDp0qEb7fdq9e/dU4jUzM6v2A56m83BwcICZmVmV83/e81Tb506reYhPnjyJoUOHws/PD2fPnsXs2bNx+/ZtrFq1CgcOHHj+DgAMGTIEAHDp0iWkpaVprLd9+3aMHz8eUqkUQMVwDZlMhhUrVqCgoAD79u3DtWvXIBQK0blzZwwcOBA7d+7EihUrqj1+aWkpwsLCtIrVoC3SXNYozq82xqkvfozH1DYAMFv1bilK8dOdn/BT2E/q6xsTJ9W7D50e0msGADxtAc/BKkWp7Svu66V9Xn5P46aG9Hzt2rULkyZNwsCBA9GlSxduHuK4uDi8+eab2LhxI0aMGKHvMOtce9k0nNsYpjJsgm9hifay6sea1hV/f3+MHDkS/v7+eOmllzBv3jx06NABnp6eOjn2ypUrkZqaiujo53fSjBo1CitXrkTfvn3RtGlTzJs3DyNGjICpqSlkMhmWLVuGPXv2YMiQIXj8+DHu3btX7bAJJycnlbHOb7zxBpo0aYKVK1di2rRpMDc3x40bN1BUVITXX3/9hc4xKioKY8aMgaenJxYuXIhhw4ZxPcrqVHce77//PkJCQrBjxw7k5OTgq6++wieffPJCcWlLq4/VM2bMwA8//IAjR47A1LQih+7QoQP+/vvvOg8oPj5eZWyyr68vMjMzkZ2djYSEBPD5fPj4+Khs19RDHBERAT8/P/j5+dV5nIQQQsiLmDdvHg4ePIgdO3bg448/xgcffIBZs2Zh+/bt+O233zBnzhx9h1gvvLv0x5sTQyFwcAF4PAgcXPDmxFB4d+mvk+P37NkTS5YswdChQ+Hi4oLExMQaDf2sjYEDB+L27dtwcnLS6vqroKAgjB49Gl26dIGXlxcsLS3xzTffAAA8PDxw6NAhfPnll7C3t8crr7yCuLi4avc3fvx4XL9+Hba2thg8eDD4fD4OHDiA2NhYeHl5wcHBAR988IHKTBY1NXr0aIwdOxbOzs4oLi5WmbVCnerO45tvvoFAIIC3tzc6d+4Mf3//544wqC0e02KqCDs7Ozx69AgAYG9vj5ycHJSXl6Np06bIzs6u0QHnz5+PtLQ0jVOENG/eHN9++y369OkDoKJn19zcHHfv3sW9e/cwfPhwPHjw33ij7777DnK5HCdOnKj2uObm5tyViIQQQsjnn3+OggLdjz8WCoX4999/uXGYTyssLISjo+Nzx6Xq240bN/DSSy/pOwxiILp164aAgAB88MEH+g6lWtW9brUaMtGmTRscPXoUvXv35sqOHTuGtm3r/sIKoVCIvLw87n7l7zY2NlW2VW63sbF57n7NzMxUxiI3dE9/PdiYzqs21niuqZiw/xkiiQgzkmfoPiADEsbT/HVyKDPu189C3kLwwVcdjrQIUEKJxWyxnqIyDJFD2oHHA5LbDeXKPP/ZB8aAsT9Vf2V9ffjU9FM4ueTATnoNfOsiKAut8Cj+ZWTet8cXZV/UeH+V18ToWq9evRAUFISlS5eqXFSUmJiIhQsXchevE0J0R6shE19++SVkMhkCAwNRVFSEDz/8EGPHjsUXX9T8H9DzSKVSla7/uLg4ODk5QSwWw8fHB2VlZbh9+7bK9srxxsS4GdoiAobEVKz+s6+mcmNiouHfoKZyoj/Kbko8SnNG2tF+SPl5KNKO9sOjNGcou9V8VSp92rp1K4CKziaBQABXV1cIhUJIpVIwxrjtpOHo27cvhEJhlVt1C3dMnDhR7WMmTpz4QjFIpVK1+5PL5S96WrUml8vVxmSIeZtW74b/93//h7i4OG4OP3d3d/z9999wc3PT+kCVs1IolUoolUoUFxfD1NSUG5NcacyYMRg7dixkMhlcXFywdOlSbpo2gUCAIUOGYOHChdi8eTNiY2Pxyy+/4Ny5c2qOSIyNyEOkvoeYFljAMRzDm3gT5jDnyp7gCU7gBEJg3EOJ8k3y4eKaiwL8tzqYwC0V9zNs9ReUgSh6AlhbqC/Xh5/u/IQmaIKe6AkRRHiMx4hGNPLu5OErfKWfoF6AnZ0ddu3ahcLCQiQkJEChUEAoFMLHx6fKcs6kYTh8+HCNH7Nx40Zs3LixzmLQ54xbmoatymQyyGQy3QbzgrTuHmrWrBlmz579/IoaLF26VOVr/qioKISGhiIoKAht2rTB9evX4eHhgT59+mD27Nno3r07ioqKMHToUJXHrV+/HkFBQXB0dIRYLMaGDRsM8pMG0b2e4T1xIPiAytRrtMBChRPZJ5CN7CqJxNVsmnbtoddJvPxyqUpCLH7tEuIsNK8iZSx+SnyEka3sVMrKlBXlk/QQT2pqKhgYrkL1dctLrfupsnTB2tq6xgsqEELqh1YJ8ejRozXO77Zjxw6tDrRo0SIsWrRI7bZnLx6YNWsWZs2apbauvb099u/fr9UxiXGpXCwgOiQaj1MfQ+QhQs/wnrTAAgA+n4+ryqtVEonqpsQxFh1aF8KEr/qv0ITP0KF1oZ4iMhxj56/AxvnT8far/5VFxmVg4tKv9RKPh4cHXJS5GCZ1htjaDNmFpdgb/wD3+bZ6iac+PHnyBK1bt652OWBDwRirl3l7CakPz5tDQquEuEWLFir3Hzx4gL179zaYbnBiPNrK2lICrIam5TOrW1bTWAjN1X8o0FRuTCr/x9+5c4crm7j0a73971/8oT+K//oVFqYV47sdBOYY194Nlv83UC/x1AfGmMpSwobK0tIS2dnZEIvFlBQTg8cYQ3Z2drVLOmuVEKubxWD8+PENaiJ0QoyZRCJRWfXn6XJjp+nNnN7kK8hkMpX/9frsCLFOvgxmqnqxo4WpCayT62fp+pKSEkyePBnHjh1DTk4OWrRogWXLlqFv375V6kZGRmL8+PEqU6n99ttv6NatW5W61X0z01B6Xd3c3JCWloZ///1X36EQohVLS8tqr3174UvMX3nlFZw8efJFH04I0aF+/fphw4YNasuNHo8HqPsqrQEkJcamIPtBjcprq6ysDO7u7jh58iS3iMD777+Pq1evql3drGPHjjhz5vnLftvb22Pr1q1o06ZNlW0lJSX1MqVpXTMzM4OXl5e+wyCkzmiVEB8/flzlfmFhIXbv3q32j5kQYng0rU9fm3XrGw1N48qev2aRUUg6dbDKfV2tLPYsgdgZBVn31ZbXy/EEApVrX9599114eXnh8uXLtVru97XXXkNWVpbKHMSVSkpKnjvWkRBS97RKiMePH69yXyAQ4JVXXsGuXbvqJShCSN1KTU2tUbkxETi4qE+yHFz0EI1hSTp1EOc2hgGt/kuAz22sGD6hj6S4vWwazm0Mg7KkmCvjW1iivWzaC+2vrKwMfn5+3P3g4GAEBwdrrJ+ZmYmEhASNMxvFxMTAwcEB9vb2GD16NObOnVtlalGgYm5/MzP1s5hYWFjg7t27NTwTQkhtaZUQ0x8nIQ2bh4eH2jHEHh4eamobl8ok62m1SbIakyvytSrJJwAoS4pxRb5WLwlx5TGvyNeiIPsBBGJntJdNe+FYTE1NcenSJa3qlpaWcgtUtW7dusr2Ll264Nq1a5BIJIiPj8eIESNgamqKuXPnVql7//59dO3aVeOxaGw/IbqnMSEuLy/XagcmJrSaEyGGLjw8HBGhszCwhR03XdWvdx4hOCxc36HpXWUylfjnf4nRmxND9TYswJDoesyuNry79Nf5c1NeXo7Ro0fD3Nwc69atUx+Xtzf3e9u2bbFw4UJ88cUXahPiL774AqNGjUKnTp3Qv39/9OvXD82aNau3+Akhz6cxmzU1NYWZmZnGW+V2QgyJXC6Hp6cnTExM4OnpqdclKw1JR3dbBL3qCgeBOXg8HhwE5gh61RUd3W31HZpBeDbBomS4gqaxufU1ZtcQMcYwfvx4ZGZmYt++fVq/7/F4PI1jgY8ePYqUlBSMHz8eV65cQadOneDr64t58+bhzJkzWndIEULqjsYeYhomQRoauVyO4OBgFBZWLKiQkpLCjQc09jmz/966Eih/Zs7hciX+3rqSkj+iEQ0nASZNmoQbN27g2LFjKlOqPevw4cNo3749nJyccPPmTSxZsgTDhw/XWN/a2hoDBgzAgAEDAADXrl3DoUOHEBISgps3b6J79+6YOXMmOnToUOfnRAipSmNCTGOYSEMTEhLCJcOVCgsLERISYvQJcUl+bo3KCQFoOElKSgo2bdoECwsLODv/1yu+adMmvPXWW2jTpg2uX78ODw8PREdHY+zYsVAoFHByckJAQADmzZun9bFefvllvPzyy5g9ezby8vJw9OhR5Ofn18dpEULU0Hoe4l9//RUnT55EVlaWytdA2i7dTEh9o5kUCKl73l36A08lxMaSDAMVHUPVTYGmUCi431etWoVVq1Zptd+zZ8/i119/xcqVK6ts++yzzzB48OBqe5cJIXVPqyviwsLC8OGHH6K8vBw//vgjxGIxjh49Cltb23oOjxDt2dvb16jcmJgLRTUqJ4TUn2XLlqFLly5qt3Xt2hXh4XSxKyG6plVCvHXrVvzxxx9YvXo1zM3NsXr1ahw4cKBBrLdOCAG8OvWuUbmxUbf4BCH1JTY2Fn369FG7rVevXrh8uX6WoiaEaKZVQpybm4uXX34ZAGBubo7S0lK88cYbtHQzMSg5OTk1KjcmaZdP16jcmHCLTzzl3MYwSopJvcnLy8OTJ0/UbistLaWxw4TogVYJcfPmzREfHw+gYuD/hg0bsHPnTtjZ2dVrcITUBA2Z0MwQ55M1FNUtPkFQZepCfU9l2BimVmzdujV+//13tdt+//13tQt/EELql1YX1S1duhTZ2dkAgBUrVsDf3x8KhQLr16+v1+AIIXVDIHZWvzyxEc0nqwl9WNCscirD2bNnc2X6nMqwsUytOHPmTHz44YdQKpUYPHgwTExMUF5ejv379+Ojjz7CV199pe8QCTE6WiXE/fr1435/4403cOfOnXoLiJAXRUMmNKucT/bpnlBjm09WI0sboChPfbmRM7SpDA0tnhfl7++PBw8eIDAwECUlJXBwcEBWVhYsLS0RFhaGUaNG6TtEQoyOVgnx4MGDIZPJMGDAAFhaWtZ3TIS8EA8PD6SkpKgtN3aVU2Vdka9FQfYDCMTOaC+bZlRTaGmyN/4BBnio/l8rKSvHgfgHCNRTTIbC0KYyNLR4amPWrFn44IMPcP78eWRnZ0MsFqNjx45o0qSJvkMjxChplRB37doVX3zxBT744AMMHjwY/v7+6NWrF0xMtBqCTIhOhIeHq3ydClSsBkVTGFXw7tKfEmA1DsYlISurCfq0/69s25U0XEhX02tsZAztQ6ahxVNbTZo0Qe/eNNMLIYZAq4x25syZ+Pvvv3Hp0iV4e3tjxowZcHV1xbRp9HUrMRwymQwb5k/Hmv5SbHvvZazpL8WG+dMb1FepRPc8PDzwV9pjlbK/0h432CSrLoWHh8Pa2lqlTJ8fMg0tnhfx+uuv48cff9Q4y8STJ0+wZ88eWrKZEB2rURdvy5YtERoait27d6Ndu3b49ttv6ysuQmos6dRBIOYIbC1MwOPxYGthAsQcoemz/qcxXJ1fHxpDklVfZDIZIiIiVMoiIiL09iGzMh6JRAIejweJRKLXeF7E9u3b8cMPP8DV1RXvvPMOpk6dinnz5mHq1Kno3bs3mjVrhn379iEyMlLfoRJiVHisunUpn5KYmIhdu3Zh165dyMrKwrBhwzBq1Ch07ty5vmOsEwKBAAUFBfoOo86Ehf03b2poaKgeIzEcuwLfwhPF4yrl5kIRRm037vl2n706H6hI+hpaMlFf5HK5ysXCLVq0oHZ5SmP9f6PP94UHDx7gjz/+wNWrV5Gbmws7Ozu0a9cOvXr1gqOjo15iIsSYaTWG+PXXX0dCQgIGDRqEVatW4Z133gGfz6/v2AipEXXJcHXlxqSxXJ1fX2QymUrSR21C6puzszNGjx6t7zAIIf+jVUL8ySefYODAgbCysqrveAgh9aAxXZ1PCCGE1DWtEuIRI0bUdxyE1JqFjS1K8nPVlhs7Dw8PuChzMUzqDLG1GbILS7E3/gHu8231HRohhBCidzRvGmk03giaAxNTM5UyE1MzvBE0R08RGY7FH/pjXHs3OAjMwePx4CAwx7j2blj8ob++QyOEEEL0jhJi0mh4d+mPlj3fA+9/82PzTEzQsud7NPcuAOvky7AwVf1ztzA1gXXyZT1FRAghhBgOSohJo5F06iDunPgVrLwcAMDKy3HnxK807RqAguwHNSonhNQ/xhi+++479OjRA+3atQMAnDp1Cnv27NFzZIQYH41jiJOSkrTagbe3d50FQ0htXJGvhbKkWKVMWVKMK/K1Rt9LLBA7oyDrvtpyQoh+LFy4EH/88QdmzJiBiRMnAgDc3Nwwc+ZMvP/++3qOjhDjojEhbtGiBXg8Hhhj4PF4XPmz95VKZf1GSIiWqBdUs/ayaTi3MUzlAwPfwhLtZbTaJCH6EhkZiZiYGDg4OGDSpEkAAC8vL607pAghdUfjkIny8nIolUqUl5dj8+bNGDlyJG7evIni4mLcvHkT/v7+2LJliy5jJaRamno7qRe0Ynz1mxNDIXBwAXg8CBxc8ObEUKPvOSdEn5RKJYRCIQBwHU0KhYIrI4TojlbTri1YsAC3b9/m5iFu2bIlNm3aBB8fH4wdO7Y+4yNEa9QLWj3vLv0pASbEgPTt2xezZs3C6tWrAVR8A7tgwQIMGDBAz5ERYny0uqiuvLwcycnJKmUpKSk0XIIYFOoFJYQ0JKtXr8b9+/chEonw+PFjCIVCpKSkYOXKlfoOjRCjo1UP8cyZM9GjRw+MGzcO7u7uuHfvHiIjIzFz5sz6jo+QGqFeUEJIQ6BUKrF3717s2rULeXl5SElJgbu7O5ydaYgXIfqgVUL86aefom3btvjxxx8RExMDFxcXbN26FX369Knv+AghhJBGh8/nY9asWQgKCoKlpSUcHR31HRIhRk3reYj79OmDLVu24PDhwy+UDOfk5OC9996DQCCARCLB999/r7ZeSUkJZs6cCVdXV9jZ2WHy5MkoLS3ltnfr1g2WlpYQCoUQCoVo1apVjeIghBBCtFFSUoLx48dDIpHAxsYGr776Kg4fPqyx/urVq+Hs7AyRSISgoCCUlJRUu/8BAwbgwIEDdR02IeQFaJUQl5SUICQkBN7e3hCJRACA33//HevWrdP6QB999BHMzc2RmZkJuVyOSZMmIT4+vkq9FStW4NKlS7h27RoSEhJw5coVLF26VKXOunXroFAooFAocOvWLa1jaCzkcnm19wkhhNReWVkZ3N3dcfLkSTx+/BhLlizB+++/X+WaGgA4evQoVqxYgejoaCQnJyMpKQmhoaHV7r+4uBjDhg1Dt27dMHr0aIwZM4a7EUJ0S6uEeObMmbh27Rrkcjk3NYxUKsWGDRu0OkhBQQH27duHJUuWQCgUonPnzhg4cCB27txZpe6BAwcwbdo02Nvbo2nTppg2bRq2bt1ag1Nq3ORyOcaNG6dSNm7cOEqK/0cul8PT0xMmJibw9PSkdiGEvDCBQIBFixZx/1PeffddeHl54fLlqkueb9++HePHj4dUKoWdnR0WLFiAyMjIavf/8ssvY968eejevTtatGiB5s2bczdCiG5pNYb4559/xp07dyAQCGBiUpFDN2vWDOnp6VodJCEhAXw+Hz4+PlyZr68vTp48WaUuYwyMMZX7aWlpePz4Mdc7PXfuXHz22Wdo1aoVwsPD0a1bN7XHjYiIQEREBICKT/qNwfTp01WGkABAaWkppk+fDplMpqeoDINcLkdwcDAKCwsBVMyEEhwcDABG3zaEkKrKysrg5+fH3Q8ODub+Z6iTmZmJhIQESKXSKtvi4+MxaNAg7r6vry8yMzORnZ0NsVisdn/P60EmhOiOVgmxubl5lYTy33//1fhH/iyFQsEls5VEIhHy8/Or1O3bty++/vprdO/eHUqlEmvXrgUAFBYWQiQSYeXKlWjTpg3Mzc2xe/duDBgwALGxsWo/UT/9z00gEGgVq6HLzs6uUbkxCQkJ4ZLhSoWFhQgJCaGEmBBShampKS5duqRV3dLSUshkMgQGBqJ169ZVtj/7Plf5e35+vsb3yuPHj2s8Xo8ePbSKixBSN7RKiIcPH47AwEBu8vD79+9jxowZGDlypFYHEQqFyMvLUynLy8uDjY1NlbohISHIzc3FK6+8AgsLC0yYMAExMTHcFbgdOnTg6gYGBmLXrl04dOgQpk6dqlUspPFKTU2tUTkhhGijvLwco0ePhrm5ucZrZ559n6v8Xd37XKXx48er3P/333/x5MkTuLm50fLNhOiYVmOIly1bBk9PT7Rt2xa5ublo2bIlXF1dtf66x8fHB2VlZbh9+zZXFhcXp/ZrJysrK6xbtw7p6elISkqCWCzGa6+9Bj6fr3bfPB5PZYhFY6epp7ux9IDXhoeHB/7PTYRVvVth23svY1XvVvg/NxE8PDz0HRohpIFijGH8+PHIzMzEvn37YGZmpraeVCpFXFwcdz8uLg5OTk7VfpN69+5dldvjx48REhKCKVOm1Pl5EEKqp1VCbG5ujjVr1kChUCAzMxP5+flYvXo1zM3NtTqIQCDAkCFDsHDhQhQUFODs2bP45ZdfMHr06Cp109PTkZGRAcYY/vrrLyxZsgRhYWEAgNzcXBw9ehTFxcUoKyuDXC7HqVOn0Lt37xqccsNmaWlZo3JjsvhDf4xr7wYHgTl4PB4cBOYY194Niz/013dohJAGatKkSbhx4wYOHDgAKysrjfXGjBmDLVu24Pr163j06BGWLl2KsWPH1uhYfD4fISEh+Pzzz2sZNSGkprRKiK9fv47MzEwAFT24ixYtwuLFi6uM16zO+vXrUVRUBEdHR4waNQobNmyAVCpFamoqhEIh97V2YmIi3nzzTQgEAgQGBmLFihV45513AFSM4Zo/fz6aNm0KBwcHfPPNN9i/f79RzUWck5OD/3NTHY/9f24i5OTk6Ckiw2GdfBkWpqovaQtTE1gnV70inBBCniclJQWbNm1CbGwsnJ2dufnv5XJ5lfeuPn36YPbs2ejevTskEgkkEgnXmVMTf/zxB3fxOiFEd7QaQ+zv748ffvgBTk5O+OSTT3Dr1i1YWlriww8/VDt1mjr29vbYv39/lXIPDw8oFArufpcuXdTO8QgATZs2xcWLF7U6XmPV39cbgySWeHp+j/GvucHBoVhvMRmKguwHNSonhJDqSCSSaofkPf3eBQCzZs3CrFmztN6/u7s7N5UpUHERcHFxMb799tuaB0sIqRWtEuLk5GS0atUKjDH8/PPPiI+Ph5WVFby8vOo7PvKMYa3sgVLV5NeMb1JRbuQEYmcUZN1XW04IIYYmKipK5b5AIICPjw+aNGmip4gIMV5afS9jYWGB/Px8/P3333B3d4eDgwMsLCxQXEy9kjpXqqHNNZUbkfayaeBbqI6l5ltYor1smp4iIoQQzS5evIiuXbtyNz8/PzRp0gRfffWVvkMjxOholRD7+/ujR48eCAwM5C4SuHLlCvUQE4Pi3aU/3pwYCoGDC8DjQeDggjcnhsK7S399h0YIIVUsXrxYbfnSpUt1HAkhRKshE6tXr8bvv/8OMzMzdO/eHQBgYmLCzUtMdMfCxhYl+blqy0lFUkwJMCHEkFUuyKFUKvHnn3+qjFNOSkqqdu5iQkj90CohBsDN9FDp6eUuie68ETQHZ79dqFJmYmqGN4Lm6CkiQho++VV5lfuytrS6IakflQtyFBcXIygoiCvn8XhwdnbGN998o6/QCDFaGhPiPn364MiRIwCAt956S+VK2KedOnWqfiIjalX2fib9+d9yo50+Wky9ooS8IPlVOYIPBGM2ZnNlwQcqlnynpNjwPizIr8oREh2C1Mep8BB5ILxneIN7nu7evQugYu7iHTt26DkaQghQTUI8ZswY7vcPPvhAJ8EQ7Xh36Q88lRBTMkzIiwuJDkFhqeqc6oWlhQiJDmlwiVZdk1+VY9z+cQhBCFc2bv84APr5sFD54aXy+Up5nNKgP7xQMkyI4dCYEPv7/7e6V2BgoE6CIYTUn8kHJyPicgSUTAk+j4/g14Kxvv96fYeldymPU2pUbkymH56O0vJSlbLS8lJMPzxdLwloY/vwkpeXh0WLFuHkyZPIyspSGUtcueAHIUQ3NCbEW7du1WoHT49/IkTfGsPXqfVh8sHJ2HBpA3dfyZTcfWNPivk8PpRMqbbc2GUXZdeovL6lPlafJGoqN3STJ09GWloaFi5ciICAAERFReGLL77A0KFD9R0aIUZHY0KszQp0PB6PEmI9SDp1sMp9GjbR+L5OrUsRlyM0lht7QqwuGa6unOiPh8hDbc+9h8hDD9HU3u+//44bN25ALBaDz+dj0KBB8PPzw4ABAzBz5kx9h0eIUdGYEP/555+6jINoKenUQZzbGAa0+i8BPrcxDACNJW5sX6fWJUr6NJOIJGqTLIlIoodoDIvYSqy2N1hsJdZDNEB4z3CM2z9OZRiHmYkZwnuG6yWe2iovL4dIJAIACIVC5ObmwsXFBXfu3NFzZIQYH60W5ngaYwzl5eXcjejWFflaKEtUV6VTlhTjinytniIyHDQWVDNNX//TsICKJMvazFqlzNrMusEmWXXp675fV3mN8Hl8fN33az1FhCozHmmaAakh8PX1xcmTJwFUzOb00UcfYdKkSfDx8dFzZIQYH60S4vT0dLz33nsQi8UwNTWFmZkZdyO6VZD9oEblxoSSPs2CXwuuUbkxkbWVIWKA6pCSiAERRv+tQiW+Cb/a+7oUEh2CJ8onKmVPlE8QEh2i4RGG7bvvvoOnpycAYO3atbCyskJubi7NPkGIHmiVEE+cOBHm5uaIjo6GUCjElStXMHDgQGzcuLG+4yPPEIida1RuTGhYgGadPDrB1ER1hJSpiSk6eXTSU0SkITC0BLQxXVSnVCoRGRkJNzc3AEDTpk2xefNm/PDDD2jTpo2eoyPE+GiVEJ87dw5bt27FK6+8Ah6PB19fX2zZsgVffvllfcdHntFeNg0we2bot5lpRbmRox5izUKiQ1BWXqZSVlZe1mB71upS5cWYTws+EFxlQQpjZGgJqKaL5xriRXV8Ph/ffvstfdNKiIHQKiHm8/kwNa1IwmxtbfHvv/9CIBAgPT29XoMjVZ23y8XWZqrtvrVZOs7b5eonIANCPcSaGVpiY0iquxjT2BlaAtrYxnsHBgbSN62EGAitEuIOHTrg0KFDAIDevXtjxIgRGDJkCPz8/Oo1OFJVSHQITjV5qFJ2qslDevOG5lkBaLYAw0tsDAl9WNDM0BLQyvHeEpEEPPAgEUka9Hjvv//+G9OnT4enpyfeeustdOnShbsRQnRL47RrT9u5cyc3o8SaNWuwatUqKBQKzJgxoz5jI2rQTAqahfcMV5mHGGjYvUd1idpGs8Y2t21dqkw07/z03zRg+k5AZW1lDTYBftaECRMwYcIEfYdBCIGWCbGtrS33u5WVFRYsWFBf8ZDnoFW1NKt8k6SV6qqittGs8sMCnlqhmD4sEF0IDAzUdwiEkP/RKiEuKyvDrl27EBMTA4VCobItIkL9ClikftA42eo1pt4johuG2AtqKCovOJyN2VwZrf5Ydxhj2Lx5M3bt2oWsrCz8888/OHXqFB48eID3339f3+ERYlS0GkMcEBCAFStWwMTEBE5OTio3ols0Tpa8iMrEJuVxChgYt6w1zaRAqmOIFxzKr8rhucYTJmEm8Fzj2aBfwwsXLsSWLVsQHByM1NSKMetubm5YuXKlniMjxPho1UN85MgR3Lt3DzY2NvUdD3kO+nqXvAha1loz6gXVzNAuOKx8ripfy5Uf7ICG+VxFRkYiJiYGDg4OmDRpEgDAy8sLSUlJeo6MEOOjVQ9xmzZtkJOTU9+xEC3QqlrkRRhaYmNIDLEX1FAY2uwkje25UiqVEAqFAP5bglqhUHBlhBDd0aqHOCoqCh988AHeeeedKsMkxowZUy+BGZqkUwdxRb4WBdkPIBA7o71sGry79Nd3WIRohWZS0Iw+LGhmaN9INbbnql+/fpg1axZWr14NoGJM8YIFCzBgwAA9R0aI8dGqhzgyMhKnT5/GDz/8gO+++467bd68ub7jMwhJpw7ixLoQFGTdBxhDQdZ9nFgXgqRTB3UeC62qRV6Eoc0na0gMrRfUkBjaN1L6eK7WrVsHPz8/WFhYYOzYsRrrRUZGgs/nQygUcrcTJ05Uu++vvvoKGRkZEIlEePz4MYRCIVJSUmgMMSF6oFVC/PXXXyMmJgaXLl3C6dOnudupU6fqOz6DcGzzIvCV5SplfGU5jm1epPNYGttXhnWtMV1wU5ca24IGdYk+LFTv2deIPl8z+niuXF1dMX/+fAQFBT23bseOHaFQKLhbt27dqq3fpEkT7N+/H6mpqfjrr7+QmJiIn3/+ma7XIUQPtBoy4eTkBA8P4+0tMS8oBsDTUK5bje0rw7rU2C64qWs0JZ16NO1aw6GP+bSHDBkCALh06RLS0tLqfP+5ubn4448/kJGRAVdXV/Tr1w92dnZ1fhxCSPW06iGeOXMmZDIZ/vrrLyQlJancjEG+ifo5fjWV1ycPkQf+75FIpez/Hono611Q7zl5cYbUC0qqJ2srQ/KMZJSHliN5RnKtnquysjL4+flxt9rOq185Y4SPjw+WLFmCsrKyausfP34cnp6eWLt2LS5evIhvvvkGXl5eiI6OrlUchJCa06qH+KOPPgIA/PrrryrlPB4PSmXjXxCCV7VzuNry+jQ6xw/uaTdx/6kOhHFpbrjXpLXugzEw1HtOCKkJU1NTXLp0qU721aVLF1y7dg0SiQTx8fEYMWIETE1NMXfuXI2PmTJlCiIiIlQW4fjxxx/x0Ucf4ebNm3USFyFEO8/tIWaM4fbt23jy5AnKy8tVbsaQDAOAUKn+c4Om8vrkcOUmLJjq02bBTOBwhf550sVRhBB98fb2hpeXF0xMTNC2bVssXLgQe/furfYxGRkZGDp0qErZe++9hwcPHtRnqIQQNZ6bEPN4PLRr1w4mJlqNrmiUHhWr/9pLU3l9Epmr75bWVG5M6OIoQoih4PF4YIxVW2fMmDH49ttvVco2bNhgNNOZEmJItMpyX331VSQkJNR3LAZrzz8ZKClTnWWipKwce/7J0Hksj5+o/werqdyY0EwKhJC6VlZWhuLiYiiVSiiVShQXF6sdG3z48GFkZmYCAG7evIklS5Zg0KBB1e77ypUr+Pjjj+Hm5oYOHTrAzc0NH3/8MWJiYtClSxfuRgipf1p959+tWzf06dMHY8eOhbu7O7eiDgCtpqJp6P5KewwAGCZ1htjaDNmFpdgb/4Ar1yW7TgNR/JfqWO6SsnLYdRqo81gMEc2kQAipS0uXLkVYWBh3PyoqCqGhoQgKCkKbNm1w/fp1eHh4IDo6GmPHjoVCoYCTkxMCAgIwb968avc9YcIETJgwob5PgRCiBR573nc6ALp3767+wTwejh8/XudB1QeBQICCgoIXeqyDgwOys7OrlIvFYmRlZdU2tBrbsXwe7j6x4O57mZdgzNxlOo+DkMbk6aQnNDRUj5EYnsbaNrV5XyCENC5a9RD/+eef9R2HQfv6668RFBSEJ0+ecGXm5ub4+uuv9RLPmLnLVN6gKBkmhJCG6fTp04iJiYFCoVApf17vMiGkbml9pdyjR4+wY8cOLF++HDt27MCjR49qdKCcnBy89957EAgEkEgk+P7779XWKykpwcyZM+Hq6go7OztMnjwZpaWlNd5PXZLJZNi6dSskEgl4PB4kEgm2bt0KmYy+mieEEPJipk6dimHDhuHUqVO4ceMGd6Mp1wjRPa16iM+fP4/+/fujdevWkEgk+O233zBjxgwcPHgQHTt21OpAH330EczNzZGZmYnY2Fj0798fvr6+kEqlKvVWrFiBS5cu4dq1a1AqlRgwYIDKGC5t91PXZDKZwSTAzy5HLL8qp3GzhBDSwMjlcly7dg2urq76DoUQo6dVD/GMGTOwfv16nDt3Drt27cLZs2exYcMGTJs2TauDFBQUYN++fViyZAmEQiE6d+6MgQMHYufOnVXqHjhwANOmTYO9vT2aNm2KadOmYevWrTXeT12TX5XDc40nTMJM4LnGs0pSqiuVyxM/LfhAsN7iIYQQ8mLc3d1hYWHx/IqEkHqnVQ9xQkKCyko6ADBs2DBMnDhRq4MkJCSAz+fDx8eHK/P19cXJkyer1GWMqczdyBhDWloaHj9+jKSkJK33U5fkV+WIiJyFqel2EJdKkW1Wioh7s4Cxul/itbrliamXmBBCGo4tW7ZgwoQJGDVqFJycnFS20XRrhOiWVglxy5YtsXv3bvj7+3NlP/74I5o3b67VQRQKBUQikUqZSCRCfn5+lbp9+/bF119/je7du0OpVGLt2rUAgMLCwhrtBwAiIiK4temft6Z8dXbvCoUspSm3QpxDqTlkKU0rynWchNLyxIQQ0jhcvnwZhw8fxqlTp2BlZcWV83g8pKbS/3RCdEmrhHjNmjV49913sXbtWkgkEiQnJ+P27dv47bfftDqIUChEXl6eSlleXh5sbGyq1A0JCUFubi5eeeUVWFhYYMKECYiJiYGjoyMePHig9X4AIDg4GMHBFcMLBAKBVrGq0y3JVO1yyd2SdL90s4fIAymPU9SWE0IIaTjmzZuHAwcO4O2339Z3KIQYPa3GEL/55ptITEzElClT8Nprr2Hq1Km4c+cO3nzzTa0O4uPjg7KyMty+fZsri4uLU3shnJWVFdatW4f09HQkJSVBLBbjtdde44ZKaLufuiQuNatReX2i5YkJIaRxEAgENDSCEAOhdRennZ0dAgICXuggAoEAQ4YMwcKFC7F582bExsbil19+wblz56rUTU9PB4/Hg4uLCy5cuIAlS5Zgy5YtNd5PXco2K4VDqbnacl2rHKJx56c7XBktT0wIIQ3P4sWLMWPGDCxcuBCOjo4q20xMtJ4VlRBSB6pNiLt3766yTPOzeDweoqOjtTrQ+vXrERQUBEdHR4jFYmzYsAFSqRSpqakqy18mJiZizJgxePjwIdzd3bFixQq88847z91PffrJ9iECs1xVhk2U8Mrxk+1DfFyvR1ZP1laGsJ/CVO4TQghpWIKCggAAmzZt4soYY+DxeFAqlfoKixCjVG1CrKlHOD09HWvXrkVhYaHa7erY29tj//79Vco9PDxUVujp0qULkpOTa7yf+nTu3COUdynHsCxniEvNkG1Wir0OD/DXqcc6jYMQQkjjcffuXX2HQAj5n2oT4vHjx6vcz87OxvLly/Hdd99hxIgRWLhwYb0GZygkeRL8dSoFf/V8DIgAPAYQXVFOCCGEvAiJpOI9pLy8HJmZmXBxcdFzRIQYL60GKeXl5WHBggVo0aIFMjMzceXKFURERMDNza2+4zMI4eHhsE60BtYACAOwBrBOtEZ4OF3IRggh5MXk5ubC398flpaWaNGiBQDg119/xfz58/UcGSHGp9qEuKioCMuXL4e3tzdu3LiBM2fOYOfOnVrPP9xYyGQyREREQCKRgMfjQSKRICIiwmCWciaEENLwTJw4ESKRCCkpKTA3r7hwu2PHjvjhhx/0HBkhxqfaIRNeXl5QKpWYPXs2/Pz8kJmZiczMTJU6PXr0qNcADYVMJqMEmBBCSJ2Jjo5GRkYGzMzMuAvYmzZtiocPH+o5MkKMT7UJsaWlJXg8HjZs2KB2O4/HQ1JSUr0ERgghhDRmIpEIWVlZKmOHU1NTaSwxIXpQbUJc3WwPhBBCCKm5Xbt2YdSoUfjggw8wdOhQhIeHo7y8HOfPn8e8efMwceJEfYdIiNGhmb8JIYQQHfrwww8BAHPmzMH777+Pjz76CKWlpQgKCsKgQYMwffp0PUdIiPHReqU6QgghhNQeYwxAxbDDGTNmYMaMGfoNiBBCCTEhhBCiS0qlEn/++SeXGKtjLBesE2IoKCEmhBBCdKikpATjx4/XmBDTBeuE6B4lxIQQQogOCQQCSngJMTB0UR0hhBBCCDFqlBATQgghOlTd2GFCiH5QQkwIIYRosG7dOvj5+cHCwgJjx46ttu7q1avh7OwMkUiEoKAglJSUqK2Xn59fD5ESQmqDEmJCCCFEA1dXV8yfPx9BQUHV1jt69ChWrFiB6OhoJCcnIykpCaGhoTqKkhBSW5QQaynp1EHs/bA3tg/zxd4PeyPp1EF9h0QIIaSeDRkyBIMHD4ZYLK623vbt2zF+/HhIpVLY2dlhwYIFiIyM1E2QhJBao4RYC0mnDuLcxjAUZN0HGENB1n2c2xhGSTEhhDRgZWVl8PPz424REREvvK/4+Hj4+vpy9319fZGZmYns7Oy6CJUQUs9o2jUtXJGvhbKkWKVMWVKMK/K18O7SX09REUIIqQ1TU1NcunSpTvalUCggEom4+5W/5+fnP7d3mRCif9RDrIWC7Ac1KieEEGJchEIh8vLyuPuVv9vY2OgrJEJIDVBCrAWB2LlG5YQQQoyLVCpFXFwcdz8uLg5OTk7UO0xIA0EJsRbay6aBb2GpUsa3sER72TQ9RUQIIUQXysrKUFxcDKVSCaVSieLiYpSVlVWpN2bMGGzZsgXXr1/Ho0ePsHTp0udO00YIMRyUEGvBu0t/vDkxFAIHF4DHg8DBBW9ODKXxw4QQ0sgtXboUVlZWWLFiBaKiomBlZYWlS5ciNTUVQqEQqampAIA+ffpg9uzZ6N69OyQSCSQSCcLCwvQcPSFEW3RRnZa8u/SnBJgQQozMokWLsGjRIrXbFAqFyv1Zs2Zh1qxZOoiKEFLXqIeYEEIIIYQYNUqICSGEEEKIUaOEmBBCCCGEGDVKiAkhhBBCiFGjhJgQQgghhBg1SogJIYQQQohRo4SYEEIIIYQYN2YkrK2ta/X405MmsXt8PlMC7B6fz05PmlRHkb2AqCj2SCRi5QB7JBIxFhWlv1gMTVQUYxIJYzxexU9qm/9Q22hGf1OaGVrb1OHruLbvC4SQxoMSYi2cnjSJKQDGnropAP0kxVFRjFlbq8TCrK31/yZlCKhtNKO20YzaRjNDa5s6jocSYkJIJR5jjOm7l1oXBAIBCgoKXuixaaamcFMqq5bz+XBTs6Z9vfL0BFJSqpZLJEBysm5jMTTUNppR22hGbaOZobVNHcdTm/cFQkjjQgmxFsp5PLWDrcsBmOi6+UxMKvpFnsXjAeXluo3F0FDbaEZtoxm1jWaG1jZ1HA8lxISQSnRRnRYy+PwaldcrD4+alRsRhb36NtBUblTodaMZtY1mhtY2hhYPIaTRoIRYC8nBwXi2D6Hgf+U6Fx6OMnNrlaIyc2sgPFz3sRiYeQhHAVTbpgDWmAdqG4SHA9aqbQNret0AoLapjqG1jaHFQwhpNHSWEOfk5OC9996DQCCARCLB999/r7YeYwzz589Hs2bNIBKJ0K1bN8THx3Pbu3XrBktLSwiFQgiFQrRq1areY++8fj1iJk1CGp+PclSMHY6ZNAmd16+v92M/Sw4ZxpVFIFckAgOQKxJhXFkE5JDpPBZDsy5HhgmIQDIkKAcPyZBgAiKwLofaBjIZzgRGII1f0TZpfAnOBEYAMmobyGRAhOrfFCKobQAYXtv8Lx5IJBXDJCQSeq4IIXVCZ2OIR40ahfLycmzZsgWxsbHo378/zp07B6lUqlJvz549mDFjBs6cOQOJRIL58+fj6NGjuHLlCoCKhDggIAAffPBBjY7fWMaKOTgA2dnAokVhXNmiRaEQi4GsLD0GZgAq2+ZZ1DaAXA4EBwOFhf+VWVtTLvG0sLD//qZCQ0P1GInhaaxt01jeFwghtaeTHuKCggLs27cPS5YsgVAoROfOnTFw4EDs3LmzSt27d++ic+fO8Pb2Bp/PR0BAAK5fv66LMBsEdQlfdeWEAEBIiGoyDFTcDwnRTzyEEEKIIdFJQpyQkAA+nw8fHx+uzNfXV2UoRKWRI0fizp07SEhIQGlpKbZv344+ffqo1Jk7dy4cHBzQqVMnnDhxQuNxIyIi4OfnBz8/P5Tpeno0onM5OTUrNyapqTUrJ4QQQoyJqS4OolAoIBKJVMpEIhHy8/Or1HVxccFbb72FVq1agc/nw93dHcePH+e2r1y5Em3atIG5uTl2796NAQMGIDY2Fs2bN6+yr+DgYAT/78I3gUBQx2elH2Kx5mEBxs7DQ/0UpXQBOrUNIYQQUh2d9BALhULk5eWplOXl5cHGxqZK3bCwMFy8eBH37t1DcXExQkND0aNHDxT+7/veDh06wMbGBhYWFggMDESnTp1w6NChej8HubxiTngTk4qfcnm9H1Ktr78GzM1Vy8zNK8qNHV2Arlm/fjUrNzbP/j3r6++bEEKIfugkIfbx8UFZWRlu377NlcXFxVW5oK6yfMSIEXBzc4OpqSnGjh2LR48eaRxHzOPxUN/XBVZekJSSUjEnfEpKxX19vGnKZMDWraplW7fShVEAXYBeHU2fGXXwWdLgVf59P01ff9+EEEL0QycJsUAgwJAhQ7Bw4UIUFBTg7Nmz+OWXXzB69OgqdV9//XX8+OOPyMzMRHl5OXbu3InS0lK0aNECubm5OHr0KIqLi1FWVga5XI5Tp06hd+/e9Rq/oV2Q9GyCRwnff2SyihVcy8srflLbVKAxxJoZ2t83IYQQ3dPZPMTr169HUVERHB0dMWrUKGzYsAFSqRSpqakQCoVI/d8785w5c+Dr64tXXnkFtra2WL16Nfbt2wdbW1uUlpZi/vz5aNq0KRwcHPDNN99g//799T4XsaElE/T1LqkpWuBLM0P7+yaEEKJ7OrmoDgDs7e2xf//+KuUeHh5QKBTcfUtLS3z77bf49ttvq9Rt2rQpLl68WJ9hqmVIFyRVfr07e/Z/ZZVf91JvKNEkPFz9PMQ0vtqw/r4JIYToBy3drAVDuliLvt4lL4LGV2tGFxwSQggBMxLW1ta1evzpSVHsHl/ClOCxe3wJOz0pqo4iqxkej7FRiGKPRCJWDrBHIhEbhSjG4+klHMMTFcWYRFLRUBJJxX1SgdpGLYlE/d+URKLvyAxElGrb6P11U4evY23eF7Kzs9ngwYOZtbU18/DwYHK5XG29bdu2MRMTEyYQCLjbn3/++cKxEUJ0ixJibURFsWJTa8YqJplgDKi4r4c3hqniKKaAaiwKWLOpYkpuWFQUY9aqbcOs9fM8GRxqG438of5vyh/UNiwqipWaq7ZNqbkeXzd1/DrW5n1h5MiR7P3332f5+fns9OnTrEmTJuzatWtV6m3bto116tTpheIghOgfj7F6nrPMQNRmzfpsG0+IFVUHGWYLJRDnJ9cysppROHhCmF01FoVYAmGWbmMxOJ6e6geDSiQVU04YM2objdJMPeGmrNo2aXwJ3MqSdR+QATG4/zd1/Dp+3vtCQUEB7OzscO3aNW6l1dGjR6NZs2ZYsWKFSt3IyEhs3rwZZ86cqXEchBD9ozHEWrBTqL/cXFN5fRLmqD+mpnKjQtMFaEZto1Ezpfo20FRuTKyz1beBpvJ6V8ev47KyMvj5+XG3iIgIle0JCQng8/lcMgwAvr6+iI+PV7u/mJgYODg4wMfHB0uWLEFZWdkLxUUI0T2dzTLRkKXCA56o2itRUa5jdEm8ZtQ2mlHbaMSTqG8bnoTaxqD+9wF1/jo2NTXFpUuXNG5XKBQQiUQqZSKRCPn5+VXqdunSBdeuXYNEIkF8fDxGjBgBU1NTzJ0794ViI4ToFvUQa2E+LxwFUJ1mogDWmM/TwzQThjTlhaEJD0eZuWrblJlT2wDAmX7qX8Nn+lHb0N+UZssE6l83ywR6ahsdP1dCoRB5eXkqZXl5ebCxsalS19vbG15eXjAxMUHbtm2xcOFC7N27t17iIoTUPUqItdBkogwTEIFkSFAOHpIhwQREoMlEPcxZ9b/5s3JFIjAAuSIRzZ/1P3LIMIE98zyxCMhBbRNwSP1rOOAQtQ39TWn2k2XF6+bptpmACPxkqae20fH8gT4+PigrK8Pt27e5sri4OEil0uc+lsfjwUgu0SGkUaCL6rQ0eXLF/12lEuDzKxY5WL++DgOsobCwMO730NBQ/QViQOi6Mc1MTCouyX8Wj1exzDWhvyl1Kl83ixb91zaLFoXq9XUjl1fMu56aWjFSIjz8xfNhbd4XRo4cCR6Ph82bNyM2Nhb9+vXDuXPnqiTFhw8fRvv27eHk5ISbN29i2LBhGD58OL2WCGkgqIdYS+vXA2VlFW8OZWX6TYaJenTdmGa0dHP1aDl09QztdVO5UmdKSsX/4pSUivv1+XytX78eRUVFcHR0xKhRo7BhwwZIpVKkpqZCKBQi9X//YKKjo9GuXTsIBAL069cPQ4YMwbx58+ovMEJInaKEmDQahvbmbUhomKxmlUnW0+o7yWooDO11o4+VOu3t7bF//34UFBQgNTUV/v7+AAAPDw8oFAp4/O8fzKpVq5CZmYmCggIkJSVh8eLFMDMzq7/ACCF1imaZaIDU9WbRcMeKN+ngYNU3TEr6KlS+Purqq+bGpLoky9jbp/L879z5r0yfw6vpWyDDUVpairS0NBQXF+s7FGLkLC0t4ebmVusPoJQQNzCVvVmzZ/9XVtm7RW/eFT8p6VNPJqO2UIeSrOrJZMBTw6v1+hqi2QMNR1paGmxsbODp6Qkej6fvcIiRYowhOzsbaWlp8PLyqtW+aMhEA6OPrwwJacxoqE3DYWhDOIxZcXExxGIxJcNEr3g8HsRicZ18U0EJcQNDvVma6eOCG9LwUZLVcOh41jXyHJQME0NQV69DSogbGOrN0ox6z8mLqEyynkZJ1n8MbQYOmaxiGsXy8oqf9DwRQuoCJcQNDPVmaUa95+RFPZtUUZJVgWbgIIQYC0qIGxjqzdKMes+rJ5dXLF5iYlLxk5Ia8jz0rQshhi85ORk8Hg9lZWV1WtfoMCNhbW1dux1ERTEmkTDG41X8jIqqi7BeOJZHIhErB9gjkUi/sRiQqCjGxppFsbuQMCV47C4kbKxZFDUPo7Z5LvqbUovHY2wUVNtmFKIYj6fHoOrwf3Gt3xeM2PXr1/UdgkYSiYT98ccf+g5DZ+7evcsAsNLS0jqtq86tW7fYsGHDmFgsZk2aNGFt27ZlX375JSsrK+PqyOVyNmrUKMYYYxMmTGA+Pj6Mx+Oxbdu2VdnfV199xZycnFiTJk3YuHHjWHFxMbctOzubDR48mFlbWzMPDw8ml8s1xlUXr0dKiLURFcWYtTVjFddqVdysrfXzpmlIsRiaqChWaq7aNqXm1DaMMTZVHMUUUG0bBazZVDG1Df1NaWZwr5s6/hunhPjFUUJsOHSVEN+5c4fZ2tqymTNnsoyMDMYYYzdv3mSjRo1ijx494urJZDK2c+dOxhhj69atY8eOHWOvvfZalYT4yJEjzNHRkV27do3l5OSwrl27sjlz5nDbR44cyd5//32Wn5/PTp8+zZo0acKuXbumNjZKiGugVv/4JBLVN8vKm0RSV+E1zFgMDbWNRnchUds2dyHRd2j6R68bjfLFErVtky+WNIp4KCF+cS+cgNTzt60BAQGMx+MxS0tLJhAI2MqVKxljjJ0/f5517NiRiUQi1q5dO/bnn39yj+natSsLCQlhHTt2ZAKBgL377rssKyuL+fv7MxsbG+bn58fu3r3L1QfAvv76a+bl5cXEYjH75JNPmFKprDaubdu2sTfffJPNmDGDiUQi5uXlxc6ePcu2bdvG3NzcWNOmTVlkZCRXPzc3l40ePZo5ODgwDw8PtmTJEu4YZWVl7OOPP2ZisZh5eXmxdevWqSS5z34gCA0NZTKZjDFWNSHOzc1lQUFBzNnZmbm6urKQkBCV3t6nyWQy1q9fv2rPU6lUMkdHR/bvv/+qlHfq1KlKQjxq1Cg2d+5c7v6xY8eYk5MTY4wxhULBzMzM2K1bt7jtAQEBKgnz0+oiIaYxxNowpKu1DCkWQ0Nto5EH1LeBpnJjwlLUt4GmcmMizFHfBprK65t1tvrjaionBkYHc2Pu3LkTHh4eOHDgABQKBWbPno309HT0798f8+fPR05ODlatWoWhQ4fi33//5R63e/du7Ny5E+np6UhMTETHjh0xbtw45OTk4KWXXkLY06vTAPj5559x6dIlXLlyBb/88gu2bt363NguXLiAdu3aITs7G/7+/hg5ciQuXryIO3fuICoqClOmTIFCoQAATJ06FY8fP0ZSUhJOnjyJHTt2YNu2bQCA7777Dr/99htiYmJw6dIl7N2794XbKzAwEKamprhz5w5iYmLw+++/Y/PmzWrrHjt2DMOGDat2f3///Te8vb3h4ODw3GPHx8fD19eXu+/r64vMzExkZ2cjISEBfD4fPj4+Ktvj4+O1PLOao4RYG4Z0tZYhxWJoqG00KhSrbwNN5cYkna++DTSVGxUD+5tKhfrjaionBkZPV2lGRUWhX79+6NevH0xMTNCrVy/4+fnh0KFDXJ1x48ahefPmEIlE6Nu3L5o3b463334bpqamGD58OGJiYlT2OWfOHNjb28PDwwMzZszArl27nhuHl5cXxo0bBz6fjxEjRuDevXtYuHAhLCws8M4778Dc3Bx37tyBUqnEDz/8gOXLl3OrAX788cfYuXMnAGDPnj2YMWMG3N3dYW9vj7lz575Qu2RmZuLw4cNYs2YNBAIBHB0dMXPmTOzevVtt/ezsbLi4uFS7z4MHD6Jfv35aHV+hUEAkEnH3K3/Pz8+vsq1ye35+vlb7fhGUEGvDkOY6M6RYDA21jUbCr8NRZq7aNmXm1hB+TW0zRxmOAqi2TQGsMUdJbWNof1NfidU/V1+J6blqEPT0LV5KSgp+/PFH2NracrczZ87g/v37XB0nJyfudysrqyr3K3tuK7m7u3O/SyQSZGRkPDeOZ/eprkyhUCArKwtPnjyBRCJROUZ6ejoAICMjo8rxX0RKSgpKS0vh4uLCtcuHH36Ihw8fqq0vFotV2kydQ4cOaZ0QC4VC5OXlcfcrf7exsamyrXK7jY2NVvt+EZQQa8OQlkf6Xyy5IhEYgFyRiOZdq2RIz5OhkclgulW1bUy3UtsAwFmJDBOg+jc1ARE4K6G2MbT/Nx2+lmGKWQSSIUE5eEiGBFPMItDha3quGgQdfePw7Mpl7u7uGD16NHJzc7lbQUEBPvvssxc+xr1797jfU1NT4erq+sL7epaDgwPMzMyQkpKicoxmzZoBAFxcXKoc/2kCgQCFT/XEP3jwQO1x3N3dYWFhgaysLK5d8vLyNA5LePvtt7Fv3z6NcT948AD3799H+/btn3+SAKRSKeLi4rj7cXFxcHJyglgsho+PD8rKynD79m2V7VKpVKt9vwhKiLV05iyQlgaUs4qfZ87qOyJCSF0IDwcszFTLLMzoiwVDJJMBb2+ToZskGaa8cnSTJOPtbTL6XNdQ6OgbBycnJyQlJXH3AwICcODAARw9ehRKpRLFxcU4ceIE0tLSXvgYX3zxBR49eoR79+7h66+/xogRI+oidAAAn8/H+++/j5CQEOTn5yMlJQVfffUVAgICAADvv/8+1q5di7S0NDx69AgrVqxQefwrr7yC3bt3o7S0tNoxxi4uLnjnnXfw8ccfIy8vD+Xl5UhMTMTJkyfV1g8LC8O5c+fw6aefckn2nTt3EBAQgNzcXBw6dAh9+vRR+UDy5MkTFBcXgzGG0tJSFBcXo7y8HAAwZswYbNmyBdevX8ejR4+wdOlSjB07FkBFUj9kyBAsXLgQBQUFOHv2LH755ReMHj26Vm1brVpfltdA1OZq4tOT1E89dHoSTbtmUKhtNKO20Yym69Oskb9uaJaJF2eos0wwxtj+/fuZu7s7E4lE7IsvvmCMMfbXX3+xLl26MDs7O+bg4MD69evHUlJSGGMVs0x899133ONDQkJYYGAgd/+PP/5gzZs35+7jqVkm7O3t2axZszTOzFBp27ZtrFOnTtz927dvs2dTsGbNmrHTp08zxhjLyclhMpmMOTg4MDc3NxYWFsbNMlFaWspmzJjB7O3tmaenZ5VZJhITE9kbb7zBBAIB69evH5s6dWq1s0xMnDiRNWvWjDVp0oS98sorbNeuXRrP4+bNm2zYsGHM3t6eNWnShLVr146tXr2alZWVsaFDh7Iff/xRpX7Xrl0ZAJXb0zN8fPnll8zR0ZHZ2NiwsWPHVpmHeNCgQcza2pq5u7vX+zzEPMYYq79023AIBAIUFBS80GPTTD3hpkypWs6XwK0suZaR1ZCnZ8WVuc+SSIBkHcdiaKhtNKO20YzaRrNG3ja1eV8wdjdu3MBLL72k7zD0gsfj4fbt22jRooW+QzEYZWVlcHZ2RmJiYpWL4XShLl6PNGRCC65K9QP+NZXXK5paTDNqG82obTSjttGM2oYQooWcnBwsWbJEL8lwXaGEWAsZGqZf0lRerwxsGiSDQm2jGbWNZtQ2Gins1beBpnJCjNnEiRMhFAqr3CZOnKjv0Oqdo6MjJk2apO8waoUSYi0kB6uf6ic5mKZdMyjUNppR22hGbaPRPKj/3zcP+msbubxiJIeJScXPOlzTgRCtMMbUDpfYuHEjFApFldvGjRv1ECWpsVqPQm4ganvxxOlJUeweX8KU4LF7fIl+LqirFBXFHolErBxgj0SiRnOBS53QwQUbDRa1jWb0N6UWj8fYKKi2zShEMR5PP/HU9TV+dFHdi7t+/TorLy/XdxiEsPLycrqoriYa28UTTy8jGRoaqsdICGkc6G+qqspr6hYt+q9tFi0K1ds1dXV9jV9je1/QpYSEBHh6esLc3FzfoRAj9+TJE6SkpKBly5a12g8NmSCEEKKWoY0moWv8DIetrS0yMzO5OWUJ0Yfy8nJkZmbWycV8pnUQDyGEkEaocsGLO3f+K9Pn4o8eHup7iOn6R91zcHBAWloabt26pe9QiJETCARwcHCo9X50lhDn5ORg/Pjx+P333+Hg4IDly5fD39+/Sj3GGBYsWIBt27ZBoVDg1Vdfxbfffsst16ftfgghhNSeTAY8NZpEr6vChYcDwcHAU6vS1nuPdU3ec1avXo2VK1eiqKgIQ4cOxYYNG2BhYVF/wemRiYkJPOiTCGlEdDZk4qOPPoK5uTkyMzMhl8sxadIktetl//jjj9i6dStOnz6NnJwcdOzYUWWpPm33QwghpHGRySp6qCUSgMer+FnfPdbavuccPXoUK1asQHR0NJKTk5GUlERj0QlpQHSSEBcUFGDfvn1YsmQJhEIhOnfujIEDB2Lnzp1V6t69exedO3eGt7c3+Hw+AgICcP369RrvhxBCSOMjk1VcQFdeXvGzPpPhmrznbN++HePHj4dUKoWdnR0WLFiAyMjI+guOEFKndDJkIiEhAXw+Hz4+PlyZr68vTp48WaXuyJEj8cMPPyAhIQFeXl7Yvn07+vTpU+P9AEBERAQiIiIAAIWFhRAIBHV5WnpXVlYGU1NTfP755/oOxeBUtg2pitpGM/qb0qwxtk1hYSH8/Py4+8HBwQgODubu1+Q9Jz4+HoMGDVKpl5mZiezsbIjF4no6A0JIXdHJu6JCoahyBaBIJEJ+fn6Vui4uLnjrrbfQqlUr8Pl8uLu74/jx4zXeD1D1n1tj4+fnh0uXLuk7DINEbaMZtY1m1DaaGWPb1OQ959m6lb/n5+dTQkxIA6CTIRNCoRB5eXkqZXl5ebCxsalSNywsDBcvXsS9e/dQXFyM0NBQ9OjRA4WFhTXaDyGEEFIbNXnPebZu5e/0/kRIw6CThNjHxwdlZWW4ffs2VxYXF8fNHPG0uLg4jBgxAm5ubjA1NcXYsWPx6NEjXL9+vUb7IYQQQmqjJu85UqkUcXFxKvWcnJyod5iQBkInCbFAIMCQIUOwcOFCFBQU4OzZs/jll19UZo+o9Prrr+PHH3/kJvzeuXMnSktL0aJFixrtxxg05uEgtUVtoxm1jWbUNpoZY9vU5D1nzJgx2LJlC65fv45Hjx5h6dKlGDt2rO6DJoS8mFov/qyl7OxsNmjQIGZtbc3c3d2ZXC5njDGWkpLCBAIBS0lJYYwxVlRUxCZPnsycnZ2ZjY0Ne/XVV9nhw4efux9CCCGkrmn73sUYY19++SVzdHRkNjY2bOzYsay4uFhfYRNCaojHGGP6TsoJIYQQQgjRF50tzEEIIYQQQoghooSYEEIIIYQYNUqIDVBJSQnGjx8PiUQCGxsbvPrqqzh8+DC3PTo6Gq1bt4a1tTW6d++OlJQUbhtjDHPmzIFYLIZYLMbs2bPRGEfF3L59G5aWlggICODKqF0q7N69Gy+99BIEAgGaN2+O06dPA6D2SU5ORr9+/WBnZwdnZ2dMmTIFZWVlAIyrbdatWwc/Pz9YWFhUueirNu2QnJyM7t27w9raGq1bt8axY8d0dUqEEFJ7+hm6TKqjUChYaGgou3v3LlMqlezAgQNMKBSyu3fvsn///Zc1adKE7dmzhxUVFbFPPvmEdejQgXvsxo0bmY+PD7t37x5LS0tjL730EtuwYYMez6Z+9OrVi3Xu3JnJZDLGGKN2+Z/ff/+deXh4sPPnzzOlUsnS0tJYWloatQ9jrG/fviwwMJAVFRWx+/fvs5dffpl9/fXXRtc2+/btYz///DObOHEiCwwM5Mpr2w7/93//x2bOnMkKCwvZ3r17mUgkYg8fPtTlqRFCyAujhLiBaNu2Ldu7dy/btGkT69ixI1euUCiYpaUlu3HjBmOMsY4dO7JNmzZx2zdv3qzyptYY7Nq1iw0fPpyFhoZyCTG1S4WOHTuyzZs3Vymn9mGsdevW7ODBg9z9Tz75hAUHBxtt24SEhKgkxLVph1u3bjFzc3OWl5fHbe/cuXOD/uBACDEuNGSiAcjMzERCQgKkUini4+Ph6+vLbav8Wjw+Ph4Aqmz39fXltjUGeXl5WLhwIb788kuVcmNvFwBQKpW4dOkS/v33X7Ro0QJubm6YMmUKioqKqH0ATJ8+Hbt370ZhYSHS09Nx+PBh9OnTh9rmf2rTDvHx8fD29lZZla2xthMhpHGihNjAlZaWQiaTITAwEK1bt4ZCoYBIJFKpIxKJkJ+fDwBVtotEIigUigY95vFpCxYswPjx4+Hu7q5SbuztAlR8cCotLcXevXtx+vRpxMbGIiYmBkuXLqX2AdC1a1fEx8ejSZMmcHNzg5+fHwYPHkxt8z+1aYfnPZYQQgwdJcQGrLy8HKNHj4a5uTnWrVsHABAKhcjLy1Opl5eXx/XMPLs9Ly8PQqEQPB5Pd4HXk9jYWBw7dgwzZ86sss2Y26WSlZUVAGDq1KlwcXGBg4MDZs2ahUOHDhl9+5SXl6N3794YMmQICgoKkJWVhUePHmHOnDlG3zaVatMOz3ssIYQYOkqIDRRjDOPHj0dmZib27dsHMzMzAIBUKkVcXBxXr6CgAImJiZBKpWq3x8XFcdsauhMnTiA5ORkeHh5wdnbGqlWrsG/fPrRv396o26WSnZ0d3Nzc1CZqxt4+OTk5uHfvHqZMmQILCwuIxWKMGzcOhw4dMvq2qVSbdpBKpUhKSlLpEW6s7UQIaaT0OYCZaPbhhx+yDh06sPz8fJXyhw8fsiZNmrC9e/eyoqIiNnv2bJULfDZs2MBat27N0tLSWHp6OmvTpk2jubCloKCA3b9/n7t9/PHHbOjQoezhw4dG3S5PW7BgAfPz82OZmZksJyeHde7cmc2fP5/ahzHm5eXFli9fzkpLS9mjR4/Y4MGDmb+/v9G1TWlpKSsqKmKfffYZCwgIYEVFRay0tLTW7dChQwf28ccfs6KiIvbTTz/RLBOEkAaFEmIDlJyczAAwCwsLJhAIuFtUVBRjjLE//viDtWrVillaWrKuXbuyu3fvco8tLy9nn376KbOzs2N2dnbs008/ZeXl5Xo6k/r19CwTjFG7MMbYkydP2KRJk5hIJGJOTk5s6tSprKioiDFG7RMTE8O6du3KbG1tmVgsZsOGDWOZmZmMMeNqm9DQUAZA5RYaGsoYq1073L17l3Xt2pVZWloyHx8f9scff+j4zAgh5MXxGGtkV4YQQgghhBBSAzSGmBBCCCGEGDVKiAkhhBBCiFGjhJgQQgghhBg1SogJIYQQQohRo4SYEEIIIYQYNUqICSGEEEKIUaOEmBBCCCGEGDVKiAkhpI6cP38eHTt2RNeuXTFq1CiUlpbqOyRCCCFaoISYEELqiEQiwfHjx3Hy5El4e3vjl19+0XdIhBBCtEAJMTEonp6eOHbsmL7DUHHr1i28+uqrsLGxwdq1a/UdTrWkUilOnDhRr8cYO3Ys5s+fr7Pj1QSPx4NAIEBISIheju/q6gorKysAgKmpKUxMKv7F9ujRA5aWlujcubNe4iKEEFI9SoiJznl6esLKygpCoRBOTk4YN24cFAqFvsPS6PPPP0e3bt2Qn5+PadOm6TucasXHx6Nbt26N9njaiIuLQ3h4OABg+fLl6Nevn8r2li1bqi3bvXs3dz8jIwNubm4vHMPdu3dx+PBhvPvuuwCA48ePY+PGjS+8P0IIIfWLEmKiFwcOHIBCocCVK1dw8eJFLF26VN8haZSSkgKpVFrr/ZSVlWlVVh/0eWx96tKlC86ePQulUgkAePDgAUpLS3HlyhWVsjt37qBLly7c4w4dOoQ+ffq80DHz8vIQGBiInTt3wtzcvPYnQQghpN5RQkz0qlmzZujbty+uXbtWZduKFSvQvHlz2NjYoE2bNvj555+5bZ6enli1ahXatWsHkUiEESNGoLi4mNuekZGBoUOHomnTpvDy8qp2qMONGzfQrVs32NraQiqV4tdff+W29ejRA3/++SemTJkCoVCIhISEGse5cuVKtGvXDgKBAGVlZWrLNO3jiy++wNChQ1WON3XqVMyYMUPtuTw95KS2x64UExOD9u3bw8bGpko7PzvEpTbP2b179zBkyBA0bdoUYrEYU6ZMAVCz5/JZr7/+OkpLSxEbGwsAOHXqFLp3745WrVqplDVv3hyurq7c4w4dOsT1Int6euKLL77g2mz8+PHIzMxE3759YWNjg7fffhuPHj0CUPEhY9SoUVi0aBFatWqldZyEEEL0jBGiYxKJhP3xxx+MMcZSU1NZmzZt2Pz586ts27NnD0tPT2dKpZLt3r2bWVtbs4yMDK7e66+/ztLT01l2djZr3bo127BhA2OMMaVSydq3b8/CwsJYSUkJS0xMZF5eXuzIkSNVYnny5Alr3rw5Cw8PZyUlJSw6OpoJhUJ28+ZNrk7Xrv/f3v2FNNXGcQD/isP8A2vhxtpqGyMK60INYrLMpkEQ3STSxQjCgqKsiCCCqAuDQMiLXXjRxUKUtYskEGmVQQn9FamIwF1lEJs5zIJltPyzuV8XL53XNeec25u+7fu52nnO8/yeZ3tuvhzPOTrkxo0bKb9PunVWVVVJMBiUHz9+pGxLVSMUCklpaamEw2EREYlGo6LT6eT169dpf9ts5xYRmZmZEbPZLC6XS2ZnZ+X27duiUqnk8uXLSfNls2exWEwqKyvl3Llz8v37d5mampJnz55ltJciIgBkZGQkoa2+vl5cLpeIiJw+fVo6Ozvl0qVLCW1Hjx5V+s/Ozkp5ebl8+/ZNWXdNTY2Mj4/Lx48fRafTyfbt2+XNmzcyPT0tDQ0NcuXKFRER8Xg8Ul5eLg6HQxwOh9y6dUup29XVJbW1tQuum4iIVhYDMf1xFotFysrKZO3atWI2m6WlpSUhsM0PWPNVVVVJX1+f0u/mzZvKuQsXLsiJEydERGRoaEhMJlPC2La2Njly5EhSzadPn4per5e5uTmlzel0Smtrq3KcLhCnW2dnZ2fC+YXaFquxb98+cbvdIiLi8/lk69atKcf9HoiznfvJkydiMBgkHo8r5+12e8pAvFitxfZscHBQtFqtRKPRhPGZ7KXIwoG4tbVVGhsbRUSksrJS3r17J/39/Qlt3d3dSv9Hjx7Jnj17lGOLxSJer1c5bmpqkpMnTyrHHR0dcuDAgZS/wS8MxEREqxdvmaAV0dfXh69fvyIQCOD69evKk/nzeTweVFdXQ6PRQKPRwO/348uXL8r59evXK59LS0uVB/MCgQBCoZAyTqPRoK2tDZ8+fUqaIxQKwWQyKW8DAP55ddbY2NiSv0u6dZpMpqQxv7ctVqO5uRlerxcA4PV6cfjw4SWvLdu5Q6EQNmzYgIKCAqW/xWJJOd9y92x0dBQWiwUqlSqhXiZ7mcru3bvx/PlzhMNhfP78GZs3b8bOnTsxODiIcDgMv9+fdP/w7w/d6fV65XNJSUnS8Wp+KJSIiNJTpe9C9OcFAgEcP34cAwMDsNvtKCwsRHV1NUQk7ViTyQSr1YqRkZG0fY1GI0ZHRxGPx5VQHAwGsWXLlpytc36YXKgtXY3Gxka0tLTA7/fj7t27aG9vX9LacjG3wWDA2NgYREQZFwwGsWnTpmX9FqmYTCYEg0HEYrGEUJzJXqZit9sxOTkJt9uN2tpaAIBarYbRaITb7YbRaITValX6379/P+k+aiIi+rvxCjGtSpFIBAUFBdDpdACArq6uBR+8W4jNZoNarca1a9cwNTWFubk5+P1+vHr1KqlvTU0NysrK0N7ejmg0isePH8Pn88HpdP7n61xqjeLiYhw8eBCHDh2CzWaD2WzOqH42c9vtdqhUKnR0dCAWi6G3txcvX75cVq3F2Gw2GAwGXLx4EZFIBNPT03jx4kVGe5lKSUkJduzYAZfLhbq6OqV9165dcLlcCVeHP3z4gJmZGVRUVCy5PhER/f8xENOqtG3bNpw/fx52ux16vR7Dw8PK1b10CgsL4fP58PbtW1itVmi1Whw7dgyTk5NJfYuKinDnzh309/dDq9Xi1KlT8Hg8Sw5E2awzkxrNzc0YHh7O6HaJXMxdVFSE3t5edHd3Y926dejp6UFTU9Oyv0cqv/bs/fv3MJvN2LhxI3p6ejLay8U4HA5MTEwk/GOMuro6TExMJATie/fuJd0uQUREf78CWcrfM4loRQWDQVRUVGB8fBxqtXqll7NqFRcXY82aNTh79iyuXr2a8fj9+/fjzJkzOQ/Fe/fuxdDQEGw2GwYGBnJam4iIssd7iIlWuXg8DpfLBafTyTCcxvz3Gi9HfX09GhoacrSafz18+DDnNYmIKHd4hZhoFYtEItDr9bBYLHjw4MGCb40gIiKi7DAQExEREVFe40N1RERERJTXGIiJiIiIKK8xEBMRERFRXmMgJiIiIqK8xkBMRERERHmNgZiIiIiI8hoDMRERERHlNQZiIiIiIsprDMRERERElNd+AiPlVDo2GpcKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# scatter plot normalised values vs. irradiance\n", + "fig_scatter = plot_scatter(\n", + " norm, mlfm_meas_file, qty_lfm_vars, save_figs)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [E] : LFM multiplicative factors (y) vs. poa irradiance (x)\n", + "\n", + "\n", + "# [F] Convert multiplicative to subtractive losses for a stack plot \n", + "\n", + " Multiplicative losses are easier to understand but to represent them on a graph \n", + "it's easier to show them as a stacked plot where the values are 'translated' \n", + "so the sum of the stacked losses is shown to equate to the product of the \n", + "multiplicative losses.\n", + "\n", + "LFM losses can be analysed as either \n", + "\n", + "- multiplicative pr_dc = 1/ff * PRODUCT(norm(i_sc), ... \\* stack(v_oc_t), stack(temp_corr) ). \n", + "\n", + "- subtractive pr_dc = 1/ff - SUM(stack(i_sc), ... stack(v_oc_t), stack(temp_corr) ). \n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# translate multiplicative to stack losses and add to\n", + "# dataframe stack add a gap between i and v losses\n", + "\n", + "stack = meas_to_stack_lin(meas, ref, qty_lfm_vars, gap=0.0) # gap = 0.01\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [G] Plot stack losses vs. measurement \n", + "\n", + "Fig 3 Shows how to quantify losses by loss parameters stack(i_sc, .. v_oc). \n", + "\n", + "![stack5D_0_4.png](mlfm_data/figs/mlfm_stack.png) \n", + "\n", + "Fig 3 Stacked losses by measurement \n", + "\n", + "- It plots them in a stacked format from the lossless limit 1/ff (top) \n", + " subtracting each loss value in turn until it reaches pr_dc (bottom). \n", + " \n", + "- This figure shows a typical c-Si module for four clear days for \n", + " different months July to Oct in AZ. \n", + " \n", + "- In the middle of the days the high irradiance results in the biggest \n", + " losses being due to r_oc (red, ~rseries, pink) and temp_module \n", + " (as the module heats to 60C). \n", + " \n", + "- Early mornings/late afternoons there is a slight Isc gain (purple, \n", + " top, due to spectral mismatch) but an Isc loss mid day due to soiling. \n", + "\n", + "Stack losses are indicated by their colours \n", + "(from top to bottom for lfm_4=matrix and lfm_6=ivcurve) \n", + "\n", + "![mlfm_data/figs/losses.png](mlfm_data/figs/losses.png) \n", + "\n", + "Graph options : \n", + "\n", + "is_i_sc_self_ref : boolean \n", + " = self corrects i_sc to remove angle of incidence, spectrum, \n", + " snow or soiling. \n", + " \n", + "is_v_oc_temp_module_corr : boolean \n", + " = calc temperature loss due to gamma, subtract from voc loss " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAFFCAYAAADsEyV2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAADD2ElEQVR4nOzdd3wURf/A8c/d5VIvPSG9hxrpvYQqoSpNEEIPioo8P8BCVQjFCIjlQXxAkCJdwYLSm1QVAQHpECAFCAmhppe7+f0ROYlpByS5lHnz2lfudmdnvnsXct/bnZ1RCCEEkiRJkiRJklQBKY0dgCRJkiRJkiSVFJnsSpIkSZIkSRWWTHYlSZIkSZKkCksmu5IkSZIkSVKFJZNdSZIkSZIkqcKSya4kSZIkSZJUYclkV5LKAF9fX2bNmmXsMCRJkiSpwpHJrlQsxo4dS9OmTbG0tMTExCTfMqdPn6Zbt244OTlhbW1Nz549iYqKylNu7ty5+Pj4YG5uTv369dm5c2eu7QqFIt+lW7du+ba7d+9eVCoVgYGBebYdOXKEFi1aYG5ujpubG5MmTUKr1eYqc+nSJTp16oSlpSVOTk68/vrrpKSk6Lenp6czfPhw6tevj6mpab7tFOXo0aOMGzfuifcryoEDB2jfvj0ajQaNRkPjxo25cuWKfvvixYvp0KEDDg4OKBQKDh06lKeO1NRUxo0bh7e3NxYWFgQEBDBt2rRcr1N4eHi+70lkZKS+zI4dO2jevDlOTk6Ym5sTEBDAe++9R2ZmpsHHk5SUxKuvvoqjoyNWVlZ06dIl1/H827Bhw1AoFHm+SBhy3JIkSVLFIJNdqVhotVpCQ0MZNWpUvttv3bpFu3btcHBw4MCBAxw6dAitVsvzzz9PWlqavtxnn33GtGnTmDlzJidOnKBjx4688MIL/PXXX/oycXFxuZbffvsNgP79++dpNz4+nqFDh9KxY8c822JjY+nYsSPVq1fn+PHjLFy4kC+//JIpU6boyyQnJ9OhQwdMTEz49ddf+fbbb9m+fTsjRozIdeympqaMHDky3xgM4ezsjJWV1VPtW5Dt27fTpUsX2rZty6+//srJkyeZOnUqlpaW+jKpqam0b9+ejz76qMB63n33Xb799lu++uorzp8/z5w5c/jkk0+YO3durnK+vr553hs/Pz/9dhsbG8aMGcO+ffu4ePEiH3/8MYsXL2bChAkGH9PgwYPZs2cPGzdu5NChQwgh6NixY67foUe+/vprTp8+jbu7e55thhy3JEmSVEEISSpCYmKi8PT0FP/3f/+nXxcfHy9cXV3F+PHjc5Vdvny5UKlUeepYsmSJ0Gg0IjMzU7/uzp07AhDLli0TQgih0+mEu7u7mDRpUq59GzVqJIYOHVpgfJMnTxYODg4iLS0t13qtVis6dOggPvzwQzFt2jQREBCQa/ukSZOEh4eH0Gq1+nULFiwQlpaWIjk5WQghxJdffinMzc3F/fv39WU2b94sAHH16tU8seTXjiF8fHzEzJkz9c+zsrLEtGnThK+vrzAzMxO1atUSixYtyrVPUlKSGDNmjPD09BSmpqbCx8dHfPDBB/pj9/PzExMnTjSo/WvXrglAHDx4MM+2unXrirfeeivXut69e4uePXvqnz/tcY8dO1bUq1fPoLIXL14UgNixY4d+3d27d4WpqalYvnx5rrLnzp0TLi4u4tKlS3le28cVdtz5OXbsmOjUqZOwtrYWVlZWonHjxuL3338XQggRGxsrevfuLRwdHYW5ubnw8/MTc+fOFULk/I5Wq1YtT32vv/66aNq0qUFtS5IkSU9HntmViuTo6MiaNWv43//+x88//4wQgsGDB+Pj42NwP9P09HTUanWuLg7m5uYolUoOHDgAQFRUFDdv3qRz58659u3cuXOBl5mzsrJYtmwZQ4cOxdzcPNe2mTNnolAoGD9+fL77Hj58mJCQEJTKf/4bdO7cmdTUVE6cOKEv07x5c2xtbfVlHu1z+PBhg479abzyyit8//33fPnll5w/f56pU6cyYcIEli5dCoAQgu7du/PTTz/x+eefc/78eVauXImzszMAf/75J9euXcPT05PWrVtTpUoVmjVrxg8//PDEsbRq1Ypt27Zx7do1AE6ePMmhQ4fydBu5fv06np6eeHp60qVLF3799ddC671w4QLbtm2jXbt2BsVx+PBh1Go1HTp00K+zt7enSZMmuX4/UlNT6du3Lx999BFVq1Y19DCLdPbsWVq3bo29vT179+7lxIkTjBs3Dp1OB8CoUaN48OABu3fv5vz58yxduhRPT08Ahg4dyqVLl/RXIQAyMzP59ttvGTp0aLHFKEmSJOWVf+dKSfqX1q1b89577zF8+HCGDh3KkSNHOHHiBGq12qD9n3/+ed566y2mTp3KlClTyM7O5t1330Wn03Hz5k0gp3sCgKura659XV1d9dv+bdOmTdy6dYuRI0fmWv/LL7+waNEiTpw4kSuZfVxcXBwtW7bM09bjscTFxeWJR61W4+DgUGBMz+ratWusXLmSc+fOUaNGDQD8/Py4ePEin3/+OSNGjGDv3r3s37+fo0eP0qhRIwD8/f1p3bo1gL4f6/vvv8/cuXNp1KgRmzdvpk+fPuzYsSPfbh0F+fTTTxkzZgz+/v6YmJig1WqZPn06r7zyir5M06ZNWblyJTVq1ODBgwcsXLiQ4OBgtm/fnqctT09Pbt++TWZmJiNHjjS4K0FcXBxOTk6oVKpc6//9+/Hmm29Sv359Bg8ebPAxGmL27NkEBgayZs0a/e/U48l0dHQ0vXr1ol69ekBOt45HqlWrpn+NmjdvDsDmzZtJTk7m5ZdfLtY4JUmSpNxksisZ7P3332fHjh188sknrF+/Pld/zKLUqFGDNWvWMG7cOCIiIlAqlQwaNIiGDRvmSV7yo1Ao8l3/5Zdf0qZNG31SCJCYmMigQYNYtmxZnkTV0HYKas+QmJ7VsWPHEELok9hHsrOz9a/V8ePHsbe3z1PmkUc3j73yyiv6pLRevXr8/vvvfP7550+U7P7vf/9j+/btfPfdd1StWpXjx48zbtw4XFxc9F8yunTpkmuf4OBgbty4wUcffZSnrYMHD+rPnk+YMAFXV1emT59ucDz5efRerFmzhkOHDunPzBen48eP07lz5wK/PI0dO5bXXnuNbdu20bZtW7p166b/8gEwZMgQ3nvvPf773/9iamrKqlWreOGFF3BwcCj2WCVJkqR/yGRXMlhcXByXLl1CpVJx6dKlJ96/b9++9O3bl4SEBMzMzLC1tcXFxUV/psvNzQ3IuZmtWrVq+v3i4+PzTVojIyPZs2cPa9euzbX+zJkz3Lx5kxdeeEG/TqfTIYTAxMSElStXEhoaipubG7du3cq176Pnj9pzc3MjNjY2V5msrCzu3r37xIm0oR5dFv/1119z3UwGuRPswpLtRzdl1apVK9f6oKAgtm/fbnAs6enpjB8/npUrV9K7d28AateuTWxsLDNmzMhzRv1xzZs35/vvv8+z/tGXpKCgIFQqFYMGDWL8+PFF3qDn5uZGYmIiWq021xek+Ph4/e/Lrl27uHLlCnZ2dvrtWq2WadOmMWvWLNLT0w0+9vwU9poPHz6czp07s337dn755Re6dOlCr169WL16NZBzA+W4ceP4+eefadeuHVu3bmXDhg3PFI8kSZJUNNlnVzKITqdj0KBBBAUFsXHjRmbMmPHUwzVVqVIFW1tbdu/eTUJCgj6J8vX1xd3dnR07duQqv337dlq1apWnnsWLF+Po6Kjf/5HGjRtz+vRpTp48qV9ef/11vLy8OHnypL6vacuWLdm1a5c+uXzUlqWlJfXr19eX+e2333j48KG+zKN9/t0Forg0bNgQgJiYGAIDA3MtAQEB+jJ3797l2LFj+dbRqFEjLCwsuHjxYq71Fy9ezHV5vShZWVlkZWXlOZupUqkQQhS674kTJ/Dy8iq0jE6nQ6fTkZWVVWQsLVu2JCsri7179+rX3b9/nyNHjuh/Pz744AP++uuvXO+9u7s7b775JsePHy+yjcI0bNiQ3bt35/p9+Tc3NzeGDx/OypUrWbp0KWvWrNH/7jg4ONC9e3dWrlzJ+vXrsbW1zXNGXJIkSSoBRr09Tio3ZsyYIRwdHUVsbKwQQojRo0cLb29vcffuXSGEEJcvXxYnTpwQ06dPFyqVSpw4cUKcOHFCJCUl6etYsGCBOHr0qLh8+bJYvny5sLOzE4MGDcrVzqeffiosLCzEqlWrxPnz58WECROEqampOHnyZK5yGRkZwtnZWbz77rsGxZ/faAExMTHC2tpahIWFiTNnzohNmzYJBwcHMWHCBH2ZpKQk4enpKbp16yZOnjwp9u7dK3x9fcXLL7+cq66zZ8+KEydOiNdee014eXnpjz8jI8Og+P49YkBYWJhwdXUVK1euFJcvXxYnT54US5cuFbNnzxZC5IxcERwcLPz9/cWPP/4orl69Kg4dOiSWLFmir2P8+PHC2tparFu3TkRGRopPP/1UKJVKsWfPHn2ZuLg4ceLECbFlyxYBiOXLl4sTJ06IuLg4fZn27duLqlWrip07d4pr166JjRs3CgcHBzF69Gh9mXHjxok9e/aIK1euiBMnTohRo0YJhUIhfvrpJ32ZefPmic2bN4tLly6Jy5cvi3Xr1gl3d3fx4osvGvQaCSFEjx49REBAgNi3b584ceKE6NKli/Dz8xOpqakGv7aGHvfEiRNF+/bt9c//+usvYWFhIfr37y+OHj0qIiMjxbfffit+/fVXIYQQb775ptiyZYuIjIwUZ86cEX379hVeXl5Cp9Pp69i0aZNQq9UiKCgo1+gmkiRJUsmRya5UpMOHDwsTExOxadMm/br09HRRp04d0bt3byGEEG3atBFAnuWXX37R7zN8+HDh5OQk1Gq1qFq1qvjwww9FdnZ2nvbmzJkjvLy8hKmpqahbt67Yvn17njLr1q0TCoVCXL582aBjKGhorN9++000b95cmJmZCRcXFzFx4sQ8MV24cEF07NhRWFhYCAcHBzFy5Ej90GSP+Pj45Hv8165dMyi+fydk2dnZYs6cOaJ69epCrVYLR0dH0bp1a/Htt9/qyzx8+FCMHj1auLq6CrVaLXx9fcWHH36Yq473339feHh4CAsLC9GgQQPx448/5nld8ot72rRp+jIJCQni1VdfFZ6ensLMzEz4+/uLiRMn5kow+/fvLzw8PISpqalwdnYWHTp0yJVUCyHEhx9+KGrWrCksLS2FRqMRQUFB4oMPPhApKSkGvUaPjnnEiBHC3t5eWFhYiE6dOhX5O5BfsmvIcQ8dOlT4+Pjk2u/IkSOiQ4cO+mNo0qSJOHLkiBBCiFGjRomqVasKc3Nz4eDgILp27SrOnDmTa//MzEzh7OwsAHHs2DGDj1uSJEl6egohirgWKUmSJEmSJEnllOyzK0mSJEmSJFVYMtmVpBL2+uuvo9Fo8l2CgoKMHV6ZERQUVODr9Prrrxs7PKmCu3z5Mubm5gwaNKjAMp9++imurq7Y2toSFhZGRkZGKUYoSdLTkt0YJKmEJSQk5BrN4XFqtRofH59Sjqhsio6OLnBUBhsbG6pUqVLKEUmVSUhICGlpafj4+OiHi3vcjh07GDJkCHv37sXd3Z1evXrRrFkzZs+ebYRoJUl6EjLZlSRJkiq19evX8/3331OrVi0iIyPzTXZDQ0Px9fUlIiICgD179jBw4MA8Y3VLklT2yG4MkiRJUqX18OFDpk6dyscff1xoubNnz1K3bl3987p16xIfH8+dO3dKOkRJkp5RhZlBTalUYmFhYewwJEmSpDIkNTVVP1ELwMiRI3PN/Pf+++8zYsSIIidASU5OxtbWVv/80eOkpCQcHR2LOWrjy8rK4vr1688866BUdqhUKuzs7HBycipw2vOKqsIkuxYWFqSkpBg7DEmSJKkMsbKyKnCmwZMnT7J7925OnDhRZD0ajSZX3/tHj62trYsn0DLm+vXrWFtb4+vrW+g02VL5IIQgKyuL+Ph4rl+/jre3t7FDKlUVJtmVJEmSpCexb98+oqKi9B/8ycnJaLVazp07x59//pmrbFBQEKdOnaJfv34AnDp1ChcXlwp5VhcgPT1dJroViEKhwNTUFA8PjzzTyFcGMtmVJEmSKqWRI0fSv39//fN58+YRFRXFwoUL85QdMmQIw4YNY+DAgbi5uTFr1iyGDRtWZBuXLl3i7NmzJCUlYW1tTVBQENWqVSvOwygxMtGteCpb94VHZLIrSZIkVUqWlpZYWlrqn2s0GszNzXF2diYmJoZatWpx7tw5vL296dy5M+PHj6ddu3akpaXRp08fpk+fXmDdMTExvPzyy5w6dYqAgABsbW15+PAhV65coW7duqxfv77SXUqWJGOpMEOPWVlZyT67kiRJUi7G+mzo0KEDDRs2JDw8PFdCnZKSwowZMzh69Ch79+4t9bgMdf78eWrWrGnsMEqVQqHg8uXLBAYGGjuUElUZ31t5ZleSJEmSitmRI0fYtm0bpqamudZbWVkxY8YMHBwcjBSZJFU+lbPzhiRJkiSVIC8vLzZv3pzvtq1bt8ouDKUgOzvb2CFIZYRMdiVJkiSpmC1YsICwsDBatWrFm2++yeTJkxk9ejStWrUiLCyML774wtghllu+vr58+OGH1KpVC3t7e4YPH056ejr79u3D09OTOXPm4OrqyvDhwwut56OPPsLNzQ13d3eWLVuWa1taWhpvv/02Pj4+2Nra0qpVK9LS0krysKQSJLsxSJIkSVIx69ChA1euXOH777/n7NmzJCQkoNFoGDp0KL169cLJycnYIZZra9asYceOHVhZWfHCCy8wa9Ysnn/+eW7dusXdu3eJjo5Gp9MVuP/27duZN28ee/bswc/Pj1dffTXX9nfeeYezZ8/y66+/4urqypEjRyrtSAYVgbxBTZIkSaqw5GfD0ynLNzH5+voyceJEXn/9dSCnW8h//vMfli5dSkhICA8fPsTc3LzQOsLCwqhSpQqzZ88GcoaIq169OpcvX8bf3x8rKyt+//33XFNEVxRl+b0tKfLMriRJkiSVgPPnz7Nq1ao84+wOHjy40iUbxe3x6Z19fHy4efMmAM7OzkUmugA3b97MNY20j4+P/nFiYiLp6ekEBAQUY8SSMclz8pIkSZJUzNatW0fz5s25fv06rVu3JjQ0lDZt2nDjxg1atGjBN998Y+wQy7XY2Fj945iYGNzd3QHDJ8Jwc3PLU8cjTk5OmJubc+XKlWKKVjI2eWZXkiRJkorZ5MmT2bJlCy1btsyz7fDhwwwcOJCXX37ZCJFVDF988QXdu3fH0tKSiIiIJ34t+/Xrx/DhwxkyZAi+vr65JghRKpWEhYXx1ltvsWrVKlxcXPjjjz9o0KABZmZmxX0oUimQZ3YlSZIkqZjdvn2bBg0a5Lutfv36JCYmlnJEFUtoaCghISH4+/vj7+/Pe++990T7d+nShbFjx9K+fXsCAwNp3759ru3z5s2jdu3aNG7cGAcHByZMmFDoDW9S2SZvUJMkSZIqLGN9NvTq1Qtzc3NmzZqVq+/nlStXmDp1Kqmpqfzwww+lHpehyvJNTL6+vnz11Vc8//zzxg6lXCrL721JkWd2JUmSJKmYPRq3tVatWlhZWeHu7o5GoyEoKAghRJ5xXSVJKjmyz64kSZIkFTN7e3vWrVtHamoqly5dIjk5GY1GQ7Vq1bC0tDR2eJVCREQEERERedYHBwezbds2I0QkGYvsxiBJkiRVWPKz4elUxkvdlUVlfG9lNwZJkiRJKkWZmZn4+/sbOwxJqjRksitJkiRJpUgIQVRUlLHDkKRKQ/bZlSRJkqRiplKpCtwmhDB48gNJkp6dTHYlSZIkqZg5ODiwbNkyatWqlWdbRkYGtWvXNkJUklQ5yWRXkiRJkopZw4YNSUxMzDXG7iMZGRlUkHvDJalckMmuJElSMcjOzuaL8C+I2haFqZspNp42OPo64hHogX81fwKrB8qpRiuRjz/+GLVane82MzMzrl27VsoRSVLlJZNdSZKkZ7Tth23sHLsTuxg77LADIJts4v/+9yd/IhSCFJsUsh2zUbgosHC3wNbbFhc/F7yqeVG/cX3sHeyNeyBSsQkKCip0u4+PTylFUoxKup9xGTrb3bZtWwYNGsQrr7xi7FCeWHmOvaSUWrK7YMECVqxYwenTpxkwYAArVqzIt9z69euZNm0at27dwszMjC5duvD5559jY2NTWqFKUrn259E/sbSyJCAwALVp/meWpOIReSmShSMXYrPfRp/kFkQhFGgeaOABcDVnXRppRP397yAHSXJMQuurxbq6NZ71PHmuyXM0bNZQnhGWJAOEh4cTGRnJ6tWrjdK+TDLLrlJLdt3d3XnvvffYsWMHaWlpBZZr2bIlhw8fxsnJieTkZF577TXee+895s+fX1qhSlK5dP7Meb56/StsDud8MdQpdaTapJLtlI3SRZn7TGKgF4E1AvH09pR3hT+F1NRUPn37U1KXpWKTWXxfxK3vWMMd4DjErY0jjji2q7aT7JKMwl+BfS17fOv7Uq9FPWoF1UKpkqNHSpIkFaXUkt3evXsDcOzYMa5fv15gOS8vr1zPVSoVkZGRJRqbVLx+P/Q7FpYW1G1Q19ihVAoPHzzk0zGfkrU2C5usfxIvpU6J5r4G7gN//xdKJZVrf/87wAGyTLJIs09D56zD1NcU35a+tOjSgjr16sgkuABrF6/l+HvHsbltgymmJd6eSqvC9qYt3ATtIS1X/v63znQdqa6pYAmYg8JCgcpChcpShYmlCWpLNaZWpphpzDDTmGFhZYGljSWW1pZobDVYaazQWGuwtrHGxs4GG2sbmTxL5cacOXOYP38+Dx8+xN3dnU8++YSIiAiEEPz4448EBARw6tQpli9fzty5c7l+/TrOzs5MmDCB1157TV/Ppk2bmDZtGlevXsXZ2ZkvvviCzp0752orLi6OTp06MWTIEN55551845kyZQoHDx7k999/Z+zYsQwbNowFCxYUGL9CoeCLL77g008/5datW/p9Bg0axNmzZ+ncuTOrV6/G1DTnb8ySJUuYM2cOd+/epVWrVixatAh3d3cAdu3axX/+8x/i4uIYPHiwvPkxH2Wyz+6hQ4fo1q0bDx8+xNLSkh9++CHfcosXL2bx4sVAzs0hknHt/Hkn22Zsw+6YHQAr/Ffg0duDl0e/jJePV+E7S09MCMHiuYuJnB2J5r4GNU/eZUGdrUZ9Ww23gXOQsDWBH6f8yFrNWjJrZuLcyJk6HerQJqQN1tbWxX8Q5cjxI8dZ/fpq7E7aYYPxu1WZZppiGlN4sp35978kkgyqM0udRbY6G62pFp2ZDp2ZDmEmwByU5koUJgpQg1KlRKFWoDBRoFQrUZoo9T9VahVKdc5PlakKpUqJNkuLNkuLLkv3z89sLSJLoMvWocvS6R8LrUBkC6bvmF6uf+e++uorunbtqk9IpOJz8eJFFixYwNGjR3F3dycqKgqtVsvkyZPzdGOoUqUKmzdvxt/fnwMHDtClSxcaN25MgwYN+OOPPxgyZAgbN26kQ4cOxMXFkZSU+/9KVFQUISEhvPPOO4wcObLAmD744AMOHz78RN0Ytm/fzvHjx4mNjaVBgwb8+uuvrFmzBkdHR5o3b866desYOnQoe/fuZdKkSezcuZOgoCDeeecd+vfvz4EDB0hMTKRPnz4sW7aMHj16sGDBAhYtWsTgwYOf7sWtoMpkstuqVSsePHjAjRs3WLJkCb6+vvmWGzlypP6Xz8rKqhQjlB4RQvDdqu84PPswduftcvVbtLtqR8q8FJZ8soSkOknUHFCT/q/1x8bW+IlCebdn2x42/99m7CLt0KAp9votky2xPGpJ1tEsji88zh+qP0jyTsK8rjkBrQJo3bU11WpWK/Z2y6K7d+7yyahPUH6nxE5rZ+xwSpQ6S406Sw2pT1+HQKD9+19BlH//K0xWVtbTB/GEBg0axJ49e0hJScHV1ZXx48fnm7CsWLGCESNGYGFhoV+3efNm2rZtm6fs0aNHmTlzJvb29nTr1o2uXbvSokULecWkGKhUKjIyMjh37hzOzs4F5ggA3bp10z9u06YNISEhHDx4kAYNGrB06VLCwsLo2LEjAB4eHrn2PXfuHLNmzeLDDz9kwIABxX4cEyZMwMbGhqCgIJ577jlCQkL000h36dKFEydOMHToUNasWUNYWBgNGjQA4MMPP8Te3p6oqCgOHDhArVq1eOmllwAYO3YsH3/8cbHHWt6VyWT3EQ8PDzp37kz//v35888/S7y9pKQkpnWahm11W7zqePFc0+eo27CuvDkkHzqtjpVfrOTUJ6ewi7Yr9OYclU6F3Uk74k7GMef9OWS0yKDJ0Cb0Cu0lb6B6Qlcir7DotUVo9mqKvCGqOKm0Kuyu2cE1uPHjDda9s45ku2S0NbWYOpiiUClyFmXOT6WJMufsn0qR66f+8d/blSolKpXqn+cm/zx//KfKRJXzXKVEq9Wi0+nQaXUInUCn++fno3VCJ9CJnOfoQG2hxsrGCisbKzQ2GqztrLG1s8XWzhZ7e/t8fw91Wh2LZi8iak4UVknyy3RFNmnSJJYuXYqZmRkXLlygbdu21K9fn4YNG+Yp27x5cw4dOlRknV9++SUAp0+fZuvWrUyaNImLFy/SoUMHunbtSufOnXFycir2Y6kMAgMD+eyzzwgPD+fs2bN06tSJTz75JN+y27ZtY/r06Vy6dAmdTkdqaqp+Qo/Y2Fi6du1aYDtr1qwhMDBQn0gWNxcXF/1jCwuLPM9v3boFwM2bN/WJLoBGo8HR0ZEbN25w8+bNXN0/FQpFnu6gUhlPdiGne8KVK1dKpa2srCxsf7OF3yD273+bVZtJrpKMwleBbQ1bPOvk3CFdWZPgjIwMlsxZwrX/XcMmvug70P/NNNMU032mnN93nuP/dxxlByXPj3ye9p3byzMehUhJTuGzdz4jdXkqmsziP5P7NDT3NfBb0eV06AAKPdNnbNkm2WSZZqE106I10yLMBYp0Bba3bLFCJroV3ePDhCkUChQKBVeuXMk32X1StWvXpnbt2kyYMIEHDx6wY8cOtmzZwvjx4/H29mb69Ol06tTpmdupbEJDQwkNDeXhw4e89tprTJgwgcDAwFxlMjIy6NOnDytXrqRHjx6o1Wp69uyp79Pq5eVVaH4RHh7O9u3bCQ0NZf369YVOAQ2U2GeYu7s70dHR+ucpKSncuXMHDw8P3NzciI2N1W8TQuR6LuUotWQ3Ozub7OxstFotWq2W9PR0TExMMDHJHcKaNWsIDg7Gy8uLmJgYpkyZQocOHYqsPysri+nTpz97oOG5n6pQYYstkHN5LvZBLLG7Ytm2a9uzt1WO2bzx7F0RLLEE4NAfhzj0R9FnSio9NzCdXPI3RFVGJn//k8qOzz//vFTbGzVqFCtWrCAtLY369esXeMbvxIkTODk54eDgwODBg5k0aVKez7GC2Nra0q9fP/r16wfkdHWQntzFixe5ceMGLVu2xNzcHAsLC3Q6HS4uLuzatQudTodSqSQzM5OMjAycnZ0xMTFh27Zt7Ny5k+eeew6AESNGEBISQvfu3WnXrp2+z26NGjUAUKvVbNiwgZ49ezJ48GBWr16NUllw9xsXFxeuXr1a7McbGhpK//79CQ0NpWbNmkyePJmmTZvi6+uLRqNh9OjRfP/997z44ot88cUX+jPC0j9K7dbbWbNmYWFhwezZs1m9ejUWFhbMmjWLmJgYNBoNMTExQE4fmRYtWqDRaGjZsiXVq1dnyZIlpRWmJEmSVIFkZ2fTqFEj/fLopuZ/+9///kdSUhIHDx6kd+/e+V65a926NWfOnCEhIYHvvvuOdevW8dFHH+Vb388//5zrrv/Hvf7662zfvp3GjRvTuHHjpz+40iZEyS4GysjIYOLEiTg5OeHq6kpCQgIRERH07dsXAEdHRxo0aIC1tTXz58+nX79+2Nvbs3btWl588UV9PU2aNGH58uWMGzcOW1tb2rRpk+sMKoCpqSnff/89CQkJhIWFodPpCoxrzJgxbNy4EXt7e/7v//7vCV/cgnXo0IGZM2fSp08f3NzcuHLlCuvXrwfAycmJDRs2MHHiRBwdHbl8+TItW7YstrYrCoWoIGNUmJqaMmXKFGOHIUmSJJUhc+fOJSUl5Yn2ef3116lVq1aRCcv69ev56KOPOH78eJ5t7dq1Y8aMGQQHB+fZdujQIaZOncrevXufKK7SdP78eWrWrGnsMKQSUBnf2wpz3U6tVjNt2rRnqiM5MxnrD8vvUDeSJEkVRdKkJDSmz94/fe7cuU+8j6H3iigUigLHND137ly+iS7kTJ509uzZJ45LkqSnI0cQlyRJkiqthIQE1q9fT3JyMlqtlh07drBu3Trat2+fp+y2bduIj48H4MKFC8ycOZMePXrkW29aWlqeMVsfSU5OLnQmUans0mg0+S4HDx7MVe7gwYMFlpVKX4U5sytJkiRJT0qhULBw4UJef/11dDodPj4+fPbZZ/To0YOYmBhq1arFuXPn8Pb2Zs+ePQwbNozk5GRcXFwYNGgQkydPzrfe+vXrs3HjRoYPH55n2/fff0+9evVK+MikkpCcnGxQueDgYIPLSiVPJruSJElSpeXs7Mz+/fvz3ebt7Z0rYZk3bx7z5s0zqN7JkyfTr18/7t27p7+xKC4uju+++46ZM2fyzTffFEv8kiQVTSa7kiRJklTMOnXqxNKlS3n77bd599139eu9vLz46quvCAkJMWJ0klS5yGRXkiRJkkrASy+9xEsvvcTFixe5c+cOjo6OVK9e3dhhSVKlI5NdSZIkSSpGmZmZmJr+MwFMQQluRkZGpZyJU5JKmxyNQZIkSZKKUZ06dZg7dy43b97Md3tcXBxz586lfv36pRyZJFVO8syuJEmSJBWjQ4cOMXv2bOrWrYu9vT3Vq1fH2tqapKQkLl26xP379xk2bBgHDhwwdqhP5Os+dUq0/qHf/VWi9T+Jtm3bMmjQIF555RVjhyIVA5nsSpIkSVIxcnJyYt68eURERHDkyBFOnz7N/fv3sbe3Z+LEiTRp0gS1Wm3sMCuc8PBwIiMjWb16tbFDkcoYmexKkiRJUgkwNTUlODi4wJnUJEkqHbLPriRJkiRJ5cqcOXPw8PDA2tqa6tWrs2XLFiIiIvjmm2/QaDTUrVsXgOXLl1OzZk2sra3x9/fnyy+/zFXPpk2bqFevHjY2NgQEBLB9+/Y8bcXFxVGnTp1Cx1hev349jRo1yrXu008/5cUXXyz0OB48eMCQIUNwdnbGx8eHWbNmodPp9NuXLFmij79WrVr8+eefRb42Ul7yzK4kSZIkSeXGxYsXWbBgAUePHsXd3Z2oqCi0Wi2TJ0/O042hSpUqbN68GX9/fw4cOECXLl1o3LgxDRo04I8//mDIkCFs3LiRDh06EBcXl2eK56ioKEJCQnjnnXcYOXJkgTG9+OKLvPrqq1y+fJmqVasCsHbtWt5+++1Cj+U///kPDx484OrVq9y5c4eQkBDc3NwYMWIEGzZsIDw8nB9//JFGjRpx5coV2f3lKckzu5IkSZIklRsqlYqMjAzOnTtHVlYWvr6+BAQE5Fu2W7duBAQEoFAoaNOmDSEhIRw8eBCApUuXEhYWRseOHVEqlXh4eFCjRg39vufOnaNt27ZMnz690EQXwNLSkh49erBu3ToALl++zIULFwo9s6vVavnmm2/48MMPsba2xtfXl7fffptVq1YB8NVXXzF+/HgaN26MQqEgMDAQHx+fJ3qtpBwy2ZUkSZIkqdwIDAzks88+Izw8nCpVqtC/f/8Ch3nbtm0bzZo1w8HBATs7O7Zu3UpiYiIAsbGxBSbJAGvWrMHDw4OXXnrJoLhCQ0P1ye7atWvp2bMnlpaWBZZPTEwkMzMzVwLr4+PDjRs3DIpPMpxMdiVJkiSphGRkZDBlyhT8/f2xtbUFYOfOnSxYsMDIkZVvoaGhHDp0iOjoaBQKBRMmTEChUOQqk5GRQZ8+fXjnnXeIj4/n/v37dO3aFSEEkDN185UrVwpsIzw8HCcnJ0JDQ9FqtUXGFBISQmJiIidPnmTdunWEhoYWWt7JyQm1Wk10dLR+XUxMDB4eHgbFJxlOJruSJEmSVELGjRvHmTNnWLNmjT4ZCwoKYuHChUaOrPy6ePEie/fuJSMjA3NzcywsLFCpVLi4uBAVFaW/wSszM5OMjAycnZ0xMTFh27Zt7Ny5U1/PiBEjWL58OXv27EGn03Hjxg0uXLig365Wq9mwYQMpKSkMHjw4141j+TExMeGll17i3Xff5e7du3Ts2LHQ8iqVin79+jFlyhSSkpKIjo7mk08+YdCgQQC88sorzJs3j+PHjyOEIDIyMldiLBlO3qAmSZIkSSXkhx9+IDIyEisrK5TKnPNLHh4e+kvV5UlZmfQhIyODiRMncv78edRqNS1atGDx4sWYmZmxevVqHB0d8fPz488//2T+/Pn069ePjIwMXnjhhVx9aJs0acLy5csZN24c165dw8XFhS+++CJXv11TU1O+//57unfvTlhYGMuWLdO/j/kJDQ2ldevWjBo1ChOTolOszz//nP/85z/4+/tjbm7Oq6++SlhYGAB9+/blzp07hIaGcuPGDXx9fVm1apXst/sUFOLR+fxyzsrKipSUlGeqIzkzGesPrYspIkmSJOlpJU1KQmOqeeZ6iuOz4Vn4+Pjw119/YWtri4ODA3fv3uX27ds0a9asTF+iPn/+PDVr1jR2GFIJqIzvrezGIEmSJEklpG/fvgwdOpRr164BOWO2jh49mv79+xs5MkmqPGSyK0mSJEklJCIiAl9fX2rXrs39+/epWrUq7u7uTJs2zdihSU9Bo9Hkuzwaziw/QUFB+e6zZs2aUoy8cpN9diVJkiSphJiamvLZZ5/x2Wefcfv2bZycnPKMGiCVH8nJyU+8z9mzZ0sgEulJyGRXkqQnplFrqGEZjFViG1BmkW17ifuqi8SmXeRh5gNjhydJRnX16tUCtz0+Q5e/v39phCNJlZ5MdiVJKpKV2ooalq3QJLYl8Wg7LvzSkGNZ+f/5cPKJx73OJWz8LqJyuUiqxUUSxSWup1wlS5dVypGDUqFEpVAhEAghEAh0ovAhhCTpWQQGBqJQKCjs/m+FQmHQ2K2SJD07mexKeShQYGZihqnSDK3IJiXLeHcylyUmShNMlCaYKs0wVZlhpjRHrTTDRGGGWmGOCWaYYIYKc1TCDKUwQ6UzR6EzQyFMEOhAIQAdQqEDxN8/c9YLcj8WCi1Xsg5yOy2+1I/VUm1JdcsW2Nxpx51j7bjwSyOOZxg2J3titAuJ0S5AcK71KnU2PrWvUqXmJSw8rqBQp4EqU78I5eNLFjpFZs5CJtq/fypQYipsUWttUWbZoMi0hXRbtKm2ZKfYkJVkS/oDW9Lu2ZJy14bkO7ak3NNQYGqrECgUAoXy0U8dSlXOY2unh9To8RMpft/w18Nf0IrynZiYKE1wtfTEUeWDGkvSuU+q7h5J2fd4kHmPTG1msbdppjLDTGVOanYK2brsYq+/rCpqPFZJkkpXqSW7CxYsYMWKFZw+fZoBAwawYsWKfMt9/fXXzJ8/n8uXL2NjY0NoaCgREREGjVdXWViYWKBR22BpYo2F0hozrDHFGhOdNSZaa5RZ1pBpDRk26NKsyU61JjtVQ3a6OdpMM7LTc5asR0uaGZlpZmSmmpGRakZ2hpp0IP3v9mxd7+JSPQZb72gsXGPANppMyxgeKqJJzIrhdmo8grI1gp1KocLJogr2ajescccs0w1Vmjva+25kJLqTHOdG2gMNumwTtNkqtFkmaLNM0GWZkJ2V8zw7M2dddpYKoVWRDWTzz+tSGkzMsmgauomsOos58WB3ib3OpipTgjStsLnbjrt/tuXCniacSDct1ja0WSZE/1mN6D+rFWu9z0QoEEJBfid6M1LMOTT/FeAVHL1uU+ul70jy/pa/Hu4vk2eGrdRWuFr4YK/wwSLTG2WSD1m3fUiK9eF2pA/xke5c1ym5XsD+Fjap2LrcQ+N8D0vHe5jb3UNtcw+V5h4Ki3sIs/ugM0GRZY1I1yAyNGjTrMlK0ZCVoiEzyZr0hxrSHliTck9D6n0NGRlqMv6uX22RgZV9MlZ2yZjbJmFmk4yZJhm1VTImlsmoLJJRmieDWRJCnYxCV7y/f5IkVV6lNs7u999/j1KpZMeOHaSlpRWY7C5cuJDnnnuOpk2bcvv2bV588UX69u3LxIkTC62/ooyza2/mgLOZFzYKTywyvVAmeZJ915OUW17ci/IkIdKTtIcFz7VtDKaWGbhWj8HRPwZLt2hMnGLQWl4nTX2dB+IGiRk3uJ9xr9jay3mNPLFReGCe6Ykq1QPdfXfSE91IuunG3Rh3EqOroMtWFVubZYFn7WsE9F3CefPlJKTeeub6rE2tec6sK1zoyZkfupKUaFMMUVZ8Tr63qNXnO+57fsPpB4dK9YueSqHCWxOIi6IOZvdqkx4bxINoX+Iv+XDvhmOpxVEakpJA8+zD7Bp9nN3g4OACb0g7cOBAKUdjuMo4Fuvj2rZty6BBg3jllVeMHUqxq4zvbamdLu3duzcAx44d4/r1gs4twBtvvKF/7OHhwcCBA/nll19KPD5D2Zja4GlRHTttNdQPq5N5szr3rgag0ypRm2WiMstAZZqJUp2JyiwTpToDpTrnucIkA4VJJgqTTFBlgFDlJLJxntyL9iL+sif3kiwovrSwdGSmmhFzoioxJ6oWWMbCJhVn/5vY+9zA0vU6po43ENY3yDS7QbLiBnezb3AnPQF7M0cc1B5YC0/MMjxRJHmQddeTlDgP7kV7knDFo1y+RsXh+mk/rp+OQKWeQZOBP6Gtu5gTD3c90VlGZwsXqvMi6Sd6cerHDvxWzGdvK4PEKFcOfPwm8CYugTep3nsDd92+4eyD34s18XWyqIK3aR00qbXRxtXhztnaXPsjiGsp5lwrtlakkvbvZOnWrVssXbpUPyVseVLSg0g866m38PBwIiMjWb16dfEEJFUYZb5vwIEDBwgKCsp32+LFi1m8eDEA2dnF1x/MRGmCp5U/zopqWKZVR5dQnQfXqhF3ujq3r7lyrthaqjzSHloSczKQmJOBhZa79fciFUybZcIfK3oDvfF4LorAvl9xwWIZ8alx+Zb3sQ7EJ60ndw/34uyOZtzWyeG1i0t8pDvxc8cAY3CrEUu1nhvIcj6GDi2P+mY/6ostHu+r/eg5j7aDJtsXZWJtkiLrEHusNonRVUg04rFVJoMGDWLPnj2kpKTg6urK+PHjCzyj9+mnnzJnzhzS0tLo06cPCxcuxMzMrMC6hw4dmmddnz59GD58OFOnTi22Y5AkqRCilE2ZMkUMHTrUoLLLli0THh4e4vbt20WWtbS0fMbIhEhO0Qq/RheEiVmmyPmOKRe5lI9Fpc4STYb8IBp92kWopqtEzU8bijbvzxQBzc8YPTa5yOVplqSkZ/6TLoQw7LPhzJkzIj09XQghxPnz54WLi4s4duxYnnLbt28XVapUEWfOnBF3794Vbdq0ERMmTHjimFJTU4WNjc0T71eazp07l2ddSb/nT2L27NnC3d1daDQaUa1aNbF582ahVquFiYmJsLKyEnXq1BFC5OQRNWrUEBqNRvj5+YlFixblqufHH38UdevWFdbW1sLf319s27ZNCCFEmzZtxJIlS4QQQty8eVPUrl1bfPTRRwXGs27dOtGwYcNc6z755BPxwgsvFHocQ4cOFW+88Ybo3LmzsLKyEi1atBBxcXFizJgxws7OTlSvXl38+eef+vI+Pj4iIiJC1KxZU9jZ2Ylhw4aJtLQ0w184kf97W9E94a/XszM02f3hhx9ElSpVxF9//WVQvcWR7CYlGf8PvFzk8qyLuXWq0WOQi1yedSnNZPdxFy5cEK6uruKbb77Js23AgAFi0qRJ+ue7d+8WLi4uhda3dOnSXMvnn38u2rVrJ0JCQp4ortJWlpPdCxcuCE9PT3Hjxg0hhBDXrl0TkZGRYtq0aWLgwIG5ym7evFlERkYKnU4n9u3bJywsLMTx48eFEEIcOXJE2NjYiJ07dwqtViuuX78uzp8/L4T4J9m9du2aqFq1qvjyyy8LjSklJUVoNBpx6dIl/bpGjRqJdevWFbrf0KFDhaOjozh27JhIS0sT7dq1E76+vuLrr78W2dnZYsqUKaJt27b68j4+PiIoKEjExMSIO3fuiBYtWogpU6YY/uKJypnslsnrmdu3b+fVV1/l559/pnbt2sYOR5LKlfQkC2OHIEnlzqhRo7C0tKRGjRq4ubnRtWvXPGXOnj1L3bp19c/r1q1LfHw8d+7cKbDeVatW5Vq2b99OixYtWLt2bYkcR2WgUqnIyMjg3LlzZGVl4evrS0BAQL5lu3XrRkBAAAqFgjZt2hASEqKf2nfp0qWEhYXRsWNHlEolHh4e1KhRQ7/vuXPnaNu2LdOnT2fkyJGFxmRpaUmPHj1Yt24dAJcvX+bChQu8+OKLRR5Pr169aNiwIebm5vTq1Qtzc3OGDBmCSqXi5Zdf5sSJE7nKjx49Gi8vLxwcHJgyZYq+TalgpZbsZmdnk56ejlarRavVkp6enm8/27179zJw4EC+++47mjRpUlrhSZIkSRVQdnY2jRo10i+P7vP4t//9738kJSVx8OBBevfunW8/3OTkZGxtbfXPHz1+fFa0f/vll19yLZs3b2bWrFk4Olas0TNKU2BgIJ999hnh4eFUqVKF/v37c/PmzXzLbtu2jWbNmuHg4ICdnR1bt24lMTGnN3xsbGyBSTLAmjVr8PDw4KWXXjIortDQUH3iuXbtWnr27ImlZdGjJ7m4uOgfW1hY5Hn+7ymKvby89I99fHwKPHbpH6WW7M6aNQsLCwtmz57N6tWrsbCwYNasWcTExKDRaIiJiQFg5syZPHjwgK5du6LRaNBoNHTp0qW0wpQkSZIqEBMTE44dO6ZfCjtDp1KpaNWqFdevX2fhwoV5tms0Gh4+fKh//uixtXXuISuvXr1q0CI9vdDQUA4dOkR0dDQKhYIJEybkGeItIyODPn368M477xAfH8/9+/fp2rUrQgggJ2m8cuVKgW2Eh4fj5OREaGioQbPdhYSEkJiYyMmTJ1m3bh2hoaHPdpAFiI2N1T+OiYnB3d29RNqpSEptNIbw8HDCw8Pz3fb4t5ayNMyYJEmSVPlkZ2fnmwQFBQVx6tQp+vXrB8CpU6dwcXHJc5b28emCH0/A/v1cThf8dC5evMiNGzdo2bIl5ubmWFhYoNPpcHFxYdeuXeh0OpRKJZmZmWRkZODs7IyJiQnbtm1j586dPPfccwCMGDGCkJAQunfvTrt27YiLiyMpKUnflUGtVrNhwwZ69uzJ4MGDWb16NUplwecITUxMeOmll3j33Xe5e/cuHTt2LJHj/+KLL+jevTuWlpZERETw8ssvl0g7FUmZ7LMrSZIkSaUhISGB9evXk5ycjFarZceOHaxbt4727dvnKTtkyBCWLl3KuXPnuHfvHrNmzWLYsGF5yul0OrRaLTqdjq+++or+/ftz4cIF0tPTuXDhAqGhoSxdurQUjq5iysjIYOLEiTg5OeHq6kpCQgIRERH07dsXAEdHRxo0aIC1tTXz58+nX79+2Nvbs3bt2lx9aJs0acLy5csZN24ctra2tGnThujo6FxtmZqa8v3335OQkEBYWFiRU0GHhoaye/du+vbtW2Izv4aGhhISEoK/vz/+/v689957JdJOhWLkG+SKjRyNQS5ykYtcKs5SWqMxJCQkiNatWwtbW1thbW0tnnvuObF48WIhhBDR0dHCyspKREdH68t//PHHokqVKsLa2loMGzZMP2RZQTw8PERqamqudSkpKcLDw+Mpj6h0VMY79ssDHx8fsWvXrmeqozK+t2V+UglJkiRJKinOzs7s378/323e3t55bg566623eOuttwyuX6fTERUVlWt61ujoaNmFQZJKkUx2JUmSJKmEjBs3jvbt2zN8+HC8vLyIjY1lxYoVjBs3ztihSU9Bo9Hku37btm0EBwfnuy0oKChP9wiAL7/8koEDBxZrfFL+ZLIrSZIkSSXk3XffpXbt2mzYsIETJ07g5ubGsmXL6Ny5s7FDk57Cv8/0G+Ls2bPF1n5UVFSx1VWZyGRXkiRJkkpQ586dZXIrSUYkR2OQJEmSpBKSlZXFtGnT8Pf3x9zcHH9/f6ZNm0ZmZqaxQ5OkSkOe2ZUkSZKkEjJ+/Hj++OMPFi1ahI+PD9HR0cycOZOHDx/y6aefGjs8SaoUZLIrSZIkSSVkw4YNnDp1Sj/xRPXq1WnQoAF169aVya4klRLZjUGSJEmSSogQ4onWS5JU/GSyK0mSJEklpG/fvrzwwgvs2LGD8+fPs337dnr27KmfcliSpJL3VN0YfvnlF1QqFa1bty7ueCRJkiSpwpg7dy6zZs3izTff5ObNm7i7uzNgwIByOcWrQqEo0frl2W6ppBh0ZrdNmzYcPnwYgDlz5tC/f38GDBhAREREiQYnSZIkSeWZqakpM2bMIDIyktTUVCIjI5k5cyZmZmbGDk2SKg2DzuyeOXOGZs2aAbBkyRL27duHRqOhZcuWTJ48uUQDlCRJkqTyLCoqir/++ivPhAShoaFGikiSKheDkl2dTodCoeDKlSsIIfRzfN+7d69Eg5MkSZKk8uzDDz9kxowZBAUFYWFhoV+vUChksitJpcSgZLdVq1aMHj2auLg4evXqBcCVK1dwcnIq0eAkSZIkqTz7+OOPOX78OLVq1TJ2KJJUaRnUZ3fFihXY2dlRp04dwsPDAbhw4QJjxowpydgkSZIkqVxzdHTE19fX2GFUGGvWrEGj0aDRaOjSpUue7TExMfrtGo0m3zqCgoL02w8ePFjSIUtlgEJUkNsfraysSElJeaY6kpPB2rqYApIkSZKeWlISFJCrPJHi+Gx4Ftu2bWPNmjWMHTuWKlWq5Nrm7e1tpKiKdv78eX2XxUfkaAwVQ37vbUVn0JndjIwMpkyZgr+/P7a2tgDs3LmTBQsWlGhwkiRJklSeZWZmsnPnTpo0aYKvr69+8fPzM3ZoklRpGJTsjhs3jjNnzrBmzRr9N7ugoCAWLlxYosFJkiRJUnk2atQoIiIiePjwIVlZWfolMzPT2KFJUqVh0A1qP/zwA5GRkVhZWaFU5uTHHh4e3Lhxo0SDkyRJkqTyLDs7m+HDh6NSqYwdyjOT3Qyk8sqgM7umpqZkZ2fnWnf79m0cHR1LJChJkiRJqgjeeecdZs+eLRNFSTIig5Ldvn37MnToUK5duwZAXFwco0ePpn///iUanCRJkiSVZ/Pnzyc8PByNRoO3t3euRZKk0mFQN4aIiAjGjx9P7dq1SU1NpWrVqrz66qtMmzatpOOTJEmSpHJr9erVxg5Bkiq9Jx567Pbt2zg5OT3xECQLFixgxYoVnD59mgEDBrBixYp8y505c4a3336b48ePc+fOHYMv/cihxyRJkiqOijL0mCG6devGli1bjB1GLpVxeKrKojK+twZ1Yzh37hzx8fEAWFhYEB4ezowZM0hNTTW4IXd3d9577z3CwsIKLadWq+nXrx9Lly41uG5JkiRJKq/kxAaSVLIMSnZDQ0O5f/8+kNPZ/sCBA/z222+89tprBjfUu3dvevbsWeRNbdWrV2fEiBEEBQUZXLckSZIkSZIk5cegZDcqKorq1asjhOCHH35gw4YNbNy4kR07dpR0fJIkSZJUYjIyMhgxYgQ+Pj5YW1tTv359tm3blm/ZFStWoFKpck1Hu2/fvtINWJKkJ2bQDWpmZmYkJSVx7tw5vLy8cHJyIjs7m/T09JKOr1CLFy9m8eLFAHmGRpMkSZKkomRnZ+Pl5cX+/fvx9vZm69at9OvXj9OnT+Pr65unfPPmzTl06FDpBypJ0lMzuBtD+/btGTp0KMOGDQPgzz//NPp0hyNHjuTYsWMcO3YMExOD8nZJkiRJ0rOysiI8PBxfX1+USiXdu3fHz8+P48ePl1oMcgzesqdt27Z89dVXT7RPly5d+Prrr0soIulZGJQhfvrpp+zcuRO1Wk27du0AUCqVfPrppyUanCRJkiSVpvj4eC5dulTgfSMnTpzAyckJBwcHBg8ezKRJk575ZMvkyZOfaf/Sopj+ZKMwPSkx7dmS/vDwcCIjI4023FtB3V8k4zPozC5ASEiIPtG9evUqzs7OtG/f3uCGHnV70Gq1aLVa0tPT8+16IIQgPT1dP294eno6GRkZBrcjSZIkSY9kZ2fTqFEj/fKo61t+srKyGDhwIEOHDqVGjRp5trdu3ZozZ86QkJDAd999x7p16/joo48KbT8zM5OpU6dStWpVrKysqFq1Ku+//36uboCTJk16+gOUJKlIBiW7AwYM4NdffwVg+fLlBAUFUatWrScaHmzWrFlYWFgwe/ZsVq9ejYWFBbNmzSImJgaNRkNMTAwA0dHRWFhY6L9VW1hYUL169Sc9LkmSJEnCxMRE393t2LFjjBw5Mt9yOp2OwYMHY2pqyoIFC/It4+/vj5+fH0qlktq1azN16lQ2btxYaPtvvPEGe/fuZf78+Rw9epT58+ezf/9+Ro0a9czHVpnNmTMHDw8PrK2tqV69Olu2bCEiIoJvvvkGjUZD3bp1gZycpWbNmlhbW+Pv78+XX36Zq55NmzZRr149bGxsCAgIYPv27XnaiouLo06dOsybN6/QmAzp+rBixQpatmzJuHHjsLOzw9/fn19//ZUVK1bg5eVFlSpVcnWFGDZsGK+//jodO3bE2tqaNm3aEB0dbejLJP3NoGsve/bs0b/4n3zyCbt378bOzo6ePXsyYsQIgxoKDw8nPDw8323Jycn6x76+vrL/kiRJklRqhBCMGDGC+Ph4tm7dilqtNmg/hUJR5OfVjz/+yJUrV7CzswOgVq1aNG3alMDAQJYtW/asoVdKFy9eZMGCBRw9ehR3d3eioqLQarVMnjw5TzeGKlWqsHnzZvz9/Tlw4ABdunShcePGNGjQgD/++IMhQ4awceNGOnToQFxcHElJSbnaioqKIiQkhHfeeafAL0pP6siRI7zyyivcuXOHadOm0b9/f1544QUiIyPZv38/ffr0oU+fPmj+nlVlzZo1bNmyhaZNmzJ+/HgGDhwob5J8Qgad2c3MzMTU1JQbN25w9+5dWrZsSVBQkH6iCUmSJEkqr9544w3Onz/Pzz//jIWFRYHltm3bpv/cu3DhAjNnzqRHjx6F1u3q6ppnAqa0tDTc3NyePfBKSqVSkZGRwblz58jKysLX15eAgIB8y3br1o2AgAAUCgVt2rQhJCREP4nH0qVLCQsLo2PHjiiVSjw8PHJ1Xzl37hxt27Zl+vTpxZboAvj5+TF8+HBUKhUvv/wysbGxTJ06FTMzM0JCQjA1NSUyMjLXMbRu3RozMzM++OADfvvtN2JjY4stnsrAoGS3Xr16fPjhh8ycOZNu3boBcOPGDWxsbEo0OEmSJEkqSdHR0Xz55ZecPHkSV1dX/fi5a9asydPNbs+ePdSpUwcrKyu6du1K7969i7y5bPDgwXTu3JklS5awbds2Fi9eTNeuXRkyZAh79+7VL5LhAgMD+eyzzwgPD6dKlSr079+fmzdv5lt227ZtNGvWDAcHB+zs7Ni6dSuJiYkAxMbGFpgkQ84ZVQ8PD1566aVijd/FxUX/+NGXq3+ve/yKt5eXl/6xRqPBwcGhwOOV8mdQN4alS5fy/vvvo1armTt3LgC//fYbAwcOLNHgJEmSJKkk+fj4FNoV4fGkY968eUX22/y3R31EIyIicq1ftGgRixYtAnK6Q1y9evWJ6q3sQkNDCQ0N5eHDh7z22mtMmDCBwMDAXGUyMjLo06cPK1eupEePHqjVanr27Kl/v728vLhy5UqBbYSHh7N9+3ZCQ0NZv349KpWqRI+pII+fxU1OTubu3bu4u7sbJZbyyqBkNyAggLVr1+Za99JLLxX7tx1JkiRJqkiuXbtm7BAqnIsXL3Ljxg1atmyJubk5FhYW6HQ6XFxc2LVrFzqdDqVSSWZmJhkZGTg7O2NiYsK2bdvYuXMnzz33HAAjRowgJCSE7t27065dO32f3UddGdRqNRs2bKBnz54MHjyY1atXo1QaPIhVsdm6dSuHDh2iSZMmvP/++zRt2jTX2V6paAa/a8uXL6d9+/ZUr16d9u3bs3z58pKMS5IkSZIkKY+MjAwmTpyIk5MTrq6uJCQkEBERQd++fQFwdHSkQYMGWFtbM3/+fPr164e9vT1r167lxRdf1NfTpEkTli9fzrhx47C1tc13pANTU1O+//57EhISCAsLQ6fTleqxQs5Z7OnTp+Pg4MDx48dZs2ZNqcdQ3imEAUMffPDBB6xcuZK3334bHx8foqOj+fTTTxk0aBBTpkwpjTiLZGVlRUpKyjPVkZwM1tbFFJAkSZL01JKS4O+b0Z9JcXw2PItTp04xbtw4Tp48qe8SIYRAoVDox5Mvi86fP0/NmjWNHUalN2zYMDw9PZk1a1ax1VkZ31uDujF89dVX7Nu3Dx8fH/26Tp060bp16zKT7EqSJElSWTNgwAD69OnD/PnzCx3pQZKkkmNQspuSkoKzs3OudY6OjqSlpZVIUJIkSZJUEdy6dYsZM2agUJTsVLtS6dAUcLlh27ZtBAcHA/D666/nO2XxoEGD9DclSqXLoG4MQ4YMISkpidmzZ+Pt7U10dDRTpkzB0tKSVatWlUacRZLdGCRJkiqOitKNYdy4cTRq1KjcjV5UGS91VxaV8b01KNl9+PAho0eP5ttvvyUrKwu1Wk2/fv2YP3++flYYY5PJriRJUsVRUZLd+Ph4mjdvjoWFRa6xVIEyPb5uZUyIKovK+N4a1I3BxsaGlStXsmLFChITE3FycjLK8BuSJEmSVJ689NJL+Pn50atXL9lnV5KMpMBkt7ABrh8fZNvf3794I5IkSZKkCuLkyZPcuXMHU1NTY4ciSZVWgcluYGAgCoWi0JllFAoFWq22RAKTJEmSpPIuODiYc+fOUa9ePWOHIkmVVoHJrjEGTpYkSZKkisTPz4+QkBB69eqVp8/ujBkzjBSVJFUuBvXZlSRJkiTpyaWmptKtWzcyMzOJjY01djiSVCnJZFeSJEmSSsjy5cuNHUKxma6YXqL1TxPTSrT+J9G2bVsGDRrEK6+8YvA+Xbp0oX///gwdOrQEI5Oehkx2JamSMzMTNKyThKNtMpGxjly+Ykp2thwAX5KKy/nz59m4cSPx8fEsWLCAixcvkpGRQZ06dYwdWoUSHh5OZGRkvhM6lIZt27YZpV2paDLZlaRKRq0W1K+dQl3fiwRa7cEpfRMqbVLOxiDQPWfBQ8vWJOiaciO5JldueXIh0prEO3K4QUl6Uhs2bGDUqFH06dOHtWvXsmDBApKSkpg4cSK7d+82dniSVCnITy9JquBUKkGDOqmE9TxFxOD/srBXW0b5tqAlw3FJWf1Povs3pUjDLmUH1dJm0E41gFc8gpnXph6LBvQlYsjnjO53kBefv0GNahmYmBQ5J40kVWpTp05l165dLFq0CJVKBUDdunU5deqUkSMr3+bMmYOHhwfW1tZUr16dLVu2EBERwTfffINGo6Fu3bpATjeSmjVrYm1tjb+/P19++WWuejZt2kS9evWwsbEhICCA7du352krLi6OOnXqMG/evEJjatu2LV999VWhZSIjI2nTpg22trY4OTnx8ssv67edPXuWjh074uDggIuLCxEREYa+HFIRDDqze+rUKcaNG8fJkyf1Y+wKIVAoFGRmZpZogJIkPRmlUhBUM50GVa9S1foALhnfoc5OyNn4DBNJmWdcxD3jIu5AIxvgOdDWseKhRRvidc2JeVCTyzfcOXfJipQU2Q2iKDY2gqp+qfi6JuJuF4MQClIybUlKtyYpzYoHyebcf2jG3Qcm3LunICtLvqblUUJCgj7xUigU+p+PHktP7uLFiyxYsICjR4/i7u5OVFQUWq2WyZMn5+nGUKVKFTZv3oy/vz8HDhygS5cuNG7cmAYNGvDHH38wZMgQNm7cSIcOHYiLiyMpKfeX/6ioKEJCQnjnnXcYOXLkM8f+/vvvExISwi+//EJmZibHjh0DICkpieeff5533nmHn3/+maysLM6dO/fM7Uk5DEp2BwwYQJ8+fZg/f76cAeZfvL2y8fNMIjnVlBu3zIlPUCKE/CNWGBsbgYdbJq5OKVSxvY+jVQJ2pjfQqGJBgA5zsjFFK8zQoUarMyNbqNEKU7Q6NdlCTbbOFK0wIVtrQlqmJXF3HYi9peH6DVWl7m/auH4yw2u+iWX6iZwVJTxLqkqXgn3KVuzZSg1TCPED4a8ixbwJCYrWXE+pzZU4L85fsSXhduW8kGRvL6jql4KvSwLutteooj6NffbvWGQ89kGW9fdPJWD59+KYu54sE2eyTDzJULmThitpwpkUrTMP0p24l+rInYfW3L5rSUKimjt3FfLvUBnRsGFDVq1axZAhQ/Tr1q9fT5MmTYwYVfmmUqnIyMjg3LlzODs74+vrW2DZbt266R+3adOGkJAQDh48SIMGDVi6dClhYWF07NgRAA8Pj1z7njt3jlmzZvHhhx8yYMCAYoldrVYTHR3NzZs38fT0pFWrVgBs3rwZV1dX3n77bQDMzc1p2rRpsbQpGZjs3rp1ixkzZlTqb6IO9jqqB6Tg5xqHp80lnFV/Ypdx4J8zZgABoFNYkGZWk2RVDZKEP/cyPLmTWoWE+/bcuqPhRpwpDx5U7NfR2lpQt+ZDqtg/wElzG3uzm9iaRKHRXcYi81zu1wxAC6Q9ZWMqwALwyFlEIzVpZkEkqZ7jnq4aiWneJDx04WaiHTE3LUhIqJgJl1IpGNHzT1ooRqJIzyp6hxKkEFo0ab+h4Tf8FdDaHXCHNLOa3DFpy420elxLDOD0JUdu3FQZNdbi5uigo2Pzq7hbX6GK+i/ssn7DPDPynwKZfy9PQZ19G3X2bSw5gf3jGxSA1d+LW84qndKcdNOqpKkCSMaHpGx3HmS6cC/FgTsPbbh23YaoGHnLRmmYP38+ISEhLF26lJSUFDp16sSlS5fYuXOnsUMrtwIDA/nss88IDw/n7NmzdOrUiU8++STfstu2bWP69OlcunQJnU5HamoqtWvXBiA2NpauXbsW2M6aNWsIDAzkpZdeKrbY586dy/vvv0+TJk2wt7fn7bffJiwsjNjYWAICAoqtHSk3g/7aDR06lLVr1zJw4MCSjsfozM0F1QLSCfC8jbfdVVxMT2GfdRiLzAv/FEoveH+lSMMq/U+s+BP98OFmgMvfSy3INnEmRR1EisqfdJ0TaTp7UrPsScmyITldQ1KaJQ8fqnkYl8H9O3A/S0MKmhI75uKiVgv6db5Ea6t3McuMylkpKPT1Km4KkYVl+kksOfnP62/z9+IPWpUtKab1eKgM4mZ6HS7HV+XUBcdynQS7u2kZ8/zHuKSsznm9yyiLjPN4ZpzHE2jqAP2bQYZpVeLVIcSkNOZynB9/XbDj3r3y92XQzEwwoPMZWpq/gzor7pmS2uKg1KVjmX4aS07nPkH86KyxK6S1rEmcqjtXHjTm9FUfzl4wR6stf699WVejRg0uXLjA5s2b6d69O15eXnTv3h2Npuz/TS/LQkNDCQ0N5eHDh7z22mtMmDCBwMDAXGUyMjLo06cPK1eupEePHqjVanr27KmfGdbLy4srV64U2EZ4eDjbt28nNDSU9evX6/tcPwtXV1eWLFkCwKFDh3j++edp3bo1Xl5erFu37pnrl/JnULI7ceJEmjdvTkRERJ4ZYPbu3VsigRmDmUkqC7u1QiGyc1Zk8c/lxWJkkn0b2+x92LIv94Z/X8L0+2eTLktJZqqGzFRrHtzxIOZOLS4nPceZzPok4lz8QT6hLu1u0c39fTRpR4z6IV8UlfYBNmn7sWE/nkATJxjYClLN6xCv7Eh0ckPOx/pw5oKmXPQ77dj6Nn3dhmOaEmPsUJ6KWeZlvDMv4w20cgPcIMm8GfHKdkQ9rMeFGG/OXLAkPb3svhfd29+ki+tkrNL/LJG/FyXFIuM8/pzHXw0dq0N2LUcSzF8kKjWYc7FVOXHWplz8Hyjr/u///o/58+fTr1+/XOvHjh3LZ599ZpygyrmLFy9y48YNWrZsibm5ORYWFuh0OlxcXNi1axc6nQ6lUklmZiYZGRk4OztjYmLCtm3b2LlzJ8899xwAI0aMICQkhO7du9OuXTt9n90aNWoAOV0ONmzYQM+ePRk8eDCrV69GqXy2EyMbNmygefPmeHp6Ym9vj0KhQKVS0b17d9566y0+++wz3njjDTIzMzl37pzsylBMDEp2X3rpJfz8/OjVq1fF7rMr+CfRLWOUah3mtg8xt32IjdsNvPiDln9vS010Jv5mNWLu1ORScl3OZNXlAXalElfTBsn0C5qLY8qPT98VoQywTP8LP/7CTwltfUD4qnlg0ZY4XRuu3qvN2avuXIw0LTNnvszNBaN67qRO5rvlKsEyhHX671jzO4Em8Lw/6ALMeGDRjjhda67dC+JCjBsXLpkZ/YatxvWT6f/c37/7pXj1oqSYaO/gnrIcd5bTwhN0Xmbct+xITFYHLtx6jhPnnYmPL79XQIxlxYoVzJ8/P8/6VatWlbtkt6xM+pCRkcHEiRM5f/48arWaFi1asHjxYszMzFi9ejWOjo74+fnx559/6r9oZGRk8MILL/Diiy/q62nSpAnLly9n3LhxXLt2DRcXF7744gt9sgtgamrK999/T/fu3QkLC2PZsmXPlPAePXqUsWPH8uDBA1xcXPjvf/+Ln1/Oma1du3YxZswYpk+fjpmZGWPHjpXJbjFRiEfn8wthbW3NnTt3MDU1feqGFixYwIoVKzh9+jQDBgxgxYoVBZb99NNPmTNnDmlpafTp04eFCxdiZmZWaP1WVlakpDzb3ThZaamsHdTsmeooC4ROkJLgzq246kTfrcXFlDqcya5LKlbF1kbVgEwGt/ga75TPi63Osi5b5cgdi07cyGjB5fjq/HXJySh9TqtXzWRU00nYpu4q9bbLCq3SigcW7bmlbU70/VpciHHj/CVzMjNLPgH29clmWOs1+KZ8XOJtlTVJ5s24QTcuJtbnz/PuRMeWXL/fpCQojiv9xfHZ8DSWLVsGwOjRo1mwYEGubVevXmXDhg1cvHix1OMy1Pnz56lZs6axw5BKQGV8bw1Kdrt27UpERAT16tV76oa+//57lEolO3bsIC0trcBkd8eOHQwZMoS9e/fi7u5Or169aNasGbNnzy60fpnsFk6XreTeDT9ibtTl3L3GHM9oxt1/3+5tgCpVdAx9fhs1M8JRiowSiLR8STOrSYIqhJiURly47sdfF6xJSiq5hKtfl6t00gxFpX1QYm2UVzqFBQ8s23FL25Ko+7W4GOvO+UvmZGQUz/thby8Y2ukX6mRNQinK8WWMYpRmFsQN5YtcvteEk5e8uBj59CdE/q28J7vt2rUD4ODBgwQHB+vXKxQKXFxcGDNmDM2ald3Pm8qYEFUWlfG9NSjZffPNN9mwYQO9evXK02d3xowZT9Tge++9x/Xr1wtMdkNDQ/H19dUPprxnzx4GDhzIrVu3Cq3X1NSUKVOmPFEskiRJUsU2d+7cQpPdjIwMRo0axe7du7l79y6BgYFERETQpUuXfMs/6ZXH9957j1mzZj3zcZS2ypgQGaKgGwu3bdum/1Lz+uuv5ztl8aBBg1i0aFGJxmeIyvjeGnQNKjU1lW7dupGZmUlsbKx+fUkMRXb27Fl69Oihf163bl3i4+O5c+cOjo65z0QuXryYxYsXF3sMkiRJUuWQnZ2Nl5cX+/fvx9vbm61bt9KvXz9Onz6dZ/zWHTt2MHv27FxXHqdNm1bolcfymOhKBXs0sVZhFi1aVCaSWukfBSa7CxYsYPTo0QBMmTIlz5AeJSU5ORlbW1v980ePk5KS8iS7I0eO1M9o8iz9iSVJkqTKycrKivDwcP3z7t274+fnx/Hjx/Mku19//TUjRowgKCgIyJkNa+DAgUV2syuvHs2UKlUcOp3O2CEYRYHJ7pQpU/TJboMGDXj48GGpBKTRaHK19eixtbV1ofup1WqmTXu2O0XLW59dpVaHZTZYKdRYmmuwtLbH0skFKzdvLH0CsKxaE4uqNVCaP8UIGkKgy8zg+GsvcS6pfA5rlR8zjS3ezTrg26ITjv61MLO2LXonI7rw8VSO/PqjscMocWYaW2xtnLBVmmGbko3trTvYRsaguRyFwkh/nNNdnfm2pTtCVM4PB2MLXf07agvLZ65n7ty5T1Q+Pj6eS5cu6RPaxz3JlcfyztzcXH9cMuEt/4QQZGVlER8fj5VV8d2sXl4UmOwGBATw9ttvExQURFZWlv7O0n8LCwsr1oCCgoI4deqUfkzCU6dO4eLiUuH+kDwNp0wlgXVa4RwcgmWNIMx9/KGk/ggpFCjNzKn19kwuTB2CTll+/9ipLTV4N2mHb8vOuNdphtJEbeyQDOZvUYVjajO0WRXnZkAre2e8LKtgfy8V2xsJ2J67gnn8aWOHlYf5rds4ujYnMe6asUORnkF2djaNGjXSP3/8iuC/ZWVlMXDgQIYOHZpr+KlHnuTKY3nn6enJ9evXuX37trFDkYqJiYkJtra2ODk5GTuUUldgsrt+/Xrmzp3LunXryMrKYtWqVXnKKBQKg5Pd7OxssrOz0Wq1aLVa0tPTMTExwcQkdwhDhgxh2LBhDBw4EDc3N2bNmsWwYcOe7KgqEItMLQFVqhI4dDS2rZ8v9fatatfH18Seq7r7pd72szAxt8SrURt8W3bGo35LVOry2c3FtH5DvC8d4lrsOWOH8kys7JzxsXDG99QVnL8vPxPReGabkWjsIKRnYmJiwrFjx4osp9PpGDx4MKampnmGCnvkaa88/ltMTAweHh7FMiNXSVGr1frxXyWpvCsw2a1WrRpfffUVAB06dGDPnj3P1NCsWbOYPn26/vnq1auZNm0aYWFh1KpVi3PnzuHt7U3nzp0ZP3487dq109/t+vh+lYFSq8PbxJaAkJdwHzYKpWnhYwyXtFrDx3F1adkYTLwwKlNzPBsG49uyE54NWmNiZm7skJ5do0ZUjUjkWjnM1S3tnPC1dMHn1BWcf/gFRdEDv5Q5nqciOelu7CikkiaEYMSIEcTHx7N161bU6vyv/hTXlUdfX198fX2ZNGkSr7766jPHL0lS4Qwaeqw8qAjj7DplKgio0wq/18dj5uVjtDjys+PFhtxSl82pujwbtsYvuCtejdoWSx+/ska0b8f3ASYk3403dihFsrR1xMfKBd+/ruF88Gi5THAfJxQKNgxtTdrDu8YOpexSKDC1sMLU3AozU3NMTcwwU5hgqgOzbIFptg6FTqAQfy86gYK/fwpQ6P7Zjk6gFAJ0OrxXfY/S8tn7Fhry2fD6669z8uRJdu/eXeDQUgDbt29n2LBh7N27Fzc3N/r06UOTJk2e+Aa16OhoYmNj2b9/vxwyU5JKQYFndr28vAzqlB4TU3FuXjKGnG4KgQQMHo1d247GDqdAQd0HcWvHcmOHkYvSRE2zke9RtUMvY4dSohStgglMuMBJymaya2HriK+VC76nr+H8w/5yn+A+TiEEHjauRFbSZFdtYYWdvQt2SgtsUzKxeJiGWXIqZg+TMb37ALPEu5jeuV8yNxF+XTq/R9HR0Xz55ZeYmZnh6uqqX//ll18SHBxcIlcefXx88PHxoVWrVsV5KJIkFaDAM7v79+83qII2bdoUa0BPq7yd2dVk6GjSdSger/yf0bspGEQINr1Qh/tmZeNGNTMbe9q9+wkutRoaO5SSt2sXKa+N4LsGDmVqZACV2oymJm4Ert1coRLcf4vuHcI+4owdRolSm1tia++CncoSu5Qs7OISsTt/FatrsUXvXFKKaQo1Y82gBjk3vP3++++cOnWK+/fvY2dnR926dWnWrFmBXSUkSSp+BZ7ZLStJbEUUaOpEk0XrUDu7FF24rFAoqNU4hF//2mXsSLDzDqTDpM/RVPEwdiilo3lzrGJu4v5CU25cv2jsaADQOLjQ9nQijkd+NnYoJc597+8oQwLRZZfNbjxPyszKBk8Hr7+T2jvYXbyGJrLsjYZRniUmJjJ79my+/vprHBwcqFGjBtbW1iQlJTF//nzu3bvH0KFDmThxYqW8M16SSptBM6hJxcMsU0vz50PxGVM++2j5vzOdE/23k2ZqvDuIPRu2pvW4OagtKtE4gRoN1K9P1esPuWHsWAAPz+oEr9uL2e3KcWlfff8hVVx8uXXjsrFDeSbmNvYEmVSh+oYdqB8cNnY4FVpwcDAjRozg5MmTeHjk/VJ+8+ZN1qxZQ+vWrTl3rnyPtCJJ5YFMdkuJR7YZLeetwKJ63oHKywuVlYYavvU4cdM4Z4GCXhxKw8HjUCiVRmnfqIKD8fpiAeYDmpGedN8oISgUSuo4V6fu5xsqdLeF/HimKrhl7CCekqWtI0HYU+3bHZikpBo7nErh1KlThc7q6e7uzrvvvsuYMWNKMSpJqrwqYdZQulRaHU2rtuT5H/8o14nuI9XHR2CSXbr9RpUmalq8OYNGQ9+unIkuQHAwysws/K2NMw6WqaU17dPtqbfo20qX6AJ4/nHG2CE8MSv7KjSz9qf3+t+ptfwHmeiWIkOnr5fT3EtS6aikmUPpcMiAF976jBqzF5bcTGelzMzLh0Bbr1Jrz9zGnpDwJVRt37PU2iyT/r5rO/Bw6SddDq4+dD96C88t+0q97bLC9vRFrB1diy5YBlg7utHCwpfeqw5Q/etNqNLSjR1SpfXtt98yZswYFi9eTFZW7j7fo0aNMlJUklT5FDgaw+DBgw0aemzlypXFHtTTKEujMSiE4DnHqtT772qUlhVv3NekY7/xwwcjESU8hXCluxGtKDVrwoULbHnzxVKbwjbAK4jmSzahSk0rlfbKsiP/eZkLN8pu/0pbZw/q3Ffiu3EHSq3W2OE8u3I+GsO8efNYsGABPXr04ODBgwgh2Lp1K25ubgDY2Njkmo1NkqSSU+CZ3cDAQAICAggICMDW1pYff/wRrVaLp6cnOp2OTZs2YWdnV4qhlg+aDB2d+r1FgyXfV8hEF8C6UXO8lU82PeaT8mzYmq4Rq2Si+7jgYACqlsLno1JtSnONP63+u14mun/zvFI2e+3au3jTRuFOjyU78f9ma8VIdCuAhQsXsnPnTv773//y559/8uKLL9KqVSuio6OBnFnbJEkqHQXeoDZt2j/Tw3bq1IktW7YQ/PeHLcChQ4eYOXNmyUZXzgSY2NPki3WYulb8+UWDBv8f0asiSqbuHsNoOGhs5e2fW5DgYFiyBL+f93G0Sw2yM0omCbWyd6bthQc4Hd5UIvWXV66/HMGkZ50Se92flFJtSktRBb9FWytlP+qy7vbt2wQGBuqfT58+HWdnZ4KDg9m1a5dBV04lSSoeBmUTv//+O82a5b6837RpU3777bcSCaq8McvS0qZFb1p9s79SJLoAzj37UyWzeIcgU5qoaTl6Jo2GvCUT3fz8/WVTff8hPlX8S6QJN89qdN9yGqfDx0uk/vJMlZaOW5WyMY23Sm1G+yQN/t9uk4luGeXj48Nff/2Va93o0aMJDw+nbdu2ZGRkGCkySap8DMoo6tevz+TJk0lLyzmjkZaWxpQpU6hXr15JxlYumGVq6TT2Y3zfDjd2KKUuKOTlYqtLZWrG81O+ILBdj2Krs8Lx9QVPTwCq/hVV7NU/51qLjgt+wPzW7WKvu6LwuJtp7BBQmZrR/r4FHlsNm+VSMo6hQ4eye/fuPOvDwsKYN29evuPvSpJUMgq8Qe1xUVFRhIaGcuzYMezt7bl37x6NGjVizZo1+Pn5lUacRTLGDWqmWTpCXp+JY9dez9RueSW0Wn7sUZeHZs92FlapNqX9hM/wqC/niS9SaCisWwfADyM78TDxZrFUW82jFs0//6ZY6qrIUgK82VjX1mjtm5ia0/6uGW47DxkthlJTzm9QkySp7DAoS/H19eXXX3/lypUr/PTTT0RGRvLrr7+WmUTXGEyydTw/dFKlTXQBFCoVteq2faY6lCYmtH17nkx0DfVYv/mqonhuEqziHkDTL78vlroqOqsrMdi7eBulbRMzCzrcVleORFeSJKkYGXxK7s6dO+zbt4/9+/fj7e3NzZs3uX79eknGVmaptDo6vPR/OPcZaOxQjC7g3RmYZz7d3d8KlQmtx87Bq3Hb4g2qInss2Q3YdgiF6tkmQbSwdaTtpiMoM7OKLiwB4Kl49rONT8rE3JLn41W47vm11NuWnp4QQs6SJkllgEHJ7v79+6levTpr1qzRj8Bw+fJl3njjjRINrtSlF32XtVKro13XV3AdPLIUAir7TOwcqO755DPDKZRKWv1nFj7NO5ZAVBVYUBA4OABgcf0Wnu6BRexQMKWJmrZXUrGIjSuu6CoFj3NRpdqe2tySjjfAZa+8Ibg8yc7OJjQ0lLt37xo7FEmq9AxKdseOHcs333zD9u3bMTHJOZPUtGlT/vjjjxINrtQVMT6lQido0z4Uj5FjSyeecqLGO7NQaZ9gCmGFghZvTMc/uGvJBVVRKRTQsqX+adVrT/9B2sTMiyoHKtj/4VLgfPAYZlY2pdKW2sKKjrE6quw/UirtScUjOTmZLl26kJ2dzYoVK4wdjiRVegYlu1FRUXTo0AFAPzagqakp2dnZJRdZGaMQglbNeuD9f5ONHUqZYx5QjQArN8MKKxQ0H/k+ge3lqAtP7bGuDB5b9mFh4/DEVVT1DKL6KjmO7tNQarW4O3iWeDumlho6RmXjfPBoibclFa/PPvuM1NRU1q9fj0pVvEM0SpL05Azq8FerVi127NhBp06d9Ot2795N7dq1SyywMkUImtfpiP+EWcaOpMyqNWoylz4pum9ak7CJVAt5qRQiqsAeS3aVWi0Blq6ceWj4GV5nN//ye0OaRgM2NjmLtXXO8uhxQes0GhAC0tLyX9LT819/5gxcvZpvGB63kijJCZtNLa0JuZKG428nSrAVqaQ0b96cefPmsWvXLjp37mzscCSp0jMo2f3444/p3r073bp1Iy0tjddee42ff/6ZTZsqx5mhJlVbUjX8E2OHUabZtmyH16fWxIqkAss0Gvo2NbsOKMWoKqiGDcHSElJTAai6/wRnqpsZtKuFjQNtNx9DlWH88WLzpVKBtzcEBOQs/v7/PA4IyElgS8vSpfDKK/lu8th/FEVLd4R4gu47BjKzsqHjpRQcj5ws9rql0tGhQwd+/vlnXn75ZdauXUvbtm2NHZIkVWoGJbvNmjXj1KlTrFmzhrCwMLy8vPjjjz/w9Cz5S3nG1sCzHjXnLDJ2GOVC0EuvELvh03y31R8wmqAXh5ZyRBWUWg1Nm8IvvwBgc/YSLu17EX8jstDdlCoT2kalYxl9ozSiLFyNGjnLvxNaH5+c4ysLmhU85rb5rds4ubXg9s38z/w+LTONLSHnH+Jw9K+iC0tlWnBwMNu3b6dv375cvHjR2OFIUqVmULL7ySef8NZbbzF+/Hj9OiEEYWFhLFu2rMSCM7Y6ztWp/d+Vxg6j3HB5eRhO21aRmJyYa32dl16jzkty9IpiFRysT3YBqiZmEl/ELo0tfaiy78cSDatAajW0bg09esCLL+YktWVdrVpgawsPHuS72TPLlOKca87c2o6Q0/ew//NMMdYqGVOdOnXYuXOnscOQpErPoBvUvv76a5YuXap/LoRg0KBBFXqc3Vo2PtRf+K2xwyhfFAqCmoTkWvVcz+HUH/CmkQKqwB7rtwvg8/M+1BZWBRYP9Ayixtc/lmxM/2ZnBwMG5Mz4dvs27N4N//lP+Uh0IWfkiyZNCtzsceJSsTVlbm1Hp1N3ZKJbAfmUl993SarADDqzu337dtq2bYu1tTV9+vRhwIABpKSk8PPPP5d0fEZR3cKVxst+yvmwk56I96vj0Py5i+T7t6nZbSANB48zdkgVU/PmYGICf4+IYpKcgp+jD5eun8tT1NHNj2ZLfiyduPz8cs7cvvhizplck2eb9MLomjWDXbvy3eT4xyksgtqS9uDOMzWhUKpoE5uN3cm8751UMaSmphIZGUlycnKu9S1atDBSRJJUuRj0SeTm5sbOnTtp27Ytn3/+OU5OTmzatEk/5q4h7t69y4gRI9i5cydOTk58+OGHhIaG5imXkZHBxIkT+eabb0hLS2PAgAH897//RV1K/fgCTBxo+vU2meg+JaWpGbU69uX+g9s0CZtg7HAqLisrqF8fjv4zLFXg8StccsldzNzajnZbT6BKSy+ZOBQKaNz4nwS3oo3Q0rx5oZs9rV25/IzJbn37AFw3fvdMdUhl18qVKxk9ejSmpqZYWFjo1ysUCmJiYowYmSRVHgohhMhvQ359cc+ePcvatWsJDw/XJ59hYWEGNTRgwAB0Oh1Lly7l5MmTdOvWjV9//ZWgoNyzb02fPp3du3ezadMmtFotL7zwAp06dWL69OmF1m9lZUVKSopBsRREZGUhhA6lqWF3tkv502ZmoFSb6sdklkrI22/DJ7lHCdn0elfuJ8QCOdMxh9wxx7WkZt7y8YE1a3JNclHh3L0LTk45Q5flI6ZnR35R3nrq6r28atBu/kYUBdRfqSUl5Qwb94yK47PhWbi6urJq1So6dpSzRUqSsRSY7LZr167onRUK9u7dW2S5lJQU7O3tOXPmDNWqVQNg8ODBeHh4MHv27FxlGzVqxIQJE+jbty8Aa9euZcKECcTGxhbahrH/oElSqfvxR+jVK9eqc2G9OXr/MgBNbAOpufyHkml7wABYuDDnBq6Krnp1uJR//9wsW2vWd6qKLjvriavVOLjwwo/HMU2896wRVkyllOwuWLCAFStWcPr0aQYMGFDgjGcrVqxgxIgRuc7Obt68uchhxby9vbly5UqpXZ2UJCmvAvsh/PLYnd7P6tKlS6hUKn2iC1C3bl3279+fp6wQgsfzbyEE169f58GDB9hWhg9WSTJUq1Y53Qge+//iv+UAx9t44+dWlZr//ab427SxgQULYPDg4q+7rGrevMBkV/0gCRdXP+KuP9nNaiq1GW1PJ8pEtwxwd3fnvffeY8eOHaSlpRVatnnz5hw6dOiJ6p85cyZvvfUW06ZNw8nJ6VlClSTpKRk0GsPOnTu59K8/9pcuXWJXATdu/FtycnKeRNXW1pakpLwTEHTp0oX//ve/3L59m1u3bjF//nwgp4P/vy1evJhGjRrRqFGjSjV1sSQBOZfXa9TItco8PpF6dv40X/JT8bfXvDmcPFm5El0odLxdAM/kJ++C0MTUXU4aUUb07t2bnj174ujoWCL1V6tWjZ9++gkXFxdUKhUqlQqlUimnEZakUmRQsvvmm29i/a+ZizQaDW++adiQUhqNhocPH+Za9/Dhwzx1AkyZMoX69etTr149WrRoQc+ePVGr1VSpUiVP2ZEjR3Ls2DGOHTv2RDfLSVKF8a8hyABqL96IKrXwM1RPRKWCqVPhwIGc0RYqmyKSXY8jTzZcWIBXLaqtKoEvI1KJO3HiBE5OTlSrVo2ZM2cadJJl8ODBDBkyhFOnTnHp0iUuXbrE5cuX85xAkiSp5BiU7CYkJODm5pZrnZubG7duGXZjRrVq1cjOzuby5cv6dadOncpzcxqAhYUFCxYs4MaNG1y9ehVHR0caNmwovwVLUn7ySXaLlY8P7NsH06eX/2HEnlbt2jmjXxTA9uwlrB3dCtz+OPsqXjRburm4IpMMkJ2drb8C2KhRIxYvXvxU9bRu3ZozZ86QkJDAd999x7p16/joo4+K3O/OnTvMmDGD5557joCAgFyLJEmlw6Bk19/fP8+NaPv27cPPwLM8VlZW9O7dm6lTp5KSksLhw4fZtGkTg/O5HHrjxg1u3ryJEILff/+dmTNnFjkSgyRVWiWZ7A4YAKdO5fQNrsxUqpzh1Qrhae5QZDVqc0vaHLqCSbK8kbY0mZiY6K8AHjt2jJEjn242R39/f/z8/FAqldSuXZupU6eycePGIvcbPnw4q1ateqo2JUkqHgadqgkPD6d3796MGDGCgIAArly5wvLly1m+fLnBDf3vf/8jLCyMKlWq4OjoyMKFCwkKCiImJoZatWpx7tw5/V2rQ4YMISEhAS8vL2bPnk1ISEjRDUhSZeTjA15eUMRoJU/E2hq++KLy9c0tTLNmOWe4C+B5+SbnLQuvokWGHbZnjhRvXJLRKBQKChjMKJc//viDBQsW8MEHH+Diknsg7AMHDpRUeJIkPcagZLdHjx7s3LmTZcuWsWXLFry8vNixYweNizjb8TgHBwd+/PHHPOu9vb1zzSrTunVroqKiDK5Xkiq94GBYu7Z46mrWLGfsXH//4qmvoiii367LL79j0rse2Rn595Wu6V4L3wUlMDqG9Myys7PJzs5Gq9Wi1WpJT0/HxMQkz30g27Zto0GDBri4uHDhwgVmzpypHyKzMK+++iqvvvpqSYUvSZIBChxnt7yR4+xKldaiRfDGG89ez5QpEB5eefvmFiYhAf51Vu7f9o7pS2zshTzrnd396bx4K8rMJx+Lt1IrpXF2w8PD83SVmzZtGmFhYbmuOr7zzjusWrWK5ORkXFxcGDRoEO+//36B4+d+9dVXdO3aFXd392c+BkmSno3Bye7Jkyc5ePAgiYmJuS7dzJgxo8SCexIy2ZUqrbNn4bnnnq2OSZMgIqJ44qmo/P3h2rUCN18a/CK/peTebm5tR/cDUVhdK8ZuJpVFOZ9B7bXXXmP79u3Y29vTrVs3unbtSosWLeTMkpJkBAbdoLZ48WJatmzJ3r17mTNnDqdPn+bjjz8mMjKypOOTJKkotWqBQ9E3SBWoTx/44IPii6eiKmoIsoN/5nquUCgJjlfIRLeS+vLLL4mOjmbVqlXY2NgwadIkXF1dCQ0NZfXq1SQmJho7REmqNAxKdufOncv27dv54YcfsLCw4IcffmDjxo1y+kNJKgsUiqcfMaFRI1i1KqcOqXDNmxe62SrqOvYu3vrndZyr4b5d3oBU2dWuXZsJEyZw4MABLl26RM+ePdm1axd16tShWbNm7Nixw9ghSlKFZ1A3BhsbG/2kEI6Ojty+fRulUomDgwN3794t8SANIbsxSJXavHnw7rtPto+XFxw5Am6GjRFb6R09Ck2aFFrkz1Evc/rWOdw9q/H8gh9Q6HSlFFwFVM67Meh0OpTKws8nHT16FOCJbvaWJOnJGXQniqenJ1FRUfj6+lKtWjU2bdqEk5MTpqamJR2fJEmGeNLxdjUa+Plnmeg+iXr1wNwc0tMLLOJ5NoqrAc4Ef7NfJrqVnK2tLS1btqR169a0bt2apk2b5rkaKpNcSSodBnVjGD9+POfPnwdg6tSpDBo0iPbt2zN16tQSDU6SJAM1aACWRQz0+ohSmTNUWd26JRtTRaNW57zOhXA+eJR2Z+9iHi/7Y1Z227dvp23bthw+fJgXXngBW1tb2rVrx7Rp09izZw9pacU4pbckSYV6qqHHMjMzyczMRFMMl5iKi+zGIFV6HTrAv2Y6zNfHH8Nbb5V8PBXRO+/kvH5SySvn3RgeJ4Tg1KlTHDhwgIMHD7Jv3z6SkpJIL+QqgSRJxcegM7v169fP9dzU1BSNRkOjRo1KJChJkp6CIV0ZRo6Uie6zKGJEBknKz4MHD4iNjSUmJobo6GgAOnToYOSoJKnyMKjPbn5DjAkhuHr1arEHJEnSUyoq2e3QIWcaYOnpyWRXMtDGjRvZv38/Bw4c4N69e7Rs2ZJWrVoxZMgQateuLcfblaRSVGiyO2TIECCn28Kjx49ERUURFBRUcpFJkvRkmjXLmf0sOzvvturVYeNGOTvas/L0zFmuXzd2JFIZ169fP2rWrMmECRN4+eWXMTMzM3ZIklRpFfrJFxAQkO9jhUJBy5YtDZoXXJKkUmJllXMD1R9/5F7v6AhbtoCdnVHCqnCaNcv54lCZKJXg4QE2NjkjUlhY5Px8tBT2/N9J3qPbRB6/XSS/x+U8OTx06BAHDhzgm2++Yfz48VStWpXg4GCCg4Np2bIlNjY2xg5RkioNg25Q27FjB506dSqNeJ5aWbgJQZKM7t83UJmawu7dTz40mVSwjz/OeZ0rEqUS3N3B1zf34ueX89PLK2c0inKoLHw2PH6D2qFDh9i/fz/u7u6cOHHCqHFJUmVh0DVNU1NTrl27hp+fH7du3WLChAmoVCoiIiJwdXUt6RglSTJUcHDuZHfxYpnoFrciZlIr8+rVg65d/0lkfX3B2zvni5FUIh7doBYbG0tUVBR3796VM5BKUiky6MxuzZo12bFjB97e3oSGhgJgYWHB7du3+emnn0o8SEOUhW/vkmR0d+6As3POpeBJkyAiwtgRVTzp6WBrC5mZxo7EcGZm0K8fvPFG+U/Wn5CxPhsev0Ht7NmzeHt7ExwcrJ9komrVqqUekyRVVk80XXB2djYuLi5ER0djamqKu7s7iYllY/B0mexK0t+CgqBWLfj2W5B3fJeMJk1ypg8u6/z94bXXICwMnJyMHY1RGOuzoUaNGvrEtk2bNnh5eZV6DJIk5TCoG4ONjQ3x8fGcOXOGWrVqodFoyMzMJCsrq6TjkyTpSY0dC4MGyUS3JDVrVnaTXaUyp5vCqFHQqVPOc6nUXbhwAYCbN2/i7u6eZ/uJEyfyjGFflmRlZXH9+nU58YVULqhUKuzs7HByckKZz988g5Ld//znPzRu3JjMzEw+++wzAA4fPkyNGjWKNVhJkorBq68aO4KKr3lz+PxzY0eRW5UqMGJEzplcHx9jRyP9LSQkhAMHDuDg4KBf98cff9CjRw/i4uKMGFnhrl+/jrW1Nb6+vnJMYKlME0KQlZVFfHw8169fx9vbO08Zg5LdCRMm0KtXL1QqlX4IMg8PD7766qvijViSJKk8KEuTS7RsmXMW96WX5E1mZdDIkSMJCQlh3759aDQafv31V3r37s2yZcuMHVqh0tPTZaIrlQsKhQJTU1M8PDy4ePFivmUMHmG+WrVqhT6XJEmqNPz8wMUF4uONF4OHR854v2Up8Zby+L//+z8ePHhA165dmTRpEsOGDWPNmjU8//zzxg6tSDLRlcqT/LovPCKnU5IkSXoazZrBpk3GabtBA/j555yxcaUy7/333+f+/fu8/PLLbN68mdatWxs7JEmqVOSdC5IkSU/DWGdUe/SAAwcqdKIrhCApPcnYYTw1Ly8vvL29cy3ffPMNOp2OQYMG6ddJFYOvry+7d+8usty+ffvw9PR8qjaioqJQKBRk5zcd/N8mTZqkv6/qWdoqSXv27GHmzJkkJT3Z/++MjAxq1KhBQkLCU7Urk11JKmOytdl8/evXNJjZgIX7Fho7nErn5v2bjFk/hqCpQcTdL+QGImMku2+9Bd9/nzM1dAUkhGD3ud0Ezw2m9/96Gzucp7Z69WpWrVqVa1mzZg1btmzJtU6Sisvt27dZuXIlr732WpFlq1evzrfffqt/fvjwYRQKRZ51Go0mV3I9cuRIFi9e/NQxHjx4kN69e7N161Z69epF5r/GKv/oo4947rnnsLa2xs/Pj48++ki/zczMjLCwMObMmfNUbctuDJJURmRrs1n9+2pmbZnFldtXcv74HPuWN9q+YezQKoUb924we9tslhxcQqY2EyEE+y7uY0DTAfnv0LgxqFSg1ZZ8cCYmsGBBzkgLFZAQgt3ndxP+Uzi/XvkVT3tPJnWZhBCiXPYbbdOmjbFDkCqZFStW0LVrVywsLIos27p1a/bv30+/fv0AOHDgADVq1MizrkWLFpiY/JMmbt++nalTpz5VfH/99Rf9+vVj7dq1hISE0L9/fwYPHsy6dev0fW2FEKxcuZI6depw5coVQkJC8PLyon///gCEhoZSr149IiIiMDMze6L25ZldSTKyrOwslh9eTo33azB8xXCsza358c0fea31axyPPo5OpzN2iBXa9bvXGb12NP6T/Vl0YBGDmg3iwowLmJmYcSz6WME7WllB7dolH6CtLWzdWiETXSEEO87soOWcloR8GkLsvVj+N/B/RH4Qyah2o8plogswf/58MjIyCi2TkZHB/PnzSymiisXX15cPP/yQWrVqYW9vz/Dhw3ONB7xkyRICAwNxcHDgxRdf5ObNm/ptY8aMwcvLCxsbGxo2bMjBgweLbC8tLY2hQ4dib29PzZo1mTt3boFdBDIyMhg7dizu7u64u7szduzYPL8LERERODk54evry5o1a/Trt2zZQv369bGxscHLy4vw8HCDX5Nt27YV+iVr/vz51KpVi+vXr9O6dWsOHDig33bw4EEmTJiQZ93jfcv/+usv7Ozs8PT0ZMWKFbRs2ZJx48ZhZ2eHv78/v/76KytWrMDLy4sqVarw9ddf6/eNioqiT58+rF69mm7duqFWq/nmm28wMTFhzJgx+nLjx4+nQYMGmJiYUL16dXr06MHhw4f12z09PbG3t+f33383+HXRE6Xkzp07omfPnsLS0lJ4e3uLNWvW5FtOp9OJKVOmCHd3d2FjYyPatGkjzpw5U2T9lpaWxR2yJJWozKxMsfTgUuE/yV/wCqL+jPpi04lNQqfTCSGEWHpwqeAVxMW4i0aOtGKKuRMjRq0eJUxfNxUmr5mIV75+RVxNuKrf3vSDpqLN3DaFV/L660LkTM5cMouvrxAG/P0rb3Q6ndh2eptoFtFM8ArCa7yXWLRvkUjPTC/2tozx2TBp0iTh6ekpRo4cKdasWSOOHTsmLl68KI4dOybWrl0rRo4cKby8vMSUKVNKPTZDnTt3ztghFMjHx0cEBQWJmJgYcefOHdGiRQv9a7lnzx7h6Ogojh8/LtLT08Xo0aNFcHCwft9Vq1aJxMREkZWVJebNmydcXFxEWlpaoe1NmDBBtG7dWty9e1fExsaK2rVrCw8Pj1zx7Nq1SwghxPvvvy+aNm0q4uPjRUJCgmjevLl47733hBBC/PLLL0KlUolx48aJ9PR0sW/fPmFpaSkuXLig3/7XX38JrVYrTp06JapUqSJ++OEHIYQQ165dE4DIysrKN0YnJyfxxx9/6J//8ssv+hhnzJgh6tevLxISEoQQQkRHRwuFQiHu3LkjtFqtcHZ2FqmpqcLT01O/ztbWVuzfv19f34cffigmTpwohBBi+fLlQqVSiWXLlons7GwxZcoU4eXlJUaNGiXS09PFjh07hEajEUlJSUW8kwXT6XSiXr16YuHChbnWv/DCC+K///1vgfsV9Htbaslu//79Rb9+/URSUpI4ePCgsLGxyTeJ/eabb4Sbm5u4cuWKyM7OFhMnThT169cvsn6Z7ErlRWZWpvjqwFfCb6Kf4BVEw5kNxU8nf9InuY+cjDkpeAWx5vf8vxhKTyfmTox4Y/Ub+iT31a9fFdduX8tTbtTqUcJ6tLXQarUFV7ZiRcklus2aCREfX3IvhBHodDqx9a+toukHTQWvILzHe4sv938pMrIySqzNoj4bPv/8c9GwYUNhamoqhg4dWmjZTz75RLi4uAgbGxsxfPhwkZ5ecHJ++/Zt8dFHH4n27dsLZ2dnoVarRZUqVcTzzz8vPvnkE5GYmPg0h1Nq/p00jFk3RrSZ26ZElzHrxhgUm4+PT64kaMuWLcLf318IIURYWJh499139duSkpKEiYmJuHbtWr512dnZiZMnTxbanp+fn9i+fbv++ZIlSwpMdv39/cWWLVv027Zv3y58fHyEEP8ku8nJyfrtffv2FTNmzMi33TFjxoixY8cKIYpOdk1MTMT58+f1z3/55Rfh7u4uxo0bJ1q2bCnu37+fq7yPj4/48ccfxZ9//ilatGghhBDi5Zdf1q8zMzPL9fvdqlUrceDAASFETrIbGBio3/bXX38JQNy6dUu/zsHBQZw4cSLfWA0xdepUUadOnTz/x0JDQ8X06dML3K+gZLdUujGkpKTw3XffMXPmTDQaDa1ateLFF1/Mt4P+tWvXaNWqFf7+/qhUKgYNGsS5c+dKI0xJKlGZ2Zl8dfArqr1XjVdWvoKjlSM/j/6Zo1OO8kLdF/Jcsq3lVgtztTnHo48bKeKKJeZODG+sfoOAyQF8dfArhrcYTuQHkSweshhfJ9885Rv5NiIpPYnLCZcLrrR585IJtl8/+OWXnFnRKgAhBFtPb6VpRFO6zu/KrYe3WDx4MZc/uMzI1iMxNTHeZBju7u689957hIWFFVpux44dzJ49mz179hAVFcXVq1eZNm1ageWdnJx455132LNnDwkJCWRmZhIfH8+uXbsYN24cjo6OxX0olYqXl5f+sY+Pj76rws2bN/F5bAZBjUaDo6MjN27cAODjjz+mZs2a2NraYmdnx4MHD0hMTCy0rZs3b+Zq7/HH+ZV9vP3HYwOwt7fH6rEbTB/ffuTIEdq1a4ezszO2trYsWrSoyNger/ffIxzcv3+fxYsXM2nSJGxtbXNte9SV4cCBAwQHBwPQqlUr/bqmTZvq+8Xev3+fCxcu0KJFC/3+Li4u+seP+gn/e11ycrJBsf/bggULWLlyJVu2bMnTNzcpKQk7O7snrrNUblC7dOkSKpUq10QUdevWZf/+/XnK9u/fn2+++YZLly7h5+fH119/TefOnfOtd/Hixfo7AwsbjkN6OkII0jLTsDSzNHYo5VpWdhYrfl3BB1s/IPpONI19G/PFwC/o8lyXQvskqk3U1PWsK5PdZxRzJ4aIrREsO5wzY9WIViOY1GUS3o6FD/3U0KchAMejj1PdtXr+hapVAwcHuHu3+AKeMgVmzoRy2l/1cY+S3PCfwjkWfQxfR1+WDFnCkOZDjJrgPq5375xRH44dO8b169cLLPf1118zYsQIgoKCgJyxcwcOHMjs2bNLJU5j+6z/Z8YOIZfY2Fj945iYGNz/HorP3d2d6Oho/baUlBTu3LmDh4cHBw8eZM6cOezZs4egoCCUSiX29vYIIQpty83NjevXr1OrVq08bf/bo/Yf/Z48HhvAvXv3SElJ0Se8MTExPPfcc0DODVijR49m27ZtmJubM3bsWIOT3Tp16nDp0iUaN26sX2dvb8/q1avp168fP/zwAy1bttRva926NV9++SU+Pj4MHz4cgODgYL7++mt8fHxy9dfdsWMHHTp0QKVSGRTLs1i2bBmzZ8/mwIED+faLPn/+PG+//fYT11sqZ3aTk5PzfKuwtbXNd5w1Nzc3goODqV69OhYWFmzYsIFPP/0033pHjhzJsWPHOHbsWK47BqVnl5GVQc8vehI4JZDM7Myid5DylZKRQuf/dmbkqpG42Liw9f+2cmTyEbrW7mrQzTeNfBvxZ8yf8ia1p3Q48jBB04JY/utyXgl+hcgPIlk4aGGRiS78c2b9WFQhN6kBNG1aPMGamsKKFTBrVoVJdMesH0P3z7tzJ+UOXw35ikuzLvFK8CtlJtF9EmfPnqVu3br653Xr1iU+Pp47d+4YMarK64svvuD69evcvXuXiIgIXn75ZSAnYVy+fDknT54kIyODyZMn07RpU3x9fUlKSsLExARnZ2eys7OZMWMGDx8+LLKtfv368eGHH3Lv3j1u3LjBggULCiw7YMAAZs2axe3bt0lMTGTGjBkMGjQoV5lp06aRmZnJwYMH2bx5M3379gVyzlo6ODhgbm7OH3/8wdq1aw1+Pbp27ZrvCcS2bduyZs0aevXqxZEjR/TrW7duzYkTJ9i/f78+Ca5duzbXrl3jl19+yZXsbtmyha5duxocy9Nas2YNkydPZteuXfj7++fZfuPGDe7evUuzpxj2sVSSXY1Gk+cX6uHDh1hbW+cpO336dI4ePUpsbCzp6elMmzaN9u3bk5qaWhqhSuQkun0W9uGnUz8R9yCOk7EnjR1SuZSSkUL3z7uz7+I+lg5dyu+TfqdL7cLP5v5bQ5+GRV9Kl/J16PIhOn3WCXc7dy7OvMj/Bv7PoCT3EROVCfW86nE8pogz68XRlcHeHnbuhKFDn72uMkAIwX/W/YfP937O2OfHcnHmRUYEj0Btoi71WLKzs2nUqJF+edpxQv990ubR4ycdHF8qHqGhoYSEhODv74+/vz/vvfceAB06dGDmzJn06dMHNzc3rly5wvr16wHo1KkTXbp0oVq1avj4+GBubl5ol4RHpk6diqenJ35+fjz//PO89NJLBQ599d5779GoUSPq1KlD7dq1adCggT42AFdXV+zt7XF3d2fgwIEsWrSIGjVqAPC///2PqVOnYm1tzYwZM/TDgBliyP+3d+dxMed/HMBf3Wo6STbUpFyJQoWwVHKVDixJylHJva7l586yy7pyrSN3kSP3ElLZ3NYZcqRS0bVb0X3NzOf3R9usVFK+M9+m+Twfj3k8dr7X+12b+b7n8/0cnp4IDQ1FUVFRlX0DBw7EgQMH4OTkhIcPyz/P2rdvDx0dHejq6gq7BcjKyqJHjx7Izc0VdlkghODq1as1PmFn0tKlS5GVlQVLS0uoqqpCVVUVU6ZMEe4PDg7G+PHj6zztGADxzMaQn59PFBQUSGxsrHCbh4cHWbhwYZVjHRwcyObNmytt09DQIPfv3/9iDDpAjRlFpUXEfos9gTeI3zk/Am+QzVc3134iVUl+cT6xXm9NZH1kyeE7h+t9nafvnhJ445uuIY2uv75OONM5pMPSDiTlQ0q9rzPjyAyiOl31y4PUwsK+bSCakhIhN27UO8eGRiAQkGmHpxF4g8w/Mb/KwEtx+9p7w5IlS744QM3U1JQcP35c+D4zM5MAaPADzeqroc/GUDEgjA07duwg/fr1Yy1+TRYtWkT8/f0Zvea9e/eIpaUlo9esj+LiYtKhQweSUcugXVYHqHE4HIwYMQLLly9HQUEBbt26hXPnzsHDw6PKsZaWlggJCUFGRgYEAgGCgoJQVlaGtm3biiNVqVZcVowRO0Yg9FkoAjwCsMJpBfSa6uFOwh22U5MoBSUFcNjqgOux1xHkFQT3Xu71vpaxrjGUFZVpv906uB57HUO3DoWelh6uzbuGlpr1X1bXnGuO/JJ8xGbE1nxQz56A7Dd8lO7bB/TtW//zGxCBQIDpwdOx488dWDB4Adb9sE5i58r9nImJCaKjo4Xvo6Oj0aJFi2oHmgkEgq96UZIhLS0Nt27dgkAgwOvXr7Fx40YMHz6c7bSq+PXXXzF79mzGr7ty5UrGr1lXSkpKePXqFXTqOWhXbItK7NixA0VFRdDR0YGbmxt27twJExMTJCcnQ1VVFcnJyQCAhQsXwszMDF27doWmpib8/f1x6tSpeo2+o75ecVkxhu8YjkvPL2GP5x749PMBAFgZWuFOPC12v1Z+cT7st9rjxpsbOOx1GGN7jv2m68nLycOstdmXFzeghKJeR8F+q315oTv/GnQ1db/pehWD1L74+1dXB4yN6xfAzw9wr/+XoYakotDd+edOLByyEGtHrpWIQpfH46G4uBh8Ph98Ph/FxcXVDnj29PTEvn378OLFC3z48AGrV6/GhAkTqr2mvLw8FBQUanxV7KcajqFDhwofnX/6+vXXX1FaWgpfX1+oqanB1tYWzs7OmDZtGtspi0WPHj0wdOhQttP4dqJobmYD7cZQf0WlRWSw/2Ai4yND9l7fW2mf/1V/Am+Q99nvWcpOcuQV5ZHvf/ueyE2WI8f+OsbYdSsepfP4PMau2Rhde3WNqExTIcbLjEnaxzRGrlnGKyPK05TJ7GOzv3ygl1fduy+MG8dIjg0Bn88nkwMnE3iD/O/U/1jvuvCp2u4NK1asIAAqvVasWEGSkpIIh8MhSUlJwmM3btxIdHR0iJqaGpkwYUKN8+wmJiZ+1asha8jdGCiqJqwvKiFqtNitn8KSQjJo0yAi4yND9t3YV2X/3fi7BN4gIQ9CWMhOcuQW5ZK+a/sSucly5Phfx2s/oQ4O3DxA4A3yIpXefGpSUeh2WtaJpOek135CHVitsSJ91/b98kF79tSt0P3+e0JKRLeQgjjx+Xzic8iHwBtk8enFDarQJYTeG+qLFruUJKrp75bO1yXFikqL4Py7M8JfhmPf+H2Y2GdilWO66XeDkrwS7sTfwQ/mP7CQZcOXV5yHoVuG4m7CXRz1OYpRFqMYvb6FgQWA8vlejXXr+bi8Ebv26hoctjmgTbM2iJwfiRbqLWo/qQ4suBbYf2s/+AI+5GRrmGeyLlPhtG0LnDlTPtWYhBMIBPA97Iu9N/Ziif0SrHJZJRFdF8Tt/PnziIqKQmZmZqU5XQMDA1nMiqKkh9j67FINS2FJIZy2OyH8ZTgOTDhQbaELAIryirAwsKCD1GqQW5SLIZuHiKzQBYCO33WEsqJy7fO9SqHIl5Fw2OYAQ21DXJt/jfFCFyjvt1tQUoDX6a9rPqhTp/K+u7Vp2hQIDQUawepZAoEAk4MmY++NvVjqsJQWujVYuXIlfH19IRAIEBISgmbNmuHKlSt0HApFiREtdqVQYUkhnH53QsSrCByYcADje395bk8rQys8THqIkrISMWUoGXKLcjFkyxD8lfgXjk8+LpJCFygfpNZNrxudkeEzES8j4LDNAUbNjRA5LxI66qJZWteC+1/Leo1kZYEePb58IUXF8hbddu0YzI4dAoEAPoE+2HdzH5YNW4afnX+mhW4N9u/fj6tXr8Lf3x+Kiorw9/fHH3/8gcTERLZToyipQYtdKVNYUgjH7Y6IfBWJgxMO1lroAoCVkRVKeaV4nPxYDBlKhopC937ifRyffBwjzUeKNJ451xyP3z0GX8AXaRxJEf4iHMO2DUM7nXYiLXQBoKNuR6goqtT+ZaO2rgx79wKfrEokqQQCAbwDvbH/1n6scFxBC91afPz4UbgcrKKiIsrKytCjR49qV7uiKEo0aLErRSoK3Wuvr+HQxEPw7O35VedZGZavEEW7MpTLKczB4M2DcT/xPk5MPoER3UeIPKYF16L2R+lS4uqLq3Dc7oh2Ou0QMS8CzdWaizSenKwcuul3q336ty+tpLZsGVDNvOKShi/gw+uQFw7cOoAVjivg5+THdkoNnpGREWJiYgAAnTt3xs6dOxEUFAQtLS2WM6MkRWJiImRkZKqdEu9bjpUmtNiVEp8uXRs4KRAeVl9/49XV1AW3GRe342+LMEPJUFHoPkh6gBOTT2B4d/FMLF4x36u0d2UIiwmD03YntG/RHpHzIkVe6FYw55rjcXItLes1tey6uQE//yyaxMSIL+DD66AXDt4+CD9HP1rofqXVq1cjKysLALBmzRps3boVP/30EzZt2sRyZpLLwMAA4eHhbKfRaA0aNAhhYWFVtl+7dg02NjbQ0NCAgYFBlf2JiYmwsbGBiooKOnbsWOX/UXBwMLhcLjgcDlxcXJCdnS2qH6EKWuxKgYpCNyo2CoGTAjGu17g6X6O3UW+pX1wipzAHgzYPwqPkRzg55aTYCl3gv0fp0ry4REWh26FFB0TMjYC2mrbYYltwLVBYWohXaa9qPqhp06r9cfv0AQ4cEG1yYsAX8DHp4CQcunMIK51WYoXTCrZTkhj29vbo92/3lZ49eyIuLg7p6ekYMUL0T4Qoqq4KCgrw8OFD9O/fv8o+DoeDSZMmYf369dWe6+bmhm7duiErKwu//PILfvjhB/zzzz8AgJiYGPj6+iIoKAgZGRlQUVER68IctNht5JhautbK0AopH1PwLvsdwxlKho+FHzHQfyAeJz9GyJQQOHd1Fmv8ikfp0tqye/n5ZThtd0LH7zoiYp54C12gDi3rn3ZlMDICzp4FlJREl5gY8AV8TDwwEYF3ArHKeRWWOy5nOyWJ8+bNG/zyyy+YPn06fvnlF7x584btlCSWh4cHkpOT4ejoCFVVVaxbtw4AcPfuXfTu3RuampowMzPDn3/+KTzH2toaS5cuRe/evaGqqgpHR0dkZWXB3d0d6urqsLS0rDRgUEZGBlu3boWhoSG0tbXx008/1bq888GDB9GnTx/MmTMHmpqaMDQ0xO3bt3Hw4EHo6elBR0cHhw4dEh6fk5MDT09PNG/eHFwuF6tXrxbG4PP5mD9/PrS1tWFoaIiLFy9WivV5y7afnx/Gjau+ESsnJwdeXl7Q1dVFq1atsHTpUvD5NT+hioiIQJ8+faBUzedWjx494OHhAUNDwyr7YmNj8ejRI6xcuRLKysoYOXIkunTpglOnTgEAjhw5AkdHR/Tr1w+qqqpYtWoVTp8+jby8vC/8VplDi91GjMmla62M/u23K4Wtux8KPmDgpoF48u4JTk09JfZCt4IF16L2R+mN0KVnl+Dyuws6teyEiHkRaKYq/mm7OnzXARwlTu0t6xVdGbS0gIsXAW3xFuVM4wv4GL9/PILuBmG1y2osHbaU7ZQkTnBwMLp164anT5+Cw+Hg2bNn6N69O4KDg9lOTSIFBQVBX18ff/zxB/Lz87FgwQKkpKTAwcEBS5cuRXZ2NjZs2ICRI0cKWxUB4NixYwgKCkJKSgri4+NhZWWFiRMnIjs7G8bGxli5cmWlOGfOnMGDBw/w6NEjnDt3Dvv37681t3v37sHU1BRZWVkYO3YsxowZg/v37yMuLg6HDx/GjBkzkJ+fDwCYOXMmcnJykJCQgKioKAQGBuLAv0+B9uzZgwsXLuDx48d48OABTp48We/f1/jx4yEvL4+4uDg8fvwYYWFh2Lt3b43Hh4aGwsHBoc5xYmJiYGhoCDU1NeE2MzMzYX/1mJgYmJmZCfcZGRlBUVERsbGxdY5VH3RRiUaqotC9FXcLR7yPYEyPMd90PbPWZlBWVMadhDsYbTmaoSwbvg8FHzDQfyCepTzD6amnMcxsGGu5mHPNsSViC16lvYJJKxPW8hCn0GehGL5jOExamiB8bjiacpqykoecrNzXTf9mYQHIywMbNwJ8PvDihXgSFAEen4fFpxfj0bOL2D3gR0xuM1y8P0+TJkA1LUiSZunSpQgNDRV2ZQCAGzduwMPDA2PH1r8BQuxmzwaePBFtjK5dgc2b63za4cOHYW9vD3t7ewDAwIEDYWFhgdDQUIwfXz7j0MSJE2FkZAQAGDp0KF68eAE7OzsAwKhRo7Bs2bJK11y4cCGaNm2Kpk2bYvbs2Th69Ci8vb2/mEebNm0wcWL5nPWurq745ZdfsHz5cigpKWHQoEFQVFREXFwcunTpguPHj+Px48dQU1ODmpoa5s2bh6CgIHh5eeHEiROYPXs29PT0AACLFi2q1FL9tTIyMnDp0iV8/PgRysrK4HA4mDNnDgICAuDr61vtOZcuXcKSJUvqHCs/Px8aGhqVtmloaCAlJeWL+8XVskuL3UYorzgP9lvscSfhDoJ9guFq6frN11SQV4AF10KqWnY/L3QdTOv+bZdJFY/SHyQ9kIpi9+LTixixcwQ6t+yMq3OvslboVjDnmiPgRgB4fB7k5ar56CwpAebMAXg8YNIk8SfIMHkA6/594dQWAFvEm4C5OfBA8vuo5+XlweqzmTp69eqFgoICljJqfJKSkhASEoI//vhDuK2srAw2NjbC9y1a/LfgjLKycpX3FS2uFSoKTQDgcrlITU2tNY/Pr1ndtvz8fGRmZqK0tBRcLrdSjIrCMDU1tUr8+khKSkJZWRl0dXWF2wQCQaVrf+rZs2dQV1evcf+XqKqqIjc3t9K23NxcYUtvbftFjRa7jYwol661MrSCf7g/isuK0UShCWPXbYiyC7IxcNNAPE99jjPTzsC+iz3bKQkfpT9MevhV8yNLsgvRFzBy10h0adUFV+dchRaH/WmaLAwsylvW01+hc6vOVQ+YNQu4dQtYs0aiWyT5Aj62R27HrfjbcO8xFs7d2Om2g0YyNdfcuXOxePFirFq1Ck2aNEFRURFWrFiBuXPnsp1a3dSjxVVUPp/XWU9PDx4eHtizZw9jMd69ewcTk/JGheTkZLRs2ZKxa2tra0NBQQFJSUno1KmTMEarVq0AALq6unj37r/xMcnJyZXO53A4KCwsFL5PT0+vNo6enh6UlJSQmZkJefnay736dmEAABMTEyQkJCAvL09YwEZHRwufXpiYmCA6Olp4fEJCAkpKStC+fft6xasz0kioqKiwnQLrcotySZ+1fYjcZDly4v4Jxq9/9vFZAm+Qm29uMn7thiQrP4t0+7kbUZyiSC4+vch2OpX0XduXWK2xYjsNkTr/5DxR8FUgFqssSHZ+NtvpCL1IfUHgDXLg5oGqO3ftIgQgZNEisefFpDJeGXHd7UrgDfLbpd/YTocRbNwbWrduTfT09Iienh5p3bo1kZeXJwoKCkRHR4coKCgQeXl5oqenJ/a86uLFixdsp1Cjnj17kt27dwvfJycnkxYtWpDLly8THo9HioqKyLVr18i7d+8IIYT079+f7NmzR3j8kiVLyPjx44Xvr169SoyMjITvARBbW1uSnZ1NkpOTSYcOHSrFq86BAwdInz59hO/fvHlDPi+xWrVqRW7cuEEIIcTd3Z24uLiQ3NxckpiYSDp06CDMcceOHcTY2Ji8e/eOZGdnE1tbWwKAlJWVEUIIGTt2LHFzcyOlpaXk/v37pFmzZsTd3Z0QQsjbt28rHevk5ERmzZpFcnJyCJ/PJ3FxceTPP/+s9mf4/vvvSVRUVI0/I5/PJ0VFRSQ0NJTo6+uToqIiUlJSItzfs2dPMm/ePFJUVEROnz5NNDQ0yN9//00IIeT58+dETU2NXL9+neTn5xN3d3fi6ur6xd9pfdT0d0tbdhuJ3KJcDN0yFPfe3sOxycfwg/kPjMcQLi4Rfwd92vZh/PoNQVZ+Fuw22eFl2kucm34OQzoPYTulSiwMLLD7+u6aH6VLuPNPzuOHXT+gq15XhM0Jg6aKJtspCbVv0R6qSqp4mPQQE/pM+G/HzZvAzJnA0KHAqlWs5feteHwe3Pe648SDE1j3wzr8NPgntlOSWIcPH2Y7hUZt0aJFmDlzJhYsWIClS5di/vz5OHfuHBYsWAA3NzfIycmhR48e2LlzZ71jODs7w9zcHDk5OZgwYQK8vLwY/AmAbdu2YebMmTA0NESTJk3g4+ODSf92f/Lx8UFsbCzMzMygrq6O+fPnIzIyUnjuqlWr4ObmBi0tLfTv3x9jx46tcc7awMBA/O9//0OnTp2Ql5cHQ0NDLFy4sMpxOTk5ePnyJXr37l1jztevX6/UNURZWRn9+/cX9ic+duwYJkyYAC0tLejr6+PkyZNo3rx8LnQTExPs2rUL7u7uyMrKgp2dnXBAnjjIEEKI2KKJEIfDkdo+UJ8uXXvM55hIl641WmyErnpdcWrqKZHFYEtmXibsNtnhVfornJt+DoM7D2Y7pSoO3z0Mj30eeOb3rPpH6RLs3JNzGLVrFLrpd8OV2VcaVKFbod+6fuAJeLj9v38XWHn/vnxQmro68NdfgKYmq/nVVxmvDO573RHyMAQbRm3AvEHz2E6JMdJ8b/gWL1++hLGxMdtpsEJGRgZv3rxB27Zt2U5FbE6cOIGTJ0/ixIkTbKfyTWr6u6VTj0m4z5euFWWhC5S37t6Ov41G8h1JKDMvEwM2DWjQhS5QPv0YADxIlPyBO586+/gsftj1A7rpd0PY7IbVovspC64Fnrx7Ah6fBxQXAyNHAgUF5fPpSnCh67bHDSEPQ7Bx1MZGVeg2BGVlZVixYoWwBc/Q0BArVqxAaWkp26lRlJCmpibmzJnDdhoiQ4tdCcbG0rVWRlZIz0lHUlaSyGOJS0WhG5sRi/MzzjfYQheo/Ci9sTjz6AxG7R4Fc31zhM0Og4aKRu0nscSca46i0iK8TH0BTJ1a3pobGAj8O8hE0lQUuqcencKm0Zswd5CEDZqSAAsWLEB4eDh27dqF6Oho7Nq1C5GRkdU+SqYatilTpkBVVbXKa8qUKWyn9s0GDRpUZdaQxqTxdfqTEh8LP2Lw5sF4lPwIIb4hcOnmIpa4vY3K+/Pcib8DA20DscQUpX/y/sGAjQPw5u83+GPGH7DrZMd2Sl8kKyuL7tzujWbZ4NOPTsM1wBUWXAtcmX0F6srqbKf0RRYG5S3rBf7rgINHgOXLgeHiWzaaSaW8UowJGIMzj8/A39Ufs+1ms51SoxQSEoLo6Gg0a1a+GEqHDh3QvXt3mJmZwd/fn+XsqOrU9ORy165d2LVrl5izoZhAW3Yl0MfCjxjkPwiPkx/j5JSTYit0AaBLqy7gKHFwJ0Hy59v9O/dv2G60lZhCt4K5vvl/j9Il2KmHpzB692hYGlhKRKELAO102mFIljIstwQDjo7AihVsp1QvpbxSuO52xZnHZ7DZdTMtdEWopsKpsXUFo6iGjBa7Eqai0GVr6Vp5OXlYGlhK/OISFYVu/D/xuDDzgsQUukB562JxWTFepEnu6lwnH56Ea4Arerbpics/XpaIQhcAZN+/R3AYD++aKQGHDwOykvcRWsorxejdo3H2yVlsHbMVP9r9yHZKjdqoUaPg6OiIK1eu4OXLl7h8+TJcXFwwenTDX4mSFuSUJPnS36vkfVJLsQ8FHzBw00Bhoeto5shKHlaGVnjy/gmKSotYif+tKgrdhMwEXJhxAQOMB7CdUp1UrKQmqf12Qx6EYEzAGPQy7IXLsyWn0EVRETB8OJoIZOA0QIAyFWW2M6qzikL33JNz2Oa2DTMHzGQ7pUZv3bp1sLOzw/Tp02Fubo4ZM2bAxsYGv/32G9upfZGcnBzKysrYToOivlpRUREUFBSq3UeLXQlRsXTt05SnOD31NGuFLlA+SI3H50nkjAAZuRmw2WCDhMwEXJx5EbbGtmynVGftdNpBrYmaRP7+T9w/Abc9buhl2AuXfrwEtSbiWSrymxECTJ4MPH6Me6tm4plqqcS1rJeUleCHXT/g3JNz2D52O2bYzmA7JamgqKiIn3/+GXFxcSgsLERcXBxWrVoFJSUltlP7Ik1NTWRkZEAgELCdCkV9ESEEhYWFSElJgY6OTrXH0AFqEuDTpWtPTz0NB9P6LefHlF6GvQAAt+Nv4/v237OaS12k56TDdqMtkrKSEDorFNYdrNlOqV5kZWXRXb+7xLXsHr9/HO573dHbqDcuzrooOYUuUL5U6uHDwKpVaOk+Gli2EQ+THsJMz4ztzL5KRaF74ekF/D72d0yzmcZ2So3apwsAfImtbcP9sq2trY3379/j9evXbKdCUbVSUFBAixYtoK5e/ZNCsRW72dnZ8PLyQlhYGLS1tbFmzRrhmsmfmjJlSqXVZ8rKyqCoqIi8vDxxpdqgZBdkw26THWJSY3Bm2hnYd7FnOyU0V2uOdjrtJGqQWnpOOmw22CA5Oxmhs0LRv0N/tlP6JuZcc/x+7XeU8cqgIF/9Y5uG5Nhfx+C+1x192/XFxZkXodpEle2Uvl5EBDB/PjBiBLB4MdoC5S3rSQ8wqe8ktrOrVUlZCUbuHImLzy5ip/tOTLGW/GmSGrqvWW1LRkYGCQkJYsimfmRlZaGvr892GhTFCLF1Y5g+fToUFRWRkZGBI0eOYOrUqYiJialy3K5du5Cfny98ubm5YdSoUeJKs0HJys/CgI0D8CL1Bc5OO9sgCt0KVkZWuBN/RyIGMKR9TIPNBhu8+/AOl368JPGFLlC+uEEJr0QiHqUfvXdUcgvdt28BV1egY0fg4EFAVhaysrIw55pLRMv6p4XurnG7aKFbg+zsbAwfPhwcDgdcLhfBwcHVHnfw4EHIyclVmmO1YqnUT719+7bWV0MudCmqsRFLsVtQUIBTp05h1apVUFVVRd++feHk5ISgoKCvOm/8+PHiSLNBycrPgt0mO7xMe4mz089iaJehbKdUiZWhFf7O+xtvM9+yncoXpX1Mg83GfwvdWZfQr30/tlNihKQMUgu+F4xx+8bh+3bfI3RWqGQVugUF5XPo8vnAuXOA2n/dLsy55oh+F40yXsMdwFNcVowRO0fg4rOL2O2xG779fdlOqcH62sYYALCysqrUIGNtbS3eZCmKqjOxdGOIjY2FnJwc2rdvL9xmZmaGqKioL5536tQpNG/eHP36NY4C5Wtl5mXCbpNdg1661sqofKWVO/F3YNjckOVsqpf6MRU2G2yQ+jEVl3+8jL7t+rKdEmPa6rSFurJ69Y/Sk5KA3Fx2EvvEhegL+O3sEoznmmO77W9QiZWwlqzVq4GnT4HQUKBt20q7KlrWY1Jj0FW/Kzv5fUFxWTGG7xiOy88vI8AjAD79fNhOqcGqaFR5/vx5lcaYtWvXfvP19fT0ICMjU2W7kpISWrdujREjRmDq1KmQl6dDaChKVMTyrys/Px8aGpWXANXQ0Ki1H+6hQ4fg6elZ7QcFAAQEBCAgIAAAwONJ9gT7FT5funaQySC2U6pW51adoaqkijsJd+Dey53tdKqoVOjOvow+bfuwnRKjahyktns30ECWrhz27wt4AGzqxW4y9bV2LTBkSJXNn7asN7Ri99NCd4/nHnh/7812Sg1aXRtjHj9+DG1tbTRt2hQeHh5YtGjRFwvVWbNm4fDhw5g1axb09PSQnJyM33//HaNGjULTpk2xceNGvHv3DuvWrWP8Z6MoqpxYil1VVVXkftbSlJubCzW1mkdjv3v3DlFRUdizZ0+Nx0yePBmTJ08GAHA4HGaSZdGnS9een3EeAzsNZDulGsnJyqFHmx64HX+b7VSqSPmQApsNNkjLSWuUhW4FC64FtkVu+2+Q2s2bwIwZwKBB5dNksSTqdRS2XduGzi07Y9HQRVBSaNhTLNWoaVOghkfURs2NoKGsgQdJD+D1fe2DkcSluKwYLr+7IOxFGPZ67m1QubGFx+PBwsJC+P7T+wZQt8aYfv364fnz5+ByuYiJiYGrqyvk5eWxaNGiGuMfPHgQV69eRcuWLYXbhg4dikGDBiEmJgY2Njaws7OjxS5FiZBYit327duDx+PhzZs3aNeuHQAgOjoaJiYmNZ4TGBiI3r17w9CwYT4iZ9qnha6kLF3b26g31lxag4KSAnCUGsaXjffZ72Gz0QYZuRm4MvsKerftzXZKImPONf/vUbqsNvDDD0CbNsDx44CmJis5Hbp9CBOvbIft0AFYMP08lJRUWMlD1Bri9G9FpUVw+d0FV19exV7PvRIxU4Q4yMvL48GDmuekrktjzKf3oy5dumD58uVYv379F4vdtLQ0qKpW7qvO4XCQmpoKoPz++PHjx6/5USiKqiexDFDjcDgYMWIEli9fjoKCAty6dQvnzp2Dh4dHjecEBgZiwoQJ4kiPdRUresX9EydRS9daGVmBL+DjfuJ9tlMBUF7oWm+wlopCFyhfNhgAHsfeKZ8Wq6AAOHuWtUL34K2DmHhwIgZ0HIDz089DpZEWuhUsDCwQ/T4apbxStlNBUWkRnH93xtWXV7Fv/D5a6NbBp40xFWprjKkgIyNT64w0jo6OcHZ2Rnh4OF69eoXw8HCMHDkSjo7lCwPduXMHBgYG3/QzUBRVCyImWVlZxNnZmaioqBA9PT1y5MgRQgghSUlJhMPhkKSkJOGxt2/fJioqKiQ3N/err6+iosJ4zuKQkZNBTJabEOVpyiTiRQTb6dRJVn4WgTfIrxd/ZTsVkpyVTIwWGRH1merkTtwdttMRC4FAQDRmqJPbfdsTAhBy5gxruey/uZ/I+MiQgZsGksKSQtbyEKdjfx0j8AZ5lPSI1TwKiguI3UY7IuMjQw7eOshqLg3R19wbXF1dyZgxY0h+fj65efMmUVdXJ8+fP69yXGhoKElPTyeEEPLy5UtiYmJC/Pz8vnjtoqIisnDhQmJoaEiaNGlCDA0NycKFC0lBQQEhhJC0tLRK9z+KopgntmJX1CSx2E3PSSedlnUiytOUSeTLSLbTqZcOSzsQx22OrOaQnJVMDBcZEvWZ6uRu/F1WcxG3rc7tygvdFStYy2HfjX1ExkeGDNo0SGoKXUIIeZPxhsAbJCAqgLUcCooLyICNA2ih+wVfc2/42saYefPmER0dHaKiokLatGlDli1bRkpLS785xzVr1nzzNSiKqpkMIRKwKsBX4HA4KCgoYDuNr5aRmwHbDbZIzErExVkXJXbp2okHJuLC0wv4e9PfNc6aIUrJWcmw2WiDzPxMhM0OQ0/DnmLPgTV//gn+AFuE6gODXxdCUbGJ2FPYd2MffIJ8MKjTIJyZdgbKispiz4EthBBo/aiFMZZjsMtjl9jjF5YUwnG7I669voaDEw7Cs7en2HOQBJJwb1BXV6/Sb5iiKOaIbQU16j/pOemwXm+NxKxEhM4KldhCFygfpJaZn4m4v+PEHjspKwnWG6yRlZ+Fq3OuSlehm5wMjBqFAn1duPcjeM7CSmp7b+yFd6A3BnUahLPTz0pVoQuU99c055rjQVLNg59EpaCkAMO2DcOfr//EoYmHaKEr4RpJmxNFNVi02BWzxrZ07aeLS4hTUlYSrNdbI7sgG1fnXEWPNj3EGp9VhYWAiwtQWoqPRw4iT1H8K6ntub4HPoE+GNp5KM5OP4smCuJvVW4ILLgWeJbyTKyD1CoK3ajYKAROCoSHVc0DfSnJwMZTMYqSJrTYFaPGuHRtJ91OUFdWx50E8RW7iZmJsF5vjY9FHxE+NxyWbSzFFpt1hJTPofvkCRAcDD0rO2iqaIq12A24HoDJQZNh38Uep6edltpCFyif/q2UV4rnKc/FEq+i0L0eex1BXkENckEXiqKohoYWu2KS+jEV1hus8f7De1yadQnft/+e7ZQYISsri55teoqtZTcxMxHWG/4rdCum35Ia/v7AkSPAqlWAg4PYH6XvjtoN3yDf8kJ3qnQXusB/07+J4/efX5wP+632wkJ3bM+xIo9JiQftxkBRokWLXTGotHTtj5cbTaFbwcrQCs9SniGv+MvLP3+rt/+8Rf/1/ZFblIuIuRHCJVulRng48NNPwMiRwOLFws3m+uZ4+v4pSspKRBp+5587MeXwFDh0ccDpqacld2U0BrXRbgMtFS2Rt6xXFLo339zEEe8jtNBtZL7/vnHdEyiqoRHLCmrSTBqWrrUysoKACPDX278wwHiASGIk/JMAmw02yCvOQ/jccHTndhdJnAbr7VvA1RXo1Ak4eBD4pI+fhYEFyvhleJ76XGRfAHZc24HpwdPhaOaIEN8QWuj+S9iynii6lt2KQvd2/G0E+wTD1dJVZLEo0SgtLcXr16+RmZlZqRXX1tYWABAaGspWahQlFWixK0LSsnRtL8NeAMoHqYmi2E34JwHWG6xRUFKAiHkR6KbfjfEYDVpBQfmANIGgfIW0z5YerShwHyY9FEmx+/u13zEjeAYtdGtgzjXHpqubUFJWwvjvJq84D/Zb7HEn4Q6CvYMx2nI0o9enRO/mzZsYNWoUSkpKkJubC3V1deTl5UFPTw8JCQlsp0dRUoF2YxARaVq6VlNFE510O4lkkFr83/Hov75/eaE7VwoLXUKASZOA58+BY8cAI6Mqh1Q8ShdF6+L2yO2YETwDTmZOODnlJC10q1HRsv4s5Rmj180rzsPQLUNxJ+EOjvocpYWuhJozZw4WLFiA7OxsqKmpITs7G8uWLcO0adPYTo2ipAYtdkXgXfY7WG+wxj/5/yBsdphweq7GzMrICncT7jI60CLu7zhYb7BGUVkRIudFoqt+V8auLTHWrQNOnADWrAEGD672kIpH6Uz3G90WsQ0zj86Ec1dnhEwJgaK8IqPXbyzM9f9rWWdKblEuhmwegrsJd3Fs8jGMshjF2LUp8YqNjcWPP/5Yadv//vc/+Pv7s5QRRUkf2o2BYRWFrrSt6GVlaIV9N/chNiMWHeSaAikp33S95OxkTDvkDSNeKXZ77EaHLAJkPWEmWUkREwMsWlTeV/enn754qIWBBTaGbWTsUfrWiK348diPGN5tOI5NPkYL3S8w0DZAU05TPEh6AF/4fvP1cotyMWTLENxPvI/jk49jpPlIBrKk2KKhoYHc3FxoampCV1cXL168QLNmzZCfn892ahQlNWixyyBpXrrWysgKrfMBwbRpwMWbQOm3TbKvDyCs4k3wmG9NT3KZmQH79lUakFYdc6658FH6t07Htjl8M+Ycn4Ph3Ybj+OTjUJBX+KbrNXZMtqznFOZgyJYheJD0AMcnH8eI7iMYyJBi04gRIxAaGoqxY8fCy8sLNjY2UFBQwKhRtLWeosSFFrsMScpKgs0GG+lc0Ss5GcZrtiHuBCAn8yfg5Q0MGVJrgVadlA+pWHZuKXh8HlY5rwJXm8t8vpJCRgawtgY4nFoPrXiU/iDxwTcVu/5X/TH3xFyM6D4Cx3yO0UL3K5lzzbEhbAOKy4rrPfdwTmEOBm8ejIfJD3Fi8gkM7z6c4SwpNmzevFn43/PmzUPPnj2Rl5eHwTV0S6Ioinm02GVAxdK1Hwo/4Oqcq9KzoldSUnlf0v37IQMgvJcetlgqI2zz7npdLjY9FtYbpoFnKI/IedfBbdWZ2XwbsYpH6Q+T69+6uClsE+aFzMPI7iNx1OcoLXTrwIJrAR6fh2fvn9Xr3/+nhW6IbwhcurkwnyTFquTkZKSkpEBfXx/6+vpsp0NRUoUOUPsGAoEAJx+eRL91/aRr6dqkJMDXF2jXDjhwAPD2BuLi8PB/3ggvfIOcwpw6XY4v4OPI3SPov6E/eAIeIudFojMtdOvkWx6lp+ekY2bwTMwLmYdR5qNooVsPn07/VheEEFx7dQ3WG6zxKPkRTk45SQvdRiYtLQ39+/dH27ZtMWLECLRt2xb9+/dHamoq26lRlNSgxW49CAQChDwIgdnPZhi1axSUFZWlY+naxERg8uTyIvfgQcDHB4iLA3bsAPT1YWVkBUII/kr866sux+PzcPjuYXRa3gnj9o1Dc9XmuDbvGi1068mCa4FnKc9QXFb8VcenfUzDnONz0GZRG+z4cwemWk/FEe8jtNCtB24zLpqpNvvqZYMJIYh8GYn+6/vDdqMtMnIzcGbaGTh3dRZxppS4TZ06FWZmZvjw4QPS0tLw4cMHdO3aFVOmTGE7NYqSGrQbQx1UtOT+fOFnxKTGoON3HXHE+whcLV0hJyvHdnqi8/Yt8Ouv5QWurGx5wfu//wGtW1c6rGebnpCRkcGd+DsY2GlgjZfj8XkIvheM1RdX483fb2Da2hQnp5zE8G7DIStLv3/VlznX/Ksepad9TMNvl3/D7uu7UcYvg0cvDyxxWIK2Om3FmG3jIiMjA3P92lvWCSGIfBUJv/N+uBl3Ey01W2Kb2zZ4f+9d776+VMN28+ZNpKWlQUGh/Eskh8PBunXr0KpVK5YzoyjpQYvdT509C2RmVtksEAjwIOkBLjy9gNSPaRiu+R32m/rAQs8Css8KgWcHxJ+ruNy5AwQGAnJywNSpwMKFQA0f0urK6jBpaVLj4hI8Pg9H7h3B6ourEfd3HMxam+H01NNw7upMi1wGVDxZeJD0oNpiN+VDCn67/BsCrgeAJ+DB08oTS+yXwEin6kIVVN1ZGFhg3ZV11Q5SI4Qg/GU4Vv6xErfibqGVZitsH7sdXn29aJHbyGlpaeHFixcwMzMTbnv9+jU0NTXZS4qipAwtdj+1ejXwsGrLjCyAHv++yqUDF/YA2CO21FijpARMm1Ze5LZsWevhvY164/j94xAIBMICtqK7wuqLqxH/Tzy66nXFmWln4GTmRItcBuk31Ucz1WZVWhdTPqRg7aW12HNjD3gCHsZbjccShyUwbG7IUqaNU0XL+tP3T4WzsRBCcPXFVaz8YyVux99Ga63W+H3s7/Dq60VXo5MSCxYsgJ2dHby8vMDlcpGUlIQDBw5g1apVbKdGUVKDFrufungRKCsDX8DH+ejz2BK+BXH/xKNDi/aYPWA2HEwdpK8409AA1NS++nArQysEXA/Aq/RXaKfTDkF3g/BL6C9I+CcB3fS74ez0s3Ayc4JMPaYlo75MRkYGFlwL4bLB77PfY+3l8iJXQASY0HsCFg9djDbN27CcaeNkwf23ZT3xASwNLBEWEwa/P/xwN+Eu9JrqYaf7TkzsM5EWuVLGx8cHRkZGCA4OxtOnT9GyZUscPXoUtra2bKdGUVJDhjC5viuLOBwOCgoKvukafAEfx/46hlUXV+F1+mt0btUZKxxXYES3EdJX5NbT6/TX6LisI1wtXfHX27/wNvMtuut3h5+TH4aZDqNFrogtObME666sg3dfb+y/tR8CIsDE3hOx2H4xDLQN2E6vUSOEQGeuDjp+1xFl/DLce3sP+k31sdh+MSb0nkCLXJYwcW+gKEqy0ZbdfxFCYLXGCvcT76NLqy50wFQ9tW/RHs1Um+H4/eOw4Fpg65itcDB1oEWumFTM97rv5j5M7DMRi4YuokWumMjIyMDCwAKXn18GtxkXAR4BGN97PF1qWcqVlpZi9erVOHr0KFJTU9GyZUuMGTMGS5YsQZMmtL82RYkDbdn9xO6o3Wiu1hwuXV1okfsNIl9GopRfisEmg2mRK2ZlvDLsv7UfQzoPAbeZFK8+x5LnKc/x7P0zjDQfSYvcBoLtll0vLy+8fv0aS5YsEfbZXbNmDdq2bYv9+/ezlhdFSRNa7FIURVGNFtv3hmbNmiE+Pr7S7AvZ2dlo27YtsrOzWcuLoqQJbb6kKIqiKBH57rvvUFhYWGlbUVERdHV1WcqIoqSP2Ird7OxsDB8+HBwOB1wuF8HBwTUem5CQgGHDhkFNTQ3a2tpYsGCBuNKkKIqipExd7k/+/v747rvvoKGhgUmTJqGkpOSL1/bw8MCQIUOwZ88eXLp0CQEBAbC3t4enpyciIyOFL4qiREds3Rjc3NwgEAiwb98+PHnyBA4ODrh9+zZMTEwqHVdaWgpjY2NMnz4dvr6+kJOTQ2xsLExNTb94fbYfVVEURVENz9fcG772/nTlyhVhkdqyZUsMHz4cvXr1wtq1a2u8dps2tU/1JyMjg4SEhK/7gSiKqjOxFLsFBQXQ0tLC8+fP0b59ewDl33ZbtWpV5UMiICAAQUFBuHHjRp1i0GKXoiiK+lxt94a63J/Gjh0LAwMD/PrrrwCAiIgIuLu7Iz09XXQ/AEVR30ws3RhiY2MhJycn/CABADMzM8TExFQ59u7duzAwMMDQoUOhra0Na2trPHv2TBxpUhRFUVKmLvenmJiYSsv+mpmZISMjA1lZWWLJlaKo+hHLPLv5+fnQ0NCotE1DQwN5eXlVjn3//j2uXbuG8+fPY8CAAdiyZQucnZ3x6tUrKCpWnsonICAAAQEBAIDCwkJwOJxvzpXH40Fevu6/lvqcJ85Y9T2P5sjMeTRH9mLV9zyaIzPniTvHzxUWFsLCwkL4fvLkyZg8ebLwfV3uT58fW/HfeXl5aNas2TfnSlGUiBAxePToEVFWVq60bcOGDWTYsGFVjnVyciLW1tbC9wKBgKirq5MnT56IPE9CCDE3NxfbeeKMVd/zaI7MnEdzZC9Wfc+jOTJznrhzrKu63J9MTU3J8ePHhe8zMzMJAJKZmSnyPCmKqj+xdGNo3749eDwe3rx5I9wWHR1dpfM/AJiamtKFCCiKoiixqMv9ycTEBNHR0ZWOa9GiBW3VpagGTizFLofDwYgRI7B8+XIUFBTg1q1bOHfuHDw8PKocO27cONy9exfh4eHg8/nYvHkztLW1YWxsLI5UKYqiKClSl/uTp6cn9u3bhxcvXuDDhw9YvXo1JkyYIP6kKYqqE7HNs7tjxw4UFRVBR0cHbm5u2LlzJ0xMTJCcnAxVVVUkJycDADp06IDDhw9jypQp0NLSwrlz53D+/Pkq/XVF5dO+XKI+T5yx6nsezZGZ82iO7MWq73k0R2bOE3eO9fG196chQ4ZgwYIFsLGxAZfLBZfLxcqVK8WWJ0VR9dNolgumKIqiKIqiqM/R5YIpiqIoiqKoRosWuxRFURRFUVSjRYtdiqIoiqIoqtGS6mL35cuXWLx4MZydnWFrawtnZ2csXrwYL1++FEm85ORknDlzBrGxsVX2HT16VCQxP2VhYYHs7GxGr3nr1i2kpaUBAEpKSrBs2TKYm5vD3Nwcfn5+KC0tZTSeQCDA9u3bMXXqVJw/fx4AsHDhQpiamsLT0xOZmZmMxqOo2sTGxuLMmTMIDAys8d93Y7F+/XoUFhaKNMbr16+xbds2bNu2rVH/LimKEh+pHaB29OhRTJ06FU5OTjAzM4OGhgZyc3MRHR2N8+fPY9euXXB1dWUs3uXLlzF69Gi0adMGb968wYQJE7Bt2zbIyckBANTV1ZGbm8tILE9Pz2q3nzx5EsOGDUOTJk0QGBjISKx27drh+vXr0NXVxcyZM/H48WPMnTsXALB582aYm5vD39+fkVgAMHPmTERFRWHIkCG4dOkSLC0tkZ2djYkTJ+LQoUNQUFDA8ePHGYsHlBczMTExyMvLg5qaGkxMTCotLdqYrF+/HtOnT4eKiorIYrx+/RphYWEAgMGDB4vkd5mZmYn4+HiYmppCWVkZT58+RXh4OExNTWFnZ8dIjOTkZLi6uiI6OhpGRkbCz5D4+HiYmZnh2LFj0NfXZyQWAKSnp2PixIm4ffs2TExMsGHDBvTu3Vu4n8nPkMjIyGq3jx49GgEBAdDU1IStrS0jsaytreHv749u3brh9OnTGD9+PGxsbAAAUVFRCAoKgpOTEyOxKIqSUuyuacEeAwMDcvPmzWr33bx5k3C5XEbjde/enVy4cIEQQkh6ejqxs7MjDg4OpKSkhBBCiKqqKmOxmjRpQvr160dWrlxJ/Pz8hC9VVVUyf/584ufnx1gsDocj/G89PT2SlZUlfJ+dnU10dXUZi0UIIbq6uiQjI4MQQsj79++JrKwsyc7OJoQQ8uHDB9K8eXPGYiUlJZFevXoRZWVl0rlzZ9KnTx/SpUsXoqKiQqysrEhSUhJjsQghJC0tjQwZMoSoq6sTKysrcuvWrUr71dTUGIsVERFR7atZs2bk1KlTJCIigrFY/fv3J48ePSKEEHLq1CmiqqpKHB0diaOjI1FXVyfnzp1jLBYhhJw9e5aoqKiQ5s2bEz09PRIaGkp0dXWJi4sL0dbWJv7+/ozEsbW1JT/99BMpKCiotD0/P58sWLCA2NjYMBKnwujRo8mkSZPIo0ePiL+/P2natCk5cuSIcD+TnyEyMjKkVatWxMDAoNJLTk6O6OnpkTZt2jAWS1NTkwgEAkJI+QplUVFRwn03b94kJiYmjMWiKEo6SW2xy+FwSGFhYbX7CgoKKhVxTFBXV6/0vqysjLi6upIBAwaQgoICRm9UsbGxZNCgQcTV1ZW8f/9euP27774TFopMMTY2Jn/99RchhJC2bdtWuv7ff/9NNDU1GY2npaVFSktLCSGEFBYWEnl5eeF7Ho9HtLS0GItFixlmiLuYMTExIRcvXiSEEHLmzBnC4XDI/fv3CSHlS8MaGRkxEofD4Qi/rH6uuLiYqKioMBKngo6ODikqKhK+j46OJq1atSIBAQGEEGa/DPn5+ZEuXbqQS5cuVdouis8QbW1t4ZdkbW1tUlZWJtzH4/EY/bunKEo6SW2x6+LiQsaMGUPi4uIqbY+LiyNjx44lLi4ujMbjcrkkOTm50jaBQEAmTpxIrKysqqzNzoSjR4+S9u3bk/Xr15OysrJKraJMxjAwMCD79+8na9euJZaWliQoKIgEBQWRHj16kGnTpjEaz97enkycOJFcunSJeHp6EnNzc7JmzRqSm5tLfvvtN2Jtbc1YLFrMMEPcxcynXyz5fD6Rl5evcf+36NixIzl16lS1+06fPk06duzISJwKTZs2JXl5eZW2vXnzhhgYGJANGzYw+vdBCCHx8fFk6NChxMXFRfgUQxR/H1OnTiVubm4kLy+PzJkzh/z8889EIBAQPp9PVq9eTaysrBiNR1GU9JHaYjc7O5uMGTOGKCoqEhUVFaKrq0s4HA5RUlIibm5uwkfjTPHy8iIrV66sdp+vry+RkZFhNF6FnJwc8uOPPxITExOiqqrK+I2KEELCwsJI7969iaKiIpGRkSEyMjJET0+PLF++vFJhw4TExERib29PjI2Nye7du8nLly+Jvr4+kZWVJUZGRiQ6OpqxWLSYYYa4ixljY2Ny5coVQggh58+fJ6qqqsJuFE+ePCFt27ZlJE54eDjR0NAgffr0IdOmTSOLFi0i06dPJ3369CGampqMdgUhhJCBAweSkydPVtmemJhIjIyMiKysLKPxKpw4cYK0a9eOrFq1ijRv3pzxv4/CwkLi7u5ONDQ0SJcuXYiMjAxRUlIiSkpKpF27duTFixeMxqMoSvpI7QC1CoWFhYiNjUV+fj5UVVXRvn17kQzOKS0tBY/Hq/HaycnJjA5m+dyTJ08QFRUFX19fNGnSRCQxBAIBMjIyoKysDE1NTZHEqA4hBNnZ2WjWrBmj142IiMDIkSPRuXPnSoMYnzx5gpiYGJw6dYqxQToAMGjQIPj6+mLkyJGVticlJWHAgAF4+/Yt+Hw+Y/EqhISEYMmSJfD09MTWrVvx/Plz6OjoMHb9oqIi+Pj44MKFC+ByuXj27Jlw+W99fX2cPXsWnTp1YizeiRMn4OHhAS0tLRgbG8PDwwMLFixA//79cePGDfj5+WHatGmMxMrKysLp06cRExMj/AwxMTHB8OHDoa2tzUiMCvfu3cOHDx8wZMiQKvtSUlKwb98+LF++nNGYFfLz8+Hn54eIiAhERkZCS0uL8RixsbG4d+8e3r9/D2VlZZiamqJfv36Ql5dnPBZFUdJF6otdivqShlLMpKamYu/evSIrZgoKCrBixYpGU8ykpqbi/fv3sLCwgKysLMLDwxEdHQ1LS0v069ePsTjJycl4+PBhtTN0HD16FG5ubozFEne8xhqLoigpxGq7MkVJKB6PV2O3FEmP11hjMR3v0qVLRE1NjZiamhJlZWUydepUwuPxhPuZ7nYiznifxmrSpInYYonj90hRlPShLbsUVQ8lJSVQUVERSbcCtuM11lhMxzM3N8fPP/8MBwcHZGRkYNy4cVBSUsLp06ehqKgINTU15OXlMZC1+OM11lgURUknWuxSVA0mTZpU4z4ej4cjR44wWqSJM15jjSXOeBoaGsjJyal07XHjxiEzMxPnz59HixYtGC3SxBmvscaiKEo6SfVywRT1JcHBwVBWVkarVq2qvFq3bi3R8RprLHHG09LSwrt374Tv5eXlcfToUejr68POzo7x1mpxxmussSiKklLs9qKgqIbLwsKixtW9ioqKGJ8uTpzxGmssccYT93SC4ozXWGNRFCWd6JwuFFWDCRMmQCAQVLtPQUEBK1askNh4jTWWOOPt2LEDPB6v2n27du3C4sWLGYnDRrzGGouiKOlE++xSFEVRFEVRjRbts0tRFEVRFEU1WrTYpSiKoiiKohotWuxSFEVRFEVRjRYtdimKoiiKoqhGixa7FEVRFEVRVKP1f7ThQ58uj5WSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot stack loss vs. time (or measurement) chart\n", + "fig_stack = plot_stack(\n", + " dstack=stack, # dataframe measurements\n", + " fill_factor=ref['ff'], # dataframe reference STC\n", + " title=mlfm_meas_file, #\n", + " xaxis_labels=12, # show num x_labels or 0 to show all\n", + " is_i_sc_self_ref=False, # is isc self referenced?\n", + " save_figs=save_figs # save the figure?\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [G] Stacked loss values (y) s. date and time (outdoor) or matrix measurement (x)\n", + "\n", + "# [H] Fit mpm to measured weather and normalised losses \n", + "\n", + "Perform a Mechanistic Performance Model (MPM) fit to the lfm parameters \n", + "poa_global (W/m$^2$), temp_module (C), wind_speed (ms$^-$$^1$). \n", + "\n", + "\n", + "mpm_a = c_1 +c_2\\*(t_mod-25) +c_3\\*log10(g) +c_4\\*g +c_5\\*ws +c_6\\/g (deprecated) \n", + "\n", + "mpm_b = c_1 +c_2\\*(t_mod–25) +c_3\\*log10(g)\\*(t_k\\/t_stc_k) +c_4\\*g +c_5\\*ws\n", + "\n", + "\n", + "Report the fit (coeffs) and error (errs) coefficients. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Choose which normalised lfm parameter to model e.g. pr_dc or i_sc..v_oc " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lfm_sel = 'pr_dc'" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nfev = 22 \n", + " \n", + " mesg = `ftol` termination condition is satisfied. \n", + " \n", + " ier = 2 NOTE : if ier in (1,2,3,4) then fit found\n" + ] + } + ], + "source": [ + "# add selected variable to measured data frame to ensure data indexes match.\n", + "meas_temp = meas.copy()\n", + "meas_temp[lfm_sel] = norm[lfm_sel]\n", + "\n", + "# try to fit measurement data and print outputs \n", + "\n", + "\"\"\"\n", + "# full_outputboolean, optional\n", + "If True, this function returns additioal information: \n", + " infodict, mesg, and ier.\n", + " \n", + "https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html\n", + "\n", + "mesgstr (returned only if full_output is True)\n", + "A string message giving information about the solution.\n", + "\n", + "ierint (returnned only if full_output is True)\n", + "An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. \n", + "Otherwise, the solution was not found. In either case, \n", + "the optional output variable mesg gives more information.\n", + "\"\"\"\n", + "\n", + "try:\n", + " \n", + " if mpm_sel == 'a':\n", + " cc, coeffs, ee, errs, infodict, mesg, ier = mpm_a_fit(meas_temp, lfm_sel) \n", + " \n", + " if mpm_sel == 'b':\n", + " cc, coeffs, ee, errs, infodict, mesg, ier = mpm_b_fit(meas_temp, lfm_sel) \n", + " \n", + " \n", + " # store calculated value of LFM variable\n", + " norm['calc_' + lfm_sel] = cc\n", + "\n", + " # store residual difference of LFM variable\n", + " norm['diff_' + lfm_sel] = norm[lfm_sel] - norm['calc_' + lfm_sel]\n", + " \n", + " # show infodict data, uncomment fvec to show per row\n", + " print('nfev =', infodict['nfev'], '\\n \\n', \n", + " # 'fvec =', infodict['fvec'],'\\n \\n',\n", + " 'mesg = ', mesg, '\\n \\n',\n", + " 'ier = ', ier, \"NOTE : if ier in (1,2,3,4) then fit found\")\n", + " \n", + "except:\n", + " print(\"CAN'T FIT DATA\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [I] Plot heatmap of mean residual vs. temp_module and poa_global\n", + "\n", + "Show a heatmap of the average residual (meas - fit) error \n", + "for each irradiance (100W/m^2) and tmod bin (5C)." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_heatmap(dnorm, fit, y_axis, x_axis, z_axis,\n", + " title, save_figs, clip=0.02,):\n", + " \"\"\"Plot a heatmap of Z vs. binned X and Y axes.\n", + "\n", + " Parameters\n", + " ----------\n", + " dnorm : dataframe\n", + " Normalised multiplicative loss values (values approx 1).\n", + "\n", + " fit : string\n", + " fitted parameter e.g. 'pr_dc'.\n", + "\n", + " x_axis : string\n", + " binned x axis e.g. 'poa_global_bin'.\n", + "\n", + " y_axis : string\n", + " binned y axis e.g. 'temp_module_bin'.\n", + "\n", + " z_axis : string\n", + " value as a colour surface plot e.f. 'diff_pr_dc'.\n", + "\n", + " clip : value\n", + " clipping of z axis usually 0.02\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + "\n", + " \"\"\"\n", + " df_piv = pd.pivot_table(\n", + " dnorm,\n", + " index=y_axis, # e.g. 'temp_module_bin'\n", + " columns=x_axis, # e.g. 'poa_global_bin'\n", + " values=z_axis, # value to aggregate\n", + " fill_value=0, # fill empty cells with this ?\n", + " aggfunc=[np.mean], # e.g. min, np.sum, len->count\n", + " margins=False, # grand totals hide\n", + " dropna=True # hide missing rows or columns\n", + " )\n", + "\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " # force z limits to be -2% to +2% if desired\n", + " df_piv = df_piv.clip(lower=-clip, upper=+clip)\n", + "\n", + " im = ax1.imshow(\n", + " df_piv,\n", + " cmap='RdYlBu',\n", + " origin='lower'\n", + " )\n", + "\n", + " cbar = ax1.figure.colorbar(im, ax=ax1, shrink=0.75, label=z_axis)\n", + "\n", + " # Y AXIS : show only 1 of each y_skip labels\n", + " y_ticks = df_piv.shape[0]\n", + " plt.yticks(np.arange(0, y_ticks), rotation=0)\n", + " yax2 = [''] * y_ticks\n", + " y_skip = 2\n", + " y_count = 0\n", + " while y_count < y_ticks:\n", + " if y_count % y_skip == 0:\n", + " yax2[y_count] = df_piv.index[y_count]\n", + " y_count += 1\n", + "\n", + " ax1.set_yticklabels(yax2)\n", + " ax1.set_ylabel(y_axis)\n", + "\n", + " # X AXIS : show only 1 of each x_skip labels\n", + " x_ticks = df_piv.shape[1]\n", + " plt.xticks(np.arange(0, x_ticks), rotation=90)\n", + "\n", + " xax2 = [''] * x_ticks\n", + " x_skip = 2\n", + " x_count = 0\n", + " while x_count < x_ticks:\n", + " if x_count % x_skip == 0:\n", + " xax2[x_count] = df_piv.columns.levels[1][x_count]\n", + " x_count += 1\n", + "\n", + " ax1.set_title(title)\n", + "\n", + " ax1.set_xticklabels(xax2)\n", + " ax1.set_xlabel(x_axis)\n", + "\n", + " ax1.grid(color='k', linestyle=':', linewidth=1)\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(\n", + " os.path.join('mlfm_data', 'output', 'heatmap_' + title[:len(title)-4]),\n", + " dpi=300\n", + " )\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Residual LFM fit heatmap vs. poa_global and temp_module" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAEICAYAAABs9Jx5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAB14klEQVR4nO2deVxN6R/HP1dKdCtFIkuiQiFL9i3byPhh7LKEkHUwzNizlH0dBplkC1kGw9i3LMkUpUKWUiqjJBXtlnp+f9y5Z1wt9xzde58Oz/v1el5u5zz3OZ/z3ON+77N8v18JIYSAwWAwGAwGNcrQFsBgMBgMxrcOM8YMBoPBYFCGGWMGg8FgMCjDjDGDwWAwGJRhxpjBYDAYDMowY8xgMBgMBmWYMS4ho0ePRrdu3Yqts2fPHpQtW1bl116yZAksLS1V3u6nqEs7Q3Vcu3YNEokE//zzD20pDAbjC2HGuIRs2rQJf/zxB20ZoiYiIgKDBg2ClZUVypQpg3HjxhVaz9vbG40aNUKFChVQq1YtLFmyBPn5+Qp1EhMTMXjwYBgYGMDAwABDhw7Fq1evuPN79uyBRCIptBT1OY4ePRoSiQTLli0rcG7NmjUwNzeHrq4umjZtiosXLxaos2fPHtSrVw/lypVD/fr1ceDAAYXzN27cQN++fWFubl7kdYqjbdu2SExMhJmZmaD3KSMvLw+rVq3itFepUgXjx4/nzufm5mLMmDFo2rQpdHR0ivxhGBoaih49esDY2BgGBgZo164dLl26pFCndu3aBT6P9u3bK9T5+eefUb9+fUilUhgaGqJt27Y4c+aMoHsKCgpC27Ztoauri2rVqmHevHnIy8srtG5SUhKqVq1a4IcO3/tmMITwTRvj9+/fl7gNQ0NDGBkZqUDNt0t2djZq1aqFRYsWwc7OrtA6O3bswI8//oiff/4ZDx48wJYtW7B9+3a4ublxdfLz8/G///0Pz549w6VLl3Dx4kVERkbihx9+gDy2zZAhQ5CYmKhQfvrpJxgYGOD7778vcN29e/fi/v37hRq6X3/9FYsXL4aHhwdCQ0PRvXt39O7dG/fu3ePqnDhxAmPHjsXEiRMRHh6O8ePHw9nZGefOnePqZGZmwsbGBmvWrEHVqlUF95+Ojg6qVq2KMmVU+995zJgx8Pb2xsqVK/Ho0SNcunRJoY/y8vKgo6MDV1dXDB06tNA2srOz8d1338HQ0BD+/v4IDg5GkyZN0Lt3b8TGxirUnTNnjsLn8tdffymct7W1xdatWxEeHo6goCB07NgRffv2RUhICK/7ef78Obp374569eohJCQEnp6e+P3337FgwYICdfPz8zF8+HC0bNmywDk+981gCIZ8Q3Tq1Im4uLiQhQsXkqpVq5LKlSuTqKgo0r9/f2JoaEgqVqxIunfvTu7du8e95+3bt2T06NHE1NSU6OjokBo1apCffvqJOz9q1CjStWtX7u/8/HyycOFCYmJiQvT09MiQIUPIhg0biJaWFldn8eLFpG7dugra/P39CQDy7NkzQgghqampZPjw4aRmzZpEV1eXWFtbk3Xr1pH8/Pxi2ymKq1evEgDkzJkzpHXr1kRXV5c0a9aMPHjwgDx48IC0a9eOlC9fnrRo0YJERERw79u9ezfR0tIily5dIjY2NqRcuXKkRYsWJCQkhNd1Dx8+TLS1tUlQUBB3bO/evaRcuXLk7t27Bep36tSJjB07tsDxdu3akQkTJigc27BhA6lQoQLJzMwkhBBy4cIFAoA8fvyYq/PgwQMCgFy9erVQfXl5eaRmzZpk8uTJBc49fPiQmJqaksjISGJubk48PDy4c/n5+cTMzIzMmzdP4T329vZk1KhR3N9t2rQhTk5OCnUGDhxIOnXqVKiez6/DB/ln+/z5c+6YsueaEEKCg4NJjx49iL6+PtHT0yMtWrQggYGBhBBC/Pz8iJaWFnnw4AEvDUU9i6GhoQSAwrXT09MJAHLixIkS3TchhFSsWJH8+uuvvOrOmzePVK9eneTl5XHHtmzZovAMyVmyZAlxdHQkfn5+Bfr2U4T8H5Rfr0GDBkRHR4eYmJiQAQMGcOdOnDhBmjRpQsqXL08MDQ1JixYtyN27d7lndPny5Qpt5ebmkooVKxJPT0/e12eUXr65kfGRI0eQnJyMK1eu4OjRo2jfvj2qVKkCf39/BAYGol69enBwcEBycjIAYOHChbh79y5OnjyJqKgoHD58GA0aNCiy/c2bN2PDhg1Yu3Yt7t69i2bNmmHp0qWCdb579w6NGjXCiRMn8PDhQ7i5uWHx4sXYs2fPl946AGDBggVYvnw5QkJCoKOjAycnJ0yaNAlLly7ljo0ZM0bhPfn5+Zg9eza2bduG27dvo0qVKujVqxeys7OVXm/w4MEYNWoUnJyckJ6ejsjISEyZMgVr165F06ZNeevOzc2Frq6uwrHy5csjOzsbwcHBAICAgABYWFigXr16XB1bW1vUqFEDN2/eLLTdM2fO4Pnz55gwYYLC8ezsbAwaNAhr166FlZVVgffFxsYiISEBjo6OCscdHR25a71//x537twptE5gYGCR06MlJSkpSelzHRERgY4dO8LIyAh+fn4IDQ3FTz/9xE37Hzt2DHXq1MHly5dhaWmJmjVrYvDgwYiPjxekxcrKCqampti9ezdycnLw4cMHbN++HcbGxmjTpo1C3S1btqBSpUqwtbXFtGnTkJKSUmS7Hz9+xL59+5CZmYkOHTrw0hIQEIDvvvtOYQbB0dER2dnZCA0N5Y5dvXoVO3bswN69eyGRSATdb3EsXrwYc+bMweTJk3H//n2cP38eTZo0AQC8fPkSgwYNgpOTEyIiIvD3339jxowZKFu2LMqUKYPhw4fDx8dHob1Tp04hJycHQ4YMUZlGOQYVbVBBz1xp+fzZZpQA2r8GNEmnTp2IlZUV98t48eLFpFWrVgp18vPzSZ06dcjGjRsJIYT06dNHYaTzOZ+PjKtXr07mz5+vUGfAgAGCR8aFMW3aNNKtW7di2ykK+ejpzz//5I4dOXKEACBHjx7ljh0/fpwAIBkZGYQQ2cgYALl8+TJXJzU1lejp6ZEdO3bwunZ2djaxsbEhgwYNIk2aNCF9+/Ytsm5RI+OFCxcSIyMjcvPmTZKfn08ePnxIrK2tCQDi6+tLCCFk/PjxpE2bNgXea29vX+jIlxBCevXqRVq3bl3g+OjRo8mIESO4vz8fuQUEBBAA5MmTJwrvk4+0CCHkxYsXBAC5cOGCQp3Tp08TAOTVq1cFrquKkTGf53rEiBGkcePGCqPET3F0dCTlypUj9vb25OrVqyQgIIA4ODiQunXrkpycnAL1i3sWnzx5QmxtbYlEIiFaWlqkWrVq5M6dOwp11q9fT/z8/Mj9+/fJ4cOHiZWVFbG2tibZ2dkK9U6dOkX09PRImTJlSMWKFcmpU6d49REhhFhZWRWYycjMzCQAyJEjRwghhLx8+ZKYmZmRixcvEkIKn3Xge9+fX0dXV5esXbu20PN3794t9v//o0ePCABu5oIQQnr37k0GDhyo9NpfQgW9WqRZ621KS/PmzdVy/W+Rb26bbPPmzblfxnfu3EFISAikUqlCnZycHERFRQEAJk+ejAEDBiA4OBhdu3aFo6MjevToUej6XHp6Ol68eIG2bdsqHG/fvj1OnDghSGd+fj7WrFmDQ4cO4Z9//kFubi4+fPgAc3NzQe18zqdrsvL1ycaNGxc49urVK4V++XQUY2RkhAYNGuDhw4e8rlm+fHkcPnwYTZo0gampKa5cuSJY98KFC5GcnIzOnTsjPz8fFStWxPTp07Fo0SJoaWkpfX9hI5z4+HicO3cOO3fuVDh+4MAB3Lx5U2G0JAS+oylVjro+hc9zHRISAkdHxyLXmfPy8vDu3Tvs3bsXNjY2AIDDhw+jWrVqOHv2LPr3789LS05ODsaMGQMbGxt4e3tDW1sbXl5e6N27N4KCglCrVi0AwMyZM7n3NGzYEM2bN4eVlRX+/PNPDBs2jDvXuXNnhIWFIS0tDX/88QecnZ1x+fJlNGvWjH8HfYL8M5D/O3z4cDg7O6N79+5f1F5RREREIDc3F999912h5xs3bowePXqgYcOG6N69OxwcHNC/f3/UrFkTAFC/fn20aNECPj4+aNWqFV6/fo3z58/j+PHjKtXJIQEk2sr/X+GDei7/LfLNTVPr6elxr/Pz89G1a1eEhYUplCdPnmDJkiUAgB49eiA+Ph4LFixAbm4uRowYgS5duhQ6xUj+3SSk7Eu2TJkyXF05Hz4oPtXr16/HypUr8eOPP+LSpUsICwvDuHHjSrzpTFtbm3st11nYsc93KX/O5/qVIZ+6ffPmjcLuZr6UK1cO27dvR3Z2NmJjY5GYmIjmzZsDAOrWrQsAqFatGl6+fFngvfJdsZ+zY8cOGBgYFJjmu3TpEqKjo1GxYkWULVsWZcuWRVxcHBYvXsxNlVerVg0AClzv02tVrlwZZcuWLbROuXLl1Lbxj89zDRT/nJqZmUEikaB+/frcsSpVqqBy5cqIi4vjreXgwYO4f/8+Dhw4gNatW6N58+bYvn079PT04OXlVeT76tatiypVqhTY5KWnpwdLS0u0aNECa9as4f7lQ2HPh/xv+Wd25coVrF27lvvcu3btCkC22/vzpYwvoag+19LSwrlz5+Dn54cWLVrg2LFjsLa2xunTp7k6o0aNwuHDh/H+/XscPHgQRkZGapwmlkCipbwwVMc3Z4w/xd7eHhEREahevTosLS0ViomJCVfP2NgYTk5O+P3333HmzBlcv3690FGhoaEhqlevjoCAAIXjn/9dpUoVvHr1SsGg3717V6HOjRs34OjoiLFjx6Jp06awtLTkRjU0CAwM5F6/efMGjx8/Lnbt/FMiIiIwc+ZM/P777+jZsyeGDh2Kd+/efZGOsmXLokaNGtDW1oavry8sLCy4ted27drh2bNnCv306NEjPH/+vICbzMePH7Fr1y44OzujfPnyCueWL1+Oe/fuKRgyMzMzTJkyhdu5W7t2bZiZmeHChQsK7z1//jx3LR0dHbRo0aLQOq1bt+Y1ov8S+DzXzZs3x+XLl4v80dWhQwcQQhT6MiUlBa9fv0bt2rV5a8nKyoJEIlEYgUskEmhpaRX7g+7FixdITk7mRoZFkZ+fz/tZkrtUfXrP58+fR4UKFbhn6P79+wqfu7e3NwDgwoULWLx4Ma/rFIaNjQ10dXULPAufIpFI0LJlS8yfPx83btxAp06dsHv3bu68k5MTMjIycObMGezbtw/Dhg1TXwwACSApI1FaGCqE6iS5hvl8PfLly5ekWrVq5LvvviM3btwgz549I/7+/mT+/PkkICCAEELI/PnzybFjx8jjx49JZGQkmTp1KpFKpeTNmzeEkIJrxhs2bCB6enrEx8eHREZGknXr1pGKFSsqrBk/fvyYlClThsybN488ffqUHDlyhFhYWCisGc2aNYtUqVKF+Pn5kSdPnpAFCxYQAwMDYm5uzrXzJWvGn659FbZO/ffffxMAJCoqihAiWzOWSCSkefPm5Pr16+TevXukd+/epEqVKgV2oBZGTk4OadiwIRkyZAghRLbeXKtWLTJ16lSuzrt370hoaCgJDQ0lzZs3J/369SOhoaEKu7qjoqLInj17yJMnT0hwcDCZNGkSKVu2LDl37hxXJy8vjzRr1oy0bNmSBAUFkcDAQNK8eXPSunVrhV3ohPy3Ns53t3Bha7kbN24k5cuXJ/v27SOPHj0ic+bMITo6OiQsLIyr8+effxItLS3y66+/ksePH5P169cTLS0tcvbsWa5ORkYGd//VqlUjU6ZMIaGhodxnoIzPP1s+z/W9e/dI+fLlydChQ8mdO3e45/DWrVuEEEKysrKIhYUFadeuHQkODibh4eHE0dGRWFtbK6wZR0REkNDQUDJhwgRSs2ZN7j7evXtHCJGtF+vq6pJRo0aRBw8ekMePH5OffvqJaGlpceuft27dImvXriUhISEkNjaWnD9/njRp0oTUrl2b27vw8uVLsmjRIhIYGEhiY2NJWFgYmTNnDpFIJOT48eO8+ik+Pp7o6+sTFxcX8uDBA3Ly5ElibGxM5syZw7tv+d43IYTUq1eP/Pbbb9zfCxYsIHp6emTLli3kyZMnJCwsjKxYsYIQItuD4O7uTgIDA0lcXBy5fPkyqVatGlm4cKHCdfv160eaNGlCABTqjaAqKuibk5bdvZUWtmasOr5pY0wIIbGxsWTYsGGkcuXKREdHh9SqVYsMHz6cxMTEEEIIcXd3J7a2tkRPT48YGBiQjh07En9/f+79nxvjvLw8Mm/ePFKpUiVSoUIFMmDAgAKuTYQQsnPnTmJhYUF0dXWJo6MjOXjwoIJhfPPmDRk0aBDR19cnxsbGZPLkyWThwoVUjLGWlha5cOECqV+/PtHR0SH29vYFNuAUxcSJE4mFhQX340V+3bJly5KTJ08SQgh59uwZAVCgfHqvT548Ic2bNycVKlQgenp6xMHBgVy/fr3A9RISEsjAgQOJVCol+vr6ZPDgwSQpKalAvR49epD27dvzugdCit5YtXr1alKzZk2io6ND7OzsyPnz5wvU2b17N7GysiLa2trE2tqa7Nu3T+G8/LP5vBTl/vQ5hX22yp5rQggJCgoiXbt2JRUqVCBSqZT7ESMnOjqa9O7dm0ilUlK5cmUycOBAEh8fX6BfCtP+6TN19epV0qlTJ1KxYkViYGBAWrVqxX32hBASEhJC2rRpQ4yMjIiOjg6pU6cOmThxIklMTOTqpKamkj59+pBq1aoRbW1tYmpqSrp166bwY4wPf//9N2nTpg0pV64cMTU1JXPnziUfP34U1Ld87xsAWbx4Mfd3fn4++fXXX4m1tTXR1tYmVapU4TZgPXjwgPTs2ZNzoaxVqxb5+eefFYw7ITL3JwCkYcOGgu5bKHoGtUmr73crLcwYqw4JIQIX/xgMBoPxVSOtaIFGHZYorfch8TfOtZBRMr653dQMBoPBUA7boKVZvukNXF8Ttra2kEqlhZaJEyeq7bo9e/Ys8ro9e/ZU23W/JYrqX6lUihUrVtCWVyrw9/cvtp/8/f1pSxQXbAOXxmEj46+Es2fPFnCPkmNgYKC263p7eyMnJ6fQc5/vUmZ8GWFhYUWeMzY21pyQUoy9vX2x/VS9enXNifkakEj4+RkzVAYzxl8JJQ0G8qWwLzn1w7ICKad8+fKsn1SIRMKmqTUNM8YMBoPBKACbhtYs34wxNq5cCTVrFR9A4EtIfpUMkyomyit+AR/y1bOkn/IqCZWqmKq83Qr5r1XeJgAkJafD1ER9U+3qQJ2aydtMtbSblJ4LUwNd5RUFQnI+qrxNAEjKfg/TCjpqaVtdTiavct6jSnnVa47PyEVKrgpjU0pYhC1N880Y45q1auL8TeExkWmSlFWOtgRB2OXsoi1BOCL07Pt4/hZtCYLIvZdMW4Jg8j8UHw62tOHwJ7+czkKQlGVrxpqE7aYuIft37aUtQTDHfMRlNL18xWV8AHFq9vaPpi1BELsjEmhLEMyeRyLR/O+aMYtNrTmYMS4h4XfDaEsQzMPwL8tGRIvge8Jy6JYGgu8/py1BMCFxabQlCCI0OZ22BMGEvlbPEoOqkUC5WxNbU1Yt30wELrtmTdg0tZph09SagU1Tqx8xTlOHJmeorD2DKpawH7ROab30oGUsApeKYCPjEjLAsQ9tCYIZ94O4gnF0HvIbbQmCEaPmbuuv0pYgiO9PiGuGBwB6nQ6jLYEfEqCMdhmlhaE6vpkNXOpi1vzZtCUIZuIv82lLEMTiGerK2ao+xKjZ7X+2tCUIYl6L2rQlCGZus9q0JfCETUNrGmaMS0gdq7q0JQimVl1xBUewrlOFtgTBiFGzlak+bQmCsKxYgbYEwVgaiiQqHQv6oXHYPEMJ6dm+G20JghnevSNtCYJo8T/la1eljRa919OWIJg2Ky/RliCITn+Ib62y84m7tCXwQgJAUqaM0sJQHaw3S0hodARtCYK5dD+KtgRBvLjjQVuCYF7cdqctQTBxq8W1/yFydDvaEgTzeHgb2hL4IZGgbNkySgsfUlNT0a9fP+jp6cHc3By+vr5F1t24cSOqVq0KQ0NDuLi44N27d7zaOXDggEJikAoVKkAikSAkROZ/vWTJEmhrayvUiYmJ+cLOUQ/MGJeQ7Zu20pYgGJ9tm2lLEMR6Lz/aEgSzfoe4NkMBwMZLT2hLEMRvYeJzefvtnjhc3iQq9DOeMmUKdHR0kJSUhAMHDmDSpEmIiCg4iLlw4QJWrVqFK1euIDY2FjExMVi8eDGvdoYPH47MzEyubNu2DXXq1EGzZs249w8ZMkShTp06dUrYS6qFGeMSkpT4krYEwSS/TKQtQRAJSW9pSxCMGDUnvi08+1ZpJTHrPW0JgnmZLR7NZcpIlBZlZGVl4dixY/Dw8IBUKkX79u3Rp08f7Nu3r0DdvXv3YuzYsbC1tYWRkRHc3NywZ88ewe3I23J2doZEIp51b2aMS8jiVeKbQp3lvpK2BEGsd+tHW4Jg1i/8gbYEwawZ2IS2BEGsaCeujYgAsLy1SDZ8SlRjjCMjI6GlpQVra2vumJ2dXaEj44iICNjZ2SnUS0pKQkpKiqB24uLicOPGDTg7OyscP3XqFIyNjWFrawtPT09e3aBJmDEuIT3adaEtQTDDunWgLUEQ9r3W0pYgGHsRbjprtUJcG7g6/nGHtgTBdFJDDGl1IIEEZctqKS3Jycmwt7fnipeXl0I7mZmZMDQ0VDhmaGiIjIyCAUo+ryt/nZGRIagdHx8fdOjQARYWFtyxwYMH49GjR0hOTsaOHTvg7u6OgwcPCu8YNcJcm0rI2i0baEsQzML14loz/n3VUNoSBPP7yiG0JQjGc3hz2hIEsalTfdoSBLOpvbXySqUAiQQow2NN2MTEpNgIXFKpFOnpimFL09PToa9f0I3u87ry1/r6+oLa8fHxwfz5irEUbGxsuNdt27bF9OnTcfToUTg5ORVzd5qFjYxLiJ5USluCYMSmWV9PXGFBAXFqlupq05YgCKmO+LIKSbXFo1kV09TW1tb4+PEjoqL+8+AIDw+HrW3BADO2trYIDw9XqGdqaopKlSrxbicgIAAJCQkYOHBgsbokEona0mR+KcwYl5BRA4fRliCYacMH0ZYgiN4uXsorlTJ6j91BW4JgftjqT1uCIAafuUdbgmCGXHhAWwI/JFBJogg9PT30798fixYtQlZWFgICAnDy5EmMHDmyQF1nZ2fs3LkTDx8+RFpaGpYtW4bRo0cLamfv3r0YMGBAgRHzyZMnkZaWBkIIbt++jc2bN6Nv375f3j9qgBnjEnIz/DZtCYI5GRhGW4IgnlxbSFuCYJ5cXUBbgmAeun9PW4IgQoe3pi1BMCFDWtKWwAuJCv2Mt23bhpycHFSpUgVOTk7w9PSEra0t4uPjIZVKER8vc1FzdHTE7Nmz0blzZ5ibm8Pc3BxLly5V2o6c3NxcHDlyBKNGjSqg4dChQ7C0tIS+vj6cnZ0xZ86cQuvRhBnjErJu+WraEgSzfc0K2hIEsWTjOdoSBCNGze6nRDJq+5cVt5/RliCYlSGxtCXwQgLZmrGywgdjY2OcOHECWVlZiI+Px7BhstnEWrVqITMzE7Vq1eLqzpw5E0lJSUhPT8fu3btRrlw5pe3I0dXVxZs3b9C1a9cCGg4ePIiUlBRkZmbi8ePHmDZt2hf0inphG7gYDAaDoci/rk0MzcHyGZdiWD5jDSDCx5/lM1Y/33o+48rmDdB3nvL/z+HeP7J8xiqCTVOXkPZ24lgD+pS+rZvQliCIeg7LaEsQTL3Oy2lLEIzNorO0JQii6YFA2hIE0/ywOPaYSCSAVtkySgtDdXzVvenl5cU5oz+Lfsat77a3a4noqKe4FxrGBe1YOteNizPdtK4tXiYm4taNmxjgKAue/8vUn7B/114AgJWpOTIzMnDx7HlUNasGAJg82hXHDx8FAJjpVQYAHD98FJNHuwIAnAcOw8Wz55GZkQErU3MAwP5de/HL1J8AAAMc++DWjZt4mZiIpnVlmxJ8tm3G+kXzAMgCdTwMD0VcdBRnTLevWcGt//Zt3QRx0VF4GB7KBfVYv2geF4e6eyMrvHqZiOAAf+gbVgQAeMz6Ecd8ZL9+21lUQ1ZmBq5fOIvpI2S7redNdMG5Y0dkfVJFtjvx3LEjmDfRBQAwfcQgXL9wFlmZGWhnIesHL99bcJ17CADQechvuPZ3FBKS3qJ6CzeZJi8/zPL4E4AsmEfI/eeIjHnFGdwlG89x6631HJYhMuYVVs7pzQX+mOXxJxerunoLNyQkvcW1v6PQechvAADXuYfg5SsbORrYzEZGZi5OXX6APv/uyB7+4174npD9ki9jPh0A4HsyBMOn+QAA+ozdgVOXHyAjMxcGtnP+u6d5hwveU8tFsnvacRWzlp2Q3dP/1iHk/nNsXtKfM8gK99R5OSJjXiHk/nMuMMisZSe4WNbVWy4qeE/zDv93T7ZzkJH7AafvJXC7n0fuDMTB23EAAJ2Jss/r4O04jNwpM1Y/bPXH6XsJyMj9AOPpxwEA3v7RmLRf1g/d1l/F9Sev4DWyBczn/AVAFqd69tEwALJgIHfjUhGZlMEZbPdTD7g1ZptFZxGZlIG7calc4JDZR8O4WNfWewKQmPUO/i/S8P2JUADAtGuPsTsiAQBgtuMGMt5/xLnY19wOaZdLETgSmSS7522yvjkSmQSXS7KIS4PP3MNUu5rIeP8RZjtuAAB2RyRg2rXHAIDvT4TC/0UaErPewXpPAABZLOv5AU8ByAKGhL7KQNSbbM6or7j9jFuHbn74Np6+yUZYcgYXqGNBYDQXW7r+gb9l95TwBr1Oy/ppun8k9jyS3VONPTdl9xT3GkMu3AcAjPN7hDENZP9PKu64DgD442kSxvk9AgAMuXAf5+JeI+P9R9TYcxMAsOdRAqb7RwIAep0Og3/CGyRmvUP9A3/L7unecywIjIY6UNWaMYMfbJq6hNwLDUPjpk1U3i6gvmnqh+GhsLFrqvJ21TVNHXL/OZo3qqmWttU1Ta1Ozeqapr4bl4pm5sYqb1dd09ShrzK4H4mqRl3T1GHJGWhionrNqp6mrmLRAAOX+Citd/u3SWyaWkV81SNjTfDL1Jm0JQhm2azSt5OwOCb8O9IWExP+HUmLiUkHxBGqUc70649pSxDM9JuRtCXwRHnAD7bBS7Ww3dQl5EKA+NL7+V4WV3CH4DO/0JYgmODTP9OWIJig+d1pSxDEjUEtaEsQzPV+4gg5KlszFk+0sK8BNjIuIUvnutGWIBj5OrRYkK8xiwn5GrKYkK8RiwX5+q+YUNf6rsqRsDVjTcNGxiXEtFpV2hIEY1K1Gm0JgjAzNVReqZQhRs3VDMvTliCIano6tCUIpmoFcWiWgE1DaxpmjEvIxOlTaEsQjPNkca0Zz3IVX5rKWeM705YgmJ+616MtQRA/NqmlvFIp48fGatqIqGpY0A+Nw6apS4jcDUlMdG9kRVuCIORuUWJC7vYkJuRuTWJB7rIkJuQuSaUdCYCyWmWUFobqYCPjEnLu5mXaEgRz4NIN2hIEcUeEm6HunJpFW4Jg/p4nrg1c1wfZ05YgmKs/NKMtgR9sZKxx2E+bEhITJZINGZ8QHy2ujS+RMa9oSxCMGDVHJanOT1UTPH2TTVuCYJ6+zaEtgRcSSKBVRnlhqA5mjEvI+hVraEsQzPa14sratPTX87QlCEaMmj1OR9CWIIiVd2JpSxDMqruxtCXwQiJh09Sahk1Tl5Bj58W1zgYA3ifEld7v6uEfaUsQjBg1X54lrk1nZ39QfRQ5dXPmf01oS+ANm6bWLOynTQmRx5YWEx6zxGUoXEUYgctVjBG49osrrKE8DrWYkMeZFgMsApdmYca4hNg1a0JbgmDUEZdandg3Fp8Li726YmmrkebmRrQlCKKpiQFtCYJpWllKWwIvJBKgTBnlhQ+pqano168f9PT0YG5uDl9f3yLrbty4EVWrVoWhoSFcXFzw7t07Xu3ExsZCIpFAKpVyxcPDgztPCMGcOXNQqVIlVKpUCbNnz0ZpS8vApqlLyAiXUbQlCGaAswttCYJwHdaWtgTBiFHzuA51aUsQxBhbM9oSBDO6gTg0SyCBtorWhKdMmQIdHR0kJSUhLCwMvXr1gp2dHWxtFd1CL1y4gFWrVsHPzw9mZmbo168fFi9ejFWrVvFu582bNyhbtqBZ8/LywokTJxAeHg6JRILu3bujTp06mDhxokruURWwkXEJkadDFBPydIdiwcBmNm0JgpGnXxQT8vSKYkGeOlFMyFMjlnokqpmmzsrKwrFjx+Dh4QGpVIr27dujT58+2LdvX4G6e/fuxdixY2FrawsjIyO4ublhz549gtspjL1792LWrFmoUaMGqlevjlmzZnFtlxYEG+NXr14hJiZGoXzLhD59QFuCYC7eF8+6FQC8uO1OW4JgXgQtpS1BMHGre9OWIIgno8Q3+/BoWGvaEnghAVBGIlFalBEZGQktLS1YW1tzx+zs7BARUXDnfkREBOzs7BTqJSUlISUlhXc75ubmqFGjBsaMGYPXr18X23ZhGmjC2xifP38e1atXR7Vq1WBpackVKytxRXNSNbf8xRcFKDhAXFmbrgWKyy8aEKfm65HqyTusLm4mvKEtQTA3E9/QlsAbPiPj5ORk2Nvbc8XLy0uhjczMTBgaKsZpNzQ0REZGQZ/2z+vKX2dkZChtp3Llyrhz5w7i4uIQEhKCjIwMDB8+vNi2MzMzS9W6MW9jPGXKFLi5uSEzMxP5+flcycvLU6e+Us/+XcoTcJc2ju/bTVuCIHb43qItQTA7Dooj7OGnePuLK4DN7ogE2hIEs+dxIm0JvJBIJNAuW0ZpMTExQXBwMFdcXV0V2pFKpUhPT1c4lp6eDn19/QLX/Lyu/LW+vr7SdqRSKezt7VG2bFmYmppiy5YtuHjxIveewtqWSqWQ8BjdawrexjgtLQ0TJkxA+fLiyuyibnyOFr0zsLSyaf8ftCUI4q9drsorlTL+2jmetgTBnJjSgbYEQRzp1Zi2BMEc7tGItgTeqGKa2traGh8/fkRUVBR3LDw8vMDmLQCwtbVFeHi4Qj1TU1NUqlRJUDsAOCMrH/kW1nZR76UFb2M8duxY7N4trhGVJpg8WnyGYt5Ece2mHv7jXtoSBDN8mvhmTEbuDKQtQRAul0rXmh8fxvk9oi2BFxIVbeDS09ND//79sWjRImRlZSEgIAAnT57EyJEjC9R1dnbGzp078fDhQ6SlpWHZsmUYPXo0r3aCgoLw5MkT5OfnIyUlBdOmTYODgwM3Ne3s7IwNGzbgxYsXSEhIwPr167m2Swu8jXFgYCAmTZoEa2trdOzYUaF8y3Tr+R1tCYLp2N2RtgRB9Opaun7B8kGMmr9vJK5d9o7mlWlLEEyPWsa0JfBGVUE/tm3bhpycHFSpUgVOTk7w9PSEra0t4uPjIZVKER8fDwBwdHTE7Nmz0blzZ5ibm8Pc3BxLly5V2g4AxMTEwNHREfr6+mjYsCHKlSuHgwcPcu+dMGECevfujUaNGqFhw4bo1asXJkyYoMLeKjkSwnMFe+/eokcno0aVfl/b2jaNsWDfadoyBOE5WVx6l/oOpi1BMC2qlZ4NHHypUDaVtgRBZH8UjwGSY6DzgrYEQbRvNQx3Qx6qrD0LWzssPag8bO5mlz4IDhZX5LbSCu+gH2IwuDRwtTeHV3AcbRmCCL09BU1bbqUtgzd9LE3w11Nx7fStplcFiVniytxkWK4+3r4TT4hJMfaxnnZTZH0IpS1DKRKw2NSaplhjvG/fPm5OfteuXUXWc3ER1xqkKhGbIQYgKkMMQHSGGIDojAQAURliQJx9LAZDDACQgKVI1DDFrhl/Oue+b9++Qsv+/fvVLrI0E3T+BG0Jgkl9fYe2BEFc/+sYbQmCOX5YfJr/OHSKtgRBiLGPD/OY+i0NqCroB4M/xRrjs2fPcq+vXr1aaPHz81O7yNLMff8rtCUIJv2NuKKG3bl6kbYEwVw+d4m2BMGcP3uNtgRBiLGPz50VSQhPiQRlyyovDNUhKFHEmzdvcObMGSQkJMDMzAy9evVCxYoV1SRNHIxb/httCYKpbTmGtgRB/Lzxd9oSBLNtz3baEgSz02c9bQmCEGMf79m3krYEXshHxgzNwdu1yc/PD7Vr18bmzZtx584d/Pbbb6hduzauXBHfyFCVbPlJfOvl0ZGetCUIwmP8cOWVShnOA0fQliCYIf1KTwYbPoixjwf+MJ22BN6UkSgvDNXBe2Q8depUeHl5YfDg/9xX/vjjD0yZMgWPH4tr44cq6dBvGG0Jgqls0p62BEH0GOpMW4JgRrgUDGpQ2hk9VlyuaWLsY5dx/WlL4AUbGWse3iPjhIQEDBgwQOFYv3798PLlS5WLEhP1mosjC8unSA3EldyjYat2tCUIpm0H8Wlu36klbQmCEGMfd+hkT1sCPyRA2TISpYWhOngbY2dnZ2zdqugS4+npCWdn8Y1aVMkvPcX1BQYAD0Ln05YgiDHtGtKWIJgmluKJQSynfm1xRdMTYx9b1hJHxD4JAC2JRGlhqI5ip6k7dOjABdzOz8+Hp6cn1qxZg+rVq+PFixdISkpC69biGxmqkt9uqC7qjaaws99AW4IgDofH0pYgmKdJz2hLEMyLlLu0JQhCjH2clCaelKts4KtZijXG48aNU/h7/HjxZaJRNzeO+6Jjf3GtG79+dROVq4hn3fj8IR84imzdeN8uH4x0EZfm3d6HMWbcENoyeCPGPt614xhcxg9QXpEyEjA/Yk1TrDEWGgJz8uTJ2LZtW4kEiY24R/cAiMsYZ2fF05YgiKf3wwCRGePwu+EYKbKN9qEhD0RljMXYx3dDHorDGP+7ZszQHLwTRfDBwMCgQALo0gJLFKF+WKIIzcASRaifbz1RRH27pvA+d01pvRl9urJEESqC9wYuPqjQrouGda7iGUnIiXr0K20Jgpg/rC9tCYLp7/gDbQmC6dVdXK5CYuxjx67jlFcqJTA/Y80iKAKXMiTf4BpDb9cZtCUIpmr172lLEITTtNm0JQjm5/m/0JYgmLkLp9KWIAgx9vH8ReIIrML8jDWPSo3xt4ipeR3aEgSjq1uFtgRBmFnUpS1BMHWsxKfZ0qo2bQmCEGMfW1nVoi2BFxIJ8yPWNGyauoQsH/k/2hIE8zhiDW0JgpjVrxttCYJxbN+dtgTBOLQdSFuCIMTYx+1biye0K8vapFlUaoxHjBBfrNiSsva8uNIRAkCjpitoSxDEnlviyjIFAGHR92lLEMyTWH/aEgQhxj6OjhdPpilVrRmnpqaiX79+0NPTg7m5OXx9fYusu3HjRlStWhWGhoZwcXHBu3fveLUTGBiI7t27w9jYGCYmJhg0aBASExO580uWLIG2tjakUilXYmJihHeKGuFtjAkh2LFjB7p06YLGjRsDAG7cuIEjR45wdTw9i05A4ODgAF1dXa4j6tWrx527cuUK6tevjwoVKqBz586Ii4srsh0hH6wmuLjfi+r1v4SkxMu0JQjiT2/xuctt3yQ+zb9t3EVbgiDE2MebNvrQlsALVeYznjJlCnR0dJCUlIQDBw5g0qRJiIiIKFDvwoULWLVqFa5cuYLY2FjExMRg8eLFvNpJS0uDq6srYmNjERcXB319fYwZo5idbsiQIcjMzORKnTqqW2L08fHBvXv3FI6Fh4dj3759vNvgbYwXLVqEnTt3wtXVFfHxMj/VGjVqYPXq1bwvtmXLFq4jnjx5AgB4/fo1+vfvDw8PD6SmpsLe3h5DhhS9Q5nvB6sp3iYnUbv2l/Lhw1vaEgSR+kp88c9fJopR8yvaEgQhxj5OTEimLYEXEgmgXUaitCgjKysLx44dg4eHB6RSKdq3b48+ffoUaqT27t2LsWPHwtbWFkZGRnBzc8OePXt4tdOzZ08MGjQIBgYGqFChAqZOnYqAAM1FO3Nzc0PNmjUVjtWsWRMLFy7k3QZvY7xnzx6cPn0aQ4cO5XZNW1hYlHiof/z4cdja2mLQoEHQ1dXFkiVLEB4eXmgmKCEfrKYY9JMbtWt/KTVqlf6gA58ydr47bQmCWbJKfJqXr5lLW4IgxNjHq9bOoi2BN3xGxsnJybC3t+eKl5fiTGFkZCS0tLRgbW3NHbOzsyt0ABUREQE7OzuFeklJSUhJSRHUDiCbtbW1tVU4durUKRgbG8PW1rbYWdwvIT09HQYGBgrHDA0N8ebNG95t8DbGeXl5kEqlAP5zYcrMzOSO8WHevHmoXLky2rVrh2vXrgEo+AHo6emhbt26hXay0A9EEywb0Yvatb+Uxw9W0ZYgiJ/6dqUtQTDftRPfprOOrcWR3k+OGPu4XUtxROuTTVMrLyYmJggODuaKq6urQjuZmZkwNDRUOGZoaIiMjIwC1/y8rvx1RkaGoHbu3bsHd3d3rF27ljs2ePBgPHr0CMnJydixYwfc3d1x8OBBwf1SFDY2Njh27JjCsT///BMNGjTg3QZvY/z9999j5syZ3II6IQRubm7o3bs3r/evXr0aMTExePHiBVxdXdG7d29ER0eX6MMqri4AeHl5cb/YXj2PxV+/bwQALOzvgKS4GMQ9us8Z0z82enDrv784tsCb5CQ8Cf6bC+qxb/lc3DguW5/+saMNcrMyEX7jMnR0ywMAvBf8iKDzJwAArvbmAICg8yfgveBHAMCWn1wQfuMycrMy8WNHGwCyuNb7lstGI+tch+BJ8N94k5yEXxxbAJCt7f4TL/uAHz9YheyseOTmJOFh+FIAQOI/Z5D4zxkAwMPwpcjNSUJ2VjxnbP+JP8atD98PnY8P798gIz2S65/4Z754/eomACA8eCby8nLxNu0+oiNlvxpjn+5G6mvZBrXQ21MAAKmv7yD26W4AQHSkJ96m3UdeXi7Cg2cCkMWR3rJA9nr+sL64HxiAlKSXGN1WlnnpT+9t2LliEQCZkX36IBwvnkVjYrdWAADfTWvgu0m223tit1Z48SwafcZM5AzyzhWLuDXk0W0bIiXpJe4HBnCBQbYsmInzh2TrckPsaiM7MxO3r1yAx3jZLtZ1P03A9b9kfdrH0gQAcPzwMUweLfP/dB44AhfPXkBmRiYsTS1kn/0uH/w8VTai6e/4A27dCMDLxJdoUleWNWj7pm1YMld2T9+164bw0HBMn/0T2tnJkqisW74G65bL7qmdXWtER0UjPDScMyZL5i7i1j+b1G2El4kvcetGABfU4ueps7Bvl+yeLE0tkJGRiXOn/TCkn0zzWOdZ+OPQKQCAYbn6AIA/Dp3CWGeZ5iH9JuLcaT9kZGSieqVmAGRxqKdNks3q9Oo+Ev7Xg+C2dAbq1e4AQLZ+vGC27Dnq2Lo/Qu8+wNPIZ2hm2wMAsNLjN6z0+A0A0My2B55GPkPo3QecQV8wexW3Bs3nnjIzMnHx7AU4D5RtAp08eiKOH5Z9TtX0qhT6OQ0YOrDEn1N0VHShn5OdTV9ERcYhNOQhZ0Dn/rKeW/OtW6s7EhNe4cb1YC6Qx9SJHti1Q6bZ1KgdMjKycPb0dQz8YToAYPTIeejzQ2cAgJ52UwDA4YPnMHrkPADAwB+m4+zp68jIyIKpkSw95K4dxzB1ogcAWcCQG9eDkZjwCnVryXaSb9rog7m/rIfqUT4q5rNmLJVKC0RlTE9Ph76+vtK68tf6+vq823n69Cl69uyJTZs2oUOHDtxxGxsbmJmZQUtLC23btsX06dNx9OhR5d3Ak9WrV2PcuHEYMGAAZs+ejf79+2Ps2LFYv57/Z8M7HGZ6ejqcnZ1x/vx5fPjwAbq6uvjuu+/g4+NTaMcqw9HREb169cLTp0/x4cMHhZjWjRo1wpIlSwrkTw4NDUW7du2QnZ3NHVu/fj2uXbuGU6dOFXs9dYXDTIqLUZuvsbrCYebmJEG3vKnK21VXOMwXz6JRXU2+xuoKhxkdFY26avKDVVc4zKeRz2BpbaHydtUVDlOdfayucJhRkXGwsjZXebuqDofZuFlznLpxS2m9AQ7tig2HmZWVBSMjI0RERMDKSpZH3dnZGWZmZli1SnGGbtiwYbCwsMDy5csBAH5+fhg2bBhevnzJq524uDh06tQJc+fOxcSJxQdXWb16NYKCgnD8+HGl98iX+Ph4+Pr64vnz56hZsyaGDx9eYB25OHiPjA0MDHDixAnExcUhMDAQ0dHR+PPPP7/IEAOyqW5CCGxtbREeHs4dz8rKQnR0dIH5fgCwtrbGx48fERUVxR0LDw8vtK6m+O0nkUWqBxATuZ22BEF4jBfH1N6nOA8Ujz+pnMH9xBEdSo4Y+3jgD9NoS+AJgQT5Sosy9PT00L9/fyxatAhZWVkICAjAyZMnMXJkwdCrzs7O2LlzJx4+fIi0tDQsW7YMo0eP5tXOixcv0KVLF0yZMqVQQ3zy5EmkpaWBEILbt29j8+bN6NtXtWF2a9Wqhblz52Lr1q2YO3euIEMMKBkZ5+cr72wAKFOmeJv+5s0bBAUFoVOnTihbtiwOHz4MV1dX3L17F8bGxrC0tMSuXbvQq1cvLF68GNevX0dgYGChbck3kHl7eyMsLAzff/89bt26pdQgs0QR6oclitAMLFGE+vnWE0U0btYMZ/yV+53369RJaaKI1NRUuLi44NKlS6hUqRJWrVqFYcOGIT4+HjY2Nnj48CFq1ZJFJtuwYQNWr16NnJwcDBgwANu3b0e5cuWKbQcAli5diiVLlkBPT0/h2pmZmQAAJycnXLx4Ee/evUONGjUwefJkTJtWsh9GI0eO5BUC2seHnztbsVa0bNmy0NbWLrLIzyvjw4cPWLhwIUxMTFC5cmX89ttvOHHiBOrVqwcTExMcO3YMCxYsgJGREYKCgnDo0CHuvStWrEDPnj25v7dt24acnBxUqVIFTk5O8PT0pDoylq9Diwn5OrNYkK8hiwn52qOYkK8BiwUx9vFyd3HMSklAUAZ5SgsfjI2NceLECWRlZSE+Pp4zoLVq1UJmZiZniAFg5syZSEpKQnp6Onbv3s0Z4uLaAYDFixeDEKLgRyw3xABw8OBBpKSkIDMzE48fPy6xIQYAS0tL1K1bF3Xr1oWhoSFOnDiBvLw81KhRA/n5+Th58iQqVqzIu71iY1M/e/aspHoByHbc3blTdKSqbt26FerKBADz589X+Fv+gTAYDAZDXRCUkXykLaJU82lAkh49euDMmTMKm8Zu3rwJDw8P3u2pNJ9xaYZNU6sfNk2tGdg0tfr51qep7Zo1wYUA5ZH6/tfBkeUzhsyr5/Xr1wozxR8+fEClSpUK7AIvCt4buEaOHAlnZ+dCy7fMwv4OtCUIRu4aJRbkbk9iQu4uIybkbktiQYx9bGcjjtzcqpym/hZo2rQp5s+fj5ycHABATk4OFixYgCZNmvBug3cKRUtLS4W/X758iaNHj2L4cPHtaFQlP4osni8A1LEW165Ztx10449/CT5HD9CWIJgjf4pjPVOOGPv46InNtCXwQwI2TS2APXv2YNiwYTA0NISRkRHS0tJgb28vKHcCb2P86fy4nLFjx2LpUnGNslRNbnYWbQmCyc9/p7xSKSInK1N5pVLGp5tHxEJGprieZTH2cWaGWPqYQCLh503DAGrXro1bt27h+fPnSEhIQLVq1RQ2pgFAQEAA2rVrV2QbJUqh2KRJE1y/fr0kTYgeeQQtMRH/TFwjza3/RvQSE79MFU8MYjnTJy+iLUEQYuzjqZOW0ZbAGwnylBaGIjVr1kSrVq0KGGIACl5BhcF7ZOzn56fwd3Z2Ng4dOgQbGxu+TXyVLNwvLjchAKjfUFw/IDaevEJbgmAu8tj8Utq4Eai6aESaQIx9HHBbHD+EJSAow0bGKkXZXmneI+OxY8cqlLlzZV/oqgy2LUb+2Mh/63ppQR7vWizIY1mLCXkMZDEhj0UtFsTYx+qJI60OZK5NygqDP8oChPAeGavK5/hrw9BE9TGe1Y22tqHySqUI4ypVaUsQTNVqYtRchbYEQYixj6uZmdCWwAsJwKahNUyxxlhV4TC/Zr4b4aq8UinDtJq4Us/1GzeZtgTBTJwuPs0/iizOuhj7ePpPYnEFZRu4NE2JwmHKy7eMPN2hmLgfOl95pVKEPP2imJCn7RMT8vSJYkGMfSxPfSgGyiBfaWHI1oJjYmKQl1f8TIKyNWPe4TDPnDmDo0ePYt68eTA3N0dcXBxWr15dIM3ht4bYonoBQH3b2bQlCGL9n+LbqHP+5iXaEgRz7Zbq8rtqAjH28c1AcfhGSyQsHCZfJBIJGjVqhIyMjGLrKTtfrDE2N/8v7+aGDRsQHBzMBb62traGvb097O3tMWnSJJ6yvz6S4mJQUWTrxrm5r6CtU5G2DN4kPItGJVNxrQ/GREWLbk3zaVQsqpmJ51kWYx9HRcWjmpk41ubZmjF/mjZtisjISNSvX/+L2+C92Pv27VtkZ2crHMvOzsbbt2+/+OJfA6e8fqUtQTAvX5ylLUEQBzeLLzvPuhVraUsQzKplW2hLEIQY+3iFSLI24V/XJmWFIcPBwQGOjo5YsmQJdu7ciV27dnGFL7x3U48aNQrdunXDjBkzULNmTTx//hybN2/GqFGjvkj818LPXodpSxCMVYMZtCUIYoXvSdoSBHP8/AnaEgRz5tI+2hIEIcY+Pn/Fm7YE3kjYmjBvAgICYGFhUSAIlkQigYsLv42RvEfGa9aswbRp03D48GHMnDkThw4dwtSpU7FmjfhGLaqEReBSP1tEGIHrZxFGh5o2yY22BEGIsY+nThRHXAJZ0I8PSgtDxtWrVwstnwfLKg7exrhMmTKYOHEirly5gkePHsHPzw8TJ06ElpbWF4n/WjBv0Ji2BMFU0CsYqq00Y9moCW0JgrFrZkdbgmCaNhfXrnUx9nGz5mKJWChzbVJW+JCamop+/fpBT08P5ubmxSZP2LhxI6pWrQpDQ0O4uLjg3bt3vNu5cuUK6tevjwoVKqBz586Ii4v7724IwZw5c1CpUiVUqlQJs2fPVrq7WShv3rzBgQMHsHbtWhw4cABv3rwR9H5B+Yx3796Nffv24cWLF6hevTpGjhyJMWPGCNVMheY1jXBremfaMgShM9iBtgRBvK/elrYEwSTliOXL8T8+5ovLr/9VlrgSkwCAjpa4+njEd53wMOyuytqzt6+H4DvK17ftW/yiNJ+xk5MT8vPzsXPnToSFhaFXr164desWbG1tFepduHABzs7O8PPzg5mZGfr164fWrVtj1apVStt5/fo16tatC29vb/Tu3Rtubm7w9/dHYGAgAOD333/Hhg0bcOXKFUgkEnTv3h3Tpk3DxImqyWDn5+eH/v37o169ejA3N0d8fDweP36MY8eOoWvXrrza4P3ELV++HKtWrcLQoUOxefNmDB06FGvWrMHy5cu/+Aa+BiovPEVbgmAMbMTl2lS5YifaEgRjU008u5LlNK4ujuhQcrpa1aAtQTAd6pjRlsAfkq+8KCErKwvHjh2Dh4cHpFIp2rdvjz59+mDfvoL7E/bu3YuxY8fC1tYWRkZGcHNzw549e3i1c/z4cdja2mLQoEHQ1dXFkiVLEB4ejsePH3Ntz5o1CzVq1ED16tUxa9Ysrm1VMHXqVHh5eSEoKAhHjhxBYGAgduzYgSlTpvBug/cGLm9vb1y7dk3B3alHjx7o2LEjFixYIEz5V8SzhY60JQjmxW132hIE8ey5uHZ/A8DtyKe0JQjm1uMY2hIE8VfoI9oSBHP+3hPaEvhBCJCv3LUpOTkZ9vb23N+urq5wdf0vKmFkZCS0tLRgbW3NHbOzsys0219ERAT69u2rUC8pKQkpKSmIj48vtp2IiAjY2f23bKGnp4e6desiIiIC9evXL3Dezs4OERERSu+PLwkJCQVibvTr1w/jx4/n3QbvkXFWVhZMTBR/OVeqVAk5OTm8L/Y1ciPmNW0JgrkWKC5DceNaCG0Jggn096ctQTBBN2/QliCIu7du0pYgmJAAEWnmMTI2MTFBcHAwVz41xIAs57ShoWIsfENDw0IDYHxeV/46IyNDaTtCzxsaGiIzM1Nl68bOzs7YunWrwjFPT084O/MPf8rbGDs6OmL48OF48uQJcnJy8PjxY4waNQo9evTgr/grZGdgLG0Jgtnhe4u2BEHs9P6TtgTB+O7m719YWji0R1yaT+7fQ1uCYI7v201bAk8IkJ+vvChBKpUiPT1d4Vh6ejr09fWV1pW/1tfXV9qO0PPp6emQSqVKMynx5e7du9w0eKtWrVCjRg3MmjULoaGh6NixI1eKg/c09ZYtWzB16lTY2dnhw4cP0NbWxuDBg7F58+YS34iYOe7ShrYEwfy1S1zJLY6f3EhbgmB2/SGu0JIAsOOwuFJrrvMRn4//r/uP0JbAHx5rwsqwtrbGx48fERUVBSsrKwBAeHh4gc1bAGBra4vw8HAMHjyYq2dqaopKlSpBV1e32HZsbW2xd+9erq2srCxER0crnA8PD0fLli2L1fCljB8/XtCUdGHwHhkbGBjAx8cH2dnZSExMRHZ2Nnx8fLjwmN8qzgfu0JYgmOE/7lVeqRThPGIhbQmC+dFlNG0JgpkxVlwBfBZNHkdbgmDmTxRJZixCgPyPyosS9PT00L9/fyxatAhZWVkICAjAyZMnMXLkyAJ1nZ2dsXPnTjx8+BBpaWlYtmwZRo8ezaudfv364cGDBzh27Bhyc3Ph7u6Oxo0bc+EpnZ2dsWHDBrx48QIJCQlYv34917YqGDVqlNISFBRUbBuC9u9nZ2fjwYMHePr0KQIDA3Hr1i3cuiWuKU9V872NuGLjAkCvrqr7RagJvu/VnrYEwXR17ElbgmC6iExzu27iWyLr0F1EGz5VME0NANu2bUNOTg6qVKkCJycneHp6wtbWFvHx8ZBKpYiPjwcgWwqdPXs2OnfuDHNzc5ibm2Pp0qVK2wEAExMTHDt2DAsWLICRkRGCgoJw6NAh7r0TJkxA79690ahRIzRs2BC9evXChAkTVNhZytm/f3+x53n7Gfv4+GDq1KnQ0dFB+fLl/2tAIuE6szTD/IzVD/Mz1gzMz1j9fPN+xs3qIvi68uiK9p1XKvUzZsjQ19cvNnMT7ydu9uzZOHbsGF6/fo3nz59zRQyGWJ3o/iK+zUVlzKfTliAI3bLiyxltrq9HW4Jg6hqWV16pFNHGrCJtCYJpbmpAWwI/CFTiZ8z4D2WbxXhv4NLR0YGDg0NJ9Xx15K7tR1uCYPLjNtGWIIjcj+Jbl4/LyKItQTDRb8Xlpvh3whvaEgQTkpSuvFKpgIDwWBNmqA7eI2MPDw/MnDkTr1+Lz69WnRwKfU5bgmB8T4hrWunQwfO0JQjmxBHx7fT9649DyiuVIi4c/4O2BMGcOyaS3dQEKlszZshQtiLM2xhbW1vjr7/+gqmpKbS0tKClpYUyZcp884kizj58SVuCYM5cUV3kGU1w9oyIAiX8y5Xz52hLEIyfyDQHXL5AW4Jg/C+J5YclYdPUShgyZAj3evdu5f7jI0aMKPY87w1clpaWcHJywpAhQxQ2cAFA3bp1+TRBFbaBS/2wDVyagW3gUj/f/AauJha4c3mp0notHDd/sxu4KlasiLS0NEgkEhgYGBQIOiIU3k9cSkoK3N3d0bBhQ9StW1ehfMv03/U3bQmC6ePiRVuCIPr3/Ym2BMG4DBpIW4Jgxg8ZoLxSKeJn5yHKK5UyZowYTFsCT1TjZ/w106FDB7Rp0wbOzs7Izc2Fs7NzoYUvvDdwjRkzBvv27RPU+LfA2Na1aUsQzPhh4hrBjh0nvk1yw8aIJLjDJwwdLS7NfUeMpi1BMP1HiiPlLLdmzCiSP/74A0ePHkVcXBwkEkmJB6a8jfHt27exZcsWLF++HKamiunhbtwQV4B5VdKxTmXaEgTj0NqStgRBdHRoTluCYFp36EBbgmBatS8+dm5po1lb8QWDad5OLJrJN78mrAxvb29MnToVgCxr1OLFi0vUHm9jrIrYm18jFsvO4/Wy3rRlCKJ6y0VIf6jcob+0YFHze7x+UzDlWmmmpbUlHiYm0ZYhiLb16+Dei2TaMnjTp2kDXIn6h7YMQTg2rgf/mATaMvjBjHGxLFiwgDPGp0+fLnF7vI3xqFHK49ZOnjwZ27ZtK5EgsSE2QwxAVIYYgOgMMQDRGWIAojLEAERniAGIyBATIE95PuNvmbp162LWrFmwtbXFhw8fsGtX4VnPXFz4Lf+odMugstibXyPegc9oSxCMl8hSKHrvOE5bgmB8i/iPWZo5uHsnbQmCOCHGFIo+YkmhCObapIRDhw7h7du3OHjwID58+IB9+/YVKEJsokqNsaoSNYuJu/+8oS1BMMH3xBXC9G7II9oSBHMvVHVuJprivsg0Pw4PpS1BMA/FpJkZ42KxtraGt7c3Ll26hE6dOuHq1asFip+fH+/2ePsZ80EVvlbqgvkZqx/mZ6wZmJ+x+vnm/Ywb1cSdv2Yqrddi0IFv1s9Y1YjriROIl5cX7O3tYW9vj6evM+FxUTbCarj6IqKSM3D3nzS0+fUqAGDOqfv49XoUAMDC4xwS3ubgenQyunv6AwAmHw3lpqQrLzyFjNwPOPMwEWaLZQv3zgfucKEx5ckjDoU+5/Id99/1N848TERG7gdUXngKgGyKe/JR2S/l7p7+uB6djIS3ObDwkEVCWu/lh1kesrbse61FyP3niIx5hXoOywAASzaew5KNsrr1HJYhMuYVQu4/h32vtQCAWR5/Yr2X7JdZ9RZuSEh6i2t/R8Go4RwAgOvcQ9yUtYHNbGRk5uLU5QecH/LwH/dyoTPlySV8TwRz+ZD7uHjh1OUHyMjMhYHNbNk97TiOyROXy+6pywRcvxaChIRkWNSUpef7dcN+zPl5IwCgTcuRuBvyCFGRcWjYQObj6rHUCx5LZddv2GAAoiLj0LrFSLRpKctbOufnjfh1g2zqx6JmTyQkJOP6tRB07yJLhzZ54nJuWrtyxU7IyMjCmVM3OF9l5xELufCa8gQUJ44c5vIPuwwaiMtnzyIzIwM21WReA767dmHuj7KNGkN6OuJv/xtISkxECyuZK4PX5k3wmDcXANCrQzvcDw1FH4eOcGhiBwDYuGI5Nq6Q9YlDEzvEREXhfmgoenVoJ7vneXPhtVkWL7yFVV0kJSbib/8bGNJTlm5v7o9TuWlvm2qmyMzIwJVzZzi/4BljR3GhLOXJHv764xCXn3j8kAG4cu4MMjMy0Li6CQDZlPT8aVMAAMN6fYdA/xsY2K0T2tSzkH2Ov/2KFQtkz0mfjm1xP/Qunj2NQtdmjQAAm1Yuw6aVsuewa7NGePY0CvdD76JPR9kPshUL5sD7t18BAL2b1kfyy0TcveWPyQN6AQBW/TKdm2bualUDWZkZ8L94jvMdXjR5HBfuUp4Q4sLxP7gcxj87D8Hwzm2QlZmBrlY1ZJ/j/j1Y9YvsOZ08oBfu3vJH8stE9G4qy2nru/03bF66AAAwukcnPL4XhvjopxjcXrZb33vdSnivWwkA6NemKeKio/AoPBTDu8t2mW9YPB/7PH8DAPRobI3kl4kIDvCHa7/vAQDLZk3jpqE71DFDVmYGblw4x/kWz5/ogoHt7QH8lzDi3LEjXI7jGSMG48aFc8jKzECHOmYAZNPay2ZNAwC49vsewQGye+rR2BoAsM/zN2xYPB+qhwAfPyov3zANGjTgXtesWRO1atVSKPJjfFHpyFhZiiiaqGtkfD06GZ3qmqi8XUB9I+Nrf0fBoY2VyttV18j4+rUQdFKTe5O6RsZ/+99Amw7qcRVS18g40P8GWqtBs7pGxndv+aNZW/W4kKlrZBwc4A/7dqrXrPKRccMauHNsmtJ6LYYf+WZHxjdv3kT79jJXtevXi95k2qlTJ17t8d5NzQdlsTe/RqwqS2lLEIx1nSq0JQjCypr/r8vSQh1L1f/YUTcWluLyP69ZR1x6AcC8rog0s6AfxXLx4kVcvHhRaT2+xljQz79du3ahe/fusLW1Rffu3bFz506FTVuenp5CmvsqaLf5Gm0Jgmnxv3W0JQiiXSvxRX37X0exBHf4jx8c2tGWIAiXnuLaAwLIRrCigBCNZW1KTU1Fv379oKenB3Nzc/j6+hZbf+PGjahatSoMDQ3h4uKCd+/+m3kprq3AwEB0794dxsbGMDExwaBBg5CYmMidX7JkCbS1tSGVSrkSExNTpI7nz59zJSoqCqtWrcKVK1fw9OlT+Pn5YdWqVYiKiuLdD7yN8ezZs7F69Wr0798fa9euxYABA7Bu3TrMmTOH98W+Rp659aQtQTAv7njQliCIZ8/FlU0IAO5ERdOWIJi/n4jLTe9U6GPaEgRz4V4kbQn80dCa8ZQpU6Cjo4OkpCQcOHAAkyZNQkRE4ZnlLly4wBm92NhYxMTEKES+Kq6ttLQ0uLq6IjY2FnFxcdDX18eYMYrhSYcMGYLMzEyu1KlTp0jdu3fv5gohBAcPHkRAQAB8fX1x8+ZNHDokLCUpb2O8Z88eXLlyBZMmTcL333+PiRMn4uLFi7xSR33NyDd9iQn5pi6xIN+wJSbkG7LEhHzDlVjw3f4bbQmCkW8AK/VoaGSclZWFY8eOwcPDA1KpFO3bt0efPn2wb9++Quvv3bsXY8eOha2tLYyMjODm5oY9e/bwaqtnz54YNGgQDAwMUKFCBUydOhUBAQElvgcAOHfuHH744QeFY3379sXZs2d5t8HbGOvr60NfX7/AMQMDA94X+xpJTM+lLUEwCUlvaUsQRGKCuCJDAUDSJ9NfYuHVS3Fpfp0kvlziyWLq43yivJSQyMhIaGlpwdramjtmZ2dX5Mg4IiICdnZ2CnWTkpKQkpIiuK0bN27A1tZW4dipU6dgbGwMW1tbQcuulpaW2Lp1q8Kxbdu2CUoewXsD14wZM9C/f3/MnTsXNWrUwPPnz7F27Vr89NNPCvPqxQ3rv0ZW925EW4Jg1ruJKwvS6nXiS6HotnIVbQmCmb98NW0Jgpi2eDltCYKZuXQFbQn8IITXNHRycjLs7e25v11dXeHq6sr7MpmZmTA0NFQ4ZmhoWKRXzuf15a8zMjIEtXXv3j24u7vj5MmT3LHBgwfD1dUVpqamCAoKwoABA1CxYkU4OTkpvQ9vb2/069cPa9asQfXq1fHixQuULVsWx4/zjx7Ie2Q8ffp0XL16FT169ICtrS0cHR1x5coVTJs2DZaWlrC0tISVlfh2kJYUuZ+ymJD7IYsFuY+xmJD7EIsJuY+wWBjdQySboT5B7rMsBgjJV1pMTEwQHBzMlc8NsYODAyQSSaGlffv2kEqlBQJFpaenF5iFlfN5fflrfX193m09ffoUPXv2xKZNm9Dhk+xqNjY2MDMzg5aWFtq2bYvp06fj6NGjvPqqadOmiIqKwsGDBzFz5kz4+voiKioKzZo14/V+QMDIOJ9tcy+UrQOb0JYgmN9XDaUtQRBbPdUR1EC9rNq8hbYEwSzfJC7Nc9eKb11+4TqRaJavGZeQa9euFXs+KysLHz9+RFRUFDeYCw8PLzB9LMfW1hbh4eEYPHgwV9fU1BSVKlWCrq6u0rbi4uLQrVs3uLm5YeTI4n/kSyQSQSGetbW1FYy7UL7qCFyaQL+cSl21NYK+XjnaEgShr1+BtgTB6EnF538uLWI0UlqpoCe+Pq4gpudCAxu49PT00L9/fyxatAhZWVkICAjAyZMnizSUzs7O2LlzJx4+fIi0tDQsW7YMo0eP5tXWixcv0KVLF0yZMgUTJ04s0PbJkyeRlpYGQghu376NzZs3o2/fviW+R77wNsbx8fEYO3YsmjVrBmtra4XyLdNv19+0JQim97/hLsVCv77KY+SWNlwGDaQtQTDjBvenLUEQP48aQluCYOShMUs9hAAf85QXFbBt2zbk5OSgSpUqcHJygqenJzeajY+Ph1QqRXy8LLmNo6MjZs+ejc6dO8Pc3Bzm5uZYunQpr7a8vb0RExODpUuXKvgSyzl06BAsLS2hr68PZ2dnzJkzh1fqYFXBOxxmq1atUL9+fQwaNAjly5dXONe1a1e1iFMlLFGE+mGJIjQDSxShfr75RBH1THHbU/nGpZazb36z4TBVDe8n7vHjx9i9ezf+97//oWvXrgrlW0aefEJMyJNLiAV54ggxIU8MISbkiR/Egjypg5j4fa1YdlNDYxG4GDJ4G+PevXsXGwybwWAwGF8LmguHyZDBe5o6NTUVbdu2Rd26dWFqaqpwbte/6d1KM2yaWv2waWrNwKap1c83P01tZYLbmwYorddyUTCbplYRvJ+4MWPGQEtLCw0aNED16tUVyrdMw9XKs3aUNuT5kMWCPNexmJDnMhYT8lzFYkGeh1hM9GvTlLYE/mggAhfjP3j75fj5+SEhIaFIZ+xvlT9d2tCWIJhTu/hHyCkN/HlyA20Jgtn1B79gAaUJ7yP8owWVBtbtPUxbgmB+3X+EtgR+yNeMGRqD98i4cePGSElJUacWUZLxTjWZSzRJhsimDTMysmlLEExWZiZtCYLJLCIEYWklO0t8fZwtmueCrRlrGt7GuEuXLvjuu++wcuVK7Nq1S6F8y0w5GkZbgmAmzBWW2os2UyaJZAfqJ8ydNpW2BMEsmC4uzat+mU5bgmCW/SwSzQQgH/KUFobq4L2Bq3Pnwjc/SSQS+PmV/pR8bAOX+mEbuDQD28Clfr75DVx1KyNoRS+l9VqtjWAbuFQE7yfu6tWrhRYxGGJ1MufUfdoSBDPL40/aEgQx5+eNtCUIxmPeXNoSBLNiwRzaEgSxeekC2hIEs2GxSOKsEwLk8SgMlSEosHJKSgrOnj2Lly9f4pdffkFCQgLy8/NRo0YNdelTGWn/5ODYL4XntSwJyXiDYzdU3y4ADLWtqpZ2zfAOJOKxytsteydU5W0CQPXUSJQ9sVV5xS+gWj/1bGazMieoViFcLW1nfKimlnbNa0hRsZzqcwSblM9ReZsA0LBOBdhWTlBL21LJP2ppt0md92hqHKjyditoqXYtmgAgbLe0RuE9Mr5+/Trq1auHAwcOwN3dHQAQFRWFSZMmqU2cGOgFY9oSBDOzfxPaEgQxs09D2hIE89PMYbQlCGbKjPG0JQjix5/G0JYgmFk/iSRmeT6A93nKC0Nl8DbGM2bMwOHDh3H+/HmULSsbULdq1Qq3b99WmzgxMAXRtCUIpsaIvbQlCKLmePG5sJjX6ENbgmBsLFrRliAIa3Px5TOuXkss6UsJSL7ywlAdvKepY2NjuTjUEokEAKCjo4OPH8Xn2qNKlsGctgTB3N4kkl/n/xK0ujdtCYL5+/ZO2hIEcyXgL9oSBHH97z9oSxDMnUD1LLeoHAK2JqxheI+MbWxscOHCBYVjly9fRqNG4orao2oS8Z62BMFEvnhDW4IgIhPe0pYgmKjI57QlCCY66hltCYJ4GhVLW4JgIqPUsxatFlgELo3C2xhv2LABw4cPx6hRo5CTk4MJEyZg9OjRWLt2rTr1lXqOQ3yBUNwPiMsVwf1IGG0JgvFwF9/IeM2yX2lLEMRKD5GMMj9hqfs+2hL4QQjzM9YwvI2xv78/7t27B1tbW7i4uMDCwgK3b9+Gv7+/OvWVehaiJm0JgvFb3Ze2BEH4ufekLUEwl/3EZyj+uiSuYDBnL4tr7wMAXL2yjrYEfsinqZlrk8bgbYzd3d1hZmaG2bNnY+vWrZg7dy5q1KiBZcvElXRA1XgjibYEwUzYfI22BEFM3H6LtgTBTJqwirYEwfw0eR5tCYKYNmkxbQmCcZ0oHp95TW3gSk1NRb9+/aCnpwdzc3P4+voWW3/jxo2oWrUqDA0N4eLignfv/gsqU1xbsbGxkEgkkEqlXPHw8PjvfgnBnDlzUKlSJVSqVAmzZ88Gz5hYKkHpBi55UI+8vDxcvXpVQVxMTMw3nziiDsrRliCY5lZVaEsQRPO6lWhLEEzz5vVpSxBME5FlbWra3Ja2BMHYN7emLYEfGtzANWXKFOjo6CApKQlhYWHo1asX7OzsYGtb8PO9cOECVq1aBT8/P5iZmaFfv35YvHgxVq1axbutN2/ecB5Bn+Ll5YUTJ04gPDwcEokE3bt3R506dTBx4kT13fwnKA2HaWFhAQCIj49HrVq1/nujRIKqVati7ty56NOn9Ltx1JHoim7n89CzXWlLEATJVk9wB3WSr6agH+pEXUE/1IV2GfE9F+oK+qEuWrSaguCQSJW117x6RQRMVu461v7PFyUKh5mVlQUjIyM8ePAA1tayHyojR45E9erVOQP7KcOGDUPt2rWxYoUsXv2VK1cwfPhwvHz5UmlbsbGxsLCwwIcPHwo1xm3btsXo0aPh6ir7Tti5cyd27NiBwEDVB2kpDKXT1M+ePcOzZ88wfPhw7vWzZ88QExODW7duicIQq5OxiKItQTCGA7xpSxBExRH7aUsQjLFhN9oSBFOrsriCq5gZ29OWIBgDIxHt18jLV15KSGRkJLS0tDjjCQB2dnaIiCg8qmFERATs7OwU6iYlJSElJYV3W+bm5qhRowbGjBmD169fF9t2UTrUAe81Yx8fH3XqEC1bUJe2BMH8s8+ZtgRBPN8xhLYEwcT9c5K2BMFEPNPMCEBVPIm7TluCYF7EH6QtgReE8FszTk5Ohr29PVe8vLwEXSczMxOGhoYKxwwNDZFRRDrPz+vLX2dkZChtq3Llyrhz5w7i4uIQEhKCjIwMDB8+vNi2MzMzNbZuLK7UJKWQRxBfrt1r99UTz1ddXItQfbxkdXP9mnridKuTgBviMsY3r4sv+t+16+qJV656+CWKMDExQXBwMFfkU7xyHBwcIJFICi3t27eHVCpFenq6wnvS09OL3Iv0eX35a319faVtSaVS2Nvbo2zZsjA1NcWWLVtw8eJF7j2FtS2VSrkgV+qGGeMS4gfxBaTYce4hbQmC8L70hLYEwXjvEN/I2GenOEZtcnZ7iy8C1w7vs7Ql8IMA5EO+0qKMa9eugRBSaLl58yasra3x8eNHREX9t9wXHh5e6OYtALC1tUV4eLhCXVNTU1SqVElwW3IjKx/5FtZ2Ue9VB8wYl5CfUZ22BMH8teR72hIEcXKe+NZfT/wlvmA4vsfFFajkyIlttCUI5q8THsorlQYINBKBS09PD/3798eiRYuQlZWFgIAAnDx5EiNHjiy0vrOzM3bu3ImHDx8iLS0Ny5Ytw+jRo3m1FRQUhCdPniA/Px8pKSmYNm0aHBwcuKlpZ2dnbNiwAS9evEBCQgLWr1/Pta0JmDEuIVuQSFuCYIavvkRbgiBG/Cq+tcGRw0XoA+s8nbYEQbiM/IW2BMEMH7mStgSeEI1s4AKAbdu2IScnB1WqVIGTkxM8PT25EWl8fDykUini4+MBAI6Ojpg9ezY6d+4Mc3NzmJubY+nSpbzaiomJgaOjI/T19dGwYUOUK1cOBw/+Nxs0YcIE9O7dG40aNULDhg3Rq1cvTJgwQSX3yAdB+YwZBWkKPdoSBNOrpbhcvHo1F1+Us+97taMtQTDffd+FtgRBOH4vvqxNvb4XSWYsorl8xsbGxjhx4kSh52rVqoXMTMVczTNnzsTMmTMFt+Xk5AQnJ6cidUgkEqxZswZr1qzhpVvVMGNcQtrBgLYEwQzrLJLAA//i1KEObQmCcRr2HW0Jghk4VERuNwAGO/2PtgTBDHMSyQ+ef9eMGZqDTVOXkOFQnaO9ptD63pO2BEGUHbiHtgTB6Gi1pS1BMJV0LWhLEISBjg1tCYIpoy2eH2kkjygtDNWhMWO8ZcsW2Nvbo1y5cgqL4srihX6O0Dim6uYAxDXKBIC8s5NoSxDEx6OjaUsQzPs88cXTTskVVwrF9Pfi8goAgPwPF2lL4AUhyn2MNTWN/a2gMWNsZmaGhQsXwsXFpdDzb968QWZmJjIzM+Hm5lZkO5/GHj1w4AAmTZqk0SgpnxOAdOWVShm+V8U1mj/oH0NbgmAO+orjS/dTjh4SlzvWkYOnaUsQjO9BP9oSeJOfR5QWhurQmDHu378/fvjhB1Sq9OVB/7OysnDs2DF4eHhAKpWiffv26NOnD/bto5cjNBRZ1K79pZy5HUdbgiDOhDynLUEwZ88E0JYgmItnxWMoAOD8WfHtsj9zNoi2BF4QAuR/zFNaGKqj1KwZFxUv9FOExjHVBFMhrqD9AHBgTnfaEgSxf4b4ds3uO7BUeaVShpfPJtoSBLFrn/h8uQ/sE0maSqJ8vZitGasW6sZYWbzQTxEax9TLy4uLmfoSH3AMMiM/C8+QiPd4hlwsgGyUuB/JOINUAMAURCMNH/EQ2VgG2ajMG0nwwxsAsuQQOcjHXWRiEqIByPyN5VPW8k1dAUjn/JDX4QXuIhM5yOeSS/jhDZcPeRme4yGykYaPmPJvmxuOh+HnHbK1xxbT/kBIVDIi/3mD+uNk6+RL99/B0v13AAD1x/ki8p83CIlKRotpsshEP++4hQ3HwwAANUbsRUJKFq7dewGTIbsAyPIae/0bjctwgDcyst/jVFAs+iyRRQkavvoSN6Ut3/TlezWS81Pus+QsTgXFIiP7PZd8YselJ1z+4S6LzuHag0QkpGaj5vjDsnv66wF+3ivT3HL2KYREv0Zkwls0+PG47J4Oh2LpYVkoyQY/Hkdkwls4LDyLlrNPye5p7x1s+OsBAKDm+MNISM3GtQeJ6LLoHABZ7uMd/0bsqjhiPzJyPuBU8HP0XXkZgMxnWT7tLd8YdtD3IucX/EOfX3D61E1kZGRxyR68vU5w+Ym7dZmC69fuIiEhGeY1ZElSNm7wxeyfNwMAWrUYg7shj9Gty1TY1JfF1HZf6g33pbL+sak/BJGR8bgb8hitWowBAMz+eTM2bpB9puY1+iAhIRnXr91Fty5TAMhyI3t7nQAgS0CRkZGJ82cuY1j/sQBk/sHyKWb5Jqyjh05yfsPD+o/F+TOXkZGRySWD2Ovty+Uv7tN9KG5eD0T/70fAxkLmerP11x1wmyPLVd6lTW+E3b2Pp1ExaNmwMwBgtcevWO3xq+xzbNgZT6NiEHb3Prq06Q0AcJuzDFt/3QEAsDbvhMSEV/C/fhvfdxsFQJaLeLf3EQCyhA8ZGVk4d/oqBv8wGYDMh1g+DS3fqHXk4GnOt3jwD5Ph0GYwMjKyuIQRu72PcDmOv+82Cv7XbyMx4RWszWU/5n7buBvzZ68GAHRsNRChdyMQFRmLpjY9AQAr3LdghfsWAEA9mzGIjPwHISGRsG8p0zTrl9+xfuNRAED1WkORkJCCa9fD0bnrz7LPYeJGeO04I9Ns1BcZGdk4dfpv9PlBtuw2fORKNG8h268h38jle9CP8z3u84MbTp3+GxkZ2VxCCa8dZ7gcyJ27/oxr18ORkJCC6rWGAgDWbzyKWb/8DnXA1ow1i9IUiqpm4cKF+Oeff7Bnz55Cz798+RLVqlXD27dvYWCg6DYUGhqKdu3aITv7v3jQ69evx7Vr13Dq1Klir6uuFIp3kYlmkKq8XUB9KRRPBcWid6vaKm9XXSkUTwU/R2979fgaqyuF4ulTN/G/3u3V0ra6UiieP3MZjr1UH+1MXSkUz52+ip7/66yWttWVQvHU6b/R+39tVN6uqlMoNjGW4tJ3jZXW6/n0fYlSKDL+g/rI+HM+jxf6KUJjj2qCBqhA7dpfikMjM9oSBOFgW5W2BMF0cmhKW4Jg2nVsTVuCINp3aklbgmAcOtkpr1QKIATI+5ivtDBUh8aM8cePH5Gbm4u8vDzk5eUhNzcXHz9+VBov9FOExjHVBFP/nVIWEzVGiisdpnyKW0yY1xBXAA0AsLUQlzGuZy6+vQTVaxUdAap0wdaMNY3GjPGyZctQvnx5rFq1Cvv370f58uWxbNkypfFCV6xYgZ49e3J/Fxd7lAY7YUXt2l/K22PjaEsQxJv9I2hLEEzq28u0JQgm/vUD2hIEkZAqvunR9DSRuI/xzGfMUB0aM8ZLliwpkEJryZIlcHJywrNnz5CVlYXExET4+PigatX/piXnz5+Pc+fOcX/LY49mZWUhPj4ew4YN09QtFIp8U5eY8BJZCsUdYkyh+O+GKzGx15tuAB2hyDeAiQn5Bq/SDiFA/od8pYWhOkrdmrHYiME72hIEExL1irYEQYREp9CWIJiQkMe0JQgm7O592hIEERpCz6XxS1HlJiv1QkDy85UWhurQ+G5qWqhrN7U6UdduanWhrt3U6kRdu6nVibp2U6sLde2mVifq2k2tLlS9m7qxQQWcblVPab3+aVpsN7WKYCPjEiL3QxYTXeaIZN3qX+Q+xGJC7iMsJvp0H0pbgiDkPstiQu6TLAbYmrFmYSkUS0h/fHl4T1osGm5PW4IgFg1uQluCYNwWjaUtQTCzF86gLUEQ89zE94Nn8SJ6nh9CIATIY2vCGoWNjEtINejQliAY6+oVaUsQhLVZQTe30o6VtXqClKiTulbiSqFoaVWbtgTBWFvVoC2BHxrM2iQ0E9/GjRtRtWpVGBoawsXFBe/e/bdvp7i2Dhw4oJAdsEKFCpBIJAgJCQEg22Ssra2tUCcmRnNJapgxLiELIa6kCwDQcvpR2hIE0WpO8dHVSiNtWopvZNy1XR/aEgTRqc0g2hIE06K1eEbzmvIzFpKJ78KFC1i1ahWuXLmC2NhYxMTEYPHixbzaGj58OJcZMDMzE9u2bUOdOnXQrFkz7v1DhgxRqFOnTh2V3CMfmDEuIVtRl7YEwfyzX1xrbc93DKEtQTBx//xFW4JgHj4TR0YhOZFx4sva9CL+EG0J/NCQn7HQTHx79+7F2LFjYWtrCyMjI7i5uXGhlb+kLWdnZy7qI22YMS4h8uQSYkKePEIsyBNDiAl54gcxIU/sIBZ+27ibtgTByBNNlHY05WcsNBNfREQE7OzsFOomJSUhJSVFUFtxcXG4ceMGnJ2dFY6fOnUKxsbGsLW1haenZ0lvTxBsA1cJSYP4cnompGQrr1SKSEgTn2tMYkLhaUBLMy8Tk2hLEERiorj85QEgIUEsPvME+TxGvskpybC3/29DqKurK1xd+bsLCs3E93l9+euMjAxBbfn4+KBDhw6wsPhvn8TgwYPh6uoKU1NTBAUFYcCAAahYsSKcnDQTwpSNjEvICJjQliCYdePb0pYgiHWjWtCWIJg166bRliAYj9ULaUsQxIo1c2hLEMz6tRNoS+AFAZCfr7yYmJggODiYK58bYgcHB0gkkkJL+/btIZVKkZ6ervCe9PR06OvrF6rr8/ry1/r6+oLa8vHxwahRist1NjY2MDMzg5aWFtq2bYvp06fj6FHNzWQwY1xCFohwA5c837FYkOcyFhPyXMViQp6LWCx0bDWQtgTByHMjl3oIP2OsjGvXrhUIgywvN2/eFJyJz9bWFuHh4Qp1TU1NUalSJd5tBQQEICEhAQMHFv/8SCSSQrMHqgtmjEvIOJjSliCY7T860JYgCM8Jqs//qm48t4tv1LZh6wraEgSxyXMpbQmC+d1zBm0JvCAAPuYpLyVFaCY+Z2dn7Ny5Ew8fPkRaWhqWLVuG0aNHC2pr7969GDBgQIER88mTJ5GWlgZCCG7fvo3Nmzejb1/NZV9jxriE6IqwC/XLa9OWIAix6QUAqb748lxL9fVoSxCEVCouvQCgL5bnQkUjYz4Ul4kvPj4eUqkU8fHxAABHR0fMnj0bnTt3hrm5OczNzbF06VJebQFAbm4ujhw5UmCKGgAOHToES0tL6Ovrw9nZGXPmzCm0nrpgsalLyCw8w3qoJ1iCumJT1x/ni8feqs92pa7Y1A1+PI5Hv/VXS9vqik1tU38IHj5WTx5mdcWmbtmwM24/uKrydtUVm7qpTU+EPlRPqFR1xaauZzMGTx6qfhe4qmNTN9DVhU/N2krrTTKUstjUKoLtpi4h6jLE6kQdhlidqMsQqxN1GWJ1og5DrE7UZYjViToMsVogqhv5MvghvjnWUsYxiM+FZen+O7QlCGLp4VDaEgTjvtSbtgTBrPb4lbYEQaxw30JbgmCWuPvQlsALAuDjR+WFoTq+mWnqypUro3bt2ipvNzk5GSYm4nJvEptmsekFmGZNIDa9gPo0x8bG4vVr1Q0M6uvoYodpbaX1fjJl09Sq4puZplblg/op9vb2onsYxaZZbHoBplkTiE0vIB7Ncj9jhub4Zowxg8FgMHjC1ow1DjPGDAaDwVCAAMhTUVYmBj+YMS4hQuKwlhbEpllsegGmWROITS8gIs1sZKxxvpkNXAwGg8Hgh3VZXWw2UB6XYWEdfVGsgYsBNjJmMBgMhgJsA5fmYcaYwWAwGAoQwvyINQ0zxgwGg8FQhK0ZaxxmjBkMBoNRgHy2m0ijMGPMYDAYDAXYmrHmYbGpGaUKLy8vtG3bFoaGhtDS0oKhoSHatm2LHTt20Jb2VcH6WTOkpKTAy8sL06dPh4uLC6ZPnw4vLy+kpKTQllYs8jVjFptaczBjLBD2JaY+5syZg02bNmHcuHHw8/PDkydPcPXqVYwbNw6bNm3CvHnzaEv8KmD9rBmuXLkCS0tL7N+/H/n5+TAzMwMhBAcOHICVlRWuXi3dWbI0lc+YIYP5GQtgzpw5OH36NGbNmgU7OzsYGhoiPT0dYWFh2LBhA3r37o2VK1fSlilaTExMcO/ePVSrVjBfb0JCAho3bqy2GOPfEqyfNYONjQ2WLVuG/v0LpgD9888/MX/+fDx69IiCMuU4OjryegYqV66M8+fPa0DR1w8zxgJgX2LqpXLlyrh//36R/duoUaNSP70nBlg/awY9PT2kpqaiXLlyBc69e/cORkZGyM7OpqCMURph09QCUPa7hf2uKRljx45Fly5d4O3tjTt37iAyMhLBwcHYuXMnunfvjvHjx9OW+FXA+lkztGrVCgsXLkRWVpbC8aysLLi5uaFVq1aUlDFKI2xkLIA5c+bgr7/+KjBNHR4ezk1Tr1q1irZMUfP777/Dx8cHERERyMzMhFQqha2tLZydnTFhwgTa8r4aWD+rn7i4ODg5OSE0NBR16tThvi9iYmLQpEkTHDp0CLVq1aItk1FKYMZYIOxLjMFgCCEyMhIPHz5U+L6wsrKiLYtRymDGmFHqiIyMREREBDIyMqCvr4+GDRuyLy81wPqZwSg9sKAfXwD7ElMP8fHxGDJkCMLDw1G3bl1uWi86Ohp2dnZsWk9FsH7WHF5eXtizZ0+BmbQxY8awtXmGAswYC4B9iamXMWPGoEOHDrhy5QoqVKjAHc/KyoK7uztGjx4NPz8/igq/Dlg/awZlrpAxMTHMFZLBwaapBdC1a1c0b94cS5YsKfRL7M6dO+xLrARIpVKkpqZCR0enwLl3797B2Ni4wM5UhnBYP2sG5grJEAJzbRJAUFAQli1bpmCIAZk/obu7O4KCgigp+zqoWbMmTp8+Xei5s2fPslkHFcH6WTMwV0iGENg0tQDkX2KFRdRhX2IlZ8uWLRgwYAA2bNhQYFovIiICx44doy3xq4D1s2aQ+3MX5QrJ1owZn8KmqQVw5coVDBgwAA0bNizyS6xLly60ZYqa169f488//1TY8NKwYUP88MMPqFy5Mm15Xw0pKSk4fvw462c1w1whGXxhxlgghX2J2draol+/fuxLTE3Y29vj4sWLMDY2pi3lqyA/Px/btm1DREQEHB0d0bdvX8yZMwfnzp1DkyZNsGHDBvYsMxgahhljFZGXl4fly5dj0aJFtKWIFmdn50KPHzt2DL169YKuri58fHw0rOrr48cff8T169fh6OiIc+fOoUWLFkhNTcWYMWOwd+9eaGtr4/Dhw7RlfvXEx8ezpS0GBzPGKuLdu3eoUKEC8vLyaEsRLeXLl0fLli3RtWtXhc0t69atw8SJEyGVSrF48WKKCr8OzMzMEBYWhipVquDFixeoVasWXr9+DSMjI7x58wbW1tZ49eoVbZlfNez7gvE5bAOXAFxcXIo895Fl2i4x9+7dw9SpU/Hw4UOsX78e1atXBwBs374dv/zyC6pUqUJZ4ddBbm4ujIyMAADGxsYoU6YMpFIpAEBfX589yyrixo0bRZ579+6dBpUwxAAzxgLw9fXF2LFjC127ZL9wS46VlRUuXLiAQ4cOoUuXLhg/fjxmzJgBiURCW9pXRZs2bTBhwgQMHjwYBw8ehJ2dHdavX48pU6bA09MTdnZ2tCV+FTg4OKBatWooU4Z5kDKUw6apBdCiRQu4ubmhT58+Bc7l5uaiQoUKyM/Pp6Ds6yM9PR2LFi3C5cuXERcXh+joaDYyVhFxcXGYPHkynj17hhkzZqBjx47o0aMH/vnnH1hYWOD48eNo3LgxbZmix8LCAgcOHEDbtm0LnMvNzYWenh77Ec/gYCNjAYwePbpIY6utrc3WM1WIgYEBfv31V4SFheH69eswMDCgLemrwdzcHGfOnFE4Fhsbi9TUVFSqVImSqq8Pe3t7BAcHF2qMy5QpwzZvMRRgI2MGg8FQAx8+fAAg+6HOYCiDLWYwGAyGGtDW1i7SEOfl5cHd3V3DihilGTYyZjAYDA3DXJsYn8PWjBkMBkMNMFdIhhCYMWYwGAw1wFwhGUJg09QMBoOhBpgrJEMIbAMXg8FgqAHmCskQAhsZMxgMBoNBGTYyZjAYDAaDMswYMxgMBoNBGWaMGQyB1K5dG5cvX1Za79q1a6hRo8YXXSM2NhYSiUSpC4yDgwO8vb0LPRcfHw+pVMp27jIYIoC5NjEYXym1atVCZmYmbRkMBoMHbGTMYDAYDAZlmDFmiILatWtj5cqVsLGxgZGREcaMGYPc3FwAwI4dO2BpaQljY2P06dMHCQkJ3PumT5+OmjVrwsDAAM2bN4e/v7/Sa+Xk5GDUqFEwMjJCgwYNsGbNmiKnm9+9e4cZM2bAzMwMZmZmmDFjRoHE8StWrEDlypVRu3ZtHDhwgDt+5swZNG3aFAYGBqhZsyaWLFnyBT0DREdHo2XLljA0NETfvn2RmpoKoOBUt4ODA9zc3NCuXTvo6+vju+++w+vXr7/omgwGQ7UwY8wQDQcOHMCFCxcQHR2NyMhILFu2DH5+fpg3bx6OHDmCxMREmJubY+jQodx7WrRogbCwMKSmpmLYsGEYNGgQZ8SLYunSpYiNjUVMTAwuXbqE/fv3F1l3+fLlCAwMRFhYGMLDw3H79m0sW7aMO//y5Uu8fv0aL168wN69e+Hq6oonT54AAPT09ODj44M3b97gzJkz8PT0xIkTJwT3i4+PD3bt2oWEhASULVsW06ZNK7Kur68vdu/ejVevXuH9+/dYt26d4OsxGAw1QBgMEWBubk48PT25v8+cOUPq1KlDXFxcyC+//MIdz8jIIGXLliXPnj0rtJ2KFSuSsLCwYq9lYWFBzp8/z/29Y8cOUr16dQUtly5dIoQQUqdOHXLmzBnu3Pnz54m5uTkhhJCrV68SLS0tkpmZyZ0fNGgQcXd3L/S606dPJzNmzCCEEPLs2TMCgHz48KFYrZ06dSJz5szh/o6IiCDa2trk48ePBdro1KkT8fDw4Opu3bqV9OjRo9j2GQyGZmAjY4ZoqFmzJvfa3NwcCQkJSEhIgLm5OXdcKpWiUqVKePHiBQBg/fr1aNCgAQwNDVGxYkW8fftW6dRsQkKCwrU+fV1Y3U+vL9clx8jICHp6eoWeDwoKQufOnWFiYgJDQ0Ns3779i6aNP++XDx8+FNlO1apVudcVKlRgG7wYjFICM8YM0fD8+XPudXx8PLdOGxcXxx3PyspCSkoKqlevDn9/f6xevRpHjhxBWloa3rx5A0NDQxAlQeeqVauGf/75p9Drfs7n15frkpOWloasrKxCzw8bNgx9+vTB8+fP8fbtW0ycOFGptsL4vF+0tbVRuXJlwe0wGAx6MGPMEA1bt27FP//8g9TUVKxYsQJDhgzBsGHDsHv3boSFheHdu3eYP38+WrVqhdq1ayMjIwNly5aFiYkJPn78CHd3d6Snpyu9zuDBg7Fy5UqkpaXhxYsX2LJlS5F1nZycsGzZMiQnJ+P169dwd3fHiBEjFOosXrwY79+/h7+/P06fPo1BgwYBADIyMmBsbAxdXV3cvn0bvr6+X9Qv+/fvx8OHD5GdnY1FixZh4MCB0NLS+qK2GAwGHZgxZoiGYcOG4bvvvkOdOnVQp04dLFy4EF27doWHhwcGDBiAatWqITo6GocOHQIA9OjRAz179oS1tTXMzc2hq6tb7JSznEWLFqFGjRqwsLBAt27dMHDgQJQrV67QugsXLoS9vT0aN26MRo0aoVmzZli4cCF3vmrVqjAyMoKZmRmGDx+O7du3o379+gCAbdu2YdGiRdDX14e7uzsGDx78Rf0ycuRIjB49GlWrVkVubi42b978Re0wGAx6sEQRDFFQu3ZteHt7o1u3bhq/tqenJw4dOoTr169r/NoMBuPbgI2MGYzPSExMREBAAPLz8/HkyROsX78e/fr1oy2LwWB8xTBjzPgm6dmzJ6RSaYGyYsUKvH//HhMmTIC+vj66dOmCvn37YvLkydS0FqZTKpXyCmDCYDDEAZumZjAYDAaDMmxkzGAwGAwGZZgxZjAYDAaDMswYMxgMBoNBGWaMGQwGg8GgDDPGDAaDwWBQhhljBoPBYDAo83+lSBnPpI2+BQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot heatmap\n", + "heatmap_plot = plot_heatmap(\n", + " dnorm=norm,\n", + " fit=lfm_sel,\n", + " y_axis='temp_module_bin',\n", + " x_axis='poa_global_bin',\n", + " z_axis='diff_' + lfm_sel,\n", + " clip=0.025,\n", + " title='residual_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [I] Residual LFM fit heatmap vs. poa_global bin (x) and temp_module bin (y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_fit(dmeas, dnorm, fit, title, save_figs, coeffs):\n", + " \"\"\"Scatter plot fit to normalised measured.\n", + " \n", + " Parameters\n", + " ----------\n", + " dmeas : dataframe\n", + " measurements, must include 'poa_global_kwm2'\n", + "\n", + " dnorm : dataframe\n", + " normalised multiplicative lfm loss values 'i_sc' .. 'v_oc'\n", + " where pr_dc = 1/ff * product('i_sc', ... 'v_oc').\n", + "\n", + " fit : string\n", + " name of fitted variable e.g. 'pr_dc'.\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + " \n", + " \"\"\"\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " plt.title(title)\n", + "\n", + " plt.ylabel('fit ' + fit + ' * poa_global kW/m^2')\n", + " ax1.set_ylim(0, 1.2)\n", + "\n", + " plt.xlabel('meas ' + fit + '* poa_global_kW/m^2')\n", + " ax1.set_xlim(0, 1.2)\n", + "\n", + " plt.plot(\n", + " dnorm[fit] * dmeas['poa_global'] / G_STC,\n", + " dnorm['calc_' + fit] * dmeas['poa_global'] / G_STC,\n", + " 'c^',\n", + " label=fit\n", + " )\n", + "\n", + " # plot 1:1 line to show optimum fit\n", + " plt.plot((0, 1.2), (0, 1.2), 'yo-')\n", + " \n", + " # plot LIC, NOCT and STC irradiances\n", + " for x in (0.2, 0.8,1): \n", + " plt.plot((0, x), (x, x), 'k--')\n", + " plt.plot((x, x), (x, 0), 'k--')\n", + "\n", + " plt.legend(loc='upper left')\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(\n", + " os.path.join('mlfm_data', 'output', 'fit_meas_' + title[:len(title)-4]),\n", + " dpi=300\n", + " )\n", + " \n", + "\n", + "\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAFUCAYAAABPx8fsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAABrL0lEQVR4nO3dd1QUVxsG8GfpvUtvooJKFFTsvcTYjcaADUWNPfnUaCxY0GDsJmhUlGhQQRNbEiX2hho0Kgo2ukiTIr2zlL3fH8rGlbYIy8Dy/s7hxJ25u/PsQPbdmblzL48xxkAIIYSQCmS4DkAIIYQ0VlQkCSGEkCpQkSSEEEKqQEWSEEIIqQIVSUIIIaQKVCQJIYSQKlCRlAKurq4wMDAAj8eDpaUlWrduzUmOAQMG4KuvvuJk20Q8Li4uGDJkCNcxCGkyqEg2cffv38fmzZvh5eWFpKQkPHv2DP/++69w/caNG2FpacldwHrm5eWFwYMHQ0dHBzweD//880+FNmlpaZg7dy7MzMygrKyMbt26wd/fv0K7CxcuwN7eHoqKirC0tMSPP/4osn7AgAHg8XgVflRVVSvNlpKSAkNDQ/B4PCQkJIisS0pKgqOjIzQ0NKChoYGJEyfizZs3Im1yc3Mxe/Zs6OrqQlVVFcOHD8fLly9F2vzwww/o27cvNDQ0Kt1OTXbt2oVTp07V6jniiI2NxZQpU6CnpwclJSVYW1vjr7/+Eq6/ffs2xo4dCwsLC/B4PGzcuLHS19m3bx/at28PFRUVGBkZYfr06UhJSRGu9/f3r/R3cvDgQWGb+Ph4DB06FMbGxlBUVISxsTGmTZtW6321bds2WFhYQElJCZ06dcKVK1eqbHvkyBHweLwKX0DEfd+k8aIi2cRFRkZCRkYGY8eOhaGhIdTV1aGnp8d1LIkpKCjAoEGDsH379krXM8Ywbtw4PHr0CCdOnMDTp08xdOhQDBs2DM+fPxe2CwwMxNixYzFs2DAEBwdj/fr1cHV1xf79+4Vt/vjjDyQlJQl/EhMTYWpqiokTJ1bYrkAgwJQpU9CtW7dK140aNQqvXr3C1atXceXKFURERODzzz/H+2N5ODs74/r16zh9+jT++ecfMMbw6aeforCwUNiGz+djzJgxWL169UftP01NTWhra3/Uc6vy+vVr9OjRA4wx/P333wgLC8Mvv/wCMzMzYZu8vDy0b98e27Ztg6GhYaWvc+rUKSxatAjffvstQkJCcOrUKTx69AjTpk2r0Pbx48civ5spU6YI18nJyeGLL76An58fIiMjcfLkSURERGD06NFivycPDw+4ubnB3d0dQUFB+PTTTzF69Gg8ffq0QtuQkBCsWrUK/fr1q7BOnPdNGjlGmqzp06czACI/bm5urFWrVowxxry9vStdL87rDh48mO3evZuZmJgwVVVVNmvWLFZcXMw8PT2Zubk509LSYrNnz2Z8Pl/4vP79+7MZM2awFStWMF1dXaaurs5mzZrFCgoKatymQCBgI0aMYA4ODqy4uJgxxlhZWRkbPHgw69WrFyspKRFp/+rVKwaA3blzR2R5ZGQkA8Du3bsnsrxjx45s2rRpwseTJk1iPXv2FGmzbNkyZmlpWWXGK1euMADswYMHFdatX7+eDRs2jN24cYMBYPHx8cJ1ly9fZgBYWFiYcNnz588ZAHbz5k3GGGPh4eEMALt8+bKwTUZGBlNQUGDe3t4Vtnfz5s0K2xFH+e/2fb/99huzs7NjioqKzMLCgi1ZsoTl5eWJtNmzZw9r164dU1BQYC1atGBffPGFcN20adNYjx49xM5gYWHB3N3dKyxftGgR69y5s8iy3bt3My0tLeHjj33ff/31FwPAsrKyamwrEAiYsbExW7VqlchyBwcHNn36dJFl+fn5zNbWlh0/frzSffu+qt53ZVJSUpiLiwvT19dnioqKzNramh06dIgxxlhxcTFbsmQJMzExYQoKCszQ0JA5OTkxxt7+jcrIyLC4uDiR1/v999+ZoqIiy8zMFGv75D90JNmE7dq1Cx4eHpCVlRV+o36fk5MTVqxYAVNTU+H6ZcuWifXaDx8+RGBgIK5evYrjx4/D19cXY8eOxd27d3Hx4kX4+PjAx8cHhw4dEnne6dOnkZ6ejjt37uDYsWM4d+4cVqxYUeP2eDweDh8+jMTERKxatQoAsHnzZjx+/Bi//fYb5OTkxMpdVFQEAFBSUhJZrqysjNu3bwsfBwQEYNiwYSJthg0bhpiYmCpPy+3fvx+dOnVC165dRZbfvHkTv/zyi/CU24cCAgLQsmVL2NjYCJfZ2trC1NRUeLo4ICAA8vLyGDx4sLCNtrY2unXrVukp5fpy+PBhzJ8/H0uXLkVISAiOHj2Ka9euYd68ecI2bm5uWLFiBRYsWIBnz57h0qVLsLe3B/D2KPmvv/5Cz549MWnSJOjr66NDhw7YvHkzSktLa5WlT58+CA0Nhb+/PxhjSE5OxunTpzFy5MhK2+rr66NXr144cuSIyBH5h9LS0uDj44POnTtDU1OzxhwxMTFITEys9O/jw9/FwoUL0b17d0yaNEnMd1mzwsJC9O/fH0+ePMGxY8cQEhKCn3/+GSoqKgCAn3/+GSdPnoSvry8iIyNx7tw59OjRAwAwePBgGBkZwdfXV+Q1fXx8MHbsWGhpadVbzmaD6ypN6sbb25vJysoKH79/JMkYY+7u7szCwqJWrzl9+nTWokULkaPEESNGMF1dXVZUVCRcNmbMGJEjiv79+zMLCwtWWloqXHbgwAGmoKBQ4cikKjdu3GCysrJs/fr1TE5Ojp05c6bSdlUdSZaUlLCWLVuyESNGsJSUFFZSUsK8vb0Zj8djCgoKwnby8vLswIEDIs8tP7qr7EgxKSmJycnJsf3794ssT05OZsbGxuzKlSuMscqPdGbPnl3hqJWxt0cmCxYsYIwx9sMPPzAjI6MKbSZMmMBGjBhRYXl9HUlaWFgwT09PkTa3bt1iAFhGRgbLy8tjSkpKbPv27ZW+XnJyMgPAFBUV2XfffcceP37MfH19mba2NnN1da30OdUdUf3yyy9MSUmJycnJMQBs1KhRIn9zYWFhzNPTkz18+JA9fPiQrV+/nsnLy7M1a9ZUeK2JEycyZWVlBoD17NmTvXnzpsb9wxhjAQEBDAALDw8XWb5nzx6moqIifHzkyBHWtm1b4d92fR1JHjx4kCkqKlb5u/3f//7HBg4cyAQCQaXrV6xYwdq1ayd8nJKSwuTk5Njff/9d47ZJRXQkSSrVrl07KCgoCB8bGhrCxsYGioqKIss+7HzSrVs3yMrKCh/37t0bxcXFFTqgVGXgwIFYunQp1q9fj6+++grjx4+vVW45OTn8+eefePPmDQwMDKCkpAQvLy9MmTJFJFd1KjsaPHToEJSUlDB58mSR5VOmTMG0adPw6aef1ipnddv6mDYfIzU1FbGxsfj222+hpqYm/Bk+fDgAICoqCi9evEBRURGGDh1a6WuUlZUBADp27Iht27ahU6dOmDJlClxdXbFnz55a5blz5w5Wr16NHTt24NGjR7hw4QJevXqFmTNnCtvY2Nhg3rx5cHBwgIODA9zc3LBy5Ur89NNPKCkpEXm9n376CUFBQbh48SIAYOLEicK8H6v8dxEeHo4lS5bg999/r7Ij18d69OgR2rdvD1NT00rXz5gxA8+ePUPr1q0xb948nDlzBsXFxcL106dPR2hoKB4+fAgA+O2336Crq4vPPvusXnM2F1QkSaXk5eVFHvN4vEqXCQSCal+H1XKSmbKyMgQEBEBWVhZRUVG1fj4A2NnZ4eHDh8jJycHr169x9+5d8Pl8tGrVStjGyMgIycnJIs8r70X5YQcLgUCAX375BVOmTIG6urrIuuvXr2P79u2Qk5ODnJyc8HSppaUl5s6dW+W2yrdXvi0jIyOkpaVV+BB/v019K//d7dq1C8HBwcKfJ0+eIDIyEh06dBC2rapQt2jRAvLy8mjfvr3IcltbW+Tk5CAzM1PsPKtXr8b48eOxcOFCdOzYEcOHD4enpyeOHz+OqKioKp/Xq1cv5OfnIzU1VWR5+Re7YcOG4cyZM7hx4wauXr1aYw4jIyMAqPTvo/x3ce/ePWRkZKBLly7C3/3Ro0dx48YNyMnJISAgQOz3XZnqvhjZ29vj1atX2LFjBxQUFLBo0SLY29sjJycHwNsvuA4ODjh69CgA4OjRo5g8ebLYlyyIKCqSUk5BQaHO355r4+HDhyLbu3fvHhQUFEQKVHXWr1+PiIgIBAQE4NGjR9i6detHZ1FXV4eBgQHS09Nx+fJlkaPS3r174/LlyyLtL126BAsLiwrf4C9duoTY2Fhh0Xvfs2fPRApM+a0Ily9fhpubm3Bbr169QmRkpPB5oaGhiI+PR58+fYRtSkpKcOPGDWGbrKws3L9/X9imvhkYGMDMzAzh4eFo3bp1hR8lJSW0b98eSkpKFfZVOXl5eXTv3h3h4eEiy8PDw2vdkzY/Px8yMqIfSeVH/9V9WQoKCoKysnK1vbrLvxDw+fwac1haWsLY2LjSv4/y38Xnn39e4Xc/ZswYdO/eHcHBwejUqVON26lKly5d8OLFi2pvWVFTU8O4ceOwe/duBAYGIjQ0FLdu3RKunzZtGn7//Xc8efIEjx8/xvTp0z86T7PH8eleUkc1XZM8efIkk5OTY3fv3mWpqaksPz+/xtes7NrKrFmzWP/+/UWWzZ07l/Xu3Vv4uH///kxdXZ3NnTuXhYSEsL///psZGBiwhQsXivVe/P39maysLLtw4QJjjLHTp08zeXl5kZ6qSUlJLCgoiJ0/f54BYN7e3iwoKIglJSUJ25w+fZpdu3aNRUdHs4sXL7JPPvmEtWvXjuXm5grbPHjwgMnJyTFXV1cWGhrKjhw5wpSUlCpcn2Ps7bXXrl27ivUeKrtWWFZWxjp37sy6devG7t+/z/7991/WpUsX1qNHD5HrSmPHjmWtWrVi/v7+LCgoiA0fPpy1bNlSpHdwbGwsCwoKYr/88ouwN2xQUBBLT08XK9+Hv9ujR48yeXl55u7uzp49e8bCwsLYn3/+yebMmSNss3r1aqaqqsr27NnDwsPDWXBwMNu0aZNw/fnz5xmPx2MbNmxgkZGR7OzZs0xPT4+tW7dO2CY3N5cFBQWxoKAgZmRkxBYuXMiCgoJYZGSksM3333/PlJWV2eHDh1l0dDS7ffs269y5M+vYsSMrKytjjDH2448/stOnT7PQ0FAWFhbGdu3axZSVldmyZcuEr3P69Gl25MgR9uzZMxYTE8OuXr3KevXqxUxNTVlOTo5Y++mnn35iysrKzMfHh4WGhrIVK1YwBQUFFhwcLPa+Ffd9//HHH8zGxoYlJCQwxt72mLW2tmadOnViV69eZdHR0ezatWvs999/Z4wxtm3bNubr68ueP3/OoqOj2Q8//MBkZWVFek+npqYyeXl5Zm9vzzp27CjWeyaVoyLZxNVUJIuLi9mkSZOYtrZ2rW8BeZ+4RXLGjBls2bJlTEdHh6mpqbEZM2aIVZjT09OZqakp+/bbb0WWz5kzh1laWgq77ru5uVW4reXD97Vnzx5mbm7O5OXlmaGhIZs3bx5LTU2tsM2///6bdezYkSkoKDBzc3O2c+fOCm0SEhKYrKwsO3jwYI3vgbGqO9QkJiayCRMmMDU1Naaurs4cHR1ZSkqKSJucnBw2a9Yspq2tzZSVldlnn30m8mHKWOW3/ZR/WRBHZb/bP//8k/Xo0YMpKyszdXV1ZmdnxzZs2CBcLxAImIeHB7O2tmby8vJMX1+fTZgwQeQ1fv/9d2Zra8sUFRVZ69at2ebNm0Vu2ynfLx/+vP83VVpayn744QdmbW3NlJSUmJGREZs8eTKLjY0Vttm2bRuztrZmysrKTENDg3Xu3Jl5eXkJiyhjjPn5+bHu3bszTU1NpqioyKysrNi8efMq3BZRk61btzIzMzOmoKDA7Ozs2KVLl2q9b8V53+W3ar169Uq4LCkpiTk7OzNdXV2mqKjIbGxshL/j/fv3s86dOzN1dXWmqqrKHBwc2F9//VUhz+eff84AsB07dtTqfRNRPMY+4qIPIYQQ0gzQNUlCCCGkCg1WJPfs2QMHBwcoKirCxcWlynZHjhxBly5doKGhAVNTUyxfvrzWNyWTqt25c0eku/+HP3fu3JHIduPi4qrd7rFjxySy3ebk2LFj1e7juLg4riM2CvPmzatyH9na2nIdjzQyDXa69Y8//oCMjAwuX76MwsJCHD58uNJ2np6e+OSTT9C9e3ekpqZizJgx+PLLL7Fy5cqGiCn1CgsL8fr16yrXm5iYQFlZud63W1paipiYmCrXGxgYVLi9gtRObm6uyGDgH7K0tKTbAAC8efNGeLvEh+Tl5WFhYdHAiUhj1uDXJNesWYOEhIQqi+SHfvzxR9y8eRN+fn6SDUYIIYR8oNFfk7x9+zadAiGEEMKJRn3uxdvbG4GBgSJzxb3Py8sLXl5eAICwsDC0bdu2IeMRQghphHJzHwn/nZwMZGd//AnTRlsk//rrL6xcuRLXrl2rciSNOXPmYM6cOQAABwcHBAYGNmREQgghjUhpaQ6iohYjOfm/IlnJQFm10ihPt166dAmzZ8+Gn5+fyPiRhBBCSGWysu4gMNAOyclHoKv7OWRkVOrldRusSJaWlqKoqAhlZWUoKytDUVFRpbd23LhxA1OmTMGZM2cqneWdEEIIKScQ8PHy5UoEB/cHIItOnf5Bhw5/wsbGC4qKde+p3GBFcuPGjVBWVsaWLVvg6+sLZWVlbNy4UXj/XPk9XO7u7sjOzsaIESMqTN1DCCGElMvLe45Hj7ojPn4rjIxmw8EhGJqaPQEABgZT0LNnDNTVu9RpG1IzLB1dkySEkOaBMQESEjwQHb0KcnJasLE5BD29UZW2rWttaLQdd+qLQCBAWloasrKyGnTKqKZISUkJpqamFeaNJISQxqKoKA5hYS7IyroJXd2xsLH5BQoKLSS2PakvkgkJCeDxeLC0tIS8vLzEZnlv6hhjSE9PR0JCAlq2bMl1HEIIEcEYQ0rKMURGLgQggI3NIRgazpD4Z7rUF8n8/HzY2NhUmMyViOLxeNDV1a0wuzshhHCtpCQDERHzkJp6ChoavdGu3VEoK1s1yLalvkgCoAIpJjrKJoQ0NhkZVxAW5oKSkjS0bLkZ5ubfgceTbbDtN4siSQghpGkpKytAdPQKvH69Byoq7dGhw3moq3dq8Bx0iCWleDweoqKiuI5BCCG1lpMTiEePuuD16z0wNV2CLl0ecVIgATqSJIQQ0kgIBKWIi9uC2NgNUFAwhJ3dNWhrD+Y0ExXJJqK0tJTmAiSESK2CgiiEhTkjJ+df6OtPRps2eyAvr811LDrdWpMkPh/9g4KQzOdL5PUtLS2xefNmtG/fHtra2pgxYwaKiorg7+8PU1NTbN26FYaGhpgxY0a1r7N9+3YYGRnB2NgYv/76q8i6wsJCLF26FBYWFtDU1ESfPn1QWFgokfdDCCG1wRhDYqIXAgPtUFAQhnbtfkP79scaRYEE6EiyRu4xMfgnOxvusbHYa20tkW0cO3YMly9fhqqqKkaPHo2NGzdiyJAhSE5ORkZGBmJjYyEQCKp8/qVLl7Bjxw5cv34dLVu2xOzZs0XWL1u2DC9evMDdu3dhaGiI+/fvU49fQgjn+PxkhId/hYyM89DWHgIbG28oKZlyHUsEfVJWI4nPh3dKCgQAvJOTJXY0+fXXX8PMzAw6OjpYvXo1fvvtNwBvb13ZsGEDFBUVoaysXOXzT548iRkzZuCTTz6Bqqoq1q9fL1wnEAjw66+/YteuXTAxMYGsrCx69eoFRUVFibwXQggRR2rqXwgM7ICsrOto3Xo3Ona83OgKJEBFslruMTEQvBvatowxuMfGSmQ7ZmZmwn9bWFggMTERANCiRQsoKSnV+PzExMQKr1EuLS0NRUVFaNWqVT0mJoSQj1NamoOwsJl48WIcFBXN0aXLI5iafgMer3GWo8aZqhEoP4osflckixmT2NFkfHy88N9xcXEwNjYGIP7N/UZGRhVeo5yenh6UlJTw8uXLekpLCCEfJyvrH+Gcj+bmq9G58z2oqrbnOla1qEhW4f2jyHKSOprcu3cvEhISkJGRgU2bNsHJyalWz3d0dMThw4cREhKCgoICbNiwQbhORkYGM2fOxLfffovExESUlZXh3r174Evo1DEhhHxIIChGdPQqBAf3AyCDTp3uwMpqI2RkFLiOViMqklW4l5MjPIosV8wY7mZn1/u2Jk+ejKFDh8LKygpWVlZYs2ZNrZ4/fPhwLF68GIMGDULr1q0xaNAgkfU7duxAhw4d0LVrV+jo6GDFihXVdgQihJD6kp//Ao8fd0dc3BYYGX0FB4cn0NTsxXUssUn9fJKhoaFo164dB4nEY2lpiYMHD2LIkCFcRwHQ+PcXIaRpSCwqxO7gNRjO3ws5OU3Y2ByEnt7oBs9B80kSQghpVIqK4nHnsSOGFf+LBKVB+LLzb1BQ0Oc61keh061NxKZNm6CmplbhZ/jw4VxHI4QQAOVzPh7Hg4cdoFH8BNuxDLP565DBNLmO9tHoSJJjMTExYrVzdXWFq6urZMMQQshHejvn4wKkpp5AmnwnLCtbhlgYQwGQ6GAskkZHkoQQQuokI+MqHj7sgLS0M9Az/x7TS3ciFm9vZZPk7XMNoVkUSSnpmyRxtJ8IIbVRVlaAyMj/4enToZCT00Tnzvexr8QRpR+UFkkOxiJpUn+6VV5eHoWFhVBRUeE6SqNXUlJCM40QQsSSm/sIoaFTUVAQBhOTRbCy2gxZWWXcy3nYYLfPNQSp/0TU19fH69evYWJiAmVlZbFHsWluBAIBUlJSoKnZdC+wE0IkTyAoRXz8VsTErIe8vAE6drwKHZ3/bmEL6tqVw3T1T+qLpIaGBoC345uWlJRwnKZxU1VVhZ6eHtcxCCGNVGHhS4SGOiMn5x709SehTZu9jWZKK0mR+iIJvC2U5cWSEEJI7TDGkJR0EFFRSyAjI4927Y7DwGAS17EaRLMokoQQQj5OcXEKwsO/Qnr639DSGoy2bQ83yimtJIWKJCGEkEqlpZ1FePhslJbmoHVrD5iYNN4prSSFiiQhhBARpaW5iIpaguTkQ1BT6wR7e99GP6WVpFCRJIQQIpSdHYDQUGcUFcXC3NwVlpZuTWJKK0mhIkkIIQQCQTFiYtYjLm4rlJQs0anTbWhq9uY6FueoSBJCSDOXn/8CoaFTkZcXDCOjr9Cq1Y+Qk1PnOlajQEWSEEKaoSQ+H5NePMc+nZtIjV0DOTkNfPLJWejpjeE6WqNCRZIQQpqRJD4fE0NCYCuXidE53+FNzmPo6o6Gjc0vUFAw4Dpeo9O8+vISQkgz5x4TA/nsPzA8fSzaIwS7eN9Br81JKpBVoCJJCCHNREJ+MvSTFmANNiIWFvgKB3EBI7ExLo7raI1WgxXJPXv2wMHBAYqKinBxcam27U8//QRDQ0Noampi5syZ4DfRecgIIaSxyMi4hqeP7NEHt3AQs7AIu5AIkyY/36OkNViRNDY2xpo1azBz5sxq212+fBlbtmzB9evXERMTg+joaLi5uTVQSkIIkS5lZYWIjFyEp08/RZpAEQuxF8cwFQLI/temCc/3KGkNViTHjx+Pzz//HLq6utW2O3LkCGbNmgVbW1toa2tj7dq1OHz4cMOEJIQQKZHE52Ni4HHcD+yM1693I0LFGQvxCyJgU6FtU57vUdIaXe/WFy9eYOzYscLHdnZ2SElJQXp6erUFNjw8HAMGDBBZ5ujoiAULFqCgoAAjRoyo8BwXFxe4uLggLS0NEyZMqLB+/vz5cHJyQnx8PJydnSusX7p0KUaPHo3w8HDMnTu3wvo1a9ZgyJAhCA4OxuLFiyus37RpE3r16oW7d+/C1dW1wnoPDw/Y29vj2rVr2LhxY4X1Bw4cgI2NDfz8/LBz584K6318fGBmZoYTJ07A09OzwvrTp09DT08Phw8frvSLyIULF6CiooJ9+/bh5MmTFdb7+/sDAHbs2IG///5bZJ2ysjIuXrwIAHB3d8f169dF1uvq6uLMmTMAgFWrVuHevXsi601NTeHr6wsAWLx4MYKDg0XWW1tbw8vLCwAwZ84cREREiKy3t7eHh4cHAGDq1KlISEgQWd+zZ09s3rwZAPDFF18gPT1dZP3gwYOxdu1aAMDw4cNRWFgosn7UqFFYtmwZAFT4uwPob4/+9jwAcPe3N2/eHBwPXIqvSvYjW0YX3TtewZKXWshDfoX29qqqUjcHZH1qdEUyLy9PZOLf8n/n5uZWKJJeXl7CP1aaK5IQQoDi4lQ8COqLI/P/RY6MFgp2HcJT1X4I6qrIdbQmiccYY9U1OHnyJAICAmBra4sZM2ZAXl5euG7BggXYt29frTa4Zs0aJCQkVHkK1c7ODqtXr4ajoyMAID09HXp6ekhLS6v2SNLBwQGBgYG1ykIIIdLi7ZyPhxAVtRhFTAYTF+kgE1pQ2LULXxkZYa+1NdcROVHX2lDtNckdO3Zg+fLlAID9+/ejW7duSEpKEq4vPyVRn2xtbfHkyRPh4ydPnsDAwKDGa5mEENJcFRe/wfPnnyMiYjaU1LpiFn5FJrTerqPeq3VSbZH09PTElStXsGvXLjx+/BhjxoxBnz59EPuuF1QNB6EiSktLUVRUhLKyMpSVlaGoqAilpaUV2k2bNg2HDh1CSEgIMjMzsXHjxhpvGSGEkOYqLe0cHj78BBkZl9Gq1U84rLIPb9BCpA31Xv141RbJ1NRUtG7dWvh4w4YNWLJkCfr27Yvw8HDweDyxN7Rx40YoKytjy5Yt8PX1hbKyMjZu3Ii4uDioqakh7t3NrMOGDcPy5csxcOBAWFhYwMLCAhs2bPjIt0cIIdKptDQX4eGz8fz5WCgqmsDB4RHMzBbjXm4eij84gKHeqx+v2muSHTp0gI+PD+zt7UWW//rrr1i9ejUyMjIazY3+dE2SENJcZGfffTfn4yuYm6+EpeX6CnM+lvcXWbBgARcRG4261oZqe7dOnz4d165dq1AkZ86cCUVFRWE3ZUIIIZL3ds7HDYiL2wIlJXPY29+GllafSts29+JYX2rs3dpU0JEkIUSa5eeHvJvzMQiGhjPRuvVPkJPTqLJ9QUEBAEBFRaWhIjZKEj2SJIQQwi3GBHj9eg+io1dAVlYNtrZ/okWLz2t8XvkgFuUDL5CPU+OwdIwxLFq0qCGyEEIIeU9RUQKePv0MUVGLoK09BF27PherQJL6U+2RZGlpKZydnSEnRwechBDSkFJSfkdk5HwIBCWwtvaCkdFXtbqjgNSPKo8k8/LyMHz4cJSWltIA44QQIiFJfD76BwUJb/YvKclESMgUhIZOgopKWzg4BMPYeDYVSI5UeYjo4eGBgoICXLp0CbKyslU1I4QQUgfuMTH4Jzsb7rGx2NgiHmFhLiguTkbLlhthZrYCMjJ0Jo9LVR5J9uzZEy9evMDVq1cbMg8hhDQbSXw+vFNSIAc+5BLX4MmTIZCVVUPnzv/CwmJ1nQpk+UwzpG6q/A0MHjwYfn5+cHJywvHjxyudkoUQQsjHSeLz0eXRI7QURGA5NsISsYhUdcbMzvshK1v32zaoQNaPanu39u3bF5cuXap0vjpCCCEfb1VUBAYWe2MX5kMV+fgO27Co8CukltbP5a20tDSkpaXVy2s1ZzUey3fs2BFXrlxpiCyEENIsxGaHwiF1Mj7Bc/ijP37Et8iFBhTeDUReH9NalU/mTfdJ1o1YJ7wtLCwknYMQQqQeYwzJyb8iIuJ/sAQPP8AV1zAEwNueqzQQeeMj9lXhgoICREVFIS8vT2R5r1696j0UIYRIm+LiNwgPn4P09LN4gU7YjBV4AwMAgLKMDKK7d4ehoiLHKcmHxCqSR48exddffw0FBQUoKysLl/N4POEUV4QQQiqXluaH8PCvUFqajWD1lViZOxR8/HffY1k9nmYl9UusIrl8+XKcOXMGn376qaTzEEKI1CgtzcPLl98iKekXqKrawc7uOhaHFoKPfJF2dJq18RKrSCooKNAtIIQQUgvZ2ffezfkY/d6cj4oI6tow258/f37DbEjK1TjAOQC4u7vj22+/pe7EhBBSA4GgBK9erUVQUB8AZbC3vwUrq82QkWnY641OTk5wcnJq0G1KI7GKpLW1Nc6dOwcDAwPIyspCVlYWMjIyNFwdIYS8Jz8/FI8f90Rs7EYYGk6Hg8MTaGn15SRLfHw84uPjOdm2NBHrdKuzszOmTZsGJycnkY47hBBCyud83Ivo6OXv5nz8Ay1ajOM0k7OzMwC6T7KuxCqS6enp+P7772kUekII+QCf/xphYTOQmXkVOjojYWNzEIqKhlzHIvVErNOtM2bMgI+Pj6SzEEJIk/LmzQk8fNgB2dkBsLbejw4d/KhAShmxjiQfPHiAPXv24IcffoCBgYHIutu3b0skGCGENFYlJZmIjPwab94ch7p6d7Rr5wMVlTZcxyISIFaRnD17NmbPni3pLIQQ0uhlZl5HWJgL+PwkWFp+D3PzVTTnoxSr9jd78OBBjBgxAtOnT2+oPIQQ0iiVlRXh1StXJCT8BGVlG3TufA8aGg100+NHWLp0KdcRpEK11yQfPnyInj17wt7eHqtXr0ZAQAAYYw2VjRBCOJHE56N/UBCS+XwAQG5uMB49ckBCwk8wMfkaDg6PG3WBBIDRo0dj9OjRXMdo8qotkgcOHEBsbCx8fHygoaGBVatWwdDQEJMnT4avry8NLkAIkUruMTH4Jzsb7jHRiIvbisePu6G0NAMdO15CmzY/18ukyJIWHh6O8PBwrmM0eTxWy0PD7OxsXL58GefPn8fVq1dhbm6ODRs24LPPPpNURrE4ODggMDCQ0wyEkKYvic+H1f370BK8xmpsxid4hhYtvoS1tSfk5XW5jie28qFEm/t9knWtDdVekxQIBJCRET3Y1NTUhKOjIxwdHQG8PSVLCCHSwv3VKwwRXMB87AaDDO5rbcPy9svoPvFmqtoiqampid69e6Nfv37o168funfvDnl5eZE2Xbs27vPyhBAirvi8BJgmz4Yj/kEQ7LEFK5GbY4TpxcU012MzVe01yUuXLmHAgAEICAjA6NGjoampiYEDB8LNzQ3Xr19HYWFhQ+UkhBCJSkv7Gy8e28MB97EP87EUO/EGBsK5HknzVO2RZO/evdG7d2+sXLkSjDE8efIEt2/fxp07d7Bv3z7k5uaiqKioobISQki9ezvn41IkJXkhXaY11mIbXsFKuJ7memzexL4DNjs7G/Hx8YiLi0Psu29VgwcPllgwQgiRtPfnfDQzW45+Lb/HlAae0kpS1qxZw3UEqVBtkTx9+jRu3bqF27dvIzMzE71790afPn0wbdo0dOjQgS5kE0KanCQ+H5NfPMFu9T+R/nobFBXNYG/vDy2tflxHq1dDhgzhOoJUqLZIOjo6ol27dlixYgWcnJygSBeuCSFNnEfUDUzMWYz0nAgYGrqgdetdkJPT4DpWvQsODgYA2Nvbc5qjqau2SP7zzz+4ffs2Tpw4geXLl6NNmzbo27cv+vbti969e0NDQ/r+sAgh0okxhtDYXRiUugJFUMJGnjt8W34HOTnp/PK/ePFiAHSfZF1V27u1V69eWLlyJc6fP4+kpCT8/PPPMDQ0hLe3N9q0aYNOnTo1VE5CCPlofH4inj4dhjcxSxCMzpgBb9xBX+q1Smok1nySwH8dd+Lj4xETE4OMjAykpqaKvaGMjAyMGzcOqqqqsLCwwPHjxyttxxjDmjVrYGJiAk1NTQwYMAAvXrwQezuEEPK+N29O4eHDT5CV/Q9+5n2LldiETOigmDF4JycLx2clpDLVFsnTp0/jm2++gZ2dHfT09LBo0SK8efMGc+fORUhICBISEsTe0MKFC6GgoICUlBQcO3YM8+fPr7T4nTp1Cr/++ivu3LmDjIwM9OzZE87OzrV/Z4SQZql8cPLX+SkIDXVGSIgjlJXb4LzuGfyNMQD+63BI90CSmlR7TXLNmjXo168fvvvuO/Tv3x9mZmYftZH8/HycOXMGz58/h5qaGvr06YMxY8bAx8cHW7ZsEWn76tUr9OnTB1ZWb+9Tmjp1Kn766aeP2i4hpPlxj4lBXrY/njzeDpWyN7C03ABzc1d89SgIxSxfpC3dA0lqUm2RDAsLAwAkJibC2Ni4wvqgoCCxrktGRERAVlYW1tbWwmV2dna4detWhbYTJ07EiRMnEBERgZYtW+LIkSMYNmxYjdsIDw8XDuhbztHREQsWLEBBQQFGjBhR4TkuLi5wcXFBWloaJkyYUGH9/Pnz4eTkhPj4+EqPZpcuXYrRo0cjPDwcc+fOrbB+zZo1GDJkCIKDg4UX0d+3adMm9OrVC3fv3oWrq2uF9R4eHrC3t8e1a9ewcePGCusPHDgAGxsb+Pn5YefOnRXW+/j4wMzMDCdOnICnp2eF9adPn4aenh4OHz6Mw4cPV1h/4cIFqKioYN++fTh58mSF9eUdAnbs2IG///5bZJ2ysjIuXrwIAHB3d8f169dF1uvq6uLMmTMAgFWrVuHevXsi601NTeHr6wvgbQeE8p565aytreHl5QUAmDNnDiIiIkTW29vbw8PDA8DbL1ofnvXo2bMnNm/eDAD44osvkJ6eLrJ+8ODBWLt2LQBg+PDhFUaXGjVqFJYtWwYAFf7uAPrb4+pvjy8oRSL/JY5sTUZCmRnadbgFS93eAICgZjaE5qZNm7iOIBXEGkxg6NChuH37NnR0dITLHjx4gLFjxyIpKanG5+fl5UFTU1NkmaamJnJzcyu0NTIyQt++fWFjYwNZWVmYmZnhxo0blb6ul5eX8IOypKREnLdCCJFSZWV5yM0LgaFCIaYu1kUytDD3ZAvsbToTd9SrXr16cR1BOjAx7Nq1i3Xp0oXl5uYyxhgLCAhgBgYG7Pz58+I8nT1+/JgpKyuLLNuxYwcbNWpUhbaurq6sZ8+eLD4+npWUlDBvb29maWnJ8vPzq91Gly5dxMpCCJEuAkEpi43dwm76y7MzN3VY15tbGezsGOzsmPKtWyypqIjriJwICAhgAQEBXMfgXF1rg1i9W//3v/9h7NixGDFiBC5evIhx48bB19e30tNIlbG2tkZpaSkiIyOFy548eQJbW9sKbZ88eQInJyeYmppCTk4OLi4uyMzMREhIiJhlnxDSXBQWxiA4eCCio1ciXnEg5sAbD9FNuL45d8xxdXWt9FQ6qR2xbwFZu3YtunbtCicnJ5w6dapWQx6pqqpi/PjxWLduHfLz8xEQEICzZ89Weq2la9euOHXqFFJSUiAQCODj44OSkhK0bt1a7O0RQqQbYwxJSYcRGNgReXlP0LbtUfwo4450iA5wQh1zSF1VeU3SzMyswtisAoEAAoEAU6dOFS6Li4sTa0P79u3DzJkzoa+vD11dXXh6esLW1hZxcXFo3749QkJCYG5ujhUrVuDNmzewt7dHfn4+WrdujTNnzkBLS+vj3iEhRKoUF6ciImIu0tL+hKZmf7RrdwRKShYIMvyvzYB3nxf+lXSqIqQ2qiyS5T0L64uOjg7++uuvCsvNzc2Rl5cnfKykpIS9e/di79699bp9QkjTl55+HmFhs1Bamgkrq+0wM/sWPF7FE2KOjo4cpCPSqMoi2b9//4bMQQghVSory8fLl8uQmLgfqqodYGd3BWpqHatsv2DBggZMR6SZ2PNJEkIIF3Jy7iM0dCoKC1/CzOw7tGzpDpka5nwsKCgAAKioqDRExEap/D5hUjdUJAkhjZJAUILY2I2Ijf0BioomsLe/CS0t8c5wlfe8b84zYNAUWfWDiiQhpNEpKAhHaOhU5OYGwsBgOtq02QU5Oc2an0iErl27BoAmX64rKpKEEM4l8fmYGBKC39u1gyD9EF6+/A4yMiqwtT2NFi2+4Dpek1Q+nCAVybqpskg6OztXuAWkMkePHq3XQISQ5sc9Jgah2S9xK+h/MOT/Ax2d4bCxOQRFRSOuo5FmrsoiSTfvE0IaQhKfj8jkE/gFO6HI58Og5W60Nf9arC/phEhalUXSzc2tIXMQQpqh0tJsXA6ejtXsLELRFtuxGsP53bC3jgXSxcWlfgKSZk/sa5LFxcUIDw9HWloaGGPC5YMGDZJIMEKIdMvM9MeL0GkwK06EN1xwDFNQBjl4JydjrYUFDBWrv82jOlQkSX0Rq0j+888/+PLLL8Hn85GTkwMNDQ3k5ubCzMwM0dHRks5ICJEiZWVFePVqDRISfkSurDlW42c8Q7v/1r8blHzve/PP1lZaWhoAQE9Pr855m6oDBw5wHUEqiFUklyxZguXLl2PJkiXQ1tZGRkYGvv/++2Z9oy4hpPby8p4iNHQq8vOfwdh4PpyzJuJZgUCkTX0MSl4+kXVzvk/SxsaG6whSQawiGRERgUWLFoksW7lyJVq2bCmcnZ0QQqrCWBni43/Eq1drIC+vgw4dLkBXdzjucx1Mivn5+QEARo8ezXGSpk2sIqmpqYmcnBxoaWnByMgIISEh0NXVFRmYnBBCKlNYGIOwsOnIzr4NPb3xsLY+AAWF5nsatKHs3LkTABXJuhJrPsnx48fjwoULAIBZs2Zh4MCB6NKlC7788kuJhiOENF2MMSQnH3k352MQ2rY9Alvb01QgSZMi1pHk+wPlLl26FN27d0dubi4+++wzSeUihDRhxcVp7+Z8/AOamv3Qtu0RKCtbch2LkFqr1bB0r1+/RmJiIlq2bAkTExNJZSKENGHp6RcRHj4TJSUZ7+Z8XAIeT7ZBM8yfP79Bt0ekl1hFMi4uDlOmTMG9e/ego6ODjIwM9OjRA8eOHYOFhYWkMxJCmoC3cz5+h8RET6iqdkDHjpernfNRkpycnDjZLpE+Yl2TnD59Orp06YLs7Gy8efMGWVlZ6Nq1K6ZPny7pfISQRiiJz0f/oCAk8/kA3s75GBjYCYmJ+2FmtgydOz/grEACQHx8POLj4znbfmPg4+MDHx8frmM0eTz2/vA5VdDQ0EB6ejrk5eWFy4qLi6Grq4vc3FyJBhSXg4MDAgMDuY5BSLOwIDwcB5KSMN+oBZYqnEJs7EYoKpqgbdsj0NYewHU8DBjwNkNzvk+SvFXX2iDWkWSPHj3w4MEDkWWBgYHo2bPnR2+YENI0JfH58E5JgQni0CFpAmJjN8DAYDK6dn3aKAokeevEiRM4ceIE1zGavCqvSa5bt07471atWmHEiBEYOXIkzMzMEB8fjwsXLmDy5MkNEpIQ0ni4v3qFEYI/MRueKIYi7ml7YFW7RTU/kTQoT09PAHR9tq6qLJIfns8fP348AODNmzdQVFTEuHHjUFRUJNl0hJBGJT43Bi2Tp8MRD/AAXbENy1GQrY8ZfH6dBiQnpLGqskh6e3s3ZA5CSCOXmnoGISGz0AFF8MAinMVYADwo1MOA5IQ0VmLfJxkZGYnffvsNr1+/homJCSZNmoQ2bdpIMhshpBEoLc1GZOT/kJJyFMky7bGWrUA8zIXr62NA8vq2dOlSriMQKSFWkfTz88OUKVMwatQoWFhYIDw8HA4ODvDx8cGYMWMknZEQwpGsrFsIDZ0GPv81LCzc0M9iNabLyNf8RI7ReKWkvohVJF1dXXH27FkMHDhQuMzf3x9ff/01FUlCpJBAwMerV2sRH78Dysqt0blzADQ0unMdS2zh4eEAmvd0UadPn+Y6glQQq0gmJCSgb9++Isv69OmDhIQEiYQihHBHdM7HeWjVagdkZVW5jlUrc+fOBdC875NszhNO1yex7pO0t7cXTrtS7scff4S9vb0kMhFCOMBYGeLiduDRo64oLn6DDh3Ow9ras8kVSPLW4cOHcfjwYa5jNHliHUl6enpi9OjR2LVrl/A+SVVVVZw7d07S+QghDaCoKBahodORnX0Lenrj3s352ILrWKQOyguki4sLpzmaOrGKZNu2bREaGop79+4hKSkJxsbG6N69u8gwdYSQpocxhpQUH0RGfgOAwcbGG4aG08Hj8biORkijIPYtIHJychWuSxJCmq63cz7OQ1raGWhq9n0352NLrmMR0qhUWSTNzMzE+jYZFxdXr4EIIZKXnn4J4eEzUFKSDiurrTAzW9rgcz5K0po1a7iOQKRElUXS19e3IXMQQhrA2zkflyMxcR9UVT9Bx46XoKZmx3WsejdkyBCuIxApUWWR7N+/f0PmIIRISBKfj4khIThslo83L2ehsDASpqZL0bLlRsjKKnEdTyKCg4MBoFn3wL9w4QLXEaSCWNck358R5H2KioowNTXFsGHDYGBgUK/BCCH1Y+OrKLTM3o1X2T5QVjSGnd11aGsPrPmJTdjixYsBNO/7JFVUVLiOIBXEuk8yIiICW7duxc2bNxEVFYWbN29i69atCAoKgqenJ6ysrHDp0qVqXyMjIwPjxo2DqqoqLCwscPz48SrbRkdHY9SoUVBXV4eenh6WL19eu3dFCAEAxGY9R4fkL+GCw7iJwTDv+FDqCyR5a9++fdi3bx/XMZo8sYqkQCDA77//jjt37uD48eO4c+cOTp48CVlZWfz777/Yt28fVq5cWe1rLFy4EAoKCkhJScGxY8cwf/58vHjxokK74uJifPrppxg0aBCSk5ORkJCAqVOnfty7I6SZYozh9ev9iHzSDSZIwHq4YRvPFZteN66ByInknDx5EidPnuQ6RpPHY4yxmhppamoiIyMDsrL/9X4rKyuDtrY2cnJyUFZWBi0tLeTm5lb6/Pz8fGhra+P58+ewfjedjrOzM0xMTLBlyxaRtl5eXvDx8cGdO3dq9UYcHBwQGBhYq+cQIk3Krz0ea62NjFcLkJFxEY/QFVvwHdLwdmAAZRkZRHfvLvVzPw4YMABA8z7dSvvgrbrWBrGOJFu1aiWc5brc/v370apVKwBAWloaVFWrHroqIiICsrKywgIJAHZ2dpUeSf7777+wtLTE8OHDoaenhwEDBuDZs2divRlCmjP3mBgg2w8vgjohK+smHmushSu2CQskAJS9m/uRECIesTruHDx4EOPHj8fWrVthYmKC169fQ1ZWFn/88QeAtyPuu7u7V/n8vLw8aGpqiizT1NSs9MgzISEBN2/exLlz5zB48GDs2rULY8eORVhYGBQUFETaenl5wcvLCwCQmpoqzlshRCol5L+BdtJibMAlRAhs8Jn9SSyK5KMY+SLtGuPcj5KwadMmriMQKSFWkezcuTMiIyPx77//IjExEUZGRujZs6dwWLp+/frBysqqyuerqakhJydHZFlOTg7U1dUrtFVWVkafPn0wfPhwAMCyZcuwceNGhIaGws5O9H6uOXPmYM6cOQDeHlIT0hxlZd3Gk2eTMAjJOApn/I7pmPFGCUFdO3IdjTO9evXiOgKREmIPSycvL1/tsHTt27evUAjLWVtbo7S0FJGRkWjTpg0A4MmTJ7C1ta3QtmPHjggICBA3FiHN1vtzPmbBGD/gZ4SiPQDAOzkZay0spP7aY1Xu3r0LoHkXy+Z+LbK+iHVNUhzV9f9RVVXF+PHjsW7dOuTn5yMgIABnz56Fs7NzhbZTp07Fv//+i2vXrqGsrAweHh7Q09NDu3bt6isqIU1eXt4zPHrUDfHx2/FSxREL8IuwQAJ07dHV1RWurq5cxyBSoN6KZE3jvO7btw+FhYXQ19fHpEmT4OnpCVtbW8TFxUFNTU04BqyNjQ18fX0xb948aGtr4+zZszh37lyF65GENEeMCRAfvxOPHjmguDgFHTr8jT28pciBski75nLtkVRtx44d2LFjB9cxmjyxbgERh4aGRpWnWxsC3QJCpF1RURzCwqYjK8sfenqfw9rai+Z8rALd/kD7oFxda4PY1yQJIdx4O+fjMURGLgQggI3NrzA0dKE5HwlpAPVWJOvpgJQQ8p6SknRERMxHauopaGr2Qdu2R2nOR0IaUL0VyZCQkPp6KUKatfKRcw4Zv8abl3NQUpIGK6stMDNbJlVzPkqSh4cH1xGIlBCrSObk5GD9+vW4desW0tLSRI4ayzvcmJmZSSYhIc3Mpleh6JT9PRKy/4KKii06dLgAdXV7rmM1Kc15iqxyysrKNTciNRKrd+uCBQvw+PFjrFu3DhkZGfj5559hbm6OJUuWSDofIc1KdHoAuiePwef4C3/AEaYdAqhAfoRr167h2rVrXMfg1MWLF3Hx4kWuYzR5Yh1JXrlyBaGhodDV1YWsrCzGjh0LBwcHjB49mgolIfVAIChFXNwmxMR8D0Xo4FvsxAteF5TFp2CvtWbNL0BEbNy4EQAwZMgQjpOQpk7sqbLKx15VU1NDVlYWjIyMEBUVJdFwhDQHBQWRCArqg5gYN/hjEGbgVwShM4oZg3dyMpL5fK4jkibI3d292jG1iXjEKpJ2dna4desWAKBv375YuHAh5s+fLzKrByGkdhhjSEw8gMBAexQWRuCe1o/YyluNfKgJ2zT3kXPIx7t+/TquX7/OdYwmT6wi+csvv8DS0hIAsHv3bigpKSErKwtHjx6VZDZCpBafn4xnz0YhImIeNDV7o2vXZzhZ0gfFH9xKRSPnEMItsa5Jvj/DR4sWLXDo0CGJBSJE2qWm/onw8NkQCPLRuvVumJgsBI8ng6CuJlxHI4R8QOz7JL29veHj44PXr1/DxMQEzs7OmDFjhiSzESJVSktzEBW1GMnJ3lBT64x27XyhqkoD90vCgQMHuI5ApIRYRfKHH37A0aNHsXTpUlhYWCA2Nhbbtm1DYmIiVq9eLemMhDR5WVl3EBY2DUVFcbCwWAMLi7WQkaFB+yXFxsaG6wic09XV5TqCVBBrgPOWLVvC398fFhYWwmWxsbHo168fYhtJpwIa4Jw0JuWj5vzWthUKEzchPn4blJSs0K6dDzQ1e3IdT+r5+fkBAEaPHs1xEsK1BhngPD8/Hy1aiM42oKuri8LCwo/eMCHSzD0mBgnZwXjwaDK0SsNgZDQHrVrthJycWs1PJnW2c+dOAFQkSd2J1bt12LBhmDJlCsLDw1FYWIiwsDBMnz4dn332maTzEdLkJBYVIit5NzwxF6w0BaZt/4CNzQEqkKRBrVq1CqtWreI6RpMnVpHcs2cP1NXVYWdnB1VVVeF/f/75Z0nnI6RJKSqKw53HAzGH7cMDdMNceOOnHFuuY5Fm6N69e7h37x7XMZo8sU63amho4OjRozh8+DDS0tKgp6cHGRmx6ishzQJjDG/eHEd4xEKolxVjG77DRQwHwIN3cjLWWljAUFGR65iEkFoS+xaQyMhInDx5EomJiTA2NoajoyPatGkjyWyENAklJRnv5nw8iVT5zlhWtgxxMBKuLx81Zy+NUEVIkyPW4eDx48fRqVMnPH36FKqqqnj27Bk6d+6M48ePSzofIY1aRsYVPHzYAWlpf6Jly83YLL9XpEACNGoOF3x8fODj48N1DCIFxDqSXLNmDS5cuIB+/foJl925cwfOzs6YPHmyxMIR0liVlRUgOnoFXr/eAxWV9ujQ4W+oq3fCY4uan0skj+a3BUxNTbmOIBXEKpK5ubno2VP03q4ePXogPz9fIqEIacxycgIRFuaMgoIwmJouRsuWmyArSxPcNiYnTpwAADg5OXGchDu+vr5cR5AKYp1u/fbbb+Hq6oqioiIAQGFhIVavXo1vv/1WouEIaUwEglLExGxEUFBPlJXlwc7uGlq3/okKZCPk6ekJT09PrmMQKSDWkeS+ffuQnJyMXbt2QVtbG5mZmWCMwcjISOQPMS4uTmJBCeFSQUEUwsKckZPzL/T1J6NNmz2Ql9fmOhYhVVq8eDEAwMPDg9McTZ1YRZIO20lzxRhDUtIviIpaAhkZBbRr9xsMDCZyHYuQGgUHB3MdQSqIVST79+8v6RyENDp8fjLCw79CRsZ5aGsPgY2NN5SUqDMEIc2J2PdJEtKcpKb+hYiI2SgryxOZ85EQ0rxQkSTkPaWlue/mfPz13ZyPPlBVbc91LFJLp0+f5joCkRJUJAl5Jyvrn3dzPsbC3Hw1LC3X0ZyPTZSenh7XEThnTSM81Ysai+SDBw/QrVu3Cv8mRFoIBMWIiXFDXNxWKCm1RKdOd6Cp2YvrWKQODh8+DABwcXHhNAeXvLy8uI4gFWoskteuXUNSUhJkZWXx9OlTKpJEquTnv0Bo6FTk5QXDyOgrtGr1I+Tk1LmOReqIiiSpL9UWybi4ODg5OWHevHmQkZGBp6cn4uLiYG5u3lD5CJEIxgRISNiF6OhVkJPTwCefnIWe3hiuYxFSb+bMmQOAjijrqtoi6e3tDQBISEgAj8cT3i+5bt06yScjREKKiuIRFuaCrKwb0NUdAxubX6CgoM91LELqVUREBNcRpEK1RdLNzQ3//PMPSkpKwOPxMGjQIPTp06ehshFSr97O+fgbIiIWgLFS2NgchKHhTPB4PK6jEUIaqRqvSd65cwerV68GYwy7du2iIkmapLdzPi5AauoJaGj0Qrt2R6Gs3IrrWISQRq7GIrlq1apK/01IU5GRcRVhYS4oKXmDli03wdx8OXg8Wa5jEQm6cOEC1xGIlGiwIUQyMjIwbtw4qKqqwsLCQqwJmwcNGgQej4fS0tIGSEikQRKfj/5BQUjm81FWVojIyP/h6dOhkJPTROfO92FhsYoKZDOgoqICFRUVrmNwyt7eHvb29lzHaPIabDCBhQsXQkFBASkpKQgODsbIkSNhZ2cHW1vbStsfO3aMiiOpNfeYGPyTnY2fI89jbMFqFBSEwcRkEaysNtOUVs3Ivn37AAALFizgOAl3aPaP+tEgR5L5+fk4c+YM3N3doaamhj59+mDMmDHw8fGptH12djY2bNiAbdu2NUQ8IiWS+HwcSX6NSfDFwDRHFJfmomPHq2jTxoMKZDNz8uRJnDx5kusYRAqIdSQZHBwMXV1dmJmZCZfFxcUhMzMTdnZ2NT4/IiICsrKyIsMk2dnZ4datW5W2d3V1xfz582FoaChOPNLMJfH5mBgSgo6yKdjOlqE9XuAmBiFbZws8dLpyHY8QTkydOhUATXVYV2IdSU6dOhUlJSUiy0pKSuDs7CzWRvLy8qCpqSmyTFNTE7m5uRXaBgYGIiAgAN98802Nr+vl5QUHBwc4ODggNTVVrCxE+ri/egWN7GMYkTEOZoiFO9bge6yF15tCJPP5XMcjhBMJCQlISEjgOkaTJ1aRjIuLg5WVlciyVq1aISYmRqyNqKmpIScnR2RZTk4O1NVFh/8SCARYsGABdu3aBTm5mg9y58yZg8DAQAQGBqJFixZiZSHSJT43DhbJM7EUOxGC9piFQ7iBwQCAMsbgHhvLcUJCSFMmVpE0NTXF48ePRZY9fvwYxsbGYm3E2toapaWliIyMFC578uRJhU47OTk5CAwMhJOTEwwNDdG1a1fh9u/cuSPWtkjzkZZ2Fi+COqETArEHC/EdtiMV/42cU8wY7mZnc5iQENLUiXVNcsmSJRg7diyWL1+OVq1a4eXLl9ixYwdWr14t1kZUVVUxfvx4rFu3DgcPHkRwcDDOnj2Lu3fvirTT1NREYmKi8HF8fDy6deuGR48e0ZEiEXo75+MSJCcfQgLaYCN2IhaWAABlGRlEd+8OQ0VFbkMSTvn7+3MdgUgJsYrk7NmzoaWlhUOHDiE+Ph5mZmbYuXMnJkyYIPaG9u3bh5kzZ0JfXx+6urrw9PSEra0t4uLi0L59e4SEhMDc3Fyks05RUREAwMDAQKzTr0T6ZWcHIDTUGUVFsQhRnYvv8ieg4L0/4/JTrHtpLj3SzPXs2ZPrCFKBxxhjXIeoDw4ODggMDOQ6BpGQt3M+rn8356Ml2rU7igERCgjOz6/Q1l5VFUFdqVdrc7Zjxw4AwLJlyzhOQrhW19pQ5eHZr7/+KtYLzJw586M3Tkh1ym/tOGrJQ+rLmcjLCxKZ8zGI6iCpwt9//w2AiiSpuyqL5Ps3+jPGEBAQAENDQ5iZmSE+Ph7Jycno06cPFUkiMe6voqGffQhRT36BkrwmPvnkL+jpjeU6FiFNwhdffAEAOHPmDMdJmrYqi+TNmzeF//7mm2/w+eefY/HixcJlu3btwsuXLyUajjRfcTkv0SbZGY54hPvoiSkdf4eeOk32TYi40tPTuY4gFcTqDePr64u0tDSRZV9//TX09PSwe/duiQQjzVdKym8IC5uHtijGdizDNYxEXFIR9qrX/FxCCKlPYt0naWhoiHPnzoks8/Pzg74+zeZO6k9JSSZCQiYhNHQyopgZvsJBXMBIFAPwTk6m0XOI2JSVlaGsTOP1kroT60hy9+7dmDBhArZv3w4zMzPExcUhJCQEp06dknQ+0kxkZFx7N+djCp6pLcbyvFEown9TWtGtHaQ2Ll68yHUEIiXEKpKffvopoqOjceHCBSQmJmLkyJEYOXIkdHV1JZ2PSLmyskJER6/E69e7oaLSFh06nMXiMAGKIHprB42eQ0jtDB48mOsIUqHe7pPU0NCoMD5rQ6L7JJuO8ls7jpjz8eblTBQUhMLE5H+wstpCU1qReuHu7g4AWLt2LcdJCNfqWhvqbT5JKRmTgDSAja9ewjx7L6Kf9UVpaTY6dryCNm12UYEk9eb69eu4fv061zGIFKi3sd54PF59vRSRYrHZoWif7ARbPMctDMJXHX2ho2bEdSxCpM7w4cMB0PXZuqIBUUmDYIwhOflXRET8DxbgwR1r8A9vCN4k5mKvNRVJQupbYWEh1xGkQr2dbiWkKsXFb/D8+ecID/8KL1hbzMSvuIHBKGaMbu0ghDRqdE2SSFRa2jk8fPgJMjIuI0hjFVZih8icjzQxMpEEXV1d6n1P6kWNp1vLyspgbW2NkJAQKFYzRx+d9ybvKy3NxcuX3yIp6SDU1Oxhb38Ti0MKwKdbO0gDoPFKSX2psUjKyspCVlYWRUVF1RbJPn361Gsw0nRlZ999N+fjK5ibr4Sl5QbIyCjQrB2ENKBRo0ZxHUEqiNVxZ/HixXB0dISrqytMTU1FerJaWVlJLBxpWt7O+bgBcXFboKRkDnv729DSoi9PpOGtWrUKALB582aOk3CHpgmrH2IVya+//hoAcPXqVZHlPB4PZWVl9Z+KNDn5+SEIDZ2KvLwgGBrOROvWP0FOToPrWKSZunfvHtcRiJQQq0gKBAJJ5yBNFGMCvH69B9HRKyArqwZb2z/RosXnXMcipNkbMGAAAMDf35/THE1dre6TfP36NRITE2FiYgJjY2NJZSJNRFFRAsLDZyAz8xp0dUfBxuYgFBQMuI5FCCH1RqxbQOLi4tC3b19YWFhg5MiRMDc3R58+fRBLXfebrTdvTiAwsAOys+/B2toLn3xyjgokIUTqiFUkp0+fji5duiA7Oxtv3rxBVlYWunbtiunTp0s6H2lk3s75OAUhIROhotIWDg7BMDaeTcMSkkbF1NQUpqamXMcgUkCs062PHj3ClStXIC8vDwBQU1PD1q1b6WbdZiYz8zrCwlxQXJwMS0t3mJuvhIwMjWxIGh9fX1+uIxApIdYnXI8ePfDgwQP07t1buCwwMBA9e/aUWDDSeJSVFeLVK1ckJHhAWdkGnTrdg4aGA9exCCHVcHR05DqCVBCrSLZq1QojRozAyJEjYWZmhvj4eFy4cAGTJ0/GunXrhO2+//57iQUl3MjNDUJo6FQUFITAxOSbd3M+qnAdi5BqLV68GADg4eHBaQ4uLViwgOsIUkGsIllUVITx48cDAN68eQNFRUWMGzcOhYWFiI+PB0BTZUkbxsoQF7cNMTFukJdvgY4dL0NHZyjXsQgRS3BwMNcROFdQUAAAUFGhL7V1IVaR9Pb2lnQO0ogUFkYjNHQacnIC0KLFl7C23g95eR2uYxFCamHEiBEA6D7JuqJeF0SofM7HqKjFAGTRrp0v9PUn01kCQkizRUWSAHg752N4+Bykp5+FltZAtG17GEpK5lzHIoQQTlGRJEhL80N4+FcoLc1Gq1Y/wtR0EXg8mo+bNF3W1tZcRyBSQqwimZycDENDQ7GXk6ahtDTv3ZyPv0BV1Q52dtehpvYJ17EIqTMvLy+uIxApIVaRtLa2Rk5OToXl7du3R0ZGRr2HIpKXnX3v3ZyP0TAzW4GWLTdARqbq+UIJIU2Li4sL1xGkglhFkjFWYVlOTg5kZOiUXFMjEJQgNvZ7xMZuejfn4y1oafXlOhYh9WrOnDkAmvcRJRXJ+lFtkTQzMwOPx0NhYSHMzUU7caSnp2PSpEkSDUfqV35+KEJDnZGX9wiGhjPQurUHzflIpFJERATXETiXlpYGANDT0+M4SdNWbZH09fUFYwwjRoyAj4+PcDmPx4OBgQFsbGwkHpDU3ds5H/ciOnr5uzkf/0CLFuO4jkUIkaAJEyYAoPsk66raItm/f38Ab7+R0KgNTROf/xphYTOQmXkVOjojYWNzEIqK1NmKEELEUWWR/OGHH7B69WoAwJYtW6p8ARqvtfF68+YEIiLmQyDgw9p6P4yM5tDAAIQQUgtV9rxJSEgQ/js+Pr7Sn/fb1CQjIwPjxo2DqqoqLCwscPz48UrbHTlyBF26dIGGhgZMTU2xfPlylJaW1uItkZKSLOGcj8rK1u/mfJxLBZI0G/b29rC3t+c6BpECVR5J2traCv+9evVqtG7duk4bWrhwIRQUFJCSkoLg4GCMHDkSdnZ2ItsB3g7K6+Hhge7duyM1NRVjxozBjh07sHLlyjptX5ol8fmYGBKCE+3bQ7EgAGFh08HnJ8HS8nuYm6+iOR9Js9OcZ/8g9YvHKru/A4Cmpiays7MBABoaGpXeJymu/Px8aGtr4/nz58KRMJydnWFiYlLtqVwA+PHHH3Hz5k34+flV287BwQGBgYEfnbEpWxAejl+TYrFb9TdY5x+GsrIN2rXzgYZGV66jEUI4cuLECQCAk5MTx0m4VdfaUOUhRqtWrbB06VLY2tqipKQEv/76a6XtZs6cWeNGIiIiICsrKzJUlJ2dHW7dulXjc2/fvl3haLMy4eHhGDBggMgyR0dHLFiwAAUFBcIR8d/n4uICFxcXpKWlCXuCvW/+/PlwcnJCfHw8nJ2dK6xfunQpRo8ejfDwcMydO7fC+jVr1mDIkCEIDg4Wzm/3vk2bNqFXr164e/cuXF1dK6z38PCAvb09rl27ho0bN1ZY7/7zz1heXIyEy4dhefIXWHvwoWUwDx2sd9Kcj6RZmzp1KoC3PfSbq+ZeHOtLlUXy999/x7Zt2/Dbb7+hpKRE5BaQcjweT6wimZeXB01NTZFlmpqayM3NrfZ53t7eCAwMxMGDBytd7+XlJbxZuKSkpMYc0sYzIQ6WyucwHAexNUqAsYutMPXkEuylAkmaudr0l5BW5XP9mpmZcZykaavydOv7Bg8ejOvXr3/0RoKCgtC7d2/hJKAAsHPnTvj7+1d5GvWvv/7C3Llzce3aNXTo0KHGbTS3062x2WHwC3LEJ3gGf/THxsVpKIMclHfvRnT37jBUpCHmSPNVflapOd8jSPvgrbrWBrHGlatLgQTejv1aWlqKyMhI4bInT55UeRr10qVLmD17Nvz8/MQqkM1BEp+P/kFBSCoqQlKSNyKCu8AS0fgBrtgAN5S9OylQxhjcY2M5TksIIdKhQQZfVVVVxfjx47Fu3Trk5+cjICAAZ8+erfQ6340bNzBlyhScOXMG3bp1a4h4TYJ7TAyeZcfiRvBohIfPRAizxiwcwjV8CuC/WzuKGcPddx2uCCGE1E2D3Ruwb98+zJw5E/r6+tDV1YWnpydsbW0RFxeH9u3bIyQkBObm5nB3d0d2drZIR5u+ffvi4sWLDRW10Uni8/Ei+U8cxDaoF+Xhgdp3WJc3HPz3iiMPgJGiIl5/0HmJkOaoZ8+eXEcgUqLBiqSOjg7++uuvCsvNzc2Rl5cnfHzz5s2GitQklJbm4cKTWdjATuIlrLAKO5Fe1AZ8iA6wwAYMgAxdhyQEALB582auIxApQXeZN0LlgwMcNstFYtRMtCyKxm+YCG/MQAkUoCwQIKlnT9HOOXQESQh5z9KlS7mOIBWoSDZCG19FonX2T4jJPoYCWUOsgwceo6NwfXnnnL3v3Xda3nOYBqInBPjiiy8AAGfOnOE4CXdGjx7NdQSpQEWykYnJegq7ZEdYIxxXMQyX5b/D4zLR/lWVdc4pv4bb3Lt7EwK8ne+2uQsPDwcAmtKwjqhINhKMMbx+vRdRUctgAEW4YT3+5Q3AVzpGCHzviJEQQsRRPgoYfXGumwa5BYRUj89PxNOnwxAV9Q2CYI+Z+BW30R/FjME7ORnJfD7XEQkhpFmiIsmxN29O4eHDT5Cd/Q8eaazHGmxBBnSF62lwAEII4Q6dbuVISUkWoqK+QUqKL9TVu6FdOx8sepGNYuSLtKPBAQipvcGDB3MdgUgJKpIcyMy8+W7Ox0RYWm6AubkrZGTkEFSHma1cXFzqLR8hTd3atWu5jkCkBBXJBlRWVoRXr1YjIeFHKCtbo3Pne/U25yMVSULI+9asWcN1BKlARbKB5OU9QUjIFBQUvICx8UK0arWtXud8TEtLAwDo6enV22sS0lQNHz4cAJr1cJZDhgzhOoJUoCIpYYyVIT5+J169WgN5eV106HARurrD6n075ZNGU3dvQoDCwkKuI3AuODgYAGBvb89pjqaOiqQEFRbGICxsGrKz70BP7wvY2ByAvLxuzU8khJA6Wrx4MQD64lxXVCQlgDGG5OQjiIr6HwAe2rY9CgODqeDxeDU+lxBCSONBRbKeFRenIiJiLtLS/oSmZj+0a3cUSkoWXMcihBDyEahI1lH5jB0n2reHfN41hIXNQmlpJqystsPMbAl4PFmuIxLS7IwaNYrrCERKUJGsgyQ+H10CA5FVkoPzT7ahVcHvUFXtADu7K1BT61jzC9Sj+fPnN+j2CGnMli1bxnUEIiWoSNbByuhoaJU8wTZsgnFBInSMv8UnrTdBRqbhJz92cnJq8G0SQhqvTZs2cR1BKlCRrKXy06u7WllANmULfoYvUtEC3+FH9MAI7OWgQAJAfHw8AMDMzIyT7RPSmAx4Nwl5c+7Z2atXL64jSAUqkrXkHhODmOxnCA6agmkIxSV8hj34GvlQQ2hyMtZaWMBQseELpbOzM4Dm/aFACPnP3bt3AVCxrCsqkmJK4vMx/tkzmOQdwwF4gs/ezvl4G/2FbUoFArjHxmIvzf9ICOGYq6srAPriXFdUJMW0/eV9jMtbhm54iPvohm1YLjKlFQCUADRjByGESBEqkmKISPwNA97MgwL4+AmLcQ5jAFQcGMBeVRVBXetnwHJCCCHcoyJZjdLSbERGfoOUFB8koi02YRXiYS5cr8Dj4SsjIzq9Skgj4+joyHUEIiWoSFYhM9P/3ZyPr+ELFxzGFJR9sLsa04TIS5cu5ToCIY3GggULuI5ApAQVyQ+8nfNxzbs5H1vjmu5x+GQYoIwxYZvGeAQ5evRoriMQ0mgUFBQAAFRU6m86uqbGw8OD6whSgYrke/LyniI0dCry85/B2Hg+WrXajnmPQ1DM8kXaNaYjyHLh4eEAABsbG46TEMK9ESNGAGjePTtpiqz6QUUS5XM+/vhuzkcddOhwAbq6bydtbSodcebOnQugeX8oEEL+c+3aNQA0+XJdNfsi+XbOx+nIzr4NPb3xsLY+AAUFPa5jEUJInWzcuBEAFcm6arZFkjGGlJSjiIz8BgDQtu0RGBg405yPhBBChJplkSwuTkNExDykpZ2BpmZftG17FMrKllzHIoQQ0sg0uyKZnn4R4eEzUVKSDiurbTAz+5bmfCREyri4uHAdgUiJZlMky8ry8fLld0hM9ISq6ifo2PES1NTsuI5Vb9asWcN1BEIaDSqSpL40iyKZk3MfoaHOKCyMgpnZMlhaukNWVonrWPWKLs4T8p+0tDQAgJ5e8+2Ed+DAAa4jSAWpLpICQQliY39AbOxGKCqawM7uBrS1B3AdSyKCg4MB0L1RhADAhAkTADTvW6Lonun6IbVFsqAgHKGhzsjNfQgDA2e0afMz5OQ0uY4lMYsXLwbQvD8UCCH/8fPzA0CjcdWVTENtKCMjA+PGjYOqqiosLCxw/PjxKtv+9NNPMDQ0hKamJmbOnAk+ny/2dhhjeP16HwIDO6Gw8CXatz+Jdu2OSnWBJISQD+3cuRM7d+7kOkaT12BFcuHChVBQUEBKSgqOHTuG+fPn48WLFxXaXb58GVu2bMH169cRExOD6OhouLm51fj6ubmPcPeuKQID7REZuRCamv3Qtesz6Ot/KYm3QwghpBlokCKZn5+PM2fOwN3dHWpqaujTpw/GjBkDHx+fCm2PHDmCWbNmwdbWFtra2li7di0OHz4s1naKi18jP/8pDAymo2PHi1BUNK7nd0IIIaQ5aZBrkhEREZCVlYX1e7Nm2NnZ4datWxXavnjxAmPHjhVpl5KSgvT0dOjq6oq1vawsfxo5h5BmbP78+VxHIFKiQYpkXl4eNDVFrwlqamoiNze3xrbl/87Nza1QJL28vODl5QUASE4G3o3xDSAW6uoO9fcGmojU1FQ4ODS/9/2+1NRUtGjRgusYnKP98HYfbN++nesYnKLPBCAsLKxOz2+QIqmmpoacnByRZTk5OVBXV6+xbfm/K2s7Z84czJkzBwDg4OCAwMDA+ozd5NA+oH1QjvYD7QOA9gGAOn9JaJBrktbW1igtLUVkZKRw2ZMnT2Bra1uhra2tLZ48eSLSzsDAQOxTrYQQQkh9aZAiqaqqivHjx2PdunXIz89HQEAAzp49C2dn5wptp02bhkOHDiEkJASZmZnYuHEjDTFFCCGEEw12C8i+fftQWFgIfX19TJo0CZ6enrC1tUVcXBzU1NQQFxcHABg2bBiWL1+OgQMHwsLCAhYWFtiwYUONr19+2rU5o31A+6Ac7QfaBwDtA6Du+4DHGGP1lIUQQgiRKg12JEkIIYQ0NVQkCSGEkCo0mSLZUGO/Nnbi7ocjR46gS5cu0NDQgKmpKZYvX47S0tIGTisZtflbKDdo0CDweLxmuQ+io6MxatQoqKurQ09PD8uXL2/ApJIj7j5gjGHNmjUwMTGBpqYmBgwYUOmQmE3Rnj174ODgAEVFxRo7OErr56K4++BjPxObTJGU9NivTYW4+6GgoAAeHh5IS0vD/fv3cf36dezYsYODxPVP3H1Q7tixY1JTHMuJuw+Ki4vx6aefYtCgQUhOTkZCQgKmTp3KQeL6J+4+OHXqFH799VfcuXMHGRkZ6NmzZ6U965siY2NjrFmzBjNnzqy2nTR/Loq7Dz76M5E1AXl5eUxeXp6Fh4cLl02dOpWtWLGiQttJkyaxVatWCR9fu3aNGRgYNEhOSavNfvjQzp072ahRoyQZr0HUdh9kZWWxNm3asHv37jEArKSkpKGiSkxt9sGBAwdYnz59GjJeg6jNPtiyZQv78ssvhY+fP3/OFBUVGyRnQ1m9ejWbPn16leul+XOxXE374EPifiY2iSPJqsZ+rexb44sXL2BnZyfSrnzs16auNvvhQ7dv36508Iamprb7wNXVFfPnz4ehoWFDRZS42uyDf//9F5aWlhg+fDj09PQwYMAAPHv2rCHjSkRt9sHEiRMRFRWFiIgIlJSU4MiRIxg2bFhDxuWcNH8ufixxPxObxKTLkhr7tampzX54n7e3NwIDA3Hw4EFJxmsQtdkHgYGBCAgIwK5du5CQkNBQESWuNvsgISEBN2/exLlz5zB48GDs2rULY8eORVhYGBQUFBoqcr2rzT4wMjJC3759YWNjA1lZWZiZmeHGjRsNFbVRkObPxY9Rm8/EJnEkKamxX5ua2uyHcn/99RdWrlyJixcvQk9PT9IRJU7cfSAQCLBgwQLs2rULcnJN4rug2Grzd6CsrIw+ffpg+PDhUFBQwLJly5Ceno7Q0NCGiisRtdkHGzZswMOHDxEfH4+ioiK4ublh0KBBKCgoaKi4nJPmz8Xaqu1nYpMokjT261u12Q8AcOnSJcyePRt+fn7o0KFDQ8WUKHH3QU5ODgIDA+Hk5ARDQ0N07doVAGBqaoo7d+40aOb6Vpu/g44dO0rltHG12QdPnjyBk5MTTE1NIScnBxcXF2RmZiIkJKQhI3NKmj8Xa+OjPhPrcJ20QTk5ObGJEyeyvLw89s8//zANDQ32/PnzCu0uXrzIDAwM2IsXL1hGRgYbOHCgWB1bmgpx98P169eZjo4Ou3XrFgcpJUucfSAQCFhSUpLw58GDBwwAS0hIYHw+n6Pk9Ufcv4OwsDCmrKzMrl69ykpLS9mPP/7IrKysmtU+WL9+PevduzdLTk5mZWVl7OjRo0xFRYVlZmY2fOh6VlJSwgoLC9nKlSvZ1KlTWWFhYaWd06T5c1HcffCxn4lNpkimp6ezsWPHMhUVFWZmZsaOHTvGGGMsNjaWqaqqstjYWGHbnTt3Mn19faaurs5cXFxYUVERV7Hrnbj7YcCAAUxWVpapqqoKf4YNG8Zl9HpTm7+Fcq9evZKa3q2M1W4fnDlzhrVq1Yqpq6uz/v37V1pImiJx90FhYSFbsGABMzQ0ZOrq6qxTp07s4sWLXEavN25ubgyAyI+bm1uz+lwUdx987Gcijd1KCCGEVKFJXJMkhBBCuEBFkhBCCKkCFUlCCCGkClQkCSGEkCpQkSSEEEKqQEWSEEIIqQIVSUJqISYmRqrmpfzQ+vXrxZ5Ky9LSEteuXfuo7QwYMKDGcTMPHz6MPn36fNTrS9KZM2ewfft2qf0bIKKoSBIiQTVNhEtqr7S0FGpqanjw4IFw2bFjx8Dj8Sosa9u2rchzhw4diitXrnz0tk+cOIGvvvoKx44dw8yZM/HhbebLli1DmzZtoK6ujrZt2+Lo0aMfvS3SOFCRJM1efR8RMMYwb948xMbGAgDS09MxZ84c5Ofn1+t2mis5OTn07NkTt27dEi67ffs22rZtW2FZv379hI/z8/Px6NEj9O/f/6O2e+3aNSxevBhXr17F7du3ER0djeXLl4u0UVVVhZ+fH7Kzs3HkyBEsWrQId+/e/ajtkcaBiiSpM0tLS2zfvh0dO3aEqqoqZs2ahZSUFAwfPhzq6uoYMmQIMjMzhe3//fdf9OrVC1paWrCzs4O/v79wnbe3N9q1awd1dXVYWVnhwIEDwnVpaWkYNWoUtLS0oKOjg759+0IgEFSaicfjYffu3bCysoKenh6+++47YdvDhw+jd+/eWLJkCXR0dLB+/foq31tZWRmWLVsGPT09WFlZ4fz58yLrMzIyMGPGDBgbG0NbWxuff/45eDweVq1aBTc3N9y5cwfz58/H119/DVVV1Qqvv379ekyYMAFOTk5QV1dH586dRQaiDg0NxYABA6ClpQVbW1ucO3dOuO78+fPo1KkTNDQ0YGZmVu37eN/Ro0dhYWEBXV1duLu7V3va9Ny5c7C1tYWWlhYGDBhQYfaQhw8fon379tDW1saMGTNQVFQEAMjMzMSoUaPQokULaGtrY9SoUXWeruy7775Dnz59kJ2djX79+uH27dvCdXfu3MGKFSsqLHu/SF6/fh29e/eGoqIi1q9fjy+//BJTp06Furo6OnTogIiICGzevBn6+vowMzMTOeIMDAzE3LlzcfnyZTg4OEBDQwOXL1/G48ePRWa337BhA9q2bQsZGRl0794dffv2xb179+r0vgnHJDmmHmkeLCwsWPfu3VlycjJLSEhgLVq0YJ06dWKPHz9mRUVFbODAgWz9+vWMMcYSEhKYjo4OO3/+PCsrK2NXrlxhOjo67M2bN4wxxv7++28WFRXFBAIB8/f3Z8rKyuzRo0eMMcZWrlzJ5s6dy4qLi1lxcTG7ffs2EwgElWYCwAYMGMDS09NZbGwsa9OmDfvll18YY4x5e3szWVlZtnv3blZSUsIKCgqqfG+enp7MxsaGxcXFsfT0dDZgwACRMWBHjBjBHB0dWUZGBisuLmb+/v6MMcZiYmKYi4sLa9myJXN0dGTPnj2r9PXd3NyYnJwcO3XqFCsuLmbbt29nlpaWwvfYqlUr9sMPPzA+n8+uX7/O1NTUWFhYGGOMsZs3b7KnT5+ysrIy9uTJE6avr8/+/PPPan9XL168YKqqquzOnTuMz+ezpUuXMjk5OXb16lVhnilTpjDGGAsPD2cqKirsypUrrLi4mG3dupW1atVKODi6hYUFs7W1Fe6bXr16sdWrVzPGGEtLS2OnT59m+fn5LCcnh02YMIGNHTtWmKN///7C30dVvL29We/evVlZWRn76quv2NChQ1l+fj5jjDF/f3+mra3NysrKWGpqKjM3N2f5+flMX19fuIzH44mMXTp37ly2f/9+4ftUVFRkly5dYiUlJczZ2ZlZWlqyjRs3suLiYubl5cUsLS2rzVeTgoICZmhoKDXjxDZXVCRJnVlYWDBfX1/h4/Hjx7N58+YJH+/evVv4AbllyxY2depUkecPHTqUHT58uNLXHjt2LPPw8GCMMbZ27Vo2ZswYFhkZWWMmACIfTnv37mWDBg1ijL398DUzMxPrvQ0cOJB5enoKH1++fFlYJBMTExmPx2MZGRkizxEIBGzu3LksJiaGTZ8+naWmprLZs2cLP+Df5+bmxrp37y58XFZWxgwNDdnt27fZ7du3mYGBASsrKxOunzhxInNzc6s066JFi9jixYurfT8bNmxgEydOFD7Oz89n8vLylRbJ77//nn355Zci2YyNjdnNmzcZY29/7+/vm/PnzzMrK6tKtxsUFMS0tLSEj8Utkt26dWOOjo5s/PjxIjOXFBYWMkVFRRYcHMz++OMPNnnyZMYYY927dxcu+7DImZubs7i4OOH7HDJkiHDduXPnmKqqKistLWWMMZaTk8MA1GmmkGnTprHPPvusyi9ypGmg062kXhgYGAj/raysXOFxXl4eACA2NhanTp2ClpaW8Oeff/5BUlISAODixYvo0aMHdHR0oKWlhQsXLiAtLQ3A29NtrVu3xtChQ2FlZYUtW7ZUm8nMzEz4bwsLCyQmJla6rjqJiYkVXqdcfHw8dHR0oK2tLfIcHo+H/fv3C9vq6enBy8sLKioqNeaUkZGBqakpEhMThduWkfnvf1MLCwu8fv0aAHD//n0MHDgQLVq0gKamJvbv3y/cV+K+HxUVlSrnFExMTBR5vzIyMjAzMxNu/8Ps7+/jgoICzJ07FxYWFtDQ0EC/fv2QlZWFsrKyavN9KCoqCmfPnoWbmxsUFBSEy5WUlNCtWzfcvn0bt2/fRt++fQEAffr0ES57/1Trs2fPhKely334N6qnpwdZWVnhYwDCv9va+u677/D8+XOcPHlSKufzbE6oSJIGZWZmBmdnZ2RlZQl/8vPzsXLlSvD5fHzxxRdYtmwZUlJSkJWVhREjRgh7EKqrq2Pnzp2Ijo6Gn58ffvzxR1y/fr3KbcXHxwv/HRcXB2NjY+FjcT+4jIyMKrzO++8lIyMDWVlZVT7/8OHDNW7j/dcXCARISEiAsbExjI2NER8fL3LdNS4uDiYmJgCAyZMnY8yYMYiPj0d2djbmzZtXobdlZe/n/WuDhYWFSE9Pr7StsbGxsPMR8LZDUnx8vHD7H2Z/fx/v3LkT4eHhuH//PnJycoTXCmvK96F27drB29sbw4cPR3h4uMi68uuSd+7cERbJvn37Cpe9XyQvXLiAkSNH1mrbH8vNzQ0XL17ElStXoKGh0SDbJJJDRZI0qKlTp8LPzw+XL19GWVkZioqK4O/vj4SEBBQXF4PP56NFixaQk5MTftCU+/vvvxEVFQXGGDQ0NCArKyv85l+Z7du3IzMzE/Hx8di1axecnJxqndfR0RG7d+9GQkICMjMzRY5ejYyMMHz4cCxYsACZmZkoKSkR6TgirkePHuGPP/5AaWkpPDw8oKioiB49eqB79+5QVVXFtm3bUFJSAn9/f/j5+WHixIkAgNzcXOjo6EBJSQkPHjzA8ePHa9zWhAkT4Ofnh7t376K4uBhubm5VFi5HR0ecP38e169fR0lJCXbu3AlFRUX06tVL2Gbv3r1ISEhARkYGNm3aJNzHubm5UFZWhpaWFjIyMrBhw4Za75dykyZNwqZNmzBkyBC8fPlSuLxfv364efMm4uPj0b59ewBvjyT9/f0RHBwsUiTPnz+PESNGfHQGcW3evBnHjx/H1atXqzxCJ00LFUnSoMzMzHD27Fls2rQJLVq0gJmZGbZv3w6BQAB1dXXs3r0bjo6O0NbWxvHjxzFmzBjhcyMjIzFkyBCoqamhZ8+eWLBgAQYMGFDltsaOHYsuXbrA3t4eI0eOxKxZs2qdd/bs2fjss89gZ2eHzp07Y/z48SLrfXx8IC8vj7Zt20JfXx8eHh613sbYsWNx4sQJaGtrw8fHB3/88Qfk5eWhoKCAc+fO4eLFi9DT08OCBQtw9OhR4b1/+/btw7p166Curo7vv/8ejo6ONW7L1tYWP//8MyZOnAgjIyOoq6tDX18fioqKFdra2NjA19cX33zzDfT09ODn5wc/Pz+R056TJ08Wnv62srLCmjVrAACLFy9GYWEh9PT00KNHDwwbNqzW++V906dPx7p16zBo0CDExMQAAHr16oXs7Gx0795deGZAV1cXLVq0gL6+Ptq0aQMAyM7ORmhoqEhxlxRXV1fExcWhTZs2UFNTg5qaGjZt2iTx7RLJoUmXiVTi8XiIjIxE69atuY5SrfXr1yMqKgq+vr6cbD8vLw9aWlqIjIxEy5YtOckgaSdPnsTp06dx8uRJrqOQJoiOJAlpZvz8/FBQUID8/HwsW7YMHTp0gKWlJdexJEZLSwtLlizhOgZpoqhIkmZv3rx5wlNj7//MmzeP62gf5dixY5W+H1tbWwDA2bNnhR2DIiMj8fvvv3PWA7Mh9v3QoUPRs2fPens90rzQ6VZCCCGkCnQkSQghhFSBiiQhhBBSBSqShBBCSBWoSBJCCCFVoCJJCCGEVIGKJCGEEFKF/wNIFJvBFaXlgAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot fit vs. measured, include a 1:1 line for comparison\n", + "fit_plot = plot_fit(dmeas=meas,\n", + " dnorm=norm,\n", + " fit=lfm_sel,\n", + " title='fit_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " save_figs=save_figs,\n", + " coeffs=coeffs\n", + " )\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [J] scatter plot of 'fit_lfm_sel * poa_global# (y) vs. 'measured_lfm_sel * poa_global' (x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [K] Read in complete (G,T) Matrix to fill with MLFM predicted values \n", + "\n", + "Read in a matrix with complete values of \n", + "Irradiance (G=100,200 .. 1100,1200) and module temperature (T=0,5 .. 65,70) \n", + "to predict all MPM values " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# read in the complete matrix data\n", + "matr = pd.read_csv(os.path.join(root_dir, 'mlfm_data', 'ref', 'mlfm_matrix.csv'),\n", + " index_col='id')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict performance from MPM fit coefficients \n", + "\n", + "1. generate predicted mpm data \n", + "2. create a pivot table mpm(g,t) \n", + "3. show as a heat map" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('b', array([ 1.06780656, -0.0028452 , 0.14860936, -0.07080871, 0.01 ]))" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# show model coefficients\n", + "mpm_sel, coeffs" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
midpoa_globaltemp_modulewind_speedpr_dc
id
1matrix100000.995707
2matrix100500.978989
3matrix1001000.962271
4matrix1001500.945553
5matrix1002000.928834
6matrix1002500.912116
7matrix1003000.895398
8matrix1003500.878680
9matrix1004000.861962
10matrix1004500.845244
\n", + "
" + ], + "text/plain": [ + " mid poa_global temp_module wind_speed pr_dc\n", + "id \n", + "1 matrix 100 0 0 0.995707\n", + "2 matrix 100 5 0 0.978989\n", + "3 matrix 100 10 0 0.962271\n", + "4 matrix 100 15 0 0.945553\n", + "5 matrix 100 20 0 0.928834\n", + "6 matrix 100 25 0 0.912116\n", + "7 matrix 100 30 0 0.895398\n", + "8 matrix 100 35 0 0.878680\n", + "9 matrix 100 40 0 0.861962\n", + "10 matrix 100 45 0 0.845244" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# populate pivot table from predicted mpm data\n", + "if mpm_sel == 'a':\n", + " matr[lfm_sel] = mpm_a_calc(matr, *coeffs) # not mpm_sel\n", + " \n", + "if mpm_sel == 'b':\n", + " matr[lfm_sel] = mpm_b_calc(matr, *coeffs) # not mpm_sel\n", + "\n", + "\n", + "matr.head(10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [L] Plot heatmap of predicted LFM values vs. temp_mod, poa_global bins" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_contourf(df, x_axis, y_axis, z_axis, title,\n", + " vmin=0, vmax=1.2, levels=5,\n", + " save_figs=False):\n", + " \"\"\"Plot filled contour plot Z vs. X and Y bins.\n", + "\n", + " Parameters\n", + " ----------\n", + " df : dataframe\n", + " measured or normalised data containing weather columns\n", + " (poa_global, temp_module and wind_speed).\n", + "\n", + " x_axis : string\n", + " binned x axis e.g. 'poa_global'.\n", + "\n", + " y_axis : string\n", + " binned y axis e.g. 'temp_module'.\n", + "\n", + " z_axis : string\n", + " measured value as a colour surface plot.\n", + "\n", + " title : string\n", + " title for graph e.g. mlfm_meas_file.\n", + "\n", + " vmin, vmax : float\n", + " minimum and maximum values for contour chart ###\n", + " \n", + " \"\"\"\n", + " piv = pd.pivot_table(\n", + " df,\n", + " index=y_axis,\n", + " columns=x_axis,\n", + " values=z_axis,\n", + " fill_value=0, # fill empty cells?\n", + " aggfunc=[np.mean], # min, np.sum, len->count\n", + " margins=False, # grand totals\n", + " dropna=True # hide missing rows or columns\n", + " )\n", + "\n", + " piv = piv.clip(vmin, vmax)\n", + "\n", + " fig, ax1 = plt.subplots()\n", + "\n", + " cs = plt.contourf(\n", + " piv,\n", + " cmap='RdYlBu', # or 'nipy_spectral',\n", + " # origin='lower'\n", + " # nchunkint=1,\n", + " levels=levels,\n", + " vmin=vmin,\n", + " vmax=vmax\n", + " )\n", + "\n", + " cbar = fig.colorbar(cs, ax=ax1)\n", + " cbar.ax.set_ylabel(z_axis,\n", + " rotation=90,\n", + " va='bottom',\n", + " labelpad=+30)\n", + "\n", + " plt.title(title)\n", + " # # get_yaxis().set_major_formatter(FormatStrFormatter('%.2f'))\n", + "\n", + " y_ticks = piv.shape[0]\n", + "\n", + " plt.yticks(np.arange(0, y_ticks), rotation=0)\n", + "\n", + " # show only 1 of each y_skip labels\n", + " yax2 = [''] * y_ticks\n", + " y_skip = 2\n", + " y_count = 0\n", + " while y_count < y_ticks:\n", + " if y_count % y_skip == 0:\n", + " yax2[y_count] = piv.index[y_count]\n", + " y_count += 1\n", + "\n", + " ax1.set_yticklabels(yax2)\n", + " ax1.set_ylabel(y_axis)\n", + "\n", + " x_ticks = piv.shape[1]\n", + " plt.xticks(np.arange(0, x_ticks), rotation=90)\n", + "\n", + " # show only 1 of each x_skip labels\n", + " xax2 = [''] * x_ticks\n", + " x_skip = 2\n", + " x_count = 0\n", + " while x_count < x_ticks:\n", + " if x_count % x_skip == 0:\n", + " xax2[x_count] = piv.columns.levels[1][x_count]\n", + " x_count += 1\n", + "\n", + " ax1.set_xticklabels(xax2)\n", + " ax1.set_xlabel(x_axis)\n", + "\n", + " ax1.grid(color='k', linestyle=':', linewidth=1)\n", + "\n", + " if save_figs:\n", + " # remove '.csv', high resolution= 300 dots per inch\n", + " plt.savefig(os.path.join('mlfm_data', 'output', 'contourf_'+ title[:len(title)-4])\n", + " , dpi=300\n", + " ) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# REMOVE LOW TEMPERATURE DATA WHICH MAY CONTAIN SNOW\n", + "\n", + "matr2 = matr[matr['temp_module'] >= 10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Contour plot of predicted lfm_sel + vs. poa_global and temp_mod. " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAFlCAYAAABiPQidAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAACHi0lEQVR4nO2dd1hUx9fHv4j0JgoIWFCwIBhsG40tig1ji2LsjWiiRn2jxsSSWBCN0dhiVxQL9oIxMXYlIHZEQEGRIkWlSFN2aVLm/WN/e8NSd9l77xbm8zz7xL1lvnP2kj17zpyZ0SKEEFAoFAqFQpGJesruAIVCoVAo6gR1nBQKhUKhyAF1nBQKhUKhyAF1nBQKhUKhyAF1nBQKhUKhyAF1nBQKhUKhyIHGOE5PT0+0atVK2d2Qm759++Kbb76p8j2fJCQkQEtLC3fu3FFrDYriaGlp4dixY8ruBoWikqis43zz5g20tLQQEBAg0/U//vgjHjx4wG2neOD8+fPYsmWLzNe3atUKnp6e3HVIDSkoKMDXX3+NTp06QVdXt8ofVEFBQejbty8aNGiAhg0bYurUqcjMzJS6pqioCIsXL4aNjQ0MDAzQq1cvhISEMOclPwQqe82dO7dS3SNHjkBLSwsDBgyocO7y5cvo2LEj9PT00KJFi0r/Fh4+fIgePXpAX18fNjY2WLZsGUpKSpjzKSkpmDRpEpydnVG/fv1KdWoiJSUFX331ldz31cSFCxfQrVs3GBoawszMDL1790ZOTg5z/tdff0Xv3r1hamoKLS0tvHnzpkIb6enpmD59OmxtbWFgYIB27dphx44dUtd4eHhU+kyKi4uZa44ePYouXbrA3NycaWfz5s2QZ2p7SkoKxo4dC1NTU5iammL8+PF49+5dpdeWlpaif//+lf4okcVuiuqgso5TVkpLS1FSUgJjY2NYWFjwrk8IQVFREWvtNWzYEKampqy1VxcpKSmBrq4uZs6cifHjx1d6TUREBAYOHIiuXbvi0aNHuHLlCmJiYjBy5EipL86ffvoJPj4+2LdvH4KDg2Fvb48BAwYgNTUVANCsWTOkpKRIvc6ePQsAlWo/f/4cy5Ytw+eff17h3OPHj/Hll19i8ODBCAsLg6enJ37++Wfs3buXueb169cYOHAg2rZti5CQEOzZswf79u3DL7/8wlxTWFiIhg0b4ocffqiV0wQAa2tr6Ovr1+reqvDx8cHUqVMxadIkhISE4OHDh/j++++hra3NXFNYWIgRI0ZI2VMeDw8PBAcH4+zZs3j+/DkWLlyIhQsX4uTJk1LX9e7du8KzqV+/PnPeysoKK1aswL179xAZGYmlS5di5cqV2L59u0z2lJaWYtiwYYiPj8eNGzdw/fp1REdHV/gbkuDl5QVDQ8NK25LFbooKQRSkT58+ZPr06eSXX34hlpaWxMzMjPz888+kpKSErF69mlhZWRELCwvy888/S913/Phx0rVrV2JqakoaNWpEhgwZQl6+fMmcByD1srOzI4QQsmrVKuLg4EBOnTpF2rZtS7S1tcmzZ8+Y44QQUlpaSoYMGUIEAgH5+PEjIYSQkpIS0r9/f9KjRw9SVFRUqS2HDh0i2tra5MaNG8TJyYno6emRTz/9lISEhFS4xt/fn3Ts2JHo6OiQixcvkqKiIrJq1SrSokULoqenR5ycnMjevXul2k9ISCBubm5EX1+fNGvWjGzfvp306dOHzJgxQ+rzLPueEEJ27txJ2rVrR3R1dYmlpSUZPXo0c235zyk+Pp4QQkhMTAxxd3cnZmZmpEGDBmTgwIHk6dOnUu2ePn2aODg4ED09PdK9e3fy119/EQAkKCio2mde9hlt376djB07lhgaGpJmzZqRs2fPkvfv35OJEycSY2Nj0rJlS3Lu3Dnmnvj4eAKA+Pr6kn79+hF9fX3SokULcuzYMZk0Y2JiiImJCdmyZQtz7Pnz58TQ0JDs3r27wvVl/y7K8ssvv5C2bdtKHXvy5AkBQPz9/QkhhOTk5BA9PT2yb98+5pri4mLSuHFjsmrVqir7OHHiROLk5FTheG5uLnF2diYnTpwg06ZNI/3795c6P2HCBNK9e3epYz/++CNp0aIF837ZsmWkSZMmpKSkhDm2c+dOYmhoSEQiUQXNynRkAQA5evQo814oFJLvv/+e2NraEgMDA9KxY0fi5+cndU9aWhrx8PAgVlZWRE9Pj7Rp04b4+PgQQgj58OEDMTExqfD/RFX8+++/BAB5/fp1hXNmZmZk+/btUsc6d+5MFixYwLyvrd0jR44kI0eOlOnaa9euEQAkKiqKORYREUEAkH///VfqWn9/f9KsWTOSkZFR4bMtS3V2V8aNGzdIr169iIGBATE1NSWff/45iY2NZfoyaNAgYmZmRgwNDYmjoyPx9fUlhIj/RgcOHFihvcGDB5Nx48bJpF2XYSXiPHfuHIqKinDnzh1s2bIF69atw7BhwyASiRAUFIRNmzZh3bp1uHLlCnNPYWEhVqxYgSdPnuDGjRvQ1tbG0KFD8fHjRwDAkydPAAB+fn5ISUlBcHAwc29ycjJ2796Nw4cP4/nz57Czs5Pqj5aWFg4fPozk5GQsW7YMAPDbb7/hyZMnOHnypNSvzvKUlpZi8eLF2L17Nx49egQrKysMHToUeXl5Fa7ZvHkzoqKi0K1bN3zzzTc4f/489u3bhxcvXmDlypVYsmQJfHx8AIgj01GjRiEzMxMBAQH4+++/8ffffzN2VsWqVauwZMkSzJkzB8+ePcPVq1fRsWNHAOK0bosWLbBo0SLmF3WzZs2QlpaGXr16wcrKCkFBQXjw4AHatm2Lvn37Ij09HQAQGhqK8ePHY8yYMQgPD8ePP/6I+fPnV9uXyvj1118xZMgQhIeHY9iwYZg6dSrGjx+PgQMHIjQ0FEOHDq00BbpkyRJMnz4dYWFhmDRpEqZMmYLHjx/XqNeqVSvs2bMHS5cuxZMnT1BQUIBx48Zh8ODB+O6772Tud0FBQYWIysDAAABw+/ZtAOIIsLCwEIMHD2au0dbWxsCBA6sco83IyICfnx9mzZpV4dzcuXPRrVs3TJgwodJ77969K6UFAIMHD0ZCQgKTurt79y4GDRqEevXqSV2Tl5eH0NDQmsyuFYQQDB8+HOHh4Th9+jQiIiLw3XffYfz48bh16xYAID8/H3369EF4eDiOHz+O58+fY8eOHUyEdf36dQiFQhgYGEAgEKBx48bo27cvgoKC5O5Pr1694Ofnh7S0NBBC4O/vj5cvX+KLL76Quu7Ro0ewtrZGy5YtMXr0aERGRlZr46NHj3D37l24urrK1I+7d++iZcuWaNu2LXPM2dkZTZs2lfr7SEtLw5QpU+Dr64tGjRrJaW3V3Lx5E25ubujSpQvu37+Phw8fYurUqUwGbMKECWjUqBHu3buHZ8+eYcuWLTA3NwcATJ06Fbdu3cLbt2+l+nnjxg1MmzaNtT5qLIp63j59+pAOHTpIHXNyciLt27eXOubi4kIWLVpUZTuZmZkEALlz5w4hhJDXr19X+stt1apVREtLiyQmJlY4Xj6y8Pf3J9ra2sTT05PUr1+/wi/k8hw6dIgAIDdv3mSOZWVlESMjI7J//36pa27fvs1c8+rVK6KlpUVevHgh1d7q1auZz+bGjRsEgFRU/e7dO6Kvr19lxCkSiYi+vj7ZuHFjlX12cHCoEP2sWrWKdOvWTepYaWkpsbe3J1u3biWEEDJp0qQK0c2OHTvkjjjnz58vZQ8AMm/ePOZYVlYWAUAuXrxICPkv4ly+fLlUW927dyeTJk2SSZcQQjw8PEjr1q2Jh4cHsbOzI9nZ2ZVeV1XEefPmTQKA7N27l3z8+JFkZGSQkSNHEgBk5syZhBBxVgQAKSwslLr3xx9/rDSiJISQjRs3EgMDA5KVlSV1/MiRI8TR0ZGJCiuLiHR0dKSiW0L+i2AePXpECCGkdevWZNmyZVLXiEQiAoCcOXOmQn/YiDj//fdfoqenR96/fy91zddff02+/PJLQgghBw4cIHp6elVGSuvXrycASNOmTcnp06dJSEgImTdvHtHR0SEREREVrq8u8srJySGjRo0iAEj9+vWJrq4uE9lKOHnyJPnrr7/Is2fPyI0bN8jAgQOJgYEBefbsmdR179+/J0ZGRkRHR4fUq1ePrF69WubP6Ntvv63w/xAhhAgEAjJnzhxCyH+ZrhUrVjDnwVLE2atXLzJ06NAqz5uampJDhw5Veq6kpITY2tqS9evXM8c2b95MrK2tSXFxcY3adZ2qQy856NChg9R7a2trWFtbVzhWdtA8LCwMq1evRlhYGDIyMpgxgcTERPTs2bNavcaNG6N58+Y19svV1RWLFi2Cp6cnZs+eDXd3d5ns6d69O/Nvc3NztGvXDs+fP5e65tNPP2X+/fjxYxBCIBAIpK4pLi5mxm+eP38OCwsLtGnThjlvaWkp9Wu1PJGRkSgoKMCgQYNk6reE4OBghISEwNjYWOp4fn4+YmJimP70799f6nyvXr3k0gGkn72lpSW0tbXh4uLCHDM3N4eurm6FgomynzEA9OzZk4leZGHnzp345JNP4Ovrizt37qBBgwZy9bt///7YsWMHli1bhrlz56J+/fpYsGABGjduLDXmVhVaWloVjhFC4O3tjbFjxzK/7AHg5cuXWLhwIfz9/WFkZCRXP6vTK3+uumsUITg4GB8/fkSTJk2kjn/8+BGtW7cGAISEhMDJyQlNmzattA1J8dKyZcswduxYAEDnzp0REBCAffv2yTyuCIgr6F+9eoUrV67A1tYWAQEB+L//+z80btwYQ4cOBSA9vty+fXt8/vnncHJywvbt2+Ht7c2cMzExQVhYGPLy8nDv3j0sW7YMtra2Cle2S57FunXrUFBQgFWrVinUXmWEhIRg/fr1VZ7/8ccf8c033+Dw4cPo27cvRowYgc6dOwMA6tWrh0mTJuHo0aNYsmQJAHGx1KRJk2T6+6/rsOI4dXR0pN5raWlVeqy0tBQAkJeXh0GDBqFXr144ePAg42SdnZ2ZVG11yPrlU1JSgrt370JbWxuxsbEghNTqy4WUG+jX1taWSvNJ7Lp3716FwX+JXm21y7YhK5LqvZ07d1Y4Z2ZmpnB/ylL+OVd2rOyzr4ryn3FNxMbGIjk5GVpaWoiNja3giGVh3rx5mDt3LlJTU2FqagpCCDZu3AgHBwcAgI2NDQAgNTVV6odaWlpahR+GAODv74+YmBj4+vpKHb9//z6ysrLQpUsX5pjk86hfvz4CAwPRs2dP2NjYMEVHZbUAMHqVXSN5X1mf2KC0tBRmZmZSwyUSdHV1mX9X9/dka2sLAHBycpI67uTkhMTERJn7EhcXhy1btuDBgwfo1q0bAMDFxQXh4eH47bffGMdZWT8FAgESEhKkjterV4+punZxcUF2djaWL18uk+O0sbHBzZs3Kxwv+/dx8+ZN3L9/H3p6elLXTJs2DWvXrkVUVFSNOtVR3We+YsUKTJo0CVevXoW/vz/WrVuHxYsXY+3atUwfNm7ciJCQEOjp6SEsLAxHjhxRqD91BaVU1b548QLp6en49ddf4erqinbt2iE7O1vqy1PyP2TZMnt58fT0RHR0NO7evYuQkBBs2LBBpvvKTmt5//49oqKi0K5duyqvl3whJiUloVWrVlIvyZews7Mz0tPTmYgPEI+HRUdHV9muk5MT9PX1ce3atSqv0dXVrfAZCQQCREZGokmTJhX6Y2lpyfTn7t27UveVf88l5acO3b9/v9rPuCx5eXkYP348vvrqK2zduhVz5syR+lzlQUtLCzY2NjAyMsKpU6cAAF9++SUA8XPV09OT+vxLS0tx8+bNSqPzffv2wcXFBZ999pnU8ZEjR+LZs2cICwtjXiNGjEC3bt0QFhaGTp06ARBH3eWf9dWrV2FnZ8dEcj179sSNGzekfohcvXoVhoaGTDtsIxAI8P79exQUFFT4e5L8oOjSpQsiIyOrnEbRu3dvAOLouywvX75EixYtZO6LpNag7BgvIP4xW92Pr5KSEjx9+hTNmjWrtv3S0lIUFhbK1JeePXsiPj5e6m/vxYsXeP36NfP3cejQIYSHh0s9e0BcG3Dx4kWZdKqiS5cu1X43AIC9vT3mzJmDc+fOwcvLC3v27GHOOTs7o3PnzvD19YWvry86duwolS2iVIOiud7KqkD79+9Ppk2bJnXMzc2NGcNKT08nenp65LvvviOxsbHk5s2bRCAQEC0tLSYnX1JSQoyNjcnixYtJSkoKM2ZU1ZhV+eMBAQFEW1ubXL58mRBCyLlz54iOjg65f/9+lbYcOnSIaGlpkS5dupDAwEDy9OlTMnz4cGJlZcWMTUmqasszffp0Ym1tTXx9fUlMTAwJCwsjPj4+zBhCaWkp6dChA+natSt5+PAhCQ0NJYMGDSImJibVVtX+8ssvxMjIiOzcuZO8fPmShIWFkXXr1jHnhwwZQlxdXUliYiJJT08nJSUlJDU1ldjY2JBBgwaR27dvk/j4eBIUFER+/vlncvfuXUIIIY8fPyZaWlrk559/Ji9fviTnz58nLVu2lHuMs/xYjba2doVxFT09PWaMWDLGaWtrS44fP05evnxJVqxYQbS0tJhxvJqYPn06adWqFcnJySGEEDJ8+HDSuXNnqbHIyMhIEhoaSmbNmkWaNWtGQkNDSWhoqNQ1v//+OwkLCyMvXrwgf/zxB9HX168w9jp//nxiYWFBLl68SCIiIsi0adNIgwYNSHJystR1aWlpREdHh+zatUsmGyobe3z06BGpX78++fnnn8mLFy/IkSNHiL6+PtmzZw9zTVJSEjExMSHTp08nERER5K+//iINGzYkS5YskWpLYu/w4cNJt27dmPeyUvbZlpaWkgEDBpDWrVuT8+fPk7i4OPL48WOyfft24u3tTQgRVwy3adOGdOrUidy4cYO8evWK3Lx5k5w6dYppc+zYscTW1pZcunSJREdHk6VLlxI9PT3y/Plz5prExEQSGhpK9u/fTwCQa9eukdDQUJKZmUkIIaSoqIi0adOGdO3aldy5c4e8evWK+Pj4ED09PbJp0yZCiLgCeOHCheTOnTskPj6ePHz4kHz11VdET09PqkJ+5cqV5MaNGyQuLo5ERUURb29vYmJiQr7//nuZPqOSkhLSuXNn5v/pBw8ekC5dupDPPvuMlJaWyvTZymo3IYRMmTKFTJkyhXl/7do1Uq9ePTJ//nwSHh5OoqKiyKFDh0hUVBQRCoVkzpw55NatW+TVq1fkyZMnpE+fPqRXr15Sutu2bSOWlpbE1tZWqlKdUj1KcZyEEHL27FnSqlUroqenRzp27Mg4urJfukeOHCEtWrQg9evXrzAdpTxlj2dmZpKmTZuSH374QeqamTNnkhYtWlQocpAgcYrXrl0jjo6ORFdXlwgEAhIcHFzhmvIUFxeTDRs2kLZt2xIdHR3SqFEj8vnnn0sVbMTHx5OBAwcSPT090qRJE/LHH3/UOB2ltLSU/PHHH6RNmzZER0eHWFlZka+++oo5HxwcTDp37kz09fWlpqMkJCSQiRMnEgsLC6Krq0uaN29OJk2aRF69esXce/LkSWJvb090dXVJ165dyYULF3hznL6+vqRPnz5ET0+P2NnZMWXyNXH69Gmiq6tLHj9+zBzLyMggtra2ZOHChcwxOzu7ClN1yn4+hBAycOBA0qBBA6Krq0s++eQTxgmU5ePHj+Snn34ijRs3Jnp6eqRHjx5Sfw8SfvvtN2JkZEQ+fPggkx1VFe38888/xMXFhXlmmzdvrnDN/fv3Sffu3Ymenh5p3LgxWbp0aYWCjspsl+d3cvlnm5eXR5YsWUJatGhBdHR0SOPGjYmbmxu5desWc01KSgqZMmUKadSoEdHT0yNt27aV+lvIzc0l8+bNI5aWlsTY2Jj06tWLKQYs+7lU1u+y7cTFxZFx48YRa2troq+vT9q2bUt+//13ZopOXl4ecXNzI40bNyY6OjrE1taWDB8+XMppEkLIggULiIODA9HX1ycNGjQgnTt3Jjt37pSrOCY5OZl89dVXxNjYmJiYmJCxY8eStLQ0uT5bWe3u06cP6dOnj9R9V69eJZ999hnR19cnpqampG/fviQuLo7k5+eTCRMmMNPjLC0tydixY0lSUpLU/enp6URHR4fUr1+fpKamymx3XUeLEDkHlzSYw4cP45tvvpFaXYRCoVAolLKo/cpBFAqFQqHwCS+O09jYWOqlra2N//u//2PO37p1C46OjjA0NISrq6tcVXYUbpg9e3aF5yZ5OTs7c6a7bt26KnXLT6+h1I4vvviiys+3/CICdZnq/g7XrVun7O6pBDt37oRAIICenh48PDyqvXbr1q2wtraGmZkZpk+fLlWE1bdvX+jr6zOfb3XT9FQB3lO1ubm5aNy4MS5fvozPP/8cGRkZcHBwwIEDBzB8+HCsWLGCWe2GojzevXsntfh2WXR0dCqs1sQWWVlZyMrKqvK8Ou6Ao2q8ffsW+fn5lZ4zMDCoMF+zrhIbG1vluYYNG6Jhw4Y89kY1OX/+POrVq4dr164hPz8fhw8frvS6a9euYerUqfD394etrS1GjRqFzz77jJmH2rdvX0yePFlpO0PJCyvzOOXh3LlzsLKyYsrTz58/D2dnZ4wZMwaAeAqJhYUFoqKi4OjoyHf3KP/DysoKVlZWvOvSLyTuoY5RNuiPtJqRLCrz+PHjand0OXLkCGbMmMFkqyRzTKtbwEGV4X2M88iRI5g6dSozcTcyMlJq9RkjIyM4ODhUu64khUKhUNSH8t/zHTp0QFpamtQa1suWLYOFhQV69uwp83aSyoLXiDMpKQmBgYHMwucAIBKJmEn5EszMzCAUCivc7+3tzSyXFRoSAisDXVgb6eJFVi7szQxQUgq8FhWgrbkh3ooKoVNPC1aGuojMzoWjjSkKikqR8j4fbaxNkJSZC0Pd+rAw0UNYUjY+adoAooJipIsK0crKGPHpuTAz1EFDI108ScxGZztzvHongpaWFlpaGiEuMw8WDQxhYqiLp7Hv0KmNNdLf5yKvoAh21g3wMikTthbG0NetjxcJGXBp1RhpWSJ8LC5FMytTvEhIh511A9Srp4XY11lo72CF5AyxzbYWJoiIewdTYz1YmBkiMfU92rWwxOt3OdCtXw+NGxrjaWwa2rWwQMHHYiRniNC2eSMkpr6Hob4OLBsYITQ6FS6trCDM+4iM93lo5WCL+MR3MDM1RENzY4SEx6NLh5bIyhbhQ04eWtpZITY+FfXq1YNdMws8jUxCp09aID0zB3n5H2HX1AIvY1Nga90A+no6eBGdDBfn5khL/4CPRcVoZtsIL6Lfwq6ZBerVq4fY+FS0d2yG5NRssU3W5oiIeo1WLa1RWlqKxNcZaNemCaJikmHewAiNLc3wNDIJ7drYoqCwCMmp79G2lQ0S32TA0EAXlo1MEfosAS7OzSEUFSAjMwetWlrLZJNFI1OYGOvjaWQSGluaQUdHm1ObXidnQlenPmOTubkRGpgacmZT+ef07PlrtGhuwalN5Z/Ti+i3sGhkwplN5Z+TRSMTaGvX49Sm8s/JysIURkb6nNlU/jklvMlBRkYGK9+9DRq7oLiw4ndqTdg1MWQ2PwCAmTNnYubMmXK3IxKJmFXLgP9WMBMKhWjUqBE2bNgAJycn6Orq4tSpUxg+fDjCwsKYBWRUDV4dp6+vL3r16oWWLVsyx4yNjSuMpeXk5MDExKTC/WUfWtsGRnj41acVrqkMo89sFOj1fzxJzEJnu4ao34GfFE7IixR0acdC3x1kT3mHhMWjS8eWNV/IEpqupwxNVbOxwLQ963pPQp6jcxenmi9UE039nIgKxz4dtJW19osLhXDpu1ru+z6+2S7TrkU1Uf57XvJvyfe8ZPlEQLwU4MmTJ3H58mWpIlJVgnfHuXTpUqljzs7OUusj5ubmIi4ursbKTW0Zk8xsOU0AMNarz5vTBAATQ92aL6oJOZwmAJgYs7t5cV3XU4YmF3o1OT9daxMUmHJTMFYZJia1WyxfVTW5+HGhSjg7OyM8PJxZ4D88PByNGzeucps1LS0tudev5hPexjjv3buHt2/fMkVAEkaNGoWIiAj4+fmhoKAAXl5ecHFxqbEw6NWHyqsCuWSUN7+VvsN/OF37mx0c5XaaADB84ubaa9YCTddThqasegWm7WV+1cTokfxGBnzrKUtT1SkuLkZBQQFKSkpQUlKCgoKCSheQmTp1Knx8fPD8+XNkZ2dj7dq1zPSV9+/f49q1a8y9x48fx+3bt+Hm5sazNbLD23SUWbNmIS8vD0ePHq1w7ubNm5g3bx4SExPRrVs3HD58uMaFnztZmuDfL7tUew2b0SYAXqNNhaiFw6RoBpoeudQlen82g5U0KQAYN2jJSarW09MTq1dLt7tq1SpMnz4dTk5OeP78ObMRwJYtW7Bhwwbk5+dj9OjR2Lt3L/T09JCeno4hQ4YgKioK2tracHR0xJo1azBw4EC5+8sXvEWc+/btq9RpAsCAAQMQFRWF/Px8BAQEyLRbQmpuzduPsUn9Dq3g6R3Iq2at9BR0mp4b/BS6n+rxo1ldZLjWa08Nd7MP35p1wUZ1wNPTE0S85jnz8vT0RPPmzSESiaS24/vhhx+QlpaGnJwcHDp0iNlqzdLSEsHBwRAKhXj//j0ePHig0k4TUMI8Tr5gO9pUeWiUqXHQ6JFCUU3UdpH3mlK1bDpOlU/RUqep1lAHSakMdUjV1lXUdpH3F1m5VZ7jKtpsO3o3J+0qpMey02zb9UdW26vrehJNRQpv5MXFaQTrbaqaZl2wkaK6qG2q1t7MoOaLWKBstHlxyzheNGXS4yjKvHhiESft1iW98s7w3N/7ONcsi9+FHbzqKUOzLthIUV3U1nGWlFZ+nMuxTWEevwVJVepxmJoVigo4a1tT9WqKGoXCqrMjXMC3njI064KNFNVFbVO1r3n4wi0/tjnrt0uca9aox/F45qwffGq+qI7ryZtqnffdGoU15YFvPWVo1gUbKaqLRhUHafS8TVoApBRo4Q5FWdDiINVFbSPOt6LCmi9SgMqc5qI/bnCqWaUej05z0YrjvGmpoh4XhTtLf+J35SC+9ZShWRdspKguajvGqVNPS+o9H/M2bS0rLjzPqZ6jA++Rpq21eZ3S4yOitLG1rPkiNdZThmZdsJGiumhMqlbj5m3S1Cwn0NQrRV2gqVrVRW1TtRFl5nHytUpQkyF/8KIjcZpNnObxo1cGvjX50CuberVvzv9SXnxrUhs1R5OimqhtqratmSEn7VYXbQYfmcGJZpV6t/iv4uNbkyu9qiLLOw/4HVNVhia1UXM0KaqJ2kachVVN5OSQ6KRM7kXKpGij41K41ysH35ps6slS1BMbk8ianqzwrUlt1BxNimqito4z5X+LA/C5mPvq/be5FSg3rrn69/Pc6lUC35qK6slbAfur116F9GoD35rURs3RpKgmal8cpDFFQbQYSGZogQ+lLkCLg1QXtY04XwsLed86bOY6jlYOqsJpzlzI76o6ytCUVY+tuZVzZ3spdL86aFIbNUeTopqoleP09vaGQCCAQCBAbnEJvP5+BgBw+uUSolNz8CQxC93WXAMALD4Tiq3XowAAdj9eQPL7fAS+TMOAjbcAAN/5PsKB27EAgIbzziG/VTNcDIrGiB9OAwAmLf8TJ65GAADqdV0LACgtLcWk5X8CAEb8cBoXg6IhzC2Ead/fxf378wnjXF1n+yIgJAHJ6UKmGnfz8QfMogaCqQcQ8iIF0cSM2bHDc4Mfs+lx264/opltQ4SExUPQbzkA8eT9zbsuAxBXoyanZCPgznO4jhD3b+ZCH3gf8QcAmDb/BkJhPi5efYIRE8UTtyfN3IUT5+6JbWo0GQBw4tw9TJq5S2zTxM3Q1dGGUJgP0+bfiG064s84N9cRaxFw5zmSU7KZatjNuy4ziwoI+i1HSFg8omNTqrQpOjZFyqaExHdV2lRg2h4zFp/HrtPi52hl3gNCYS4u/ROI0SO/BwB4TFmK0yfF9xvqdAQAnD55GR5TlgIARo/8Hpf+CYRQmAsr8x7o3MUJPvvPMV+Cbv1n4HZgMJKT3zFVk9u2+jKT3Xt0nYAnIc8RE53I7I6x1msPs6mxi9MIxEQn4knIc/ToOgGAeKL8tq2+AMSVmA4OzXA7MBhu/cXFZXNne8Fn/znWbAIgZVPQ7cec25Sc/E7KppdR8ZzaVP45de7ixLlN5Z+Tk7MDpzaVf04U1UVtU7VdWjTEg+VurLWnlDQtTc9WgKZhKRQxNFWruqhVxFmWsKRs1tqS1WlKIku+kER9mqxp2vwbTvemLI/klz+f8K1JbdQcTYpqorbzOD9p2oB3zbeX5rPXmAzR5ttI/vf/40tT4iTjXt/iRU9CXBK/6w0rQ5PaqDmaFNVEbSNOUUExK+3Ik6INeMLSPC4ZU7QBd1+woycHXGuWjyxvB/KbBuJbTxma1EbN0aSoJmrrONM53h2lMvb/Gap4I3KMa+73/VdxPTnhSrOqVOzBA36c6FUF33rK0KQ2ao4mW+gY6cBaYCv3i1I5dbo4iPeCoDpYDESLfSiU2sFmcZB5kzZw/W633PclXVhKi4MqQW0jzvj03JovYhnJVJRaUQunKZkmwidsacpa7CMp3ecLvvWUoUlt1BxNimqitsVBZoY6Ct1fm2hzaK/WtROrZaQ5dFCn2ukpgKKa8kaYXwz5XCE9eeFbTxma1EbN0aSoJnU2VctbmraOpGdpSpZCYReaqlVd1DZV+ySx9vM4a+s0JSsIyYyCTlOyug+fyKup6PxLyYorfMG3njI0qY2ao0lRTdQ2VdvZzpx3zdJHy/nVyzzGq548mmxFmHlFYay0o6p6ytCkNmqOJkU1UduIMyv3I++akrVrZYKFFK1kXVk+qUmT7RV+JGt98gXfesrQpDZqjiZFNVFbx/khr6hW9ykytnnpToxsF7I0rnnpOgvzRlnS5GpJvCuXOd7jVMl6ytCkNmqOJkU1qXPFQZwXBWlYMRAt+qFQlAMtDlJd1DbijH0nkvseRZ2mZMuxKmHZaUq2A+MTiSZfi65LtmjiC771lKFJbdQcTYpqoraO09JYj3fNb0dVM8eRg0jz26murLdZE9Nme/AaZU7/ZjRvWsrQU4YmtVFzNCmqidpW1Rrry9d1NlK0fTvbVX6Co/Rs357tOGm3MiTO8vM+/K7I9HkfgUbrKUOT2qg5mhTVRG0jzmdv3vOu2WTotooHORzTbOL8f5y1XZayEabD/3ai5wtN11OGJrVRczQpqgmvjvPUqVNo164djIyM4ODggKCgIADArVu34OjoCENDQ7i6uiIxsebtuzo2l30eJ1sFQTkBi6UPcFwIlJN0gNP2KxvHfJfN7xQYTddThia1UXM0KaoJb47zxo0bWLJkCQ4dOgShUIjbt2/D3t4eGRkZcHd3x5o1a5CVlQWBQIBx48bV2F6GkP9txbz/fMKv3hF/ztquahzTZ/85zjTrop4yNKmNmqNJUU14c5yrVq3CypUr8dlnn6FevXpo0qQJmjRpgvPnz8PZ2RljxoyBvr4+PD09ER4ejqioqGrby/so20bWbE4/efwi5b83PEw7eRwWz3qbNVXLPgl5zrpmdWi6njI0qY2ao0lRTXiZx1lSUgIDAwN4eXnhwIEDKCgowMiRI7Fx40YsXboUHz9+xJ49e5jr27dvj9WrV2P06Kqr2GSdx8nJvE01natJ52RSKOoDncepuvAScaalpaGoqAjnzp1DUFAQwsLCEBoairVr10IkEsHMzEzqejMzMwiFwgrteHt7QyAQQCAQIPz1e3j9/QwA4PTLJUSn5uBJYha6rbkGAFh8JhTbIjIAAE2G/IHkdCECQhLgOtsXADBz3SUm9Wra93cIcwtxMSiamas5afmfzBJ7ksXdncbuwaQNtwCI5ztevPoEQmE+TJt/I+7fEX/MXOgDAHAdsRYBd54jOSUbTZzmAQA277qMRSuOAwAE/ZYjJCwe0bEpaNv1RwCA5wY/eG4Q7zLftuuP6DZwJULC4iHoJ14jd9GK49i8S7zsVxOneUhOyUbAnedwHSHu38yFPkx617T5NxAK83Hx6hOMmLgZBabt4TFlKbNsmGTB6tMnLzP7DI4e+T0EHUdDKMyFlXkPAOL01NzZXgAAt/4zcDswGMnJ72D/v0KJbVt9sfQn8dzPHl0n4EnIc8REJ8LFaQQAYK3XHqz1Ev8ocnEagZjoRDwJeY4eXScAAFq3GIRtW8XPxL75QCQnv8PtwGC49Z8BAJg724tJkVmZ94BQmItL/wQyc+pksenSP4GMTW79Z3Bu09KfNkvZ1LfXFE5tKv+cbCx6cW5T+edk32wApzaVf05u/WdwblP559S/jwenNpV/ThTVhZeIMzs7Gw0bNsThw4cxbdo0AICfnx/Wrl2Lzz//HEVFRdi9+79fQ5988gk8PT2rjTjbWJsicu3QanXZjjYDUkrRt5cTq21Wq3fnucJ68kaZtwOD8XmfTxXSpHrK1aQ2aoYmjThVF14iTnNzczRt2hRaWloVzjk7OyM8PJx5n5ubi7i4ODg7O1fbpr5O9V1nPUXr4Ig2DjbstlkDiurVJjXbqnUVc1U5QtP1lKFJbdQcTYpqwltx0Ndff40dO3bg3bt3yM7Oxh9//IFhw4Zh1KhRiIiIgJ+fHwoKCuDl5QUXFxc4OlY/jhiVksNTz//j0/4r1EJPkeXyen02qVb31RZN11OGpqbamCRqw7y6d5sq9b7siyuU8blSVBPeFnkvKirC/PnzceLECejr62Ps2LH4/fffoa+vj5s3b2LevHlITExEt27dcPjwYbRo0aLa9qorDuIi2lQXaAEQhQ+4dFCaSHPjaLnvoala1YW3iFNHRwe7d+/G+/fvkZqaiu3bt0NfXx8AMGDAAERFRSE/Px8BAQE1Ok0ASMsp4LjHFZEU5qiiHluLskuKJfhC0/WUoSmPXlVRW02v8hzcWcmqWhzCt56immx8xhTVQW2X3CsqLq30OJfRZnJqNrtt14CsemxGmSnJ6ay1RfX410wStcHLxGLev5zfpabUfBGL8K2nLE11ICsrC6NGjYKRkRHs7Oxw4sSJSq8rLCzEwoULYWtrC3Nzc8yZMwdFRf/tq/zixQv069cPZmZmaNWqFf7880++TJAbjduPs66laWlqtu5Bo5G6waQBvdUiVTthwgSUlpbCx8cHYWFhGDp0KO7du1ehwHP16tW4efMm/vrrL5SUlGD48OFwc3PD6tWrUVxcDCcnJ8yePRvz589HYGAghg8fjtDQULRpo3p/72obcb6opDiIa6cpmU/JF9XpcbVfpmSOG19oul5tNBWNEt379qhtV2sN35p1wUZ1IDc3F35+flizZg2MjY3Rq1cvjBgxAkePHq1w7cWLF/H999+jYcOGsLS0xPfff4+DBw8CAKKiopCcnIyFCxdCW1sb/fr1Q8+ePSttRxVQ223F7BoZ8a65b8sMldDjMsrcuYffymFN16tKk8uo0euPnZy1rSqadcFGNtE31EG7DvJPbwvZnw6B4L/t1GbOnImZM2cy76Ojo6GtrS0VFXbo0AGBgYEV2iKEoGyCkxCCN2/e4MOHD6gs8UkIQUREhNx95gO1dZz1yk0J5SNFa2Ksz65GDZTX4yMta2LC7w8STdaTOEehthaSRK150zUyNuFNS1madcFGVcDS0rLaVK08K7998cUX2LZtG1xdXVFSUoLt27cDAPLy8uDo6AgrKyts3LgRCxcuxL///ovAwEC4urqyaxBLqG2qNu6diHfN4RP5XQqrrB5fY5mjR/KzB6gm6lWVUp09vuoVsLiAbz1laNYFG9UBY2Nj5ORID5vl5OTAxKTij4xffvkFnTp1QseOHdGjRw+MHDkSOjo6sLKygo6ODi5cuIBLly7B2toamzdvxtixY9G0aVO+TJELjSgO0vSCIFoApHrQAh0K17BZHGTT2hnTt5yR+75rq6dV24fc3FyYm5sjMjISrVuLsypTp06Fra0t1q9fX23b3t7eOHToEO7fv1/p+R49emDatGmYNWuW3P3mGrWNOFPe5/OuKVmAnS+W/xHEu9OULIpN9f5D0WkcO9avlVtTEfjWU4ZmXbBRHTAyMoK7uztWrlyJ3Nxc3L17F3/99RemTJlS4dq3b98iOTkZhBA8ePAAa9aswerVq5nzT58+RUFBAfLy8rBp0yakpKTAw8ODR2tkR20dpwROtg1TAWiUqTzoRHQKRXZ2796N/Px8WFlZYcKECdizZw+cnZ2RlJQEY2NjJCUlAQDi4uLQo0cPGBkZYdq0aVi/fj0GDRrEtHP06FHY2NjAysoKt27dwo0bN6Cnp6css6pF7VO1mpimpU6TP6hjpKgq6pCqrauobcQZ+fYD79GmZN9MLinrNCX7CvIJ35p867Vz/Ir3aNJN4MKLjrL0lKFZF2ykqC5qOx3FwcqYg0arjzYvnljEvmYZykeafhd2cKpXGXxrcq1X3jnuPcXvOLUyNKmNmqNJUU3U1nESXV3eNYUifheWFwpzedVThiYXetVFkrmiivPLuIZvTWqj5mhSVBO1TdUmpr5nt0EZxjZn/eDDrmYZKhvXnPfdGs70qoJvTbb0ZE2/rlwwjxU9eeBbk9qoOZoU1URti4ME7WwR7MviEnhKLAqixUC1gxb2UDQZWhykuqhtxPn6XcVF3muNjE5z0Yrj7Gn+j+qc5tKf+F2pSBma8uopWtizfvnSWt2nCHxrUhs1R5OimqiV4/T29oZAIIBAIECOqACe3uKFhNuO3o3oxEyEvEiBYOoBAMCiP25g8/EHAIAmQ/5AcroQASEJcJ0t3uR35rpL8P7zCQDAtPk3EArzcfHqE4z43zJ3k2buwolz9wAA9RpNBgCkvfuASTN3AQBGTNyMi1efQCjMh2nzb8T9O+KPmQvF6VzXEWsRcOc5klOy0cRJnOLZvOsy43wF/ZbjXkw9xEQnMpWla732MBP0XZxGoL5OfTwJec7srrH0p83MJsX2zQciOfkdbgcGw62/OPKeO9sLPvvPAQCszHtAKMzFpX8CMXrk9wAAjylLcfqkeHNsQ52OAIDTJy/DY4r4C2H0yO/x/n0OhMJcWJmLd4Lw2X8Oc2d7AQDc+s/A7cBgJCe/g33zgQDEmyZLnF+PrhPwJOR5tTbFRCdK2fQk5HmNNm3cGYQkURtYmPeCSCiE/5VLzPJni77xwMWzpwEAjuaGAICLZ09j0TceAMTLpPlfuQSRUIjOzaxgZW2D04d9sGLBXADAlGFueHjnNtJSktG7nT0A8YbFki9J9749EBH2BPGxMUxV5Y71a5nJ8G4CF8THxiAi7Amze8b65UuZTY97t7OHgaERHt65jSnDxCtdrVgwF6cPi/9OOjezUtgmAFI23bp0kXOb0lKSpWx68vA+pzaVf05W1jac21T+OZmZN+TUpvLPiaK60FStklK0ND1bNTQFS6HQVK0qo1YRZ1mexqbxrimJHBVFVqcpier4hG9NiR5fcyslv+z5hG9NaqPmaFJUE7WdjtKuhYXijcgZbQbfUrwCVJ5I884D9sdUVUkzSdQGp2/dR5LIljfNc/53eNNSlia1UXM0KaqJ2kacBR+LedeMjktR6H5507OxMYkK6dUGPjTLRpYJcbGc65WFbz1laFIbNUeTopqoreNMzlBwP85ajG2u/v18reVqM6b5q9feWuvVFi41K0vF7lz/K2d6lcG3njI0qY2ao0lRTepucRCPRUF1vRCIFvtQKPJDi4NUF7WNOBVaOaiWTlMy1UQeFHGakmkgfMKWpqzFPpLSfL7gW08ZmtRGzdGkqCZqWxxkqK/Du6agY0te9Tp3ceJVjw1NeaPL9h07K6QnL3zrKUOT2qg5mhTVpO6lammKlhNoOpZCYReaqlVd1DZVGxqdyrumZIUgWWDDaUpW7+ETeTUVnXspWVGFL/jWU4YmtVFzNCmqidqmal1a1eKPWMFo822kbHtHshVpxiXdYKUdLjTZijBvP49jpR1V1VOGJrVRczQpqonaRpzCvI+8awbcfVHjNWymZ28H8p8iqUmT7dV9Ht25zVpbqqinDE1qo+ZoUlQTtXWcGe/z5LuBhbHN/b7/Vnue7THNgwf433G+Mk0ul8M7c+Qg622qkp4yNKmNmqNJUU3qTnEQx0VBmlgIRAt+KBTlwWZxkEP7jljvd13u+zZMGkKLgypBbSPO+ORs2S9myWlKthQrD1dOU7LdF594TFnKy2LrEiRbMPEF33rK0KQ2ao4mRTVRW8dpZqzPu+bQQZ0qHOMy0vxiyOectV0ZSaI2+LTfOF41+7p9odF6ytCkNmqOJkU10fxULYcpWk1Jz9KULIWietBUreqithFnSJRiO5XUhnqNJjP/5sNpGup05FyjvNOU7GTPF5qupwxNaqPmaFJUE7V1nF0cbWq+iOVoszTzGAD+Is28ojBO268s0ozKlrNaWUE0XU8ZmtRGzdGkqCa8Oc6+fftCX18fxsbGMDY2Rtu2bZlzt27dgqOjIwwNDeHq6orExJr3hMzKyeeyu5Vy4tw9XtOzp09e5qTd6op/Lp49zYlmVWi6njI0qY2ao0lRTXiNOHfu3AmRSASRSISXL18CADIyMuDu7o41a9YgKysLAoEA48bVXKDyQVRQ/QUcjG1euh7KepvVceUy+xOuaxrPDLh2hXXNuqynDE1qo+ZoUlQT3oqD+vbti8mTJ+Obb6TXe/X29sbhw4dx7949AEBubi4sLCwQGhoKR8eqnV+NxUEcOE51LgaiBUAUinpBi4NUF14jzmXLlsHCwgI9e/ZEQEAAACAyMhIdOnRgrjEyMoKDgwMiIyMr3O/t7Q2BQACBQIDwmDR4egcCANqO3o3oxEyEvEiBYOoBwMERi1Ycx+Zd4lRnE6d5SE7JRsCd53AdsRaAeG9N7yP+AMSLtwuF+bh49QlGTNwMQDxn88Q5sTOv12gyCkzbo/un45m5laNHfo9L/wRCKMxlFkb32X+O2c/Srf8M3A4MRnLyO9g3HwgA2LbVF0t/Erffo+sEPAl5jpjoRLg4jQAArPXag7VeewAALk4jMHjAN3gS8hw9uk4AACz9aTO2bfUFANg3H4jk5He4HRgMt/7iHxBzZ3vBZ/85AOLF2oXCXFz6JxBDhi0DIJ6HJkk3SQodLp49zcxPmz1+NL7q1wsioZBZ0Pr0YR9mH8Ipw9zw8M5tpKUko3c7ewDAwZ3bsH65+DNx79sDEWFPEB8bAzeBCwBgx/q12LFe/Jm7CVwQHxuDiLAncO8r/swGdHTCwZ3bAAC929kjLSUZD+/cxpRhbgDEeyCePizeB7VzMyuIhEL4X7mE2eNHy2yT/5VLjE2zx4/m3Kb1y5dK2fT1yKGc2lT+OXWzb8q5TeWfk+snbTm1qfxzmj1+NOc2lX9O33z1Jac2lX9OFNWFt4jz4cOHcHJygq6uLk6dOoV58+YhLCwM69atg6WlJdavX89c27NnT3z77bfw8PCosr1WzRoi5nwVG8tyFG1e+icQQ4f1Yb3tqlBUrzZRpv+VS+j3xdBaa1I95WtSGzVDk0acqgtvEWe3bt1gYmICPT09TJs2DT179sTly5dhbGyMnJwcqWtzcnJgYmJSbXsmhrqVn+AwRft5HwHrbVeHInq1Tc127cXvoguarqcMTWqj5mhSVBOlTUfR0tICIQTOzs4IDw9njufm5iIuLg7Ozs7V3v809h3XXayAw/9Srqqsp+hyeZ87OdT6XqqnGprURs3RpKgmvDjO9+/f49q1aygoKEBxcTGOHz+O27dvw83NDaNGjUJERAT8/PxQUFAALy8vuLi4VFsYBACd2lhXPMhxQdC77Hust18d8uqxUQD05DW/P0g0XU8ZmtRGzdGkqCa8OM6ioiIsX74clpaWsLCwwI4dO3DhwgW0bdsWlpaW8PPzwy+//AJzc3M8fPgQp06dqrHN9Pe5PPRcGknhjarpsbkou6QYgi80XU8ZmtRGzdGkqCb1+RCxtLREcHBwlecHDBiAqKgoudrMKyiSPsDD9JMnIc8x41vWZapEFj22p5lEhD3BOMixXRvVUzlNVbLxaZqQE73b9x6i3Rdj5brHpXH1dRM1oYzPlaKayFxVSwjBgQMHcPLkSWRkZODp06e4ffs2UlNTMXasfH/AbFBhHmcdm7dJ52VS2IYrJ1fXUNRBS6BVtaqLzKnalStXwsfHBzNnzkRSUhIAoGnTptiwYQNnnauOl0mZ/73hyWlK5kvyRVV6XDpNyRw2vtB0Pb41n6YJ4T5oAJ6mCeV+KYLnlFEsWaCaevJo1uazZ/NZULhH5lTt4cOHERoaCgsLC3z33XcAgJYtW+LVq1ecda46bC2Medf8ZeVsperxEWXOW/oL5xp1SY9NTVm/UMfM+5EVPXngW1PTbaTOU7WR2XGWlJTA2FjsrLS0tAAAIpGIOcY3+rr/6zqPKdpWre1Y16qOsnp8pWZbOLTiRaeu6MmjydaXpU0L/qdN8K1ZF2ykqC4yp2qHDBmCH374AYWFhQDEY54rVqzA8OHDOetcdbxIyOBds9dnk3jXY7NiVha+6teLN626oFdWk6/03LKvBrHWlqpq1gUbKaqLzMVBOTk5mDp1Kq5evYqioiLo6+tj0KBB8PX1rXGVHy4QtLNF8N2NrLerSgVBtABIPaFpNgobsFmYQ4uD2EXmiNPU1BQXLlxAYmIiHjx4gLi4OPz5559KcZoAkJYl4l1TssA6HySJ2jALUPMJ35rqridL5Hjx4B5WNWuCbz1laNYFGymqS7VjnKWlpRWOWVpawtLSUup8vXr8r9z3kWix3mZN0WZKcjrrmpUhiTTfpabwolcWvjXVSa+2kWT2u9Raa6qDnjI064KNFNWl2lRtvXr1mEKgyiCEQEtLCyUlJZx0rjoEHe0R7L+G1TZVIU1L07PKh6ZaKaqAuqRqs7KyMGPGDFy/fh0WFhb47bffMHHixArXFRYWYunSpTh9+jTy8/MxYcIEbNu2DTo6OgCAyZMn49atW8jNzYW1tTUWL15cYf9mVaHaUDE+Ph6vXr2q8iU5rwxeRL9ltT1ZnKZkX0yuKO80JfsG8gnfmsrW42MO3RJ3fjcH4FtPGZp1wUZ1Ye7cudDV1UVaWhqOHz+O7777rtL9lNevX4/Hjx8jIiIC0dHRePLkCdauXcucX7ZsGRISEpCTk4O///4by5cvR0hICJ+myEy1qVo7O36nX8iDXTML3jV37lnBWduVRZpef+zkTK8q+NbkU+9pmhBTV/zOe0Q5y2uTRuspQ7Mu2KgO5Obmws/PDxERETA2NkavXr0wYsQIHD16VGqPZQC4ePEilixZgoYNGwIAvv/+eyxZsgSrV68GAKkdsbS0tKClpYW4uDh06dKFP4NkROZ5nFOmTKkybevry1/RjAQ2x1VlTdGamBixplmWqtKzRsb8F17xrcm1XnknqW/E/7xjvjWpjZqjyRYGOvVqtRRgeno6BIL/9gWeOXMmZs6cybyPjo6GtrY22rT57zusQ4cOCAwMrNAWIQRlRwYJIXjz5g0+fPgAMzMzAMCcOXNw+PBh5Ofno1OnThgyZIjcfeYDmb1Pq1at4ODgwLyMjIxw5coV5tcD38TG8z9QP3rk/7HeZnVjmrPHj2Zdryb41uRCr7q064bZk1nXqwm+NamNmqOpbCwtLfH48WPmVdZpAuJFcCROT4KZmRmEwor/733xxRfYtm0b0tPTkZqaiu3btwMA8vLymGt2794NoVCIoKAguLu7Q09PjwOrFEfmeZyV8fjxY6xevRoXL15ks08ywVZxkDILgmghEDvQYh6KJsJmcVD7Tp3h9+9due+raaH50NBQ9OzZU8r5bd68GQEBARX8Qn5+Pn766Sf8+eef0NPTw7fffotVq1YhPz8f2traFdqePXs2nJyc8P3338vdb65RKN/ZsWPHSkNyPkhOzeZdc60Xe/O4ZHGaO9avrfEatuFbs7Z6tS3mObOD/UUzVE2T2qg5mqpOmzZtUFxcjJiYGOZYeHi41HilBAMDA+zcuRNv377Fq1ev0KhRI3Tp0qVSpwkAxcXFiIuL46zviiDzGKe/v7/U+7y8PJw6dQpOTk6sd4ovlBVt0khTfmhUSaGoHkZGRnB3d8fKlStx4MABhIWF4a+//sK9e/cqXPv27VtoaWnBxsYGDx8+xJo1a+DjI94c/N27d/D398ewYcNgYGCAmzdv4uTJkzhx4gTfJsmEzBHnjBkzpF5Lly4FAJw8eZKzzpXH29sbAoEAAoEAefmF8NzgBwBo2/VHRMemICQsHoJ+ywEAi1Ycx+ZdlwEATZzmITklGwF3nsN1hDjCmbnQBz77zwEArMx7QCjMxaV/AjF6pDgt4DFlKU6fFN9vqNMRANC6tR08pojtHj3ye1z6JxBCYS6szMVTHHz2n8Pc2V4AxFuC3Q4MRnLyO9g3F5exb9vqizkLDgIQT4uICHuC+NgYuAlcAIijL0kE5iZwwbCvxiEi7AkzhWL98qXMyje929kjLSUZD+/cZratWrFgLrNLfedmVhAJhfC/cokZR1z0jQcunj0NAHA0NwQAXDx7Gou+8QAgHm907tAJIqEQnZtZARDver9iwVwA4u2xHt65jbSUZPRuZw9AvBLP+uVLZbYpPjZGyqZckahKm56mCTF35kxs2b4LADC1sz3yRSI89r+G9f8bb9q2aDbuXBT/HYx1bAwAuHPRD9sWiXeWWT97Mh77X0O+SISpne0x9v9+ws3Tvti3YhEA8VZRkQ/vIistFbN6i/t88eAe+K5fBUA8BeFVRDiS4+Mw3607AHHkIYk+5rt1R3J8HF5FhDPTFXzXr2JWmZnV2wUDxk5B5MO7zLZU+1Ysws3TvqzZBEDKpueP7nFuU1ZaqpRN2e9SObWp/HMa+38/cW5T+ec0/OvvOLWp/HNSF3bv3o38/HxYWVlhwoQJ2LNnD5ydnZGUlARjY2NmG8q4uDj06NEDRkZGmDZtGtavX49Bg8Tr/2ppaWHPnj1o2rQpzM3N8eOPP+KPP/7Al19+qUzTqkShMU5loq+vg/zkw7W+vzbRpovTCDx9/netNeWNNN0ELrj2+Gmt9WoD35rl9biOLOe7dce2a/c51VC2JrVRMzTVYYyzriL3knuVoYwl91q1tOZd0+/CDl719p7y41VPGZoLd/rymoZdsvcYb1rK0qQ2ao4mRTWp1nHWr1+/2iX3JChjyT1ZnXpl1HZsUyjMrbVmbcY1c0X8j+vxpSlxlgW5/C7Wz7eeMjSpjZqjSVFNZF5yb8eOHejTpw+uXr2KFy9e4OrVq3B1dcXOnfyvbgMAia/5349z3ne1m/5S22KglQvm1eo+ReBSs7JK2H0rf+RMrzL41lOGJrVRczQpqonMY5ytWrXC48eP0aBBA+ZYdnY2BAKBUkqGazuPk+9KWlpBSytiKZTaQMc4VReZByc/fPggNckVEE9J+fDhA+udkoXXyZm8ay79abNc1yvqNCXVqnzCpqYs8yz5riBURsUitVH99ZSlSVFNZJ7HOW3aNAwYMAALFixAs2bN8Pr1a2zfvh3Tpk3jsn9Voqsjc9cZFI02bWwtZb6WjUjTytpG4Tb41pQ3ujS34rfIi289ZWhSGzVHk6KayJyqLS0thbe3N86ePYvk5GTY2Nhg7Nix+Pbbb6tc+YFLapOq5StNWxfTszQdS6GwC03Vqi4yp2rr1auH2bNn49atW3jx4gX8/f0xe/ZspThNAHgamSTX9Ww4TclCBtXBptOULDLAJ/JqKrqHpWTiN1/wracMTWqj5mhSuKGwsBBFRUVSx4qKilBYWCjT/XJNwDx06BD69euHtm3bol+/fjh06JA8t7NKuza2vGveeXC82vNsR5rn/O+w2h6bmmxt+vzbOfl3pVcnPWVoUhs1R5PCDQMHDqywSXZISAjc3Nxkul9mx/nrr79i/fr1GD9+PLZv347x48fj999/x6+//ipfj1mioLCo5osk17KUoo2NSazyHBfp2YS4WNbbVESztgurV0dKAr8V2XzrKUOT2qg5mhRuePbsGbp16yZ1rGvXrggPD5fpfpkd54EDB3D9+nXMnDkTbm5umDlzJq5evQpvb2/5eswSyanvedf81Wtvpce5GtPcuZ7/HyWVabLtLMtyducmTtpVFT1laFIbNUeTwg1mZmZIS0uTOpaWlgYjIyOZ7pe5OMjKygoJCQkwNDRkjolEItjb2+Pdu3dydJkdZC0O4rogSJMLgWjBD4WiPGhxEHcsWrQIoaGh2L59O+zt7REXF4cffvgBn3zyCbZs2VLj/TJHnIMHD8akSZPw8uVL5OfnIyoqCtOmTZM5J8w2iW/4XzlIsvOJBK6dpmRXEj6ZO3MmpxFmeSQ7RfAF33rK0KQ2ao4mhRt+/fVXtGvXDl27doWJiQk+++wztG3bFuvWrZPpfpkd586dO2FiYoIOHTrA2NgYHTt2hJGREXbs4HfhcwmGBro1XsN2tNm5y397j/IRabbv2JlzDQkSZ+nQvgNvmgA0Xk8ZmtRGzdGkcIO+vj527dqF3NxcpKamQiQSYefOndDX15fpfrm3FSstLUVGRgYsLCyUsiuKhJpStVymaDUtPUtTshSK6kFTtezy6tUrma6zt695Sp5cni8vLw8RERGIjY3FgwcPcO/evUp3+uaD0GcJvGtamffg1WlKNpPmispSspINd/lC0/WUoUlt1BxNCnu0atUKrVu3Zv4r+XfZ961bt5apLZnXrfP19cW8efOgq6sLAwMD5riWlhazwzefuDg3r/IcV9FmwPN4TtqtitvPuSt/ryrK3Heb342zNV1PGZrURs3RpLBH2a0oDx06hJs3b8LT0xN2dnZITEyEl5cX+vfvL1NbMkecixcvhp+fHzIyMvD69WvmJa/TjImJgb6+PiZPnswcu3XrFhwdHWFoaAhXV1ckJlY9X1KCUFQgl66iJIna4NGd27xqcqFXU+FP5CP50zmKoOl6ytCkNmqOJoUbVqxYgQMHDqB169bQ1dVF69atsW/fPixfvlym+2V2nLq6uujbt29t+8kwd+5cfPrpp8z7jIwMuLu7Y82aNcjKyoJAIMC4ceNqbCcjM6fS41yObZ45cpCztvnQk2Us8+aZo6xq1nU9ZWhSGzVHk8INpaWlSEhIkDqWmJiIkpISme6XuTjoyJEjePz4MVatWgULCwu5OwoAp06dwvnz5+Hk5ITY2FgcO3YM3t7eOHz4MDNWmpubCwsLC4SGhsLR0bHKtqoqDuLCcap7MRAt/qFQ1A9aHMQdGzduxJYtW/D1118zu30dPnwYCxYswOLFi2u8X+aIs02bNvj777/RuHFjaGtrQ1tbG/Xq1ZN5kfecnBysXLkSmzdL72kZGRmJDh3+K/M2MjKCg4MDIiMjK7Th7e0NgUAAgUCAp5FJ8NzgBwBo2/VHRMem4F5MPfToOgGAeO/MbVt9AYgXZ09OfofbgcFw6z8DgHhOps/+cwDERT9CYS4u/ROI0SO/BwB4TFmK0ycvAwAczcWLPowf5IpF33gAAGaPHw3/K5cgEgqZIp7Th32YuZdThrnh4Z3bSEtJZhZOP7hzG7PfpXvfHogIe4L42Bi4CcSLR+9YvxY71q8FALgJXDBr3GhEhD2Be98eAMR7ZR7cuQ2AeDH2tJRkPLxzG1OGiefSrlgwF6cP+wAQFxaJhEIcPHkO62eL0+LbFs3GnYviz2ysY2MAwJ2Lfti2aLa4/dmTsWryl8gXiZhCiJunfZn5a55TRiHy4V1kpaUyC15fPLiH2adwiftAvIoIR3J8HOa7dQcAnNmxEWd2bAQAzHfrjuT4OLyKCMcSd/GC+Qu+6ImLB/cAEC+inZWWisiHd+E5ZRQA8dy5m6fFz3FqZ3vki0R47H9NLpse+19jbNq2aDbnNvmuXyVl0+9zp3FqU/nn9E0PZ85tKv+c/m9gN05tKv+cti2azblN5Z/T5vkzOLWp/HNiE916hWhuHC33S1P56aefcOjQIaSlpeHvv/9GamoqDh48KJPTBOSIOFu1aoUJEyZg3LhxUsVBAODg4FDj/fPnz4etrS2WLFkCT09PJuKcMWMGLC0tsX79eubanj174ttvv4WHh0eV7dnbWSEudKvUMa6jzYtnT2P4mJrTyGyhiF5to8w7F/3Qa/joWt1L9VRDk9qoGZpsRpyduzjj7sMTct/X+7MZGhlxysLQoUNx6dKlSs/JXFWbmZkJLy8vaGlpyd2BsLAw3Lx5E6GhoRXOGRsbIydHerwyJycHJiYm1bbZ0NxY6j0fe23y6TRrq6doWpbvLyNN11OGJrVRczQpyiMoKKjKczKnar/++mscPVq7wfGAgAAkJCSgefPmsLa2xqZNm+Dn54fOnTvD2dlZakX63NxcxMXFwdnZudo2Q8K5nxpSfmxTkrLlC3n12BjLlKSc+ELT9ZShSW3UHE2KaiJzqrZXr1549OgRWrZsicaNpf+Abt+uftpEXl6eVFS5adMmJCQkYM8e8fhCq1atcPDgQQwdOhSrVq1CYGAgHjx4UG2bZYuDuIo21aUoiBb/UCiaB03VKhdTU9MK2VAJMkec3377Lfbv34+ff/4ZM2bMkHrVhKGhIaytrZmXsbEx9PX1YWlpCUtLS/j5+eGXX36Bubk5Hj58iFOnTtXYZla2SNau14rKnObFs6c51ayNHttOU1LswBearqcMTWqj5mhSVBOZHee0adOqfEmYM2eOTG15enri2LFjzPsBAwYgKioK+fn5CAgIQIsWLWps40NOHgB+xjYlBFy7wptWTXpc7WASEnCD9Tbrsp4yNKmNmqNJUR7VJWPlXuS9OqoLbdlGkqqti/M2aWqWQtF8aKqWG0pKSjB9+nR4e3tDT0+vyut+++03LFu2rNJzrG5vwqIPrpHY+FReo01APHdTmXp87JMpmaPGF5qupwxNaqPmaFLYR1tbG9evX69xd6+qnCYgx3QUWajNVJXaYtHIlJN2q4s2x06bzolmTXp8RpgDxk7hTasu6ClDkw29sOh0ua536PWl3PcogiJ6HdtY1uo+ZfztULhh4cKFWLVqFVavXg0dHR2571fbVG3HTo64H8x+sU51jlMkFMK4hvmlbCISCvEqjzc5AEC+SAQDY+OaL6R6KqcpcSSFebnQMzTiXK8sfGuqmo21dcbVQVO13NGsWTOkpqZCW1sblpaW0NLSAiFE5t2+WI04+UzVPnsaw3qbNY1tfu7kgCev37GuWxW9HO3h+0S2zVfZYtbnLrxqaroeW5ryRFc7vnbFj6cfKaQnL3xrqpqNfEe/FMUoW5xaG1iNOL/77jtmbibX1PYXVHWoUlEQLQCqG/CZ3qSoF9dWT6MRJ0d8/PgRa9euxcmTJ5GcnAxbW1uMHz8ev/zyC/T19Wu8X67ioIMHD2LgwIFwdnbGwIED4ePjIxVl8uU0ASAjI5vV9mRxmpIF1LlG4jQlC0zzCd+amqwXFp2OsOh0HNq+m/l3+RcXhF49y0m7qqRZF2ykcMd3330Hf39/bN++HcHBwdi+fTsCAwNlnlIp10bWGzZsgLu7OzZu3IjRo0dj06ZNWLJkSa07rwh5efm8a0aEPeFco2ykGRcRXs2V3MC3pqboVecUU2Ir7vTDJXzrKUOzLthI4Y4LFy7gn3/+wRdffAEnJyd88cUXuHDhAi5cuCDT/TKnaq2srPDkyRM0bdqUOfb69Wt07twZ6en8p5vYTNWqSoqWpmdVH5papfAFTdVyh7OzM27cuAFbW1vm2Nu3bzFo0KBKt7Qsj8wRp4mJSYUdS0xMTGBqys20kJqIiU7gXVOy7yUXVOY0JfsC8gnfmqqqx2Zq9djPHrW6r7bwracMzbpgI4U7pkyZgsGDB2P//v24cuUKvL29MWTIEEydOhX+/v7MqypkrqpdsGAB3N3dsXTpUjRt2hSvX7/Gxo0bsXDhQrx69V/FoL29vWIWyYiNLTvVaPJEm/OW/sKKZnmqijTHzPuRE73q4FtTFfS4jiJ7T5Bt3ERd9ZShWRdspHDHvn37AADr1q2TOr53717s3bsXgHhdgrK+rSwyO8758+cDAP7991+p47du3cL333/PCJWUlMjapELo6enyolOWFg6tWG+zuvSsTYuaNwhnG741+dQLi06HsLQB7+nWhrYtNFpPGZp1wUYKd8THK7Ytpcyp2tLS0hpffDlNAIiKUnw/TnnHNr/q10thzbLUNKa57KtBrOrJAt+aXOuVT7MeWsTvZuTK0KQ2ao4mRTVhdR4nn7BRHKTMoiBaCMQNtHiHoinQ4iDVReaIMykpCTNmzEDnzp3Rpk0bqZcyeJeWqdD9tXGaB3duU0hTgqxO8+JB/ubFKktTUT15i3ce/nlYIb3awLcmtVFzNCmqicxjnGPGjIGjoyO8vLxgYGDAZZ9koqioiHfNd6kpCrchT6SZ/S5VYT154VuzNnqKRJXCLP4jUr41qY2ao0lRTWSOOKOionDo0CEMGzYM/fv3l3rxhbe3NwQCAQQCAQoKP2KtlzhacXEagZjoRDwJeY4eXScAAJb+tBnbtopXibFvPhDJye9wOzAYbv1nIEnUBisWzGVWAurczAoioRD+Vy4xW3kt+sYDF8+KF5F3NDcEADh36IRF33gAEG/55X/lEkRCITo3swIgXlloxYK5AMRTVx7euY20lGT0bieuNP71t9/hu34VAGCJ+0C8ighHcnwc5rt1BwCc2bERZ3ZsBADMd+uOAeOm4lVEOJa4DwQA+K5fxURos3q7ICstFZEP7zJTLPatWMSsjDO1sz3yRSI89r/GbIe0bdFsZhf7sY6NAYh3td+2aDYA8bZJTl17IF8kwtTO4j7fPO2LfSsWARBP5Yh8eBdZaamY1dsFgDhilMem5Pg4KZskbVRnk2TlncmdWuJhWAJiHgXgzBrx53xh02JEBl4CAKwbId5mLjLwEi5sWizWXzMXMY8CUJiXi03jumLAjJ8QevUsLu/0BCCeYpD47BGEme+w3cMVgDiyuOkj7vPBhWOREhuJzLcJ2Dt7KADg9olduH1iFwBg7+yhyHybgJTYSBxcOFb8mflsZKKT7R6u6DZyGhKfPWKmM1ze6cmsQrNpXFcU5uUqZBMAKZtS4yI5t0mY+U7Kpo/5uZzaVP45DZjxE+c2lX9OvSfM4dSm8s+JorrIPMY5efJkzJgxA66urlz3SSYMDQ2QmfNA7vsUGdd079sD5wPu1ere2oxpLnEfiA3n+d11nm/NyvS4HKc8uHAspm89w1n7qqBJbdQMTXUZ48zKysKMGTNw/fp1WFhY4LfffsPEiRMrXEcIwYoVK3Do0CGIRCJ06tQJu3btgrOzMwDAuNwOQvn5+ZgzZw527Nghd7+5RuZU7fbt29GjRw84ODigcePGUucOHjzIesdqormdDe+aXn/srNV9tS0EmuW1qVb3KQLfmhI9vop6vpi7ihcdZWpSGzVHUx2YO3cudHV1kZaWhrCwMAwdOhQdOnRgHKKEs2fP4uDBg7hz5w7s7OywfPlyTJkyBU+eiJcyFYlEzLW5ublo3LgxxowZw6stsiKz4/z666+hra2Ndu3aqcQYp7a2XOvTA1C8itbIWP69OBWpntU34nffSL41w6LTkZn+ETk8VsLqGvC7h6MyNKmNmqOp6uTm5sLPzw8REREwNjZGr169MGLECBw9ehTr16+XujY+Ph69evViFsmZPHkytm7dWmm7586dg5WVFXr37s25DbVBZu/j7++PBw8eYNOmTVizZo3USxnExb7mXVMy/ikrik452fC/sUk+4VqzfAXs2f+NF/EF33rK0KQ2ao6mqhMdHQ1tbW2p2RUdOnSodL3X8ePHIzY2FtHR0SgqKsKRI0cwePDgSts9cuQIpk6dCi0tLc76rggyR5wuLi7IzMyssF6tsnBylm8VHzbmbF57/FTma9mYp7nt2n2F21AVzapSsbP3XuJEryr41lOGJrVRczTZol5JPvRzIuS+Lz09HQKBgHk/c+ZMzJw5k3kvEolgZmYmdY+ZmRmEworffzY2Nujduzfatm0LbW1tNGvWrNL1YJOSkhAYGAgfH362cawNMkec/fr1w6BBg/Dbb7/h4MGDUi9lkJLyjnfNHevXynQdW4sbSKpR+YRNTVnmV0qqHvmCbz1laFIbNUdT2VhaWuLx48fMq6zTBMQFPTk5OVLHcnJyKg2wVq9ejeDgYLx+/RoFBQVYtWoV+vXrh7y8PKnrfH190atXL7Rs2ZJ9g1hC5ojzzp07aNKkCa5fvy51XEtLC9OnT2e9Y2zC5wpBdEUgunoPhVJXaNOmDYqLixETE4PWrVsDAMLDwysUBkmOjxs3jtma0sPDAwsWLMDz58+lolpfX18sXbqUHwNqSZ1Yco8vx1mXnSZ1lhQKu7A5HUXQ0R7B/vLXo3w6aGuNfRg/fjy0tLRw4MABhIWFYciQIbh3714F57l69WrcuHEDfn5+sLS0xPHjxzF79my8ffsWDRo0AADcu3cPAwcORGpqqsoMC1aGXKWpmZmZOHr0KDZuFKfzkpOT8ebNG046VhPPI2Nluo5Np+kmcKnyHBdOU7KIAJ/Iq6nIPpUAmMnqfMG3njI0qY2ao6kO7N69G/n5+bCyssKECROwZ88eODs7IykpCcbGxkhKSgIALFmyBB06dEDHjh3RoEEDbN26FX5+fozTBMRFQe7u7irtNAE5Is7AwECMHj0aAoEAd+/ehVAoRGBgIDZt2oSLFy9y3c8KOLdvhcdhfjVex6bjjI+NQctWrSsc5yrSTI6Pg21Lfrf5kkWTzegy820CGjVpwVp7qqanDE1qo2ZoqkvEWReRayPr06dPo3///jA3NwcAdOvWDY8ePeKsc9VRUlJa4zVsp2hzRRUdJJfp2YJcUc0X8ajJRTr2Y34u622qkp4yNKmNmqNJUU1kTtUmJCQw69JK5tbo6uqiuLiYm57VQFKi4guuy8vKBfOk3nM9prlv5Y+cti+Lpjw7j9SGK7tWc9KuqugpQ5PaqDmaFNVE5lRtz549sXLlSri5uaFhw4bIysrC9evXsW7dOgQEBHDczYrUVBzEdUGQphcC0WIfCkW50FSt6iJzxLllyxZMmjQJ06ZNQ35+PmbNmgUPDw+mUIhv3r7hf8ut9cvFJdJ8OU3JriN8ERadjk1LFvPqNPneCUIZO09QG9VfT1maFNVEZscZFBSEp0+fwtnZGdOnT0fLli3x6NEjBAUFcdm/KtHR0anyHFfRppW1Da+RprmVNW9aEmdp0tCSN826oKcMTWqj5mhSVBOZU7WmpqYVVogAwKRt+aaqVC2XKVpNTM/SlCyFoprQVK3qUmPE6e/vD39/f5SUlODff/9l3vv7++PAgQNKm2/z7Fk0r3pP04TM5s18wbVeZU5TsqEuX2i6njI0qY2ao0lRTWqMOCXrBSYlJaF58+b/3ailBWtrayxduhQjRozgtpeV8IlLGzx6clbqGNfRZlZaKho25i99ypVedVGmMPMdTBpZsa5ZV/WUoUlt1AxNGnGqLjVGnPHx8YiPj8ekSZOYf8fHx+PVq1e4d++ezE5z8uTJsLGxgampKdq0aYMDBw4w527dugVHR0cYGhrC1dUViYmJNbZXWPhRJl02kKRoUxLieNPkQk+WaSVZyQmsataEpuspQ5PaqDmaFNVE5uIgX19fhYSWLVuGhIQE5OTk4O+//8by5csREhKCjIwMuLu7Y82aNcjKyoJAIMC4ceNqbC8lWdoBcBVtlh3XPLtzEycaVcGmnqxjmUEnd7OmSfWUo0lt1BxNimqilEXeX758ib59+2Lbtm14//49Dh8+jHv37gEQ7yhuYWGB0NBQODo6VtlG+eIgPhynOkKLfygU9YSmalUXuRZ5V5Q5c+bA0NAQjo6OsLGxwZAhQxAZGYkOHTow1xgZGcHBwaHSHcTLkpSU/N+/eXKa+1Ys4kSnKhTRq+1qP5d3etZaszZoup4yNKmNmqNJUU14dZy7d++GUChEUFAQ3N3doaenJ9cO4t7e3hAIBBAIBMgV5WOt1x4A4l1L4mNjEBH2BO59ewAQL1ZwcOc2AEDvdvZIS0nGwzu3MWWYGwBgxYK5OH1YvMN452ZWEAmF8L9yCbPHjwYALPrGA3cuiheRH+vYGABASkuxbdFscfuzJ+Ox/zXki0SY2tkeAHDztC/j7DynjELkw7vISktlqmMvHtzDLGqwxH0gXkWEIzk+jtmR5MyOjcxG0vPduqORtS1eRYRjiftAAOIFES4eFNs8q7cLstJSEfnwLjynjAIgdrQ3T/uKFzIY1xWFebmIeRSAM2vmAgAubFqMyEDxLvbrRrQHAEQGXsKFTYvF+mvmol79+ijMy8WmcV0BAKFXzzJfGMd+9kDis0cQZr5jKgwf/nmYmRh+cOFYpMRGIvNtArOTxO0Tu5gNgPfOHorMtwlIiY3EwYVjAQDv097g4Z+HAYirFoWZ75D47BGO/ewBQPxlFXpVXARWW5tiHgUwNtm0cubcpps+G6VsMrdpzqlN5Z9TUkQw5zaVf06Zb15xalP552TTyplzm8o/J8vmrTi1qfxzoqguStuPc/bs2XByckJcXByKioqwe/d/4weffPIJPD09MXr06Crvl6RqaYr2P2halkLRHGiqVnXhNeIsS3FxMeLi4uDs7Izw8HDmeG5uLnO8OsLDorjuYgUkkaWq6bG5CLvklzFfaLqeMjSpjZqjSVFNeIk43717B39/fwwbNgwGBga4efMm3N3dceLECfTo0QOtWrXCwYMHMXToUKxatQqBgYF48OBBtW127OSI0/+GctLfqqLNfJEIBsbGnGjWVo/tKLMwLxd6hkastlmX9ZShSW3UDE0acaouvEScWlpa2LNnD5o2bQpzc3P8+OOP+OOPP/Dll1/C0tISfn5++OWXX2Bubo6HDx/i1KlTNbYpFObx0HNpIh/dVRk9rrb6SooIZr3NuqynDE1qo+ZoUlQTXhynpaUlAgMD8f79e+Tk5ODZs2f49ttvmfMDBgxAVFQU8vPzERAQgBYtWtTY5rv0D5z0tbqxzZtnjnKiKa8el2OZodfO1nwR1VNpTWqj5mhSVBOlFQcpSvtOneH3L/sRoCoXBdHiHwql7kBTtaqL0oqDFOVNQgLrbdbkNCVTUfhCosdVWrYyJKX0fKHpesrQpDZqjiZFNVFbx2lSbu4nH3TpO5B3Pb6jzNaf9qF6aq5JbdQcTYpqQlO1/0PVUrQ0LUuh1G1YTdW2s0Ww7wy57/v0uys0VVsJahtxRoZxMxWlOiQrCHGNxGlKViPhE741NV1PGZpc670IT6nwWjeifaXHK3uxQV14jhTVhUacUK1ok0aalNrAlkOqK7TrYKPsLtQIjThVl/rK7kBt+ZCdzUo78jjNOxf90Gt41csAKkp5pxkZeAnOfYZyplcZfGtqup4imrV1hq/D/dGsQ79a3Vtb+NZUVK82n215TXVwvhRuUFvHKfzAzTzO6ggJuMGZ46ws0owJDuT9S55vTU3XK6/JR2SY+vIB746Tb01VsLE2z5I6W82gTqdqVSVFS9OzmgNNmVLYIunCUpqqVVHUtjgo8VUc75rrZ09mvc3qnKZk+yI+4VtTXfXkKXy5f2wFK5qywreeMjTrgo0U1UVtU7UNG1kodH9tos0BY6copFmemiLNTm5jWNWTBb41VVmPreixhWAIK+2oqp4yNOuCjRTVRW0dp5GxCe+azl17staWLOnZ5u0/ZU1PVvjWVAU9rtOrFi07cNq+svWUoVkXbKSoLmqbqn0Z+azW99Z2bHPW5y611iyLrGOaO752ZUVPHvjW5FPvRXgKtk3ty8m8wuq4+vt4zjWUqacMzbpgI0V1qZPFQcosCqKFQPxBC3Uo6gwtDlJd1DbizM7IqNV9ijjNm6d9a30vIL/TDL2qhK2TeNZkU0+WSDI++BJrerLCtya1UXM0KaqJ2jrO/Hz+N7KOiwiv9b21iTRTYiNrrVdb+NZURK82Kdf3ydG11qstfGtSGzVHk6KaqJXj9Pb2hkAggEAgQFFREXasXwsAcBO4ID42BhFhT+DetwcAYP3ypTi4cxsAoHc7e6SlJOPk31fhOWUUAGDfikVMBDm1sz3yRSI89r/GTDnZtmg27lz0A/DfGrXOXXswW32tnz0Zj/2vIV8kwtTO9gDEEem+FYsAAJ5TRiHy4V1kpaVieg/xGpcP/zyMmz4bAQAHF45FSmwkMt8mYO9s8eT42yd24faJXQCAvbOHotsoD6TERuLgwrHi9n024uGfhwEA2z1cIcx8h8Rnj3DsZw8AwOWdnkwEt2lcVxTm5SLmUQAzBePCpsWIDBT/apasuxkZeInZLunMmrlo3bUvCvNysWlcVwDiiPDyTk8AwLGfPZD47BGEme+w3cO1VjZlvk2QsknXwEhmm37/6lM8fRQH/9PncfCnbwAAwWfW4XW4PwDgzxXi3Wteh/sj+Mw6AOIpBClR91FUmIeLa0ag05cLER98CaF/bQUABPksQnp8OPJzMnDl93EAgJi7Z/Hsyl4AwL975iD7bTSEGW9w/Q9xn174++KFv/hv5/ofHhBmvEH222j8u2cOAODZlb2IuSvu85Xfx8HRdQrS48MR5CP+2wj9aysTvVxcMwJFhXlIibrPTHeQ1yYAUjaJMt5wblN+ToaUTZI+cGVT+efU6cuFnNtU/jm1HzyLU5vKPyeK6qK2Y5xGxiZ48uadXPcoOrbpOWUUPI/+Kdc9ioxpHvvZA5PXHa71/eqgWZ0eF2OUQT6L0HvGZtbbVSVNaqNmaNIxTtVFbaejWNnIt3QVGwVBY+b9KNf1ihYC9Z4wR6H71UGzrB4fxTyO/aZyrqFsTWqj5mhSVBO1dZx6enoyX8tWFa1NCweZr2WjerahbQuF21BlzRfhKcjPMUAej9Wvxo2a8KalLE1qo+ZoUlQTtRrjLEvcyyjeNZd9NUim69iacnJo0ThW2lE1zbLFPAF7+V1yj289ZWhSGzVHk6KaqO0Yp6zzOPmes0nnaVYOnVNJocgHHeNUXdQ24sx4J19hEBtcPLin2vNsO01JtSmfsK1Z01QRSVUjX/CtpwxNaqPmaFJUE7Ud4ywuKqrxGrajzex3qVWe4yLSFGbxH72yoSlPdFmQk6mwnjzwracMTWqj5mhSVBONTtXylaal6VmaiqVQ2IamalUXtU3V1lQcxIXTXOI+sMIxLp2mZJEAPpFXU9GF0iWT0fmCbz1laFIbNUeTopqobarWtllz3jVneW1i/s1HlPnF3FWca9RGk83osuOIBay1pYp6ytCkNmqOJkU1UduIU1tbu8pzXKVo9Y2MAfCXmtU1MOJFRxZNrrbhqq9nyGp7qqanDE1qo+ZoqgNZWVkYNWoUjIyMYGdnhxMnTlR6HSEEy5cvR5MmTWBmZoa+ffsiMvK/tap37twJgUAAPT09eHh48NT72qG2jjPxVVylx7kc19wwezKv45ln1/A/b6y8Jtd7Vt4/tpyztlVBTxma1EbN0VQH5s6dC11dXaSlpeH48eP47rvvpByihLNnz+LgwYMICgpCVlYWunfvjilTpjDnbW1tsXz5ckyfPp3P7tcKjSsO4tJx1pUiIFroQ6EoH3UoDsrNzYW5uTkiIiLQpk0bAMCUKVPQpEkTrF+/XuraDRs2ICQkBGfOnAEAREZGokuXLigoKJC6bvny5Xjz5g0OHz4sd3/5Qm0jznepFb/cuXaakl0++IJvvRfhKTi/dQO/mv6K7XGq6nrK0KQ2ao4mW5D8AhSHx8r9Sk9PZ3akEggE8Pb2lmo3Ojoa2trajNMEgA4dOlQacY4fPx6xsbGIjo5GUVERjhw5gsGDB3NuOxeobXEQhT1ohEmhUCrD0tKy2ohTJBLBzMxM6piZmRmEwopBjI2NDXr37o22bdtCW1sbzZo1g7+/P+t95gO1dZxW1tK7o/CRov18Ir9jjlzrVeYw2/G8A4Sm6ylDk9qoOZqqjrGxMXJycqSO5eTkwMTEpMK1q1evRnBwMF6/fg1ra2scO3YM/fr1Q2RkJAwN1avwSm1TtTEvnvOuKdmcWRP0qooyJZsA84Wm6ylDk9qoOZqqTps2bVBcXIyYmBjmWHh4OJydnStcGx4ejnHjxqFp06aoX78+PDw8kJ2djefP+f8uVxS1dZx29v9t8cVXQdCYFfyOOXKhV1OVbPfJa1nXrA5N11OGJrVRczRVHSMjI7i7u2PlypXIzc3F3bt38ddff0lVy0r49NNPcfbsWaSlpaG0tBRHjx5FUVERWrVqBQAoLi5GQUEBSkpKUFJSgoKCAhQXF/NtkkyoreMsKSnhXfNjfq7a6sk6raS4MI81TVnQdD1laFIbNUdTHdi9ezfy8/NhZWWFCRMmYM+ePXB2dkZSUhKMjY2RlJQEAFiyZAk6dOiAjh07okGDBti6dSv8/PzQoEEDAMDatWthYGCA9evX49ixYzAwMMDatar5Y4UXx1lYWIgZM2bAzs4OJiYm6NSpE65cucKcv3XrFhwdHWFoaAhXV1ckJibW2Gbya/HD4HP6yZVdqznTqgy29OQp/gn7+w9WNKme8jSpjZqjqQ40bNgQFy5cQG5uLpKSkjBx4kQAQPPmzSESidC8uXiVN319fezatQspKSnIycnBkydPpKpqPT09QQiRenl6eirDpBrhZR5nbm4uNm7cCA8PDzRv3hyXL1/GhAkT8OzZMxgbG8PBwQEHDhzA8OHDsWLFCgQFBeHBgwfVttm+U2esOnWV036r+7xNWi1LoagvbM7j7NKiIR4sd5P7vu57Y+gi75XAS8RpZGQET09PtGjRAvXq1cOwYcPQsmVLhISE4Pz583B2dsaYMWOgr68PT09PhIeHIyqq+kXcU9++5bTPlTnNmz4bOdVkS0+R1X6eXdlbq/tqi6brKUOT2qg5mhTVRCljnGlpaYiOjoazszMiIyPRoUMH5pyRkREcHBwqnUDr7e3NTMTN+fABZ3aIHct8t+5Ijo/Dq4hwZgcT3/WrmI2nZ/V2QVZaKiIf3oXnlFEAgH0rFuHmafGE5qmd7ZEvEuGx/zWs/9+yehc2LUZk4CUAwLoR7QEAudkZuLBpMQDgzJq5iHkUgMK8XGwa1xUAEHr1LC7v9AQAHPvZA4nPHkGY+Q7bPVwBiDeJljjDgwvHIiU2EplvE5jq2dsndjGLHuydPRTa2tpIiY1kdiy56bOR2Wh6u4crhJnvkPjsEY797AEAOOG1GJcPHAAAXFwzAkWFeUiJuo/7x1YAAILPrMPrcPG8qT9XiD+n1+H+CD6zDgBw/9gKfCwQoagwDxfXjAAAxAdfQuhfWwEAQT6LkB4fjvycDFz5fRwA8ea+ki+Uf/fMQfbbaAgz3jAViC/8fZmJ49f/8IAw4w2y30YzO01kJ0czGwRf+X0c8nMykB4fjiCfReLP9K+tiA++pJBNKVH3GZv0TRtxbtOzK3ulbNLW1efUpvLPKfnFPc5tKv+cMpMiObWp/HPSN23EuU3ln5OOoQmnNpV/ThTVhfcl94qKivDFF1/AwcEB+/btw4wZM2BpaSm1PFPPnj3x7bffVrvQr0P7jljvd52TPqpjipamZSkUzYKmalUXXiPO0tJSTJkyBbq6uti5cycA+SbQliXxZcWIlA2qc5qSyJEvZNFjexF2yS9fvtB0PWVoUhs1R5OimvDmOAkhmDFjBtLS0uDn5wcdHR0AgLOzM8LDw5nrcnNzERcXV+kE2rI0cWhT7Xku+HrzaZXR42rXkr6z+Z2rqul6ytCkNmqOJkU14c1xfvfdd3jx4gUuXrwIAwMD5vioUaMQEREBPz8/FBQUwMvLCy4uLnB0dKy2vaLCQtb7WFOKNis5gXVNefW43uZLlMlt0VVd01OGJrVRczQpqgkvjjMxMRH79u1DWFgYrK2tYWxsDGNjYxw/fhyWlpbw8/PDL7/8AnNzczx8+BCnTp2qsc3sd6k89FyaoJO7larHxzhmFM87QGi6njI0qY2ao0lRTdR2P062i4NUuSCIFv5QKHUPWhykuqjtknvpya9515RMNeGLE16LeXeaklJ5qqe+mtRGzdGkqCZq6zj1DNjbhkbWaNOmVfUFS2zyIjwFDWz5L4DiW1PT9ZShSW3UHE2KalLnU7WqmKKlqVkKhUJTtaqL2kac8S+e8a4pWSGIS8o6TclqI3zCt6am6ylDk9qoOZoU1URtI86WTp/g9z9vKdSGvNFmYV4u9AyNFNKsjvKRZlFhHnT0+N0ZnW9NTddThia1UTM0acSpuqhtxJmfK+JdMykimLO2K0vPZsSHV3Ilt/Ctqel6ytCkNmqOJkU1qa/sDtQWYVamQvfXZmwz9NpZtO7aVyHdyqhqTDPh8WXYOHZnXa86+NbUdD0+NFMfJ0u9f/ngPLREdpzpVQbfmi8fnNe450hRH9Q2VatocZCqFAXRQiCKhPIOkMIt1gJbZXehWmiqVnVR24gz7U1ire+trdO8sGkxRv74e611yyKLwww+sw6fjv2ZFT1Z4VtTk/UkjjD68R60EXzHi6Yy9JShyYaevD9UymqqutOlcIvaOk4jE1PeNVt/2oeVdmSNMq3bfsaKnjzwranuerJ8+Zpbd2RVU9X0lKGpbBtldbrUwWomaus4jc3Ma3WfIila5z5Da32vBHlSs8069FNYT1741lQHPUVTqJZN+R0X41tPGZrqYqM8fzvUyaoPaltV+ypS/go3Rcc1141or9D98o5nSnaV5xO+NVVBL/VxcrUvRbn/1zSF21BlPWVoaqKNbP/dlaU0twi5D1LkflEqp04VBymzIIgWASkfWnxDUSc+vtnOWmFOJ0sT/PtlF7nvGxAmosVBlaC2EafoQ7Zc17PhNCMDL9Xqvto6zdfh/rW6TxH41uRSr7Jf8Olv7nOmVxV8a1IbNUeTopqorePMFebwrhkTHCj3PYpEmqkvH9T6XnXRZEtP1hRrdmoYK3rywLcmtVFzNCmqSZ1I1SorRUvTs9xB064UTYemalUXtYo4vb29IRAIIBAIkBAViTM7NgIA5rt1R3J8HF5FhGOJu7j4w3f9Klw8uAcAsN3DFcLMd0h89gjHfvYAIN5bM/TqWQDixdsL83IR8ygAZ9bMBSCesylJzUqKgnwWfIULmxYDAM6smYuYRwEozMtlFn8PvXqW2bPT+/uJSI8PR35OBq78Pg4AEHP3LJ5d2QsA+HfPHGS/jYYw4w2u/yHu0wt/X7z43y7z1//wQNDBH5H9Nhr/7pkDAHh2ZS9i7or7fOX3ccjPyUB6fDiCfBaJ9f/aivhgcZ8vrhmBosI8pETdx/1jKwCI5zBKUqOSIpnX4f4IPrMOAHD/2Ar8u3ceigrzmAWt44MvMfsQBvksUtgmYcYbKZuubZkqk02pj5Pxl+dwvL0fh+f/XELUA3Gfoh/vYVJokuKN9Df3Ef1Y/OyjHmxFVmooSory8fCfWYh6sBVpCf8iLuwgACDyzm/4kPECH/Oz8fjqfABAcuwVJEScBAA8DVgJ0ft45ItSEXpT/OxfR/2J11F/ivt3czHyRakQvY/H04CVAICEiJNIjr0CAHh8dT6e3/0dHzJeIPLObwCAuLCDSEv4FwDw8J9ZKCnKR1ZqaK1tAiBlU/DlOZzb9DE/W8qmkOs/cGpT+ecU9WAr5zaVf04v7m3i1Kbyz4miuqhtxGlt1xI7rj+s8To2o82YRwEyLbnHVqSZEnWf9yW++NasTI/LaDIrNRQNrTtx1r4qaFIbNUOTRpyqi9rO4zQwMq7xGrZTtM3bf1rjNWymZy1admCtLVXVtGjZgde0q1kjR960lKVJbdQcTYpqolap2rIkvnzOu+aOr12rPc/2mObV38ez2p4qaUoKeC7/No4XPQmPry3gVU8ZmtRGzdGkqCZqm6qtqTiIz4IgWgQkG7Sgh0KRHZqqVV3UNuLMyVZsW7HaICkmKguXTlNS6MMnbGvWND1EUnzBF3zrKUOT2qg5mhTVRG0dZ2F+XpXnuIo2U2Ijpd5zHWm+T47mtH2uNOVZNkz0Pl5hPXngW08ZmtRGzdGkqCYamarlI01L07PS0DQshcIuNFWruqhtxJkcH1vpcS6dpmQOKF9OUzKXkU/k1VR0QWrJnDm+4FtPGZrURs3RpKgmajsdxdzKusIxriPN3hPm8BppOvabypuWPJpsRpdNHUey1pYq6ilDk9qoOZoU1URtHaeOnh7vmpnvDWDA4/7Zxo2a8CdWgyZXqVgDo4o/gLiEbz1laFIbNUeTopqobar2bZx0EQvX0eaL8BQE7J3LqUZ5+NYrr8nV3oBleRroyVnbqqCnDE1qo+ZoUlQTjSkO4sNx1gVokQ+FohrQ4iDVRW0jzvcZ75h/8+U0JYuR8wWfepLIUrLoNV9oup4yNKmNmqNJUU3UdoyzpLgYAL+RZkEOv4su8KFXPsL8WPCec826pKcMTWqj5mhSVBO1T9XSFG3toWlZCkV1oala1UVtU7Vv4qJ5d5qSPST5giu96gp+JHsV8oWm6ylDk9qoOZoU1URtU7WWtk151+w4YoFa68kSYdp3/JpVzbqupwxNaqPmaFJUE7V1nIXF3GaYK0vR1tcz5FSTKz15UrLa9Q1Y0aR6ytOkNmqOJkU14S1Vu3PnTggEAujp6cHDw0Pq3K1bt+Do6AhDQ0O4uroiMTGxxvayU5I46mnV3D+2XK30ajMHM+rBFoU05UXT9ZShSW3UHE11ICsrC6NGjYKRkRHs7Oxw4sSJSq+bPXs2jI2NmZeenh5MTEyY83379oW+vj5zvm3btnyZIDe8FQedP38e9erVw7Vr15Cfn4/Dhw8DADIyMuDg4IADBw5g+PDhWLFiBYKCgvDgwYNq27Np7YzpW85w0ld1LwiiRT8UivqjLsVBEyZMQGlpKXx8fBAWFoahQ4fi3r17cHZ2rvY+Dw8P1KtXDwcPHgQgdpyTJ0/GN998I3c/+Ya3iNPd3R0jR45Eo0aNpI6fP38ezs7OGDNmDPT19eHp6Ynw8HBERUVV254ok5vCoOqc5gt/X0402dRT1Gm+jvpTofupnvI1qY2ao6nq5Obmws/PD2vWrIGxsTF69eqFESNG4OjRozLdN23aNJ56yi5KH+OMjIxEhw4dmPdGRkZwcHBAZGQkHB0dpa719vaGt7c3AKAoLwfXVvP7oeelpyMp57nG6gFAvfx0fHzzmuqpsSa1UTM0awoe5KFxl54YEJYh9335+fkQCATM+5kzZ2LmzJnM++joaGhra6NNmzbMsQ4dOiAwMLDadv38/GBpaYnPP/9c6viyZcuwdOlStG3bFr/++iv69u0rd5/5QOmOUyQSwdLSUuqYmZkZhEJhhWvLPjSBQMD7/CK+NamN6q+nDE1qo2ZolnVYinL16lXW2iqLSCSCmZmZ1LGqvr/LcuTIEUydOhVaWlrMsQ0bNsDJyQm6uro4deoUhg8fjrCwMDg4OHDSd0VQ+jxOY2Nj5OTkSB3LycmRGjSmUCgUiupRm+/v169fIzAwEFOnSm9h2K1bN5iYmEBPTw/Tpk1Dz549cfnyZU76rShKd5zOzs4IDw9n3ufm5iIuLq7GgWUKhUKhKJc2bdqguLgYMTExzLHw8PBqv799fX3Ro0cP2NvbV9u2lpYWVHVhO94cZ3FxMQoKClBSUoKSkhIUFBSguLgYo0aNQkREBPz8/FBQUAAvLy+4uLhUGN8sT9k8O1/wrUltVH89ZWhSGzVDUxk2youRkRHc3d2xcuVK5Obm4u7du/jrr78wZcqUKu/x9fWtMCXx/fv3uHbtGuMXjh8/jtu3b8PNzY1jC2oJ4YlVq1YRAFKvVatWEUIIuXHjBmnbti3R19cnffr0IfHx8Xx1i0KhUCgKkJmZSb788ktiaGhImjVrRo4fP04IISQxMZEYGRmRxMRE5tp79+4RQ0NDkpOTI9XGu3fviEAgIMbGxsTMzIx069aNXL9+nVc75EFtF3mnUCgUCkUZKH2Mk0KhUCgUdYI6TgqFQqFQ5IA6TgqFQqFQ5IA6TgqFQqFQ5IA6ThXC29sbPXr0gJmZGbS1tWFmZoYePXpg//79yu4aK2i6fQC1UVPIzMyEt7c35s+fj+nTp2P+/Pnw9vZGZmamsrtGUQGUvuSerHh7e+Pw4cOIjIyESCSCsbExnJ2d8fXXX+Pbb79VdvcUZsmSJfjnn3+waNEidOjQAWZmZsjJyUFYWBi2bNmCV69e4bffflN2N2uNptsHUBs1xcZbt27hq6++wieffIIOHTrA1tYWOTk5OH78OJYuXQo/Pz+4uroqu5sUZaLs+TCysHjxYuLk5ER8fHzI48ePSUxMDAkJCSE+Pj7E2dmZLF26VNldVBgLCwuSnJxc6bm3b9+SRo0a8dwjdtF0+wihNmqKje3atSN+fn6Vnjt//jxxdHTkuUcUVUMtIs6DBw/i6dOnsLGxkTreuXNnDB48GC4uLmr/K5fUMJ22pvOqjqbbB1AbZTmvDiQmJmLo0KGVnhsyZAgmTZrEc48oqoZaOM668D/rjBkz0K9fvwopsPDwcGzZskXt09Gabh9AbdQUG7t164bly5fD09MTRkZGzPHc3FysXr0a3bp1U2LvKCqBskJdeVi8eDFxdHQk+/fvJ48ePSIvX74kwcHB5MCBA8TJyYksWbJE2V1khb1795IePXoQMzMzoq2tTczMzEiPHj3I3r17ld01VtB0+wihNmoCCQkJpHv37kRfX584OTmR7t27E2dnZ2JgYEC6d+8utYQcpW6iNkvu7du3D76+vhWKg6ZOnYpZs2Ypu3sUCkXDiI6OxvPnz6W+b1q3bq3sblFUALVxnHWF6OhoREZGQigUwsTEBO3bt9eo/1k13T6A2kihaDpqMcYpQZP/Z01KSsK4ceMQHh4OBwcHZuwoLi4OHTp0wKlTp9C8eXNld7PWaLp9ALVRU2wENH/6G0VBlJsplo3ExETy2WefEQMDA9K+fXvSs2dP8sknnxBDQ0ONGXPo168f+emnn0hubq7UcZFIRBYvXkxcXV2V1DN20HT7CKE2aoqNdWH6G0Ux1CJV279/f3Tp0gWenp4wNDRkjufm5sLLywvBwcHw9/dXYg8Vx9jYGFlZWdDV1a1wrrCwEA0bNkRubq4SesYOmm4fQG3UFBstLS0rnf4GAMnJyXBxcUFGRoYSekZRFdRiyb2HDx9i7dq1Uk4TEO8+7uXlhYcPHyqpZ+zRrFkz/PPPP5Weu3z5stqnvzTdPoDaqCk21hRLqEGsQeEYtRjjlPzP6u7uXuGcpvzPunPnTowePRpbtmypsJRZZGQk/Pz8lN1FhdB0+wBqo6bYWBfmqlIUQy1Stbdu3cLo0aPRvn37Kv9n7devn7K7qTCZmZk4f/68VEFC+/btMXLkSFhYWCi7ewpTmX3Ozs4YNWqURtgH1E0bTUxM4OTkpFE20ulvlOpQC8cJ1I0vpNDQUMTFxWHIkCHQ1dXFnj178OrVK/Tv3x/Dhg1TdvdYJT4+HpcuXQIADB48GK1atVJyjyiyEhsbi6NHjyIiIgJ5eXlo2rQpunbtCg8PD+jo6Ci7exQK56iN46yKkpIS/Prrr1i5cqWyu6IQPj4+WL58ObS0tGBrawt3d3e8fv0axcXFOHXqFLZt24bp06cru5u1pl27dnjx4gUAIDAwECNGjEDPnj0BAEFBQfjrr7/UPmswf/58jB07lrFLE7lw4QImT56Mnj17ghCCwMBAjBs3DnFxcUhNTcWNGzdgb2+v7G5ySlJSkkYMD1EUQEnVvKxRUFBA6tWrp+xuKEzbtm3Jy5cvSVRUFNHS0iJ3795lzl29epW4uLgosXeKY2xszPy7V69e5MiRI8z7Y8eOke7duyujW6yira1NTExMiIODA1m9ejVJSEhQdpdYp3Xr1sTf3595f+3aNTJ48GBCCCEbN24kQ4YMUVbXeEFTvm8oiqEWEWd1kVZxcTGOHz+OkpISHnvEPmZmZvjw4QMAcbWwSCSClpYWAKC0tBQNGzbE+/fvldhDxTA1NUVOTg4AwMrKCm/fvmXSeiUlJbC0tERWVpYyu6gwJiYmSEtLw9mzZ+Hr64vbt2+jV69e8PDwwFdffSW1YLi60qBBA2RnZzN/m8XFxbCxsUF6ejry8vJgbW3NPGd15fbt21WeKywsxODBg9X++4aiGGpRVXvixAnMmDEDDRs2rHBOU/6AjYyMUFRUBB0dHXh4eDBfTACQn5+PevXUYuZQlRQVFeHQoUMghEBLSwsfP35kHGdxcbFGPEctLS0YGhpi2rRpmDZtGpKSkuDr64t169Zh3rx5GD16NA4fPqzsbipEly5dsH37dsyfPx8A8Mcff8DZ2RkAoK2tjfr11eIrpVr69u0LGxsbtf9/jsIhSo54ZUIgEJC//vqr0nP5+flES0uL5x6xz+TJk8nz588rPXfq1CnSp08ffjvEMn369CF9+/ZlXo8ePWLOXbt2jXz66adK7B07mJiYVHnu7t27ZNasWTz2hhtevHhB2rRpQ0xMTJi09LNnzwghhDx9+pT89NNPSu6h4rRo0UJqqKQs+fn5NFVLUY9U7a5du9CkSROMHDmywrmSkhKsXbsWq1at4r9jPJGeng4tLS2NqR4uz4cPH1BUVKT29pmYmEAoFCq7G5xTUlKCqKgoEELg6OioEVFmWcaMGYPevXvj+++/r3Du48ePaNu2LeLj45XQM4qqoBaOk0KhUPiiqKgIAOjUGkqV0CQ+hUKhlEFHR6dKp1lSUgIvLy+ee0RRNWjESaFQKDJSWFgIQ0NDjShmo9QezRqcoFAoFAWpafobhUIdJ4VCoZShLkx/oygGTdVSKBRKGT799FOsWLECI0aMqHCuoKAAhoaGKC0tVULPKKoCLQ6iUCiUMnh4eFTpGHV0dDR66htFNmjESaFQKBSKHNCIk0KhUCgUOaCOk0KhUCgUOaCOk0KpBS1atMDNmzdrvC4gIABNmzatlUZCQgK0tLToFAgKRcWgjpNCoVAoFDmgjpNCoVAoFDmgjpOiNrRo0QK//fYbnJycYG5ujq+//hoFBQUAgP3796NVq1Zo2LAhRowYgeTkZOa++fPno1mzZjA1NUWXLl0QFBRUo1Z+fj6mTZsGc3NztGvXDr///nuVKdfCwkIsWLAAtra2sLW1xYIFC1BYWCh1zbp162BhYYEWLVrg+PHjzPFLly6hU6dOMDU1RbNmzeDp6VmLT4ZCofAJdZwUteL48eO4du0a4uLiEB0djbVr18Lf3x/Lli3DmTNnkJKSAjs7O4wfP56559NPP0VYWBiysrIwceJEjBkzhnG4VbF69WokJCTg1atXuHHjBo4dO1bltb/++isePHiAsLAwhIeH49GjR1i7di1zPjU1FRkZGXj79i2OHDmCmTNn4uXLlwDEG5j7+vri/fv3uHTpEvbs2YMLFy4o9iFRKBRuUdI+oBSK3NjZ2ZE9e/Yw7y9dukTs7e3J9OnTpTZQFgqFpH79+iQ+Pr7Sdho0aEDCwsKq1WrZsiW5evUq837//v2kSZMmUn25ceMGIYQQe3t7cunSJebc1atXiZ2dHSGEkH///Zdoa2sTkUjEnB8zZgzx8vKqVHf+/PlkwYIFhBBC4uPjCQBSVFRUbV8pFAq/0IiTolY0a9aM+bednR2Sk5ORnJwMOzs75rixsTEaNWqEt2/fAgA2b96Mdu3awczMDA0aNMCHDx+QkZFRrU5ycrKUVtl/V3ZtWX1JvySYm5vDyMio0vMPHz6Eq6srLC0tYWZmhr1799bYNwqFolyo46SoFa9fv2b+nZSUxIwrJiYmMsdzc3ORmZmJJk2aICgoCBs2bMCZM2eQnZ2N9+/fw8zMDKSGBbNsbGzw5s2bSnXLU15f0i8J2dnZyM3NrfT8xIkTMWLECLx+/RofPnzA7Nmza+wbhUJRLtRxUtSKXbt24c2bN8jKysK6deswbtw4TJw4EYcOHUJYWBgKCwvx888/o1u3bmjRogWEQiHq168PS0tLFBcXw8vLCzk5OTXqjB07Fr/99huys7Px9u1b7Ny5s8prJ0yYgLVr1yI9PR0ZGRnw8vLC5MmTpa5ZtWoVPn78iKCgIPzzzz8YM2YMAEAoFKJhw4bQ19fHo0ePcOLECcU+IAqFwjnUcVLUiokTJ2LQoEGwt7eHvb09li9fjv79+2PNmjUYPXo0bGxsEBcXh1OnTgEA3Nzc8MUXX6BNmzaws7ODvr5+tWlXCStXrkTTpk3RsmVLDBgwAF999RX09PQqvXb58uUQCARwcXHBJ598gs6dO2P58uXMeWtra5ibm8PW1haTJk3C3r174ejoCADYvXs3Vq5cCRMTE3h5eWHs2LEsfEoUCoVL6CLvFLWhRYsWOHDgAAYMGMC79p49e3Dq1CkEBgbyrk2hUFQLGnFSKJWQkpKCu3fvorS0FC9fvsTmzZsxatQoZXeLQqGoANRxUuosX3zxBYyNjSu81q1bh48fP2LWrFkwMTFBv3798OWXX2LOnDnK7jKFQlEBaKqWQqFQKBQ5oBEnhUKhUChyQB0nhUKhUChyQB0nhUKhUChyQB0nhUKhUChyQB0nhUKhUChyQB0nhUKhUChy8P8STZBmk+Xf/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "contour_plot = plot_contourf(\n", + " df=matr2,\n", + " y_axis='temp_module',\n", + " x_axis='poa_global',\n", + " z_axis=lfm_sel,\n", + " title='matrix predicted_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " vmin=0.7,\n", + " vmax=1.05,\n", + " levels=9,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [L1] Contour plot (colours) of predicted lfm_sel vs. poa_global (x) and temp_mod (y)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFlCAYAAABMeCkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAB5nUlEQVR4nO2dd1gUV9vGb3pbpEhHQIpYUMGIDWvsJRpL7FJsRCyxxBYLxG5ii4kRe9fYMGrsHY2JNYACKogiKIIiKB0p5/vDj31ZWWB3mdmZnT2/69pLdubMOffN4jz7nDlFgxBCQKFQKBQKhRU0uRZAoVAoFIqQoYGWQqFQKBQWoYGWQqFQKBQWoYGWQqFQKBQWoYGWQqFQKBQWoYGWQqFQKBQWoYFWBfnxxx/h5uYmfr9r1y5oa2uz3m5AQAC6du2q8m1Qasbnf38UCqVqaKAVAEOHDsWrV6+4lqEy/Pnnn+jVqxdsbGygoaGBffv2VSiTm5uLuXPnwsXFBfr6+mjSpAmOHj1aodzt27fh4+MDfX192Nra4ocffkBJSYn4fEBAADQ0NCq8NDU18ebNmwr15eXlwcPDAxoaGvj7778lzmVnZ2P8+PGoXbs2jIyM0KtXLyQkJEiUKSoqwuzZs2FrawsDAwO0a9cO9+/flyizZcsWdOnSBebm5lLbqY6ZM2fi1q1bcl0jC+np6QgKCoKdnR309PTg7OyMTZs2ic/HxMRg8ODBqFevHjQ1NTFu3Dip9Rw5cgTNmzeHSCSClZUVBg4ciKdPn4rPJyYmSv1MFixYIC6Tn5+Pr776Co6OjtDX14e1tTX69++P2NhYuTzt2rUL9evXh56eHho0aID9+/dXWvbKlSvQ0tKq8CVGVt8U/kIDLQt8/PhRqe0ZGBjA2tpaqW2qMjk5OWjZsiVCQ0MrLRMYGIgjR45g8+bNiImJQWBgIIYNG4bz58+LyyQnJ6Nbt26oX78+7t+/j9DQUGzevBnz588Xl1m/fj1ev34t8WrVqhW+/PJLWFlZVWh34sSJcHV1larJ19cXly9fxtGjR/H333+DEIJu3bohPz9fXGbWrFnYvn07Nm/ejLt378LFxQVdu3ZFamqquExeXh46d+6MVatWyfV7K0MkEsHCwkKhaysjJycHHTp0wNOnT/HHH3/gyZMnOHDgABo1aiQuk5eXB0dHRwQHB8PT01NqPbdv38awYcMwaNAgPHjwAGfOnMG7d+/Qp0+fCmVPnDgh8bnMnTtXfE5DQwPdunXD4cOH8eTJE5w+fRrFxcXo0qULCgoKZPJ0/PhxjB07FhMmTEBUVBTGjx8PPz8/nD17tkLZtLQ0+Pv7o1u3bhXOyeKbwnMIx1y4cIF07NiRmJmZkVq1apEOHTqQ27dvi8+PGDGCdOvWrcJ1PXv2JEOHDhW/X7duHbG3tycGBgake/fuZM+ePQQASU5OrrTtjh07krFjx5LFixcTa2trYmZmRvz9/UlOTo64TGlpKVm1ahVxdnYmOjo6xMXFhaxbt06iHicnJzJ//nwSFBREzM3Nibe3N7l69SoBQE6fPk1at25N9PX1yRdffEGio6NJdHQ0adu2LTEwMCAtWrQgMTEx4royMjLIyJEjiYODA9HX1yfu7u5k9erVpLS0VFwmJCSEuLq6it/v3LmTaGlpid9/+PCBBAQEEGtra6Krq0vq1KlDpk+fLqH5119/JfXr1yd6enrEzc2NLF26lBQVFUnoGDJkCDE0NCRWVlZk/vz5xM/Pj3Tp0qXS32d5yjQeOnSIuLm5EQMDA/L111+TDx8+kLCwMOLu7k5EIhEZNGgQef/+vfg6f39/0qVLF7JmzRpiZ2dHDAwMyMCBA8nbt29lanfChAnEycmJZGZmio8FBAQQNzc3kpWVVaE8ALJ3716JY/n5+URbW5v88ccfEsf79etHOnToIH7/ww8/EHt7e1JSUiI+tmHDBmJoaCjxN1SeJ0+eEADk8OHDFc7t2rWLeHp6ksePHxMA5MaNGxWuO3/+vPhYRkYG0dXVJTt37iSEEJKVlUX09PTI5s2bxWWKi4uJtbU1CQkJqdDe8+fPK7QjC5///RHy6f+xj48P0dfXJ3Z2diQgIICkp6dLlDl48CD54osviJ6eHjE3Nyc9e/YkGRkZhBBCgoODiZOTEykoKJBJQ9n/3c9Zt24dMTc3lzh28uRJAkD8d6ao78jISAKAREZGylS+TZs2ZPjw4RLHvvnmG9KxY0eJYyUlJaRLly5kxYoVUn+35anMtzSys7PJ1KlTSZ06dYiuri5xcnIiy5YtE59ftmwZcXZ2Jrq6usTCwoJ0796d5OXlkbi4OAKA3Lx5U6K+W7duEQDk0aNHMrVP+R+cB9pjx46Rw4cPkydPnpDo6GgyduxYYmZmJv5Peu7cOaKpqUlevnwpviY1NZVoaWmRM2fOEEIICQsLI1paWuSXX34hcXFxZOfOncTW1lamQGtiYkKmTZtGHj16RM6ePUtMTExIcHCwuMyGDRuIvr4+2bx5M4mLiyOhoaFET0+PbNu2TVzGycmJGBsbk5CQEPLkyRMSExMjDrReXl7k8uXLJCYmhrRu3Zo0adKEtG/fnly6dInExsaStm3bkpYtW4rrev36NVm5ciW5f/8+efbsGdm7dy8xMjIiO3bsEJepLtBOmTKFNG3alNy6dYu8ePGC3Lx5k2zZskXiekdHR3Ls2DHy7Nkzcvr0aeLg4EAWLFggLtO/f3/i6upKLl++TKKjo8nIkSOJsbGxXIHW0NCQ9O7dm0RFRZFr164RCwsL0q1bN9KrVy8SGRlJrl+/TqysrMjs2bPF1/n7+xNjY2PSt29f8uDBA3L16lXi5uZG+vbtK1O7+fn5pEmTJuSbb74hhBCyf/9+oqurS+7duye1vLRAm5WVRTQ0NMiff/4pcXzo0KFEV1eXfPz4kRBCSIcOHcjo0aMlyjx9+rTKm/iMGTOIlZWVuI4yYmNjiaWlJXn06JHUQLBjxw6io6NDiouLJa5r166d+MZ75coVAoC8ePFCosyoUaOkfm5MBdrLly8TAwMD8uuvv5K4uDhy584d0qlTJ9K+fXvxF8QdO3YQbW1tsnjxYhITE0OioqLIL7/8Iv4C5eHhQUaOHEmCgoKIjY0NqV+/Ppk5cybJzc2VqqGygHP79m2iqalJDh06REpKSkhmZiYZPHgwadu2bQXfDg4OpHbt2qR58+ZkzZo1FT6T8mRlZZHJkycTe3v7SjWVp7CwkGhra5Pdu3dLHN+2bRvR09OT+Bx//PFH0rVrV1JSUsJYoC0tLSUdO3Ykzs7O5M8//yQJCQkkPDxcfB8ICwsjxsbG5OTJk+TFixckIiKCrFu3juTl5RFCCGndujUJDAyUqHPSpEkS9yqK7HAeaD+npKSEmJqakn379onf29nZkZUrV4rLrFmzhtjY2Ij/WH18fMioUaMk6pkzZ45MgbZJkyYSx7799lvSunVr8fs6deqQWbNmSZSZNm0acXZ2Fr93cnIinTt3lihTFmjL36wPHz5MAJCjR4+Kjx07dowAINnZ2ZXq/O6770jXrl3F76sLtP369SP+/v5S68rNzSUGBgbk7NmzEsd3795NTExMCCGExMfHEwDkwoUL4vOFhYXEzs5OrkCrpaUlkYlOnDiRaGpqkjdv3kh4a968ufi9v78/MTIykshyz58/TwCQuLg4mdqOjY0lhoaGZO7cucTY2JisXbu20rLSAi0hnwKYt7c3ef78OSkpKSFnzpwh+vr6BABJSUkhhBBSr1498sMPP0hcl5OTU2nGWlBQQGrXrk3mzp0rcTw3N5d4eHiQ7du3E0KkB8Bly5YRW1vbCnV+8803pHfv3oSQT18qAJDCwkKJMjNnziSNGjWqcC1TgbZjx45kzpw5EmVevHhBAJCIiAhCCCEODg5k0qRJldapr69P9PT0iJ+fH7l79y45ceIEcXBwICNGjJBavqqAc/LkSWJmZka0tbUJANKqVSuJ7Prt27dk9erV5NatWyQiIoL88ssvxNjYuMI9hBBCZs+eTYyMjAgA0qBBAxIfH1+ph/K8evWqQg8EIYScOnWKABD/H7hy5QqxsbEhr1+/JoRI7y2Q1Xd5Ll26RACQu3fvSj2/du1aUq9evUq/XISGhhJTU1NxD8PHjx+JhYUF2bBhQ7VtUyrC+TPa58+fw9fXF25ubqhVqxZq1aqFDx8+4MWLFwAATU1NjBw5Env37hVfs3fvXowcORJaWloAgNjYWLRu3Vqi3jZt2sjUvpeXl8R7e3t7pKWlAQCysrLw8uVLdOjQQaJMx44dkZiYiLy8PPGxli1bSq2//DMVGxsbAEDTpk0rHCsbGFNaWoqVK1fCy8sLFhYWEIlE2LRpk/j3IQsTJ07E0aNH0bhxY0ydOhVnz55FaWkpgE8DK/Lz8zFo0CCIRCLx69tvv8WHDx/w9u1b8YAPHx8fcZ26urpo0aKFzBqAT7/L8s/ybGxsYGNjA0tLS4ljnw8KatSoEUxMTMTv27ZtCwB49OiRTO02bNgQq1evxsqVK9GuXTtMmzZNLt0AsG/fPpiYmMDFxQW6urqYOXOmeBBK2d+dNDQ0NCT+Lc/Ro0eRkZGB8ePHSxz/7rvv0LhxY4wZM0ZunZW1pUgZRbl79y5++eUXib+nsmer8fHxePPmDZKTk9G9e/dK6ygtLUXt2rWxfft2eHt7o1+/fli7di0OHDiAjIwMmbU8fvwYQUFBmD59Ou7evYsrV65AR0cHAwYMEA9Ss7CwwPfff49WrVrBy8sLU6dOxS+//IJ9+/ZVGFQ4a9YsRERE4OrVq3B1dcWAAQOQnZ2twG9JEg0NDaSnp2PUqFHYsWOH+D7AFPfv34eZmRm8vb2lnh8yZAiKiorg5OSEgIAA7N27V8LX0KFDkZ+fj5MnTwIAzpw5g6ysLAwbNoxRneoC54H2q6++QlJSEn7//XfcunULkZGRsLKykhhQ5O/vj5iYGNy/fx/R0dGIjIyEn5+fRD2K3kh0dXUr1FMWlCqrm0jZ8MjIyEhq/To6OhXqkXasrM01a9ZgxYoVmDJlCi5evIjIyEiMGzdOrgFWPXr0QFJSEubPn4+CggKMGjUKnTt3RklJibidI0eOIDIyUvx6+PAh4uPjYW5uLtWfIpT3WeZV2rHPf99McP36dWhpaSEpKUnmwSvlcXJywqVLl5CTk4OkpCTExMTAwMAAtWrVEn95sLW1lRhkBED8XtqNc9OmTejevTtcXFwkjl+6dAlHjhyBtrY2tLW1xaNOO3XqhB49eojbSk9PlxjRDHwaRFPWlq2trYQGaWXYoLS0FHPmzJH4e4qMjER8fDx69eolLlfV/1FbW1vUq1dPYpqah4cHAMj1JXP58uVo0qQJFi5cCC8vL3z55Zc4cOAAbty4gatXr1Z6XdmXys/bsrCwQL169dCpUyccO3YMiYmJVY4cLn+dtra21M9CT08PZmZmiI6ORkpKCvr27Sv+7BcvXoyEhARoa2vjwIEDMvuWRlW/b3t7ezx+/Bg7duyAlZUVlixZgvr16yM5ORkAYGZmhr59+2LPnj0AgD179qBPnz6oXbt2jTSpK5wG2nfv3iE2NhZz585Fjx490KhRI+jr61fIcDw8PPDFF19gz5492LNnD7y8vCSywkaNGuHff/+VuIaJ6Qe1atVCnTp1EB4eLnH8+vXrcHZ2hqGhYY3b+Jzr16+jZ8+eGDt2LJo1awY3NzfEx8fLXY+5uTmGDx+OzZs34/Tp0wgPD0dsbCw8PDygr6+PZ8+ewc3NrcJLS0tLfIP7559/xPV9/PgRd+/eZcxnVTx69AhZWVni92U6GjZsKNP127dvx/HjxxEeHo68vDxMnz5dYS2Ghoaws7PDx48fcfToUfTv3x+amp/+27Rt2xYXL16U+KJw7tw5GBoaolmzZhL1xMbG4u+//8a3335boY0LFy4gKipKHKDOnDkDANi5cyc2b94sbquoqAhXrlwRX/f+/Xvcvn0b7dq1AwA0b94cenp6EiOjS0tLcenSJXEZNvD29kZMTIzUv6eyKTZ16tSR0PU57du3R0JCgsQXiSdPngAA6tatK7OW3Nxc8edTRlkPRFVfICMiIgAAderUqbJ+QggKCwur1VHWA/S553PnzqF169bQ0tJCixYt8PDhQ4kvJxMmTICDgwMiIyOljpSWlebNmyMjIwP37t2rtIyenh569uyJn3/+GQ8fPkReXh6OHz8uPu/n54dz586JR137+/srrEfdYX+VgyowMzODpaUltm7dCldXV7x79w6zZ8+GgYFBhbL+/v5YunQpdHR0MHPmTIlz33//PYYOHYqWLVuiV69e+Oeff8TfxGraZfbDDz/g+++/F3+rvXLlCkJDQ/H777/XqN7KqF+/Pvbu3YurV6/C3t4ee/bswe3bt2FmZiZzHfPnz0fz5s3h4eEBTU1N7N+/HyKRCI6OjhCJRJg3bx7mzZsHAOjWrRuKi4vx8OFDRERE4KeffoKbmxv69euHSZMmYfPmzbC2tsbKlSsZ6TKTBQ0NDfj5+WHp0qXIyMjApEmT0KdPH9SrV6/aa588eYKpU6di3bp1aNu2Lf744w+0a9cO3bp1w6BBgwAAGRkZSEpKEl+TlJSEyMhImJubw9HREQBw8eJFfPz4EQ0bNkRycjKCg4ORn5+P5cuXi68LCgrChg0bMH78eMyYMQMJCQlYuHAhpkyZUqGHY/PmzbC1tUXfvn0raHZ3d5d4LxKJAADOzs7iIOPu7o6vv/4aQUFB2L59O0xMTDBv3jzY29tj6NChAD59MZwwYQLmzZsHW1tbODs7Y9WqVcjPz5cI8KmpqUhNTUVKSgoA4OnTpxCJROKufXlZvHgxunfvjunTp8Pf3x/GxsaIj4/HkSNHsGHDBhgYGCAkJARBQUGwtrbGN998g9LSUly9ehXDhg2DhYUFZs6cicOHD2Py5MmYNm0aUlJSMHPmTPj5+Yn/9j9+/Ch+rJGTk4OMjAxERkZCV1dX3FXdv39/BAQEYN26dejXrx8yMzMxb9482NnZoVWrVgA+zW3V0tLCF198AX19fdy4cQOzZs3CN998I/78r127hkePHsHHxwdmZmZITk7GTz/9BE1NTQwYMECm38vs2bPxzTffoGXLlujZsydOnz6NY8eO4a+//gLwqRescePGEtdYWVlBV1dX4rgsvu/cuQM/Pz/s2bMHLVu2ROfOndG+fXsMHToUa9euRdOmTZGSkoJHjx5h3Lhx2L59O0pLS9GyZUuYmpri8uXLyM7OlphO1atXL5ibm2PYsGEwNjZG79695fvDoPwPbh8RE3Lt2jXStGlToqenR9zd3cnRo0eJq6trhekIb9++JTo6OkRbW5ukpqZWqGft2rXEzs6O6Ovrk+7du5PNmzcTABWmGJRH2sCCJUuWECcnJ/H70tJS8vPPP5O6desSbW1t4uzsLHV6z5IlSySOlQ2GKj8Y68aNGwQAef78ufjYv//+SwCIB1m8f/+eDB48mBgbGxNzc3MyceJEsmDBAglN1Q2GWrx4MfHw8CBGRkbiKVOfD3jZtm0b8fT0JHp6esTU1JS0bNmSbNy4UXw+PT2dDB48mBgaGhILCwsyd+5chab3lOfz3y0hhKxYsYLY29uL35dN71m1ahWxsbEh+vr6pH///hIDqCqjoKCAeHl5kYEDB0ocX758OTE1NSWJiYmEkE+/LwAVXuUHkB09epS4ubkRXV1dYm5uToYPHy6+vjz//vsvadOmDdHT0yPW1tZk7ty5FUYG5+XlEVNTU4lR3VVR2SClrKws8ah8AwMD0qNHjwqDcz5+/EhmzZpFrK2tiZ6eHvHx8akwICYkJESqf2lTgKQh7bO9fv066dKlCxGJRMTQ0JA0aNCATJ06VWLK2L59+0jTpk3Fv9PevXtLTMO6dOkS8fb2Jnp6esTJyanCqOOy38vnr8//pjZt2kSaNGlCDA0NiaWlJenbty95+PCh+Pzu3btJ48aNiZGRETE0NCQeHh7kp59+kphadOvWLdKhQwdibm5OdHV1iaOjIxk5cqTEVDxZ2LlzJ6lXrx7R0dEh7u7uUgfelUfa71YW32X3m6tXr4qPlY2UtrGxITo6OqRu3bpkxYoVhJBPo47btGlDTE1NiYGBAfHw8JCYSVHGtGnTCAAyefJkuXxTJNEghKEHcjxj8eLFWL9+Pd69e8e1FAqFQqGoMZx2HTNFUVER1qxZg969e8PIyAhXr17FqlWrMGnSJK6lUSgUCkXN4XzUMRNoaGjg2rVr6NKlCzw8PLBmzRrMmzcPS5cu5VqaIElKSpKYyvH5S5ZRmYpSVbvln59SFOPGjRtV/o5v3LjBtUResHz58ip/TxTpbNiwAd7e3tDT00NAQECVZdetWwcbGxuYmJhgzJgxUgehxcfHQ19fH6NGjWJJMTMItuuYwh7FxcVITEys9Ly1tTWMjY1Zabv84vCfY25uDnNzc1baVRfy8/Or3KDC3t5e6mBFdSMjI6PK+b10dyPpHDt2DJqamjh//jzy8/Oxa9cuqeXOnz8PPz8/XLlyBXZ2dhgwYABat26NlStXSpTr3r078vPz4eTkJHVzEL5AAy2FQqFQlMqCBQvw8uXLSgPtiBEjULduXXEv1eXLlzFy5EiJeckHDx7EsWPH0KhRIzx9+pTXgVYQXccUCoVCEQ4xMTESq+p5enoiLS1NPLg1KysLwcHBWLNmDVcS5UIQg6EqY8uWLdiyZQsAIOL+fVjoaMNKVxtxeYVw0tdFKSF49bEIbgZ6eP2xCDoaGrDQ0cbjvAK4Guih1EAbr7MLUK+2CEkf8mCoow0LQ11EpX5AE+tayC4sRnreR7iaGyExMw8m+towM9BFxOsPaGZrgsz8j/hQUIy6ZoZIyMiFhaEujPW08TAtC542JkjP+4i8omI4mhgi/l0ObI31oaeticdvc9DEuhbe5BSiqLQU9rUM8Dg9G44mhtDSABIy8mBm8L8VlmyN9RH7Jhuu5oYoIUDShzw0crFE8pts6GprwtrcCA+evkWDurVR+LEYKek5qO9ojhepWTDU14alqSEi4t6gqZslsvM+Iv19HtzqmOFZygeYivRgXksf95+koXl9a2RkFeB9TiFc7Ezw9GUmLEwNYWyoiwdP36KZuxXevs9DXkExnGxq4UlSBuwsRNDT1cbjxHdo6maJtIxcfCwuhYOVMR4lvoOjTS1oaWrg8YsMeNWzQkp6DgDAzkKE6GfpcKtjipJSgqTULDSsW1v5nryc8TY9C3l5hXBytMST+BTY2ZhBX08Xj568RNMmTkhL+4CiomLUqVMbjx6/hJOjJdLfZSMrOx+NGzkg5XXmJ0+2ZoiOTYabiw1KS0vxIuktGjaog5cv30FHRxvW1iZ48PAFGtavg4LCj0hJzUT9enZ4kfQWhoZ6sLSohYio5/BsXBfZOfl4m54FN1cbPE98A5NahjA3F+F+xDM0b+aCjIwcfMjKg3NdKzxNSIWlRS0YiwwQFZ2IZp7yezI01IO1lSmePksVhKcHD1/AzdUGmpqagvBUXKqN9PR0xu6dtR2/QFFBVvUFy+FgqSfxWCEwMBCBgYEKtZ+TkyOxDGvZz9nZ2ahduzYWLlyIsWPHwsHBQaH6lY2gA235D9rNQA/nvKpf8KAM+x51WVLFDP+lfMAXdiZSz+l1lW0FJT5x/0kqmtdnb5lAedH0bF19oSq4H5GA5s2k7yurilA//Mb7yxWM1ldUkAXvwavluibr9tIqV6KSB5FIJLE6XNnPxsbGiIyMxKVLl8SreakCgg605dGUY4UovgdZADDWq7iwvSoG2DKMDXSrL8QyNQ2u5TEWCWvAEPVDUSYeHh6IiorCkCFDAABRUVGwtrZG7dq1sXfvXiQmJopX8crJyUFJSQliY2Px33//cSm7UtTmGe2LAtkW5VeFIAsAgw5IfnNU5SALAP3m/MlJu5qercUvJvlqCLMZBtdQPxQmKC4uRkFBAUpKSlBSUoKCggIUFxdXKOfn54ft27cjNjYWmZmZWLp0qXg6UGBgIBISEiTWh+7Tp0+Va2lzjdpktO6GetWWUZUgCwAPpnQCoPoBtozHf4xVWltMB1VpxEX8xnobyoT6oTDB0qVLsWjRIvH7ffv2ISQkBGPGjEGjRo0QGxsLR0dH9OzZE7Nnz8aXX34p3taz7DpDQ0OJDV1EIhH09fUltt/kG2ozvcdaVwc3m9eXek6VAmwZS6/FYcnSr7mWwRiLdtxEyJi2rNWvjOBanh+XH8KP84YqtU02oX74jfeXKxh7PgoAtazcOH1GKzTUJqOtDFUMsnpdG0I7SfbNsNUVZQdXCoVCkYbaZLRNRAb4s4nkKENVDbKUyqHBlaKO0IyW36jNYKi4PMl1MlU9yDYYvp1DJcxTEz9sDWiqCe7NpnAtgVGoHwpFcdSm69hJ/3/TR1Q9yALAyZ9k23xaVZDXD5+CqjROHf6BawmMQv1QKIqjNoG29P97yIUQZAEgO1+26Uqqgqx++B5gy8jOyedaAqNQPxSK4qhN1/Grj0WCCbIAMOHni0pWwi5V+eFj13B1BE7dzLUERqF+KBTFUZuMtqF1La4lyE1VA5/ubvdVohL2+dyPKgVVady//jPXEhiF+qFQFEd9Mtos1eoqqm508cwNV5WkRDnM3HBVJTPXyvh+3m6uJTAK9UOhKI7aZLQ6mqrznUKWKTx2FiIlKFEOmp6tYd/0DdcyGMXO1oxrCYxC/VAoiqM282i/sDPFzcB2XMuoFnWaJyuEzJVC4QN0Hi2/UZ00r4Y8TJNvb0UukCfI1ukfyqIS9vk8yNq5j+dICTtQP/xGaH4o/EZtuo4bWPK7q1XeTPbONtUcDFVZFnsv/CclK2EX6offCM0Phd+oTUZbWFzKtYRKUaS7OC5Z9dY6rqqrOO5pihKVsA/1w2+E5ofCb9Qm0L7OLuBaQgX0ujZU+Jns4h3/MKyGPWQZSfzjisNKUqMcqB9+IzQ/FH5DB0NxhLoMeqIDnigU9qGDofiN2mS0SR/yuJYghokg++3PFxhQwh7yzocN/G4Ti2qUD/XDb4Tmh8Jv1CbQGurwY9wXU5ls8wbWjNTDBopksd7NXKsvpEJQP/xGaH4o/IYf0UcJWBjqVl+IZZjsLg7s58lYXUxRk27iwNHdGFTCPdQPvxGaHwq/UZuMNir1A6ftM/1M1qT7ekbrqyk1fRZrbDeKISX8gPrhN0LzQ+E3apPRNuFwUwE2Bj69PB7EeJ2KwNRgp5QnWxmphy9QP/xGaH4o/EZtMtrswmJO2mVrdPG1iGRW6pUVphf/v/Z3DGN18QHqh98IzY+qsGHDBnh7e0NPTw8BAQFVll23bh1sbGxgYmKCMWPGoLCwUHwuIyMDAwYMgJGREZycnHDgwAGWldcMtQm06XnK3yidzSk8W09GsVZ3dbAxZWfLTmHtr0v98Buh+VEV7OzssGDBAowZM6bKcufPn8fKlStx+fJlJCYm4tmzZwgJCRGfnzRpEnR1dZGWlob9+/cjKCgIMTH8/fJE59GyhBDnydI5sRQKP1G1ebQLFizAy5cvsWvXLqnnR4wYgbp162L58uUAgMuXL2PkyJFITU1Fbm4uzMzMEB0dDXd3dwCAr68v7O3tsXLlSrk0Kwu1yWgTM5U3j1YZQXbkolOst1EetoPsiDG/sFq/sqF++I3Q/AiNmJgYeHr+b2aFp6cn0tLS8O7dO8TFxUFLS0scZMvO8zmjVZvBUCb6yrGqrEy2j49y5gEqK4v9qmdzpbSjLKgffiM0P0xjWEsPzbu4yHXN4VNv4e3tLX4fGBiIwMBAhdrPycmBiYmJ+H3Zz9nZ2RXOlZ3Pzs5WqC1loDaB1syA/Xm0yuwuHtGN/baU2VU8Ykh7pbWlDKgffiM0P3zA0tKSse5rkUiErKz/bW1a9rOxsXGFc2XnjY2NGWmbDdSm6zjiNXvzaGuyOYCiaLWX7/mJPDA9olgWNGp9o9T22Ib64TdC8yM0PDw8EBX1vwGfUVFRsLa2Ru3ateHu7o7i4mLEx8dLnPfw8OBCqkyoTaBtZmtSfSEF4GrQU8mNmazUy9WAJ5J1lJN22YL64TdC86MqFBcXo6CgACUlJSgpKUFBQQGKiytOvfTz88P27dsRGxuLzMxMLF26VDwdyMjICAMHDkRwcDByc3Nx8+ZNnDhxAr6+/N2jW20CbWY+89N7uBxZfODiI0br4yKLLc+Bwzc4a5sNqB9+IzQ/qsLSpUthYGCAlStXYt++fTAwMMDSpUuRlJQEkUiEpKQkAEDPnj0xe/ZsfPnll3BycoKTkxMWLVokrmfjxo3Iz8+HlZUVhg8fjtDQUF5ntGrzjPZDAbMLVnA9fef0PwmMPaflw7SdU+fuC+q5GfVTc95oszcd7+iF/eg6gj/bZqoLP/74I3788Uep53JyciTez5gxAzNmzJBa1tzcHMePH2dYHXvQebQKwHWQZQo+BFiK6sBm4KPUjN7t+zA6j9bGzQO+P/8h1zVXl4+h+9FWgtp0HSdk5DJSD1+CbL85x2p0Pd+CbN8hK7iWwCiq5ueNdrsqX92HbuZaIqOMGsTf53kU4aE2XcdMbJPHlyALAOMV3CaPbwG2DKFtW8YnP0xkor5jhBWYhOaHwm/UJtAa69XMKp+CLAB0auYg9zV8DbIA0KkdfwcyKIKy/CirO7dtBx+ltKMshOaHwm/UJtA+TMuqvlAl8C3IAkCd/qH4cGGqTGX5HGDLsKs/Htkp+7iWwRhM+eHLc9Gmrp549iaBaxmMITQ/FH6jNoHW00axebR8DLIABBVkAQgqyAKy+eFLEJUFoQUlofmh8Bu1GQylyDZ5fA2yALClmm3yuJ4XKy9C27Zs9e7n1Q4wUiX2bN/LtQRGEZofCr9Rm0CbVyTfPFo+B1kAuP84rdJzqhRgy7gXofoZRvkgGvUfd/sFswH1Q6EoDp1HKwW+B9nKUMUAq8qoWlZKES50Hi2/UZuMNv5dTrVluNgcQFE6Tzko/lnVuoml0al3MNcSZELWrt8BPQYoSZFyoH4oFMVRm8FQtsb6VZ5XlQBbRvCYT9MTVD3AlvHjD0O4llApimSuM+ezs+kDV1A/FIriqE2g1dOuPHlXtSALAA16dIWmrTnXMhjD3c2OawlimOgSdnVzZUAJf6B+KBTFUZuu48dvpXcdq2KQ1fRsDe+Oc7iWwShc+2F6NHD3dj0YqYcvUD8UiuKoTUbbxLpWhWOqGmQBICVuK8dKmIULP2wOZnrwTFijWqkfCkVx1CajfZNTKPFelYMsAKz57SSHSphHWX6UNY81dH0oq/UrG+qHQlEctcloi0pLxT+repAFgJTXmRwpYQe2/HA1BSf1dSon7bIF9UOhKI7azaMVQpClVA2d30pRN+g8Wn6jNl3Hj9OzBRVkm3eYrWQl7FJTP3xb2rCbT3euJTAK9UOhKI7adB072ZlyLUFuqspkt6z/VolK2EdeP3wJqJWxesMqriUwCvVDoSiO2gRaLU0NriXIRXXdxcYiAyUpUQ6y+OF7cC2PyFjEtQRGoX4oFMVRm67jpy/fcy1BJmRdTvGrISuUoEZ5VOaHb13CsjJqkC/XEhiF+qFQFEdtAm1jFwuuJVSLPIOe4iJ+Y1GJ8invR1WDa3n+ffAP1xIYhfqhMEFGRgYGDBgAIyMjODk54cCBA1LLFRYWYvr06bCzs4OZmRkmTpyIoqIiiTIHDx5Ew4YNYWRkBFdXV9y4cUMZFhRCbQJtSnr1mwpwibwji39cfoglJcrnjXY7zFr5r8oH1/KsWiqsZ4DUD4UJJk2aBF1dXaSlpWH//v0ICgpCTExMhXIrV67EvXv3EB0djbi4OPz3339YunSp+PzFixcxZ84c7Ny5E9nZ2bh+/TpcXFyUaUUu1CbQ8hl1nr4jlMBKoVCqJjc3F2FhYViyZAlEIhHatWuHfv36Ye/evRXK/vXXX/juu+9gbm4OS0tLfPfdd9ixY4f4fEhICIKDg9G6dWtoamrC3t4e9vb2yrQjF2ozGMrOgp+DHxQNsj/OG8qwEuXyeYCdtWAWR0rYgfrhN0LzwzTGBjro4CXfRh+H376Ft7e3+H1gYCACAwPF7+Pi4qClpQV3d3fxMU9PT4SHh1eoixCC8ks8EELw8uVLfPjwASKRCPfu3UO/fv3g5uaGgoIC9O/fH6tWrYKBAT8HiapNRhv9LJ1rCRWoSSbr3mwKg0qUR2Xdw22a+nCghj2oH34jND98wNLSEvfu3RO/ygdZAMjJyYGJiYnEMRMTE2RnZ1eoq1evXli/fj3evn2L1NRU/PrrrwCAvLw8pKWloaioCEePHsWNGzcQGRmJiIgIia5lvqE2gdatjinXEiSoaXfxqcM/MKREeVTVTbwvrGL3kSpD/fAboflRBUQiEbKysiSOZWVlwdjYuELZ+fPno1mzZvDy8oKPjw/69+8PHR0dWFlZibPWKVOmwNbWFhYWFpgxYwbOnDmjFB+KoDaBtqSUPytNMvFMNjsnnwElykGWQU452fwerCYv1A+/EZofVcDd3R3FxcWIj48XH4uKioKHh0eFsgYGBtiwYQNevXqFZ8+eoXbt2mjevDm0tLRgZmaGOnXqQENDddZGUJtAm5SaVX0hJcDUwKfAqZsZqYdN5BlFPHOysJ6ZUT/8Rmh+VAEjIyMMHDgQwcHByM3Nxc2bN3HixAn4+lac0/zq1SukpKSAEIJbt25hyZIlWLRokfj86NGj8dtvv+HNmzfIzMzEL7/8gq+++kqZduRCbQJtw7q1uZbA6Oji+9d/ZqwuNpB3NPHFfy6wpIQbqB9+IzQ/qsLGjRuRn58PKysrDB8+HKGhofDw8EBSUhJEIhGSkpIAAAkJCfDx8YGRkRH8/f2xcuVKdO/+v/WpFy5ciBYtWsDd3R0NGzZEs2bNMH/+fK5sVYvaBNrkNxUfuCsTpqfwfD9vN6P1MYWic2FD5oawoIY7qB9+IzQ/qoK5uTmOHz+O3NxcJCUlYcSIEQAAR0dH5OTkwNHREQDQoUMHJCYmIi8vD0+ePMHIkSMl6tHR0cHGjRvx/v178WApfX19pfuRFbWZ3qOrzd13CjbmydrZmjFeZ02o6XxYG1sbhpTwA+qH3wjND4XfqM1+tN4NbHBnm/LXN1WHxSjoohMUCrcwvR9tvSZeWHviklzXLBrSk+5HWwlq03X84OlbpbfJZpC1cx/PWt2ywuSSiU1dPBmphy9QP/xGaH4o/EZtuo4bKHEwlDKy2HvhP7HeRmWwkcFe+Ps843VyCfXDb4Tmh8Jv1CajLfxYrJR2lNVVHPc0RSntfA5b3cQJTxNYqZcrqB9+IzQ/FH6jNoFWGbv3KPN57I8rDiutLYDZbmJprF62mrW6uYD64TdC80PhN2rTdVzf0ZzV+pU96OnamcVKaUdZA53+PP+nUtpRFtQPvxGaHwq/UZuM9gWLK0NxMbI48LtNrLehzNHE30+aqbS2lAH1w2+E5ofCb9QmozXUZ8cqV9N3vJu5slY3F9N1PL8Q1ihQ6offCM0Phd+oTaC1NDVkvE4u58gGju7GeJ1czof1G6v8Oc5sQv3wG6H5ofAbtek6joh7w2h9XC9EYWw3itH6uF50wsWKvQydC6gffiM0PxR+ozYZbVM3S8bq4jrIAkDKk62M1MN1gC3jQUIU1xIYhfrhN0LzQ+E3apPRZud9ZKQePgRZALj2d0yN6+BLkAWAm9f/4VoCo1A//EZofij8Rm0Cbfr7vBrXwZcgCwBbdl5U+Fq258Qqwt4de7mWwCjUD78Rmh8Kv1GbrmO3OjXb7YZPQRYA/jr8g9zX8C24lmdfmLBufNQP+9x+raXwtVM2HMDt1wyK+YxWtiXsVU5ROdQm0D5L+aDwtXwLsgAwYswvOLBjmszl+RxkAWBCQBA27QrlWgZjUD+fqEkwZJPV077FzF82s1Y/X31TuEFtAq2pSE+h6/gYZAHgq57NZSrH9wBbRrdezE9X4hIh+CkfLFza9BBU8GjRuTvXEihqhNoEWvNa+nKV52uALWPEkPZVnleVAFvGoKEDuZbAKKrgR57A2bHfIBaVKB+h+aHwG7kD7Zs3b5CTI7lAv4uLC2OC2OL+kzSZy/I9yAKARq1vQLKOSj2nakEWAKwNbZCWl8q1DMbg2g/T2Wc/V0ucTFD+ns5sITQ/FH4jc6A9d+4cxo4di9TUVBBCxMc1NDRQUsL/B//N61vLVE4VgiwAqUFWFQNsGUIKsgD7fpTdjSu0oCQ0PxR+I/P0nkmTJmHhwoXIyclBaWmp+CVrkO3UqRP09fUhEokgEolQv3598bnLly+jQYMGMDQ0xJdffokXL15UWk9GRgYGDBgAIyMjODk54cCBAzK1n5FVUG0ZVQmyAHDg8A3xz3ycriMvYYeOcS2BUWrq5/ZrrSpfyib8ZJjS22QToflRFWS9fxcWFmL69Omws7ODmZkZJk6ciKKiIvG5sWPHwsnJCcbGxmjWrBnOnj2rTBtyI3OgzczMxLfffgsDAwOFG9uwYQNycnKQk5ODJ0+eAADS09MxcOBALFmyBBkZGfD29sbQoUMrrWPSpEnQ1dVFWloa9u/fj6CgIMTEVL94w/ucwirPq1KQBYBT5+4DUO0stjwXzyo+L5iPVOWnuiDKx0FHd69c4FoCowjNj6og6/175cqVuHfvHqKjoxEXF4f//vsPS5cuBQAUFxfDwcEB4eHh+PDhA5YsWYIhQ4YgMTFRyW5kR4OU7weuglmzZqFhw4YYM2aMQg116tQJo0aNwrhx4ySOb9myBbt27cI//3xaqSU3NxcWFhaIiIhAgwYNJMrm5ubCzMwM0dHRcHd3BwD4+vrC3t4eK1eurLJ97wY2uLNN+kLiqhZkAeEEWCHCx0BJETaLhvTEvXv3GKuvXhMvrD1xiVEN8ty/vb29MWfOHAwePBgAcODAAcyZMwfJyclS627atClCQkIwaBA/B7nJnNHeunULQUFBcHd3R4cOHSResvLDDz/AwsICbdu2xbVr1wAAMTEx8PT835ZVRkZGcHV1lfotJy4uDlpaWuIPCQA8PT0rzWi3bNkCb29veHt7I+rpGyzacRMA0GD4dsQlZeD+k1S0mPKpi+/7ebux5reTAAA79/FIeZ2Bazei0al3MIBP+7+WrcZkbDcK2dn5+OvsPfQdsgLA/89r/f/uXI1a3wD41L07YswvAIC+Q1bgr7P3kJ2dL94QYMvOi+J9ZTv1Dsa1G9FIeZ0BO/fxAIA1v53E9/N2AwCad5iN+xEJiItPgesXszFqkC9WLV2FVUtXAQDaNPVBQnwCov6LQjefT1MXQuaGIHT9p7mPTV08kZqSipvXb2JAjwGfPE+aiT3bPy1E4GLlipzsHJw/fQGjBn36QjIhIEjcBWptaAPgU5fohIAgAMCoQb44f/oCcrJzxIu079m+V7zX54AeA3Dz+k2kpqSiqcunzzh0fShC5oYAALr5dEfUf1FIiE+As8WnAXWq6ilwyiLcfq0Fnxbd8fRhFOaP7I8JXVp9+jtY/zMOrP/5U/tdWuHV8wQ8fRiF6f26AAC2Lw/Gn9s2AgAC2jTGu7RUPLx1E/NGfA0A2DBvBs79sQcAMLRpXeTl5ODO5fNYMn4kgE9zQsu6Qvu5flrTO/xkGFZP+xYAsGT8SNy5fB55OTkY2rQuAODcH3uwYd4MAMC8EV/j4a2beJeWioA2jQEAf27biO3LP/3tT+/XBXOH9sWr5wmC8TTMywVPH0YJyhOTGOkQtLItkev19u1b8f3W29sbW7ZskahTnvs3IURiLBAhBC9fvsSHDxXXQ0hLS0NcXBw8PDwY/A0wi8wZ7e7duys95+/vX+31t2/fRqNGjaCrq4uDBw9i8uTJiIyMxPLly2FpaSnxjaZt27YYP348AgICJOq4ceMGBg8ejNTU/w002bp1K/bv3y8O3JXhVscMcQcls2lVzmTPn76AHn2EMxdQ1fxUl7XeuXweLbv0UJIa9qF++A3TGa3XF564cFO+7vXe7ftUqUGe+/eCBQtw9epVHD9+HCUlJfj6669x584dpKSkwNbWVlyuqKgIvXr1gqurKzZvZm8Bkpoi86hjWYJpVbRq1Uqirj/++ANnzpyBSCRCVlaWRNmsrCwYGxtXqEOesp9jbKgr8V6VgywAtO3gw6ES5lEFP/J0CTdu1ZZFJcqH+qHUFHnu3/Pnz8f79+/h5eUFPT09jB8/HhEREbCyshKXKS0tha+vL3R1dbFhwwbW9deEKgPt3r174ev7qcttx44dlZZT5LmthoYGCCHw8PCQyJZzc3ORkJAgtRvA3d0dxcXFiI+PR7169QAAUVFRMnUZPHj6v+H8qh5kAaCpqyeevUngSA3z8NFPTZ61jvZpjEMPEpkTwzHUD6WmyHP/NjAwwIYNG8QBdMuWLWjevDm0tD79nySEYOzYsUhLS8OZM2ego6OjPCMKUGXXce/evXHmzBkAwJdffim9Ag0NXLlypcpG3r9/j9u3b6Njx47Q1tbGoUOHEBgYiP/++w/m5uZwc3PDjh070KdPH4SEhCA8PBy3bt2SWtewYcOgoaGBbdu2ITIyEr1798Y///xTbbAtGwwlhCBLYQ86kImiiqhC1zEg+/371atX0NDQgK2tLW7fvo3Bgwdj+/bt6N790+OlCRMmIDIyEpcuXYJIJJLPHAdUORiqLMgCwNWrV6W+qguywKd+9AULFsDS0hIWFhb47bffcPz4cdSvXx+WlpYICwvD/PnzYWZmhtu3b+PgwYPia5cvX45evXqJ32/cuBH5+fmwsrLC8OHDERoaKlNG+5aBbfK4oLIgWzbgRyhw5YetaTVlg2KEAvVDYYLK7t9JSUkQiURISkoCACQkJMDHxwdGRkbw9/fHypUrxUH2xYsX2Lx5MyIjI2FjYyNem2H//v1cWqsSuZZgfP/+PU6fPo2UlBTY2dmhT58+MDU1rfY6S0tL3L17t9LzXbt2xePHj6WemzdvnsR7c3NzHD9+XB7ZAIC8gmKVy2arymSj/osCxkqfrqSKKNOPMrLWpw8jgeF+rLejLKgfChNUdv92dHSUWNq3Q4cOlc6LdXJygoxjeHmDzKOOr1y5goEDB6J+/fpwcnJCUlISHj9+jLCwMHTp0oVtnTXG+wtX3Av/mWsZMkO7i5mFdglThIyqdB2rKzLPo508eTK2bNmC27dv4/Dhw7h16xa2bt2KSZMmsamPMZ7Ep3AtQWZkCbJl80aFAtN+uF5pqWxupVCgfigUxZE50KakpFRYdWPAgAESc6L4jJ2NGdcSGGXm/JlcS2AUJvzwaQnD4d/N5loCo1A/FIriyBxo/fz88Pvvv0scCw0NhZ+fajzn0NfTrb4QD5C1y9jVzZVlJcpFET9cZ61VYecsrM+H+qFQFKfKQNu+fXvxMov//fcfvv/+e9SpUwetWrVCnTp1MGPGDERERChLa4149OQl1xKqRZ7nst3bCWdVG0B2P3wNrJ/zff+uXEtgFOqHQlGcKkcdf74BwPjx41kVwyZNmzhxLaFK5B389OBZFEtKuKEyP3wPqJWx699oriUwCvVDoShOlYFW3mUXJ06ciI0bN9ZIEFukpVVcjJovKDLCOHR9KIKmBrGghhvK+1HV4FqeP7dtxIBxE7mWwRjUD4WiODI/o5WFffv2MVkdoxQVFXMtQSqKTuNJfa0ag9Bk4fZrLUQ8faMSXcKykvFGOJ8PQP1QKDVB5nm0smBsbIzs7GymqmMUPs6jpXNlhZG9UihcQ+fR8htGM1oNDQ0mq2OUR4/5NRiqpkG2bH9WVaZ8kC3b81MoUD/8Rmh+KPxGriUYVRknR0uuJYhhIpNdvWEVA0q4QVoWO2nZWg6UsAf1w2+E5ofCbxjNaPm8/qSmJqNWFYap7mKRMf93rJBGZV3FBiqwA4c8UD/8Rmh+KPyG0egzatQoJqtjlKfPuB/8wOQz2VGDVG9Dgaqexy4ZN0KJStiH+uE3QvND4TcyB1pCCLZu3YrOnTujadOmAIDr16/j8OHD4jKhoaHMK2SIxo0cuJbAKP8++IdrCTIjy2jiTZdvK0mNcqB++I3Q/FD4jcyBNjg4GNu3b0dgYKB4z8A6dergp59+Yk0ck6S8zuS0faZHGK9aqhrPaGUdVXxgPb9GhNcU6offCM0Phd/IHGh37dqFU6dOYdiwYeLRxc7Oznj27Blr4oSCuk7joVN3KBQKRY5RxyUlJRD9/wCCskCbk5MjPsZ37Gy52b2HrSA7a8EsVuplAkUC7IipwtpNhfrhN0LzQ+E3Mme0vXv3xowZM1BYWAjg0zPbhQsXom/fvqyJY5Lo2GSlt8lmJtumqQ9rddcERbPYCV1aMayEW6gffiM0PxR+I3OgXbt2LVJSUmBiYoIPHz5AJBLhxYsXKvOM1s3FRqntsd1dvC9sL6v1K0JNuooXbjvAoBLuoX74jdD8UPiNzF3HtWrVwvHjx5GWloakpCQ4ODjAxka5wasmlJaWKq0tZTyTzcnOYb0NWWHiWWx+Dn/8MAH1w2+E5ofCb6rMaEtLSyu8LC0t0bx5c1hZWYmPqQIvkt4qpR1lDXyaOZkfz2iZGvD0+/wZjNTDF6gffiM0P6pCRkYGBgwYACMjIzg5OeHAAek9C4QQLFiwAPb29jAxMUGnTp0QExMjPp+YmIjevXvDzMwMNjY2mDx5MoqL+blxDFBNoNXW1oaOjk6lr7LzqkDDBnVYb0OZo4sv/iPfgt9Mw/ROO+tOXmasLj5A/fAboflRFSZNmgRdXV2kpaVh//79CAoKkgigZRw5cgQ7duzAjRs3kJGRgTZt2sDX93+L9EycOBFWVlZ4/fo1IiMjER4eztstWoFqAu3z58/x7NmzSl9l51WBly/fsVq/sqfwhMwNUWp75WFj2s725cGM18kl1A+/EZofVSA3NxdhYWFYsmQJRCIR2rVrh379+mHv3orjTZ4/f4527drBxcUFWlpaGDVqFGJjYyXODxkyBPr6+rCxsUHPnj2lBmy+UOUzWicnJ2XpYB0dHfb2T+BinqyNLTfPx9maG2tupTrP+2WB+uE3QvPDNNrIgVXx33Jd8/btW3h7e4vfBwYGIjAwUPw+Li4OWlpacHd3Fx/z9PREeHh4hbqGDRuGQ4cOIS4uDs7Ozti9ezd69uwpPj916lQcPHgQnTp1QmZmJs6ePYslS5bIpVeZyBx9fH19K90Gb8+ePYwJYgtraxNW6uVqMYqgqUFKbY/txScGjJvIav3KhvrhN0LzwwcsLS2r3I82JycHJiaS92ETExOpe5jb2tqiffv2qF+/PrS0tODg4IArV66Iz3fs2BFbt25FrVq1UFJSAn9/f/Tv358xL0wj8/QeNzc3uLq6il9GRkY4e/YszM3N2dTHGA8evuBaAqM0dfFUWlvKWOEpoE1j1ttQJtQPvxGaH1VAJBIhKytL4lhWVhaMjY0rlF20aBHu3r2L5ORkFBQUICQkBJ07d0ZeXh5KS0vRo0cPDBw4ELm5uUhPT0dmZibmzJnDiu7CwkIUFRVJHCsqKhKvKSELMgfakJAQiVdoaCjOnj2LhIQE2RVzSMP6zA+G4nJpxQt/n1dKO8paRnHN8UtKaUdZUD/8Rmh+VAF3d3cUFxcjPj5efCwqKgoeHh4VykZFRWHo0KGoU6cOtLW1ERAQgMzMTMTGxiIjIwPJycmYPHky9PT0ULt2bYwePRpnzpxhRXe3bt1w//59iWP3799Hjx49ZK6jRtvkeXl5Se1f5yMFhR8ZrY/r9YsTnrL7BYfpUcXVkfJcNb6wyQr1w2+E5kcVMDIywsCBAxEcHIzc3FzcvHkTJ06ckBhNXEaLFi1w5MgRpKWlobS0FHv37kVRURHc3NxgYWEBZ2dnhIaGori4GO/fv8fu3bvh6clOL9/Dhw/RqpXkSmItW7ZEVFSUzHXIHGivXLki8Tp16hQCAgLQqFEj2RVzSEoqc7v3cB1kAWD1stWs1c3FZgB//Cqs3VSoH34jND+qwsaNG5Gfnw8rKysMHz4coaGh8PDwQFJSEkQikXhnuDlz5sDT0xNeXl4wNTXFunXrEBYWBlNTUwDAsWPHcO7cOVhaWsLNzQ3a2tpYt24dK5pNTEyQlpYmcSwtLQ1GRkYy16FBCCGyFHR2dpZ4b2RkBC8vLyxZsqTCOT7i/YUr7oXX/D8XH4Ism9AddygU1WPRkJ5VDkSSF0Xul95frmBUA1/4/vvvERERgV9//RUuLi5ISEjAjBkz0KRJE6xdu1amOmTOaJ8/fy7xio6Oxr59+1QiyALMrAzFpyD7/aSZjNan7K7iz9kwT1gr9VA//EZofijssWzZMjRs2BAtW7aEsbExWrdujfr162P58uUy11Hl9B5Zl1fU1KzRo16lYGioV6Pr+RRkAcDzC+aeR/Ahi3Vr4sW1BEahfviN0PxQ2ENfXx+///47NmzYgPT0dFhYWFQ61bUyqgy02traMlVYUlIiV6NcYGlRS+Fr+RZkAcBvbMUBBIrAhyALAD2H+3EtgVGoH34jND8UZqlqxcPy835dXFxkqq/KQPv8+XPxz6dPn8bRo0fxww8/wMnJSbxF3qBBg2RqiGsiop5XX0gKfAyyAOBi5YpnbxQfOcmXAFvG0KZ1cehBItcyGIP64YbrkSkylVs/sg2m7v9Xrro7eNkpIomigri5uUFDQwOEEHGyWTacqXzyKWuSKfMSjGvXrsW9e/fEo77c3d3h7e0Nb29vBAUpd5UiRfBsXFfua/gaZAHgQYLsQ8s/h29BFgB2/hPNtQRGoX4kkTUAKougbfLPo+WDBxrslUP5x6Y7d+7EpUuX8OOPP4qTzMWLF6NLly4y1yfzEowfPnxAXl6eONACQF5eHj58+CBzY1ySnZMvV3k+B1kAuHn9H/To013u6/gYZAEg+vZNtOwi+wRwviMEP+UDS8Lda3Bt0Yk7MQyTHH1XJf3wIdirGwsXLkR8fDwMDAwAAPXq1cPmzZvh7u6OgIAAmeqQOdD6+/uja9eumDZtGhwcHJCcnIxff/0V/v7+ColXNm/Ts6ov9P/wPcgCwN4de+UKtHwNsGWcP7hH5QNTefjuR94bdtTFMJUMTJUhND8U9igtLUViYiIaNmwoPvbixQu5xibJHGh//vlnuLm54dChQ0hJSYGtrS0mT56M8ePHy6eaI9xchbVbx76wiltLVQbfgywALNy6n2sJjMKlHzaynoHzfmO8Ti4Rmh8Ke0yfPh2dO3fG6NGjxUnmrl27MH36dJnrkDnQampqYsKECZgwYYJCYrnmeeIbmcqpQjYLABMCgrBpV2iVZVQhwJaxetq3mPnLZq5lMAabfrjoPjy1bi6+mr5S6e2yhdD8UNhj1qxZaNKkCY4cOYKIiAjY2tpix44dEtv2VYdcm7Tu3LkTe/fuxatXr2Bvbw9fX1+MHj1abuFcYFLLsNoyqhJkAaBbr25VnlelIAsALTrL/7yZzyjqh6/P4Fy9O3AtgVGE5ofCLj179qwysPbp0wenT5+u9LzMgXbZsmXYs2cPvv/+e/HIq59//hkpKSmYP3++fKo5wNxcVOV5VQqyADBo6MBKz6lakAWAjv1UY5qYrFTmh6+BtDoatu/NtQRGEZofCrfcuHGjyvMyB9pt27bh2rVrElN+evTogQ4dOqhEoL0fUfkEZFULsgBgbWiDtLxUiWOqGGDL6OdqiZMJNV8mkw9cj0zB6kGemBmm+BQsvkH9UCiKI3Ogzc3NhaWlpcSx2rVrIz9fvmkzXNG8mfQVPFQxyAIQVJAFoNJBVlqWKrSbOPVDoSiOzIsU9+zZEyNHjsSTJ0+Qn5+Px48fw9/fX67Nb7kkIyOnwjFVDbIAEHbomPhnVQ+yABB+MoxrCXJxPTJF/JLGoxvsbELNFdQPhaI4MgfaDRs2wNjYGJ6enhCJRPDy8oKRkRF++001hsl/yMqTeK/KQRYALp69yPmOO0xy98oFriVUS3XBtTwJ964rQZHyoH4olMqpbrdZmfejLaO0tFS8g4Eq7NpTRvn9FVU9yALCyGJVAVUdvERRL64uH0P3o2WBkpISjBkzBlu2bIGeXuU7wK1YsQI//PBDpeflipR5eXmIjo7G06dPcevWLfzzzz/4559/5KmCM54mfHqmKZQgu2T8SK5lMApf/JTPWmsSZI8tn8KgKu6hfijqiJaWFi5cuFBtUllVkAXkGAy1Z88eTJ48Gbq6uuI1H4FPOxkkJSXJWg1nWFrUEkyQBYAew4S1zReXftjIWj27CWu6EvVDUVemT5+OkJAQLFq0CDo6OgrVIXOgnT17NsLCwtCtW9ULJfAVfWMLriXUmPLdxY1bteVQCfMo2w/bXcIOjVuwWr+yoX4o6spvv/2G1NRUrF27FpaWlhLb58maZMocaHV1ddGpUydFtXJO7MNYriXUiM+fyY72aawS+4PKijL8KPN5a+i4rnLvd8pnqB+KurJv374a1yHzM9olS5ZgxowZSE9Pr3GjXNDEszHXEhRG2sAnIQVZgB0/TD1vVQSh3cSpHwoTZGRkYMCAATAyMoKTkxMOHDggtRwhBAsWLIC9vT1MTEzQqVMnxMTEVCgXHx8PfX19jBo1ijXNbdq0weXLlzFu3Dj07t0b48aNw6VLl9CqVSuZ65A50Lq7u+PkyZOwtraGlpYWtLS0oKmpCS0t1Rj9+i49g2sJClHZ6OJzf+xRshJ2YcoPV4H1c6IuHOW0faahfihMMGnSJOjq6iItLQ379+9HUFCQ1AB65MgR7NixAzdu3EBGRgbatGkDX19fqfW1aMHuY4CgoCBcuXIFv/76K+7evYtff/0V4eHhmDhxosx1yNx17OvrCz8/PwwdOlRiMJSqkJeXV30hnlHVFJ6nDyOB4cIZEFUTP1wHVWmkJaj2o4rPoX4oNSU3NxdhYWGIjo6GSCRCu3bt0K9fP+zduxcrV0rupPT8+XO0a9cOLi6fVvQbNWoU1q1bJ1Hm4MGDMDU1hY+PD54+fcqa7uPHjyMhIQGmpqYAgEaNGqFVq1Zwc3PDjh07ZKpD5kD77t07LF68GBoaGgqJ5RoHxzpcS5CL6ubJTl6+VklKlIM8fvgYWD+ne1Aw1xIYhfqh1JS4uDhoaWnB3d1dfMzT0xPh4eEVyg4bNgyHDh1CXFwcnJ2dsXv3bondc7KyshAcHIzLly9j+/btrOq2sbFBXl6eONACQH5+PmxtbWWuQ+ZAO3r0aOzduxd+fqqZRT2NT+BagszIshjFvBFfY/mBE0pQoxyq86MKwbU8B4PHYthidm8AyoT6UTPyclEadUuuS96+fQtvb2/x+8DAQAQGBorf5+TkwMTEROIaExMTZGdnV6jL1tYW7du3R/369aGlpQUHBwdcuXJFfH7hwoUYO3YsHBwc5NKoCL6+vujZsyemTJmCOnXqIDk5Gb///jv8/PwkNHXu3LnSOmQOtHfu3MGGDRuwbNkyWFtbS5y7fp3/y5nZ2NpwLUEmZF3xafh3s1lWolyk+VG14FoenyETuJbAKNQPpTosLS2rXBlKJBIhKytL4lhWVhaMjY0rlF20aBHu3r2L5ORk2NjYYN++fejcuTNiYmIQFxeHS5cuISIignEP0ti8eTMAYPny5RLHN23ahE2bNgH4tJ7Es2eV7xAnc6AdP348xo8fr4hOXlDV8ll8QZ5lFe2cXVlUonzK/KhycC2PuZ1T9YVUCOqHUlPc3d1RXFyM+Ph41KtXDwAQFRUFDw+PCmWjoqIwdOhQ1Knz6ZFfQEAApk2bhtjYWPz9999ITEyEo6MjgE+ZcklJCWJjY/Hff/8xrvv58+c1rkPmQOvv719tmYkTJ2Ljxo01EsQWcY/juJZQJfKuXfx9/67Y9W80S2qUy/XIFISO64qgbZe4lsIYe2ePoH54jND8qAJGRkYYOHAggoODsW3bNkRGRuLEiRNSl/Ft0aIFjhw5gmHDhsHS0hL79+9HUVER3Nzc0KhRIwwbNkxcdvXq1UhMTERoaKgy7cgFo7sCMDGxly08mjTiWkKlKLJBgJCCLADB3fSoH34jND+qwsaNG5Gfnw8rKysMHz4coaGh8PDwQFJSEkQikXilpTlz5sDT0xNeXl4wNTXFunXrEBYWBlNTUxgaGsLGxkb8EolE0NfXr7BfOp9gNNDKuRGQUnnzhp8biyu6C8+f2/jZcyAP5buJ757czaES5qF++I3Q/KgK5ubmOH78OHJzc5GUlIQRI0YAABwdHZGTkyPuDtbX18fvv/+O169fIysrC//995/EqOPy/Pjjj7xO8gA5uo5lgc9Tf4qLiriWUIGabHWX8SaVQSXKRdpz2JwMfn4RUhTqh98IzQ+F36jOhrI1xM7ejmsJEtR0P9mx8xYzpES5VDbY6cuAmUpWwi7UD78Rmh8Kv1GbruO4x/FcSxDDxKbt0/t1YUCJcqlqRPHeWcMqPaeKUD/8Rmh+KPyG0a5jNhd2ril1eLIyFBNBFgAmLVOdlaFkmbLTbYKwVuqhfviN0PxQ+I1cGe2OHTvQrVs3eHh4oFu3bti+fbtEFsvn4dVaWsLqJTcQibiWIBOyzovVNTBkWYlyoX74jdD8UPiNzNFn9uzZ+OmnnzBw4ECsWrUKgwYNwurVqzFnzhw29THGs4SaTzquKUxlswCwZNwIxupiC3kWn/hz+RQWlSgf6offCM0Phd9oEBkfrFpZWeG///4Tr9QBAMnJyfjiiy/w9i3/R/B5feGJCzcvcNY+k0FWFRDKCk8UiipwdfmYKpc/lBfvBja4s63itnRV0XLaVUY1CAmZM1pjY+MKa1IaGxujVq1ajItig9TXaZy1zUaQPbD+Z8brZAJF94K9eYi/jx0UgfrhN0LzQ+E3Mg+GmjZtGgYOHIi5c+eKdzBYtWoVpk+fLrGYctn+gZRPqFMmS7NYCoVCqYjMXceamtUnvxoaGigpKamxKDbgouuYBlkKhaIMaNcxv5G567i0tLTaF1+DLAA8in2s1PbYDrITurRitX55YCLIbp/clwEl/IH64TdC80PhN4zOo+UzLq7OSmtLGZnswm0HWG+jOpjMYgfM+42xuvgA9cNvhOaHwm9kDrRJSUlYtGgRIiIikJOTI3EuLo7fW9ABQElJqVLaUVZ3cf5nn4GyYbqr+GN+HqP1cQ31w2+E5ofCb2TuOh48eDCKi4uxePFihIaGSrxUgZdJL1lvQ5nPZH+fP0NpbX0OG89jL25SzbWbK4P64TdC80PhNzIPhjIxMUFmZqZMg6L4CNuDodRh4BMd8ESh8BM6GIrfyBw1+/bti/DwcDa1sErKK/aCBBdBdvty5a7VynaQvbprNav1Kxvqh98IzQ+F38j8jPbXX3+Fj48PXF1dYW1tLXFux44djAtjGm0dHVbq5SqTNbeyUVpbyshkReaWrLehTKgffiM0PxR+I3OgHT16NLS0tNCwYUMYGBiwqYkVrKyY/4/FZXfxgHETldKOsrqLW/TzV0o7yoL64TdC80PhNzIH2itXriAlJaXCMoyqQszDWEbr4/qZbECbxtj1bzRr9Sv7eWzouK4I2nZJqW2yCfXDb4Tmh8JvZH5G27RpU7x7945NLazi3sCdsbq4DrIAsOY4ezcJLgY9+f7M/bxgJqF++I3Q/FD4jcyBtnPnzujevTtWrFiBHTt2SLxUgcLCQkbq4UOQBYCU5wms1MvVyOKMlBectMsW1A+/EZofVSEjIwMDBgyAkZERnJyccOCA9C88hBAsWLAA9vb2MDExQadOnRATEyN3PXxB5q7jv//+G/b29rhwQXKKjIaGBsaMGcO4MKZJfZ1a4zr4EmQB4I9ff0aT1icYq4/rqTv/HN4Ex8YtONXAJNQPvxGaH1Vh0qRJ0NXVRVpaGiIjI9GnTx94enrCw8NDotyRI0ewY8cO/P3333BycsKCBQvg6+uL//77T656+ILM82hVnZrOo+VTkGUaroMshUKpGaowjzY3NxdmZmaIjo6Gu/unR3m+vr6wt7fHypUrJcr+9NNPuH//Pg4fPgwAiImJQfPmzVFQUCBXPXxBrtUn3r17h71792LVqlUAgJSUFLx8yf6KS0yQXIOVofgYZDfMY2ZlKL4E2Quhwlqph/rhnvuXn1X62r9wpvhninKIi4uDlpaWODgCgKenp0SXcBnDhg3D06dPERcXh6KiIuzevRs9e/aUux6+IHOgDQ8PR/369bF//34sXvzpP118fDyCgoJYE1dTtmzZAm9vb3h7eyMvNw+rln76gtCmqQ8S4hMQ9V8Uuvl0BwCEzA1B6PpPy0k2dfFEakoqbl6/iQE9BgD4FNjO/bEHADC0aV3k5eTgzuXzWDJ+JABg9bRvEX4yDADQz/XTVKLwk2FYPe1bAMCS8SNx5/J55OXkYGjTugCAc3/sEQfMeSO+xsNbN/EuLRUBbRoDAP7ctlG8MMX0fl3w9GEUXj1PwIQureDWxAsH1v8s3gB+QpdWePU8AU8fRmF6vy4APi1q8ee2jQA+jVJ+l5aKh7duYt6Ir8Weoi4cBQCsH9kGH/NzkXD3Go4tnwIAOLVuLh7dOPPJ3yBPAMCjG2dwat1cAMCx5VOQcPcaPubnYv3INgCAqAtHxTflg8FjkRR9FzkZbxA6risA4O7J3eLFAvbOGobUhFhkpCTi6d2rAD5tyF22Kff2yX2RkZKI1IRY7J01DMCnhQbuntwN4NPI0ZyMN0iKvouDwWMBfAoIfPAkqm0t3iFGCJ4MapkhIyVR6Z7uX36G1YM8cf/yM5wJ3YU9cyfj/uVn2DljLM5vP4TbZ2Owblgr3L/8DH/9ukkcQLdNGYHMV9EozM3AzV2fHm0lRZ7A05s7AQAZSRHIfpOAvPevBPM5MUlpVgEKLz2S6/X27Vvx/dbb2xtbtmyRqDMnJwcmJiYSx0xMTJCdnV2hfVtbW7Rv3x7169eHgYEBjhw5gnXr1sldD1+Queu4WbNmWL16Nbp06QIzMzNkZmaioKAATk5OSEtLY1tnjalJ1zEfM1om4Es2SxE+fM4cm3dx4VpCjWG66/gLO1PcDGwn1zXtT6VWqSEiIgJt27ZFXt7/NnRYs2YNrl27hr/++kui7Pz583H16lUcPnwYNjY22LdvHxYtWoSYmBg8efJE5nr4gsyDoRITE9Gly6dMSUNDAwCgq6uL4uJidpQxzMMoxeac8jXIDm1aF4ceJHItgzHWj2yDqfv/5VoGYwjRT7sx+7mWwRjXtw5Hh/F/cC1DrXB3d0dxcTHi4+NRr149AEBUVJTUAUxRUVEYOnQo6tSpAwAICAjAtGnTEBsbi4YNG8pcD1+Queu4UaNGOH/+vMSxS5cuoUmTJoyLYoNGTRpxLYFRdv5Ts8Uq+JbNCm3xAFX38/kzzdajtnEtiVF8/FVjWqKQMDIywsCBAxEcHIzc3FzcvHkTJ06cgK9vxUFXLVq0wJEjR5CWlobS0lLs3bsXRUVFcHNzk6seviBzoF27di1GjhwJf39/5Ofn49tvv0VAQIB4YBTfycmWf/9WvmazABB9+6bC1/ItyAJAcvRdriUwiir6KR9YP+d9CnurkHGB0PyoChs3bkR+fj6srKwwfPhwhIaGwsPDA0lJSRCJREhKSgIAzJkzB56envDy8oKpqSnWrVuHsLAwmJqaVlkPX5G56/jGjRt48OAB9u3bhzFjxsDBwQF37tzB4cOH0aIF/+ejvUtX3VWtpHH+4B607NKDaxmMEXUxDK4tOnEtgzFUwY88z01TYi7Aoi7//5/LitD8qArm5uY4fvx4heOOjo7IyflfMqSvr4/ff/8dv//+u1z18BWZB0PVqlULWVlZFY6bm5sjIyODcWFMI+9gKD5nszWBj9ksRXnweVASV9DBUBVhYzCUOlNtRnvlyhUAQElJCa5evYrycfnZs2cqs8nAi8QkriUwyupp32LmL5u5lsEYp9bNxVfT+TnZXBH44oepwBpzcS08ujEzd5sPCM0Phd9UG2jHjv00R6ygoEBiqUUNDQ3Y2Njgt99+Y08dg9QyqcW1BEZp0bm73NfwOZt19e7AtQRG4dIPG1mrhZM343VyidD8UPhNtYH2+fPnAAA/Pz/s2bOHdUFsYWZmKnNZVeg27thvENcSGKVh+95cS2AUZfpRRnewtbuwvggJzQ+F38g86liVgywAREU84FoCo5StPiUrfM5mgf+tlCMU2PZT1QhhNri6cYBS2lEWQvND4TcyjzpWdTybNZWpnCpkswBwMuEt1xIYZWZYFNcSGIVpP1wPYvpy4p+cts80QvND4TdybSqgymRmvudaAqOUrassC3zPZgGI14AVCkz4UXbWWhVpcde5lsAoQvND4TdqE2izPlScmqTK3L2i+JZ/fCThnrBufIr4+Xw1Jj6R/kJY0zaE5ofCb9Sm69iprmO1ZVSl2xiAzFN7VCGbBcCLqTBMIosfvgXTqhDaVBgh+engZYerXIugVInaZLTPEp5zLYFRyrbnEwplW4kJhcr88DVjrY4Hp5dxLYFRhOaHwm/UJqOtbVG7yvOqlM0CQI9hftWWUZVsFgA8uwlrulKZH1ULqJVh5yH/vG0+IxQ/HbzsuJZAkQG1CbQiYxHXEhilcau2XEtgFIfGwll39v7lZyj+aIn3AgmyAGBq15hrCYwiND8UfqM2XcexD2O5lsAoo32qvlGoUjYLAKHjunItgRHKMth/do+ppqRqQf3wD5rNqg5qE2ibeFYemFSt2xiAoDZ9ByCITdLLdxMLbVNxIfsRSvc+hb+oTaB9l87/HYbk4dwfla/UpWrZLABEXTjKtYQa8fnNOiVGWNOvqB9+QbNZ1UJtAm1eXp7U46qYzQLA04eRXEtglLQE1e3al5YRZb19yoES9qB+KBTFUZtA6+BYh2sJjDJ5+Vqpx1UxmwWA7kHBXEtQiMq6HRt0mqhkJexC/fAHms2qHmoTaJ/GJ3AtgVHmjfi6wjFVDbIAcDB4LNcS5KaqZ3sRxxcoUQn7UD8UiuKoTaC1sbWpcExVu40BYPh3s7mWwCg+QyZwLUEuqhtAU7fFMCUpUQ7UDz+g2axqojaBVk9Pj2sJjGLn7CrxXpWzWQAwt3PiWoLMyDJK1dBUWDdE6odCURy1CbRxj+Mk3qtyNgsA3/cXxrzTMvbOHsG1BJmQdSrIvSMzWVaiXKgf7qksm21lW6JkJRR5UZtA69GkEdcSGGXXv9Hin1U9mwWAoG2XuJZQLfLMt2wbsINFJcqH+qEwQUZGBgYMGAAjIyM4OTnhwIEDUstNmDABIpFI/NLT04OxsbFEmYMHD6Jhw4YwMjKCq6srbty4oQwLCqE2gfbNG2FtlP7nto1cS2CUuyd3cy2hUhTZBCAp8gRLariB+uEWoWSzkyZNgq6uLtLS0rB//34EBQUhJiamQrlNmzYhJydH/Bo+fDgGDx4sPn/x4kXMmTMHO3fuRHZ2Nq5fvw4XFxdlWpELtVnruLioSPyzqncbA0DGm1QAwshmASAng59fhBRdNehjrrAWSKF+KDUlNzcXYWFhiI6OhkgkQrt27dCvXz/s3bsXK1dWvq1k2XWnTp0SHwsJCUFwcDBat24NALC3t2ddf01Qm0BrZy+swQ9j5y3mWgKjfBnAv2dmNVmaz63taAaVcA/1wx1cZLNFWYV4dT5Rrmvevs2Gt7e3+H1gYCACAwPF7+Pi4qClpQV3d3fxMU9PT4SHh1dZb1hYGCwtLdGhQwcAQElJCe7du4d+/frBzc0NBQUF6N+/P1atWgUDAwO5NCsLtek6jnscD0AY2SwATO/XRTDZLADsncWv6RY1Xf/27pHvGVLCD6gfblCl6TyWlpa4d++e+FU+yAJATk4OTExMJI6ZmJggOzu7ynp3794NPz8/aGhoAADS0tJQVFSEo0eP4saNG4iMjERERASWLl3KrCEGUZtAW0dgK0NNWiZ9ZShVpdsE/qwMxcQi8w06qu7KQ9KgfviFqj2bBQCRSISsrCyJY1lZWRUGOZUnOTkZ4eHh8PP73/7bZVnrlClTYGtrCwsLC8yYMQNnzpxhRzgDqE2g1dISltXo5FyuJTCKroEh1xIAMLeTi5auPiP18AXqR/moUjYrC+7u7iguLkZ8fLz4WFRUFDw8PCq9Zs+ePfDx8ZEY6GRmZoY6deqIM1xVQFjRpwqeJTwXTLcxAPy5fArXEhiFD36Y3C7twelljNXFB6gf/qCK2SwAGBkZYeDAgQgODkZubi5u3ryJEydOwNfXt9Jr9uzZg4CAgArHR48ejd9++w1v3rxBZmYmfvnlF3z11Vcsqq8ZahNoGzZqwLUExrgemYKxG/7iWgajcO2H6T1JW48U1vQr6ke5CC2bLWPjxo3Iz8+HlZUVhg8fjtDQUHh4eCApKQkikQhJSUnisv/++y9evnwpMa2njIULF6JFixZwd3dHw4YN0axZM8yfP1+ZVuRCbQJt0qs0riUwys1DoVxLYBQu/bCx8ffzOwcZr5NLqB9+oKrZbBnm5uY4fvw4cnNzkZSUhBEjPq0I5+joiJycHDg6OorLtmnTBrm5uVKf4ero6GDjxo14//49UlNT8euvv0Jfn7+PA9Qm0AoFIY005gNsBFkKpSYINZtVZ9Qm0Na2qrh7jyrTdmgQ1xIYhQs/bAZZ55b8mq5UU6gf7lH1bFadUZtA+yLuEdcSGGX75L5cS2AUZfpRZElFebm1X7Wnj3wO9aMcFMlmrYr/ZkEJhUnUJtDa1uXvOpiyUr7beMC83zhUwjzK8qOsruKmffg7MEMRqB9uqSybpUFWNVCbQFtaUsq1BEb5mJ/HtQRGUYYfZT6PLflYoLS2lAH1wz702axwUZtA+/ZVMtcSasTng6AubhLWWsds+1H2oKfH4fyePiIv1A930GxW9VGbQOvg5l59IRXCd5VqTk+oDDb9cDGyuMXgNUpvk02oH3ah2aywUZtA+zZVdafFSJvSc3XXag6UsAdbfriavvP05k5O2mUL6ocbaDYrDNQm0Gpr63AtgVFE5pZcS2AUNvxwOUdW18ics7bZgPphD6Fs6k6pHLUJtGYWwgpMLfr5cy2BUZj2w/VCFI5eX3PaPtNQP/yBZrOqh9oE2uePY7iWoBCVrQQVOq6rkpWwC5N+uA6yAHBz1xiuJTAK9cMONJtVD9Qm0ApuMNTPB7iWwChM+eFDkAUA78HCeoZO/fADms2qJmoTaD8WFnItQW6qWtc4I+WFEpWwDxN++BJkASDvveoOvpMG9cM8NJtVH9Qm0Ga8SeVaAqP8c3gT1xIYpaZ++BRkASDxrrCmX1E/zEKXWlQvtLkWoCzqOLtxLYFRhi3ezrUERlHUD98CbBnN+i/lWgKjUD/KQZFstjTqFgtKKEyiNhntGxVbGaq67fAuhAprZShF/PA1yALA42uqs/KQLFA/zEGzWfVDbQKtnoEh1xIYxdq1EdcSGEVeP3wOsgBQy1JYPSjUD/vQbFa4qE2gNTGvzbUEmZFlc3fP7t8oQYnykMcP34MsANh5dOdaAqNQP8xAs1n1RG0CbULsQ64lMMr6kW24lsAosvpRhSALANe3DudaAqNQP+xCs1lhozaB1rmBB9cSGCVo2yWuJTCKLH5UJcgCgI//Dq4lMAr1U3OYzGZpkFUt1CbQ5ufmcC1BJmTpNgaA5Oi7LCtRLtX5UaUgCwDvU6K5lsAo1A97qNO82YyMDAwYMABGRkZwcnLCgQPSF6qZMGECRCKR+KWnpwdjY2MAQGFhIcaOHQsnJycYGxujWbNmOHv2rDJtyI3aBNoPGe+4lsAoURfDuJbAKFX5UbUgCwApMRe4lsAo1E/NoNnsJyZNmgRdXV2kpaVh//79CAoKQkxMxeVxN23ahJycHPFr+PDhGDx4MACguLgYDg4OCA8Px4cPH7BkyRIMGTIEiYmJSnYjOxqEEMK1CGVQr4kX1p7gd3errNmsOqGKQZaiejTv4sJq/fKuAlXVAChpgbbltKu4d++eYuKk0ERkgD+buMp1zbAi/So15ObmwszMDNHR0XB3/7Qkrq+vL+zt7bFy5coqr7OxscGpU6fQsWNHqWWaNm2KkJAQDBo0SC7NykJtMtrUZGEtWXhq3VyuJTCKND+qHGRjLq7lWgKjUD+Kw+Sm7srKZnNzCe7cKpLr9fbtW3h7e4tfW7ZskagzLi4OWlpa4iALAJ6enlIz2vKEhYXB0tISHTp0kHo+LS0NcXFx8PDg7zgctVkZysi4FtcSqkTebNbVW/ofnaryuR9VDrIAYOHkzbUERqF+mEdom7pbWlpWmdHm5OTAxMRE4piJiQmys7OrrHf37t3w8/ODhoZGhXNFRUUYOXIk/P390aBBA8WEKwG1yWiNTc24lsAoDdv35loCo5T3o+pBFgCs3YX1RYj6UQxVzGbZQiQSISsrS+JYVlaWeJCTNJKTkxEeHg4/P78K50pLS+Hr6wtdXV1s2LCBcb1MojaB9ml0FNcSGGX1IE+uJTDK6kGeuH/5mSCCLABc3TiAawmMQv0wC5PZbOGlRzWVoxTc3d1RXFyM+Ph48bGoqKgqu3z37NkDHx8fuLhIPkMnhGDs2LFIS0tDWFgYdHR0WNPNBGoTaN0a8zcwKTIIamaYsL44fDnxT64lMAr1w2+U4YfJbfBUPZsFACMjIwwcOBDBwcHIzc3FzZs3ceLECfj6+lZ6zZ49exAQEFDheFBQEB49eoS//voLBgYGLKpmBrUJtNnvM7mWwCiPbpzhWgJj3L/8DGlx17mWwSjUD7/hox8hZ7NlbNy4Efn5+bCyssLw4cMRGhoKDw8PJCUlQSQSISkpSVz233//xcuXL8XTesp48eIFNm/ejMjISNjY2Ijn2u7fv1/ZdmRGbQZD5WZnVV+IAxSd0pNw77qgntOmv7gnqOeA1A+/YdsPzWalY25ujuPHj1c47ujoiJwcyUWF2rRpg9zc3AplnZycoGqzUtUmo7VxcOJaAqN8Nb3yeWeqRNkzWY9uMzhWwizUD7/hmx91yGbVGbUJtCkvnnMtgVGOLZ/CtQRGeXB6GdcSGIX64Tef+2FyEB7NZimfozaBlo/b5NVkJSjPbvxcAUUeyt/c6DZs/Ib6kQ1lbYNHs1nVQm0CrYGRiGsJjOLQuAXXEhjF1K4x1xIYhfrhN8r2w2Q2S4Os6qE2gfb546qX+VI2NV3XOHRcV4aUcMPnXXX/7B7DkRJ2oH74DRt+6KbulMpQm0Dr2qgJ1xIYZer+f7mWwCgdxv/BtQRGoX74jTL90GyWojaBVnDb5F04yrUEhZE28IRuw8ZvqJ+qodkspSrUJtAW5udxLUEME9vhpSXEMqCEP2S9fcq1BEahfviNsvzQbJYCqFGgtbJ34FoCo3QPCuZagkJUNo2iQaeJSlbCLtQPv2HSD9ebur86nyj3NRTlojaB9uVzfnwjZ2pz94PBYxmphy9EHF/AtQRGoX74jTL8KJLNVgbNZlUbtQm05lY2XEtgFJ8hE7iWIDdVLQpQt8UwJSphH+qH3zDlh2azFFlQm0Crq6fHtQRGMbcT1pKShqbM7dvJB6gffsO2H3XcBo9SOWoTaJOfxnEtgbFuYwDYO3sEY3Upg+qWuLt3ZKaSlCgH6offMOGH603daTarOqhNoHVuUPnmwqpI0LZLXEtglLYBO7iWwCjUD79h0w/NZimfozaBNjP9LaftM5nNAsDdk7sZrY9NZFmwPSnyhBKUKA/qh9/U1A/NZinyoDaBtri4iGsJjJKTwe0XB6b5mJvBtQRGoX74DVt+aDZLkYbaBFpLG+4GczCdzQLAlwGq8cxM1u3H3NqOZlmJcqF++E1N/HC9DR7NZlUPtQm0fBgMxSR7Z/F/uoU8e3zePfI9i0qUD/XDb5Tph8lslgZZ1URtAq2lwFaG6jZBNVeGqowGHQW28hD1w2sU9cN1NktRTdQm0GpqcWOVjW5jANA1MGSlXqaQJ5sFAC1dfZaUcAP1w2+U5YdmsxRAiYF2w4YN8Pb2hp6eHgICAsTHExMToaGhAZFIJH4tWbKk0noyMjIwYMAAGBkZwcnJCQcOHJCp/deJ8t34+c6fy6dwLYFRHpxexrUERqF++I0ifviazd65pToDPeW5fz979gxfffUVjI2NYWFhgdmzZ4vPJSYmonfv3jAzM4ONjQ0mT56M4uJiZVhQCG1lNWRnZ4cFCxbg/PnzyM/Pr3D+/fv30NauXs6kSZOgq6uLtLQ0REZGok+fPvD09ISHR9XzZJ3cGyqsXVHYymYBYOyGv1iru6bIm80CQOuRG1lQwh3UD7+R14+ytsETejYr6/3748eP6NatGyZNmoRDhw5BS0sLcXH/G2czceJEWFlZ4fXr13j//j26deuGjRs34rvvvlO2JZlQWkY7cOBA9O/fH7Vr11a4jtzcXISFhWHJkiUQiURo164d+vXrh71791Z77bs3qQq3y0duHgrlWgKjPL9zkGsJjEL98Bum/HC9DZ4qZbPy3L937doFOzs7zJgxA0ZGRtDX10fTpk3F558/f44hQ4ZAX18fNjY26NmzJ2JiYpRpRy6UltFWh5OTEzQ0NNCtWzesWrUKFhYWFcrExcVBS0sL7u7u4mOenp4IDw+XWueWLVuwZcsWAEDeh/dYNKQnO+I54O3bt7iacJdrGYxR+vYtsm7zY4clJqB++I00P1dvV17+Kst6qqeSZ8rNPx1//Pgxo6259+iEtenpcl2Tn58Pb29v8fvAwEAEBgaK38tz/7516xbq1q2LXr164e7du2jcuDF+++03NGnSBAAwdepUHDx4EJ06dUJmZibOnj1b5SNHruE80FpYWODu3bvw8vLCu3fvMGnSJIwcORLnz5+vUDYnJwcmJiYSx0xMTJCdnS217vIftLe3N+7du8e8AY6gfvgN9cNvhOiHSc6dO8dofYB89++XL1/i6tWrOHnyJLp06YL169fj66+/xuPHj6Grq4uOHTti69atqFWrFkpKSuDv74/+/fszrpkpOB91LBKJ4O3tDW1tbVhbW2PDhg24cOECsrKypJb9/HhWVhaMjY2VJZdCoVAoCiDP/dvAwADt2rVDr169oKuri5kzZ+Ldu3d49OgRSktL0aNHDwwcOBC5ublIT09HZmYm5syZoywrcsN5oP0cDQ0NAAAhpMI5d3d3FBcXIz4+XnwsKiqq2oFQFAqFQuEWee7fTZs2FceCz8nIyEBycjImT54MPT091K5dG6NHj8aZM2dY015TlBZoi4uLUVBQgJKSEpSUlKCgoADFxcW4ffs2njx5gtLSUrx79w7fffcdOnXqVKGLAQCMjIwwcOBABAcHIzc3Fzdv3sSJEyfg6+tbbfvlnxUIAeqH31A//Ib6UT7y3L9HjRqFW7du4dKlSygpKcEvv/wCCwsLNGzYEBYWFnB2dkZoaCiKi4vx/v177N69G56enhy4khGiJEJCQggAiVdISAg5cOAAqVu3LjE0NCQ2NjbE19eXvH79WnzdsmXLSM+ePcXv3717R77++mtiaGhIHBwcyP79+5VlgUKhUCg1oLL794sXL4iRkRF58eKFuGxYWBhxdXUlxsbGpGPHjiQ6Olp8LiIignTs2JGYmpqS2rVrk2+++YakpaUp3Y+saBAipY+WQqFQKBQKI/DuGS2FQqFQKEKCBloKhUKhUFiEBloKhUKhUFiEBloKhUKhUFiEBlqK0tmyZQt8fHxgYmICLS0tmJiYwMfHB1u3buVaGuX/oZ8Rv3n37h22bNmCqVOnYsyYMZg6dSq2bNmCd+/ecS2NIgXBBlp6o+Anc+bMwfr16zFu3DhcuXIFT548wdWrVzFu3DisX78eP/zwA9cS1R76GfGby5cvw83NDfv27UNpaSns7OxACMH+/ftRr149XL3K/crMFEkEOb1nzpw5OHXqFL7//nt4enrCxMQEWVlZiIyMxNq1a9G3b1+sWLGCa5lqiaWlJR48eABbW9sK51JSUtC0aVOky7mYOYVZ6GfEbxo1aoSlS5di4MCBFc79+eefmDdvHh49kn8nIAp7CDLQ0hsFf7GwsMDDhw8r/WyaNGlCu784hn5G/MbIyAgZGRnQ09OrcK6wsBBmZmbIy8vjQBmlMgTZdVzddwcBfrdQGcaOHYvOnTtj27ZtuHv3LuLi4nDv3j1s374d3bp1w/jx47mWqPbQz4jftGrVCgsWLEBubq7E8dzcXCxcuBCtWrXiSBmlMgSZ0c6ZMwcnT56s0HUcFRUl7jpeuXIl1zLVls2bN2PPnj2IiYlBTk4ORCIRPDw84Ofnh2+//ZZreRTQz4jPvHjxAsOHD0dERARcXFzE97dnz57By8sLBw8ehKOjI9cyKeUQZKAF6I2CQqEIm7i4OMTGxkrc3+rVq8e1LIoUBBtoKfwmLi4OMTExyM7OhrGxMRo3bkxvEjyDfkYUCjNocy2ATeiNgn8kJSVh6NChiIqKgqurq7jbKyEhAZ6enrTbiwfQz4j/bNmyBbt27arQYzd69Gj6DJ2HCDLQ0hsFfxk9ejTat2+Py5cvw9DQUHw8NzcXixcvRkBAAK5cucKhQgr9jPhNddMXnz17Rqcv8gxBdh136dIFzZs3x48//ij1RnH37l16o+AIkUiEjIwM6OrqVjhXWFgIc3PzCqMpKcqFfkb8hk5fVD0EOb3n9u3bWLp0qUSQBT7NP1u8eDFu377NkTKKg4MDTp06JfXcmTNnaE8DD6CfEb+h0xdVD0F2HZfdKKStnEJvFNyyYcMGDBo0CGvXrq3Q7RUTE4OwsDCuJao99DPiN2XznCubvkif0fIPQXYdX758GYMGDULjxo0rvVF07tyZa5lqS3p6Ov7880+JgRyNGzdG//79YWFhwbU8Cj4tWn/s2DH6GfEUOn1RtRBkoAWk3yg8PDwwYMAAeqPgId7e3rhw4QLMzc25lqL2lJaWYuPGjYiJiUHPnj3x9ddfY86cOTh79iy8vLywdu1a+n+IQpEDwQbayigpKcGyZcsQHBzMtRS1xM/PT+rxsLAw9OnTB/r6+tizZ4+SVVHKM2XKFISHh6Nnz544e/YsWrRogYyMDIwePRq7d++Gjo4ODh06xLVMSiUkJSXRx2M8Q+0CbWFhIQwNDVFSUsK1FLXEwMAALVu2RJcuXSQGbaxevRoTJkyASCRCSEgIhwopdnZ2iIyMhJWVFV69egVHR0ekp6fDzMwM79+/h7u7O968ecO1TIoU6P2NnwhyMNSYMWMqPVdcXKxEJZTPefDgASZPnozY2FisWbMG9vb2AIBNmzZh1qxZsLKy4lghpaCgAGZmZgAAc3NzaGpqQiQSAQCMjY3p/yGOuX79eqXnCgsLlaiEIiuCDLQHDhzA2LFjpT7vo9/0uKVevXo4f/48Dh48iM6dO2P8+PGYNm0aNDQ0uJZG+X/atGmDb7/9FkOGDMEff/wBT09PrFmzBpMmTUJoaCg8PT25lqjWdOrUCba2ttDUFOTsTEEiyK7jFi1aYOHChejXr1+FcwUFBTA0NERpaSkHyijlycrKQnBwMC5duoQXL14gISGBZrQ84MWLF5g4cSKeP3+OadOmoUOHDujRowdevnwJZ2dnHDt2DE2bNuVaptri7OyM/fv3w8fHp8K5goICGBkZ0YSCZwgyow0ICKg0kOro6NBngDyhVq1a+OWXXxAZGYnw8HDUqlWLa0kUAE5OTjh9+rTEscTERGRkZKB27docqaKU4e3tjXv37kkNtJqamnQgFA8RZEZLoVAoQqWoqAjAp6SBohrQTn4KhUJRIXR0dCoNsiUlJVi8eLGSFVGqg2a0FAqFIhDo9B5+IshntBQKhSJU6PRF1YMGWgqFQlEh6PRF1YN2HVMoFIoKQacvqh50MBSFQqGoEHT6oupBM1oKhUKhUFiEZrQUCoVCobAIDbQUCoVCobAIDbQUipzUrVsXly5dqrbctWvXUKdOHYXaSExMhIaGRrXTNTp16oRt27ZJPZeUlASRSERHolIoHEOn91AoAsXR0RE5OTlcy6BQ1B6a0VIoFAqFwiI00FJUgrp162LFihVo1KgRzMzMMHr0aBQUFAAAtm7dCjc3N5ibm6Nfv35ISUkRXzd16lQ4ODigVq1aaN68OW7cuFFtW/n5+fD394eZmRkaNmyIn3/+udIu4MLCQkybNg12dnaws7PDtGnTKmy+vXz5clhYWKBu3brYv3+/+Pjp06fRrFkz1KpVCw4ODvjxxx8V+M0ACQkJaNmyJUxMTPD1118jIyMDQMXu506dOmHhwoVo27YtjI2N0b17d6SnpyvUJoVCkR0aaCkqw/79+3H+/HkkJCQgLi4OS5cuxZUrV/DDDz/g8OHDeP36NZycnDBs2DDxNS1atEBkZCQyMjIwYsQIDB48WBygK2PRokVITEzEs2fPcPHiRezbt6/SssuWLcOtW7cQGRmJqKgo3LlzB0uXLhWfT01NRXp6Ol69eoXdu3cjMDAQT548AQAYGRlhz549eP/+PU6fPo3Q0FAcP35c7t/Lnj17sGPHDqSkpEBbWxvfffddpWUPHDiAnTt34s2bN/j48SNWr14td3sUCkVOCIWiAjg5OZHQ0FDx+9OnTxMXFxcyZswYMmvWLPHx7Oxsoq2tTZ4/fy61HlNTUxIZGVllW87OzuTcuXPi91u3biX29vYSWi5evEgIIcTFxYWcPn1afO7cuXPEycmJEELI1atXiZaWFsnJyRGfHzx4MFm8eLHUdqdOnUqmTZtGCCHk+fPnBAApKiqqUmvHjh3JnDlzxO9jYmKIjo4OKS4urlBHx44dyZIlS8Rlf//9d9KjR48q66dQKDWHZrQUlcHBwUH8s5OTE1JSUpCSkgInJyfxcZFIhNq1a+PVq1cAgDVr1qBhw4YwMTGBqakpPnz4UG13aUpKikRb5X+WVrZ8+2W6yjAzM4ORkZHU87dv38aXX34JS0tLmJiYYNOmTQp15X7+eykqKqq0HhsbG/HPhoaGdLAUhaIEaKClqAzJycnin5OSksTPRV+8eCE+npubi3fv3sHe3h43btzATz/9hMOHDyMzMxPv37+HiYkJSDWLodna2uLly5dS2/2cz9sv01VGZmYmcnNzpZ4fMWIE+vXrh+TkZHz48AETJkyoVps0Pv+96OjowMLCQu56KBQKO9BAS1EZfv/9d7x8+RIZGRlYvnw5hg4dihEjRmDnzp2IjIxEYWEh5s2bh1atWqFu3brIzs6GtrY2LC0tUVxcjMWLFyMrK6vadoYMGYIVK1YgMzMTr169woYNGyotO3z4cCxduhRv375Feno6Fi9ejFGjRkmUCQkJwcePH3Hjxg2cOnUKgwcPBgBkZ2fD3Nwc+vr6uHPnDg4cOKDQ72Xfvn2IjY1FXl4egoOD8c0330BLS0uhuigUCvPQQEtRGUaMGIHu3bvDxcUFLi4uWLBgAbp06YIlS5Zg0KBBsLW1RUJCAg4ePAgA6NGjB3r16gV3d3c4OTlBX1+/ym7gMoKDg1GnTh04Ozuja9eu+Oabb6Cnpye17IIFC+Dt7Y2mTZuiSZMm+OKLL7BgwQLxeRsbG5iZmcHOzg4jR47Epk2b0KBBAwDAxo0bERwcDGNjYyxevBhDhgxR6Pfi6+uLgIAA2NjYoKCgAL/++qtC9VAoFHagmwpQVIK6deti27Zt6Nq1q9LbDg0NxcGDBxEeHq70tikUiupDM1oK5TNev36NmzdvorS0FE+ePMGaNWswYMAArmVRKBQVhQZailrSq1cviESiCq/ly5fj48eP+Pbbb2FsbIzOnTvj66+/xsSJEznTKk2nSCSSafENCoXCPbTrmEKhUCgUFqEZLYVCoVAoLEIDLYVCoVAoLEIDLYVCoVAoLEIDLYVCoVAoLEIDLYVCoVAoLEIDLYVCoVAoLPJ/CCFigIEovY4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "contour_plot = plot_contourf(\n", + " df=norm,\n", + " y_axis='temp_module_bin',\n", + " x_axis='poa_global_bin',\n", + " z_axis=lfm_sel,\n", + " title='avg normalised_m' + mpm_sel + '_' + mlfm_meas_file,\n", + " vmin=0.7,\n", + " vmax=1.05,\n", + " levels=9,\n", + " save_figs=save_figs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fig [L2] Contour plot (colours) of measured lfm_sel vs. poa_global (x) and temp_mod (y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References \n", + " \n", + "The Loss Factors Model (LFM) and Mechanistic Performance Model (MPM) \n", + "together known as \"MLFM\" have been developed by SRCL and Gantner Instruments \n", + "(previously Oerlikon Solar and Tel Solar) since 2011 MLFM and 2017 MPM \n", + " \n", + ".. [1] J. Sutterlueti(now Gantner Instruments) and S. Ransome \n", + " '4AV.2.41 Characterising PV Modules under Outdoor Conditions: \n", + "What's Most Important for Energy Yield' \n", + "26th EU PVSEC 8 September 2011; Hamburg, Germany \n", + "http://www.steveransome.com/pubs/2011Hamburg_4AV2_41.pdf \n", + "\n", + ".. [2] Steve Ransome and Juergen Sutterlueti(Gantner Instruments) \n", + " 'Choosing the best Empirical Model for predicting energy yield' \n", + " 7th PV Energy Rating and Module Performance Modeling Workshop, \n", + " Canobbio, Switzerland 30-31 March, 2017 \n", + "\n", + ".. [3] S. Ransome and J. Sutterlueti (Gantner Instruments) \n", + "'Checking the new IEC 61853.1-4 with high quality 3rd party data to \n", + "benchmark its practical relevance in energy yield prediction' \n", + "PVSC June 2019 Chicago, USA \n", + "http://www.steveransome.com/PUBS/1906_PVSC46_Chicago_Ransome.pdf\n", + "\n", + ".. [4] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) \n", + "'5CV.4.35 Quantifying Long Term PV Performance and Degradation \n", + "under Real Outdoor and IEC 61853 Test Conditions \n", + "Using High Quality Module IV Measurements' \n", + "36th EU PVSEC Sep 2019 \n", + "http://www.steveransome.com/PUBS/1909_5CV4_35_PVSEC36_Marseille_Ransome_PPT.pdf\n", + "\n", + ".. [5] Steve Ransome (SRCL) \n", + "'How to use the Loss Factors and Mechanistic Performance Models \n", + "effectively with PVPMC/PVLIB' \n", + "PVPMC Webinar on PV Performance Modeling Methods, Aug 2020 \n", + "https://pvpmc.sandia.gov/download/7879/ \n", + "\n", + ".. [6] W.Marion et al (NREL) \n", + "'New Data Set for Validating PV Module Performance Models' \n", + "https://www.researchgate.net/publication/286746041_New_data_set_for_validating_PV_module_performance_models \n", + "https://www.nrel.gov/docs/fy14osti/61610.pdf\n", + "\n", + ".. [7] Steve Ransome (SRCL)\n", + "'Benchmarking PV performance models with high quality IEC 61853 Matrix\n", + "measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode)'\n", + "http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf\n", + "\n", + ".. [8] Juergen Sutterlueti (Gantner Instruments)\n", + "'Advanced system monitoring and artificial intelligent data-driven analytics \n", + "to serve GW-scale photovoltaic power plant and energy storage requirements'\n", + "https://pvpmc.sandia.gov/download/8574/\n", + "\n", + "Many more papers are available at www.steveransome.com \n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# =============================================================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "## TEST CODE CAN DELETE AFTER HERE IF NOT NEEDED \n", + "\n", + "test = False\n", + "\n", + "if test: \n", + " # save meas data to csv\n", + " meas.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'meas.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save norm data to csv\n", + " norm.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'norm.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save matr data to csv\n", + " matr.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'matr.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " # save ref data to csv\n", + " ref_data.to_csv(\n", + " os.path.join('mlfm_data', 'output', 'ref_data.csv'),\n", + " sep=';',\n", + " quotechar='\"',\n", + " encoding='utf-8',\n", + " decimal='.'\n", + " )\n", + "\n", + " \n", + "if test:\n", + " # print mlfm fit coeffs\n", + " print(coeffs[0],coeffs[1],coeffs[2],coeffs[3],coeffs[4],) # coeffs[5], )#coeffs[6],)\n", + " \n", + "\n", + "if test:\n", + " # only works with mlfm_meas_file = 'g78_T16_Xall_F10m_R900_041.\n", + " #\n", + " # check data for test \n", + " \n", + " n= norm.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n n= \\n', n)\n", + "\n", + " \n", + " n= norm.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n n= \\n', n)\n", + "\n", + " s = stack.loc['2016-03-23 09:00:00-07:00']\n", + "\n", + " print('\\n s= \\n', s)\n", + "\n", + "\n", + "if test:\n", + " # show all versions\n", + " import sys \n", + " \n", + " for name, module in sorted(sys.modules.items()): \n", + " if hasattr(module, '__version__'): \n", + " print (name, module.__version__ )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# whos\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "toc-autonumbering": true, + "toc-showmarkdowntxt": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/tutorials/mlfm_data/figs/GI.png b/docs/tutorials/mlfm_data/figs/GI.png new file mode 100644 index 0000000000..e872822df5 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/GI.png differ diff --git a/docs/tutorials/mlfm_data/figs/flow_1024.png b/docs/tutorials/mlfm_data/figs/flow_1024.png new file mode 100644 index 0000000000..3d38803d65 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/flow_1024.png differ diff --git a/docs/tutorials/mlfm_data/figs/lfm_220914t15.png b/docs/tutorials/mlfm_data/figs/lfm_220914t15.png new file mode 100644 index 0000000000..e83af88d30 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/lfm_220914t15.png differ diff --git a/docs/tutorials/mlfm_data/figs/losses.png b/docs/tutorials/mlfm_data/figs/losses.png new file mode 100644 index 0000000000..e2de1fa9bd Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/losses.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_0_4.png b/docs/tutorials/mlfm_data/figs/mlfm_0_4.png new file mode 100644 index 0000000000..6c2c60a0d3 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_0_4.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_fit.png b/docs/tutorials/mlfm_data/figs/mlfm_fit.png new file mode 100644 index 0000000000..ad22db2db9 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_fit.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_flow.png b/docs/tutorials/mlfm_data/figs/mlfm_flow.png new file mode 100644 index 0000000000..e7b7e1f67d Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_flow.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_iv.png b/docs/tutorials/mlfm_data/figs/mlfm_iv.png new file mode 100644 index 0000000000..128a562537 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_iv.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_matrix.png b/docs/tutorials/mlfm_data/figs/mlfm_matrix.png new file mode 100644 index 0000000000..ac86613ae8 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_matrix.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_scatter.png b/docs/tutorials/mlfm_data/figs/mlfm_scatter.png new file mode 100644 index 0000000000..dbc070a5f2 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_scatter.png differ diff --git a/docs/tutorials/mlfm_data/figs/mlfm_stack.png b/docs/tutorials/mlfm_data/figs/mlfm_stack.png new file mode 100644 index 0000000000..57054c8308 Binary files /dev/null and b/docs/tutorials/mlfm_data/figs/mlfm_stack.png differ diff --git a/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R1_041.csv b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R1_041.csv new file mode 100644 index 0000000000..5bd5ff2946 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R1_041.csv @@ -0,0 +1,2 @@ +date_time,module_id,poa_global,wind_speed,temp_air,blue_frac,beam_frac,temp_module,v_oc,i_sc,i_mp,v_mp,r_sc,r_oc +2016-03-23 09:00:00-07:00,78,591.3868886,4.226408028,17.42457581,0.515025523,0.895491146,27.82861328,43.52636044,3.14995479,2.949264766,35.76882896,674.5517322,1.355690858 diff --git a/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041.csv b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041.csv new file mode 100644 index 0000000000..bfc3b6bbcc --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041.csv @@ -0,0 +1,908 @@ +date_time,module_id,poa_global,wind_speed,temp_air,blue_frac,beam_frac,temp_module,v_oc,i_sc,i_mp,v_mp,r_sc,r_oc +2016-01-26 07:20:00-07:00,78,2.666484317,1.472831997,8.177978516,0.454991652,1.1,2.081939697,33.04064421,0.013215447,0.009809045,24.33732,115258.5498,608.680999 +2016-01-26 07:30:00-07:00,78,7.899142696,1.297711339,8.241424561,0.522026664,-0.1,2.436985474,37.64402934,0.037248728,0.02983236,29.62497997,8253.745059,150.461283 +2016-01-26 07:40:00-07:00,78,52.92767243,0.955482493,7.739624023,0.270154323,0.300267162,2.592086792,39.6492057,0.072837131,0.061195743,32.44486777,4762.543972,63.66002837 +2016-01-26 07:50:00-07:00,78,104.9430478,0.62178426,6.727676392,0.306793868,0.570422814,4.082763672,42.70262294,0.215963967,0.1043503,40.52055001,335.2229575,20.30366921 +2016-01-26 08:00:00-07:00,78,153.4330542,0.410855412,7.471725464,0.352624445,0.624202994,6.691146851,43.92516586,0.401482968,0.2831102,41.82102001,145.7231242,10.27448789 +2016-01-26 08:10:00-07:00,78,207.780344,0.676059248,8.259368896,0.388758434,0.654555168,9.171981812,44.29201888,1.051441221,0.976606838,37.8831301,1022.179281,3.64816346 +2016-01-26 08:20:00-07:00,78,216.1854545,0.254440298,8.958572388,0.419448916,0.725788201,11.9732666,44.18390797,1.201683005,1.126675792,38.21257622,457.923977,3.080113759 +2016-01-26 08:30:00-07:00,78,314.4320338,0.856546629,8.97203064,0.430550146,0.74718442,14.17019653,44.03193485,1.331171973,1.252935622,37.87620839,1069.804838,2.48354974 +2016-01-26 08:40:00-07:00,78,364.1616107,0.58913996,9.572525024,0.445192536,0.769498154,16.85355042,44.17269549,1.847060911,1.717155082,37.41243227,395.6073655,1.962480341 +2016-01-26 08:50:00-07:00,78,414.4448538,0.526614105,10.14099121,0.457279734,0.816816815,18.9306488,44.1008495,2.121667348,1.980342542,37.0788336,507.5955731,1.660780338 +2016-01-26 09:00:00-07:00,78,462.1142704,1.284213332,10.18713379,0.466809799,0.819644581,19.76313782,44.17257403,2.3720334,2.219748978,36.92349031,451.1426099,1.618454729 +2016-01-26 09:10:00-07:00,78,510.2908602,0.195159288,12.86024475,0.474304138,0.837084913,24.29801941,43.72170172,2.612981553,2.441520192,36.35140926,459.5001701,1.519881831 +2016-01-26 09:20:00-07:00,78,556.291954,1.416954598,11.54771423,0.480434084,0.84125099,26.13414001,43.56085443,2.846176078,2.658450617,36.05951765,416.9199181,1.444318335 +2016-01-26 09:30:00-07:00,78,598.7898627,2.621006537,11.90341187,0.485454303,0.853127587,25.68231201,43.74601521,3.069547488,2.864256549,36.15028618,411.4000953,1.371332228 +2016-01-26 09:40:00-07:00,78,642.8336829,1.413870966,12.32318115,0.489949284,0.862145752,27.00764465,43.7058627,3.293581023,3.079070845,35.89718303,346.6166145,1.311845998 +2016-01-26 09:50:00-07:00,78,685.6991566,4.499102281,13.4947052,0.493851937,0.862083921,28.01062012,43.73036806,3.501154429,3.269395683,35.82111714,306.7634657,1.266034924 +2016-01-26 10:00:00-07:00,78,722.9203889,3.752678437,14.02728271,0.497052256,0.873296275,26.81217957,44.06428478,3.221415149,3.509335379,36.06496582,-98.99999993,1.215473116 +2016-01-26 10:10:00-07:00,78,758.3998553,3.90917304,14.53677368,0.500453648,0.869689888,30.18640747,43.75491891,4.001840108,3.725520103,35.64142784,258.8566531,1.172780691 +2016-01-26 10:20:00-07:00,78,793.6222618,1.334161372,14.30477905,0.502885908,0.878375726,31.1547699,43.74015642,4.180729627,3.894510453,35.46028801,258.7333927,1.110299104 +2016-01-26 10:30:00-07:00,78,824.6775878,3.665078329,14.43423462,0.504925858,0.884229622,32.23657227,43.6280143,4.343320912,4.044405686,35.25807358,275.5185706,1.132176849 +2016-01-26 10:40:00-07:00,78,854.7823219,5.256180433,14.47525024,0.506130087,0.887275123,32.69032288,43.61545938,4.492331776,4.187430772,35.16976482,267.6259298,1.107403843 +2016-01-26 10:50:00-07:00,78,883.4612739,2.65597451,14.95335388,0.507483523,0.88735207,34.77958679,43.36644369,4.639351634,4.310491082,34.83491193,241.6030565,1.047780675 +2016-01-26 11:00:00-07:00,78,909.7273511,2.819398711,15.3289032,0.508918361,0.89133442,36.52726746,43.2420164,4.771606859,4.431889894,34.62225988,241.5181897,1.059123786 +2016-01-26 11:10:00-07:00,78,930.8391264,3.539826502,15.08152771,0.509800796,0.889984989,37.17326355,43.17568462,4.876980742,4.524938155,34.5065212,250.6222944,1.076740402 +2016-01-26 11:20:00-07:00,78,952.6737668,1.471229307,16.1421814,0.510905034,0.89843852,39.84060669,42.80318453,4.99081633,4.632586909,33.99881312,257.0917648,1.06960044 +2016-01-26 11:30:00-07:00,78,969.1016458,3.216223014,15.56474304,0.511764908,0.895266394,37.5763855,43.02998202,5.070439916,4.71250813,34.19248561,321.207612,1.062183214 +2016-01-26 11:40:00-07:00,78,984.0401724,2.314265622,15.75379944,0.512683518,0.896001535,39.8258667,42.82641556,5.159710789,4.785545544,33.9279814,259.0715545,1.055930891 +2016-01-26 11:50:00-07:00,78,998.6700025,2.27805573,16.03964233,0.512984671,0.892168544,40.92881775,42.70342155,5.226481851,4.841456621,33.77313345,227.7611736,1.035844097 +2016-01-26 12:00:00-07:00,78,1009.877341,0.853702719,16.13128662,0.51359921,0.886740809,41.62097168,42.61719933,5.285078086,4.894073926,33.65156054,257.6905084,1.041174819 +2016-01-26 12:10:00-07:00,78,1017.589242,3.262165692,16.44403076,0.514105918,0.88010677,43.04243469,42.4634818,5.332421256,4.93086387,33.46746965,205.8807495,1.045472024 +2016-01-26 12:20:00-07:00,78,1023.53711,2.374909041,16.62347412,0.514370431,0.883760394,44.0569458,42.27680023,5.355384136,4.952586803,33.26020712,250.6001616,1.021661282 +2016-01-26 12:30:00-07:00,78,1026.415587,0.870606015,16.97019958,0.514954525,0.906067171,42.64125061,42.4040031,5.368770078,4.965982452,33.37857165,265.6540531,1.041993248 +2016-01-26 12:40:00-07:00,78,1027.951635,1.795874946,17.45854187,0.515078616,0.904041651,44.75102234,42.1646632,5.372309817,4.967214632,33.13084081,326.5088919,1.049415663 +2016-01-26 12:50:00-07:00,78,1027.873214,1.897133715,17.16822815,0.515548749,0.907229168,44.08578491,42.16804414,5.374051843,4.966549197,33.13752895,315.340138,1.045823019 +2016-01-26 13:00:00-07:00,78,1022.574354,1.366645927,17.71104431,0.515974689,0.903363809,44.21331787,42.13209756,5.342528453,4.940040894,33.11927452,329.5847048,1.048639853 +2016-01-26 13:10:00-07:00,78,1015.830343,3.414574745,18.02252197,0.515817814,0.904341523,43.16035461,42.32391597,5.321339783,4.917547455,33.32720144,228.6968851,1.056174111 +2016-01-26 13:20:00-07:00,78,1011.932781,3.491960946,17.92254456,0.515408422,0.902809562,39.37147522,42.79103059,5.283454898,4.896424984,33.83247273,271.6647023,1.047228033 +2016-01-26 13:30:00-07:00,78,999.3117599,2.765364354,18.11096191,0.515070114,0.900313349,39.30482483,42.72939776,5.220125496,4.841925897,33.80060105,284.7079089,1.04989949 +2016-01-26 13:40:00-07:00,78,986.9773159,4.003462675,18.64352417,0.514496019,0.898920057,39.77716064,42.63285696,5.158909379,4.789488967,33.71337008,399.9254302,1.057417932 +2016-01-26 13:50:00-07:00,78,966.7793281,5.263109962,18.61148071,0.514355881,0.895679496,38.985672,42.71819111,5.05932487,4.693711508,33.88787062,278.159932,1.042858888 +2016-01-26 14:00:00-07:00,78,954.1827267,1.430693795,18.68966675,0.513497899,0.89455273,41.38639832,42.38288726,4.988799042,4.625554899,33.55837107,330.6979975,1.078548664 +2016-01-26 14:10:00-07:00,78,934.8078407,2.864540569,18.8588562,0.512874482,0.892806921,41.52548218,42.27771659,4.886954319,4.527403933,33.50575,360.2748414,1.087624005 +2016-01-26 14:20:00-07:00,78,911.8316398,3.7804766,18.8319397,0.512049419,0.889955972,39.97006226,42.46665678,4.772465541,4.419507263,33.81102072,304.6103487,1.078035925 +2016-01-26 14:30:00-07:00,78,888.2996565,5.129286381,18.9908905,0.510596069,0.892839523,38.85557556,42.57955167,4.654643886,4.308083603,33.99817064,244.2817712,1.086187066 +2016-01-26 14:40:00-07:00,78,863.5743749,1.675950098,19.22544861,0.509621336,0.890524471,41.29347229,42.30046712,4.526945926,4.193077875,33.7665931,366.635177,1.102555521 +2016-01-26 14:50:00-07:00,78,829.0086592,0.779801155,18.90052124,0.508482706,0.886039212,40.19885254,42.29759713,4.348506237,4.030778452,33.86807994,340.9583709,1.146635909 +2016-01-26 15:00:00-07:00,78,796.1356952,2.054309277,19.11329651,0.506920234,0.878195257,38.67036438,42.41272239,4.18191321,3.880030246,34.07242339,340.8715384,1.173677917 +2016-01-26 15:10:00-07:00,78,767.9465447,3.387537659,19.43373108,0.50487961,0.876784041,38.28262329,42.42909619,4.033510141,3.745647268,34.16498144,357.2189985,1.242885445 +2016-01-26 15:20:00-07:00,78,733.407779,2.11943862,18.95628357,0.502637411,0.872984611,36.4433136,42.60346475,3.856087693,3.584474349,34.44885627,396.4683641,1.269012518 +2016-01-26 15:30:00-07:00,78,695.9438221,1.479240521,19.05433655,0.4999721,0.876319236,36.53688049,42.46456064,3.660500228,3.402207511,34.46078589,470.455575,1.259606262 +2016-01-26 15:40:00-07:00,78,653.4165987,1.734671127,20.33096313,0.49640071,0.871706329,38.29736328,42.13097294,3.444051166,3.197692751,34.23575015,483.4685221,1.312761595 +2016-01-26 15:50:00-07:00,78,609.9141613,1.71444322,20.01373291,0.491962853,0.858749184,36.81437683,42.27056401,3.219809483,2.989914732,34.50589639,439.7797136,1.360559931 +2016-01-26 16:00:00-07:00,78,568.5699126,0.500017558,20.21047974,0.486797011,0.853972831,34.209198,42.49663384,2.999263818,2.788047619,34.84982018,519.8280878,1.488722433 +2016-01-26 16:10:00-07:00,78,524.4403751,0.562543203,21.38777161,0.481083706,0.845724139,35.33779907,42.18125778,2.767495862,2.572645544,34.65055387,496.4633357,1.583931977 +2016-01-26 16:20:00-07:00,78,479.7378031,0.781083028,20.03936768,0.474298838,0.837578486,33.36901855,42.30428569,2.534235887,2.351400039,34.98826351,523.0605724,1.684404678 +2016-01-26 16:30:00-07:00,78,429.339206,0.549725876,21.63322449,0.465958447,0.816728728,32.15197754,42.23115882,2.267617982,2.105032667,35.03611004,608.5513413,1.836710552 +2016-01-26 16:40:00-07:00,78,370.7711198,0.818374185,21.32368469,0.456051782,0.790276452,31.30923462,42.18191901,1.956985046,1.81560762,35.15428319,660.5594336,1.914339427 +2016-01-26 16:50:00-07:00,78,305.4096408,0.874451073,21.53453064,0.446201874,0.771149479,28.68611145,42.16882586,1.609061489,1.488576409,35.40672959,759.7175657,2.435840511 +2016-01-26 17:00:00-07:00,78,280.0941278,1.428691149,21.17308044,0.422114235,0.756427069,27.4005127,41.69485644,1.161249702,0.5355422,26.10387002,59.49574134,8.943940996 +2016-01-26 17:10:00-07:00,78,229.8256157,1.683280631,19.70930481,0.397640252,0.670621075,23.45846558,41.76282553,0.711983362,0.209714203,39.08170998,58.9644509,14.68643914 +2016-01-26 17:20:00-07:00,78,172.6462956,1.579658166,19.65675354,0.365865319,0.636626294,21.40122986,41.21018232,0.529158062,0.4446949,37.05372,493.2273595,5.892224729 +2016-01-26 17:30:00-07:00,78,117.9388936,1.213316191,19.32221985,0.341359839,0.49248775,19.03511047,41.50438216,0.581969433,0.51708543,35.63190758,605.6675899,6.452198899 +2016-01-26 17:40:00-07:00,78,67.05283209,0.789374686,18.86975098,0.275045318,0.430205001,15.5365448,37.82157066,0.086909285,0.073512226,30.91155516,3512.058186,48.14892659 +2016-01-26 17:50:00-07:00,78,10.61600297,1.234344919,18.0199585,0.513020139,-0.060860409,13.26463318,36.39362434,0.046133839,0.03770362,28.74545001,6913.935642,117.0919692 +2016-01-26 18:00:00-07:00,78,3.702710775,1.38739449,17.55018616,0.431763266,0.15352507,12.13861084,33.05673137,0.018910427,0.01490116,24.11611002,17922.37706,366.4066582 +2016-02-24 07:00:00-07:00,78,5.177433453,1.721973591,12.28152466,0.483678046,-0.024971679,8.341400146,35.0835656,0.024553511,0.019202563,26.63313999,15540.21025,246.595412 +2016-02-24 07:10:00-07:00,78,11.5175071,3.115484342,12.08157349,0.549381363,-0.010471237,8.395874023,37.93258873,0.055854206,0.045948241,30.50876515,5633.87217,86.03751699 +2016-02-24 07:20:00-07:00,78,27.80082781,2.043854878,12.13925171,0.471357972,0.209839663,9.02394104,39.1002497,0.089052995,0.07538541,32.24543001,4142.495758,49.02888991 +2016-02-24 07:30:00-07:00,78,25.65740691,2.676482373,12.22064209,0.652858914,0.073466684,9.463577271,39.88422917,0.126003083,0.109773152,33.21069152,4635.170025,33.24994705 +2016-02-24 07:40:00-07:00,78,34.32688304,2.235597828,12.16809082,0.660894462,0.058616436,9.891693115,41.85119317,0.255931768,0.2094555,38.11349999,549.6237664,10.00175183 +2016-02-24 07:50:00-07:00,78,42.1342725,3.183176941,13.02366638,0.667544737,0.375429188,11.19844055,42.58306795,0.34618495,0.2551464,39.80466003,240.9285914,11.22086714 +2016-02-24 08:00:00-07:00,78,57.4646918,2.348512751,13.49598694,0.622028921,0.763690629,14.85401367,43.08002637,0.64803157,0.3540377,41.42246,138.9849535,6.935867773 +2016-02-24 08:10:00-07:00,78,277.8477468,3.746670149,14.38616943,0.466296766,0.74516808,16.34341431,43.52560564,1.263328196,1.167620999,37.41584001,595.9489746,2.992501697 +2016-02-24 08:20:00-07:00,78,329.7967823,2.821321171,14.82901978,0.476283764,0.802842995,18.98191833,43.72808836,1.729664969,1.618431961,36.87171285,1599.986518,2.073783027 +2016-02-24 08:30:00-07:00,78,379.8570463,4.704783568,15.27186584,0.484329597,0.81097259,20.97120056,43.71605018,1.994054575,1.867783812,36.73815781,1210.715235,2.002367042 +2016-02-24 08:40:00-07:00,78,429.6551805,4.085254683,15.64164734,0.490092392,0.831379691,22.87013245,43.67311704,2.255281431,2.11180413,36.46003184,1002.370457,1.812645813 +2016-02-24 08:50:00-07:00,78,479.7450812,3.76613677,16.00695801,0.494830876,0.840170358,24.12882996,43.69556578,2.512065164,2.357828009,36.35269927,851.2675288,1.664522155 +2016-02-24 09:00:00-07:00,78,532.0591515,3.573632883,16.42416382,0.498675366,0.846927111,25.98223877,43.64714454,2.785732663,2.608089809,36.18224146,872.4572448,1.457234642 +2016-02-24 09:10:00-07:00,78,576.7007111,3.259602017,16.87149902,0.502309364,0.852554716,28.20417786,43.47015718,3.024042137,2.833519725,35.77431516,800.738612,1.335221797 +2016-02-24 09:20:00-07:00,78,622.9198615,5.24464428,16.70614624,0.50561303,0.862670612,28.5688324,43.56816149,3.251036461,3.046950563,35.7744005,683.1208503,1.323711634 +2016-02-24 09:30:00-07:00,78,663.6294192,5.758348913,16.87085632,0.508453293,0.872705099,29.26483154,43.59209999,3.45462896,3.23712494,35.69154541,639.6117048,1.27708077 +2016-02-24 09:40:00-07:00,78,700.8459222,5.666903537,17.32524109,0.510646637,0.870732087,30.37226868,43.52486175,3.634374949,3.40785836,35.53606481,727.842233,1.296560913 +2016-02-24 09:50:00-07:00,78,742.6578622,5.35263225,17.7610321,0.513163147,0.879114335,31.55789185,43.45028327,3.840667777,3.596090019,35.35455778,1188.483892,1.206681908 +2016-02-24 10:00:00-07:00,78,780.1462756,6.979463333,17.47776794,0.51524733,0.887880614,31.95715332,43.51334168,4.030492211,3.781668089,35.22426131,739.5281759,1.174184001 +2016-02-24 10:10:00-07:00,78,814.562538,9.018419674,17.75975037,0.516654274,0.885632082,32.43013,43.50877653,4.20668595,3.93747685,35.14330558,658.2310965,1.15099663 +2016-02-24 10:20:00-07:00,78,845.2160894,4.546327111,18.23272705,0.517580351,0.885223667,32.66020203,43.59102646,4.471096422,4.166482881,35.1148898,297.0495614,1.080950935 +2016-02-24 10:30:00-07:00,78,878.728437,7.803954408,18.38973999,0.51874366,0.88650428,34.01116943,43.40419129,4.641026986,4.322034356,34.83500104,375.1046574,1.071396917 +2016-02-24 10:40:00-07:00,78,905.8421368,6.628422313,18.59994507,0.520097289,0.892378298,35.39611816,43.32097944,4.781546766,4.450103914,34.66499149,324.1838238,1.085502839 +2016-02-24 10:50:00-07:00,78,939.942397,5.168900513,19.00883484,0.521015181,0.896509092,37.25016785,43.12769845,4.937104225,4.584668516,34.4039653,312.9416453,1.073458811 +2016-02-24 11:00:00-07:00,78,965.1502756,5.217326889,18.81015015,0.522217919,0.898066416,37.7673645,43.13064399,5.064310829,4.710463721,34.26810309,294.2813327,1.015221757 +2016-02-24 11:10:00-07:00,78,988.4618653,4.561747718,19.28120422,0.523166272,0.902844961,39.76626587,42.85783637,5.195540143,4.819881515,33.92735372,291.7776558,1.050775612 +2016-02-24 11:20:00-07:00,78,1006.496769,3.541748961,19.04600525,0.523988576,0.904498115,39.62719727,42.84142142,5.286343529,4.907857543,33.85928289,319.2157573,1.044200197 +2016-02-24 11:30:00-07:00,78,1025.435644,3.204166065,19.66444397,0.524070848,0.903580289,42.5028125,42.57085501,5.382985115,4.986670638,33.53496364,298.3720561,1.023561038 +2016-02-24 11:40:00-07:00,78,1040.910612,6.134985541,19.47923279,0.525038715,0.901877261,41.64276123,42.62675784,5.456736421,5.056389374,33.55774408,347.2269516,1.033348633 +2016-02-24 11:50:00-07:00,78,1052.718367,3.421984836,19.83042908,0.525885365,0.90455181,43.16355896,42.43173303,5.517638572,5.112743065,33.31705464,467.6205747,1.028934631 +2016-02-24 12:00:00-07:00,78,1064.151372,3.049193546,20.48220825,0.526427656,0.90592271,46.9223175,41.99285647,5.587390997,5.154995987,32.83962022,275.2988101,1.029912393 +2016-02-24 12:10:00-07:00,78,1072.036897,4.320216822,20.06820679,0.526994686,0.906437325,45.94369507,42.0723156,5.619341019,5.19213685,32.88817417,328.694575,1.029591833 +2016-02-24 12:20:00-07:00,78,1080.826659,2.513058521,21.07695007,0.527378368,0.907882416,47.60612488,41.94542386,5.67139434,5.22825736,32.74812844,235.4279313,1.007428533 +2016-02-24 12:30:00-07:00,78,1082.548789,4.574685604,20.60333252,0.527647829,0.90642208,44.96379089,42.24996836,5.677857513,5.24503636,33.05663818,311.7698361,1.004178394 +2016-02-24 12:40:00-07:00,78,1084.650631,4.873935892,21.31407166,0.527953767,0.908575659,46.38845825,42.12430603,5.693980038,5.252523329,32.92275793,236.9647519,1.022171283 +2016-02-24 12:50:00-07:00,78,1086.539356,5.918047777,20.96478882,0.527926325,0.910979957,45.20732117,42.27198522,5.694487083,5.253116935,33.07888656,245.0978795,0.982410609 +2016-02-24 13:00:00-07:00,78,1081.319046,2.910243035,21.98122253,0.528315991,0.907812931,47.2587738,41.9887014,5.674627825,5.225362155,32.78645906,247.8530202,1.024850046 +2016-02-24 13:10:00-07:00,78,1077.700856,3.539826502,22.32795715,0.527556388,0.909217929,46.96333313,41.97452965,5.64681696,5.222196528,32.7142762,429.9695494,1.027823835 +2016-02-24 13:20:00-07:00,78,1068.960099,4.973232108,22.37089539,0.527321466,0.90449019,46.25131226,42.06743615,5.593933519,5.167318644,32.90986549,318.0848331,1.031753961 +2016-02-24 13:30:00-07:00,78,1055.851549,4.030659576,22.08570862,0.527155978,0.90495767,46.26925659,41.8870342,5.53098412,5.099721361,32.76591007,289.2436166,1.020063785 +2016-02-24 13:40:00-07:00,78,1044.48494,4.930734183,21.99148621,0.526200169,0.906479594,44.10244751,42.18121866,5.463787735,5.061830961,33.06773082,455.6151105,1.022993004 +2016-02-24 13:50:00-07:00,78,1030.817847,4.437137176,22.89833069,0.525645375,0.906807654,46.4083252,42.02845365,5.408589845,4.992158567,32.96526761,272.7317243,1.003664185 +2016-02-24 14:00:00-07:00,78,1009.492763,5.148753282,23.32772827,0.525241407,0.903450413,48.49438477,41.53421124,5.294378457,4.891380624,32.50430781,470.3707677,1.067262667 +2016-02-24 14:10:00-07:00,78,991.1516192,2.071132245,22.06584167,0.524555495,0.902790868,47.27735901,41.66231375,5.203058743,4.805829308,32.69941898,432.2689679,1.040735135 +2016-02-24 14:20:00-07:00,78,970.8213198,4.184029824,22.61442566,0.523404602,0.898529485,45.14900208,41.90351262,5.100330973,4.723631861,32.99045516,445.7816937,1.072444713 +2016-02-24 14:30:00-07:00,78,947.1911701,1.254893015,23.084198,0.522568969,0.898779945,46.52304077,41.75043728,4.981886317,4.607959767,32.89871574,410.5660271,1.087540353 +2016-02-24 14:40:00-07:00,78,919.4210831,5.855081663,23.17456055,0.521694546,0.896833506,43.32698059,42.05068359,4.827417587,4.483472893,33.27693337,573.2017002,1.09807174 +2016-02-24 14:50:00-07:00,78,892.1211533,4.343888992,22.33308411,0.520642055,0.89246791,42.61882019,42.0663909,4.694493143,4.357651055,33.35975836,492.3366067,1.115198788 +2016-02-24 15:00:00-07:00,78,858.9860595,1.969312797,23.24697876,0.519544166,0.889523672,43.54745483,41.91414396,4.53067377,4.19782161,33.37184963,536.795452,1.168699758 +2016-02-24 15:10:00-07:00,78,828.1439134,3.825738737,23.04253662,0.51823814,0.891533629,41.56265259,42.092424,4.35860714,4.046243353,33.62570323,1068.812887,1.188827119 +2016-02-24 15:20:00-07:00,78,792.5860629,2.345068208,23.00343933,0.51643075,0.88926891,42.46884705,41.91151592,4.1781461,3.87780996,33.53353104,691.9933174,1.149700605 +2016-02-24 15:30:00-07:00,78,755.9844227,1.531752725,23.27133179,0.514337091,0.879663253,42.07983398,41.88835498,3.993987682,3.712509319,33.6033129,795.6635598,1.206230085 +2016-02-24 15:40:00-07:00,78,717.6021052,2.34883287,23.30145264,0.51230011,0.876306037,41.29154968,41.85533361,3.795955731,3.528275299,33.66804645,679.5775495,1.293048263 +2016-02-24 15:50:00-07:00,78,675.9319907,2.985666683,23.47384644,0.510311865,0.874227311,40.32574463,41.88593654,3.577985506,3.328776383,33.80433992,656.8669436,1.340886887 +2016-02-24 16:00:00-07:00,78,633.7328138,1.149267764,23.52832031,0.507367399,0.864590441,39.23817444,41.98041443,3.355812445,3.121108056,34.10799603,739.4417974,1.38477593 +2016-02-24 16:10:00-07:00,78,589.5593595,1.139855026,25.39520264,0.504341049,0.865634728,41.23451233,41.5964493,3.129370783,2.907446529,33.82777965,735.0932929,1.461024557 +2016-02-24 16:20:00-07:00,78,543.4014975,1.570325475,23.8961792,0.500637182,0.854241131,37.58535767,41.42127095,2.000431358,1.035346,38.97150998,220.4721527,1.898801078 +2016-02-24 16:30:00-07:00,78,493.3777618,1.750372387,23.9666748,0.496909492,0.84797912,35.86459351,41.92019618,2.405743486,1.932032001,36.97831998,154.3408064,1.723578209 +2016-02-24 16:40:00-07:00,78,446.2473081,1.684041568,24.11857605,0.49200494,0.834320198,34.3681488,41.99972564,2.367453751,2.203580047,34.71317719,876.1598954,1.769187702 +2016-02-24 16:50:00-07:00,78,397.4191709,0.934373089,24.13972473,0.485658767,0.822428536,33.22160339,41.93777492,2.109884204,1.96471935,34.78196393,803.9582338,1.931511344 +2016-02-24 17:00:00-07:00,78,347.2094905,1.417235602,23.94552612,0.478092715,0.809968232,31.2316864,41.96114483,1.842231101,1.715357217,34.92979388,744.8628109,2.156183404 +2016-02-24 17:10:00-07:00,78,295.8410436,1.512085428,24.04358704,0.469345772,0.777333299,30.23576355,41.79798296,1.564642939,1.455315238,34.89561146,674.7773685,2.28580931 +2016-02-24 17:20:00-07:00,78,245.0433953,1.069278214,23.74301147,0.457886521,0.763923875,28.76686096,41.6376357,1.292343789,1.196250067,34.98115846,689.806312,2.94979502 +2016-02-24 17:30:00-07:00,78,194.6055831,1.568282596,24.23457336,0.442222635,0.72627801,27.34924316,41.3818701,1.017970446,0.940414545,34.84747419,795.5293282,3.327405663 +2016-02-24 17:40:00-07:00,78,144.9838337,1.423764336,23.68533325,0.422854249,0.688555742,25.42660522,40.74362206,0.485503749,0.3252111,38.46275998,344.8233177,6.796455967 +2016-02-24 17:50:00-07:00,78,100.0532036,1.27383898,23.46743774,0.397718122,0.626754318,23.17199707,40.18048904,0.243706998,0.148643301,37.79282999,162.2175071,11.48899906 +2016-02-24 18:00:00-07:00,78,39.64045578,0.999983554,23.38796997,0.397588231,0.542882348,20.58282471,37.94774664,0.10735681,0.093660449,31.94474121,3423.534757,39.21315601 +2016-02-24 18:10:00-07:00,78,25.22870065,1.191085358,22.57789612,0.364085613,0.09247119,18.42434692,36.83590638,0.068607309,0.057938887,29.86177693,4961.941119,69.39887323 +2016-02-24 18:20:00-07:00,78,7.056378301,0.56422601,21.93763733,0.484663269,-0.1,17.06889343,34.57939339,0.032430266,0.02643184,25.97795,8758.363923,176.3191947 +2016-02-24 18:30:00-07:00,78,2.144727457,0.421589906,21.48326111,0.401295536,-0.1,15.68009949,28.03092546,0.009886181,0.007547792,19.51531999,50096.55696,947.3359976 +2016-03-23 06:20:00-07:00,78,2.294134714,3.353210343,15.15843201,0.493979001,0.350387206,12.43789673,30.76976158,0.012190494,0.00891145,22.73151999,97916.23386,745.1368014 +2016-03-23 06:30:00-07:00,78,6.909372528,3.756363192,15.16035461,0.584140272,0.359975244,12.2244873,35.74918498,0.034639905,0.027591179,27.75883232,8429.55737,174.0457861 +2016-03-23 06:40:00-07:00,78,14.88830705,3.352769874,15.08921814,0.6176721,0.5624809,12.49749756,38.2226149,0.080311391,0.065744792,31.3440801,3798.801827,56.40143721 +2016-03-23 06:50:00-07:00,78,30.54699355,3.676894368,15.15971375,0.495124394,0.671268506,12.83909607,39.9183407,0.164914813,0.14018709,33.72423997,3309.132376,24.98775274 +2016-03-23 07:00:00-07:00,78,54.054548,3.139957893,15.05653381,0.48065403,0.692260741,12.79551697,40.4671763,0.163183124,0.145283819,35.77213076,2766.095002,18.09065983 +2016-03-23 07:10:00-07:00,78,79.1644258,1.448237817,14.81491394,0.483883608,0.739706482,12.31100464,41.94638463,0.373381875,0.3225181,37.05788,650.6757756,10.17737859 +2016-03-23 07:20:00-07:00,78,106.4618437,3.019793322,15.0110321,0.494531286,0.797736034,14.31503296,42.44809048,0.588956461,0.549842458,36.56939339,1880.859002,6.203761176 +2016-03-23 07:30:00-07:00,78,164.0746546,2.52771847,15.15779114,0.48391654,0.809297353,15.59614563,42.81885471,0.792271075,0.723883709,37.24299867,516.0901631,4.585789352 +2016-03-23 07:40:00-07:00,78,209.1545908,3.326534168,15.27891541,0.488718396,0.825700394,16.81317139,43.13094755,1.041630848,0.978840789,36.93667597,1615.346562,3.553673012 +2016-03-23 07:50:00-07:00,78,257.8651105,3.623260944,15.54551697,0.493820415,0.838492485,18.43652344,43.39367469,1.387858125,1.298315114,36.68985381,1454.636853,2.302554239 +2016-03-23 08:00:00-07:00,78,306.7498251,3.135031289,15.69804382,0.497964236,0.862073537,20.17330933,43.45706894,1.65103706,1.542636632,36.63863194,823.9652022,2.36789351 +2016-03-23 08:10:00-07:00,78,355.5582812,2.156890011,16.00631714,0.502520426,0.865605564,21.86073303,43.47648812,1.91294386,1.786342188,36.5441397,832.4852761,2.084210814 +2016-03-23 08:20:00-07:00,78,404.0066526,1.753857024,16.48440552,0.50586522,0.87899067,23.19570923,43.51948487,2.172265564,2.034341358,36.34598663,902.7653861,1.873275174 +2016-03-23 08:30:00-07:00,78,452.0018338,2.220096546,16.56387329,0.50839684,0.885359258,25.40673828,43.41051697,2.427276303,2.271936577,36.11560235,875.7459494,1.713284863 +2016-03-23 08:40:00-07:00,78,501.165507,1.944999271,16.73562622,0.510553707,0.885239293,27.00123596,43.35528014,2.680949501,2.5066541,35.94125163,788.7915705,1.594883425 +2016-03-23 08:50:00-07:00,78,546.7746989,2.632502387,16.91700745,0.5131323,0.898893035,27.77670288,43.38960913,2.916761564,2.726155017,35.85359226,845.8850696,1.504007286 +2016-03-23 09:00:00-07:00,78,591.3868886,4.226408028,17.42457581,0.515025523,0.895491146,27.82861328,43.52636044,3.14995479,2.949264766,35.76882896,674.5517322,1.355690858 +2016-03-23 09:10:00-07:00,78,637.0376787,5.129366498,17.58927917,0.516975775,0.898582773,28.91682434,43.47936033,3.374078838,3.157272635,35.6182822,663.3392451,1.359566779 +2016-03-23 09:20:00-07:00,78,678.9925297,4.353778266,17.87997077,0.518397204,0.90407798,30.05762437,43.45018134,3.584201971,3.361208372,35.44961025,155.9562049,1.242986272 +2016-03-23 09:30:00-07:00,78,722.7342233,4.556060457,17.79115295,0.519965464,0.913132391,31.52713013,43.36074477,3.819413708,3.568250622,35.27351178,715.3999921,1.214620688 +2016-03-23 09:40:00-07:00,78,761.758565,1.91619996,18.48971558,0.521103279,0.908514075,33.79263306,43.10955833,4.018899123,3.757043373,34.828154,530.3495294,1.230942905 +2016-03-23 09:50:00-07:00,78,795.0406738,4.71824253,18.88769531,0.523271297,0.907227068,34.284823,43.10053172,4.181736983,3.905778415,34.74374433,749.9754759,1.160094596 +2016-03-23 10:00:00-07:00,78,828.0140861,3.684184528,18.80822754,0.525108131,0.911166339,35.35061646,43.05429109,4.348355722,4.059135247,34.61391395,460.7073845,1.175194184 +2016-03-23 10:10:00-07:00,78,866.0877807,5.741685899,18.80630493,0.525238436,0.913605017,34.76676941,43.17451421,4.539684688,4.233957528,34.63835299,734.391971,1.115127501 +2016-03-23 10:20:00-07:00,78,896.278269,4.536393229,18.92103271,0.526072921,0.913480223,34.79240417,43.21588002,4.692893291,4.372251636,34.60824811,509.7383962,1.093673569 +2016-03-23 10:30:00-07:00,78,930.8513639,5.585552137,19.80992126,0.525573781,0.919628495,37.55844116,42.90382833,4.870571938,4.531356307,34.20373683,569.360075,1.080590696 +2016-03-23 10:40:00-07:00,78,952.5831545,4.593231613,18.94218445,0.526397848,0.913740335,36.79386902,43.09880871,4.987311613,4.634056282,34.33891159,510.8835716,1.068801521 +2016-03-23 10:50:00-07:00,78,987.2443314,3.904326553,19.86567688,0.525606446,0.9176834,36.81117249,43.14071332,5.159771315,4.801821897,34.22562128,427.6585471,1.050381749 +2016-03-23 11:00:00-07:00,78,1016.214976,5.736158453,19.98553467,0.525506608,0.925853705,37.23222351,43.14604817,5.303016871,4.942699347,34.15741403,563.5132392,1.03540107 +2016-03-23 11:10:00-07:00,78,1034.352767,4.609933952,20.42453003,0.526289641,0.924078798,39.16319275,42.87976143,5.410183097,5.021402535,33.83979676,365.2119268,1.036507535 +2016-03-23 11:20:00-07:00,78,1057.759938,4.3906334,20.02398682,0.526772071,0.908026447,38.37811401,43.03730627,5.525247301,5.133125786,33.94922832,519.8675267,1.022265191 +2016-03-23 11:30:00-07:00,78,1034.707957,3.643168244,20.57705688,0.528566201,0.868936463,40.65708923,42.65145689,5.423504525,5.035738724,33.58246436,1197.134621,1.032900186 +2016-03-23 11:40:00-07:00,78,1029.928544,3.736496405,20.72253418,0.52860781,0.838718492,43.0712738,42.34028633,5.344945336,4.994854654,33.30587075,576.4314714,1.041254301 +2016-03-23 11:50:00-07:00,78,1069.143863,4.611175731,20.49758911,0.528115921,0.850927676,40.56993103,42.80572055,5.502803889,5.163731007,33.69986078,4278.496193,1.017760495 +2016-03-23 12:00:00-07:00,78,1095.517759,2.257187306,20.86865234,0.529414629,0.897237373,43.87878418,42.37007713,5.699945425,5.278662744,33.16105592,993.9393615,0.99732164 +2016-03-23 12:10:00-07:00,78,1116.105284,4.509396446,20.67831421,0.529951855,0.920527948,39.90213013,42.88308434,5.872695497,5.4403415,33.61469028,410.8269623,0.977638431 +2016-03-23 12:20:00-07:00,78,1115.987694,4.728376321,21.1179657,0.530699573,0.929736442,41.06724548,42.76915185,5.84649431,5.419361215,33.49621053,538.2049248,0.985455723 +2016-03-23 12:30:00-07:00,78,1112.616894,3.960643513,20.76226807,0.53167819,0.924872469,43.60961914,42.38482256,5.838306574,5.403658247,33.1049037,414.89409,0.985894725 +2016-03-23 12:40:00-07:00,78,1118.140988,3.205167563,21.51274109,0.531438591,0.929783592,42.0920105,42.6416558,5.879471524,5.426997925,33.36419267,253.0831928,1.005299723 +2016-03-23 12:50:00-07:00,78,1113.594298,3.061771011,22.06968689,0.531471352,0.929936542,44.93431091,42.22199837,5.837950582,5.411526873,32.88476965,851.7433911,0.989294526 +2016-03-23 13:00:00-07:00,78,1106.624916,4.66601091,21.31791687,0.531949338,0.930599548,42.22979736,42.63705131,5.802654015,5.376447601,33.3758187,450.3242978,0.991176423 +2016-03-23 13:10:00-07:00,78,1098.462291,3.483068375,21.48005676,0.531524599,0.929873779,42.54576111,42.52128926,5.760543382,5.334066455,33.2865341,502.5198365,1.013904266 +2016-03-23 13:20:00-07:00,78,1087.266932,2.25530494,20.92633057,0.531643125,0.92873897,45.06761169,42.09887967,5.704283633,5.270663802,32.87461195,533.8822286,0.990380885 +2016-03-23 13:30:00-07:00,78,1077.967844,3.647494004,21.2922821,0.53088174,0.927443315,41.04289246,42.73936349,5.647601522,5.239291065,33.56688875,386.1097998,1.01452185 +2016-03-23 13:40:00-07:00,78,1061.975995,4.00009755,21.80433655,0.530385036,0.927759325,43.87365723,42.31089076,5.579063614,5.159774358,33.16603424,497.9653909,1.026334835 +2016-03-23 13:50:00-07:00,78,1045.452572,3.822774477,22.23887634,0.529628634,0.92708913,44.42288208,42.2459066,5.495496088,5.087429038,33.13379211,545.6525893,1.039702717 +2016-03-23 14:00:00-07:00,78,1027.944302,3.427632423,21.50889587,0.529175786,0.928125436,42.64573669,42.41829155,5.39811087,4.998318275,33.36841979,474.3954065,1.021341976 +2016-03-23 14:10:00-07:00,78,1006.898507,2.15368533,21.96904236,0.528986644,0.924279806,43.7102356,42.2378972,5.285192512,4.898786587,33.22861115,493.6368066,1.051669541 +2016-03-23 14:20:00-07:00,78,984.0989489,4.436376169,22.51957703,0.528085991,0.926109252,45.29255676,41.98292477,5.169668372,4.795766061,33.02048979,941.506799,1.067751208 +2016-03-23 14:30:00-07:00,78,957.4555627,3.085603695,22.62339783,0.527694505,0.921056374,43.99221802,42.14021153,5.030493323,4.667761352,33.2540677,592.1251444,1.050648349 +2016-03-23 14:40:00-07:00,78,928.1958841,2.025629897,22.5221405,0.526900528,0.920339979,43.89031982,42.10314541,4.876146004,4.527324578,33.30283455,594.3123017,1.089173835 +2016-03-23 14:50:00-07:00,78,897.1405857,3.390141078,22.62211609,0.526361993,0.917307958,41.15632629,42.45301538,4.725534842,4.390741223,33.72600081,517.2403908,1.103966234 +2016-03-23 15:00:00-07:00,78,865.389593,2.512497492,22.53175354,0.525155252,0.917266242,40.83909607,42.38291161,4.559551646,4.231540003,33.81932308,477.710506,1.099911837 +2016-03-23 15:10:00-07:00,78,830.6377026,4.393958012,23.45077515,0.524771742,0.912776824,40.21743774,42.37761336,4.384814878,4.072243397,33.90732427,533.2826455,1.118542261 +2016-03-23 15:20:00-07:00,78,797.4977138,2.653250741,21.9927655,0.523571174,0.910649461,38.91261292,42.46432532,4.212588257,3.920534669,34.0725276,620.2470382,1.207581419 +2016-03-23 15:30:00-07:00,78,759.7765956,1.277243569,22.43305969,0.522779645,0.908723975,38.59089661,42.43091648,4.025521663,3.744698689,34.13955245,589.8136015,1.235088464 +2016-03-23 15:40:00-07:00,78,717.6119135,2.618723307,22.33372498,0.521321765,0.90189927,38.22494507,42.41113336,3.79895329,3.542648793,34.22830802,767.0611053,1.232347443 +2016-03-23 15:50:00-07:00,78,678.7173071,2.088315776,23.30209351,0.520263484,0.899094329,38.16085815,42.32221882,3.602351187,3.347559888,34.33321283,686.4435839,1.270176895 +2016-03-23 16:00:00-07:00,78,633.4290767,2.558961245,23.11367798,0.518553969,0.891417468,36.68171692,42.43324547,3.363804547,3.130302612,34.55793694,711.391151,1.379552066 +2016-03-23 16:10:00-07:00,78,592.0164454,2.92622495,23.50909424,0.517688043,0.892221532,35.81332397,42.43413199,3.144407152,2.933888189,34.66736641,906.5092988,1.373402515 +2016-03-23 16:20:00-07:00,78,546.3190519,6.418854827,23.66162109,0.515171745,0.880062637,35.13847351,42.34693401,2.910804234,2.712663026,34.68447608,970.8435188,1.447264291 +2016-03-23 16:30:00-07:00,78,498.921601,3.404320464,23.87182617,0.512521539,0.885914183,34.55143738,42.28905079,2.658216992,2.481512305,34.74259535,804.7496867,1.53172041 +2016-03-23 16:40:00-07:00,78,453.3663458,5.39292776,23.19314575,0.5105552,0.876740661,32.92552185,42.31975538,2.415906514,2.250846331,35.00645986,1076.290402,1.74682616 +2016-03-23 16:50:00-07:00,78,403.3133691,3.294129591,23.39758301,0.508050663,0.86145841,31.79885864,42.27150326,2.148852503,2.001342303,35.08993956,797.7819785,1.776867577 +2016-03-23 17:00:00-07:00,78,355.6537792,4.337079953,23.56292725,0.504835361,0.858109051,30.44020081,42.20289814,1.897544023,1.768856161,35.12604901,866.4628781,2.115707504 +2016-03-23 17:10:00-07:00,78,289.0379896,2.689900612,23.76800537,0.504817934,0.83823755,29.63717651,41.91371111,1.536813182,1.430102594,35.0228965,711.9494182,2.307633953 +2016-03-23 17:20:00-07:00,78,258.5094994,2.954743956,23.52511597,0.495919918,0.834605066,28.34773254,41.86451766,1.371158406,1.272233747,35.16041816,659.7156014,2.796901879 +2016-03-23 17:30:00-07:00,78,210.9037819,4.550171751,23.4039917,0.489617026,0.804980373,26.51994324,41.71715716,1.108383233,1.026461437,35.14369911,846.3946337,3.394316365 +2016-03-23 17:40:00-07:00,78,161.9408673,2.253742553,23.48153687,0.486916311,0.781572233,25.34906006,41.35352358,0.847357514,0.781323821,34.91911736,1309.802713,4.384522232 +2016-03-23 17:50:00-07:00,78,117.9682543,1.992985108,23.26556396,0.48130764,0.753572837,23.66226196,40.9224957,0.600336932,0.550832069,34.66719775,2043.577865,6.779076951 +2016-03-23 18:00:00-07:00,78,78.31435574,4.127032044,22.78553772,0.484468382,0.67292116,22.32090759,40.23212034,0.393243987,0.352428996,34.1014121,2218.530365,9.377480556 +2016-03-23 18:10:00-07:00,78,34.851115,6.285792324,22.34910583,0.5635917,0.41772141,21.09873962,38.508699,0.165030447,0.144077305,31.98099294,3255.322846,23.60125297 +2016-03-23 18:20:00-07:00,78,21.06151898,1.9553329,22.2625885,0.585977962,0.218500583,20.1842041,37.5099901,0.103160228,0.087287225,30.77030415,2460.321107,44.96304629 +2016-03-23 18:30:00-07:00,78,14.39099748,2.63206129,22.16645813,0.498016361,0.246328491,19.39848328,36.42583301,0.064691845,0.05341154,29.43899001,3295.284276,76.65279429 +2016-03-23 18:40:00-07:00,78,7.38960488,3.120771856,21.81651306,0.54312342,-0.1,18.81976318,34.45170772,0.033967462,0.027006808,26.53465152,7256.529944,166.760552 +2016-03-23 18:50:00-07:00,78,2.000196777,1.523100785,21.5851593,0.485308847,1.1,18.42819214,28.30634888,0.010190445,0.007392438,20.59537,25969.80832,893.1703434 +2016-04-18 05:50:00-07:00,78,3.349959488,1.483446141,16.52990723,0.528856668,0.216160412,12.19821167,32.97184492,0.017462518,0.01329588,24.39824,30836.39197,436.6733343 +2016-04-18 06:00:00-07:00,78,8.754199744,1.263705189,16.10437012,0.590191231,-0.087133407,11.83291626,36.67485608,0.044023389,0.03504536,29.51353998,7964.34157,103.748579 +2016-04-18 06:10:00-07:00,78,15.15284752,1.360077169,16.51196289,0.584405601,0.424961658,12.09246826,38.21443843,0.076158987,0.064304462,30.99053752,4818.453329,57.77666904 +2016-04-18 06:20:00-07:00,78,21.40448952,1.388756409,16.74523926,0.603121618,0.576930481,12.67565918,38.99775936,0.109207344,0.094138891,32.16889505,4438.401165,38.45315654 +2016-04-18 06:30:00-07:00,78,27.44809493,1.683921148,16.87213989,0.636191243,0.663142003,13.38768005,39.54898114,0.14605315,0.125319905,33.0381152,2491.660799,28.15895197 +2016-04-18 06:40:00-07:00,78,41.83786867,0.840484458,17.30665588,0.602643095,0.703686178,14.08752441,40.33171823,0.219702696,0.189663121,34.28970747,2548.271762,18.18075625 +2016-04-18 06:50:00-07:00,78,59.41467824,1.342252842,17.98214722,0.573683409,0.701791745,14.9155426,40.94062097,0.310187246,0.278111853,34.67365431,2366.402292,12.4764568 +2016-04-18 07:00:00-07:00,78,87.0771217,2.053948436,18.22439575,0.546157805,0.761232622,16.19793701,41.61381751,0.452053616,0.405013516,36.15584665,623.7092554,7.171297076 +2016-04-18 07:10:00-07:00,78,123.1372044,1.670543142,18.68774414,0.535192567,0.794608353,18.05200195,42.04344094,0.678057576,0.625613009,35.66020787,2180.033445,5.555456167 +2016-04-18 07:20:00-07:00,78,161.1741038,1.013080976,19.40104675,0.529766912,0.819185863,19.93874084,42.30048891,0.890452805,0.825633164,35.82176392,2047.132801,3.758812524 +2016-04-18 07:30:00-07:00,78,203.7456948,1.177346231,19.5785675,0.527028343,0.827162144,22.08634949,42.42605448,1.121477215,1.044228237,35.84667981,1701.384176,3.373838539 +2016-04-18 07:40:00-07:00,78,246.7826584,3.473775708,19.6388092,0.526578216,0.847181514,23.73724365,42.54013543,1.361984576,1.268473434,35.8484447,1247.151578,2.558572711 +2016-04-18 07:50:00-07:00,78,292.7201267,1.964265704,19.74583435,0.527073992,0.852334915,25.29779053,42.61239187,1.602883586,1.493489032,35.81949628,1158.522394,2.4235424 +2016-04-18 08:00:00-07:00,78,339.9828737,2.491228273,20.44631958,0.528373417,0.869840757,27.12877808,42.64036415,1.853825154,1.733088351,35.60750304,1010.034236,2.142053028 +2016-04-18 08:10:00-07:00,78,385.3323558,2.428222345,21.34996033,0.528666996,0.864513848,29.60192871,42.52331892,2.100253641,1.962339364,35.37233142,1001.778943,1.93249366 +2016-04-18 08:20:00-07:00,78,432.1467797,4.659682293,21.67808533,0.529493414,0.878289057,30.85612488,42.56645525,2.345126577,2.190319917,35.28959972,994.7475741,1.773767776 +2016-04-18 08:30:00-07:00,78,476.4524813,2.885248759,21.99020691,0.530242122,0.878275729,31.84371948,42.59884302,2.581680771,2.408958577,35.22181597,842.4170157,1.642564113 +2016-04-18 08:40:00-07:00,78,521.3807099,3.878811202,22.28053284,0.530547443,0.882624609,33.5010376,42.51652229,2.816157709,2.631667825,34.91823146,806.4090373,1.551253555 +2016-04-18 08:50:00-07:00,78,564.9296496,3.049754505,22.53752136,0.531544841,0.889040864,34.29251343,42.55083409,3.043091582,2.843375017,34.83251152,902.9249727,1.46838484 +2016-04-18 09:00:00-07:00,78,607.8931793,2.99415811,22.74388123,0.53201033,0.894313196,36.44459534,42.42705429,3.264012517,3.044104785,34.60307693,763.011027,1.341233349 +2016-04-18 09:10:00-07:00,78,647.774722,3.579200422,23.38604736,0.532257134,0.901322571,38.51976013,42.23305611,3.469197235,3.229834832,34.30090895,689.0394162,1.356729585 +2016-04-18 09:20:00-07:00,78,687.9063502,4.278399297,23.39630127,0.533520425,0.908243657,40.08862305,42.13155916,3.675833943,3.426989406,33.99546991,559.9209415,1.31411278 +2016-04-18 09:30:00-07:00,78,726.4307509,2.737205909,22.92076111,0.533890261,0.904228531,41.09864807,42.01899189,3.86750398,3.599230696,33.80364731,564.2668056,1.224332412 +2016-04-18 09:40:00-07:00,78,761.2196297,1.730985884,23.4559021,0.53448319,0.907183114,42.98539734,41.86887092,4.049545927,3.765000792,33.56335288,505.7048771,1.199177643 +2016-04-18 09:50:00-07:00,78,795.6457281,2.758314195,24.07371521,0.534911524,0.908304045,45.13298035,41.63899268,4.226304751,3.922016716,33.24092482,595.3199009,1.179655548 +2016-04-18 10:00:00-07:00,78,830.7895665,1.503754025,25.4727478,0.534871871,0.910624443,47.92849731,41.31748807,4.410346328,4.088815611,32.73078663,602.4426244,1.166852349 +2016-04-18 10:10:00-07:00,78,857.8494216,1.8132185,23.97052002,0.535310184,0.913261164,46.53713989,41.50468077,4.544678507,4.217896343,32.84798292,493.7504361,1.176694528 +2016-04-18 10:20:00-07:00,78,893.3656003,1.283451975,24.50309753,0.535043643,0.916123034,47.14790344,41.49522918,4.704658473,4.362797043,32.76774446,635.9128065,1.120918565 +2016-04-18 10:30:00-07:00,78,920.9472583,1.361198598,24.42811584,0.535319761,0.915255466,49.03977966,41.30523756,4.847864487,4.486550421,32.49817717,468.4744146,1.112470731 +2016-04-18 10:40:00-07:00,78,942.6052653,1.830562265,25.30163574,0.536008898,0.917384071,51.862854,41.01888008,4.965006176,4.58089493,32.15591145,397.8212683,1.106118025 +2016-04-18 10:50:00-07:00,78,966.3089594,1.326030646,24.73765564,0.535581786,0.919526286,50.09402466,41.18101323,5.078886326,4.689718107,32.25781541,443.3707894,1.071982459 +2016-04-18 11:00:00-07:00,78,989.9733555,0.673735715,26.02133179,0.536066218,0.920172342,52.98054504,40.82855784,5.198998088,4.789704033,31.83498247,406.9849605,1.084265501 +2016-04-18 11:10:00-07:00,78,1006.055826,2.060357309,26.50071716,0.536477017,0.91970782,57.01937866,40.32467916,5.278782209,4.862212584,31.22631543,492.4357914,1.086737954 +2016-04-18 11:20:00-07:00,78,1023.507675,2.73187865,25.77331543,0.536488298,0.922814936,54.42572021,40.6882719,5.371146798,4.951045677,31.54976405,407.870599,1.074024123 +2016-04-18 11:30:00-07:00,78,1037.43941,0.813927935,26.23283386,0.536588573,0.921175489,54.07965088,40.78721638,5.433415954,5.008685775,31.6204049,489.6391792,1.066249881 +2016-04-18 11:40:00-07:00,78,1049.325503,1.418597102,25.90020752,0.536610271,0.922717648,56.48614502,40.53011842,5.497688553,5.058755254,31.32672209,422.7596601,1.06962726 +2016-04-18 11:50:00-07:00,78,1056.579144,2.84042737,25.77651978,0.5379794,0.923681101,55.1749115,40.74764138,5.53254451,5.096621937,31.5248882,476.945948,1.042807776 +2016-04-18 12:00:00-07:00,78,1065.055314,2.842630413,26.34883118,0.537476917,0.925262546,56.55151367,40.66080253,5.575508894,5.131519956,31.41746447,492.2818006,1.04298513 +2016-04-18 12:10:00-07:00,78,1069.303042,1.711919708,25.9899292,0.538156773,0.923814253,54.86152649,40.85026198,5.59137724,5.151237653,31.60131267,447.9533873,1.035957568 +2016-04-18 12:20:00-07:00,78,1071.63273,2.139986716,27.06340027,0.53825614,0.926352188,56.16506958,40.6423508,5.608181667,5.155272834,31.39276648,353.2109219,1.023579258 +2016-04-18 12:30:00-07:00,78,1074.099689,3.49144008,27.37423706,0.538127335,0.927151552,54.82371521,40.83722882,5.620110889,5.170070801,31.58090699,378.1148624,1.053269363 +2016-04-18 12:40:00-07:00,78,1069.469665,4.41282379,26.49623108,0.538152934,0.924853721,51.50267029,41.24019151,5.591968395,5.163420944,31.99525269,489.0875165,1.032258844 +2016-04-18 12:50:00-07:00,78,1068.653887,0.527775767,26.77885437,0.537804154,0.926618338,53.24330139,40.99944746,5.595059862,5.155610179,31.75030306,420.9332166,1.029491146 +2016-04-18 13:00:00-07:00,78,1060.829568,3.189426139,26.35395813,0.537733751,0.925270677,51.8878479,41.23266911,5.551257927,5.122195926,32.00876456,465.6782746,1.04764414 +2016-04-18 13:10:00-07:00,78,1055.609045,1.452804417,26.69810486,0.536996433,0.925380912,53.59129333,40.89869214,5.526652733,5.09175444,31.68339043,533.6157002,1.05503587 +2016-04-18 13:20:00-07:00,78,1040.499093,2.892418639,27.50561523,0.536974172,0.921770984,55.18772888,40.62713945,5.454937971,5.020244786,31.4377266,318.737561,1.073693053 +2016-04-18 13:30:00-07:00,78,1030.489571,2.350755678,27.24221802,0.536561204,0.920941427,53.054245,41.05664159,5.390699665,4.974389666,31.91284342,545.7379929,1.051775279 +2016-04-18 13:40:00-07:00,78,1014.282141,5.092355367,27.20952759,0.536569106,0.920019968,50.82783508,41.26180434,5.309004886,4.896518185,32.21239569,529.0100564,1.074741362 +2016-04-18 13:50:00-07:00,78,996.6587276,3.557010312,27.77029419,0.536594549,0.92109355,50.64260864,41.27357126,5.215700023,4.814261154,32.28437346,503.4863228,1.075752763 +2016-04-18 14:00:00-07:00,78,976.4997341,1.64923334,28.62138367,0.536112151,0.919750579,54.80833191,40.58853173,5.124872944,4.711680337,31.6355317,401.7655157,1.100912428 +2016-04-18 14:10:00-07:00,78,954.8417178,3.351007788,28.1272583,0.535632698,0.917444649,52.68444824,40.84796995,5.010638928,4.618594017,31.95095505,429.4704829,1.068974099 +2016-04-18 14:20:00-07:00,78,927.1278035,2.62581286,27.78503418,0.53468693,0.916855523,50.62338257,41.1519775,4.862555339,4.49408354,32.3352313,521.301744,1.114810174 +2016-04-18 14:30:00-07:00,78,906.9665741,3.865753524,28.12405396,0.534558627,0.913471083,50.43945313,41.11016077,4.758016022,4.394106373,32.35059592,444.6835606,1.108312089 +2016-04-18 14:40:00-07:00,78,876.5555634,3.612646451,27.74594116,0.534451259,0.911959577,47.74969482,41.34343855,4.605785712,4.263105562,32.6624336,793.0624509,1.139217615 +2016-04-18 14:50:00-07:00,78,849.3291503,1.505716648,28.06829834,0.533601427,0.913083928,49.73577881,41.09183505,4.458644138,4.12819714,32.48163115,622.6078611,1.161130205 +2016-04-18 15:00:00-07:00,78,818.1048003,2.1766771,27.87988281,0.533434832,0.909135354,49.85562134,41.00058826,4.301592023,3.983255487,32.46593111,601.7630901,1.222136732 +2016-04-18 15:10:00-07:00,78,788.8378344,2.676001601,28.95848083,0.532760336,0.908615099,49.47813416,40.94305095,4.140198483,3.828381822,32.57433845,759.470397,1.249008211 +2016-04-18 15:20:00-07:00,78,753.9682988,4.272391149,28.55793762,0.532164296,0.90526133,44.97789001,41.46043105,3.959452823,3.671862004,33.18501929,625.7024515,1.271670101 +2016-04-18 15:30:00-07:00,78,712.5237122,3.273461005,28.49513245,0.531487883,0.898928308,44.24920654,41.44894104,3.757371669,3.487924378,33.27792484,843.1828055,1.26013412 +2016-04-18 15:40:00-07:00,78,667.0738371,2.020583292,29.46286011,0.530444454,0.891507036,44.26074219,41.36745166,3.529499311,3.274422582,33.30367677,609.4823241,1.357751411 +2016-04-18 15:50:00-07:00,78,629.0343061,2.205997417,28.96360779,0.530115925,0.888548406,43.88967896,41.3370658,3.330754012,3.096697848,33.37578856,601.4214064,1.352969187 +2016-04-18 16:00:00-07:00,78,587.175643,3.315919326,28.44258118,0.529440172,0.880136213,41.52932739,41.57131638,3.105954956,2.886265778,33.817012,879.5461872,1.472527415 +2016-04-18 16:10:00-07:00,78,544.6018529,1.71228006,28.8886261,0.528037008,0.874916679,40.70515442,41.47452775,2.885395301,2.681301743,33.82836292,866.9183194,1.541562773 +2016-04-18 16:20:00-07:00,78,502.6059556,2.190055456,28.81108093,0.527339974,0.870109053,41.02366638,41.31974134,2.666568449,2.479788068,33.7765832,877.4059936,1.631073968 +2016-04-18 16:30:00-07:00,78,458.8879367,2.301287781,29.26803589,0.526632579,0.873549639,40.00915527,41.2888451,2.436355507,2.264734092,33.87980574,956.792055,1.736755096 +2016-04-18 16:40:00-07:00,78,413.3963531,1.933062952,28.90272522,0.525651152,0.857799355,38.37490845,41.28152063,2.192017275,2.034641616,34.0886183,1090.577477,1.883558352 +2016-04-18 16:50:00-07:00,78,367.6450503,2.025309289,28.7348175,0.524691619,0.859546768,37.57061768,41.16443541,1.950426181,1.808594691,34.07952263,919.4161591,2.074176515 +2016-04-18 17:00:00-07:00,78,322.4721739,3.762852461,29.41607666,0.524297996,0.847938399,36.76951599,41.05769205,1.707971141,1.583004383,34.09351025,711.6416162,2.151417017 +2016-04-18 17:10:00-07:00,78,275.520525,2.445205268,28.61433411,0.524139626,0.839146579,34.65718079,41.06983189,1.456290062,1.349403976,34.22599539,665.5629595,2.650509658 +2016-04-18 17:20:00-07:00,78,230.2371619,1.289701033,29.2718811,0.523866062,0.831356131,34.09384155,40.80806274,1.213806911,1.119401077,34.19049277,662.749279,2.847528343 +2016-04-18 17:30:00-07:00,78,187.4720905,3.862188701,29.14498108,0.525104374,0.814611677,32.76850891,40.55422559,0.983069038,0.904010608,34.05630057,851.3021205,3.805337821 +2016-04-18 17:40:00-07:00,78,147.1640406,0.643093851,29.18984436,0.52853962,0.795802636,31.19706726,40.25442313,0.75657037,0.5671825,36.30924002,1019.974032,4.391788109 +2016-04-18 17:50:00-07:00,78,109.4578466,1.009075614,29.17061951,0.534919702,0.785879952,29.79675293,39.77010384,0.521045771,0.4091192,35.84603998,178.4801445,6.731107442 +2016-04-18 18:00:00-07:00,78,78.26044657,2.547265347,29.00462341,0.544647979,0.737591553,28.48936462,39.12187062,0.330904859,0.2513146,35.75034997,362.0266371,11.91296732 +2016-04-18 18:10:00-07:00,78,51.58766287,0.958606568,28.98283386,0.57140403,0.730104101,27.10185242,38.3777771,0.206854648,0.179150353,33.49612403,1120.182806,18.80755866 +2016-04-18 18:20:00-07:00,78,35.44392265,2.0542293,29.13407898,0.603566474,0.656724217,26.13221741,37.70249047,0.163425556,0.143174599,31.31230404,2062.156121,26.51270816 +2016-04-18 18:30:00-07:00,78,26.17920058,1.741600377,28.6643219,0.599376531,0.642565644,24.95426941,37.26076411,0.126935438,0.109586469,30.64133971,3188.892079,35.49038681 +2016-04-18 18:40:00-07:00,78,19.66762786,1.480642604,28.34388733,0.573404254,0.504007158,24.60307312,36.62107891,0.09659526,0.082060186,29.84923139,4235.294385,48.13172611 +2016-04-18 18:50:00-07:00,78,11.78207517,1.182993888,28.24839783,0.555100024,0.059590689,23.99615479,35.50746689,0.061645981,0.05149556,28.04816999,4999.240138,71.44789704 +2016-04-18 19:00:00-07:00,78,5.704112894,1.585145728,27.76773071,0.531150554,0.000789363,23.27581787,33.16126959,0.029240153,0.02272064,25.49861003,8895.688158,218.9625716 +2016-04-18 19:10:00-07:00,78,1.262830837,1.457410483,27.34539795,0.477447649,0.915569079,22.8400116,27.11512498,0.008567831,0.006753765,17.44098006,-99.00000038,1165.006272 +2016-05-12 05:20:00-07:00,78,1.287324132,1.626602481,20.34378052,0.429934297,0.359136395,17.52391052,27.65495699,0.009232154,0.006909118,20.08666009,-99.0000004,863.4870762 +2016-05-12 05:30:00-07:00,78,4.271043539,1.35166565,20.71868896,0.557782632,0.201080606,17.52326965,33.30804567,0.023273703,0.01821538,24.83323999,18054.0098,285.075547 +2016-05-12 05:40:00-07:00,78,11.40234629,0.541715082,20.72702026,0.577135628,-0.031802226,17.14002991,36.4280473,0.055482323,0.045492665,29.16824088,6203.474845,84.0362474 +2016-05-12 05:50:00-07:00,78,21.4779878,1.180350864,21.17756653,0.561643143,0.37374564,16.81445313,38.36685842,0.113110353,0.097458782,31.54970206,4341.204317,36.71059562 +2016-05-12 06:00:00-07:00,78,34.23868142,0.532662766,22.06071472,0.564090645,0.500182408,17.19578552,39.3903195,0.182308154,0.160404106,32.89871259,3800.13963,21.69809695 +2016-05-12 06:10:00-07:00,78,43.24402484,1.042121267,22.83744812,0.565682986,0.474631418,18.04046631,39.75933239,0.225523486,0.20081951,33.33315915,3095.040313,15.0923138 +2016-05-12 06:20:00-07:00,78,48.28795052,1.069598752,23.02138672,0.579894602,0.607545859,19.09407043,39.70887146,0.24326108,0.217299346,33.35901685,2995.898739,15.73878852 +2016-05-12 06:30:00-07:00,78,57.70724166,1.799159185,22.93293762,0.587944348,0.585644481,20.18484497,39.96398361,0.297474216,0.267900286,33.66719659,3222.107518,12.81718586 +2016-05-12 06:40:00-07:00,78,79.47549616,1.863928526,23.95257568,0.567937487,0.582575501,21.59861755,40.39359457,0.378466893,0.345541011,34.7302784,1129.284471,8.28635181 +2016-05-12 06:50:00-07:00,78,102.4467376,1.632210463,24.52809143,0.549648854,0.602102376,23.14764404,40.74697034,0.516386607,0.4302299,36.12362997,415.2243904,6.972885533 +2016-05-12 07:00:00-07:00,78,130.8610848,1.219044034,24.0397406,0.540526663,0.672996221,23.95898438,41.21029335,0.715785873,0.65678848,34.80283896,1313.709583,4.238080245 +2016-05-12 07:10:00-07:00,78,162.3426143,1.500069271,24.75816345,0.534550502,0.718771845,25.48812866,41.42944367,0.888990982,0.822302821,34.96971017,1226.916477,3.764734161 +2016-05-12 07:20:00-07:00,78,166.4608186,2.120600352,24.91453552,0.547714611,0.707978227,26.98329163,41.25051482,0.904727538,0.836268113,34.77028301,1426.305859,3.710179085 +2016-05-12 07:30:00-07:00,78,242.4440513,0.909459069,26.23667908,0.528684582,0.751258456,29.33532715,41.66615053,1.326175059,1.235179744,35.00742713,1224.794327,2.601282755 +2016-05-12 07:40:00-07:00,78,257.2135447,1.146944789,26.22962952,0.53681929,0.695992503,30.05438232,41.65587054,1.399517397,1.295886051,34.95500365,924.6011599,2.756846995 +2016-05-12 07:50:00-07:00,78,297.0242574,1.607256071,26.7346344,0.532950711,0.726874387,31.9680481,41.67068072,1.612949031,1.496506255,34.84626027,855.4061299,2.504136848 +2016-05-12 08:00:00-07:00,78,379.8080137,1.125355102,27.43511963,0.529742609,0.782268605,35.23780823,41.68790224,2.053635519,1.917532984,34.56932883,822.0503888,1.959080507 +2016-05-12 08:10:00-07:00,78,419.4228169,1.091068508,27.99267578,0.529988891,0.783109393,37.40463257,41.58710843,2.271676255,2.112922543,34.34984928,652.2392768,1.720576234 +2016-05-12 08:20:00-07:00,78,449.6280636,1.290021152,27.85488892,0.530383684,0.770182342,38.9356842,41.5588713,2.433691113,2.257389448,34.22977352,506.6888157,1.770052946 +2016-05-12 08:30:00-07:00,78,516.6184479,1.736113024,28.46308899,0.529492276,0.802773574,41.04353333,41.50986389,2.787029575,2.593099904,33.91853834,487.1365898,1.498298469 +2016-05-12 08:40:00-07:00,78,524.51875,1.824714351,29.89801025,0.533154537,0.793136646,44.01464844,41.08822837,2.807425242,2.613261556,33.47261438,539.3690687,1.505575209 +2016-05-12 08:50:00-07:00,78,537.6738574,1.164328577,29.75894165,0.53315183,0.727280554,45.38996887,40.91761942,2.877656429,2.662882555,33.27286572,397.7377887,1.5618013 +2016-05-12 09:00:00-07:00,78,640.0777456,2.798289726,30.03259277,0.529072306,0.763432399,44.59913635,41.3954852,3.412590766,3.176995573,33.39464898,399.6456749,1.329055161 +2016-05-12 09:10:00-07:00,78,691.201232,2.308097449,30.98814392,0.531191219,0.80492799,46.07122803,41.30626635,3.691770819,3.423247892,33.17162199,366.1335803,1.232620889 +2016-05-12 09:20:00-07:00,78,747.638328,3.262165692,31.48547363,0.53149757,0.81025975,50.00302124,40.88889526,3.985879871,3.687448239,32.59531603,342.1662988,1.279245782 +2016-05-12 09:30:00-07:00,78,745.2718083,0.977792814,31.10670471,0.531603261,0.757096931,51.61802673,40.75554001,3.987442298,3.672658729,32.45383686,288.4960064,1.276517804 +2016-05-12 09:40:00-07:00,78,812.8722891,3.148930301,30.91123962,0.531496204,0.773832518,50.51635742,41.10254007,4.330354165,4.004525491,32.56239984,277.0910154,1.14976199 +2016-05-12 09:50:00-07:00,78,581.3306522,1.432576231,30.75358582,0.539367749,0.644369246,48.5123291,40.63527526,3.169517945,2.870109886,32.80925585,267.4672211,1.45711069 +2016-05-12 10:00:00-07:00,78,670.8366126,2.12432527,31.29833984,0.53782762,0.678361496,51.27836609,40.59369597,3.524639088,3.284639008,32.52082316,525.3713111,1.331084696 +2016-05-12 10:10:00-07:00,78,782.5297437,3.074788805,30.83818054,0.536789154,0.758327394,49.9934082,40.97420696,4.193682657,3.853403148,32.56287211,283.5726772,1.218326067 +2016-05-12 10:20:00-07:00,78,896.109291,1.849147808,31.48867798,0.534742082,0.818453249,54.284729,40.60308745,4.765061809,4.377943796,31.8329383,283.0459799,1.145704799 +2016-05-12 10:30:00-07:00,78,838.4229818,0.9739875,31.70977783,0.537321298,0.809977164,56.14968872,40.24522754,4.439078019,4.104859004,31.62991449,462.4705023,1.181428853 +2016-05-12 10:40:00-07:00,78,945.28522,1.256895731,31.59121704,0.536390559,0.87151125,58.17614746,40.14119798,4.991833765,4.595460113,31.18541323,307.0282216,1.142776946 +2016-05-12 10:50:00-07:00,78,964.4373202,3.306386308,32.48396301,0.536640466,0.877075181,58.66705322,40.09364634,5.086080809,4.682981806,31.08374552,428.88493,1.11078551 +2016-05-12 11:00:00-07:00,78,989.1722537,4.043597323,32.20388794,0.536628204,0.87090805,60.30065918,40.07373724,5.215730271,4.796299791,31.00351186,410.1281975,1.096371434 +2016-05-12 11:10:00-07:00,78,980.5663294,1.731546563,32.54804993,0.536979343,0.849694285,60.55059814,40.03373116,5.192209357,4.757624074,30.98248518,284.3018094,1.108917881 +2016-05-12 11:20:00-07:00,78,744.4511173,1.995227826,32.64994812,0.542578526,0.714825626,59.68029785,39.60224745,4.024315919,3.659201531,31.21045058,261.6007867,1.295779577 +2016-05-12 11:30:00-07:00,78,906.116458,2.466754792,32.87617493,0.53821824,0.807788854,54.1725769,40.6315713,4.741469731,4.374106376,31.86369655,386.4983959,1.096160552 +2016-05-12 11:40:00-07:00,78,1015.119955,1.928055743,33.74713135,0.537569538,0.880856905,59.6232605,40.08806817,5.325100399,4.896171257,30.97139462,410.9996715,1.082710568 +2016-05-12 11:50:00-07:00,78,1016.802889,1.646990413,34.25790894,0.538336276,0.90235091,62.87890625,39.70072558,5.344723631,4.899854999,30.5694916,337.9783191,1.089100818 +2016-05-12 12:00:00-07:00,78,1028.453858,2.090959009,34.23675537,0.538250579,0.911575195,62.64819336,39.6877268,5.39444249,4.946421775,30.52395666,430.1975153,1.091135167 +2016-05-12 12:10:00-07:00,78,1028.649777,1.782616801,34.44697571,0.53839352,0.909352462,63.88381958,39.46379263,5.394333988,4.943621982,30.28329266,438.4019192,1.094450455 +2016-05-12 12:20:00-07:00,78,1031.562537,3.625223846,34.74049377,0.53860163,0.911977948,64.02609253,39.55271308,5.4109227,4.956596067,30.38155106,381.4173868,1.073417022 +2016-05-12 12:30:00-07:00,78,1026.9276,2.352198064,34.67448425,0.538898238,0.910190868,62.36621094,39.74247911,5.385711053,4.93863289,30.58607325,443.6648047,1.086029771 +2016-05-12 12:40:00-07:00,78,1026.300417,1.873340774,35.74346924,0.53881345,0.909436545,62.92504883,39.62269569,5.383491267,4.931815313,30.46558377,378.309285,1.071743471 +2016-05-12 12:50:00-07:00,78,1018.58871,1.495062271,35.28266907,0.539035633,0.909252484,62.56359863,39.60535338,5.339879543,4.899662832,30.46214383,512.3818176,1.092805214 +2016-05-12 13:00:00-07:00,78,1015.154257,1.768998094,35.93252563,0.538443331,0.91157333,64.38049316,39.35428814,5.323005893,4.87486177,30.21831709,431.0924254,1.101195209 +2016-05-12 13:10:00-07:00,78,1005.737339,2.762440047,36.39076233,0.538509608,0.911321383,64.61761475,39.23396244,5.273426648,4.824994872,30.13059381,588.8228355,1.072407039 +2016-05-12 13:20:00-07:00,78,996.1050614,1.716686427,36.12863159,0.538393784,0.909836107,63.15960693,39.46004911,5.224348577,4.791054569,30.38342543,520.8382594,1.109544479 +2016-05-12 13:30:00-07:00,78,984.5007236,4.340244262,36.50291443,0.537911941,0.913169169,65.10467529,39.12093994,5.162076789,4.726399687,30.07577476,478.3095817,1.132444438 +2016-05-12 13:40:00-07:00,78,967.6930697,0.782324667,37.35463501,0.537960741,0.912378466,66.06921387,39.03372057,5.077794455,4.649900736,30.0292467,490.1610851,1.113701779 +2016-05-12 13:50:00-07:00,78,952.3552804,1.47683722,37.23735046,0.537699187,0.911857164,66.01281738,38.98291992,4.999132963,4.578072421,30.02836928,544.845999,1.118745491 +2016-05-12 14:00:00-07:00,78,938.3868612,2.300727032,36.64582825,0.536977443,0.90910338,62.54501343,39.4092043,4.920972728,4.522086233,30.48600127,527.673024,1.110126591 +2016-05-12 14:10:00-07:00,78,914.3695297,2.638430209,36.93678284,0.536790663,0.906564984,61.09921265,39.58148476,4.801101118,4.415273868,30.72291372,541.3318672,1.122743702 +2016-05-12 14:20:00-07:00,78,891.9790701,1.130161565,37.61932373,0.536674102,0.906627329,61.93875122,39.41137863,4.687087288,4.301265586,30.67014373,445.3639345,1.193088286 +2016-05-12 14:30:00-07:00,78,862.9447997,1.096635908,37.0643158,0.536475284,0.902294958,61.44207764,39.48105321,4.537348705,4.170032462,30.81767815,495.8426251,1.213893907 +2016-05-12 14:40:00-07:00,78,837.6267197,1.065353109,36.92076111,0.536350814,0.902269542,59.84628296,39.52428589,4.405318529,4.053019301,30.92561225,662.9441373,1.229864551 +2016-05-12 14:50:00-07:00,78,808.0095696,2.453096341,37.25785828,0.536032897,0.898004425,60.44229126,39.56318503,4.25692961,3.920418475,31.03792187,735.9828286,1.25143784 +2016-05-12 15:00:00-07:00,78,776.6235749,1.944438312,36.63877869,0.535665586,0.895366556,58.1857605,39.75557672,4.093350449,3.777330654,31.3206094,633.5466388,1.275281342 +2016-05-12 15:10:00-07:00,78,744.1326309,1.604091693,37.40783691,0.535228775,0.898307241,59.59762573,39.44706929,3.932127862,3.621373711,31.10425151,692.2459879,1.306946308 +2016-05-12 15:20:00-07:00,78,712.4501863,0.780041507,38.90812683,0.534892638,0.893843169,59.55148315,39.32703288,3.765412736,3.470944237,31.05387506,656.9006124,1.344735179 +2016-05-12 15:30:00-07:00,78,678.8103945,1.741840448,37.99230957,0.534389831,0.89280807,56.8187561,39.59369559,3.582661145,3.302059792,31.50573612,656.0913882,1.376685355 +2016-05-12 15:40:00-07:00,78,639.8425934,1.331277299,37.4238562,0.534668526,0.891812099,54.47442627,39.76069375,3.380873454,3.121974855,31.77236995,614.8930611,1.368695448 +2016-05-12 15:50:00-07:00,78,599.8799615,3.083881284,36.90666199,0.533851665,0.886304323,52.92286682,40.0329147,3.179811804,2.943646356,32.13944141,875.7340451,1.473419917 +2016-05-12 16:00:00-07:00,78,558.736821,1.695136484,38.58256531,0.533522145,0.881281879,54.68399048,39.58716053,2.96649248,2.742995638,31.81063964,990.7694119,1.479460018 +2016-05-12 16:10:00-07:00,78,517.9094617,1.457570856,37.99807739,0.533270614,0.876190998,52.87672424,39.64284369,2.752193622,2.54246602,32.0604718,982.0371768,1.545482314 +2016-05-12 16:20:00-07:00,78,475.8744137,1.002466623,37.38155396,0.532905203,0.867469857,51.6436615,39.73463356,2.529381569,2.339729329,32.27360304,886.1498065,1.714753611 +2016-05-12 16:30:00-07:00,78,433.5871824,0.472139628,38.28070068,0.533084171,0.86611529,50.57595825,39.63181353,2.305996926,2.132327425,32.28449068,991.6861892,1.829952731 +2016-05-12 16:40:00-07:00,78,390.0847634,2.295119399,39.19523621,0.532772268,0.858589823,49.86843872,39.49410746,2.078942832,1.922343197,32.26005245,1047.82284,1.98631093 +2016-05-12 16:50:00-07:00,78,346.9155066,1.984173073,38.80302429,0.532986929,0.849617921,48.1925354,39.5482994,1.850961699,1.712430343,32.43455328,1047.184112,2.1762052 +2016-05-12 17:00:00-07:00,78,304.4541906,0.89956563,37.96218872,0.533214601,0.853995315,46.01034546,39.61584284,1.619930531,1.496337107,32.71113167,902.4551191,2.412828353 +2016-05-12 17:10:00-07:00,78,260.8269957,2.846876266,37.38347717,0.53422726,0.841676356,43.56411743,39.58883915,1.385896689,1.27817385,32.79942277,717.0273502,2.553057372 +2016-05-12 17:20:00-07:00,78,217.4788606,1.529669752,38.29544067,0.536483948,0.830059018,42.31311035,39.3631612,1.156231103,0.8467322,35.66252999,683.1146536,3.26855583 +2016-05-12 17:30:00-07:00,78,177.7783953,1.161444504,37.69494629,0.538776394,0.821800771,41.1146698,38.60978926,0.396078321,0.274928099,35.81912001,92.78648858,7.770309505 +2016-05-12 17:40:00-07:00,78,140.5620948,1.388996132,37.74108887,0.545927141,0.807525389,38.82289124,37.96790378,0.274685713,0.2520392,33.65856002,1916.485985,12.18012399 +2016-05-12 17:50:00-07:00,78,106.5892604,1.201019101,38.03588867,0.556414867,0.800148376,37.07585144,37.69644382,0.253996213,0.233136991,32.88889182,3640.137731,13.88983835 +2016-05-12 18:00:00-07:00,78,77.79988615,1.480121459,38.16278076,0.574212172,0.775557678,35.11924744,37.28689268,0.235813176,0.213364931,31.75044939,2789.390361,16.34248744 +2016-05-12 18:10:00-07:00,78,55.38005664,1.62592201,37.37899109,0.603879754,0.771648652,34.19317627,37.01357022,0.214002718,0.190844858,30.92380973,2431.563507,16.79987069 +2016-05-12 18:20:00-07:00,78,41.35280574,1.202621302,37.34822937,0.633572679,0.725243432,33.60870361,36.81653838,0.191854637,0.168183031,30.55760773,1287.762863,19.38513482 +2016-05-12 18:30:00-07:00,78,35.63257255,1.047127708,37.42962646,0.680852969,0.627329197,32.98640442,36.61569062,0.167830516,0.146608213,30.19879794,2205.096626,22.57091251 +2016-05-12 18:40:00-07:00,78,30.68169747,1.111856955,36.96369934,0.645443343,0.515502941,32.3865509,36.35895107,0.144102711,0.125189616,29.86806355,2638.770329,26.67710862 +2016-05-12 18:50:00-07:00,78,23.93513818,0.745233977,36.77079773,0.642108357,0.555088406,32.19491577,35.84797048,0.115527838,0.098831573,29.34693749,2892.215271,38.63359891 +2016-05-12 19:00:00-07:00,78,17.08563713,1.318139574,35.56594849,0.615818717,0.395643832,31.44061279,35.1664029,0.085531053,0.071960405,28.33823529,3417.605226,48.01883154 +2016-05-12 19:10:00-07:00,78,9.670398017,0.848055063,35.68643188,0.57760452,0.081245219,30.49211121,33.83881722,0.051208989,0.041965859,26.60922463,5611.818832,97.55812979 +2016-05-12 19:20:00-07:00,78,4.814864606,1.398810153,34.50657654,0.52409488,-0.1,29.4692688,31.09450128,0.02317459,0.01778388,23.31235001,13174.07855,284.190229 +2016-06-15 05:10:00-07:00,78,1.561709758,0.914866305,23.06881714,0.518004205,0.754182522,18.01867676,28.68993257,0.011079634,0.00832456,20.96455002,121808.0889,768.0751971 +2016-06-15 05:20:00-07:00,78,5.468979107,1.299754428,22.80989075,0.589726774,-0.1,18.09686279,34.06327397,0.02877231,0.022545216,26.04094105,11123.97924,217.3601565 +2016-06-15 05:30:00-07:00,78,11.36558795,0.439053881,22.85218811,0.636105279,0.101364417,18.15454102,36.18369383,0.054362436,0.044835094,28.74558262,6220.498483,85.64971662 +2016-06-15 05:40:00-07:00,78,17.09057811,1.603691317,23.01304932,0.670928196,-0.057506836,18.19812012,37.36713203,0.083793077,0.070750424,30.41615105,4326.615185,57.90655911 +2016-06-15 05:50:00-07:00,78,23.11446559,0.931489156,23.55395508,0.678233568,0.631899123,18.99281311,37.9706189,0.111905936,0.09651211,31.198415,4264.98725,36.24013901 +2016-06-15 06:00:00-07:00,78,27.44322755,0.626471071,24.17881775,0.678926341,0.642580594,19.4478302,38.3426145,0.13278396,0.115723391,31.68273124,4322.849022,29.79649241 +2016-06-15 06:10:00-07:00,78,31.05160878,1.283131298,24.85301208,0.680105179,0.694729814,20.01950073,38.4911989,0.14857693,0.130217134,31.93161311,4153.054378,26.26780192 +2016-06-15 06:20:00-07:00,78,34.83151668,0.579246171,25.57208252,0.666143049,0.763383418,20.35211182,38.65972956,0.163399987,0.143566504,32.18846812,4007.581301,23.74963648 +2016-06-15 06:30:00-07:00,78,37.66581043,0.984281804,26.1469574,0.666911047,0.772986998,20.81994629,38.80708582,0.179551056,0.158625771,32.35973651,4398.499468,21.41352951 +2016-06-15 06:40:00-07:00,78,48.41286448,0.557456366,27.63827515,0.649424663,0.789327209,21.14552307,39.08465196,0.197058328,0.176596283,33.07228655,2490.068038,18.41533175 +2016-06-15 06:50:00-07:00,78,65.40909464,1.328513576,26.28987122,0.607957079,0.816383656,22.17671204,39.31281484,0.210744102,0.190703758,34.04306389,3400.069462,12.02405571 +2016-06-15 07:00:00-07:00,78,90.96236365,1.031306097,26.68016052,0.580436585,0.831901324,24.20637512,40.0123217,0.258452236,0.2166016,36.52840997,595.9442437,11.81375018 +2016-06-15 07:10:00-07:00,78,121.3562695,1.217682045,26.40202332,0.56476932,0.847229624,26.01364136,40.72553904,0.674265446,0.618098451,34.36535784,1498.194905,5.558485141 +2016-06-15 07:20:00-07:00,78,157.9870404,1.634813882,26.8134613,0.554805093,0.853555427,27.58123779,41.01017975,0.860548595,0.794092421,34.55756957,1367.472845,4.352012368 +2016-06-15 07:30:00-07:00,78,195.2793143,1.71876905,26.78462219,0.548696356,0.866498785,29.04371643,41.22451748,1.056316914,0.979250313,34.68559943,1572.542787,3.226625395 +2016-06-15 07:40:00-07:00,78,234.5265616,2.210363341,26.74873352,0.545450023,0.876879815,30.55619812,41.36279369,1.263298175,1.171802941,34.73584297,1317.143081,3.020550689 +2016-06-15 07:50:00-07:00,78,276.7012821,1.912234481,27.51522827,0.543165904,0.870020933,32.34040833,41.43459208,1.48048241,1.378714846,34.57842383,1312.913296,2.228037764 +2016-06-15 08:00:00-07:00,78,318.0085701,2.470640293,27.6434021,0.542416235,0.886590872,33.80032349,41.49761204,1.692419652,1.576571158,34.54859771,1011.842422,2.329485177 +2016-06-15 08:10:00-07:00,78,360.3131271,2.405830929,27.90808105,0.541395191,0.887076538,34.85328674,41.61661356,1.907906242,1.778154521,34.55498531,944.7714495,2.102460557 +2016-06-15 08:20:00-07:00,78,401.1527606,2.9819813,28.01959229,0.540439053,0.891363879,36.7631073,41.56478172,2.120099655,1.973926434,34.40484353,983.3852155,1.935796879 +2016-06-15 08:30:00-07:00,78,441.9798622,2.790118279,28.3881073,0.540160316,0.898724991,38.35183716,41.51076698,2.331103172,2.170591661,34.24804307,865.2083576,1.798483716 +2016-06-15 08:40:00-07:00,78,482.6798876,2.009447794,29.25650024,0.539731858,0.904903911,40.37637329,41.39433278,2.539668175,2.368936857,33.91620243,927.2529535,1.6896004 +2016-06-15 08:50:00-07:00,78,524.4231599,3.688350054,29.66986084,0.539758087,0.907381998,41.32295227,41.38518718,2.752162978,2.561739291,33.79504032,759.6689937,1.523124417 +2016-06-15 09:00:00-07:00,78,562.8057718,3.177529774,29.92556763,0.539597591,0.912386122,42.51435364,41.37782014,2.950738445,2.746564248,33.70040037,878.9672121,1.450830067 +2016-06-15 09:10:00-07:00,78,599.2650897,1.936707823,30.55299377,0.53936138,0.91562274,44.72154236,41.15996785,3.136760377,2.91120485,33.37886134,685.8059649,1.403611346 +2016-06-15 09:20:00-07:00,78,636.0210782,2.087594862,30.15307617,0.539032079,0.919309914,45.53160095,41.14385354,3.321287458,3.091617006,33.17866065,777.9295305,1.355062041 +2016-06-15 09:30:00-07:00,78,673.6342032,1.115582013,31.14451599,0.538352772,0.919565524,46.68327332,41.08500557,3.514048623,3.266821315,33.03024852,745.8898036,1.316628117 +2016-06-15 09:40:00-07:00,78,707.4943887,2.398861656,32.24491272,0.538690201,0.92172827,49.75500488,40.80349706,3.68842195,3.421237979,32.64840423,597.791781,1.335734964 +2016-06-15 09:50:00-07:00,78,737.4399715,2.389568989,31.54827881,0.539116784,0.925541662,50.65863037,40.75158694,3.84165894,3.559905611,32.52492988,552.5527133,1.258984981 +2016-06-15 10:00:00-07:00,78,769.0782877,2.058114312,32.04174805,0.538597901,0.92549795,52.742771,40.55898553,4.003149047,3.702024307,32.24317291,526.9448808,1.235403024 +2016-06-15 10:10:00-07:00,78,797.5074945,0.98400143,33.30557251,0.538847634,0.927381931,55.12236023,40.26163936,4.148334844,3.836989935,31.80460959,568.7174428,1.256474107 +2016-06-15 10:20:00-07:00,78,824.496262,2.919776053,32.82618713,0.539040494,0.926792622,54.51416016,40.44311797,4.284717896,3.962459246,31.91540759,529.9106883,1.200030685 +2016-06-15 10:30:00-07:00,78,848.310047,2.270565871,33.06266785,0.539042456,0.92862988,57.09051514,40.08325116,4.412577895,4.071270789,31.48979441,369.2654301,1.187920138 +2016-06-15 10:40:00-07:00,78,872.5184299,2.680007243,33.36901855,0.539020628,0.930972008,57.693573,40.12468345,4.525474823,4.174688084,31.46849333,522.6645825,1.205473563 +2016-06-15 10:50:00-07:00,78,893.4121578,2.718699854,33.19725159,0.538634157,0.93235457,58.00375366,40.1711502,4.630538343,4.271554979,31.46227471,540.2567636,1.137844576 +2016-06-15 11:00:00-07:00,78,912.1158246,2.602741462,33.68881226,0.538442632,0.927148159,58.6427002,40.08351088,4.724923831,4.354275924,31.31796476,491.02932,1.147077244 +2016-06-15 11:10:00-07:00,78,927.2650101,1.501270607,33.22417053,0.53844112,0.927989399,57.62628174,40.17633353,4.80882932,4.428357198,31.37660778,571.3851021,1.131621715 +2016-06-15 11:20:00-07:00,78,944.8981579,2.524554092,34.3598175,0.537813705,0.927116523,61.20367432,39.74635465,4.895663543,4.50329942,30.83668901,489.3397715,1.165004442 +2016-06-15 11:30:00-07:00,78,957.0317606,1.310368991,34.67640686,0.538169555,0.928120184,60.93063354,39.73066423,4.956759846,4.559909753,30.78861026,352.5705125,1.127756438 +2016-06-15 11:40:00-07:00,78,969.0600017,3.792893621,33.44720459,0.538000819,0.927465794,56.86491699,40.34252301,5.009157069,4.615505987,31.43604576,577.836874,1.117183213 +2016-06-15 11:50:00-07:00,78,973.8320352,3.077752925,33.85800171,0.538723718,0.925972877,59.14837646,40.02301832,5.043430621,4.639040227,31.04591021,470.7182222,1.09805116 +2016-06-15 12:00:00-07:00,78,981.1127452,2.970765964,34.798172,0.5387541,0.927573505,59.31884766,39.97709465,5.077688222,4.671180311,30.97569362,421.7946648,1.141151488 +2016-06-15 12:10:00-07:00,78,989.8434822,1.641983832,35.34548462,0.538103208,0.927415022,59.87640381,39.92023825,5.112550309,4.704183486,30.90135253,930.7727412,1.109671708 +2016-06-15 12:20:00-07:00,78,995.7179808,5.424931752,35.58773804,0.537890194,0.927854795,58.03900146,40.16579731,5.142645491,4.735874507,31.13295563,549.4405895,1.105417369 +2016-06-15 12:30:00-07:00,78,997.173234,4.393277192,35.91586304,0.537226706,0.930022305,61.83685303,39.74179113,5.152083287,4.731057075,30.70285555,549.0131029,1.077470131 +2016-06-15 12:40:00-07:00,78,994.1525354,2.407233291,35.27241638,0.537160022,0.927952675,59.90524292,39.92825038,5.137774152,4.725231888,30.89304564,491.4708104,1.107732183 +2016-06-15 12:50:00-07:00,78,991.124706,3.992006779,35.65118408,0.536836075,0.928012643,61.01269531,39.74405086,5.123383793,4.704220307,30.71779858,527.7840055,1.110888445 +2016-06-15 13:00:00-07:00,78,986.842612,2.602541344,36.24847412,0.537067643,0.927689235,61.28314209,39.68818816,5.091150852,4.681527786,30.68001139,632.9059914,1.109338704 +2016-06-15 13:10:00-07:00,78,972.3181067,2.399622872,36.17990112,0.537343606,0.921895049,62.13101196,39.72500698,5.017907309,4.618987668,30.76674579,675.8252802,1.121439333 +2016-06-15 13:20:00-07:00,78,967.1516962,4.031901425,35.98764038,0.537274445,0.919459176,58.52670288,40.08916309,4.99202521,4.599001524,31.12480053,797.2112009,1.103608683 +2016-06-15 13:30:00-07:00,78,958.4157974,3.468328449,36.95152283,0.536784896,0.920080044,59.52264404,39.90426905,4.945143807,4.555535726,30.96461311,418.5854935,1.124051393 +2016-06-15 13:40:00-07:00,78,938.310897,2.902993038,36.37217712,0.537416064,0.920637393,62.30148315,39.50018828,4.848185551,4.457258392,30.6170323,524.1893561,1.144785171 +2016-06-15 13:50:00-07:00,78,924.8961349,3.213538988,36.67915344,0.537147559,0.919334654,62.18869019,39.59044852,4.779464042,4.385774088,30.78601643,450.6190991,1.155642151 +2016-06-15 14:00:00-07:00,78,908.0664628,1.543568484,36.5221405,0.536947799,0.916467134,58.83880615,39.9431186,4.690024037,4.315413761,31.20387735,582.1957007,1.18154612 +2016-06-15 14:10:00-07:00,78,887.6161905,2.747219349,37.12968445,0.536800965,0.919519537,59.52648926,39.77091526,4.594769047,4.218939846,31.08443022,362.9649677,1.202577044 +2016-06-15 14:20:00-07:00,78,867.9568896,1.251608497,36.55482483,0.536578258,0.91710636,59.67453003,39.6951013,4.484769517,4.125841906,31.0551452,661.6513296,1.213449468 +2016-06-15 14:30:00-07:00,78,845.6031607,3.862949638,36.9105072,0.536363492,0.917623017,59.73348999,39.57888355,4.372837537,4.020581199,31.00567096,420.7062729,1.201499543 +2016-06-15 14:40:00-07:00,78,821.4609245,4.976316649,36.83296204,0.536621867,0.917290674,57.90057373,39.83961161,4.243242335,3.911965524,31.32686275,504.5890156,1.213201097 +2016-06-15 14:50:00-07:00,78,796.6746581,1.541846422,37.3956543,0.536179318,0.916134707,57.90570068,39.76294547,4.119500441,3.795942059,31.32415361,524.6060657,1.265540508 +2016-06-15 15:00:00-07:00,78,763.9265436,0.755167441,37.72122192,0.536386993,0.913078043,57.70126343,39.68126211,3.958091392,3.645174325,31.33393163,428.1979683,1.295424905 +2016-06-15 15:10:00-07:00,78,734.880045,4.149983232,37.98205566,0.535953589,0.914235947,57.88775635,39.56954687,3.80339081,3.511145924,31.2740963,547.0604953,1.33737374 +2016-06-15 15:20:00-07:00,78,699.8807373,2.777661514,37.03804016,0.536505254,0.911433659,55.41139221,39.84876141,3.626328389,3.344354666,31.73269481,634.3374755,1.364144388 +2016-06-15 15:30:00-07:00,78,668.4873633,2.522912077,37.16300964,0.536175313,0.906950211,55.36012268,39.70161431,3.461374567,3.195137006,31.67036211,641.2204938,1.350478149 +2016-06-15 15:40:00-07:00,78,632.9268629,3.178651272,37.87503052,0.536074113,0.904012843,53.90533447,39.75698555,3.270863659,3.02126469,31.81860621,647.4516236,1.463208642 +2016-06-15 15:50:00-07:00,78,596.1343921,2.674800195,37.11878967,0.536553094,0.900201332,52.08010864,39.91928251,3.076284978,2.845454592,32.0867626,830.720886,1.446776342 +2016-06-15 16:00:00-07:00,78,557.0072926,1.95260948,38.09164429,0.535532153,0.896519801,52.03460693,39.87764169,2.88070338,2.66794545,32.14659722,718.698642,1.569543711 +2016-06-15 16:10:00-07:00,78,517.2088357,0.917109861,36.97779846,0.535928182,0.891096606,50.93998718,39.82844563,2.682212934,2.474456566,32.28576623,679.9496339,1.64623615 +2016-06-15 16:20:00-07:00,78,479.1057068,2.648203648,37.50012207,0.536786794,0.890387535,50.50033569,39.7628828,2.485452922,2.29727329,32.30951673,670.1040105,1.651947418 +2016-06-15 16:30:00-07:00,78,437.3205604,2.077020463,37.93783569,0.537306233,0.888877839,48.89237976,39.76537603,2.266556073,2.094940109,32.44061106,792.9407657,1.858767111 +2016-06-15 16:40:00-07:00,78,394.7490154,1.000103275,38.24993896,0.538281585,0.879939798,48.9289093,39.60447977,2.04629162,1.892144515,32.3927587,944.9653183,2.014408535 +2016-06-15 16:50:00-07:00,78,353.5470247,2.133818474,38.37298828,0.539496493,0.872645842,47.09086609,39.60767719,1.8288194,1.687996498,32.59697992,892.5662719,2.195042615 +2016-06-15 17:00:00-07:00,78,313.1018602,2.763722269,37.8526001,0.541437625,0.869477222,45.38612366,39.62196546,1.616197155,1.490849177,32.71367098,762.9122468,2.429501903 +2016-06-15 17:10:00-07:00,78,269.4573396,3.079034449,37.94937134,0.543661737,0.862273088,44.13513184,39.45642904,1.393475818,1.284043718,32.6693065,743.774861,2.760991586 +2016-06-15 17:20:00-07:00,78,228.9534906,2.524834257,37.96987915,0.546262116,0.8487267,42.91041565,39.29856312,1.179313506,1.084910376,32.62283964,702.2693363,3.195235484 +2016-06-15 17:30:00-07:00,78,189.0227773,1.358594969,37.9666748,0.550783896,0.841556155,41.66134644,38.86745935,0.958722417,0.4942008,24.18405001,132.3984399,7.319573354 +2016-06-15 17:40:00-07:00,78,152.5879252,2.608148698,37.66033936,0.558518833,0.82716097,38.56782532,37.708032,0.261226465,0.237281,33.42532999,1161.792452,10.6217123 +2016-06-15 17:50:00-07:00,78,118.8942333,1.960500833,37.70135498,0.568498629,0.815145756,36.97523499,37.29432849,0.243128419,0.220469491,32.02169092,2286.894349,13.072669 +2016-06-15 18:00:00-07:00,78,87.62096117,2.017338658,38.10189819,0.585912281,0.797626215,36.22155762,37.17392521,0.228028165,0.206743496,31.78539849,2654.141291,12.48663163 +2016-06-15 18:10:00-07:00,78,65.8157459,2.289872398,37.69558716,0.610775693,0.768196185,36.06967163,36.9835731,0.216912451,0.194521233,31.47646334,1681.131238,17.83730899 +2016-06-15 18:20:00-07:00,78,48.50593348,1.862286022,37.30335999,0.646433427,0.749009691,36.31063843,36.69345871,0.206539238,0.182184035,30.75956478,1035.426416,15.43309345 +2016-06-15 18:30:00-07:00,78,41.62474388,2.142149527,36.98997498,0.695035519,0.725528878,35.71270752,36.47877497,0.192196934,0.168528802,30.07112607,2023.591516,19.59037317 +2016-06-15 18:40:00-07:00,78,38.30519399,2.639311147,37.10853577,0.697454585,0.70070738,35.05451965,36.36521996,0.174374024,0.152080702,29.96040695,2145.044901,21.69872815 +2016-06-15 18:50:00-07:00,78,33.11183345,3.001127592,36.7797699,0.665499652,0.603639184,34.71998596,36.12043355,0.155309336,0.134666408,29.70188777,2355.460542,28.03948335 +2016-06-15 19:00:00-07:00,78,27.86947713,4.895725767,36.36063904,0.675349634,0.599980341,34.05859375,35.87428866,0.134336016,0.115391354,29.38127935,2370.655311,29.02785109 +2016-06-15 19:10:00-07:00,78,23.19037457,2.679446493,36.04275513,0.664246218,-0.022333123,33.78109741,35.3440884,0.107079809,0.091354909,28.64568131,3303.256914,37.32492251 +2016-06-15 19:20:00-07:00,78,15.77262356,3.376002065,35.67874146,0.635903893,-0.012636586,33.17481995,34.58447356,0.076985181,0.06427247,27.71575976,3762.927,54.02224029 +2016-06-15 19:30:00-07:00,78,10.62091635,2.302329303,35.35061646,0.604582063,-0.09418201,32.45960999,33.24019567,0.047472625,0.03811786,26.25053,5242.623842,106.5430862 +2016-06-15 19:40:00-07:00,78,4.239244581,3.281431845,35.26152039,0.567664779,-0.1,32.2442688,30.33714745,0.021637324,0.01648923,22.73152,19714.73101,250.7472391 +2016-07-12 05:20:00-07:00,78,1.904643485,0.356260305,25.76754761,0.530952389,0.385939524,21.56913757,28.73573278,0.011745461,0.00889419,20.13262,19805.08055,719.8262171 +2016-07-12 05:30:00-07:00,78,4.981468694,1.258698259,26.48405457,0.613048861,-0.1,22.09211731,33.40099231,0.029006593,0.022777128,25.54074885,14274.51203,190.686811 +2016-07-12 05:40:00-07:00,78,11.32398063,1.010838258,26.52122498,0.653271576,0.093122952,22.36128235,35.51154633,0.055253689,0.045337298,28.30700122,5364.943274,93.7132277 +2016-07-12 05:50:00-07:00,78,17.20814961,1.747768968,24.90107727,0.677189724,0.39837304,22.59968567,36.66224811,0.083266867,0.070639672,29.69434411,4902.412334,57.47333566 +2016-07-12 06:00:00-07:00,78,23.00178908,0.877735591,25.4708252,0.67771192,0.626301384,22.80989075,37.4127284,0.113684466,0.097909644,30.72141187,4714.695909,40.53424195 +2016-07-12 06:10:00-07:00,78,26.40205091,0.909418836,26.52955627,0.679000967,0.629369107,23.08612061,37.79591398,0.135001795,0.117834968,31.1528706,4478.092227,25.89639233 +2016-07-12 06:20:00-07:00,78,30.49062769,1.048209672,27.43768311,0.675882559,0.693778996,23.93334961,37.91089082,0.151414574,0.1325625,31.37347174,3777.670332,29.29426723 +2016-07-12 06:30:00-07:00,78,33.36167058,0.879578074,28.35350037,0.671260963,0.752363296,24.57423401,38.0221839,0.166354714,0.146214647,31.50322892,3957.4177,23.1020869 +2016-07-12 06:40:00-07:00,78,40.33131943,1.50916161,29.51669312,0.675056385,0.772845881,25.06514404,38.22367826,0.186779746,0.165886705,31.96831394,2502.79361,22.90375252 +2016-07-12 06:50:00-07:00,78,54.46613104,0.740948031,30.48570251,0.632219991,0.786287304,25.61566162,38.5750581,0.202697937,0.18356879,33.0845388,2509.316918,16.63954765 +2016-07-12 07:00:00-07:00,78,75.36491039,0.781844035,30.9471283,0.598720462,0.815818849,26.82627869,39.19161146,0.229177191,0.2030168,35.24076997,1026.785913,12.88212639 +2016-07-12 07:10:00-07:00,78,101.7141747,0.75516758,31.7706604,0.576738184,0.827255491,28.81620789,39.9672217,0.577064706,0.526243849,33.64437348,2051.908749,6.454602353 +2016-07-12 07:20:00-07:00,78,134.9327315,0.866159624,32.88322449,0.563190257,0.847904901,30.64399719,40.26212878,0.758312339,0.697010255,33.86094616,1606.587212,4.895448757 +2016-07-12 07:30:00-07:00,78,170.549331,1.163447499,32.73005676,0.555984384,0.857297526,32.60188293,40.43664722,0.959491191,0.885372383,33.94520456,1453.166997,3.897423006 +2016-07-12 07:40:00-07:00,78,208.6230256,0.868202434,32.83964539,0.551015107,0.864005667,34.6007843,40.55027879,1.166700383,1.078382851,33.96047182,1416.077893,2.957088057 +2016-07-12 07:50:00-07:00,78,248.649329,1.222248017,33.67727661,0.548270981,0.875098035,36.65800476,40.60772633,1.384243998,1.285224659,33.80616818,1354.067046,2.772377012 +2016-07-12 08:00:00-07:00,78,290.9734291,1.639900859,32.69096375,0.546906026,0.870933716,38.44029236,40.66863636,1.605138742,1.490728745,33.75559814,1362.525375,2.439137665 +2016-07-12 08:10:00-07:00,78,330.4386042,1.573610133,32.53715515,0.546110373,0.883295405,40.27191162,40.69976328,1.820643439,1.690216663,33.68353531,1184.984405,1.924220652 +2016-07-12 08:20:00-07:00,78,373.2991645,1.566760582,33.10047913,0.545874572,0.890645915,41.9465332,40.70543856,2.04094036,1.89493753,33.57084288,1004.037734,1.79515457 +2016-07-12 08:30:00-07:00,78,414.3860404,1.155516752,33.2485199,0.545381064,0.896992373,43.22956848,40.6917702,2.258917459,2.100498196,33.35059911,830.1137728,1.855032121 +2016-07-12 08:40:00-07:00,78,454.8557534,1.842378723,33.2049408,0.544853518,0.894836615,44.91059875,40.62632993,2.47174012,2.297976054,33.17921502,859.4119658,1.64630997 +2016-07-12 08:50:00-07:00,78,494.2009831,2.137142736,33.98681641,0.544422929,0.902389262,47.16456604,40.48743095,2.674121926,2.484406714,32.9331222,761.3531569,1.643270678 +2016-07-12 09:00:00-07:00,78,532.7769007,1.133245965,34.36366272,0.544515813,0.904760544,49.26280212,40.36911431,2.875875871,2.663656911,32.71076391,742.966993,1.56464676 +2016-07-12 09:10:00-07:00,78,570.7795445,0.801270562,34.62513733,0.544605615,0.909062783,50.67208862,40.26646445,3.073479235,2.851396852,32.42869022,758.8904608,1.391059301 +2016-07-12 09:20:00-07:00,78,608.5619327,0.426596836,36.14529419,0.54463475,0.916023309,52.5690918,40.06455182,3.264692288,3.024372535,32.13109551,739.933875,1.442191447 +2016-07-12 09:30:00-07:00,78,642.1992035,1.079612332,35.72744751,0.544510479,0.91347377,54.1187439,39.94247213,3.438820313,3.182123641,31.91814518,838.1412292,1.400285409 +2016-07-12 09:40:00-07:00,78,675.9271049,1.013642005,37.02906799,0.544576775,0.915691625,56.05484009,39.77866649,3.610047501,3.333800448,31.65997932,673.5062867,1.323400318 +2016-07-12 09:50:00-07:00,78,708.2072613,1.399611253,35.6031189,0.545363249,0.916421994,57.05078125,39.77198124,3.780524269,3.485502664,31.56950969,550.50238,1.288103471 +2016-07-12 10:00:00-07:00,78,740.8744982,2.903754115,37.53216553,0.545591625,0.9205124,58.71832275,39.62116955,3.950650941,3.645187696,31.25835295,570.818564,1.264949076 +2016-07-12 10:10:00-07:00,78,769.4824822,1.317858989,36.823349,0.545417704,0.919472239,59.53033447,39.65491316,4.089031767,3.774178275,31.21735414,634.0432922,1.236296744 +2016-07-12 10:20:00-07:00,78,796.8877185,1.633492266,37.21427917,0.54552134,0.922548803,60.60058594,39.39520152,4.229075393,3.89432335,30.88505006,604.3418374,1.264456658 +2016-07-12 10:30:00-07:00,78,821.5834001,1.802323493,37.47961426,0.545498466,0.922547212,60.93063354,39.54205447,4.354530814,4.007984862,30.96614065,565.1844306,1.242984624 +2016-07-12 10:40:00-07:00,78,843.219619,1.785580362,37.50524902,0.545741572,0.926807188,62.53988647,39.37171165,4.469077191,4.106164015,30.74392991,526.7312665,1.18960039 +2016-07-12 10:50:00-07:00,78,870.6125627,1.180871311,37.82183838,0.545352763,0.927659036,61.92080688,39.48449237,4.60178233,4.227714526,30.78218321,545.3354528,1.171347846 +2016-07-12 11:00:00-07:00,78,884.5268978,2.582032923,37.34758667,0.545781084,0.928953097,62.11947632,39.4800192,4.678637489,4.299712787,30.73062467,618.6867001,1.162123583 +2016-07-12 11:10:00-07:00,78,910.7464268,3.755922723,37.65008545,0.545022709,0.934377699,62.48477173,39.51284234,4.804804086,4.417971903,30.64671815,953.7924309,1.129241181 +2016-07-12 11:20:00-07:00,78,920.1829055,3.124817661,38.45630859,0.546199135,0.930063937,62.78341675,39.48765338,4.849950387,4.457903925,30.59944276,473.4094326,1.145102367 +2016-07-12 11:30:00-07:00,78,939.6508974,1.288979421,37.82824707,0.545383011,0.934426093,65.32064819,39.13928776,4.95139517,4.539715762,30.19307548,539.8170729,1.173273767 +2016-07-12 11:40:00-07:00,78,952.3797921,1.888962477,38.25762939,0.545311001,0.934249308,65.69815063,39.0997182,5.017171911,4.597477115,30.12126315,468.0674853,1.139778915 +2016-07-12 11:50:00-07:00,78,960.238404,2.490307172,38.40375977,0.545448704,0.933150033,65.36743164,39.17539205,5.060004782,4.636164351,30.17858699,724.1099197,1.134214069 +2016-07-12 12:00:00-07:00,78,967.7347231,1.561713768,37.52703857,0.545958045,0.934732895,64.10620117,39.44124426,5.092295072,4.67091989,30.42641022,473.3178757,1.11773673 +2016-07-12 12:10:00-07:00,78,975.1965013,1.470508534,38.64857483,0.545449348,0.932642146,66.41015625,38.93548894,5.136385864,4.697232285,29.90018581,523.6859613,1.13066192 +2016-07-12 12:20:00-07:00,78,977.9597534,1.620313819,38.29415894,0.545330192,0.934152456,64.24398804,39.2720525,5.150111753,4.715135797,30.22652256,390.1213772,1.115277832 +2016-07-12 12:30:00-07:00,78,979.5178195,1.918803449,39.35545349,0.545573104,0.930828338,65.31744385,39.02949275,5.149668768,4.710992946,29.98121483,406.7199726,1.128321664 +2016-07-12 12:40:00-07:00,78,977.817661,0.602318058,39.20292664,0.545306326,0.929152519,68.26678467,38.72185669,5.14366473,4.701670817,29.6763599,461.2552031,1.157198363 +2016-07-12 12:50:00-07:00,78,978.5698315,1.774325212,39.87265015,0.54531391,0.928794395,69.43444824,38.54182597,5.150851098,4.695668012,29.49419536,439.6059353,1.162061472 +2016-07-12 13:00:00-07:00,78,975.0348382,3.115885067,38.97541809,0.544908648,0.931751975,67.94506836,38.79995583,5.125956581,4.689125929,29.76275223,553.9335896,1.143948833 +2016-07-12 13:10:00-07:00,78,969.6160878,1.489654896,39.77972412,0.545191452,0.927230163,66.18841553,38.99034123,5.101617622,4.663406786,29.98119388,439.9603023,1.131944971 +2016-07-12 13:20:00-07:00,78,958.4746383,2.259109765,40.21679688,0.545402067,0.928193556,67.37466431,38.75362539,5.040310933,4.607211757,29.76772517,415.9762617,1.128344529 +2016-07-12 13:30:00-07:00,78,951.0790067,0.905853873,40.56288147,0.544825169,0.927183277,68.05593872,38.64549478,4.998722068,4.568895501,29.66967563,521.1687907,1.174856715 +2016-07-12 13:40:00-07:00,78,938.2545588,2.203233135,40.48533203,0.544649558,0.926689927,65.72186279,39.08758578,4.937601752,4.522570053,30.14387857,399.9999839,1.175313534 +2016-07-12 13:50:00-07:00,78,921.9197672,1.141297133,39.53042603,0.544870263,0.922786334,65.37191772,38.93638841,4.855678592,4.445135901,30.03701871,351.2202934,1.157797573 +2016-07-12 14:00:00-07:00,78,904.7887503,3.517636042,39.98672485,0.544995261,0.922717,65.18734741,38.95664762,4.761193879,4.36235447,30.11530063,468.9942515,1.15026896 +2016-07-12 14:10:00-07:00,78,882.7802094,1.002386715,40.80705261,0.544976678,0.920859837,66.76263428,38.71782657,4.649690201,4.2562305,29.92672806,540.7106428,1.18573814 +2016-07-12 14:20:00-07:00,78,863.0158597,3.763253046,40.85447693,0.544904656,0.915755948,66.28326416,38.85841502,4.549372947,4.162190684,30.18404837,455.1199895,1.199306556 +2016-07-12 14:30:00-07:00,78,840.137816,0.63215896,40.81282043,0.544833778,0.914961709,64.3215332,39.06940394,4.427349719,4.060811879,30.44891048,572.2632931,1.207315885 +2016-07-12 14:40:00-07:00,78,818.4036792,1.296870634,41.3639679,0.544376378,0.913850809,65.1315918,38.84578341,4.314188042,3.95430949,30.30177293,568.942008,1.262077414 +2016-07-12 14:50:00-07:00,78,790.8270083,1.235987074,41.079422,0.544718195,0.911289465,64.72848511,38.90603685,4.176694764,3.832114925,30.42245451,628.6409808,1.215748848 +2016-07-12 15:00:00-07:00,78,766.1998931,3.488075444,41.37870789,0.544287908,0.908700299,61.58178711,39.20410017,4.047499783,3.720927965,30.78829687,596.4898159,1.256920762 +2016-07-12 15:10:00-07:00,78,733.7042105,6.213012747,42.02536011,0.544337437,0.906384839,60.32116699,39.23019151,3.881665279,3.570970763,30.90508937,538.6470773,1.284924185 +2016-07-12 15:20:00-07:00,78,709.9147163,2.626333237,42.15032959,0.544211823,0.911368301,59.43292236,39.30925674,3.764145094,3.457812931,31.04125891,350.2398377,1.34870337 +2016-07-12 15:30:00-07:00,78,676.2308512,5.105894515,41.82092285,0.544227709,0.907402826,57.21420288,39.52015227,3.589265763,3.298101925,31.42272691,361.9728454,1.381957563 +2016-07-12 15:40:00-07:00,78,641.0086472,4.743357156,41.13389587,0.545066467,0.902543007,56.07983398,39.56312483,3.398302235,3.128741683,31.56243378,504.0832068,1.37055335 +2016-07-12 15:50:00-07:00,78,603.3415026,2.9827824,41.99075317,0.545754411,0.898128245,56.96618652,39.31221743,3.199691982,2.945180486,31.41687943,408.408091,1.42407635 +2016-07-12 16:00:00-07:00,78,567.5042703,0.926562482,41.64083862,0.544804416,0.900867755,57.85891724,39.09494535,3.026982004,2.785155495,31.28730895,483.2879281,1.540940599 +2016-07-12 16:10:00-07:00,78,530.376199,1.766354372,41.73953247,0.543797112,0.9002796,56.68289185,39.07050536,2.831687197,2.608063147,31.37002642,490.8863199,1.608751994 +2016-07-12 16:20:00-07:00,78,491.1362389,4.241588842,42.5605011,0.543727656,0.896047039,55.90423584,39.06229919,2.628052426,2.412689452,31.54821234,501.4743208,1.698623083 +2016-07-12 16:30:00-07:00,78,453.4079715,3.039420247,42.11636353,0.544535874,0.8936067,53.15550232,39.26928345,2.42584755,2.231001874,31.8698403,482.9846395,1.782586445 +2016-07-12 16:40:00-07:00,78,412.5683472,3.752918439,42.23556519,0.544941086,0.886876546,52.20059204,39.22222049,2.209792764,2.034704652,31.92663709,594.6165685,1.711902694 +2016-07-12 16:50:00-07:00,78,371.7534463,1.392762191,42.00164795,0.545581451,0.890416569,51.5750885,39.06554819,1.991299556,1.83301984,31.87731782,585.1366546,1.955123869 +2016-07-12 17:00:00-07:00,78,328.8854607,2.086873529,42.04074097,0.546766994,0.879978301,50.59967041,38.96991566,1.764436305,1.621821626,31.90894367,533.6165426,2.27068734 +2016-07-12 17:10:00-07:00,78,285.4932891,3.157141353,41.9715271,0.547784928,0.865646451,48.50527954,39.00160198,1.533446734,1.408058103,32.14207875,551.7616971,2.226784193 +2016-07-12 17:20:00-07:00,78,245.9179126,1.955533787,41.95742798,0.550138794,0.871235383,47.13380432,38.87991323,1.318213016,1.209784133,32.13037777,563.6596739,2.892337335 +2016-07-12 17:30:00-07:00,78,206.871479,2.67860509,41.91897583,0.553398814,0.868946193,46.09173584,38.63328276,1.101950639,0.770212,34.94620003,646.2531682,3.139197855 +2016-07-12 17:40:00-07:00,78,168.1486201,1.861164384,41.69659424,0.559094069,0.860025349,43.52502014,37.60931979,0.332178818,0.2253186,34.90063004,170.4346358,9.331957229 +2016-07-12 17:50:00-07:00,78,133.1614118,4.886353123,42.08239746,0.567457807,0.844275273,41.50753784,36.43124689,0.226948797,0.206260555,31.28785397,2594.502559,15.86211739 +2016-07-12 18:00:00-07:00,78,99.84989635,2.497957544,41.36460876,0.581089873,0.826080512,40.61158752,36.4885956,0.217093397,0.196261961,31.25040314,2309.568492,12.73470436 +2016-07-12 18:10:00-07:00,78,72.85153217,1.575892875,41.63699341,0.601041025,0.827083667,39.90020752,36.24470203,0.205510358,0.185066075,30.66951829,2703.708698,16.10198638 +2016-07-12 18:20:00-07:00,78,53.73856425,1.507599293,41.36460876,0.631957436,0.782867225,39.46313354,36.06086605,0.193507048,0.173221584,30.31661303,2565.439843,20.22682889 +2016-07-12 18:30:00-07:00,78,39.30480012,2.119798902,41.41523743,0.666620069,0.764275096,39.34391785,35.78951867,0.183924972,0.161061022,29.52770671,1685.940694,22.89242304 +2016-07-12 18:40:00-07:00,78,35.76731327,2.731317831,40.57954407,0.716224088,0.767475243,38.68894958,35.63437207,0.167048122,0.145314828,29.26492891,2266.152968,22.62610305 +2016-07-12 18:50:00-07:00,78,31.43375754,4.1022777,40.44815979,0.698920295,0.670710655,38.46528137,35.38703206,0.149684782,0.129221108,29.00070389,2031.884136,28.85591326 +2016-07-12 19:00:00-07:00,78,26.65686582,4.345090678,40.07644653,0.696636745,0.630910516,37.88912964,35.13810663,0.130241686,0.1125149,28.39453,2433.144582,29.96496859 +2016-07-12 19:10:00-07:00,78,21.37996862,3.031729641,39.8508606,0.677941505,0.547120543,37.47064209,34.68842264,0.106709179,0.09079195,28.09182454,3055.482124,41.90930678 +2016-07-12 19:20:00-07:00,78,15.91714504,3.144163932,38.96772766,0.64391665,0.191331213,36.76054382,34.07128827,0.080811625,0.067724865,27.25959072,3694.890002,57.08394038 +2016-07-12 19:30:00-07:00,78,9.440131605,4.532868429,38.76777649,0.61775948,-0.061531381,36.35038147,32.6550507,0.0485804,0.03996488,25.17089999,5750.782362,100.6775674 +2016-07-12 19:40:00-07:00,78,4.613995668,2.32540084,38.23135376,0.573725865,-0.1,35.65118408,29.97143643,0.022692823,0.01730052,22.42783,12138.78106,290.6113344 +2016-08-29 06:00:00-07:00,78,4.780590555,1.121950373,27.55496216,0.593860479,-0.1,23.40270996,32.53074368,0.024620463,0.019345053,24.40160069,13472.69486,260.2410593 +2016-08-29 06:10:00-07:00,78,10.17505006,1.867172671,27.67608643,0.617620014,0.158143026,24.35762024,35.00875356,0.052403673,0.04293955,27.82751626,6541.230794,98.70669478 +2016-08-29 06:20:00-07:00,78,16.24543984,2.226264789,27.58700562,0.605203098,-0.000153009,24.60243225,36.23732748,0.082001927,0.06967186,29.25003001,4910.513253,58.26866478 +2016-08-29 06:30:00-07:00,78,21.14480723,2.329246528,27.73953247,0.632762518,0.024881276,25.14782715,36.97605348,0.114831522,0.096522425,30.367909,2162.384227,40.6774026 +2016-08-29 06:40:00-07:00,78,34.58898522,1.952129337,27.39794922,0.624690943,0.038914865,25.34585571,38.07959926,0.184738549,0.1563418,32.02584999,2567.145818,21.19484802 +2016-08-29 06:50:00-07:00,78,48.20951125,2.31606822,27.56329346,0.59263217,0.019383004,26.08414246,38.87888249,0.274548544,0.243248893,32.67311454,1909.595953,13.77939998 +2016-08-29 07:00:00-07:00,78,77.89542104,1.349903354,28.44258118,0.561304745,-0.026874258,26.93714905,39.64614264,0.418964758,0.3690205,33.99207,1008.887885,8.940309088 +2016-08-29 07:10:00-07:00,78,109.6587155,0.937417396,28.78352356,0.545624127,0.01108184,28.07727051,40.12475602,0.574649833,0.526580018,33.85369124,1213.531587,6.412690522 +2016-08-29 07:20:00-07:00,78,146.463433,2.27032566,29.03923035,0.540698895,0.016755822,29.6852417,40.52768415,0.792177957,0.731235368,34.13880711,1243.766031,4.667419493 +2016-08-29 07:30:00-07:00,78,186.3256166,0.866319998,29.23406982,0.538080348,0.014363494,31.48995972,40.75985627,1.023232018,0.945136858,34.24910624,1090.414427,3.669784041 +2016-08-29 07:40:00-07:00,78,227.8290441,1.771521536,29.91595459,0.537264578,-0.032873867,33.63433838,40.85027493,1.246870041,1.153869113,34.23760815,956.158117,3.039524848 +2016-08-29 07:50:00-07:00,78,271.7722688,1.403536918,30.42481995,0.537386179,-0.003566889,35.62298584,40.88740598,1.482637935,1.377439523,34.04511926,895.7708807,2.609917234 +2016-08-29 08:00:00-07:00,78,317.540704,3.423667154,30.75614929,0.538532037,-0.01345765,37.13032532,40.94933275,1.726043436,1.604955979,33.98128083,755.8203623,2.293921656 +2016-08-29 08:10:00-07:00,78,361.9593212,3.039099639,30.95353699,0.539478389,0.002517518,38.37170715,41.02056016,1.961673041,1.822803464,33.932029,679.6147562,1.936902733 +2016-08-29 08:20:00-07:00,78,403.5485489,1.984973894,31.92254639,0.539449196,-0.00326719,40.71989441,40.88545464,2.181779544,2.026883605,33.69637706,654.0979512,1.89777182 +2016-08-29 08:30:00-07:00,78,450.4511561,0.556294704,33.12739563,0.540023231,-0.010584262,43.68844604,40.67993662,2.428610752,2.255335527,33.2604974,532.6767015,1.755300458 +2016-08-29 08:40:00-07:00,78,495.5777418,3.595702783,32.76530457,0.540759562,-0.025913379,44.42800903,40.78980708,2.660030699,2.470504412,33.25051971,497.4203698,1.566967243 +2016-08-29 08:50:00-07:00,78,536.8874957,4.100515265,32.58073425,0.541182676,-0.017894575,44.82344055,40.853695,2.876700597,2.667834533,33.21052006,504.1732676,1.564829223 +2016-08-29 09:00:00-07:00,78,575.7698279,2.923260969,32.91014099,0.541717932,-0.017972491,46.0904541,40.79397293,3.075158447,2.852607597,33.03788878,524.286987,1.491752546 +2016-08-29 09:10:00-07:00,78,617.8242717,1.277203476,33.92721558,0.541808557,-0.012665751,48.35467529,40.61537752,3.294400963,3.055207448,32.66701154,414.394291,1.430804967 +2016-08-29 09:20:00-07:00,78,656.2068285,4.095188146,33.86505127,0.542176684,-0.000459697,49.40507507,40.62687125,3.493293253,3.23449397,32.583151,370.2844933,1.383551185 +2016-08-29 09:30:00-07:00,78,695.7698939,1.413270053,33.88555908,0.543817023,0.001666186,50.48751831,40.56532023,3.691113366,3.415513832,32.40805979,334.8682662,1.338743687 +2016-08-29 09:40:00-07:00,78,728.6895074,2.052146117,34.53349304,0.544089174,0.000226575,53.4797821,40.21210928,3.85978609,3.562908606,31.96644226,325.4689556,1.267023581 +2016-08-29 09:50:00-07:00,78,763.5223767,1.724817222,34.79881287,0.544432744,0.000453185,54.9589386,40.06274205,4.041076331,3.730058765,31.65909889,325.4277811,1.238002666 +2016-08-29 10:00:00-07:00,78,795.6751624,1.492698924,35.80499268,0.544185951,-0.004199165,56.44192505,39.99631502,4.202724083,3.876177412,31.50226477,309.4430008,1.218305679 +2016-08-29 10:10:00-07:00,78,826.6300125,0.889030905,36.29141235,0.544361786,-0.00853681,58.86315918,39.70778476,4.365918065,4.012067117,31.13496586,268.6957079,1.19996795 +2016-08-29 10:20:00-07:00,78,855.2968099,2.70524187,36.01263428,0.544344635,-0.012055408,59.66171265,39.79318535,4.50617992,4.145618962,31.14429578,287.7507952,1.159174218 +2016-08-29 10:30:00-07:00,78,880.4848509,4.143975223,36.2612915,0.544591732,-0.014684624,60.4871521,39.70359588,4.635839403,4.259579083,30.98243295,275.7710803,1.165256 +2016-08-29 10:40:00-07:00,78,913.3529292,1.540043964,36.46125793,0.545608242,-0.015329857,61.32479858,39.68791071,4.765648136,4.369262019,30.90530215,252.4209885,1.181250261 +2016-08-29 10:50:00-07:00,78,934.6314466,0.807118616,36.82078552,0.54569852,0.923743636,62.97824097,39.39560502,4.873199103,4.472459273,30.49592448,314.0690839,1.174395123 +2016-08-29 11:00:00-07:00,78,957.2497896,3.10442938,36.95921326,0.545621334,0.923442317,62.17779541,39.43873034,4.983380651,4.572540869,30.47784574,391.8788244,1.133684598 +2016-08-29 11:10:00-07:00,78,975.135268,3.203845667,36.47984314,0.545535284,0.926420791,62.98464966,39.42630824,5.080101376,4.654931689,30.41608069,276.1785275,1.152084143 +2016-08-29 11:20:00-07:00,78,992.0286024,3.791571725,37.66290283,0.545891622,0.925842351,62.865448,39.43737057,5.163149057,4.73269741,30.38014364,303.507264,1.116239018 +2016-08-29 11:30:00-07:00,78,1007.768157,2.615158344,36.59584045,0.546094361,0.928570681,62.68792725,39.50239832,5.236489855,4.797139919,30.41617787,335.6508512,1.0858617 +2016-08-29 11:40:00-07:00,78,1018.571568,0.647219634,38.62550354,0.546312921,0.92741322,66.95169067,38.92131688,5.296017715,4.843202756,29.79449133,413.43593,1.118268347 +2016-08-29 11:50:00-07:00,78,1029.561144,4.015318947,37.59625244,0.546538204,0.929791917,65.26937866,39.28784295,5.350142878,4.891701564,30.13791224,261.7431369,1.085276601 +2016-08-29 12:00:00-07:00,78,1035.362016,0.916028176,37.36617188,0.546779038,0.929079692,67.64770508,39.11138894,5.380821147,4.911343078,29.9456412,252.118225,1.086461561 +2016-08-29 12:10:00-07:00,78,1042.676935,0.870765969,38.5639801,0.546752323,0.92969796,68.25396729,38.82621616,5.399552711,4.931666895,29.64234705,553.2159298,1.092308777 +2016-08-29 12:20:00-07:00,78,1043.531983,3.307467643,37.59048462,0.546924856,0.922248545,66.10189819,39.25361309,5.416637736,4.947782937,30.07582842,291.3461273,1.077218011 +2016-08-29 12:30:00-07:00,78,1047.449052,1.302318173,39.29777527,0.546477197,0.930998174,68.01748657,38.80828965,5.436275206,4.956435791,29.60277325,307.3934637,1.10952277 +2016-08-29 12:40:00-07:00,78,1044.012114,0.614574635,38.31530762,0.546652337,0.926054334,67.32852173,38.92245525,5.420549437,4.938214815,29.73666038,283.0134416,1.106214212 +2016-08-29 12:50:00-07:00,78,1039.408958,2.658938072,39.1683197,0.546801751,0.923036838,67.69256348,38.99958447,5.392355624,4.920782015,29.83083532,272.0258679,1.085944555 +2016-08-29 13:00:00-07:00,78,1035.352217,1.526024812,39.0728302,0.546388202,0.924047063,66.16213989,39.0897252,5.370980045,4.905223022,29.92638797,336.4040472,1.105011444 +2016-08-29 13:10:00-07:00,78,1024.86237,2.93703998,38.7094574,0.546288645,0.921460832,64.34204102,39.47386987,5.318213133,4.863518598,30.34473342,287.3175626,1.101728533 +2016-08-29 13:20:00-07:00,78,1014.416909,1.351985838,38.60179138,0.545883911,0.920952374,67.10806274,39.10849751,5.264673931,4.805636747,30.00661229,290.0476712,1.115589342 +2016-08-29 13:30:00-07:00,78,1005.20087,1.372133768,39.31892395,0.545388007,0.922613016,66.75366211,38.92433472,5.206142814,4.761372109,29.84472875,413.9118196,1.124709828 +2016-08-29 13:40:00-07:00,78,990.0982235,2.434991151,39.10423279,0.545503501,0.919384346,65.45587158,39.11982504,5.129670054,4.693731809,30.07907327,418.6025109,1.13005505 +2016-08-29 13:50:00-07:00,78,972.1147627,1.591834766,38.34799194,0.545054128,0.919979067,61.96630859,39.40183413,5.041605742,4.624589826,30.41081912,513.6380433,1.128804584 +2016-08-29 14:00:00-07:00,78,949.9006695,3.133389275,38.29031372,0.544953145,0.916089149,60.61019897,39.51143408,4.923221955,4.521641547,30.5844916,504.2170247,1.140460012 +2016-08-29 14:10:00-07:00,78,930.280556,1.01985048,40.06491089,0.543758912,0.914594891,65.27963257,38.84869857,4.823580848,4.417351876,29.97333015,467.3485731,1.164629499 +2016-08-29 14:20:00-07:00,78,906.1165132,1.954372125,38.90235901,0.544295247,0.91238946,63.65823364,39.11530321,4.699254125,4.316214549,30.29638223,519.7652119,1.173667264 +2016-08-29 14:30:00-07:00,78,879.4045881,1.398049146,38.84596252,0.543178282,0.909344824,62.92312622,39.10413157,4.559867091,4.182696137,30.41264713,549.0055724,1.165350618 +2016-08-29 14:40:00-07:00,78,855.3873854,1.196853225,39.06898499,0.543243858,0.91364404,60.26669312,39.38755076,4.444494732,4.081304968,30.76983544,486.6328076,1.195716396 +2016-08-29 14:50:00-07:00,78,826.7402232,0.821257979,39.13948059,0.542853416,0.914889717,59.81680298,39.39108544,4.296133976,3.950065044,30.85899926,534.1243822,1.249689175 +2016-08-29 15:00:00-07:00,78,798.3404046,2.762640724,38.92863464,0.543399461,0.913061518,57.81213379,39.59930978,4.144588128,3.819554643,31.13314592,592.787924,1.232807728 +2016-08-29 15:10:00-07:00,78,762.6183974,0.643574414,40.02838135,0.542334518,0.908184573,60.29681396,39.21071107,3.968038127,3.645901772,30.83468474,434.6876111,1.313625388 +2016-08-29 15:20:00-07:00,78,729.7135793,1.174542555,39.5496521,0.54243286,0.900881227,59.79885864,39.26027412,3.79500345,3.49944221,30.9768504,606.2916331,1.294865834 +2016-08-29 15:30:00-07:00,78,695.1893513,3.788087158,39.60540771,0.542141891,0.902318103,57.27764893,39.40532487,3.625777021,3.342094359,31.28230888,647.9551441,1.322460156 +2016-08-29 15:40:00-07:00,78,656.6012239,2.688057991,39.24906921,0.541285557,0.898881922,56.10418701,39.49568403,3.427069174,3.165918008,31.47711728,748.9032615,1.416257189 +2016-08-29 15:50:00-07:00,78,614.5000109,0.955001581,39.65539551,0.541454649,0.895038951,55.95550537,39.39951239,3.210389568,2.964569321,31.49557774,727.4331893,1.475464886 +2016-08-29 16:00:00-07:00,78,576.9579091,1.918562888,39.21702576,0.540479973,0.893107538,53.77201843,39.59177487,3.016638563,2.789577079,31.78668492,823.3089511,1.468647571 +2016-08-29 16:10:00-07:00,78,533.3942477,0.693362849,39.06065369,0.537651111,0.883502591,52.985672,39.51504611,2.786260643,2.580846004,31.82796358,813.9407277,1.605219814 +2016-08-29 16:20:00-07:00,78,490.9377991,2.822482623,39.20613098,0.538188264,0.873809108,52.59921265,39.42333623,2.568671269,2.374756922,31.93209254,1009.920807,1.707403559 +2016-08-29 16:30:00-07:00,78,446.8205727,0.940742288,40.32574463,0.537073292,0.873499362,51.55970764,39.3910282,2.337208445,2.162188801,32.0250241,964.6358023,1.723359371 +2016-08-29 16:40:00-07:00,78,402.2354893,2.504927237,39.68615723,0.537210006,0.866710234,50.20169067,39.4935196,2.10739075,1.95060932,32.24428549,856.1617764,1.854853355 +2016-08-29 16:50:00-07:00,78,357.1921919,2.42974394,39.61309814,0.536784037,0.861772318,48.96287537,39.44145655,1.866121668,1.729114031,32.32143962,993.7196183,2.024652131 +2016-08-29 17:00:00-07:00,78,311.7887822,1.133005195,41.02879333,0.536184676,0.854390811,48.67384338,39.1680598,1.633147707,1.50523107,32.26180012,836.453215,2.405728925 +2016-08-29 17:10:00-07:00,78,267.3162558,3.553004321,40.18795776,0.535208732,0.845413432,47.37477112,39.01322216,1.397468546,1.286842088,32.23143961,603.7182918,2.752913395 +2016-08-29 17:20:00-07:00,78,223.0446351,2.95206056,39.94699097,0.535153697,0.831395586,45.03044128,39.0148645,1.164004007,1.070396949,32.34737608,601.5026728,2.966882347 +2016-08-29 17:30:00-07:00,78,181.4801308,2.512777727,39.77844238,0.535409492,0.833902176,43.24302673,38.81328801,0.9426219,0.864214475,32.25942315,779.486314,3.573867412 +2016-08-29 17:40:00-07:00,78,141.8286153,0.995657025,39.57144165,0.538253004,0.79231463,42.0836792,38.47209928,0.733644811,0.668172064,32.04689943,916.7771136,5.593474162 +2016-08-29 17:50:00-07:00,78,105.3962106,1.844421392,40.04055786,0.543230652,0.794905969,40.72886658,37.98825152,0.536312338,0.482758035,31.75651404,1381.102804,6.067228557 +2016-08-29 18:00:00-07:00,78,72.2832086,1.409624834,39.28752136,0.553732982,0.758445258,39.23561096,37.383737,0.373103584,0.2743931,33.66684002,1224.569849,11.24166428 +2016-08-29 18:10:00-07:00,78,48.36629778,1.273398441,39.38877869,0.5734852,0.730806735,37.83721924,36.46753164,0.205886418,0.1579817,32.33323002,523.0515258,19.40278088 +2016-08-29 18:20:00-07:00,78,30.61067427,2.284744838,38.70497131,0.610469407,0.663165477,36.9874115,35.5704686,0.141966296,0.123347339,29.30077714,1863.435369,26.40604898 +2016-08-29 18:30:00-07:00,78,21.198698,3.185500405,38.48002625,0.641849491,0.51605839,36.19528198,34.75959927,0.100053817,0.085123342,28.09744135,3522.275539,39.68590331 +2016-08-29 18:40:00-07:00,78,14.37138997,3.800183712,38.27108765,0.588680311,-0.06255563,35.64413452,33.99958102,0.073592924,0.061405542,27.14973444,4023.676642,63.18476037 +2016-08-29 18:50:00-07:00,78,8.369585091,2.272888846,37.86157227,0.62351991,-0.1,34.98466492,32.28594264,0.040446278,0.032442108,24.92106421,5904.271537,142.1669751 +2016-08-29 19:00:00-07:00,78,3.087848112,2.866022559,37.45526123,0.561282446,0.300465461,34.293797,28.74457924,0.016256504,0.01213936,21.40410997,38336.87795,473.0834204 +2016-09-04 06:00:00-07:00,78,3.161346398,0.785769629,24.32493591,0.561848195,0.182237506,19.41770935,31.34167519,0.016849619,0.01281255,23.32810001,20675.07573,397.5741712 +2016-09-04 06:10:00-07:00,78,8.656198962,0.72160162,24.35185242,0.625185698,-0.1,19.56318665,35.18020664,0.04248261,0.034460313,27.4984319,6601.786496,116.9303333 +2016-09-04 06:20:00-07:00,78,14.31011072,0.566068282,24.07756042,0.584320691,0.482127524,19.89579773,36.7514358,0.072673005,0.061125208,29.62185748,4748.176749,67.63114878 +2016-09-04 06:30:00-07:00,78,21.10560139,0.481352108,24.85237122,0.615564261,0.659155679,20.10217285,37.79439054,0.111670999,0.093500528,31.16283979,2871.807558,37.2699519 +2016-09-04 06:40:00-07:00,78,32.24218348,0.964294109,25.62976074,0.601101911,0.693322804,20.99427795,38.79690236,0.18511547,0.156987678,32.81439676,2857.810018,21.32055438 +2016-09-04 06:50:00-07:00,78,55.04430896,1.031546588,26.09248047,0.56105836,0.766582925,22.62788391,39.61074494,0.302187401,0.26678269,33.54055944,2753.440714,11.18387913 +2016-09-04 07:00:00-07:00,78,79.8184759,0.96966153,26.44752502,0.538970354,0.735248004,23.91348267,40.1027366,0.417765227,0.379670564,33.8716646,1459.709998,8.852776496 +2016-09-04 07:10:00-07:00,78,117.843322,1.278885794,26.82820129,0.527533464,0.812583369,25.26959229,40.62637219,0.561729947,0.518490901,34.91138937,892.2104031,5.612124965 +2016-09-04 07:20:00-07:00,78,158.1952702,1.725057643,26.9691925,0.524506,0.819352499,27.20504761,41.09419723,0.872724897,0.806550394,34.65290279,1373.876385,4.284142134 +2016-09-04 07:30:00-07:00,78,201.0632374,1.22581284,27.6081543,0.523844963,0.842700531,29.40646362,41.25381947,1.105946282,1.024110657,34.69784264,1133.332545,3.418680848 +2016-09-04 07:40:00-07:00,78,246.2216865,1.180150467,28.49320984,0.524185075,0.850222313,31.787323,41.29266301,1.351093531,1.252741078,34.62043639,1111.823034,2.84369815 +2016-09-04 07:50:00-07:00,78,292.7470491,1.002907162,29.04692078,0.525650829,0.872084869,34.23739624,41.26700544,1.596147168,1.484245453,34.36032906,994.3939346,2.454283276 +2016-09-04 08:00:00-07:00,78,339.6423599,1.320743132,29.3302002,0.527274758,0.876683225,36.5138092,41.24200526,1.847175621,1.717366609,34.21044978,1033.772484,2.019604876 +2016-09-04 08:10:00-07:00,78,385.5601471,1.267790459,29.23022461,0.527894642,0.881443544,37.78274536,41.3529275,2.097973071,1.949940654,34.20222536,772.5715135,1.952893108 +2016-09-04 08:20:00-07:00,78,432.6930575,2.606346169,29.77111816,0.528896788,0.882130024,39.08628845,41.38605916,2.343973091,2.181510704,34.00420635,685.3125448,1.692425721 +2016-09-04 08:30:00-07:00,78,478.4492276,1.833486431,30.71513367,0.529568477,0.891427831,41.43702698,41.24322858,2.583034913,2.401717651,33.74417203,644.8480537,1.676898435 +2016-09-04 08:40:00-07:00,78,523.8867457,1.552901454,30.56324768,0.530409053,0.899629611,43.33851624,41.16413533,2.820957854,2.62080603,33.54779267,578.3891462,1.57444316 +2016-09-04 08:50:00-07:00,78,569.0524912,1.608497361,30.81639099,0.530655071,0.910764532,45.20732117,41.07100324,3.059440453,2.837704242,33.32700091,556.678143,1.496354908 +2016-09-04 09:00:00-07:00,78,611.7636719,1.793551412,31.49700928,0.53110648,0.909395646,47.26966858,40.94037942,3.28360764,3.046343501,32.99470011,442.0542224,1.378258192 +2016-09-04 09:10:00-07:00,78,655.2146752,1.28008741,31.77963257,0.531323535,0.916996067,48.74946594,40.87246245,3.502142407,3.246549949,32.81979437,408.1749491,1.323420992 +2016-09-04 09:20:00-07:00,78,695.6768341,2.01213147,32.27375183,0.531543855,0.918446511,50.38113403,40.74395303,3.71343217,3.436353388,32.58198311,399.1258945,1.334193939 +2016-09-04 09:30:00-07:00,78,734.5615954,3.257759674,31.71939087,0.533071775,0.924301896,50.69259949,40.80835084,3.904181671,3.611444557,32.54395145,442.7438463,1.296121198 +2016-09-04 09:40:00-07:00,78,771.0356166,1.457570437,32.0821228,0.533668209,0.921225925,51.61418152,40.7702442,4.090214288,3.780881905,32.41150207,437.6646141,1.260341387 +2016-09-04 09:50:00-07:00,78,807.0662742,1.190805123,32.02444458,0.533963979,0.920237516,52.62677002,40.70130038,4.265522171,3.944530469,32.18119836,448.3423412,1.192573756 +2016-09-04 10:00:00-07:00,78,838.7977421,1.066033719,32.72428894,0.534180959,0.925753458,54.53530884,40.51451467,4.432717149,4.092676328,31.90281076,477.5066878,1.17908034 +2016-09-04 10:10:00-07:00,78,868.7236346,4.003983052,32.66789246,0.534222817,0.926896109,53.50413513,40.61039172,4.589828274,4.236916994,31.92497675,410.619658,1.131581073 +2016-09-04 10:20:00-07:00,78,898.147433,2.781746783,32.64353943,0.534607801,0.928412675,53.96878052,40.60124555,4.730835562,4.366402721,31.83777353,495.6842152,1.139436488 +2016-09-04 10:30:00-07:00,78,925.1533789,2.006123043,32.42948914,0.534783607,0.926885902,54.64746094,40.51802972,4.876115252,4.493058439,31.6792879,343.8994974,1.127784468 +2016-09-04 10:40:00-07:00,78,950.375924,1.511244304,33.06651306,0.535406517,0.928426764,57.26611328,40.24234831,4.994192148,4.604743332,31.27605852,523.4767402,1.145080671 +2016-09-04 10:50:00-07:00,78,973.2514282,3.073747493,33.53372192,0.535266676,0.929678437,59.53674316,40.04213053,5.119118771,4.709174887,31.01667501,467.5373317,1.094092503 +2016-09-04 11:00:00-07:00,78,994.1990929,3.849571352,33.69393921,0.535618496,0.931762977,60.27438354,39.99003668,5.227381498,4.803068538,30.90928902,443.2833205,1.101885393 +2016-09-04 11:10:00-07:00,78,1013.490893,2.682690918,33.84967041,0.535747041,0.932654367,60.15646362,40.01234234,5.312837068,4.886209482,30.88023446,524.5715263,1.093270852 +2016-09-04 11:20:00-07:00,78,1034.12251,4.427083363,34.41749573,0.534997419,0.934513449,58.41455078,40.31238843,5.422151044,4.980642511,31.14307934,408.1477756,1.063696117 +2016-09-04 11:30:00-07:00,78,1046.481475,4.824027736,34.29571838,0.535562378,0.934292043,57.02642822,40.44959093,5.479350909,5.038293397,31.24732586,406.0855171,1.053474267 +2016-09-04 11:40:00-07:00,78,1058.220516,1.769478726,34.38993835,0.535990457,0.934924015,61.07485962,39.89521972,5.548910679,5.086472536,30.64315806,386.9702571,1.071761006 +2016-09-04 11:50:00-07:00,78,1067.674026,1.317739128,35.6300354,0.536182525,0.933592722,63.9331665,39.63932758,5.596085291,5.122812615,30.36392688,436.8289791,1.076840878 +2016-09-04 12:00:00-07:00,78,1075.770514,1.615747567,35.26728821,0.53619542,0.936120923,63.66464233,39.55775838,5.635289976,5.153621076,30.25924318,436.1801054,1.056888523 +2016-09-04 12:10:00-07:00,78,1077.198661,2.103016097,35.50378418,0.536963691,0.931471608,61.88876343,39.82614255,5.63401732,5.160249905,30.52819565,406.6650086,1.052069666 +2016-09-04 12:20:00-07:00,78,1083.406184,2.327764048,36.1055603,0.536803882,0.93132664,62.66549683,39.74370628,5.671965619,5.186649364,30.43663696,399.4792898,1.07079616 +2016-09-04 12:30:00-07:00,78,1084.699663,3.823175062,35.30574036,0.536942311,0.933677138,61.64266968,39.92401748,5.667879206,5.19611465,30.61036412,426.3774692,1.066392219 +2016-09-04 12:40:00-07:00,78,1080.547406,3.288801983,35.5512085,0.537283116,0.931633966,63.4697876,39.73143662,5.652146991,5.172375086,30.4269459,517.509535,1.076019168 +2016-09-04 12:50:00-07:00,78,1073.974765,4.066589023,36.03314209,0.537132454,0.930930393,63.66143799,39.5504568,5.62251819,5.141813668,30.25585295,465.1871027,1.062716557 +2016-09-04 13:00:00-07:00,78,1071.005602,1.998112039,35.82037354,0.536388541,0.929379365,63.17242432,39.83383078,5.598018415,5.128255135,30.55348478,418.2983275,1.067665673 +2016-09-04 13:10:00-07:00,78,1064.021517,1.984733753,36.49778748,0.535959475,0.930525911,64.01968384,39.53282812,5.566919664,5.090587275,30.27492312,454.1084577,1.080087242 +2016-09-04 13:20:00-07:00,78,1052.221076,2.330928915,36.70863342,0.535631107,0.931382051,62.37133789,39.68561532,5.496994018,5.040568528,30.46246634,492.9468494,1.083858302 +2016-09-04 13:30:00-07:00,78,1035.886294,3.70605424,36.37217285,0.535796424,0.926530997,62.70266724,39.65992827,5.422841723,4.960438328,30.48303303,403.521365,1.095374034 +2016-09-04 13:40:00-07:00,78,1021.023695,2.241606046,36.20233154,0.53524028,0.926428358,61.90158081,39.77435394,5.344160412,4.902473881,30.6267313,499.4942998,1.076493062 +2016-09-04 13:50:00-07:00,78,1004.693807,3.349004933,36.68171692,0.534384049,0.926522718,61.48501587,39.72674254,5.26251834,4.828890032,30.62269465,520.0499753,1.103699669 +2016-09-04 14:00:00-07:00,78,982.1122041,4.479114795,37.57958984,0.53487754,0.924372949,63.57876587,39.46576748,5.140669443,4.716250669,30.42394068,531.2184749,1.11676458 +2016-09-04 14:10:00-07:00,78,958.6608131,2.533205822,36.80091858,0.534409568,0.922285188,60.60250854,39.82626149,5.022994124,4.614495204,30.84668124,435.8520144,1.124054596 +2016-09-04 14:20:00-07:00,78,931.6181089,4.03582667,37.5847168,0.534242482,0.919313752,61.75418091,39.68200405,4.88238179,4.489882282,30.77601439,514.4675091,1.138209989 +2016-09-04 14:30:00-07:00,78,905.482043,4.109527837,36.95729065,0.533669632,0.917829129,58.28509521,40.08854725,4.74740831,4.36741437,31.31324678,503.1295145,1.146760881 +2016-09-04 14:40:00-07:00,78,880.908653,2.5392139,38.29351807,0.533142899,0.919792631,61.82659912,39.40085364,4.625568329,4.243075479,30.68338926,448.6442019,1.171305357 +2016-09-04 14:50:00-07:00,78,853.3858085,3.578599719,38.18200684,0.532729822,0.915261805,60.31219482,39.63820423,4.480982999,4.118813961,30.99446844,579.5261866,1.227121184 +2016-09-04 15:00:00-07:00,78,824.8956076,2.886851099,37.67123413,0.531677025,0.919594296,58.94970581,39.68215057,4.327086679,3.9857997,31.13374589,592.1096639,1.239292816 +2016-09-04 15:10:00-07:00,78,786.2313043,2.105259164,38.43323853,0.532071642,0.914831028,56.38296509,39.91212498,4.135783789,3.806261904,31.46149937,421.8700497,1.268760264 +2016-09-04 15:20:00-07:00,78,751.7244296,5.615192642,37.58792114,0.531388066,0.915053465,55.31141663,39.96623162,3.961147864,3.65790676,31.61047706,686.1968232,1.302291424 +2016-09-04 15:30:00-07:00,78,715.4193772,3.613367295,38.00769043,0.530868751,0.912086483,54.52954102,39.99958246,3.773868664,3.481576941,31.7929805,668.3563983,1.334691113 +2016-09-04 15:40:00-07:00,78,673.6489065,4.563430734,38.32684326,0.530839162,0.90853694,52.15637207,40.22952881,3.564362556,3.287765605,32.14544769,492.1740509,1.32017418 +2016-09-04 15:50:00-07:00,78,633.2722625,2.112549115,38.02883911,0.529795351,0.905111384,52.68637085,39.99838513,3.353308589,3.097614648,32.01796541,637.9403088,1.42872575 +2016-09-04 16:00:00-07:00,78,591.2056088,2.863899213,38.44349243,0.528914332,0.906583751,51.90899658,39.94615019,3.136412806,2.898764928,32.08462491,686.9199114,1.483729937 +2016-09-04 16:10:00-07:00,78,545.5351836,1.484447429,38.76905823,0.528056115,0.904960277,51.96731567,39.79960376,2.896370536,2.677371187,32.06252542,745.5051748,1.568698296 +2016-09-04 16:20:00-07:00,78,502.4712333,4.045800576,37.76287842,0.526883303,0.893881439,49.03016663,40.0676342,2.66786367,2.465408085,32.5311605,754.6062713,1.653324006 +2016-09-04 16:30:00-07:00,78,458.1995758,1.828599852,37.66546631,0.525234555,0.889245434,49.02696228,39.84425146,2.434712388,2.249279589,32.43625051,871.747151,1.768943676 +2016-09-04 16:40:00-07:00,78,411.3875625,0.882181562,38.8299408,0.524300198,0.884543047,48.42388916,39.74564727,2.18804769,2.02429098,32.43941574,820.6885658,1.804121675 +2016-09-04 16:50:00-07:00,78,363.7108402,2.795045092,39.23176575,0.523444668,0.888980386,48.03039551,39.55998208,1.937164818,1.789038513,32.39341834,636.1507785,1.972522692 +2016-09-04 17:00:00-07:00,78,317.1878975,3.434001273,38.25250244,0.52214618,0.879248422,45.64312744,39.63436608,1.682936136,1.552442245,32.69012711,620.2548167,2.054328082 +2016-09-04 17:10:00-07:00,78,271.7208071,1.456569219,38.73252869,0.52081601,0.850234343,44.0383606,39.54611614,1.435912272,1.323498286,32.73217744,616.4194523,2.690575827 +2016-09-04 17:20:00-07:00,78,224.0441216,1.106849886,38.33901978,0.519408559,0.84852696,42.22210693,39.43103433,1.184622872,1.090323421,32.7433377,642.6819353,3.186926921 +2016-09-04 17:30:00-07:00,78,179.6524176,3.372957758,38.07498169,0.518584396,0.82804171,40.60197449,39.19314847,0.942707685,0.864866907,32.62355807,847.2583818,3.938992473 +2016-09-04 17:40:00-07:00,78,137.7351527,0.526493895,38.05767822,0.519581018,0.812610098,39.19395447,38.87540037,0.721199851,0.655543194,32.53937367,1135.147535,5.064867091 +2016-09-04 17:50:00-07:00,78,99.98462787,2.220336827,37.71353149,0.523482445,0.783486152,37.7923584,38.35748223,0.515721913,0.460813999,32.26483289,1534.480511,8.021543873 +2016-09-04 18:00:00-07:00,78,68.38305169,1.587949754,37.72891235,0.531326639,0.798495364,36.33370972,37.69130668,0.344182245,0.3001301,31.74577999,1584.813824,10.6561739 +2016-09-04 18:10:00-07:00,78,43.16316569,1.452723672,37.25080872,0.553066903,0.731595891,35.07951355,36.80133946,0.214452925,0.1796275,30.97809999,1718.451797,17.59210995 +2016-09-04 18:20:00-07:00,78,24.64076037,1.657044296,37.26042175,0.610823706,0.679993218,33.86248779,35.68264643,0.123315079,0.1031246,29.44479002,2068.759562,31.92348869 +2016-09-04 18:30:00-07:00,78,16.98765475,1.915599047,36.79579163,0.572271067,0.499706587,32.81080627,34.82026907,0.082721294,0.06947761,28.04572758,3691.999669,55.98458611 +2016-09-04 18:40:00-07:00,78,9.359318455,1.61863178,35.59799194,0.608776917,-0.012919269,31.84307861,33.55227158,0.050397214,0.041030114,26.37048688,4636.626743,99.40040977 +2016-09-04 18:50:00-07:00,78,4.59929233,2.480814317,35.1615448,0.559154819,-0.1,31.22911926,30.68897949,0.022335569,0.01731778,22.99791999,19622.1738,297.9518121 +2016-10-03 06:20:00-07:00,78,3.195150607,0.922156535,19.38566589,0.563797162,0.066360213,15.85635315,32.84628248,0.01917678,0.0152119,23.70720003,18561.42435,375.6359908 +2016-10-03 06:30:00-07:00,78,10.64175499,1.113338876,19.1799469,0.597678844,-0.1,15.74290466,36.32313122,0.049482767,0.04091427,28.61825001,5242.303712,109.7916827 +2016-10-03 06:40:00-07:00,78,18.09069492,0.609207423,19.23762512,0.643099266,0.051430383,15.79930115,37.8081332,0.083554838,0.07153612,30.51819,4024.547004,51.33000653 +2016-10-03 06:50:00-07:00,78,24.41693272,0.839282703,19.23506165,0.683074797,-0.006983076,16.31970215,40.17425299,0.196607054,0.1347996,37.20204998,273.7561336,18.52789629 +2016-10-03 07:00:00-07:00,78,105.9221056,0.954400599,19.6118927,0.466044477,0.007699845,16.7984314,39.14966835,0.154195664,0.136082636,32.83312272,2911.875503,22.30805272 +2016-10-03 07:10:00-07:00,78,125.1655366,0.274828789,19.75352478,0.488468794,0.027158803,17.04646301,39.66456087,0.177932777,0.157045965,34.17526183,1153.6965,22.71425063 +2016-10-03 07:20:00-07:00,78,184.3774721,1.292904946,20.03359985,0.489234232,0.020963365,17.90459534,39.67780377,0.193998393,0.174408373,34.09965954,2181.278676,17.71838106 +2016-10-03 07:30:00-07:00,78,224.1615554,1.006311751,20.62384033,0.492461863,0.037719224,17.78153992,40.67276729,0.309889529,0.282822828,35.26068635,1116.586998,11.2655082 +2016-10-03 07:40:00-07:00,78,252.9605877,1.324508563,21.20320129,0.499836561,0.012622375,20.39697266,43.11938837,1.383759811,1.28305088,36.85746658,378.6272269,2.480456041 +2016-10-03 07:50:00-07:00,78,298.6725151,0.721761645,21.86585999,0.505988805,-0.003307544,23.07971191,42.89856548,1.670601191,1.559914321,36.07807782,1073.04659,2.332671205 +2016-10-03 08:00:00-07:00,78,345.5740164,1.388796363,22.38819885,0.510460814,-0.005322139,25.44967651,42.62858078,1.930697415,1.804129203,35.55622703,777.7485098,2.076062714 +2016-10-03 08:10:00-07:00,78,396.6176063,2.2282279,22.79899597,0.512853892,-0.004361441,29.46478271,42.46268116,2.213444488,2.067207082,35.24668053,685.9302985,1.744536636 +2016-10-03 08:20:00-07:00,78,442.1111121,1.772763105,22.6073761,0.51659587,-0.005151791,32.53330994,42.34793465,2.459660717,2.295900934,35.01140264,758.0157307,1.613117077 +2016-10-03 08:30:00-07:00,78,486.1193465,1.309287515,22.91499329,0.518811171,-0.008034824,34.5905304,42.24609414,2.693708437,2.518898931,34.68785885,764.6325252,1.461041715 +2016-10-03 08:40:00-07:00,78,532.2498865,1.202541115,23.38668823,0.520251056,-0.011379294,37.33348083,42.02528093,2.936229384,2.738385594,34.35286847,730.5452164,1.518244751 +2016-10-03 08:50:00-07:00,78,575.4077027,1.042841831,24.80302429,0.522805424,-0.00354478,40.16168213,41.76734794,3.163402431,2.941108759,33.97748511,626.565472,1.450716449 +2016-10-03 09:00:00-07:00,78,622.838591,0.733818384,23.83273315,0.522881038,-0.002288758,40.90638733,41.74222726,3.405040807,3.164593186,33.82557034,674.9226776,1.327711447 +2016-10-03 09:10:00-07:00,78,662.4117226,1.216720361,24.25636292,0.524617852,-0.005702989,43.25648499,41.50137254,3.602887989,3.351379314,33.398026,690.0271524,1.343615642 +2016-10-03 09:20:00-07:00,78,697.3186964,2.739568977,23.91027832,0.527306028,-0.006084509,41.43766785,41.81784485,3.77573071,3.512060036,33.63475598,610.0301019,1.297505989 +2016-10-03 09:30:00-07:00,78,733.2331392,2.308537709,24.05127869,0.52741141,0.003230065,41.70236206,41.82880079,3.954321451,3.677019896,33.54390653,537.9654207,1.221433499 +2016-10-03 09:40:00-07:00,78,770.1828075,0.248993388,24.70240784,0.52877412,-0.002786605,45.33100891,41.51075553,4.133999509,3.834325568,33.11741979,610.6183434,1.141218557 +2016-10-03 09:50:00-07:00,78,795.3691767,1.454486456,24.32557678,0.527547443,-0.009729536,45.51493835,41.46920298,4.242516129,3.935129805,33.0373041,700.5686835,1.182457487 +2016-10-03 10:00:00-07:00,78,821.1673139,1.545531317,25.0869397,0.526423558,-0.002166144,46.19491577,41.44335593,4.36194216,4.049474864,32.87375272,588.2585344,1.20499314 +2016-10-03 10:10:00-07:00,78,862.3798241,2.921658698,24.5453949,0.527474351,-0.006422428,45.02146912,41.72728616,4.562692316,4.235815815,33.06668654,503.7787279,1.172191621 +2016-10-03 10:20:00-07:00,78,901.0153502,3.858022965,24.60499573,0.528301548,-0.006048683,45.79052734,41.64972069,4.754009953,4.409228854,32.89415518,531.9182633,1.118250748 +2016-10-03 10:30:00-07:00,78,923.4111972,2.361850804,24.85429382,0.528701734,-0.004240186,47.17481995,41.53894373,4.866353415,4.507257944,32.72123696,517.9934313,1.081557003 +2016-10-03 10:40:00-07:00,78,950.100943,2.854686733,25.10360718,0.529412509,-0.000146211,47.35746765,41.60803664,5.000071306,4.625248921,32.72415163,485.6756738,1.091158655 +2016-10-03 10:50:00-07:00,78,969.9042195,2.677964712,25.54837036,0.530257289,-0.00791368,49.14552307,41.33871322,5.101553206,4.719646224,32.3884693,529.1225284,1.09054636 +2016-10-03 11:00:00-07:00,78,982.6156917,3.395989132,25.32406616,0.530253737,-0.000960535,50.05172729,41.2462691,5.176443529,4.778237697,32.25542392,572.7450088,1.086606556 +2016-10-03 11:10:00-07:00,78,1012.900121,0.56843156,25.60220337,0.531558935,0.001152523,50.19656372,41.30095064,5.325843899,4.916260764,32.23739496,524.6922237,1.093346566 +2016-10-03 11:20:00-07:00,78,1015.662385,2.124165036,25.68551636,0.531763204,-0.002352786,51.32579041,41.16261777,5.337704703,4.932573668,32.02987021,631.1638268,1.02307321 +2016-10-03 11:30:00-07:00,78,1044.954941,3.626985792,26.08542297,0.532148942,-0.00436728,50.46636963,41.37637905,5.492136494,5.07425088,32.1766664,426.5551295,1.055899157 +2016-10-03 11:40:00-07:00,78,1051.458342,1.50119042,26.12260071,0.533120398,-0.003156399,50.92332458,41.28460946,5.525965859,5.102659199,32.06515832,469.8162647,1.050969471 +2016-10-03 11:50:00-07:00,78,1067.687473,2.058915691,26.97688293,0.532856821,-0.000762641,50.1055603,41.37481481,5.607321457,5.179114101,32.10922125,510.7963765,1.044955598 +2016-10-03 12:00:00-07:00,78,1076.156525,3.561055488,26.80513,0.532190344,0.001488547,50.7150354,41.34556069,5.655319146,5.21741099,32.0637651,453.0300426,1.026096287 +2016-10-03 12:10:00-07:00,78,1070.96872,2.585157556,26.77372742,0.532890954,-0.003073598,51.49113464,41.20405589,5.62432688,5.189104896,31.92687848,653.479926,1.047280925 +2016-10-03 12:20:00-07:00,78,1082.4751,4.59523384,27.2819519,0.532174788,-0.01050071,50.54711914,41.36805557,5.677145154,5.242640397,32.07602971,533.7443996,1.043041041 +2016-10-03 12:30:00-07:00,78,1075.434513,4.035666436,27.69467163,0.533201229,0.902750018,51.862854,41.19185328,5.645024374,5.206545765,31.90206378,436.9931782,1.050734657 +2016-10-03 12:40:00-07:00,78,1074.057246,4.163722149,26.95701599,0.532712822,0.904065245,49.27626038,41.51491405,5.631659954,5.212064219,32.23718194,509.6695689,1.045772517 +2016-10-03 12:50:00-07:00,78,1057.933524,5.58819551,27.35372925,0.533207545,0.89985784,49.73834229,41.40889924,5.548822626,5.122615508,32.18323461,501.7561462,1.05251093 +2016-10-03 13:00:00-07:00,78,1017.941471,4.372929074,27.07044983,0.533068852,0.893119697,48.91288757,41.47655397,5.332256981,4.924103483,32.41845337,575.6723946,1.069924326 +2016-10-03 13:10:00-07:00,78,1043.122745,4.917235547,27.90808105,0.531954547,0.900062717,50.22091675,41.35391157,5.479528016,5.058369563,32.15377454,383.2598249,1.06023431 +2016-10-03 13:20:00-07:00,78,1028.055181,4.157313206,27.70043945,0.53233776,0.905204344,49.28843689,41.48109499,5.395372723,4.973662538,32.3942501,419.5896978,1.04230395 +2016-10-03 13:30:00-07:00,78,1014.811832,3.751877197,27.9446106,0.5316914,0.903691095,48.78086853,41.56076076,5.319271128,4.912150106,32.5100777,509.0190557,1.027488113 +2016-10-03 13:40:00-07:00,78,996.2753082,3.028405029,28.32209778,0.531659524,0.90259224,48.66999634,41.49623234,5.213902068,4.814782603,32.496506,374.4089318,1.080565294 +2016-10-03 13:50:00-07:00,78,975.9219241,1.143700364,28.07983398,0.531230055,0.903280507,48.30084229,41.52780785,5.106063489,4.721178479,32.57997222,478.2059096,1.080278947 +2016-10-03 14:00:00-07:00,78,955.7872126,2.845714535,28.14585205,0.530502159,0.893238324,49.27754211,41.32059966,5.006575156,4.627135377,32.42205935,585.4531382,1.081572433 +2016-10-03 14:10:00-07:00,78,928.1570722,2.751305318,27.73825073,0.530595643,0.885987146,46.52047729,41.64397637,4.869139875,4.507144111,32.82390669,585.0190385,1.086512904 +2016-10-03 14:20:00-07:00,78,899.5198971,3.186141271,28.50794983,0.529919782,0.880989223,46.40512085,41.60972247,4.725410268,4.379380323,32.85246504,616.7324521,1.093526658 +2016-10-03 14:30:00-07:00,78,862.4158127,2.223861488,28.85786438,0.529051315,0.87855314,46.80375671,41.48241091,4.540454082,4.20821937,32.82594086,761.5963249,1.177197301 +2016-10-03 14:40:00-07:00,78,831.7615376,2.226865771,28.36503601,0.528172177,0.875138178,45.65658569,41.6071998,4.396903526,4.072438412,33.10282044,603.6830874,1.158083002 +2016-10-03 14:50:00-07:00,78,796.0809388,2.602661415,28.41886902,0.527357732,0.878779102,45.09645081,41.59832121,4.224759758,3.914398578,33.17923488,591.039553,1.223436558 +2016-10-03 15:00:00-07:00,78,750.862622,3.696641293,28.25352478,0.526773351,0.860546162,44.9221344,41.471076,3.999051953,3.711621962,33.16440455,643.1382268,1.26586239 +2016-10-03 15:10:00-07:00,78,721.4261212,2.333412054,28.69444275,0.524312147,0.856847142,45.50468445,41.33979581,3.861776872,3.580390033,33.09900765,638.8400852,1.248190171 +2016-10-03 15:20:00-07:00,78,678.4070285,1.450921772,28.94630432,0.5236672,0.86094418,43.2353363,41.59210966,3.641374148,3.383571667,33.47331637,570.1301784,1.280680456 +2016-10-03 15:30:00-07:00,78,635.9175159,2.59589212,28.97514343,0.521761682,0.852892436,42.69636536,41.51135431,3.424187473,3.18475279,33.49790551,695.9799522,1.385049287 +2016-10-03 15:40:00-07:00,78,593.2530593,1.434218735,28.80467224,0.519766848,0.843450618,42.26889038,41.45495675,3.201816111,2.970825265,33.64350724,676.2759812,1.443278055 +2016-10-03 15:50:00-07:00,78,553.2970239,3.83110567,28.70533752,0.516221381,0.845740772,40.77436829,41.5429052,2.99487591,2.785499928,33.82629232,786.8293398,1.439097323 +2016-10-03 16:00:00-07:00,78,510.2085598,3.20741049,28.94374084,0.51345959,0.841183844,39.25675964,41.59827189,2.769108821,2.575790526,34.00510552,859.9908243,1.593306103 +2016-10-03 16:10:00-07:00,78,470.1164258,1.429332225,28.60151672,0.510112369,0.837702101,37.52127075,41.67768125,2.552763827,2.376980158,34.19683955,791.8396699,1.680761124 +2016-10-03 16:20:00-07:00,78,426.3085175,2.565850751,28.64894104,0.506317392,0.832911677,36.16836548,41.70603202,2.314432618,2.152431507,34.44031567,966.763576,1.695250089 +2016-10-03 16:30:00-07:00,78,379.897741,6.534253238,28.44194031,0.502262584,0.835809338,34.87635803,41.66845702,2.066364344,1.92116031,34.52533274,877.2946999,1.9760345 +2016-10-03 16:40:00-07:00,78,331.5803688,1.896292521,28.5085907,0.497174477,0.82251906,33.21903992,41.64343421,1.801920687,1.674964164,34.63027528,712.276017,2.044043247 +2016-10-03 16:50:00-07:00,78,285.5677931,1.809093137,28.77326965,0.490379567,0.811615362,32.64866638,41.42559972,1.547786396,1.436446561,34.55165752,654.9797418,2.504343072 +2016-10-03 17:00:00-07:00,78,237.9159835,2.969644535,28.38938904,0.483032016,0.775060562,31.15861511,41.27489196,1.286940336,1.189522332,34.61840593,630.0422249,2.715150744 +2016-10-03 17:10:00-07:00,78,190.7859944,3.223272474,28.29389954,0.474906181,0.744017806,29.98516846,40.99112672,1.023219688,0.943232159,34.45457149,728.3394893,3.320591916 +2016-10-03 17:20:00-07:00,78,140.6853758,1.215999448,28.36824036,0.467367733,0.726994528,28.61689758,40.51652648,0.736575605,0.671555343,34.20019588,692.1070932,5.041530545 +2016-10-03 17:30:00-07:00,78,102.3222591,1.734270123,28.27146912,0.45052652,0.626241637,27.25823975,40.02926798,0.526523801,0.477718222,33.75174527,1231.137793,6.968070695 +2016-10-03 17:40:00-07:00,78,66.71127301,2.051985813,27.88308716,0.434563733,0.548230766,25.56118774,38.49470687,0.207407089,0.184709744,33.00287323,1669.900262,17.3226796 +2016-10-03 17:50:00-07:00,78,32.38500054,4.510437688,27.16467285,0.444152258,0.258097993,24.51335144,37.39819654,0.12541148,0.107460491,31.45613172,2187.377149,34.68957059 +2016-10-03 18:00:00-07:00,78,13.52215717,3.966010935,26.90959167,0.539371328,-0.080783277,23.75839233,35.45771908,0.060185557,0.049934664,28.23854703,5172.066957,82.17552677 +2016-10-03 18:10:00-07:00,78,5.774914139,1.433137469,26.32704163,0.547106104,0.616614249,22.7111969,32.66250591,0.025110505,0.019574184,24.71914638,10872.48122,263.9587847 +2016-11-18 07:00:00-07:00,78,5.512831281,0.657954407,8.784896851,0.555955125,-0.1,4.334625244,35.80425504,0.024532121,0.019225836,27.1976469,9941.521568,228.7317788 +2016-11-18 07:10:00-07:00,78,11.75947719,1.018769075,8.83744812,0.580844184,0.100851237,4.362182617,38.6423591,0.054879458,0.045374985,31.19586332,6225.99086,88.80865811 +2016-11-18 07:20:00-07:00,78,88.77567525,0.572797554,8.968826294,0.304784114,0.477204897,5.036392212,42.02915254,0.137550336,0.08096088,38.73620003,434.058854,38.38648841 +2016-11-18 07:30:00-07:00,78,136.9825241,0.777277853,9.350143433,0.353441945,0.583017868,8.237579346,43.21441717,0.241517597,0.1149141,41.05335,126.6169447,28.03712652 +2016-11-18 07:40:00-07:00,78,181.2169976,1.043442814,10.34671021,0.391533578,0.683788247,11.45799255,43.90549107,1.008505616,0.929744285,37.79879855,718.0738222,3.776824336 +2016-11-18 07:50:00-07:00,78,222.9461264,1.312772292,11.436203,0.425365949,0.719569005,14.13751221,43.91642725,1.29438411,1.189089428,37.6056748,908.9306451,2.66804215 +2016-11-18 08:00:00-07:00,78,285.0642419,1.423724103,12.09246826,0.437342023,0.7189927,15.9095459,43.78619752,1.343316313,1.260762531,37.74712314,463.298638,2.763923702 +2016-11-18 08:10:00-07:00,78,334.938689,1.211112868,12.46481323,0.453749552,0.796535274,18.22567749,43.88318868,1.786028554,1.620265367,37.63431979,472.722479,2.19699794 +2016-11-18 08:20:00-07:00,78,386.9819886,1.619553021,12.61669922,0.464915102,0.79837982,20.39505005,43.81742619,2.082640204,1.945313661,36.84719403,532.1374266,1.938231105 +2016-11-18 08:30:00-07:00,78,433.6418093,0.999382292,13.29475403,0.473892385,0.817167262,22.52278137,43.72929913,2.365736386,2.212972259,36.4764112,531.3832681,1.754297908 +2016-11-18 08:40:00-07:00,78,482.6812027,2.073495383,14.00036621,0.481430005,0.847629377,24.05063782,43.70371935,2.621865016,2.451981758,36.30544615,563.3556415,1.623022184 +2016-11-18 08:50:00-07:00,78,527.758412,2.992155743,14.81364014,0.487453763,0.853835057,25.90982056,43.62884972,2.859109715,2.668770109,36.13160446,466.8827805,1.440698743 +2016-11-18 09:00:00-07:00,78,571.938917,2.71401416,15.95697021,0.492603272,0.858068424,27.78759766,43.5187622,3.085758203,2.885708995,35.79382513,396.9169311,1.449221889 +2016-11-18 09:10:00-07:00,78,613.2207601,5.002752962,16.28573608,0.496641596,0.865393657,29.365448,43.44712805,3.294074978,3.074625141,35.61968135,386.1918907,1.324189149 +2016-11-18 09:20:00-07:00,78,653.2463793,3.708457681,16.63885498,0.500112009,0.869994213,30.2492218,43.456665,3.495495895,3.264012081,35.52524842,350.5742088,1.277117247 +2016-11-18 09:30:00-07:00,78,690.7382509,3.290043902,16.83496704,0.502797478,0.87553941,30.6625824,43.48296979,3.689115812,3.439150163,35.47892804,325.5510355,1.288824274 +2016-11-18 09:40:00-07:00,78,728.8107564,4.913270068,17.15092468,0.505794619,0.879581641,32.19683838,43.34563376,3.868445228,3.60516411,35.23381028,317.1474128,1.207345633 +2016-11-18 09:50:00-07:00,78,763.9413635,4.70266155,17.39445496,0.508169229,0.884084464,32.93513489,43.3041304,4.042119272,3.765913848,35.02077359,329.0352766,1.227582539 +2016-11-18 10:00:00-07:00,78,796.1118027,4.780127518,17.58158875,0.510154997,0.882777356,33.90927124,43.23957064,4.197257022,3.919145357,34.86867084,301.8182123,1.12555513 +2016-11-18 10:10:00-07:00,78,828.3669971,4.986370043,17.63221741,0.511848878,0.892156687,34.39955139,43.24517202,4.353927181,4.058653079,34.79065873,311.5997677,1.143588276 +2016-11-18 10:20:00-07:00,78,856.2412791,5.597128104,18.05007935,0.512997691,0.894597026,34.51426697,43.23065807,4.49746119,4.189097242,34.71922592,361.1757684,1.121508754 +2016-11-18 10:30:00-07:00,78,881.0116319,3.767658924,18.51086426,0.514671546,0.892880444,36.83360291,43.0067052,4.635538846,4.304377813,34.4282839,373.8505081,1.088752365 +2016-11-18 10:40:00-07:00,78,903.8417454,6.142555727,18.77297974,0.515821333,0.894645078,37.49884033,42.93913476,4.743976947,4.408338293,34.298209,429.2751812,1.051918285 +2016-11-18 10:50:00-07:00,78,925.4539109,4.446229655,18.81463623,0.516589562,0.894144093,38.18457031,42.83011475,4.849795128,4.505915096,34.12003646,399.5126364,1.045943635 +2016-11-18 11:00:00-07:00,78,943.6538745,5.74284798,19.25236511,0.517909779,0.900106312,38.89146423,42.79894822,4.943211608,4.598742088,33.96523095,375.4286577,1.061064826 +2016-11-18 11:10:00-07:00,78,957.9841398,5.466148295,19.59074402,0.51903934,0.89536218,39.37275696,42.76929033,5.022988519,4.66764725,33.90021424,308.3020965,1.051779494 +2016-11-18 11:20:00-07:00,78,971.5769231,3.429474975,19.91951294,0.519640029,0.900239619,39.45159363,42.70360078,5.084381289,4.724387969,33.80096523,393.915616,1.068387467 +2016-11-18 11:30:00-07:00,78,982.7544636,3.408205826,19.91694641,0.520275495,0.899452495,39.66629028,42.72283759,5.145114305,4.779415216,33.79673532,490.639711,1.060209083 +2016-11-18 11:40:00-07:00,78,991.5960444,4.331832742,20.53796387,0.520649334,0.89548434,41.45625427,42.51005389,5.190698312,4.821362282,33.54920563,432.1731349,1.044758161 +2016-11-18 11:50:00-07:00,78,997.2697484,2.013773485,20.50463867,0.521268946,0.900784532,42.15994263,42.39641356,5.22329092,4.844616412,33.41871314,486.3351189,1.061144638 +2016-11-18 12:00:00-07:00,78,1001.355224,3.487955444,21.00965637,0.521499861,0.903178506,41.72735596,42.39944887,5.242066065,4.85961392,33.40978282,345.0249361,1.05792365 +2016-11-18 12:10:00-07:00,78,1003.634388,2.175114783,21.35380554,0.521541214,0.901998129,43.59103394,42.23135185,5.255727937,4.864983896,33.23373124,370.0252626,1.061041099 +2016-11-18 12:20:00-07:00,78,1004.302392,4.20117361,21.75819397,0.52150667,0.901634264,44.83882141,42.05479419,5.2538793,4.86366598,33.05614074,350.9026216,1.043131197 +2016-11-18 12:30:00-07:00,78,999.7390272,1.960941022,21.59989929,0.52165842,0.900682557,45.69631958,41.92704121,5.235954182,4.842868451,32.94136661,358.7882191,1.066048565 +2016-11-18 12:40:00-07:00,78,997.2003577,2.966480227,22.21195984,0.521280911,0.905479739,46.16030884,41.79426463,5.21185397,4.822205992,32.80854366,452.7648558,1.070267846 +2016-11-18 12:50:00-07:00,78,990.4269499,3.592698919,22.32539368,0.521121955,0.905172248,45.73220825,41.79645974,5.179495022,4.793684522,32.83091278,434.1722047,1.075483363 +2016-11-18 13:00:00-07:00,78,980.9301523,2.26143281,21.93891907,0.520908063,0.905011508,43.64678955,42.00457018,5.12187085,4.746058143,33.07150542,540.2526757,1.07684542 +2016-11-18 13:10:00-07:00,78,969.4468484,2.705041403,22.93934631,0.520249721,0.903297171,45.47840881,41.80359609,5.063165155,4.683785306,32.89887774,460.6981464,1.084940745 +2016-11-18 13:20:00-07:00,78,955.5199761,2.335775122,23.18481445,0.519552208,0.90027395,47.05241394,41.55275884,4.988882201,4.616904597,32.6756815,467.202028,1.061265765 +2016-11-18 13:30:00-07:00,78,940.0617199,1.54124523,23.50076294,0.518575077,0.897284658,47.3004303,41.530051,4.908546386,4.541725997,32.68919523,532.8363117,1.10655781 +2016-11-18 13:40:00-07:00,78,921.9517712,0.296979435,23.83850098,0.517529793,0.896533983,47.37733459,41.37144677,4.815243362,4.454169199,32.57967612,475.9949981,1.119839553 +2016-11-18 13:50:00-07:00,78,903.4382945,0.485757915,23.85067749,0.516572762,0.893793788,49.09617615,41.18249884,4.718493455,4.361466122,32.43960683,474.3507143,1.134510962 +2016-11-18 14:00:00-07:00,78,879.3516194,2.23299427,23.30593872,0.515278573,0.896678636,46.99601746,41.31851351,4.589006513,4.246989469,32.63812864,546.3090432,1.154341323 +2016-11-18 14:10:00-07:00,78,853.1270909,3.362423172,24.18202209,0.51396554,0.895038735,48.10473633,41.14717133,4.455581063,4.123227588,32.52996684,592.2265675,1.123077268 +2016-11-18 14:20:00-07:00,78,823.4593036,1.180791333,24.40504456,0.511913831,0.894366272,46.49612427,41.26401014,4.305921743,3.97911364,32.80149848,613.4379958,1.18644344 +2016-11-18 14:30:00-07:00,78,794.5418148,1.743402975,24.74150085,0.510633479,0.884015054,46.58841309,41.24796342,4.163924673,3.854138029,32.86011252,615.4210174,1.20977184 +2016-11-18 14:40:00-07:00,78,759.8609642,1.828359221,23.95513916,0.508364554,0.879217734,44.48248291,41.42784637,3.990958947,3.699754153,33.13036207,579.5561057,1.233560194 +2016-11-18 14:50:00-07:00,78,724.0469691,2.042693356,24.1736908,0.506338554,0.866874671,41.1499176,41.81457833,3.808985499,3.537364528,33.6115266,529.866898,1.217497123 +2016-11-18 15:00:00-07:00,78,686.8300643,2.428302672,23.97692871,0.503249267,0.870166449,40.3699646,41.83574425,3.625228506,3.368547658,33.72984628,588.039545,1.24926611 +2016-11-18 15:10:00-07:00,78,647.6009624,0.796704451,24.47425842,0.500356012,0.868432037,40.19564819,41.78936643,3.428209821,3.184099923,33.86436738,738.7903406,1.328330433 +2016-11-18 15:20:00-07:00,78,603.9654597,1.263905377,24.40119934,0.496831766,0.86149528,38.60435486,41.89993759,3.217122768,2.98864121,34.08304504,670.1121105,1.332444524 +2016-11-18 15:30:00-07:00,78,562.8093114,0.717876563,25.27087402,0.49222466,0.85420867,38.79789734,41.70123671,2.997247221,2.785952433,33.9951244,755.6973987,1.442887654 +2016-11-18 15:40:00-07:00,78,518.5930301,1.180671053,24.91004944,0.487094915,0.857954633,37.93399048,41.74122057,2.762606191,2.571065557,34.14796159,911.3545286,1.470080768 +2016-11-18 15:50:00-07:00,78,474.1505292,1.189202783,25.59899902,0.480909369,0.834389892,37.81671143,41.56839242,2.529266859,2.354176554,34.09386829,1028.211601,1.720561192 +2016-11-18 16:00:00-07:00,78,427.1949628,2.174794315,24.46913147,0.472511209,0.826941984,34.29187622,41.8608228,2.278452139,2.119196809,34.6097615,1088.439505,1.652410092 +2016-11-18 16:10:00-07:00,78,377.8472969,1.331718187,24.45054626,0.462351564,0.788690259,32.25580811,41.94117938,2.015283813,1.877991112,34.82176384,1148.526513,2.040693502 +2016-11-18 16:20:00-07:00,78,329.5427894,1.391760134,24.54988098,0.449451842,0.796480173,31.7437439,41.76011991,1.755439484,1.633716656,34.76288054,1229.865873,1.985461345 +2016-11-18 16:30:00-07:00,78,193.5636133,1.018048162,24.37364197,0.432361515,0.765295534,30.07745361,41.67375064,1.483794554,1.375703204,34.91333513,1219.458636,2.434397807 +2016-11-18 16:40:00-07:00,78,226.653929,1.72001055,24.37043762,0.409185114,0.605541887,28.14777161,40.01823371,0.202163193,0.1649383,37.08271001,750.6258054,15.43663147 +2016-11-18 16:50:00-07:00,78,172.5345329,0.93609585,24.58769226,0.379212835,0.64091381,24.86711121,40.69555451,0.51348104,0.4733146,36.08551,1207.490153,5.570880697 +2016-11-18 17:00:00-07:00,78,117.8858561,0.741108055,24.50437927,0.336642962,0.39046222,23.33605957,40.85697163,0.588959223,0.538383859,34.65095722,749.8671938,6.338091018 +2016-11-18 17:10:00-07:00,78,56.74404649,0.912383096,23.26428223,0.309741908,0.402973616,20.77893066,37.3155623,0.075581374,0.062622054,31.53074945,2078.254582,56.23388229 +2016-11-18 17:20:00-07:00,78,7.576207811,0.916028107,22.31770325,0.577772458,-0.1,18.23529053,35.11959664,0.039924526,0.03186923,27.73705002,5809.233361,135.8241805 +2016-11-18 17:30:00-07:00,78,3.428946352,1.121029132,22.32539368,0.507812619,1.1,16.54336548,31.68799771,0.016246525,0.0122947,23.72542001,23224.75316,454.1792542 +2016-12-18 07:20:00-07:00,78,2.480802064,1.138693364,4.149414063,0.561937842,,0.620101929,33.30080152,0.013134897,0.009840512,24.51384153,23996.38723,681.5999818 +2016-12-18 07:30:00-07:00,78,7.496509761,1.254332266,4.316680908,0.56215657,,0.401550293,38.29331567,0.040318129,0.032612675,30.07766602,6980.507132,137.4083451 +2016-12-18 07:40:00-07:00,78,54.10512226,1.393322661,4.849899292,0.290731685,,0.743148804,41.30133478,0.09575784,0.078875961,35.88868737,1270.704055,43.60488395 +2016-12-18 07:50:00-07:00,78,111.2977188,1.571927466,5.46321106,0.315130162,,3.539942627,43.11840363,0.144060186,0.1222332,39.29588002,1144.993352,25.13292145 +2016-12-18 08:00:00-07:00,78,166.4036413,1.239872435,6.00604248,0.352797195,,6.764846802,43.94550197,0.244101793,0.156825198,41.73776,186.1316533,20.46813606 +2016-12-18 08:10:00-07:00,78,201.4905003,3.978027301,6.54309082,0.389905437,,9.068161011,44.53011818,1.193324175,0.749153001,41.38602,972.5939443,3.322600141 +2016-12-18 08:20:00-07:00,78,258.6547904,2.665147036,7.041702271,0.41563137,,10.5793457,44.632657,1.361525591,1.273750917,38.52874491,665.6558436,2.728302343 +2016-12-18 08:30:00-07:00,78,326.2769355,3.785282783,7.685791016,0.426633682,,11.97647095,44.67922334,1.473467235,1.384472613,39.01361776,391.4515391,2.213807291 +2016-12-18 08:40:00-07:00,78,374.7073597,3.038138514,7.97354126,0.441233041,,14.05548096,44.82541343,2.036268684,1.903816896,37.86856281,638.149563,1.958457047 +2016-12-18 08:50:00-07:00,78,421.7502387,3.448781641,8.190155029,0.453104385,,16.10757446,44.75747767,2.301764583,2.155880712,37.64991568,866.9737425,1.775306685 +2016-12-18 09:00:00-07:00,78,470.3527984,4.312445959,8.558654785,0.462054906,,17.69245911,44.7201997,2.560892597,2.404474798,37.37663675,659.7938982,1.630560948 +2016-12-18 09:10:00-07:00,78,514.1219097,3.53013339,8.771438599,0.469542523,,19.34529114,44.64964687,2.788718602,2.617031381,37.20101875,634.8985062,1.528997846 +2016-12-18 09:20:00-07:00,78,557.3362519,2.559762555,9.15852356,0.475922,,21.64476013,44.469503,3.02087914,2.833130184,36.9030078,555.9628372,1.444530457 +2016-12-18 09:30:00-07:00,78,596.5959379,1.981529491,9.700707397,0.481090067,,23.72891235,44.26397565,3.226235097,3.017570879,36.60025025,551.2874746,1.314892677 +2016-12-18 09:40:00-07:00,78,637.9576721,2.319152271,10.31082153,0.485306347,,25.9213562,44.0711566,3.433751218,3.21604893,36.19166399,480.0639794,1.272680532 +2016-12-18 09:50:00-07:00,78,676.0276683,2.504446674,10.76905823,0.488868537,,27.24926758,43.94065973,3.624770211,3.392969719,35.96356319,492.0029235,1.296491028 +2016-12-18 10:00:00-07:00,78,711.2738172,1.741119674,11.08885193,0.492237271,,28.56626892,43.87761103,3.801648767,3.551484428,35.81050039,404.6274594,1.205299803 +2016-12-18 10:10:00-07:00,78,745.574389,3.528851448,11.38813782,0.495812576,,29.35134888,43.85229712,3.965124726,3.702403952,35.71011416,395.1194631,1.180487921 +2016-12-18 10:20:00-07:00,78,776.4215203,2.893980676,11.50541687,0.497973346,,30.12808228,43.80829266,4.123786834,3.855911609,35.49163225,411.7126882,1.199081729 +2016-12-18 10:30:00-07:00,78,804.9407311,4.825229351,12.11361694,0.499885957,,31.73861694,43.59690254,4.270701055,3.988108308,35.20014952,454.1154501,1.139323696 +2016-12-18 10:40:00-07:00,78,832.3911117,4.64017537,12.27383423,0.501377142,,31.31500244,43.68637425,4.403155856,4.116713637,35.22742472,520.8050961,1.122471041 +2016-12-18 10:50:00-07:00,78,855.4061868,4.775881455,12.27832031,0.502729891,,31.54058838,43.7354938,4.522407362,4.22712817,35.21854276,406.4641703,1.072303626 +2016-12-18 11:00:00-07:00,78,875.7130917,3.281111866,12.7884613,0.504208238,,33.25557434,43.50886219,4.633689686,4.320535843,34.93137299,375.3132719,1.102448768 +2016-12-18 11:10:00-07:00,78,896.3849592,4.017000985,12.63528442,0.505321317,,33.64138794,43.53705238,4.739022869,4.415053055,34.90446769,415.2144823,1.057025046 +2016-12-18 11:20:00-07:00,78,912.8171182,4.738670485,12.88395691,0.506130099,,34.23034668,43.51394457,4.82254152,4.490026316,34.83958811,325.7535828,1.081048902 +2016-12-18 11:30:00-07:00,78,926.7797957,3.302420829,12.92304993,0.507189044,,35.24485779,43.38800237,4.894363119,4.554376914,34.66866652,348.8812845,1.074008006 +2016-12-18 11:40:00-07:00,78,940.5884721,3.021796038,14.06317139,0.507323981,,37.70327759,43.17414487,4.964269023,4.610312411,34.41933814,266.2856559,1.073967917 +2016-12-18 11:50:00-07:00,78,950.8640967,2.884607753,14.44512939,0.507680534,,39.2099762,43.03186034,5.022507427,4.663512056,34.17582439,236.0334472,1.072952602 +2016-12-18 12:00:00-07:00,78,956.218912,4.60048133,13.84976196,0.5081152,,37.55075073,43.07574498,5.040364282,4.691255211,34.2136714,342.7575592,1.067572993 +2016-12-18 12:10:00-07:00,78,961.3116637,3.543231301,13.76579285,0.508298407,,37.8276062,43.04824568,5.071417187,4.715576398,34.16545229,317.4892574,1.067149305 +2016-12-18 12:20:00-07:00,78,962.7378998,4.651350961,14.49319458,0.508203955,,38.90684509,42.96533881,5.079382,4.723169752,34.06778592,313.3208636,1.071666962 +2016-12-18 12:30:00-07:00,78,964.0226713,3.850292126,14.19775391,0.508296404,,38.9690094,42.85416003,5.088187376,4.727837248,33.96036354,335.2971232,1.041953427 +2016-12-18 12:40:00-07:00,78,960.1733173,3.151574093,14.86619568,0.508312792,,39.54260254,42.85499152,5.067303241,4.705308038,33.96706017,289.7959351,1.07004816 +2016-12-18 12:50:00-07:00,78,959.697976,1.741920775,15.43785095,0.50791937,,41.10505676,42.68423084,5.059264198,4.693554283,33.79897035,274.9523005,1.05104876 +2016-12-18 13:00:00-07:00,78,953.4566864,3.332742504,15.61857605,0.507541301,,41.60879517,42.64411637,5.020083153,4.665950858,33.76511401,316.7349302,1.073553465 +2016-12-18 13:10:00-07:00,78,944.812739,0.693362709,15.89865051,0.506972165,,41.82284546,42.49202952,4.974424576,4.614485671,33.64670077,342.5635507,1.057354961 +2016-12-18 13:20:00-07:00,78,932.5587922,1.935826745,15.5282135,0.506601006,,41.69210815,42.3940783,4.911240985,4.562295425,33.56990969,318.2106218,1.093114125 +2016-12-18 13:30:00-07:00,78,917.9253501,2.102174624,15.80314636,0.506189691,,39.70346069,42.66691553,4.838446526,4.484839818,33.96578246,351.5611013,1.093914924 +2016-12-18 13:40:00-07:00,78,902.9346951,1.263264092,16.11013794,0.505163053,,41.57354736,42.36798417,4.758552477,4.418163569,33.62201791,339.2593581,1.108028713 +2016-12-18 13:50:00-07:00,78,885.6778186,2.587079806,15.8300647,0.503231223,,38.53514099,42.68599985,4.670421356,4.335751668,34.06541099,401.5461499,1.112676753 +2016-12-18 14:00:00-07:00,78,865.8925219,2.468797881,16.73370361,0.501876494,,39.67333984,42.58425335,4.568223604,4.240121854,34.01178672,340.2675292,1.088877375 +2016-12-18 14:10:00-07:00,78,843.3679305,3.559293333,15.92556763,0.500184469,,36.82270813,42.77209363,4.442669246,4.135320475,34.26887572,530.0348268,1.141118413 +2016-12-18 14:20:00-07:00,78,817.0227547,3.814122537,16.10757446,0.49864301,,34.89109802,43.03181354,4.302425057,4.009208319,34.59746254,400.2101424,1.128928132 +2016-12-18 14:30:00-07:00,78,789.1844131,3.717309739,15.73136902,0.496470656,,33.21199036,43.14845875,4.1663233,3.884024165,34.79231308,432.9073069,1.172578817 +2016-12-18 14:40:00-07:00,78,761.4283077,3.343877862,16.04669189,0.493376793,,33.03190613,43.13983705,4.015606664,3.746260603,34.85535339,397.613394,1.196289734 +2016-12-18 14:50:00-07:00,78,728.9135783,2.868866189,16.61706543,0.490391938,,32.51216125,43.17799244,3.846600439,3.588286332,35.06791408,578.6128417,1.216212304 +2016-12-18 15:00:00-07:00,78,694.9701518,2.951539345,16.26202393,0.487219084,,30.41648865,43.3834576,3.668681826,3.426211331,35.36326389,565.3044616,1.210534125 +2016-12-18 15:10:00-07:00,78,656.1113688,3.635477778,16.47927856,0.483448999,,29.85955811,43.35244458,3.476356784,3.249752915,35.43496017,620.5654456,1.236978789 +2016-12-18 15:20:00-07:00,78,617.409212,2.055991106,16.65039063,0.478452507,,30.15563965,43.20836213,3.279187078,3.062882499,35.37849956,587.8245323,1.337821096 +2016-12-18 15:30:00-07:00,78,577.4016402,2.994638742,16.61065674,0.472730901,,28.57203674,43.30346254,3.074644351,2.877693311,35.57941572,571.1506298,1.385997442 +2016-12-18 15:40:00-07:00,78,533.1517928,3.792773131,16.50170898,0.46674519,,27.69210815,43.33953044,2.840633709,2.659443037,35.82644759,959.062362,1.46122379 +2016-12-18 15:50:00-07:00,78,490.3153841,1.748529486,16.63757324,0.45836134,,27.30053711,43.22473995,2.617294433,2.449782224,35.82767883,832.3213402,1.479852563 +2016-12-18 16:00:00-07:00,78,443.3264349,1.772522894,16.72601318,0.448448399,,25.79446411,43.26985012,2.373534795,2.22349573,35.98591239,833.839295,1.643668206 +2016-12-18 16:10:00-07:00,78,395.792802,1.648192098,16.99327087,0.436426472,,25.68743896,43.07315472,2.116464048,1.981831937,35.91383786,1062.695702,1.797786068 +2016-12-18 16:20:00-07:00,78,345.6331096,1.711438796,16.73498535,0.419377777,,23.73083496,43.1009758,1.849362383,1.727679983,36.18031235,1069.886822,1.990084175 +2016-12-18 16:30:00-07:00,78,293.1095371,1.076568235,16.59463501,0.399416065,,21.71846008,43.08112628,1.565515742,1.462336527,36.29726337,1290.493007,2.504533446 +2016-12-18 16:40:00-07:00,78,223.7375382,2.591005121,16.37225342,0.376733961,,20.08166504,42.75271958,1.081942458,0.889022599,38.73080002,212.5505853,2.6460012 +2016-12-18 16:50:00-07:00,78,129.5310557,2.364534899,16.22293091,0.365123997,,17.77192688,41.71327176,0.531921423,0.4625263,37.02514,330.5115273,5.026514199 +2016-12-18 17:00:00-07:00,78,39.22753848,0.807038569,15.78392029,0.431233258,,14.57394409,39.53756985,0.16309775,0.125699682,34.44361851,776.2755406,25.40646005 +2016-12-18 17:10:00-07:00,78,21.03275741,1.897013504,15.08473206,0.432028369,,12.29626465,38.44500976,0.085957867,0.073560957,31.75288685,4353.715851,53.0316205 +2016-12-18 17:20:00-07:00,78,7.712316022,1.656002984,14.98091125,0.517470372,,11.04975891,36.15789226,0.038123801,0.0310234,27.91891003,7482.580345,146.8728836 +2016-12-18 17:30:00-07:00,78,2.455111073,1.245680116,14.72454834,0.555397197,,9.927581787,30.927837,0.012009201,0.009101328,21.89337997,17515.17239,709.5084175 diff --git a/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041_4param.csv b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041_4param.csv new file mode 100644 index 0000000000..834eb289d4 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/g78_T16_Xall_F10m_R900_041_4param.csv @@ -0,0 +1,908 @@ +date_time,module_id,poa_global,wind_speed,temp_air,blue_frac,beam_frac,temp_module,v_oc,i_sc,i_mp,v_mp +2016-01-26 07:20:00-07:00,78,2.666484317,1.472831997,8.177978516,0.454991652,1.1,2.081939697,33.04064421,0.013215447,0.009809045,24.33732 +2016-01-26 07:30:00-07:00,78,7.899142696,1.297711339,8.241424561,0.522026664,-0.1,2.436985474,37.64402934,0.037248728,0.02983236,29.62497997 +2016-01-26 07:40:00-07:00,78,52.92767243,0.955482493,7.739624023,0.270154323,0.300267162,2.592086792,39.6492057,0.072837131,0.061195743,32.44486777 +2016-01-26 07:50:00-07:00,78,104.9430478,0.62178426,6.727676392,0.306793868,0.570422814,4.082763672,42.70262294,0.215963967,0.1043503,40.52055001 +2016-01-26 08:00:00-07:00,78,153.4330542,0.410855412,7.471725464,0.352624445,0.624202994,6.691146851,43.92516586,0.401482968,0.2831102,41.82102001 +2016-01-26 08:10:00-07:00,78,207.780344,0.676059248,8.259368896,0.388758434,0.654555168,9.171981812,44.29201888,1.051441221,0.976606838,37.8831301 +2016-01-26 08:20:00-07:00,78,216.1854545,0.254440298,8.958572388,0.419448916,0.725788201,11.9732666,44.18390797,1.201683005,1.126675792,38.21257622 +2016-01-26 08:30:00-07:00,78,314.4320338,0.856546629,8.97203064,0.430550146,0.74718442,14.17019653,44.03193485,1.331171973,1.252935622,37.87620839 +2016-01-26 08:40:00-07:00,78,364.1616107,0.58913996,9.572525024,0.445192536,0.769498154,16.85355042,44.17269549,1.847060911,1.717155082,37.41243227 +2016-01-26 08:50:00-07:00,78,414.4448538,0.526614105,10.14099121,0.457279734,0.816816815,18.9306488,44.1008495,2.121667348,1.980342542,37.0788336 +2016-01-26 09:00:00-07:00,78,462.1142704,1.284213332,10.18713379,0.466809799,0.819644581,19.76313782,44.17257403,2.3720334,2.219748978,36.92349031 +2016-01-26 09:10:00-07:00,78,510.2908602,0.195159288,12.86024475,0.474304138,0.837084913,24.29801941,43.72170172,2.612981553,2.441520192,36.35140926 +2016-01-26 09:20:00-07:00,78,556.291954,1.416954598,11.54771423,0.480434084,0.84125099,26.13414001,43.56085443,2.846176078,2.658450617,36.05951765 +2016-01-26 09:30:00-07:00,78,598.7898627,2.621006537,11.90341187,0.485454303,0.853127587,25.68231201,43.74601521,3.069547488,2.864256549,36.15028618 +2016-01-26 09:40:00-07:00,78,642.8336829,1.413870966,12.32318115,0.489949284,0.862145752,27.00764465,43.7058627,3.293581023,3.079070845,35.89718303 +2016-01-26 09:50:00-07:00,78,685.6991566,4.499102281,13.4947052,0.493851937,0.862083921,28.01062012,43.73036806,3.501154429,3.269395683,35.82111714 +2016-01-26 10:00:00-07:00,78,722.9203889,3.752678437,14.02728271,0.497052256,0.873296275,26.81217957,44.06428478,3.221415149,3.509335379,36.06496582 +2016-01-26 10:10:00-07:00,78,758.3998553,3.90917304,14.53677368,0.500453648,0.869689888,30.18640747,43.75491891,4.001840108,3.725520103,35.64142784 +2016-01-26 10:20:00-07:00,78,793.6222618,1.334161372,14.30477905,0.502885908,0.878375726,31.1547699,43.74015642,4.180729627,3.894510453,35.46028801 +2016-01-26 10:30:00-07:00,78,824.6775878,3.665078329,14.43423462,0.504925858,0.884229622,32.23657227,43.6280143,4.343320912,4.044405686,35.25807358 +2016-01-26 10:40:00-07:00,78,854.7823219,5.256180433,14.47525024,0.506130087,0.887275123,32.69032288,43.61545938,4.492331776,4.187430772,35.16976482 +2016-01-26 10:50:00-07:00,78,883.4612739,2.65597451,14.95335388,0.507483523,0.88735207,34.77958679,43.36644369,4.639351634,4.310491082,34.83491193 +2016-01-26 11:00:00-07:00,78,909.7273511,2.819398711,15.3289032,0.508918361,0.89133442,36.52726746,43.2420164,4.771606859,4.431889894,34.62225988 +2016-01-26 11:10:00-07:00,78,930.8391264,3.539826502,15.08152771,0.509800796,0.889984989,37.17326355,43.17568462,4.876980742,4.524938155,34.5065212 +2016-01-26 11:20:00-07:00,78,952.6737668,1.471229307,16.1421814,0.510905034,0.89843852,39.84060669,42.80318453,4.99081633,4.632586909,33.99881312 +2016-01-26 11:30:00-07:00,78,969.1016458,3.216223014,15.56474304,0.511764908,0.895266394,37.5763855,43.02998202,5.070439916,4.71250813,34.19248561 +2016-01-26 11:40:00-07:00,78,984.0401724,2.314265622,15.75379944,0.512683518,0.896001535,39.8258667,42.82641556,5.159710789,4.785545544,33.9279814 +2016-01-26 11:50:00-07:00,78,998.6700025,2.27805573,16.03964233,0.512984671,0.892168544,40.92881775,42.70342155,5.226481851,4.841456621,33.77313345 +2016-01-26 12:00:00-07:00,78,1009.877341,0.853702719,16.13128662,0.51359921,0.886740809,41.62097168,42.61719933,5.285078086,4.894073926,33.65156054 +2016-01-26 12:10:00-07:00,78,1017.589242,3.262165692,16.44403076,0.514105918,0.88010677,43.04243469,42.4634818,5.332421256,4.93086387,33.46746965 +2016-01-26 12:20:00-07:00,78,1023.53711,2.374909041,16.62347412,0.514370431,0.883760394,44.0569458,42.27680023,5.355384136,4.952586803,33.26020712 +2016-01-26 12:30:00-07:00,78,1026.415587,0.870606015,16.97019958,0.514954525,0.906067171,42.64125061,42.4040031,5.368770078,4.965982452,33.37857165 +2016-01-26 12:40:00-07:00,78,1027.951635,1.795874946,17.45854187,0.515078616,0.904041651,44.75102234,42.1646632,5.372309817,4.967214632,33.13084081 +2016-01-26 12:50:00-07:00,78,1027.873214,1.897133715,17.16822815,0.515548749,0.907229168,44.08578491,42.16804414,5.374051843,4.966549197,33.13752895 +2016-01-26 13:00:00-07:00,78,1022.574354,1.366645927,17.71104431,0.515974689,0.903363809,44.21331787,42.13209756,5.342528453,4.940040894,33.11927452 +2016-01-26 13:10:00-07:00,78,1015.830343,3.414574745,18.02252197,0.515817814,0.904341523,43.16035461,42.32391597,5.321339783,4.917547455,33.32720144 +2016-01-26 13:20:00-07:00,78,1011.932781,3.491960946,17.92254456,0.515408422,0.902809562,39.37147522,42.79103059,5.283454898,4.896424984,33.83247273 +2016-01-26 13:30:00-07:00,78,999.3117599,2.765364354,18.11096191,0.515070114,0.900313349,39.30482483,42.72939776,5.220125496,4.841925897,33.80060105 +2016-01-26 13:40:00-07:00,78,986.9773159,4.003462675,18.64352417,0.514496019,0.898920057,39.77716064,42.63285696,5.158909379,4.789488967,33.71337008 +2016-01-26 13:50:00-07:00,78,966.7793281,5.263109962,18.61148071,0.514355881,0.895679496,38.985672,42.71819111,5.05932487,4.693711508,33.88787062 +2016-01-26 14:00:00-07:00,78,954.1827267,1.430693795,18.68966675,0.513497899,0.89455273,41.38639832,42.38288726,4.988799042,4.625554899,33.55837107 +2016-01-26 14:10:00-07:00,78,934.8078407,2.864540569,18.8588562,0.512874482,0.892806921,41.52548218,42.27771659,4.886954319,4.527403933,33.50575 +2016-01-26 14:20:00-07:00,78,911.8316398,3.7804766,18.8319397,0.512049419,0.889955972,39.97006226,42.46665678,4.772465541,4.419507263,33.81102072 +2016-01-26 14:30:00-07:00,78,888.2996565,5.129286381,18.9908905,0.510596069,0.892839523,38.85557556,42.57955167,4.654643886,4.308083603,33.99817064 +2016-01-26 14:40:00-07:00,78,863.5743749,1.675950098,19.22544861,0.509621336,0.890524471,41.29347229,42.30046712,4.526945926,4.193077875,33.7665931 +2016-01-26 14:50:00-07:00,78,829.0086592,0.779801155,18.90052124,0.508482706,0.886039212,40.19885254,42.29759713,4.348506237,4.030778452,33.86807994 +2016-01-26 15:00:00-07:00,78,796.1356952,2.054309277,19.11329651,0.506920234,0.878195257,38.67036438,42.41272239,4.18191321,3.880030246,34.07242339 +2016-01-26 15:10:00-07:00,78,767.9465447,3.387537659,19.43373108,0.50487961,0.876784041,38.28262329,42.42909619,4.033510141,3.745647268,34.16498144 +2016-01-26 15:20:00-07:00,78,733.407779,2.11943862,18.95628357,0.502637411,0.872984611,36.4433136,42.60346475,3.856087693,3.584474349,34.44885627 +2016-01-26 15:30:00-07:00,78,695.9438221,1.479240521,19.05433655,0.4999721,0.876319236,36.53688049,42.46456064,3.660500228,3.402207511,34.46078589 +2016-01-26 15:40:00-07:00,78,653.4165987,1.734671127,20.33096313,0.49640071,0.871706329,38.29736328,42.13097294,3.444051166,3.197692751,34.23575015 +2016-01-26 15:50:00-07:00,78,609.9141613,1.71444322,20.01373291,0.491962853,0.858749184,36.81437683,42.27056401,3.219809483,2.989914732,34.50589639 +2016-01-26 16:00:00-07:00,78,568.5699126,0.500017558,20.21047974,0.486797011,0.853972831,34.209198,42.49663384,2.999263818,2.788047619,34.84982018 +2016-01-26 16:10:00-07:00,78,524.4403751,0.562543203,21.38777161,0.481083706,0.845724139,35.33779907,42.18125778,2.767495862,2.572645544,34.65055387 +2016-01-26 16:20:00-07:00,78,479.7378031,0.781083028,20.03936768,0.474298838,0.837578486,33.36901855,42.30428569,2.534235887,2.351400039,34.98826351 +2016-01-26 16:30:00-07:00,78,429.339206,0.549725876,21.63322449,0.465958447,0.816728728,32.15197754,42.23115882,2.267617982,2.105032667,35.03611004 +2016-01-26 16:40:00-07:00,78,370.7711198,0.818374185,21.32368469,0.456051782,0.790276452,31.30923462,42.18191901,1.956985046,1.81560762,35.15428319 +2016-01-26 16:50:00-07:00,78,305.4096408,0.874451073,21.53453064,0.446201874,0.771149479,28.68611145,42.16882586,1.609061489,1.488576409,35.40672959 +2016-01-26 17:00:00-07:00,78,280.0941278,1.428691149,21.17308044,0.422114235,0.756427069,27.4005127,41.69485644,1.161249702,0.5355422,26.10387002 +2016-01-26 17:10:00-07:00,78,229.8256157,1.683280631,19.70930481,0.397640252,0.670621075,23.45846558,41.76282553,0.711983362,0.209714203,39.08170998 +2016-01-26 17:20:00-07:00,78,172.6462956,1.579658166,19.65675354,0.365865319,0.636626294,21.40122986,41.21018232,0.529158062,0.4446949,37.05372 +2016-01-26 17:30:00-07:00,78,117.9388936,1.213316191,19.32221985,0.341359839,0.49248775,19.03511047,41.50438216,0.581969433,0.51708543,35.63190758 +2016-01-26 17:40:00-07:00,78,67.05283209,0.789374686,18.86975098,0.275045318,0.430205001,15.5365448,37.82157066,0.086909285,0.073512226,30.91155516 +2016-01-26 17:50:00-07:00,78,10.61600297,1.234344919,18.0199585,0.513020139,-0.060860409,13.26463318,36.39362434,0.046133839,0.03770362,28.74545001 +2016-01-26 18:00:00-07:00,78,3.702710775,1.38739449,17.55018616,0.431763266,0.15352507,12.13861084,33.05673137,0.018910427,0.01490116,24.11611002 +2016-02-24 07:00:00-07:00,78,5.177433453,1.721973591,12.28152466,0.483678046,-0.024971679,8.341400146,35.0835656,0.024553511,0.019202563,26.63313999 +2016-02-24 07:10:00-07:00,78,11.5175071,3.115484342,12.08157349,0.549381363,-0.010471237,8.395874023,37.93258873,0.055854206,0.045948241,30.50876515 +2016-02-24 07:20:00-07:00,78,27.80082781,2.043854878,12.13925171,0.471357972,0.209839663,9.02394104,39.1002497,0.089052995,0.07538541,32.24543001 +2016-02-24 07:30:00-07:00,78,25.65740691,2.676482373,12.22064209,0.652858914,0.073466684,9.463577271,39.88422917,0.126003083,0.109773152,33.21069152 +2016-02-24 07:40:00-07:00,78,34.32688304,2.235597828,12.16809082,0.660894462,0.058616436,9.891693115,41.85119317,0.255931768,0.2094555,38.11349999 +2016-02-24 07:50:00-07:00,78,42.1342725,3.183176941,13.02366638,0.667544737,0.375429188,11.19844055,42.58306795,0.34618495,0.2551464,39.80466003 +2016-02-24 08:00:00-07:00,78,57.4646918,2.348512751,13.49598694,0.622028921,0.763690629,14.85401367,43.08002637,0.64803157,0.3540377,41.42246 +2016-02-24 08:10:00-07:00,78,277.8477468,3.746670149,14.38616943,0.466296766,0.74516808,16.34341431,43.52560564,1.263328196,1.167620999,37.41584001 +2016-02-24 08:20:00-07:00,78,329.7967823,2.821321171,14.82901978,0.476283764,0.802842995,18.98191833,43.72808836,1.729664969,1.618431961,36.87171285 +2016-02-24 08:30:00-07:00,78,379.8570463,4.704783568,15.27186584,0.484329597,0.81097259,20.97120056,43.71605018,1.994054575,1.867783812,36.73815781 +2016-02-24 08:40:00-07:00,78,429.6551805,4.085254683,15.64164734,0.490092392,0.831379691,22.87013245,43.67311704,2.255281431,2.11180413,36.46003184 +2016-02-24 08:50:00-07:00,78,479.7450812,3.76613677,16.00695801,0.494830876,0.840170358,24.12882996,43.69556578,2.512065164,2.357828009,36.35269927 +2016-02-24 09:00:00-07:00,78,532.0591515,3.573632883,16.42416382,0.498675366,0.846927111,25.98223877,43.64714454,2.785732663,2.608089809,36.18224146 +2016-02-24 09:10:00-07:00,78,576.7007111,3.259602017,16.87149902,0.502309364,0.852554716,28.20417786,43.47015718,3.024042137,2.833519725,35.77431516 +2016-02-24 09:20:00-07:00,78,622.9198615,5.24464428,16.70614624,0.50561303,0.862670612,28.5688324,43.56816149,3.251036461,3.046950563,35.7744005 +2016-02-24 09:30:00-07:00,78,663.6294192,5.758348913,16.87085632,0.508453293,0.872705099,29.26483154,43.59209999,3.45462896,3.23712494,35.69154541 +2016-02-24 09:40:00-07:00,78,700.8459222,5.666903537,17.32524109,0.510646637,0.870732087,30.37226868,43.52486175,3.634374949,3.40785836,35.53606481 +2016-02-24 09:50:00-07:00,78,742.6578622,5.35263225,17.7610321,0.513163147,0.879114335,31.55789185,43.45028327,3.840667777,3.596090019,35.35455778 +2016-02-24 10:00:00-07:00,78,780.1462756,6.979463333,17.47776794,0.51524733,0.887880614,31.95715332,43.51334168,4.030492211,3.781668089,35.22426131 +2016-02-24 10:10:00-07:00,78,814.562538,9.018419674,17.75975037,0.516654274,0.885632082,32.43013,43.50877653,4.20668595,3.93747685,35.14330558 +2016-02-24 10:20:00-07:00,78,845.2160894,4.546327111,18.23272705,0.517580351,0.885223667,32.66020203,43.59102646,4.471096422,4.166482881,35.1148898 +2016-02-24 10:30:00-07:00,78,878.728437,7.803954408,18.38973999,0.51874366,0.88650428,34.01116943,43.40419129,4.641026986,4.322034356,34.83500104 +2016-02-24 10:40:00-07:00,78,905.8421368,6.628422313,18.59994507,0.520097289,0.892378298,35.39611816,43.32097944,4.781546766,4.450103914,34.66499149 +2016-02-24 10:50:00-07:00,78,939.942397,5.168900513,19.00883484,0.521015181,0.896509092,37.25016785,43.12769845,4.937104225,4.584668516,34.4039653 +2016-02-24 11:00:00-07:00,78,965.1502756,5.217326889,18.81015015,0.522217919,0.898066416,37.7673645,43.13064399,5.064310829,4.710463721,34.26810309 +2016-02-24 11:10:00-07:00,78,988.4618653,4.561747718,19.28120422,0.523166272,0.902844961,39.76626587,42.85783637,5.195540143,4.819881515,33.92735372 +2016-02-24 11:20:00-07:00,78,1006.496769,3.541748961,19.04600525,0.523988576,0.904498115,39.62719727,42.84142142,5.286343529,4.907857543,33.85928289 +2016-02-24 11:30:00-07:00,78,1025.435644,3.204166065,19.66444397,0.524070848,0.903580289,42.5028125,42.57085501,5.382985115,4.986670638,33.53496364 +2016-02-24 11:40:00-07:00,78,1040.910612,6.134985541,19.47923279,0.525038715,0.901877261,41.64276123,42.62675784,5.456736421,5.056389374,33.55774408 +2016-02-24 11:50:00-07:00,78,1052.718367,3.421984836,19.83042908,0.525885365,0.90455181,43.16355896,42.43173303,5.517638572,5.112743065,33.31705464 +2016-02-24 12:00:00-07:00,78,1064.151372,3.049193546,20.48220825,0.526427656,0.90592271,46.9223175,41.99285647,5.587390997,5.154995987,32.83962022 +2016-02-24 12:10:00-07:00,78,1072.036897,4.320216822,20.06820679,0.526994686,0.906437325,45.94369507,42.0723156,5.619341019,5.19213685,32.88817417 +2016-02-24 12:20:00-07:00,78,1080.826659,2.513058521,21.07695007,0.527378368,0.907882416,47.60612488,41.94542386,5.67139434,5.22825736,32.74812844 +2016-02-24 12:30:00-07:00,78,1082.548789,4.574685604,20.60333252,0.527647829,0.90642208,44.96379089,42.24996836,5.677857513,5.24503636,33.05663818 +2016-02-24 12:40:00-07:00,78,1084.650631,4.873935892,21.31407166,0.527953767,0.908575659,46.38845825,42.12430603,5.693980038,5.252523329,32.92275793 +2016-02-24 12:50:00-07:00,78,1086.539356,5.918047777,20.96478882,0.527926325,0.910979957,45.20732117,42.27198522,5.694487083,5.253116935,33.07888656 +2016-02-24 13:00:00-07:00,78,1081.319046,2.910243035,21.98122253,0.528315991,0.907812931,47.2587738,41.9887014,5.674627825,5.225362155,32.78645906 +2016-02-24 13:10:00-07:00,78,1077.700856,3.539826502,22.32795715,0.527556388,0.909217929,46.96333313,41.97452965,5.64681696,5.222196528,32.7142762 +2016-02-24 13:20:00-07:00,78,1068.960099,4.973232108,22.37089539,0.527321466,0.90449019,46.25131226,42.06743615,5.593933519,5.167318644,32.90986549 +2016-02-24 13:30:00-07:00,78,1055.851549,4.030659576,22.08570862,0.527155978,0.90495767,46.26925659,41.8870342,5.53098412,5.099721361,32.76591007 +2016-02-24 13:40:00-07:00,78,1044.48494,4.930734183,21.99148621,0.526200169,0.906479594,44.10244751,42.18121866,5.463787735,5.061830961,33.06773082 +2016-02-24 13:50:00-07:00,78,1030.817847,4.437137176,22.89833069,0.525645375,0.906807654,46.4083252,42.02845365,5.408589845,4.992158567,32.96526761 +2016-02-24 14:00:00-07:00,78,1009.492763,5.148753282,23.32772827,0.525241407,0.903450413,48.49438477,41.53421124,5.294378457,4.891380624,32.50430781 +2016-02-24 14:10:00-07:00,78,991.1516192,2.071132245,22.06584167,0.524555495,0.902790868,47.27735901,41.66231375,5.203058743,4.805829308,32.69941898 +2016-02-24 14:20:00-07:00,78,970.8213198,4.184029824,22.61442566,0.523404602,0.898529485,45.14900208,41.90351262,5.100330973,4.723631861,32.99045516 +2016-02-24 14:30:00-07:00,78,947.1911701,1.254893015,23.084198,0.522568969,0.898779945,46.52304077,41.75043728,4.981886317,4.607959767,32.89871574 +2016-02-24 14:40:00-07:00,78,919.4210831,5.855081663,23.17456055,0.521694546,0.896833506,43.32698059,42.05068359,4.827417587,4.483472893,33.27693337 +2016-02-24 14:50:00-07:00,78,892.1211533,4.343888992,22.33308411,0.520642055,0.89246791,42.61882019,42.0663909,4.694493143,4.357651055,33.35975836 +2016-02-24 15:00:00-07:00,78,858.9860595,1.969312797,23.24697876,0.519544166,0.889523672,43.54745483,41.91414396,4.53067377,4.19782161,33.37184963 +2016-02-24 15:10:00-07:00,78,828.1439134,3.825738737,23.04253662,0.51823814,0.891533629,41.56265259,42.092424,4.35860714,4.046243353,33.62570323 +2016-02-24 15:20:00-07:00,78,792.5860629,2.345068208,23.00343933,0.51643075,0.88926891,42.46884705,41.91151592,4.1781461,3.87780996,33.53353104 +2016-02-24 15:30:00-07:00,78,755.9844227,1.531752725,23.27133179,0.514337091,0.879663253,42.07983398,41.88835498,3.993987682,3.712509319,33.6033129 +2016-02-24 15:40:00-07:00,78,717.6021052,2.34883287,23.30145264,0.51230011,0.876306037,41.29154968,41.85533361,3.795955731,3.528275299,33.66804645 +2016-02-24 15:50:00-07:00,78,675.9319907,2.985666683,23.47384644,0.510311865,0.874227311,40.32574463,41.88593654,3.577985506,3.328776383,33.80433992 +2016-02-24 16:00:00-07:00,78,633.7328138,1.149267764,23.52832031,0.507367399,0.864590441,39.23817444,41.98041443,3.355812445,3.121108056,34.10799603 +2016-02-24 16:10:00-07:00,78,589.5593595,1.139855026,25.39520264,0.504341049,0.865634728,41.23451233,41.5964493,3.129370783,2.907446529,33.82777965 +2016-02-24 16:20:00-07:00,78,543.4014975,1.570325475,23.8961792,0.500637182,0.854241131,37.58535767,41.42127095,2.000431358,1.035346,38.97150998 +2016-02-24 16:30:00-07:00,78,493.3777618,1.750372387,23.9666748,0.496909492,0.84797912,35.86459351,41.92019618,2.405743486,1.932032001,36.97831998 +2016-02-24 16:40:00-07:00,78,446.2473081,1.684041568,24.11857605,0.49200494,0.834320198,34.3681488,41.99972564,2.367453751,2.203580047,34.71317719 +2016-02-24 16:50:00-07:00,78,397.4191709,0.934373089,24.13972473,0.485658767,0.822428536,33.22160339,41.93777492,2.109884204,1.96471935,34.78196393 +2016-02-24 17:00:00-07:00,78,347.2094905,1.417235602,23.94552612,0.478092715,0.809968232,31.2316864,41.96114483,1.842231101,1.715357217,34.92979388 +2016-02-24 17:10:00-07:00,78,295.8410436,1.512085428,24.04358704,0.469345772,0.777333299,30.23576355,41.79798296,1.564642939,1.455315238,34.89561146 +2016-02-24 17:20:00-07:00,78,245.0433953,1.069278214,23.74301147,0.457886521,0.763923875,28.76686096,41.6376357,1.292343789,1.196250067,34.98115846 +2016-02-24 17:30:00-07:00,78,194.6055831,1.568282596,24.23457336,0.442222635,0.72627801,27.34924316,41.3818701,1.017970446,0.940414545,34.84747419 +2016-02-24 17:40:00-07:00,78,144.9838337,1.423764336,23.68533325,0.422854249,0.688555742,25.42660522,40.74362206,0.485503749,0.3252111,38.46275998 +2016-02-24 17:50:00-07:00,78,100.0532036,1.27383898,23.46743774,0.397718122,0.626754318,23.17199707,40.18048904,0.243706998,0.148643301,37.79282999 +2016-02-24 18:00:00-07:00,78,39.64045578,0.999983554,23.38796997,0.397588231,0.542882348,20.58282471,37.94774664,0.10735681,0.093660449,31.94474121 +2016-02-24 18:10:00-07:00,78,25.22870065,1.191085358,22.57789612,0.364085613,0.09247119,18.42434692,36.83590638,0.068607309,0.057938887,29.86177693 +2016-02-24 18:20:00-07:00,78,7.056378301,0.56422601,21.93763733,0.484663269,-0.1,17.06889343,34.57939339,0.032430266,0.02643184,25.97795 +2016-02-24 18:30:00-07:00,78,2.144727457,0.421589906,21.48326111,0.401295536,-0.1,15.68009949,28.03092546,0.009886181,0.007547792,19.51531999 +2016-03-23 06:20:00-07:00,78,2.294134714,3.353210343,15.15843201,0.493979001,0.350387206,12.43789673,30.76976158,0.012190494,0.00891145,22.73151999 +2016-03-23 06:30:00-07:00,78,6.909372528,3.756363192,15.16035461,0.584140272,0.359975244,12.2244873,35.74918498,0.034639905,0.027591179,27.75883232 +2016-03-23 06:40:00-07:00,78,14.88830705,3.352769874,15.08921814,0.6176721,0.5624809,12.49749756,38.2226149,0.080311391,0.065744792,31.3440801 +2016-03-23 06:50:00-07:00,78,30.54699355,3.676894368,15.15971375,0.495124394,0.671268506,12.83909607,39.9183407,0.164914813,0.14018709,33.72423997 +2016-03-23 07:00:00-07:00,78,54.054548,3.139957893,15.05653381,0.48065403,0.692260741,12.79551697,40.4671763,0.163183124,0.145283819,35.77213076 +2016-03-23 07:10:00-07:00,78,79.1644258,1.448237817,14.81491394,0.483883608,0.739706482,12.31100464,41.94638463,0.373381875,0.3225181,37.05788 +2016-03-23 07:20:00-07:00,78,106.4618437,3.019793322,15.0110321,0.494531286,0.797736034,14.31503296,42.44809048,0.588956461,0.549842458,36.56939339 +2016-03-23 07:30:00-07:00,78,164.0746546,2.52771847,15.15779114,0.48391654,0.809297353,15.59614563,42.81885471,0.792271075,0.723883709,37.24299867 +2016-03-23 07:40:00-07:00,78,209.1545908,3.326534168,15.27891541,0.488718396,0.825700394,16.81317139,43.13094755,1.041630848,0.978840789,36.93667597 +2016-03-23 07:50:00-07:00,78,257.8651105,3.623260944,15.54551697,0.493820415,0.838492485,18.43652344,43.39367469,1.387858125,1.298315114,36.68985381 +2016-03-23 08:00:00-07:00,78,306.7498251,3.135031289,15.69804382,0.497964236,0.862073537,20.17330933,43.45706894,1.65103706,1.542636632,36.63863194 +2016-03-23 08:10:00-07:00,78,355.5582812,2.156890011,16.00631714,0.502520426,0.865605564,21.86073303,43.47648812,1.91294386,1.786342188,36.5441397 +2016-03-23 08:20:00-07:00,78,404.0066526,1.753857024,16.48440552,0.50586522,0.87899067,23.19570923,43.51948487,2.172265564,2.034341358,36.34598663 +2016-03-23 08:30:00-07:00,78,452.0018338,2.220096546,16.56387329,0.50839684,0.885359258,25.40673828,43.41051697,2.427276303,2.271936577,36.11560235 +2016-03-23 08:40:00-07:00,78,501.165507,1.944999271,16.73562622,0.510553707,0.885239293,27.00123596,43.35528014,2.680949501,2.5066541,35.94125163 +2016-03-23 08:50:00-07:00,78,546.7746989,2.632502387,16.91700745,0.5131323,0.898893035,27.77670288,43.38960913,2.916761564,2.726155017,35.85359226 +2016-03-23 09:00:00-07:00,78,591.3868886,4.226408028,17.42457581,0.515025523,0.895491146,27.82861328,43.52636044,3.14995479,2.949264766,35.76882896 +2016-03-23 09:10:00-07:00,78,637.0376787,5.129366498,17.58927917,0.516975775,0.898582773,28.91682434,43.47936033,3.374078838,3.157272635,35.6182822 +2016-03-23 09:20:00-07:00,78,678.9925297,4.353778266,17.87997077,0.518397204,0.90407798,30.05762437,43.45018134,3.584201971,3.361208372,35.44961025 +2016-03-23 09:30:00-07:00,78,722.7342233,4.556060457,17.79115295,0.519965464,0.913132391,31.52713013,43.36074477,3.819413708,3.568250622,35.27351178 +2016-03-23 09:40:00-07:00,78,761.758565,1.91619996,18.48971558,0.521103279,0.908514075,33.79263306,43.10955833,4.018899123,3.757043373,34.828154 +2016-03-23 09:50:00-07:00,78,795.0406738,4.71824253,18.88769531,0.523271297,0.907227068,34.284823,43.10053172,4.181736983,3.905778415,34.74374433 +2016-03-23 10:00:00-07:00,78,828.0140861,3.684184528,18.80822754,0.525108131,0.911166339,35.35061646,43.05429109,4.348355722,4.059135247,34.61391395 +2016-03-23 10:10:00-07:00,78,866.0877807,5.741685899,18.80630493,0.525238436,0.913605017,34.76676941,43.17451421,4.539684688,4.233957528,34.63835299 +2016-03-23 10:20:00-07:00,78,896.278269,4.536393229,18.92103271,0.526072921,0.913480223,34.79240417,43.21588002,4.692893291,4.372251636,34.60824811 +2016-03-23 10:30:00-07:00,78,930.8513639,5.585552137,19.80992126,0.525573781,0.919628495,37.55844116,42.90382833,4.870571938,4.531356307,34.20373683 +2016-03-23 10:40:00-07:00,78,952.5831545,4.593231613,18.94218445,0.526397848,0.913740335,36.79386902,43.09880871,4.987311613,4.634056282,34.33891159 +2016-03-23 10:50:00-07:00,78,987.2443314,3.904326553,19.86567688,0.525606446,0.9176834,36.81117249,43.14071332,5.159771315,4.801821897,34.22562128 +2016-03-23 11:00:00-07:00,78,1016.214976,5.736158453,19.98553467,0.525506608,0.925853705,37.23222351,43.14604817,5.303016871,4.942699347,34.15741403 +2016-03-23 11:10:00-07:00,78,1034.352767,4.609933952,20.42453003,0.526289641,0.924078798,39.16319275,42.87976143,5.410183097,5.021402535,33.83979676 +2016-03-23 11:20:00-07:00,78,1057.759938,4.3906334,20.02398682,0.526772071,0.908026447,38.37811401,43.03730627,5.525247301,5.133125786,33.94922832 +2016-03-23 11:30:00-07:00,78,1034.707957,3.643168244,20.57705688,0.528566201,0.868936463,40.65708923,42.65145689,5.423504525,5.035738724,33.58246436 +2016-03-23 11:40:00-07:00,78,1029.928544,3.736496405,20.72253418,0.52860781,0.838718492,43.0712738,42.34028633,5.344945336,4.994854654,33.30587075 +2016-03-23 11:50:00-07:00,78,1069.143863,4.611175731,20.49758911,0.528115921,0.850927676,40.56993103,42.80572055,5.502803889,5.163731007,33.69986078 +2016-03-23 12:00:00-07:00,78,1095.517759,2.257187306,20.86865234,0.529414629,0.897237373,43.87878418,42.37007713,5.699945425,5.278662744,33.16105592 +2016-03-23 12:10:00-07:00,78,1116.105284,4.509396446,20.67831421,0.529951855,0.920527948,39.90213013,42.88308434,5.872695497,5.4403415,33.61469028 +2016-03-23 12:20:00-07:00,78,1115.987694,4.728376321,21.1179657,0.530699573,0.929736442,41.06724548,42.76915185,5.84649431,5.419361215,33.49621053 +2016-03-23 12:30:00-07:00,78,1112.616894,3.960643513,20.76226807,0.53167819,0.924872469,43.60961914,42.38482256,5.838306574,5.403658247,33.1049037 +2016-03-23 12:40:00-07:00,78,1118.140988,3.205167563,21.51274109,0.531438591,0.929783592,42.0920105,42.6416558,5.879471524,5.426997925,33.36419267 +2016-03-23 12:50:00-07:00,78,1113.594298,3.061771011,22.06968689,0.531471352,0.929936542,44.93431091,42.22199837,5.837950582,5.411526873,32.88476965 +2016-03-23 13:00:00-07:00,78,1106.624916,4.66601091,21.31791687,0.531949338,0.930599548,42.22979736,42.63705131,5.802654015,5.376447601,33.3758187 +2016-03-23 13:10:00-07:00,78,1098.462291,3.483068375,21.48005676,0.531524599,0.929873779,42.54576111,42.52128926,5.760543382,5.334066455,33.2865341 +2016-03-23 13:20:00-07:00,78,1087.266932,2.25530494,20.92633057,0.531643125,0.92873897,45.06761169,42.09887967,5.704283633,5.270663802,32.87461195 +2016-03-23 13:30:00-07:00,78,1077.967844,3.647494004,21.2922821,0.53088174,0.927443315,41.04289246,42.73936349,5.647601522,5.239291065,33.56688875 +2016-03-23 13:40:00-07:00,78,1061.975995,4.00009755,21.80433655,0.530385036,0.927759325,43.87365723,42.31089076,5.579063614,5.159774358,33.16603424 +2016-03-23 13:50:00-07:00,78,1045.452572,3.822774477,22.23887634,0.529628634,0.92708913,44.42288208,42.2459066,5.495496088,5.087429038,33.13379211 +2016-03-23 14:00:00-07:00,78,1027.944302,3.427632423,21.50889587,0.529175786,0.928125436,42.64573669,42.41829155,5.39811087,4.998318275,33.36841979 +2016-03-23 14:10:00-07:00,78,1006.898507,2.15368533,21.96904236,0.528986644,0.924279806,43.7102356,42.2378972,5.285192512,4.898786587,33.22861115 +2016-03-23 14:20:00-07:00,78,984.0989489,4.436376169,22.51957703,0.528085991,0.926109252,45.29255676,41.98292477,5.169668372,4.795766061,33.02048979 +2016-03-23 14:30:00-07:00,78,957.4555627,3.085603695,22.62339783,0.527694505,0.921056374,43.99221802,42.14021153,5.030493323,4.667761352,33.2540677 +2016-03-23 14:40:00-07:00,78,928.1958841,2.025629897,22.5221405,0.526900528,0.920339979,43.89031982,42.10314541,4.876146004,4.527324578,33.30283455 +2016-03-23 14:50:00-07:00,78,897.1405857,3.390141078,22.62211609,0.526361993,0.917307958,41.15632629,42.45301538,4.725534842,4.390741223,33.72600081 +2016-03-23 15:00:00-07:00,78,865.389593,2.512497492,22.53175354,0.525155252,0.917266242,40.83909607,42.38291161,4.559551646,4.231540003,33.81932308 +2016-03-23 15:10:00-07:00,78,830.6377026,4.393958012,23.45077515,0.524771742,0.912776824,40.21743774,42.37761336,4.384814878,4.072243397,33.90732427 +2016-03-23 15:20:00-07:00,78,797.4977138,2.653250741,21.9927655,0.523571174,0.910649461,38.91261292,42.46432532,4.212588257,3.920534669,34.0725276 +2016-03-23 15:30:00-07:00,78,759.7765956,1.277243569,22.43305969,0.522779645,0.908723975,38.59089661,42.43091648,4.025521663,3.744698689,34.13955245 +2016-03-23 15:40:00-07:00,78,717.6119135,2.618723307,22.33372498,0.521321765,0.90189927,38.22494507,42.41113336,3.79895329,3.542648793,34.22830802 +2016-03-23 15:50:00-07:00,78,678.7173071,2.088315776,23.30209351,0.520263484,0.899094329,38.16085815,42.32221882,3.602351187,3.347559888,34.33321283 +2016-03-23 16:00:00-07:00,78,633.4290767,2.558961245,23.11367798,0.518553969,0.891417468,36.68171692,42.43324547,3.363804547,3.130302612,34.55793694 +2016-03-23 16:10:00-07:00,78,592.0164454,2.92622495,23.50909424,0.517688043,0.892221532,35.81332397,42.43413199,3.144407152,2.933888189,34.66736641 +2016-03-23 16:20:00-07:00,78,546.3190519,6.418854827,23.66162109,0.515171745,0.880062637,35.13847351,42.34693401,2.910804234,2.712663026,34.68447608 +2016-03-23 16:30:00-07:00,78,498.921601,3.404320464,23.87182617,0.512521539,0.885914183,34.55143738,42.28905079,2.658216992,2.481512305,34.74259535 +2016-03-23 16:40:00-07:00,78,453.3663458,5.39292776,23.19314575,0.5105552,0.876740661,32.92552185,42.31975538,2.415906514,2.250846331,35.00645986 +2016-03-23 16:50:00-07:00,78,403.3133691,3.294129591,23.39758301,0.508050663,0.86145841,31.79885864,42.27150326,2.148852503,2.001342303,35.08993956 +2016-03-23 17:00:00-07:00,78,355.6537792,4.337079953,23.56292725,0.504835361,0.858109051,30.44020081,42.20289814,1.897544023,1.768856161,35.12604901 +2016-03-23 17:10:00-07:00,78,289.0379896,2.689900612,23.76800537,0.504817934,0.83823755,29.63717651,41.91371111,1.536813182,1.430102594,35.0228965 +2016-03-23 17:20:00-07:00,78,258.5094994,2.954743956,23.52511597,0.495919918,0.834605066,28.34773254,41.86451766,1.371158406,1.272233747,35.16041816 +2016-03-23 17:30:00-07:00,78,210.9037819,4.550171751,23.4039917,0.489617026,0.804980373,26.51994324,41.71715716,1.108383233,1.026461437,35.14369911 +2016-03-23 17:40:00-07:00,78,161.9408673,2.253742553,23.48153687,0.486916311,0.781572233,25.34906006,41.35352358,0.847357514,0.781323821,34.91911736 +2016-03-23 17:50:00-07:00,78,117.9682543,1.992985108,23.26556396,0.48130764,0.753572837,23.66226196,40.9224957,0.600336932,0.550832069,34.66719775 +2016-03-23 18:00:00-07:00,78,78.31435574,4.127032044,22.78553772,0.484468382,0.67292116,22.32090759,40.23212034,0.393243987,0.352428996,34.1014121 +2016-03-23 18:10:00-07:00,78,34.851115,6.285792324,22.34910583,0.5635917,0.41772141,21.09873962,38.508699,0.165030447,0.144077305,31.98099294 +2016-03-23 18:20:00-07:00,78,21.06151898,1.9553329,22.2625885,0.585977962,0.218500583,20.1842041,37.5099901,0.103160228,0.087287225,30.77030415 +2016-03-23 18:30:00-07:00,78,14.39099748,2.63206129,22.16645813,0.498016361,0.246328491,19.39848328,36.42583301,0.064691845,0.05341154,29.43899001 +2016-03-23 18:40:00-07:00,78,7.38960488,3.120771856,21.81651306,0.54312342,-0.1,18.81976318,34.45170772,0.033967462,0.027006808,26.53465152 +2016-03-23 18:50:00-07:00,78,2.000196777,1.523100785,21.5851593,0.485308847,1.1,18.42819214,28.30634888,0.010190445,0.007392438,20.59537 +2016-04-18 05:50:00-07:00,78,3.349959488,1.483446141,16.52990723,0.528856668,0.216160412,12.19821167,32.97184492,0.017462518,0.01329588,24.39824 +2016-04-18 06:00:00-07:00,78,8.754199744,1.263705189,16.10437012,0.590191231,-0.087133407,11.83291626,36.67485608,0.044023389,0.03504536,29.51353998 +2016-04-18 06:10:00-07:00,78,15.15284752,1.360077169,16.51196289,0.584405601,0.424961658,12.09246826,38.21443843,0.076158987,0.064304462,30.99053752 +2016-04-18 06:20:00-07:00,78,21.40448952,1.388756409,16.74523926,0.603121618,0.576930481,12.67565918,38.99775936,0.109207344,0.094138891,32.16889505 +2016-04-18 06:30:00-07:00,78,27.44809493,1.683921148,16.87213989,0.636191243,0.663142003,13.38768005,39.54898114,0.14605315,0.125319905,33.0381152 +2016-04-18 06:40:00-07:00,78,41.83786867,0.840484458,17.30665588,0.602643095,0.703686178,14.08752441,40.33171823,0.219702696,0.189663121,34.28970747 +2016-04-18 06:50:00-07:00,78,59.41467824,1.342252842,17.98214722,0.573683409,0.701791745,14.9155426,40.94062097,0.310187246,0.278111853,34.67365431 +2016-04-18 07:00:00-07:00,78,87.0771217,2.053948436,18.22439575,0.546157805,0.761232622,16.19793701,41.61381751,0.452053616,0.405013516,36.15584665 +2016-04-18 07:10:00-07:00,78,123.1372044,1.670543142,18.68774414,0.535192567,0.794608353,18.05200195,42.04344094,0.678057576,0.625613009,35.66020787 +2016-04-18 07:20:00-07:00,78,161.1741038,1.013080976,19.40104675,0.529766912,0.819185863,19.93874084,42.30048891,0.890452805,0.825633164,35.82176392 +2016-04-18 07:30:00-07:00,78,203.7456948,1.177346231,19.5785675,0.527028343,0.827162144,22.08634949,42.42605448,1.121477215,1.044228237,35.84667981 +2016-04-18 07:40:00-07:00,78,246.7826584,3.473775708,19.6388092,0.526578216,0.847181514,23.73724365,42.54013543,1.361984576,1.268473434,35.8484447 +2016-04-18 07:50:00-07:00,78,292.7201267,1.964265704,19.74583435,0.527073992,0.852334915,25.29779053,42.61239187,1.602883586,1.493489032,35.81949628 +2016-04-18 08:00:00-07:00,78,339.9828737,2.491228273,20.44631958,0.528373417,0.869840757,27.12877808,42.64036415,1.853825154,1.733088351,35.60750304 +2016-04-18 08:10:00-07:00,78,385.3323558,2.428222345,21.34996033,0.528666996,0.864513848,29.60192871,42.52331892,2.100253641,1.962339364,35.37233142 +2016-04-18 08:20:00-07:00,78,432.1467797,4.659682293,21.67808533,0.529493414,0.878289057,30.85612488,42.56645525,2.345126577,2.190319917,35.28959972 +2016-04-18 08:30:00-07:00,78,476.4524813,2.885248759,21.99020691,0.530242122,0.878275729,31.84371948,42.59884302,2.581680771,2.408958577,35.22181597 +2016-04-18 08:40:00-07:00,78,521.3807099,3.878811202,22.28053284,0.530547443,0.882624609,33.5010376,42.51652229,2.816157709,2.631667825,34.91823146 +2016-04-18 08:50:00-07:00,78,564.9296496,3.049754505,22.53752136,0.531544841,0.889040864,34.29251343,42.55083409,3.043091582,2.843375017,34.83251152 +2016-04-18 09:00:00-07:00,78,607.8931793,2.99415811,22.74388123,0.53201033,0.894313196,36.44459534,42.42705429,3.264012517,3.044104785,34.60307693 +2016-04-18 09:10:00-07:00,78,647.774722,3.579200422,23.38604736,0.532257134,0.901322571,38.51976013,42.23305611,3.469197235,3.229834832,34.30090895 +2016-04-18 09:20:00-07:00,78,687.9063502,4.278399297,23.39630127,0.533520425,0.908243657,40.08862305,42.13155916,3.675833943,3.426989406,33.99546991 +2016-04-18 09:30:00-07:00,78,726.4307509,2.737205909,22.92076111,0.533890261,0.904228531,41.09864807,42.01899189,3.86750398,3.599230696,33.80364731 +2016-04-18 09:40:00-07:00,78,761.2196297,1.730985884,23.4559021,0.53448319,0.907183114,42.98539734,41.86887092,4.049545927,3.765000792,33.56335288 +2016-04-18 09:50:00-07:00,78,795.6457281,2.758314195,24.07371521,0.534911524,0.908304045,45.13298035,41.63899268,4.226304751,3.922016716,33.24092482 +2016-04-18 10:00:00-07:00,78,830.7895665,1.503754025,25.4727478,0.534871871,0.910624443,47.92849731,41.31748807,4.410346328,4.088815611,32.73078663 +2016-04-18 10:10:00-07:00,78,857.8494216,1.8132185,23.97052002,0.535310184,0.913261164,46.53713989,41.50468077,4.544678507,4.217896343,32.84798292 +2016-04-18 10:20:00-07:00,78,893.3656003,1.283451975,24.50309753,0.535043643,0.916123034,47.14790344,41.49522918,4.704658473,4.362797043,32.76774446 +2016-04-18 10:30:00-07:00,78,920.9472583,1.361198598,24.42811584,0.535319761,0.915255466,49.03977966,41.30523756,4.847864487,4.486550421,32.49817717 +2016-04-18 10:40:00-07:00,78,942.6052653,1.830562265,25.30163574,0.536008898,0.917384071,51.862854,41.01888008,4.965006176,4.58089493,32.15591145 +2016-04-18 10:50:00-07:00,78,966.3089594,1.326030646,24.73765564,0.535581786,0.919526286,50.09402466,41.18101323,5.078886326,4.689718107,32.25781541 +2016-04-18 11:00:00-07:00,78,989.9733555,0.673735715,26.02133179,0.536066218,0.920172342,52.98054504,40.82855784,5.198998088,4.789704033,31.83498247 +2016-04-18 11:10:00-07:00,78,1006.055826,2.060357309,26.50071716,0.536477017,0.91970782,57.01937866,40.32467916,5.278782209,4.862212584,31.22631543 +2016-04-18 11:20:00-07:00,78,1023.507675,2.73187865,25.77331543,0.536488298,0.922814936,54.42572021,40.6882719,5.371146798,4.951045677,31.54976405 +2016-04-18 11:30:00-07:00,78,1037.43941,0.813927935,26.23283386,0.536588573,0.921175489,54.07965088,40.78721638,5.433415954,5.008685775,31.6204049 +2016-04-18 11:40:00-07:00,78,1049.325503,1.418597102,25.90020752,0.536610271,0.922717648,56.48614502,40.53011842,5.497688553,5.058755254,31.32672209 +2016-04-18 11:50:00-07:00,78,1056.579144,2.84042737,25.77651978,0.5379794,0.923681101,55.1749115,40.74764138,5.53254451,5.096621937,31.5248882 +2016-04-18 12:00:00-07:00,78,1065.055314,2.842630413,26.34883118,0.537476917,0.925262546,56.55151367,40.66080253,5.575508894,5.131519956,31.41746447 +2016-04-18 12:10:00-07:00,78,1069.303042,1.711919708,25.9899292,0.538156773,0.923814253,54.86152649,40.85026198,5.59137724,5.151237653,31.60131267 +2016-04-18 12:20:00-07:00,78,1071.63273,2.139986716,27.06340027,0.53825614,0.926352188,56.16506958,40.6423508,5.608181667,5.155272834,31.39276648 +2016-04-18 12:30:00-07:00,78,1074.099689,3.49144008,27.37423706,0.538127335,0.927151552,54.82371521,40.83722882,5.620110889,5.170070801,31.58090699 +2016-04-18 12:40:00-07:00,78,1069.469665,4.41282379,26.49623108,0.538152934,0.924853721,51.50267029,41.24019151,5.591968395,5.163420944,31.99525269 +2016-04-18 12:50:00-07:00,78,1068.653887,0.527775767,26.77885437,0.537804154,0.926618338,53.24330139,40.99944746,5.595059862,5.155610179,31.75030306 +2016-04-18 13:00:00-07:00,78,1060.829568,3.189426139,26.35395813,0.537733751,0.925270677,51.8878479,41.23266911,5.551257927,5.122195926,32.00876456 +2016-04-18 13:10:00-07:00,78,1055.609045,1.452804417,26.69810486,0.536996433,0.925380912,53.59129333,40.89869214,5.526652733,5.09175444,31.68339043 +2016-04-18 13:20:00-07:00,78,1040.499093,2.892418639,27.50561523,0.536974172,0.921770984,55.18772888,40.62713945,5.454937971,5.020244786,31.4377266 +2016-04-18 13:30:00-07:00,78,1030.489571,2.350755678,27.24221802,0.536561204,0.920941427,53.054245,41.05664159,5.390699665,4.974389666,31.91284342 +2016-04-18 13:40:00-07:00,78,1014.282141,5.092355367,27.20952759,0.536569106,0.920019968,50.82783508,41.26180434,5.309004886,4.896518185,32.21239569 +2016-04-18 13:50:00-07:00,78,996.6587276,3.557010312,27.77029419,0.536594549,0.92109355,50.64260864,41.27357126,5.215700023,4.814261154,32.28437346 +2016-04-18 14:00:00-07:00,78,976.4997341,1.64923334,28.62138367,0.536112151,0.919750579,54.80833191,40.58853173,5.124872944,4.711680337,31.6355317 +2016-04-18 14:10:00-07:00,78,954.8417178,3.351007788,28.1272583,0.535632698,0.917444649,52.68444824,40.84796995,5.010638928,4.618594017,31.95095505 +2016-04-18 14:20:00-07:00,78,927.1278035,2.62581286,27.78503418,0.53468693,0.916855523,50.62338257,41.1519775,4.862555339,4.49408354,32.3352313 +2016-04-18 14:30:00-07:00,78,906.9665741,3.865753524,28.12405396,0.534558627,0.913471083,50.43945313,41.11016077,4.758016022,4.394106373,32.35059592 +2016-04-18 14:40:00-07:00,78,876.5555634,3.612646451,27.74594116,0.534451259,0.911959577,47.74969482,41.34343855,4.605785712,4.263105562,32.6624336 +2016-04-18 14:50:00-07:00,78,849.3291503,1.505716648,28.06829834,0.533601427,0.913083928,49.73577881,41.09183505,4.458644138,4.12819714,32.48163115 +2016-04-18 15:00:00-07:00,78,818.1048003,2.1766771,27.87988281,0.533434832,0.909135354,49.85562134,41.00058826,4.301592023,3.983255487,32.46593111 +2016-04-18 15:10:00-07:00,78,788.8378344,2.676001601,28.95848083,0.532760336,0.908615099,49.47813416,40.94305095,4.140198483,3.828381822,32.57433845 +2016-04-18 15:20:00-07:00,78,753.9682988,4.272391149,28.55793762,0.532164296,0.90526133,44.97789001,41.46043105,3.959452823,3.671862004,33.18501929 +2016-04-18 15:30:00-07:00,78,712.5237122,3.273461005,28.49513245,0.531487883,0.898928308,44.24920654,41.44894104,3.757371669,3.487924378,33.27792484 +2016-04-18 15:40:00-07:00,78,667.0738371,2.020583292,29.46286011,0.530444454,0.891507036,44.26074219,41.36745166,3.529499311,3.274422582,33.30367677 +2016-04-18 15:50:00-07:00,78,629.0343061,2.205997417,28.96360779,0.530115925,0.888548406,43.88967896,41.3370658,3.330754012,3.096697848,33.37578856 +2016-04-18 16:00:00-07:00,78,587.175643,3.315919326,28.44258118,0.529440172,0.880136213,41.52932739,41.57131638,3.105954956,2.886265778,33.817012 +2016-04-18 16:10:00-07:00,78,544.6018529,1.71228006,28.8886261,0.528037008,0.874916679,40.70515442,41.47452775,2.885395301,2.681301743,33.82836292 +2016-04-18 16:20:00-07:00,78,502.6059556,2.190055456,28.81108093,0.527339974,0.870109053,41.02366638,41.31974134,2.666568449,2.479788068,33.7765832 +2016-04-18 16:30:00-07:00,78,458.8879367,2.301287781,29.26803589,0.526632579,0.873549639,40.00915527,41.2888451,2.436355507,2.264734092,33.87980574 +2016-04-18 16:40:00-07:00,78,413.3963531,1.933062952,28.90272522,0.525651152,0.857799355,38.37490845,41.28152063,2.192017275,2.034641616,34.0886183 +2016-04-18 16:50:00-07:00,78,367.6450503,2.025309289,28.7348175,0.524691619,0.859546768,37.57061768,41.16443541,1.950426181,1.808594691,34.07952263 +2016-04-18 17:00:00-07:00,78,322.4721739,3.762852461,29.41607666,0.524297996,0.847938399,36.76951599,41.05769205,1.707971141,1.583004383,34.09351025 +2016-04-18 17:10:00-07:00,78,275.520525,2.445205268,28.61433411,0.524139626,0.839146579,34.65718079,41.06983189,1.456290062,1.349403976,34.22599539 +2016-04-18 17:20:00-07:00,78,230.2371619,1.289701033,29.2718811,0.523866062,0.831356131,34.09384155,40.80806274,1.213806911,1.119401077,34.19049277 +2016-04-18 17:30:00-07:00,78,187.4720905,3.862188701,29.14498108,0.525104374,0.814611677,32.76850891,40.55422559,0.983069038,0.904010608,34.05630057 +2016-04-18 17:40:00-07:00,78,147.1640406,0.643093851,29.18984436,0.52853962,0.795802636,31.19706726,40.25442313,0.75657037,0.5671825,36.30924002 +2016-04-18 17:50:00-07:00,78,109.4578466,1.009075614,29.17061951,0.534919702,0.785879952,29.79675293,39.77010384,0.521045771,0.4091192,35.84603998 +2016-04-18 18:00:00-07:00,78,78.26044657,2.547265347,29.00462341,0.544647979,0.737591553,28.48936462,39.12187062,0.330904859,0.2513146,35.75034997 +2016-04-18 18:10:00-07:00,78,51.58766287,0.958606568,28.98283386,0.57140403,0.730104101,27.10185242,38.3777771,0.206854648,0.179150353,33.49612403 +2016-04-18 18:20:00-07:00,78,35.44392265,2.0542293,29.13407898,0.603566474,0.656724217,26.13221741,37.70249047,0.163425556,0.143174599,31.31230404 +2016-04-18 18:30:00-07:00,78,26.17920058,1.741600377,28.6643219,0.599376531,0.642565644,24.95426941,37.26076411,0.126935438,0.109586469,30.64133971 +2016-04-18 18:40:00-07:00,78,19.66762786,1.480642604,28.34388733,0.573404254,0.504007158,24.60307312,36.62107891,0.09659526,0.082060186,29.84923139 +2016-04-18 18:50:00-07:00,78,11.78207517,1.182993888,28.24839783,0.555100024,0.059590689,23.99615479,35.50746689,0.061645981,0.05149556,28.04816999 +2016-04-18 19:00:00-07:00,78,5.704112894,1.585145728,27.76773071,0.531150554,0.000789363,23.27581787,33.16126959,0.029240153,0.02272064,25.49861003 +2016-04-18 19:10:00-07:00,78,1.262830837,1.457410483,27.34539795,0.477447649,0.915569079,22.8400116,27.11512498,0.008567831,0.006753765,17.44098006 +2016-05-12 05:20:00-07:00,78,1.287324132,1.626602481,20.34378052,0.429934297,0.359136395,17.52391052,27.65495699,0.009232154,0.006909118,20.08666009 +2016-05-12 05:30:00-07:00,78,4.271043539,1.35166565,20.71868896,0.557782632,0.201080606,17.52326965,33.30804567,0.023273703,0.01821538,24.83323999 +2016-05-12 05:40:00-07:00,78,11.40234629,0.541715082,20.72702026,0.577135628,-0.031802226,17.14002991,36.4280473,0.055482323,0.045492665,29.16824088 +2016-05-12 05:50:00-07:00,78,21.4779878,1.180350864,21.17756653,0.561643143,0.37374564,16.81445313,38.36685842,0.113110353,0.097458782,31.54970206 +2016-05-12 06:00:00-07:00,78,34.23868142,0.532662766,22.06071472,0.564090645,0.500182408,17.19578552,39.3903195,0.182308154,0.160404106,32.89871259 +2016-05-12 06:10:00-07:00,78,43.24402484,1.042121267,22.83744812,0.565682986,0.474631418,18.04046631,39.75933239,0.225523486,0.20081951,33.33315915 +2016-05-12 06:20:00-07:00,78,48.28795052,1.069598752,23.02138672,0.579894602,0.607545859,19.09407043,39.70887146,0.24326108,0.217299346,33.35901685 +2016-05-12 06:30:00-07:00,78,57.70724166,1.799159185,22.93293762,0.587944348,0.585644481,20.18484497,39.96398361,0.297474216,0.267900286,33.66719659 +2016-05-12 06:40:00-07:00,78,79.47549616,1.863928526,23.95257568,0.567937487,0.582575501,21.59861755,40.39359457,0.378466893,0.345541011,34.7302784 +2016-05-12 06:50:00-07:00,78,102.4467376,1.632210463,24.52809143,0.549648854,0.602102376,23.14764404,40.74697034,0.516386607,0.4302299,36.12362997 +2016-05-12 07:00:00-07:00,78,130.8610848,1.219044034,24.0397406,0.540526663,0.672996221,23.95898438,41.21029335,0.715785873,0.65678848,34.80283896 +2016-05-12 07:10:00-07:00,78,162.3426143,1.500069271,24.75816345,0.534550502,0.718771845,25.48812866,41.42944367,0.888990982,0.822302821,34.96971017 +2016-05-12 07:20:00-07:00,78,166.4608186,2.120600352,24.91453552,0.547714611,0.707978227,26.98329163,41.25051482,0.904727538,0.836268113,34.77028301 +2016-05-12 07:30:00-07:00,78,242.4440513,0.909459069,26.23667908,0.528684582,0.751258456,29.33532715,41.66615053,1.326175059,1.235179744,35.00742713 +2016-05-12 07:40:00-07:00,78,257.2135447,1.146944789,26.22962952,0.53681929,0.695992503,30.05438232,41.65587054,1.399517397,1.295886051,34.95500365 +2016-05-12 07:50:00-07:00,78,297.0242574,1.607256071,26.7346344,0.532950711,0.726874387,31.9680481,41.67068072,1.612949031,1.496506255,34.84626027 +2016-05-12 08:00:00-07:00,78,379.8080137,1.125355102,27.43511963,0.529742609,0.782268605,35.23780823,41.68790224,2.053635519,1.917532984,34.56932883 +2016-05-12 08:10:00-07:00,78,419.4228169,1.091068508,27.99267578,0.529988891,0.783109393,37.40463257,41.58710843,2.271676255,2.112922543,34.34984928 +2016-05-12 08:20:00-07:00,78,449.6280636,1.290021152,27.85488892,0.530383684,0.770182342,38.9356842,41.5588713,2.433691113,2.257389448,34.22977352 +2016-05-12 08:30:00-07:00,78,516.6184479,1.736113024,28.46308899,0.529492276,0.802773574,41.04353333,41.50986389,2.787029575,2.593099904,33.91853834 +2016-05-12 08:40:00-07:00,78,524.51875,1.824714351,29.89801025,0.533154537,0.793136646,44.01464844,41.08822837,2.807425242,2.613261556,33.47261438 +2016-05-12 08:50:00-07:00,78,537.6738574,1.164328577,29.75894165,0.53315183,0.727280554,45.38996887,40.91761942,2.877656429,2.662882555,33.27286572 +2016-05-12 09:00:00-07:00,78,640.0777456,2.798289726,30.03259277,0.529072306,0.763432399,44.59913635,41.3954852,3.412590766,3.176995573,33.39464898 +2016-05-12 09:10:00-07:00,78,691.201232,2.308097449,30.98814392,0.531191219,0.80492799,46.07122803,41.30626635,3.691770819,3.423247892,33.17162199 +2016-05-12 09:20:00-07:00,78,747.638328,3.262165692,31.48547363,0.53149757,0.81025975,50.00302124,40.88889526,3.985879871,3.687448239,32.59531603 +2016-05-12 09:30:00-07:00,78,745.2718083,0.977792814,31.10670471,0.531603261,0.757096931,51.61802673,40.75554001,3.987442298,3.672658729,32.45383686 +2016-05-12 09:40:00-07:00,78,812.8722891,3.148930301,30.91123962,0.531496204,0.773832518,50.51635742,41.10254007,4.330354165,4.004525491,32.56239984 +2016-05-12 09:50:00-07:00,78,581.3306522,1.432576231,30.75358582,0.539367749,0.644369246,48.5123291,40.63527526,3.169517945,2.870109886,32.80925585 +2016-05-12 10:00:00-07:00,78,670.8366126,2.12432527,31.29833984,0.53782762,0.678361496,51.27836609,40.59369597,3.524639088,3.284639008,32.52082316 +2016-05-12 10:10:00-07:00,78,782.5297437,3.074788805,30.83818054,0.536789154,0.758327394,49.9934082,40.97420696,4.193682657,3.853403148,32.56287211 +2016-05-12 10:20:00-07:00,78,896.109291,1.849147808,31.48867798,0.534742082,0.818453249,54.284729,40.60308745,4.765061809,4.377943796,31.8329383 +2016-05-12 10:30:00-07:00,78,838.4229818,0.9739875,31.70977783,0.537321298,0.809977164,56.14968872,40.24522754,4.439078019,4.104859004,31.62991449 +2016-05-12 10:40:00-07:00,78,945.28522,1.256895731,31.59121704,0.536390559,0.87151125,58.17614746,40.14119798,4.991833765,4.595460113,31.18541323 +2016-05-12 10:50:00-07:00,78,964.4373202,3.306386308,32.48396301,0.536640466,0.877075181,58.66705322,40.09364634,5.086080809,4.682981806,31.08374552 +2016-05-12 11:00:00-07:00,78,989.1722537,4.043597323,32.20388794,0.536628204,0.87090805,60.30065918,40.07373724,5.215730271,4.796299791,31.00351186 +2016-05-12 11:10:00-07:00,78,980.5663294,1.731546563,32.54804993,0.536979343,0.849694285,60.55059814,40.03373116,5.192209357,4.757624074,30.98248518 +2016-05-12 11:20:00-07:00,78,744.4511173,1.995227826,32.64994812,0.542578526,0.714825626,59.68029785,39.60224745,4.024315919,3.659201531,31.21045058 +2016-05-12 11:30:00-07:00,78,906.116458,2.466754792,32.87617493,0.53821824,0.807788854,54.1725769,40.6315713,4.741469731,4.374106376,31.86369655 +2016-05-12 11:40:00-07:00,78,1015.119955,1.928055743,33.74713135,0.537569538,0.880856905,59.6232605,40.08806817,5.325100399,4.896171257,30.97139462 +2016-05-12 11:50:00-07:00,78,1016.802889,1.646990413,34.25790894,0.538336276,0.90235091,62.87890625,39.70072558,5.344723631,4.899854999,30.5694916 +2016-05-12 12:00:00-07:00,78,1028.453858,2.090959009,34.23675537,0.538250579,0.911575195,62.64819336,39.6877268,5.39444249,4.946421775,30.52395666 +2016-05-12 12:10:00-07:00,78,1028.649777,1.782616801,34.44697571,0.53839352,0.909352462,63.88381958,39.46379263,5.394333988,4.943621982,30.28329266 +2016-05-12 12:20:00-07:00,78,1031.562537,3.625223846,34.74049377,0.53860163,0.911977948,64.02609253,39.55271308,5.4109227,4.956596067,30.38155106 +2016-05-12 12:30:00-07:00,78,1026.9276,2.352198064,34.67448425,0.538898238,0.910190868,62.36621094,39.74247911,5.385711053,4.93863289,30.58607325 +2016-05-12 12:40:00-07:00,78,1026.300417,1.873340774,35.74346924,0.53881345,0.909436545,62.92504883,39.62269569,5.383491267,4.931815313,30.46558377 +2016-05-12 12:50:00-07:00,78,1018.58871,1.495062271,35.28266907,0.539035633,0.909252484,62.56359863,39.60535338,5.339879543,4.899662832,30.46214383 +2016-05-12 13:00:00-07:00,78,1015.154257,1.768998094,35.93252563,0.538443331,0.91157333,64.38049316,39.35428814,5.323005893,4.87486177,30.21831709 +2016-05-12 13:10:00-07:00,78,1005.737339,2.762440047,36.39076233,0.538509608,0.911321383,64.61761475,39.23396244,5.273426648,4.824994872,30.13059381 +2016-05-12 13:20:00-07:00,78,996.1050614,1.716686427,36.12863159,0.538393784,0.909836107,63.15960693,39.46004911,5.224348577,4.791054569,30.38342543 +2016-05-12 13:30:00-07:00,78,984.5007236,4.340244262,36.50291443,0.537911941,0.913169169,65.10467529,39.12093994,5.162076789,4.726399687,30.07577476 +2016-05-12 13:40:00-07:00,78,967.6930697,0.782324667,37.35463501,0.537960741,0.912378466,66.06921387,39.03372057,5.077794455,4.649900736,30.0292467 +2016-05-12 13:50:00-07:00,78,952.3552804,1.47683722,37.23735046,0.537699187,0.911857164,66.01281738,38.98291992,4.999132963,4.578072421,30.02836928 +2016-05-12 14:00:00-07:00,78,938.3868612,2.300727032,36.64582825,0.536977443,0.90910338,62.54501343,39.4092043,4.920972728,4.522086233,30.48600127 +2016-05-12 14:10:00-07:00,78,914.3695297,2.638430209,36.93678284,0.536790663,0.906564984,61.09921265,39.58148476,4.801101118,4.415273868,30.72291372 +2016-05-12 14:20:00-07:00,78,891.9790701,1.130161565,37.61932373,0.536674102,0.906627329,61.93875122,39.41137863,4.687087288,4.301265586,30.67014373 +2016-05-12 14:30:00-07:00,78,862.9447997,1.096635908,37.0643158,0.536475284,0.902294958,61.44207764,39.48105321,4.537348705,4.170032462,30.81767815 +2016-05-12 14:40:00-07:00,78,837.6267197,1.065353109,36.92076111,0.536350814,0.902269542,59.84628296,39.52428589,4.405318529,4.053019301,30.92561225 +2016-05-12 14:50:00-07:00,78,808.0095696,2.453096341,37.25785828,0.536032897,0.898004425,60.44229126,39.56318503,4.25692961,3.920418475,31.03792187 +2016-05-12 15:00:00-07:00,78,776.6235749,1.944438312,36.63877869,0.535665586,0.895366556,58.1857605,39.75557672,4.093350449,3.777330654,31.3206094 +2016-05-12 15:10:00-07:00,78,744.1326309,1.604091693,37.40783691,0.535228775,0.898307241,59.59762573,39.44706929,3.932127862,3.621373711,31.10425151 +2016-05-12 15:20:00-07:00,78,712.4501863,0.780041507,38.90812683,0.534892638,0.893843169,59.55148315,39.32703288,3.765412736,3.470944237,31.05387506 +2016-05-12 15:30:00-07:00,78,678.8103945,1.741840448,37.99230957,0.534389831,0.89280807,56.8187561,39.59369559,3.582661145,3.302059792,31.50573612 +2016-05-12 15:40:00-07:00,78,639.8425934,1.331277299,37.4238562,0.534668526,0.891812099,54.47442627,39.76069375,3.380873454,3.121974855,31.77236995 +2016-05-12 15:50:00-07:00,78,599.8799615,3.083881284,36.90666199,0.533851665,0.886304323,52.92286682,40.0329147,3.179811804,2.943646356,32.13944141 +2016-05-12 16:00:00-07:00,78,558.736821,1.695136484,38.58256531,0.533522145,0.881281879,54.68399048,39.58716053,2.96649248,2.742995638,31.81063964 +2016-05-12 16:10:00-07:00,78,517.9094617,1.457570856,37.99807739,0.533270614,0.876190998,52.87672424,39.64284369,2.752193622,2.54246602,32.0604718 +2016-05-12 16:20:00-07:00,78,475.8744137,1.002466623,37.38155396,0.532905203,0.867469857,51.6436615,39.73463356,2.529381569,2.339729329,32.27360304 +2016-05-12 16:30:00-07:00,78,433.5871824,0.472139628,38.28070068,0.533084171,0.86611529,50.57595825,39.63181353,2.305996926,2.132327425,32.28449068 +2016-05-12 16:40:00-07:00,78,390.0847634,2.295119399,39.19523621,0.532772268,0.858589823,49.86843872,39.49410746,2.078942832,1.922343197,32.26005245 +2016-05-12 16:50:00-07:00,78,346.9155066,1.984173073,38.80302429,0.532986929,0.849617921,48.1925354,39.5482994,1.850961699,1.712430343,32.43455328 +2016-05-12 17:00:00-07:00,78,304.4541906,0.89956563,37.96218872,0.533214601,0.853995315,46.01034546,39.61584284,1.619930531,1.496337107,32.71113167 +2016-05-12 17:10:00-07:00,78,260.8269957,2.846876266,37.38347717,0.53422726,0.841676356,43.56411743,39.58883915,1.385896689,1.27817385,32.79942277 +2016-05-12 17:20:00-07:00,78,217.4788606,1.529669752,38.29544067,0.536483948,0.830059018,42.31311035,39.3631612,1.156231103,0.8467322,35.66252999 +2016-05-12 17:30:00-07:00,78,177.7783953,1.161444504,37.69494629,0.538776394,0.821800771,41.1146698,38.60978926,0.396078321,0.274928099,35.81912001 +2016-05-12 17:40:00-07:00,78,140.5620948,1.388996132,37.74108887,0.545927141,0.807525389,38.82289124,37.96790378,0.274685713,0.2520392,33.65856002 +2016-05-12 17:50:00-07:00,78,106.5892604,1.201019101,38.03588867,0.556414867,0.800148376,37.07585144,37.69644382,0.253996213,0.233136991,32.88889182 +2016-05-12 18:00:00-07:00,78,77.79988615,1.480121459,38.16278076,0.574212172,0.775557678,35.11924744,37.28689268,0.235813176,0.213364931,31.75044939 +2016-05-12 18:10:00-07:00,78,55.38005664,1.62592201,37.37899109,0.603879754,0.771648652,34.19317627,37.01357022,0.214002718,0.190844858,30.92380973 +2016-05-12 18:20:00-07:00,78,41.35280574,1.202621302,37.34822937,0.633572679,0.725243432,33.60870361,36.81653838,0.191854637,0.168183031,30.55760773 +2016-05-12 18:30:00-07:00,78,35.63257255,1.047127708,37.42962646,0.680852969,0.627329197,32.98640442,36.61569062,0.167830516,0.146608213,30.19879794 +2016-05-12 18:40:00-07:00,78,30.68169747,1.111856955,36.96369934,0.645443343,0.515502941,32.3865509,36.35895107,0.144102711,0.125189616,29.86806355 +2016-05-12 18:50:00-07:00,78,23.93513818,0.745233977,36.77079773,0.642108357,0.555088406,32.19491577,35.84797048,0.115527838,0.098831573,29.34693749 +2016-05-12 19:00:00-07:00,78,17.08563713,1.318139574,35.56594849,0.615818717,0.395643832,31.44061279,35.1664029,0.085531053,0.071960405,28.33823529 +2016-05-12 19:10:00-07:00,78,9.670398017,0.848055063,35.68643188,0.57760452,0.081245219,30.49211121,33.83881722,0.051208989,0.041965859,26.60922463 +2016-05-12 19:20:00-07:00,78,4.814864606,1.398810153,34.50657654,0.52409488,-0.1,29.4692688,31.09450128,0.02317459,0.01778388,23.31235001 +2016-06-15 05:10:00-07:00,78,1.561709758,0.914866305,23.06881714,0.518004205,0.754182522,18.01867676,28.68993257,0.011079634,0.00832456,20.96455002 +2016-06-15 05:20:00-07:00,78,5.468979107,1.299754428,22.80989075,0.589726774,-0.1,18.09686279,34.06327397,0.02877231,0.022545216,26.04094105 +2016-06-15 05:30:00-07:00,78,11.36558795,0.439053881,22.85218811,0.636105279,0.101364417,18.15454102,36.18369383,0.054362436,0.044835094,28.74558262 +2016-06-15 05:40:00-07:00,78,17.09057811,1.603691317,23.01304932,0.670928196,-0.057506836,18.19812012,37.36713203,0.083793077,0.070750424,30.41615105 +2016-06-15 05:50:00-07:00,78,23.11446559,0.931489156,23.55395508,0.678233568,0.631899123,18.99281311,37.9706189,0.111905936,0.09651211,31.198415 +2016-06-15 06:00:00-07:00,78,27.44322755,0.626471071,24.17881775,0.678926341,0.642580594,19.4478302,38.3426145,0.13278396,0.115723391,31.68273124 +2016-06-15 06:10:00-07:00,78,31.05160878,1.283131298,24.85301208,0.680105179,0.694729814,20.01950073,38.4911989,0.14857693,0.130217134,31.93161311 +2016-06-15 06:20:00-07:00,78,34.83151668,0.579246171,25.57208252,0.666143049,0.763383418,20.35211182,38.65972956,0.163399987,0.143566504,32.18846812 +2016-06-15 06:30:00-07:00,78,37.66581043,0.984281804,26.1469574,0.666911047,0.772986998,20.81994629,38.80708582,0.179551056,0.158625771,32.35973651 +2016-06-15 06:40:00-07:00,78,48.41286448,0.557456366,27.63827515,0.649424663,0.789327209,21.14552307,39.08465196,0.197058328,0.176596283,33.07228655 +2016-06-15 06:50:00-07:00,78,65.40909464,1.328513576,26.28987122,0.607957079,0.816383656,22.17671204,39.31281484,0.210744102,0.190703758,34.04306389 +2016-06-15 07:00:00-07:00,78,90.96236365,1.031306097,26.68016052,0.580436585,0.831901324,24.20637512,40.0123217,0.258452236,0.2166016,36.52840997 +2016-06-15 07:10:00-07:00,78,121.3562695,1.217682045,26.40202332,0.56476932,0.847229624,26.01364136,40.72553904,0.674265446,0.618098451,34.36535784 +2016-06-15 07:20:00-07:00,78,157.9870404,1.634813882,26.8134613,0.554805093,0.853555427,27.58123779,41.01017975,0.860548595,0.794092421,34.55756957 +2016-06-15 07:30:00-07:00,78,195.2793143,1.71876905,26.78462219,0.548696356,0.866498785,29.04371643,41.22451748,1.056316914,0.979250313,34.68559943 +2016-06-15 07:40:00-07:00,78,234.5265616,2.210363341,26.74873352,0.545450023,0.876879815,30.55619812,41.36279369,1.263298175,1.171802941,34.73584297 +2016-06-15 07:50:00-07:00,78,276.7012821,1.912234481,27.51522827,0.543165904,0.870020933,32.34040833,41.43459208,1.48048241,1.378714846,34.57842383 +2016-06-15 08:00:00-07:00,78,318.0085701,2.470640293,27.6434021,0.542416235,0.886590872,33.80032349,41.49761204,1.692419652,1.576571158,34.54859771 +2016-06-15 08:10:00-07:00,78,360.3131271,2.405830929,27.90808105,0.541395191,0.887076538,34.85328674,41.61661356,1.907906242,1.778154521,34.55498531 +2016-06-15 08:20:00-07:00,78,401.1527606,2.9819813,28.01959229,0.540439053,0.891363879,36.7631073,41.56478172,2.120099655,1.973926434,34.40484353 +2016-06-15 08:30:00-07:00,78,441.9798622,2.790118279,28.3881073,0.540160316,0.898724991,38.35183716,41.51076698,2.331103172,2.170591661,34.24804307 +2016-06-15 08:40:00-07:00,78,482.6798876,2.009447794,29.25650024,0.539731858,0.904903911,40.37637329,41.39433278,2.539668175,2.368936857,33.91620243 +2016-06-15 08:50:00-07:00,78,524.4231599,3.688350054,29.66986084,0.539758087,0.907381998,41.32295227,41.38518718,2.752162978,2.561739291,33.79504032 +2016-06-15 09:00:00-07:00,78,562.8057718,3.177529774,29.92556763,0.539597591,0.912386122,42.51435364,41.37782014,2.950738445,2.746564248,33.70040037 +2016-06-15 09:10:00-07:00,78,599.2650897,1.936707823,30.55299377,0.53936138,0.91562274,44.72154236,41.15996785,3.136760377,2.91120485,33.37886134 +2016-06-15 09:20:00-07:00,78,636.0210782,2.087594862,30.15307617,0.539032079,0.919309914,45.53160095,41.14385354,3.321287458,3.091617006,33.17866065 +2016-06-15 09:30:00-07:00,78,673.6342032,1.115582013,31.14451599,0.538352772,0.919565524,46.68327332,41.08500557,3.514048623,3.266821315,33.03024852 +2016-06-15 09:40:00-07:00,78,707.4943887,2.398861656,32.24491272,0.538690201,0.92172827,49.75500488,40.80349706,3.68842195,3.421237979,32.64840423 +2016-06-15 09:50:00-07:00,78,737.4399715,2.389568989,31.54827881,0.539116784,0.925541662,50.65863037,40.75158694,3.84165894,3.559905611,32.52492988 +2016-06-15 10:00:00-07:00,78,769.0782877,2.058114312,32.04174805,0.538597901,0.92549795,52.742771,40.55898553,4.003149047,3.702024307,32.24317291 +2016-06-15 10:10:00-07:00,78,797.5074945,0.98400143,33.30557251,0.538847634,0.927381931,55.12236023,40.26163936,4.148334844,3.836989935,31.80460959 +2016-06-15 10:20:00-07:00,78,824.496262,2.919776053,32.82618713,0.539040494,0.926792622,54.51416016,40.44311797,4.284717896,3.962459246,31.91540759 +2016-06-15 10:30:00-07:00,78,848.310047,2.270565871,33.06266785,0.539042456,0.92862988,57.09051514,40.08325116,4.412577895,4.071270789,31.48979441 +2016-06-15 10:40:00-07:00,78,872.5184299,2.680007243,33.36901855,0.539020628,0.930972008,57.693573,40.12468345,4.525474823,4.174688084,31.46849333 +2016-06-15 10:50:00-07:00,78,893.4121578,2.718699854,33.19725159,0.538634157,0.93235457,58.00375366,40.1711502,4.630538343,4.271554979,31.46227471 +2016-06-15 11:00:00-07:00,78,912.1158246,2.602741462,33.68881226,0.538442632,0.927148159,58.6427002,40.08351088,4.724923831,4.354275924,31.31796476 +2016-06-15 11:10:00-07:00,78,927.2650101,1.501270607,33.22417053,0.53844112,0.927989399,57.62628174,40.17633353,4.80882932,4.428357198,31.37660778 +2016-06-15 11:20:00-07:00,78,944.8981579,2.524554092,34.3598175,0.537813705,0.927116523,61.20367432,39.74635465,4.895663543,4.50329942,30.83668901 +2016-06-15 11:30:00-07:00,78,957.0317606,1.310368991,34.67640686,0.538169555,0.928120184,60.93063354,39.73066423,4.956759846,4.559909753,30.78861026 +2016-06-15 11:40:00-07:00,78,969.0600017,3.792893621,33.44720459,0.538000819,0.927465794,56.86491699,40.34252301,5.009157069,4.615505987,31.43604576 +2016-06-15 11:50:00-07:00,78,973.8320352,3.077752925,33.85800171,0.538723718,0.925972877,59.14837646,40.02301832,5.043430621,4.639040227,31.04591021 +2016-06-15 12:00:00-07:00,78,981.1127452,2.970765964,34.798172,0.5387541,0.927573505,59.31884766,39.97709465,5.077688222,4.671180311,30.97569362 +2016-06-15 12:10:00-07:00,78,989.8434822,1.641983832,35.34548462,0.538103208,0.927415022,59.87640381,39.92023825,5.112550309,4.704183486,30.90135253 +2016-06-15 12:20:00-07:00,78,995.7179808,5.424931752,35.58773804,0.537890194,0.927854795,58.03900146,40.16579731,5.142645491,4.735874507,31.13295563 +2016-06-15 12:30:00-07:00,78,997.173234,4.393277192,35.91586304,0.537226706,0.930022305,61.83685303,39.74179113,5.152083287,4.731057075,30.70285555 +2016-06-15 12:40:00-07:00,78,994.1525354,2.407233291,35.27241638,0.537160022,0.927952675,59.90524292,39.92825038,5.137774152,4.725231888,30.89304564 +2016-06-15 12:50:00-07:00,78,991.124706,3.992006779,35.65118408,0.536836075,0.928012643,61.01269531,39.74405086,5.123383793,4.704220307,30.71779858 +2016-06-15 13:00:00-07:00,78,986.842612,2.602541344,36.24847412,0.537067643,0.927689235,61.28314209,39.68818816,5.091150852,4.681527786,30.68001139 +2016-06-15 13:10:00-07:00,78,972.3181067,2.399622872,36.17990112,0.537343606,0.921895049,62.13101196,39.72500698,5.017907309,4.618987668,30.76674579 +2016-06-15 13:20:00-07:00,78,967.1516962,4.031901425,35.98764038,0.537274445,0.919459176,58.52670288,40.08916309,4.99202521,4.599001524,31.12480053 +2016-06-15 13:30:00-07:00,78,958.4157974,3.468328449,36.95152283,0.536784896,0.920080044,59.52264404,39.90426905,4.945143807,4.555535726,30.96461311 +2016-06-15 13:40:00-07:00,78,938.310897,2.902993038,36.37217712,0.537416064,0.920637393,62.30148315,39.50018828,4.848185551,4.457258392,30.6170323 +2016-06-15 13:50:00-07:00,78,924.8961349,3.213538988,36.67915344,0.537147559,0.919334654,62.18869019,39.59044852,4.779464042,4.385774088,30.78601643 +2016-06-15 14:00:00-07:00,78,908.0664628,1.543568484,36.5221405,0.536947799,0.916467134,58.83880615,39.9431186,4.690024037,4.315413761,31.20387735 +2016-06-15 14:10:00-07:00,78,887.6161905,2.747219349,37.12968445,0.536800965,0.919519537,59.52648926,39.77091526,4.594769047,4.218939846,31.08443022 +2016-06-15 14:20:00-07:00,78,867.9568896,1.251608497,36.55482483,0.536578258,0.91710636,59.67453003,39.6951013,4.484769517,4.125841906,31.0551452 +2016-06-15 14:30:00-07:00,78,845.6031607,3.862949638,36.9105072,0.536363492,0.917623017,59.73348999,39.57888355,4.372837537,4.020581199,31.00567096 +2016-06-15 14:40:00-07:00,78,821.4609245,4.976316649,36.83296204,0.536621867,0.917290674,57.90057373,39.83961161,4.243242335,3.911965524,31.32686275 +2016-06-15 14:50:00-07:00,78,796.6746581,1.541846422,37.3956543,0.536179318,0.916134707,57.90570068,39.76294547,4.119500441,3.795942059,31.32415361 +2016-06-15 15:00:00-07:00,78,763.9265436,0.755167441,37.72122192,0.536386993,0.913078043,57.70126343,39.68126211,3.958091392,3.645174325,31.33393163 +2016-06-15 15:10:00-07:00,78,734.880045,4.149983232,37.98205566,0.535953589,0.914235947,57.88775635,39.56954687,3.80339081,3.511145924,31.2740963 +2016-06-15 15:20:00-07:00,78,699.8807373,2.777661514,37.03804016,0.536505254,0.911433659,55.41139221,39.84876141,3.626328389,3.344354666,31.73269481 +2016-06-15 15:30:00-07:00,78,668.4873633,2.522912077,37.16300964,0.536175313,0.906950211,55.36012268,39.70161431,3.461374567,3.195137006,31.67036211 +2016-06-15 15:40:00-07:00,78,632.9268629,3.178651272,37.87503052,0.536074113,0.904012843,53.90533447,39.75698555,3.270863659,3.02126469,31.81860621 +2016-06-15 15:50:00-07:00,78,596.1343921,2.674800195,37.11878967,0.536553094,0.900201332,52.08010864,39.91928251,3.076284978,2.845454592,32.0867626 +2016-06-15 16:00:00-07:00,78,557.0072926,1.95260948,38.09164429,0.535532153,0.896519801,52.03460693,39.87764169,2.88070338,2.66794545,32.14659722 +2016-06-15 16:10:00-07:00,78,517.2088357,0.917109861,36.97779846,0.535928182,0.891096606,50.93998718,39.82844563,2.682212934,2.474456566,32.28576623 +2016-06-15 16:20:00-07:00,78,479.1057068,2.648203648,37.50012207,0.536786794,0.890387535,50.50033569,39.7628828,2.485452922,2.29727329,32.30951673 +2016-06-15 16:30:00-07:00,78,437.3205604,2.077020463,37.93783569,0.537306233,0.888877839,48.89237976,39.76537603,2.266556073,2.094940109,32.44061106 +2016-06-15 16:40:00-07:00,78,394.7490154,1.000103275,38.24993896,0.538281585,0.879939798,48.9289093,39.60447977,2.04629162,1.892144515,32.3927587 +2016-06-15 16:50:00-07:00,78,353.5470247,2.133818474,38.37298828,0.539496493,0.872645842,47.09086609,39.60767719,1.8288194,1.687996498,32.59697992 +2016-06-15 17:00:00-07:00,78,313.1018602,2.763722269,37.8526001,0.541437625,0.869477222,45.38612366,39.62196546,1.616197155,1.490849177,32.71367098 +2016-06-15 17:10:00-07:00,78,269.4573396,3.079034449,37.94937134,0.543661737,0.862273088,44.13513184,39.45642904,1.393475818,1.284043718,32.6693065 +2016-06-15 17:20:00-07:00,78,228.9534906,2.524834257,37.96987915,0.546262116,0.8487267,42.91041565,39.29856312,1.179313506,1.084910376,32.62283964 +2016-06-15 17:30:00-07:00,78,189.0227773,1.358594969,37.9666748,0.550783896,0.841556155,41.66134644,38.86745935,0.958722417,0.4942008,24.18405001 +2016-06-15 17:40:00-07:00,78,152.5879252,2.608148698,37.66033936,0.558518833,0.82716097,38.56782532,37.708032,0.261226465,0.237281,33.42532999 +2016-06-15 17:50:00-07:00,78,118.8942333,1.960500833,37.70135498,0.568498629,0.815145756,36.97523499,37.29432849,0.243128419,0.220469491,32.02169092 +2016-06-15 18:00:00-07:00,78,87.62096117,2.017338658,38.10189819,0.585912281,0.797626215,36.22155762,37.17392521,0.228028165,0.206743496,31.78539849 +2016-06-15 18:10:00-07:00,78,65.8157459,2.289872398,37.69558716,0.610775693,0.768196185,36.06967163,36.9835731,0.216912451,0.194521233,31.47646334 +2016-06-15 18:20:00-07:00,78,48.50593348,1.862286022,37.30335999,0.646433427,0.749009691,36.31063843,36.69345871,0.206539238,0.182184035,30.75956478 +2016-06-15 18:30:00-07:00,78,41.62474388,2.142149527,36.98997498,0.695035519,0.725528878,35.71270752,36.47877497,0.192196934,0.168528802,30.07112607 +2016-06-15 18:40:00-07:00,78,38.30519399,2.639311147,37.10853577,0.697454585,0.70070738,35.05451965,36.36521996,0.174374024,0.152080702,29.96040695 +2016-06-15 18:50:00-07:00,78,33.11183345,3.001127592,36.7797699,0.665499652,0.603639184,34.71998596,36.12043355,0.155309336,0.134666408,29.70188777 +2016-06-15 19:00:00-07:00,78,27.86947713,4.895725767,36.36063904,0.675349634,0.599980341,34.05859375,35.87428866,0.134336016,0.115391354,29.38127935 +2016-06-15 19:10:00-07:00,78,23.19037457,2.679446493,36.04275513,0.664246218,-0.022333123,33.78109741,35.3440884,0.107079809,0.091354909,28.64568131 +2016-06-15 19:20:00-07:00,78,15.77262356,3.376002065,35.67874146,0.635903893,-0.012636586,33.17481995,34.58447356,0.076985181,0.06427247,27.71575976 +2016-06-15 19:30:00-07:00,78,10.62091635,2.302329303,35.35061646,0.604582063,-0.09418201,32.45960999,33.24019567,0.047472625,0.03811786,26.25053 +2016-06-15 19:40:00-07:00,78,4.239244581,3.281431845,35.26152039,0.567664779,-0.1,32.2442688,30.33714745,0.021637324,0.01648923,22.73152 +2016-07-12 05:20:00-07:00,78,1.904643485,0.356260305,25.76754761,0.530952389,0.385939524,21.56913757,28.73573278,0.011745461,0.00889419,20.13262 +2016-07-12 05:30:00-07:00,78,4.981468694,1.258698259,26.48405457,0.613048861,-0.1,22.09211731,33.40099231,0.029006593,0.022777128,25.54074885 +2016-07-12 05:40:00-07:00,78,11.32398063,1.010838258,26.52122498,0.653271576,0.093122952,22.36128235,35.51154633,0.055253689,0.045337298,28.30700122 +2016-07-12 05:50:00-07:00,78,17.20814961,1.747768968,24.90107727,0.677189724,0.39837304,22.59968567,36.66224811,0.083266867,0.070639672,29.69434411 +2016-07-12 06:00:00-07:00,78,23.00178908,0.877735591,25.4708252,0.67771192,0.626301384,22.80989075,37.4127284,0.113684466,0.097909644,30.72141187 +2016-07-12 06:10:00-07:00,78,26.40205091,0.909418836,26.52955627,0.679000967,0.629369107,23.08612061,37.79591398,0.135001795,0.117834968,31.1528706 +2016-07-12 06:20:00-07:00,78,30.49062769,1.048209672,27.43768311,0.675882559,0.693778996,23.93334961,37.91089082,0.151414574,0.1325625,31.37347174 +2016-07-12 06:30:00-07:00,78,33.36167058,0.879578074,28.35350037,0.671260963,0.752363296,24.57423401,38.0221839,0.166354714,0.146214647,31.50322892 +2016-07-12 06:40:00-07:00,78,40.33131943,1.50916161,29.51669312,0.675056385,0.772845881,25.06514404,38.22367826,0.186779746,0.165886705,31.96831394 +2016-07-12 06:50:00-07:00,78,54.46613104,0.740948031,30.48570251,0.632219991,0.786287304,25.61566162,38.5750581,0.202697937,0.18356879,33.0845388 +2016-07-12 07:00:00-07:00,78,75.36491039,0.781844035,30.9471283,0.598720462,0.815818849,26.82627869,39.19161146,0.229177191,0.2030168,35.24076997 +2016-07-12 07:10:00-07:00,78,101.7141747,0.75516758,31.7706604,0.576738184,0.827255491,28.81620789,39.9672217,0.577064706,0.526243849,33.64437348 +2016-07-12 07:20:00-07:00,78,134.9327315,0.866159624,32.88322449,0.563190257,0.847904901,30.64399719,40.26212878,0.758312339,0.697010255,33.86094616 +2016-07-12 07:30:00-07:00,78,170.549331,1.163447499,32.73005676,0.555984384,0.857297526,32.60188293,40.43664722,0.959491191,0.885372383,33.94520456 +2016-07-12 07:40:00-07:00,78,208.6230256,0.868202434,32.83964539,0.551015107,0.864005667,34.6007843,40.55027879,1.166700383,1.078382851,33.96047182 +2016-07-12 07:50:00-07:00,78,248.649329,1.222248017,33.67727661,0.548270981,0.875098035,36.65800476,40.60772633,1.384243998,1.285224659,33.80616818 +2016-07-12 08:00:00-07:00,78,290.9734291,1.639900859,32.69096375,0.546906026,0.870933716,38.44029236,40.66863636,1.605138742,1.490728745,33.75559814 +2016-07-12 08:10:00-07:00,78,330.4386042,1.573610133,32.53715515,0.546110373,0.883295405,40.27191162,40.69976328,1.820643439,1.690216663,33.68353531 +2016-07-12 08:20:00-07:00,78,373.2991645,1.566760582,33.10047913,0.545874572,0.890645915,41.9465332,40.70543856,2.04094036,1.89493753,33.57084288 +2016-07-12 08:30:00-07:00,78,414.3860404,1.155516752,33.2485199,0.545381064,0.896992373,43.22956848,40.6917702,2.258917459,2.100498196,33.35059911 +2016-07-12 08:40:00-07:00,78,454.8557534,1.842378723,33.2049408,0.544853518,0.894836615,44.91059875,40.62632993,2.47174012,2.297976054,33.17921502 +2016-07-12 08:50:00-07:00,78,494.2009831,2.137142736,33.98681641,0.544422929,0.902389262,47.16456604,40.48743095,2.674121926,2.484406714,32.9331222 +2016-07-12 09:00:00-07:00,78,532.7769007,1.133245965,34.36366272,0.544515813,0.904760544,49.26280212,40.36911431,2.875875871,2.663656911,32.71076391 +2016-07-12 09:10:00-07:00,78,570.7795445,0.801270562,34.62513733,0.544605615,0.909062783,50.67208862,40.26646445,3.073479235,2.851396852,32.42869022 +2016-07-12 09:20:00-07:00,78,608.5619327,0.426596836,36.14529419,0.54463475,0.916023309,52.5690918,40.06455182,3.264692288,3.024372535,32.13109551 +2016-07-12 09:30:00-07:00,78,642.1992035,1.079612332,35.72744751,0.544510479,0.91347377,54.1187439,39.94247213,3.438820313,3.182123641,31.91814518 +2016-07-12 09:40:00-07:00,78,675.9271049,1.013642005,37.02906799,0.544576775,0.915691625,56.05484009,39.77866649,3.610047501,3.333800448,31.65997932 +2016-07-12 09:50:00-07:00,78,708.2072613,1.399611253,35.6031189,0.545363249,0.916421994,57.05078125,39.77198124,3.780524269,3.485502664,31.56950969 +2016-07-12 10:00:00-07:00,78,740.8744982,2.903754115,37.53216553,0.545591625,0.9205124,58.71832275,39.62116955,3.950650941,3.645187696,31.25835295 +2016-07-12 10:10:00-07:00,78,769.4824822,1.317858989,36.823349,0.545417704,0.919472239,59.53033447,39.65491316,4.089031767,3.774178275,31.21735414 +2016-07-12 10:20:00-07:00,78,796.8877185,1.633492266,37.21427917,0.54552134,0.922548803,60.60058594,39.39520152,4.229075393,3.89432335,30.88505006 +2016-07-12 10:30:00-07:00,78,821.5834001,1.802323493,37.47961426,0.545498466,0.922547212,60.93063354,39.54205447,4.354530814,4.007984862,30.96614065 +2016-07-12 10:40:00-07:00,78,843.219619,1.785580362,37.50524902,0.545741572,0.926807188,62.53988647,39.37171165,4.469077191,4.106164015,30.74392991 +2016-07-12 10:50:00-07:00,78,870.6125627,1.180871311,37.82183838,0.545352763,0.927659036,61.92080688,39.48449237,4.60178233,4.227714526,30.78218321 +2016-07-12 11:00:00-07:00,78,884.5268978,2.582032923,37.34758667,0.545781084,0.928953097,62.11947632,39.4800192,4.678637489,4.299712787,30.73062467 +2016-07-12 11:10:00-07:00,78,910.7464268,3.755922723,37.65008545,0.545022709,0.934377699,62.48477173,39.51284234,4.804804086,4.417971903,30.64671815 +2016-07-12 11:20:00-07:00,78,920.1829055,3.124817661,38.45630859,0.546199135,0.930063937,62.78341675,39.48765338,4.849950387,4.457903925,30.59944276 +2016-07-12 11:30:00-07:00,78,939.6508974,1.288979421,37.82824707,0.545383011,0.934426093,65.32064819,39.13928776,4.95139517,4.539715762,30.19307548 +2016-07-12 11:40:00-07:00,78,952.3797921,1.888962477,38.25762939,0.545311001,0.934249308,65.69815063,39.0997182,5.017171911,4.597477115,30.12126315 +2016-07-12 11:50:00-07:00,78,960.238404,2.490307172,38.40375977,0.545448704,0.933150033,65.36743164,39.17539205,5.060004782,4.636164351,30.17858699 +2016-07-12 12:00:00-07:00,78,967.7347231,1.561713768,37.52703857,0.545958045,0.934732895,64.10620117,39.44124426,5.092295072,4.67091989,30.42641022 +2016-07-12 12:10:00-07:00,78,975.1965013,1.470508534,38.64857483,0.545449348,0.932642146,66.41015625,38.93548894,5.136385864,4.697232285,29.90018581 +2016-07-12 12:20:00-07:00,78,977.9597534,1.620313819,38.29415894,0.545330192,0.934152456,64.24398804,39.2720525,5.150111753,4.715135797,30.22652256 +2016-07-12 12:30:00-07:00,78,979.5178195,1.918803449,39.35545349,0.545573104,0.930828338,65.31744385,39.02949275,5.149668768,4.710992946,29.98121483 +2016-07-12 12:40:00-07:00,78,977.817661,0.602318058,39.20292664,0.545306326,0.929152519,68.26678467,38.72185669,5.14366473,4.701670817,29.6763599 +2016-07-12 12:50:00-07:00,78,978.5698315,1.774325212,39.87265015,0.54531391,0.928794395,69.43444824,38.54182597,5.150851098,4.695668012,29.49419536 +2016-07-12 13:00:00-07:00,78,975.0348382,3.115885067,38.97541809,0.544908648,0.931751975,67.94506836,38.79995583,5.125956581,4.689125929,29.76275223 +2016-07-12 13:10:00-07:00,78,969.6160878,1.489654896,39.77972412,0.545191452,0.927230163,66.18841553,38.99034123,5.101617622,4.663406786,29.98119388 +2016-07-12 13:20:00-07:00,78,958.4746383,2.259109765,40.21679688,0.545402067,0.928193556,67.37466431,38.75362539,5.040310933,4.607211757,29.76772517 +2016-07-12 13:30:00-07:00,78,951.0790067,0.905853873,40.56288147,0.544825169,0.927183277,68.05593872,38.64549478,4.998722068,4.568895501,29.66967563 +2016-07-12 13:40:00-07:00,78,938.2545588,2.203233135,40.48533203,0.544649558,0.926689927,65.72186279,39.08758578,4.937601752,4.522570053,30.14387857 +2016-07-12 13:50:00-07:00,78,921.9197672,1.141297133,39.53042603,0.544870263,0.922786334,65.37191772,38.93638841,4.855678592,4.445135901,30.03701871 +2016-07-12 14:00:00-07:00,78,904.7887503,3.517636042,39.98672485,0.544995261,0.922717,65.18734741,38.95664762,4.761193879,4.36235447,30.11530063 +2016-07-12 14:10:00-07:00,78,882.7802094,1.002386715,40.80705261,0.544976678,0.920859837,66.76263428,38.71782657,4.649690201,4.2562305,29.92672806 +2016-07-12 14:20:00-07:00,78,863.0158597,3.763253046,40.85447693,0.544904656,0.915755948,66.28326416,38.85841502,4.549372947,4.162190684,30.18404837 +2016-07-12 14:30:00-07:00,78,840.137816,0.63215896,40.81282043,0.544833778,0.914961709,64.3215332,39.06940394,4.427349719,4.060811879,30.44891048 +2016-07-12 14:40:00-07:00,78,818.4036792,1.296870634,41.3639679,0.544376378,0.913850809,65.1315918,38.84578341,4.314188042,3.95430949,30.30177293 +2016-07-12 14:50:00-07:00,78,790.8270083,1.235987074,41.079422,0.544718195,0.911289465,64.72848511,38.90603685,4.176694764,3.832114925,30.42245451 +2016-07-12 15:00:00-07:00,78,766.1998931,3.488075444,41.37870789,0.544287908,0.908700299,61.58178711,39.20410017,4.047499783,3.720927965,30.78829687 +2016-07-12 15:10:00-07:00,78,733.7042105,6.213012747,42.02536011,0.544337437,0.906384839,60.32116699,39.23019151,3.881665279,3.570970763,30.90508937 +2016-07-12 15:20:00-07:00,78,709.9147163,2.626333237,42.15032959,0.544211823,0.911368301,59.43292236,39.30925674,3.764145094,3.457812931,31.04125891 +2016-07-12 15:30:00-07:00,78,676.2308512,5.105894515,41.82092285,0.544227709,0.907402826,57.21420288,39.52015227,3.589265763,3.298101925,31.42272691 +2016-07-12 15:40:00-07:00,78,641.0086472,4.743357156,41.13389587,0.545066467,0.902543007,56.07983398,39.56312483,3.398302235,3.128741683,31.56243378 +2016-07-12 15:50:00-07:00,78,603.3415026,2.9827824,41.99075317,0.545754411,0.898128245,56.96618652,39.31221743,3.199691982,2.945180486,31.41687943 +2016-07-12 16:00:00-07:00,78,567.5042703,0.926562482,41.64083862,0.544804416,0.900867755,57.85891724,39.09494535,3.026982004,2.785155495,31.28730895 +2016-07-12 16:10:00-07:00,78,530.376199,1.766354372,41.73953247,0.543797112,0.9002796,56.68289185,39.07050536,2.831687197,2.608063147,31.37002642 +2016-07-12 16:20:00-07:00,78,491.1362389,4.241588842,42.5605011,0.543727656,0.896047039,55.90423584,39.06229919,2.628052426,2.412689452,31.54821234 +2016-07-12 16:30:00-07:00,78,453.4079715,3.039420247,42.11636353,0.544535874,0.8936067,53.15550232,39.26928345,2.42584755,2.231001874,31.8698403 +2016-07-12 16:40:00-07:00,78,412.5683472,3.752918439,42.23556519,0.544941086,0.886876546,52.20059204,39.22222049,2.209792764,2.034704652,31.92663709 +2016-07-12 16:50:00-07:00,78,371.7534463,1.392762191,42.00164795,0.545581451,0.890416569,51.5750885,39.06554819,1.991299556,1.83301984,31.87731782 +2016-07-12 17:00:00-07:00,78,328.8854607,2.086873529,42.04074097,0.546766994,0.879978301,50.59967041,38.96991566,1.764436305,1.621821626,31.90894367 +2016-07-12 17:10:00-07:00,78,285.4932891,3.157141353,41.9715271,0.547784928,0.865646451,48.50527954,39.00160198,1.533446734,1.408058103,32.14207875 +2016-07-12 17:20:00-07:00,78,245.9179126,1.955533787,41.95742798,0.550138794,0.871235383,47.13380432,38.87991323,1.318213016,1.209784133,32.13037777 +2016-07-12 17:30:00-07:00,78,206.871479,2.67860509,41.91897583,0.553398814,0.868946193,46.09173584,38.63328276,1.101950639,0.770212,34.94620003 +2016-07-12 17:40:00-07:00,78,168.1486201,1.861164384,41.69659424,0.559094069,0.860025349,43.52502014,37.60931979,0.332178818,0.2253186,34.90063004 +2016-07-12 17:50:00-07:00,78,133.1614118,4.886353123,42.08239746,0.567457807,0.844275273,41.50753784,36.43124689,0.226948797,0.206260555,31.28785397 +2016-07-12 18:00:00-07:00,78,99.84989635,2.497957544,41.36460876,0.581089873,0.826080512,40.61158752,36.4885956,0.217093397,0.196261961,31.25040314 +2016-07-12 18:10:00-07:00,78,72.85153217,1.575892875,41.63699341,0.601041025,0.827083667,39.90020752,36.24470203,0.205510358,0.185066075,30.66951829 +2016-07-12 18:20:00-07:00,78,53.73856425,1.507599293,41.36460876,0.631957436,0.782867225,39.46313354,36.06086605,0.193507048,0.173221584,30.31661303 +2016-07-12 18:30:00-07:00,78,39.30480012,2.119798902,41.41523743,0.666620069,0.764275096,39.34391785,35.78951867,0.183924972,0.161061022,29.52770671 +2016-07-12 18:40:00-07:00,78,35.76731327,2.731317831,40.57954407,0.716224088,0.767475243,38.68894958,35.63437207,0.167048122,0.145314828,29.26492891 +2016-07-12 18:50:00-07:00,78,31.43375754,4.1022777,40.44815979,0.698920295,0.670710655,38.46528137,35.38703206,0.149684782,0.129221108,29.00070389 +2016-07-12 19:00:00-07:00,78,26.65686582,4.345090678,40.07644653,0.696636745,0.630910516,37.88912964,35.13810663,0.130241686,0.1125149,28.39453 +2016-07-12 19:10:00-07:00,78,21.37996862,3.031729641,39.8508606,0.677941505,0.547120543,37.47064209,34.68842264,0.106709179,0.09079195,28.09182454 +2016-07-12 19:20:00-07:00,78,15.91714504,3.144163932,38.96772766,0.64391665,0.191331213,36.76054382,34.07128827,0.080811625,0.067724865,27.25959072 +2016-07-12 19:30:00-07:00,78,9.440131605,4.532868429,38.76777649,0.61775948,-0.061531381,36.35038147,32.6550507,0.0485804,0.03996488,25.17089999 +2016-07-12 19:40:00-07:00,78,4.613995668,2.32540084,38.23135376,0.573725865,-0.1,35.65118408,29.97143643,0.022692823,0.01730052,22.42783 +2016-08-29 06:00:00-07:00,78,4.780590555,1.121950373,27.55496216,0.593860479,-0.1,23.40270996,32.53074368,0.024620463,0.019345053,24.40160069 +2016-08-29 06:10:00-07:00,78,10.17505006,1.867172671,27.67608643,0.617620014,0.158143026,24.35762024,35.00875356,0.052403673,0.04293955,27.82751626 +2016-08-29 06:20:00-07:00,78,16.24543984,2.226264789,27.58700562,0.605203098,-0.000153009,24.60243225,36.23732748,0.082001927,0.06967186,29.25003001 +2016-08-29 06:30:00-07:00,78,21.14480723,2.329246528,27.73953247,0.632762518,0.024881276,25.14782715,36.97605348,0.114831522,0.096522425,30.367909 +2016-08-29 06:40:00-07:00,78,34.58898522,1.952129337,27.39794922,0.624690943,0.038914865,25.34585571,38.07959926,0.184738549,0.1563418,32.02584999 +2016-08-29 06:50:00-07:00,78,48.20951125,2.31606822,27.56329346,0.59263217,0.019383004,26.08414246,38.87888249,0.274548544,0.243248893,32.67311454 +2016-08-29 07:00:00-07:00,78,77.89542104,1.349903354,28.44258118,0.561304745,-0.026874258,26.93714905,39.64614264,0.418964758,0.3690205,33.99207 +2016-08-29 07:10:00-07:00,78,109.6587155,0.937417396,28.78352356,0.545624127,0.01108184,28.07727051,40.12475602,0.574649833,0.526580018,33.85369124 +2016-08-29 07:20:00-07:00,78,146.463433,2.27032566,29.03923035,0.540698895,0.016755822,29.6852417,40.52768415,0.792177957,0.731235368,34.13880711 +2016-08-29 07:30:00-07:00,78,186.3256166,0.866319998,29.23406982,0.538080348,0.014363494,31.48995972,40.75985627,1.023232018,0.945136858,34.24910624 +2016-08-29 07:40:00-07:00,78,227.8290441,1.771521536,29.91595459,0.537264578,-0.032873867,33.63433838,40.85027493,1.246870041,1.153869113,34.23760815 +2016-08-29 07:50:00-07:00,78,271.7722688,1.403536918,30.42481995,0.537386179,-0.003566889,35.62298584,40.88740598,1.482637935,1.377439523,34.04511926 +2016-08-29 08:00:00-07:00,78,317.540704,3.423667154,30.75614929,0.538532037,-0.01345765,37.13032532,40.94933275,1.726043436,1.604955979,33.98128083 +2016-08-29 08:10:00-07:00,78,361.9593212,3.039099639,30.95353699,0.539478389,0.002517518,38.37170715,41.02056016,1.961673041,1.822803464,33.932029 +2016-08-29 08:20:00-07:00,78,403.5485489,1.984973894,31.92254639,0.539449196,-0.00326719,40.71989441,40.88545464,2.181779544,2.026883605,33.69637706 +2016-08-29 08:30:00-07:00,78,450.4511561,0.556294704,33.12739563,0.540023231,-0.010584262,43.68844604,40.67993662,2.428610752,2.255335527,33.2604974 +2016-08-29 08:40:00-07:00,78,495.5777418,3.595702783,32.76530457,0.540759562,-0.025913379,44.42800903,40.78980708,2.660030699,2.470504412,33.25051971 +2016-08-29 08:50:00-07:00,78,536.8874957,4.100515265,32.58073425,0.541182676,-0.017894575,44.82344055,40.853695,2.876700597,2.667834533,33.21052006 +2016-08-29 09:00:00-07:00,78,575.7698279,2.923260969,32.91014099,0.541717932,-0.017972491,46.0904541,40.79397293,3.075158447,2.852607597,33.03788878 +2016-08-29 09:10:00-07:00,78,617.8242717,1.277203476,33.92721558,0.541808557,-0.012665751,48.35467529,40.61537752,3.294400963,3.055207448,32.66701154 +2016-08-29 09:20:00-07:00,78,656.2068285,4.095188146,33.86505127,0.542176684,-0.000459697,49.40507507,40.62687125,3.493293253,3.23449397,32.583151 +2016-08-29 09:30:00-07:00,78,695.7698939,1.413270053,33.88555908,0.543817023,0.001666186,50.48751831,40.56532023,3.691113366,3.415513832,32.40805979 +2016-08-29 09:40:00-07:00,78,728.6895074,2.052146117,34.53349304,0.544089174,0.000226575,53.4797821,40.21210928,3.85978609,3.562908606,31.96644226 +2016-08-29 09:50:00-07:00,78,763.5223767,1.724817222,34.79881287,0.544432744,0.000453185,54.9589386,40.06274205,4.041076331,3.730058765,31.65909889 +2016-08-29 10:00:00-07:00,78,795.6751624,1.492698924,35.80499268,0.544185951,-0.004199165,56.44192505,39.99631502,4.202724083,3.876177412,31.50226477 +2016-08-29 10:10:00-07:00,78,826.6300125,0.889030905,36.29141235,0.544361786,-0.00853681,58.86315918,39.70778476,4.365918065,4.012067117,31.13496586 +2016-08-29 10:20:00-07:00,78,855.2968099,2.70524187,36.01263428,0.544344635,-0.012055408,59.66171265,39.79318535,4.50617992,4.145618962,31.14429578 +2016-08-29 10:30:00-07:00,78,880.4848509,4.143975223,36.2612915,0.544591732,-0.014684624,60.4871521,39.70359588,4.635839403,4.259579083,30.98243295 +2016-08-29 10:40:00-07:00,78,913.3529292,1.540043964,36.46125793,0.545608242,-0.015329857,61.32479858,39.68791071,4.765648136,4.369262019,30.90530215 +2016-08-29 10:50:00-07:00,78,934.6314466,0.807118616,36.82078552,0.54569852,0.923743636,62.97824097,39.39560502,4.873199103,4.472459273,30.49592448 +2016-08-29 11:00:00-07:00,78,957.2497896,3.10442938,36.95921326,0.545621334,0.923442317,62.17779541,39.43873034,4.983380651,4.572540869,30.47784574 +2016-08-29 11:10:00-07:00,78,975.135268,3.203845667,36.47984314,0.545535284,0.926420791,62.98464966,39.42630824,5.080101376,4.654931689,30.41608069 +2016-08-29 11:20:00-07:00,78,992.0286024,3.791571725,37.66290283,0.545891622,0.925842351,62.865448,39.43737057,5.163149057,4.73269741,30.38014364 +2016-08-29 11:30:00-07:00,78,1007.768157,2.615158344,36.59584045,0.546094361,0.928570681,62.68792725,39.50239832,5.236489855,4.797139919,30.41617787 +2016-08-29 11:40:00-07:00,78,1018.571568,0.647219634,38.62550354,0.546312921,0.92741322,66.95169067,38.92131688,5.296017715,4.843202756,29.79449133 +2016-08-29 11:50:00-07:00,78,1029.561144,4.015318947,37.59625244,0.546538204,0.929791917,65.26937866,39.28784295,5.350142878,4.891701564,30.13791224 +2016-08-29 12:00:00-07:00,78,1035.362016,0.916028176,37.36617188,0.546779038,0.929079692,67.64770508,39.11138894,5.380821147,4.911343078,29.9456412 +2016-08-29 12:10:00-07:00,78,1042.676935,0.870765969,38.5639801,0.546752323,0.92969796,68.25396729,38.82621616,5.399552711,4.931666895,29.64234705 +2016-08-29 12:20:00-07:00,78,1043.531983,3.307467643,37.59048462,0.546924856,0.922248545,66.10189819,39.25361309,5.416637736,4.947782937,30.07582842 +2016-08-29 12:30:00-07:00,78,1047.449052,1.302318173,39.29777527,0.546477197,0.930998174,68.01748657,38.80828965,5.436275206,4.956435791,29.60277325 +2016-08-29 12:40:00-07:00,78,1044.012114,0.614574635,38.31530762,0.546652337,0.926054334,67.32852173,38.92245525,5.420549437,4.938214815,29.73666038 +2016-08-29 12:50:00-07:00,78,1039.408958,2.658938072,39.1683197,0.546801751,0.923036838,67.69256348,38.99958447,5.392355624,4.920782015,29.83083532 +2016-08-29 13:00:00-07:00,78,1035.352217,1.526024812,39.0728302,0.546388202,0.924047063,66.16213989,39.0897252,5.370980045,4.905223022,29.92638797 +2016-08-29 13:10:00-07:00,78,1024.86237,2.93703998,38.7094574,0.546288645,0.921460832,64.34204102,39.47386987,5.318213133,4.863518598,30.34473342 +2016-08-29 13:20:00-07:00,78,1014.416909,1.351985838,38.60179138,0.545883911,0.920952374,67.10806274,39.10849751,5.264673931,4.805636747,30.00661229 +2016-08-29 13:30:00-07:00,78,1005.20087,1.372133768,39.31892395,0.545388007,0.922613016,66.75366211,38.92433472,5.206142814,4.761372109,29.84472875 +2016-08-29 13:40:00-07:00,78,990.0982235,2.434991151,39.10423279,0.545503501,0.919384346,65.45587158,39.11982504,5.129670054,4.693731809,30.07907327 +2016-08-29 13:50:00-07:00,78,972.1147627,1.591834766,38.34799194,0.545054128,0.919979067,61.96630859,39.40183413,5.041605742,4.624589826,30.41081912 +2016-08-29 14:00:00-07:00,78,949.9006695,3.133389275,38.29031372,0.544953145,0.916089149,60.61019897,39.51143408,4.923221955,4.521641547,30.5844916 +2016-08-29 14:10:00-07:00,78,930.280556,1.01985048,40.06491089,0.543758912,0.914594891,65.27963257,38.84869857,4.823580848,4.417351876,29.97333015 +2016-08-29 14:20:00-07:00,78,906.1165132,1.954372125,38.90235901,0.544295247,0.91238946,63.65823364,39.11530321,4.699254125,4.316214549,30.29638223 +2016-08-29 14:30:00-07:00,78,879.4045881,1.398049146,38.84596252,0.543178282,0.909344824,62.92312622,39.10413157,4.559867091,4.182696137,30.41264713 +2016-08-29 14:40:00-07:00,78,855.3873854,1.196853225,39.06898499,0.543243858,0.91364404,60.26669312,39.38755076,4.444494732,4.081304968,30.76983544 +2016-08-29 14:50:00-07:00,78,826.7402232,0.821257979,39.13948059,0.542853416,0.914889717,59.81680298,39.39108544,4.296133976,3.950065044,30.85899926 +2016-08-29 15:00:00-07:00,78,798.3404046,2.762640724,38.92863464,0.543399461,0.913061518,57.81213379,39.59930978,4.144588128,3.819554643,31.13314592 +2016-08-29 15:10:00-07:00,78,762.6183974,0.643574414,40.02838135,0.542334518,0.908184573,60.29681396,39.21071107,3.968038127,3.645901772,30.83468474 +2016-08-29 15:20:00-07:00,78,729.7135793,1.174542555,39.5496521,0.54243286,0.900881227,59.79885864,39.26027412,3.79500345,3.49944221,30.9768504 +2016-08-29 15:30:00-07:00,78,695.1893513,3.788087158,39.60540771,0.542141891,0.902318103,57.27764893,39.40532487,3.625777021,3.342094359,31.28230888 +2016-08-29 15:40:00-07:00,78,656.6012239,2.688057991,39.24906921,0.541285557,0.898881922,56.10418701,39.49568403,3.427069174,3.165918008,31.47711728 +2016-08-29 15:50:00-07:00,78,614.5000109,0.955001581,39.65539551,0.541454649,0.895038951,55.95550537,39.39951239,3.210389568,2.964569321,31.49557774 +2016-08-29 16:00:00-07:00,78,576.9579091,1.918562888,39.21702576,0.540479973,0.893107538,53.77201843,39.59177487,3.016638563,2.789577079,31.78668492 +2016-08-29 16:10:00-07:00,78,533.3942477,0.693362849,39.06065369,0.537651111,0.883502591,52.985672,39.51504611,2.786260643,2.580846004,31.82796358 +2016-08-29 16:20:00-07:00,78,490.9377991,2.822482623,39.20613098,0.538188264,0.873809108,52.59921265,39.42333623,2.568671269,2.374756922,31.93209254 +2016-08-29 16:30:00-07:00,78,446.8205727,0.940742288,40.32574463,0.537073292,0.873499362,51.55970764,39.3910282,2.337208445,2.162188801,32.0250241 +2016-08-29 16:40:00-07:00,78,402.2354893,2.504927237,39.68615723,0.537210006,0.866710234,50.20169067,39.4935196,2.10739075,1.95060932,32.24428549 +2016-08-29 16:50:00-07:00,78,357.1921919,2.42974394,39.61309814,0.536784037,0.861772318,48.96287537,39.44145655,1.866121668,1.729114031,32.32143962 +2016-08-29 17:00:00-07:00,78,311.7887822,1.133005195,41.02879333,0.536184676,0.854390811,48.67384338,39.1680598,1.633147707,1.50523107,32.26180012 +2016-08-29 17:10:00-07:00,78,267.3162558,3.553004321,40.18795776,0.535208732,0.845413432,47.37477112,39.01322216,1.397468546,1.286842088,32.23143961 +2016-08-29 17:20:00-07:00,78,223.0446351,2.95206056,39.94699097,0.535153697,0.831395586,45.03044128,39.0148645,1.164004007,1.070396949,32.34737608 +2016-08-29 17:30:00-07:00,78,181.4801308,2.512777727,39.77844238,0.535409492,0.833902176,43.24302673,38.81328801,0.9426219,0.864214475,32.25942315 +2016-08-29 17:40:00-07:00,78,141.8286153,0.995657025,39.57144165,0.538253004,0.79231463,42.0836792,38.47209928,0.733644811,0.668172064,32.04689943 +2016-08-29 17:50:00-07:00,78,105.3962106,1.844421392,40.04055786,0.543230652,0.794905969,40.72886658,37.98825152,0.536312338,0.482758035,31.75651404 +2016-08-29 18:00:00-07:00,78,72.2832086,1.409624834,39.28752136,0.553732982,0.758445258,39.23561096,37.383737,0.373103584,0.2743931,33.66684002 +2016-08-29 18:10:00-07:00,78,48.36629778,1.273398441,39.38877869,0.5734852,0.730806735,37.83721924,36.46753164,0.205886418,0.1579817,32.33323002 +2016-08-29 18:20:00-07:00,78,30.61067427,2.284744838,38.70497131,0.610469407,0.663165477,36.9874115,35.5704686,0.141966296,0.123347339,29.30077714 +2016-08-29 18:30:00-07:00,78,21.198698,3.185500405,38.48002625,0.641849491,0.51605839,36.19528198,34.75959927,0.100053817,0.085123342,28.09744135 +2016-08-29 18:40:00-07:00,78,14.37138997,3.800183712,38.27108765,0.588680311,-0.06255563,35.64413452,33.99958102,0.073592924,0.061405542,27.14973444 +2016-08-29 18:50:00-07:00,78,8.369585091,2.272888846,37.86157227,0.62351991,-0.1,34.98466492,32.28594264,0.040446278,0.032442108,24.92106421 +2016-08-29 19:00:00-07:00,78,3.087848112,2.866022559,37.45526123,0.561282446,0.300465461,34.293797,28.74457924,0.016256504,0.01213936,21.40410997 +2016-09-04 06:00:00-07:00,78,3.161346398,0.785769629,24.32493591,0.561848195,0.182237506,19.41770935,31.34167519,0.016849619,0.01281255,23.32810001 +2016-09-04 06:10:00-07:00,78,8.656198962,0.72160162,24.35185242,0.625185698,-0.1,19.56318665,35.18020664,0.04248261,0.034460313,27.4984319 +2016-09-04 06:20:00-07:00,78,14.31011072,0.566068282,24.07756042,0.584320691,0.482127524,19.89579773,36.7514358,0.072673005,0.061125208,29.62185748 +2016-09-04 06:30:00-07:00,78,21.10560139,0.481352108,24.85237122,0.615564261,0.659155679,20.10217285,37.79439054,0.111670999,0.093500528,31.16283979 +2016-09-04 06:40:00-07:00,78,32.24218348,0.964294109,25.62976074,0.601101911,0.693322804,20.99427795,38.79690236,0.18511547,0.156987678,32.81439676 +2016-09-04 06:50:00-07:00,78,55.04430896,1.031546588,26.09248047,0.56105836,0.766582925,22.62788391,39.61074494,0.302187401,0.26678269,33.54055944 +2016-09-04 07:00:00-07:00,78,79.8184759,0.96966153,26.44752502,0.538970354,0.735248004,23.91348267,40.1027366,0.417765227,0.379670564,33.8716646 +2016-09-04 07:10:00-07:00,78,117.843322,1.278885794,26.82820129,0.527533464,0.812583369,25.26959229,40.62637219,0.561729947,0.518490901,34.91138937 +2016-09-04 07:20:00-07:00,78,158.1952702,1.725057643,26.9691925,0.524506,0.819352499,27.20504761,41.09419723,0.872724897,0.806550394,34.65290279 +2016-09-04 07:30:00-07:00,78,201.0632374,1.22581284,27.6081543,0.523844963,0.842700531,29.40646362,41.25381947,1.105946282,1.024110657,34.69784264 +2016-09-04 07:40:00-07:00,78,246.2216865,1.180150467,28.49320984,0.524185075,0.850222313,31.787323,41.29266301,1.351093531,1.252741078,34.62043639 +2016-09-04 07:50:00-07:00,78,292.7470491,1.002907162,29.04692078,0.525650829,0.872084869,34.23739624,41.26700544,1.596147168,1.484245453,34.36032906 +2016-09-04 08:00:00-07:00,78,339.6423599,1.320743132,29.3302002,0.527274758,0.876683225,36.5138092,41.24200526,1.847175621,1.717366609,34.21044978 +2016-09-04 08:10:00-07:00,78,385.5601471,1.267790459,29.23022461,0.527894642,0.881443544,37.78274536,41.3529275,2.097973071,1.949940654,34.20222536 +2016-09-04 08:20:00-07:00,78,432.6930575,2.606346169,29.77111816,0.528896788,0.882130024,39.08628845,41.38605916,2.343973091,2.181510704,34.00420635 +2016-09-04 08:30:00-07:00,78,478.4492276,1.833486431,30.71513367,0.529568477,0.891427831,41.43702698,41.24322858,2.583034913,2.401717651,33.74417203 +2016-09-04 08:40:00-07:00,78,523.8867457,1.552901454,30.56324768,0.530409053,0.899629611,43.33851624,41.16413533,2.820957854,2.62080603,33.54779267 +2016-09-04 08:50:00-07:00,78,569.0524912,1.608497361,30.81639099,0.530655071,0.910764532,45.20732117,41.07100324,3.059440453,2.837704242,33.32700091 +2016-09-04 09:00:00-07:00,78,611.7636719,1.793551412,31.49700928,0.53110648,0.909395646,47.26966858,40.94037942,3.28360764,3.046343501,32.99470011 +2016-09-04 09:10:00-07:00,78,655.2146752,1.28008741,31.77963257,0.531323535,0.916996067,48.74946594,40.87246245,3.502142407,3.246549949,32.81979437 +2016-09-04 09:20:00-07:00,78,695.6768341,2.01213147,32.27375183,0.531543855,0.918446511,50.38113403,40.74395303,3.71343217,3.436353388,32.58198311 +2016-09-04 09:30:00-07:00,78,734.5615954,3.257759674,31.71939087,0.533071775,0.924301896,50.69259949,40.80835084,3.904181671,3.611444557,32.54395145 +2016-09-04 09:40:00-07:00,78,771.0356166,1.457570437,32.0821228,0.533668209,0.921225925,51.61418152,40.7702442,4.090214288,3.780881905,32.41150207 +2016-09-04 09:50:00-07:00,78,807.0662742,1.190805123,32.02444458,0.533963979,0.920237516,52.62677002,40.70130038,4.265522171,3.944530469,32.18119836 +2016-09-04 10:00:00-07:00,78,838.7977421,1.066033719,32.72428894,0.534180959,0.925753458,54.53530884,40.51451467,4.432717149,4.092676328,31.90281076 +2016-09-04 10:10:00-07:00,78,868.7236346,4.003983052,32.66789246,0.534222817,0.926896109,53.50413513,40.61039172,4.589828274,4.236916994,31.92497675 +2016-09-04 10:20:00-07:00,78,898.147433,2.781746783,32.64353943,0.534607801,0.928412675,53.96878052,40.60124555,4.730835562,4.366402721,31.83777353 +2016-09-04 10:30:00-07:00,78,925.1533789,2.006123043,32.42948914,0.534783607,0.926885902,54.64746094,40.51802972,4.876115252,4.493058439,31.6792879 +2016-09-04 10:40:00-07:00,78,950.375924,1.511244304,33.06651306,0.535406517,0.928426764,57.26611328,40.24234831,4.994192148,4.604743332,31.27605852 +2016-09-04 10:50:00-07:00,78,973.2514282,3.073747493,33.53372192,0.535266676,0.929678437,59.53674316,40.04213053,5.119118771,4.709174887,31.01667501 +2016-09-04 11:00:00-07:00,78,994.1990929,3.849571352,33.69393921,0.535618496,0.931762977,60.27438354,39.99003668,5.227381498,4.803068538,30.90928902 +2016-09-04 11:10:00-07:00,78,1013.490893,2.682690918,33.84967041,0.535747041,0.932654367,60.15646362,40.01234234,5.312837068,4.886209482,30.88023446 +2016-09-04 11:20:00-07:00,78,1034.12251,4.427083363,34.41749573,0.534997419,0.934513449,58.41455078,40.31238843,5.422151044,4.980642511,31.14307934 +2016-09-04 11:30:00-07:00,78,1046.481475,4.824027736,34.29571838,0.535562378,0.934292043,57.02642822,40.44959093,5.479350909,5.038293397,31.24732586 +2016-09-04 11:40:00-07:00,78,1058.220516,1.769478726,34.38993835,0.535990457,0.934924015,61.07485962,39.89521972,5.548910679,5.086472536,30.64315806 +2016-09-04 11:50:00-07:00,78,1067.674026,1.317739128,35.6300354,0.536182525,0.933592722,63.9331665,39.63932758,5.596085291,5.122812615,30.36392688 +2016-09-04 12:00:00-07:00,78,1075.770514,1.615747567,35.26728821,0.53619542,0.936120923,63.66464233,39.55775838,5.635289976,5.153621076,30.25924318 +2016-09-04 12:10:00-07:00,78,1077.198661,2.103016097,35.50378418,0.536963691,0.931471608,61.88876343,39.82614255,5.63401732,5.160249905,30.52819565 +2016-09-04 12:20:00-07:00,78,1083.406184,2.327764048,36.1055603,0.536803882,0.93132664,62.66549683,39.74370628,5.671965619,5.186649364,30.43663696 +2016-09-04 12:30:00-07:00,78,1084.699663,3.823175062,35.30574036,0.536942311,0.933677138,61.64266968,39.92401748,5.667879206,5.19611465,30.61036412 +2016-09-04 12:40:00-07:00,78,1080.547406,3.288801983,35.5512085,0.537283116,0.931633966,63.4697876,39.73143662,5.652146991,5.172375086,30.4269459 +2016-09-04 12:50:00-07:00,78,1073.974765,4.066589023,36.03314209,0.537132454,0.930930393,63.66143799,39.5504568,5.62251819,5.141813668,30.25585295 +2016-09-04 13:00:00-07:00,78,1071.005602,1.998112039,35.82037354,0.536388541,0.929379365,63.17242432,39.83383078,5.598018415,5.128255135,30.55348478 +2016-09-04 13:10:00-07:00,78,1064.021517,1.984733753,36.49778748,0.535959475,0.930525911,64.01968384,39.53282812,5.566919664,5.090587275,30.27492312 +2016-09-04 13:20:00-07:00,78,1052.221076,2.330928915,36.70863342,0.535631107,0.931382051,62.37133789,39.68561532,5.496994018,5.040568528,30.46246634 +2016-09-04 13:30:00-07:00,78,1035.886294,3.70605424,36.37217285,0.535796424,0.926530997,62.70266724,39.65992827,5.422841723,4.960438328,30.48303303 +2016-09-04 13:40:00-07:00,78,1021.023695,2.241606046,36.20233154,0.53524028,0.926428358,61.90158081,39.77435394,5.344160412,4.902473881,30.6267313 +2016-09-04 13:50:00-07:00,78,1004.693807,3.349004933,36.68171692,0.534384049,0.926522718,61.48501587,39.72674254,5.26251834,4.828890032,30.62269465 +2016-09-04 14:00:00-07:00,78,982.1122041,4.479114795,37.57958984,0.53487754,0.924372949,63.57876587,39.46576748,5.140669443,4.716250669,30.42394068 +2016-09-04 14:10:00-07:00,78,958.6608131,2.533205822,36.80091858,0.534409568,0.922285188,60.60250854,39.82626149,5.022994124,4.614495204,30.84668124 +2016-09-04 14:20:00-07:00,78,931.6181089,4.03582667,37.5847168,0.534242482,0.919313752,61.75418091,39.68200405,4.88238179,4.489882282,30.77601439 +2016-09-04 14:30:00-07:00,78,905.482043,4.109527837,36.95729065,0.533669632,0.917829129,58.28509521,40.08854725,4.74740831,4.36741437,31.31324678 +2016-09-04 14:40:00-07:00,78,880.908653,2.5392139,38.29351807,0.533142899,0.919792631,61.82659912,39.40085364,4.625568329,4.243075479,30.68338926 +2016-09-04 14:50:00-07:00,78,853.3858085,3.578599719,38.18200684,0.532729822,0.915261805,60.31219482,39.63820423,4.480982999,4.118813961,30.99446844 +2016-09-04 15:00:00-07:00,78,824.8956076,2.886851099,37.67123413,0.531677025,0.919594296,58.94970581,39.68215057,4.327086679,3.9857997,31.13374589 +2016-09-04 15:10:00-07:00,78,786.2313043,2.105259164,38.43323853,0.532071642,0.914831028,56.38296509,39.91212498,4.135783789,3.806261904,31.46149937 +2016-09-04 15:20:00-07:00,78,751.7244296,5.615192642,37.58792114,0.531388066,0.915053465,55.31141663,39.96623162,3.961147864,3.65790676,31.61047706 +2016-09-04 15:30:00-07:00,78,715.4193772,3.613367295,38.00769043,0.530868751,0.912086483,54.52954102,39.99958246,3.773868664,3.481576941,31.7929805 +2016-09-04 15:40:00-07:00,78,673.6489065,4.563430734,38.32684326,0.530839162,0.90853694,52.15637207,40.22952881,3.564362556,3.287765605,32.14544769 +2016-09-04 15:50:00-07:00,78,633.2722625,2.112549115,38.02883911,0.529795351,0.905111384,52.68637085,39.99838513,3.353308589,3.097614648,32.01796541 +2016-09-04 16:00:00-07:00,78,591.2056088,2.863899213,38.44349243,0.528914332,0.906583751,51.90899658,39.94615019,3.136412806,2.898764928,32.08462491 +2016-09-04 16:10:00-07:00,78,545.5351836,1.484447429,38.76905823,0.528056115,0.904960277,51.96731567,39.79960376,2.896370536,2.677371187,32.06252542 +2016-09-04 16:20:00-07:00,78,502.4712333,4.045800576,37.76287842,0.526883303,0.893881439,49.03016663,40.0676342,2.66786367,2.465408085,32.5311605 +2016-09-04 16:30:00-07:00,78,458.1995758,1.828599852,37.66546631,0.525234555,0.889245434,49.02696228,39.84425146,2.434712388,2.249279589,32.43625051 +2016-09-04 16:40:00-07:00,78,411.3875625,0.882181562,38.8299408,0.524300198,0.884543047,48.42388916,39.74564727,2.18804769,2.02429098,32.43941574 +2016-09-04 16:50:00-07:00,78,363.7108402,2.795045092,39.23176575,0.523444668,0.888980386,48.03039551,39.55998208,1.937164818,1.789038513,32.39341834 +2016-09-04 17:00:00-07:00,78,317.1878975,3.434001273,38.25250244,0.52214618,0.879248422,45.64312744,39.63436608,1.682936136,1.552442245,32.69012711 +2016-09-04 17:10:00-07:00,78,271.7208071,1.456569219,38.73252869,0.52081601,0.850234343,44.0383606,39.54611614,1.435912272,1.323498286,32.73217744 +2016-09-04 17:20:00-07:00,78,224.0441216,1.106849886,38.33901978,0.519408559,0.84852696,42.22210693,39.43103433,1.184622872,1.090323421,32.7433377 +2016-09-04 17:30:00-07:00,78,179.6524176,3.372957758,38.07498169,0.518584396,0.82804171,40.60197449,39.19314847,0.942707685,0.864866907,32.62355807 +2016-09-04 17:40:00-07:00,78,137.7351527,0.526493895,38.05767822,0.519581018,0.812610098,39.19395447,38.87540037,0.721199851,0.655543194,32.53937367 +2016-09-04 17:50:00-07:00,78,99.98462787,2.220336827,37.71353149,0.523482445,0.783486152,37.7923584,38.35748223,0.515721913,0.460813999,32.26483289 +2016-09-04 18:00:00-07:00,78,68.38305169,1.587949754,37.72891235,0.531326639,0.798495364,36.33370972,37.69130668,0.344182245,0.3001301,31.74577999 +2016-09-04 18:10:00-07:00,78,43.16316569,1.452723672,37.25080872,0.553066903,0.731595891,35.07951355,36.80133946,0.214452925,0.1796275,30.97809999 +2016-09-04 18:20:00-07:00,78,24.64076037,1.657044296,37.26042175,0.610823706,0.679993218,33.86248779,35.68264643,0.123315079,0.1031246,29.44479002 +2016-09-04 18:30:00-07:00,78,16.98765475,1.915599047,36.79579163,0.572271067,0.499706587,32.81080627,34.82026907,0.082721294,0.06947761,28.04572758 +2016-09-04 18:40:00-07:00,78,9.359318455,1.61863178,35.59799194,0.608776917,-0.012919269,31.84307861,33.55227158,0.050397214,0.041030114,26.37048688 +2016-09-04 18:50:00-07:00,78,4.59929233,2.480814317,35.1615448,0.559154819,-0.1,31.22911926,30.68897949,0.022335569,0.01731778,22.99791999 +2016-10-03 06:20:00-07:00,78,3.195150607,0.922156535,19.38566589,0.563797162,0.066360213,15.85635315,32.84628248,0.01917678,0.0152119,23.70720003 +2016-10-03 06:30:00-07:00,78,10.64175499,1.113338876,19.1799469,0.597678844,-0.1,15.74290466,36.32313122,0.049482767,0.04091427,28.61825001 +2016-10-03 06:40:00-07:00,78,18.09069492,0.609207423,19.23762512,0.643099266,0.051430383,15.79930115,37.8081332,0.083554838,0.07153612,30.51819 +2016-10-03 06:50:00-07:00,78,24.41693272,0.839282703,19.23506165,0.683074797,-0.006983076,16.31970215,40.17425299,0.196607054,0.1347996,37.20204998 +2016-10-03 07:00:00-07:00,78,105.9221056,0.954400599,19.6118927,0.466044477,0.007699845,16.7984314,39.14966835,0.154195664,0.136082636,32.83312272 +2016-10-03 07:10:00-07:00,78,125.1655366,0.274828789,19.75352478,0.488468794,0.027158803,17.04646301,39.66456087,0.177932777,0.157045965,34.17526183 +2016-10-03 07:20:00-07:00,78,184.3774721,1.292904946,20.03359985,0.489234232,0.020963365,17.90459534,39.67780377,0.193998393,0.174408373,34.09965954 +2016-10-03 07:30:00-07:00,78,224.1615554,1.006311751,20.62384033,0.492461863,0.037719224,17.78153992,40.67276729,0.309889529,0.282822828,35.26068635 +2016-10-03 07:40:00-07:00,78,252.9605877,1.324508563,21.20320129,0.499836561,0.012622375,20.39697266,43.11938837,1.383759811,1.28305088,36.85746658 +2016-10-03 07:50:00-07:00,78,298.6725151,0.721761645,21.86585999,0.505988805,-0.003307544,23.07971191,42.89856548,1.670601191,1.559914321,36.07807782 +2016-10-03 08:00:00-07:00,78,345.5740164,1.388796363,22.38819885,0.510460814,-0.005322139,25.44967651,42.62858078,1.930697415,1.804129203,35.55622703 +2016-10-03 08:10:00-07:00,78,396.6176063,2.2282279,22.79899597,0.512853892,-0.004361441,29.46478271,42.46268116,2.213444488,2.067207082,35.24668053 +2016-10-03 08:20:00-07:00,78,442.1111121,1.772763105,22.6073761,0.51659587,-0.005151791,32.53330994,42.34793465,2.459660717,2.295900934,35.01140264 +2016-10-03 08:30:00-07:00,78,486.1193465,1.309287515,22.91499329,0.518811171,-0.008034824,34.5905304,42.24609414,2.693708437,2.518898931,34.68785885 +2016-10-03 08:40:00-07:00,78,532.2498865,1.202541115,23.38668823,0.520251056,-0.011379294,37.33348083,42.02528093,2.936229384,2.738385594,34.35286847 +2016-10-03 08:50:00-07:00,78,575.4077027,1.042841831,24.80302429,0.522805424,-0.00354478,40.16168213,41.76734794,3.163402431,2.941108759,33.97748511 +2016-10-03 09:00:00-07:00,78,622.838591,0.733818384,23.83273315,0.522881038,-0.002288758,40.90638733,41.74222726,3.405040807,3.164593186,33.82557034 +2016-10-03 09:10:00-07:00,78,662.4117226,1.216720361,24.25636292,0.524617852,-0.005702989,43.25648499,41.50137254,3.602887989,3.351379314,33.398026 +2016-10-03 09:20:00-07:00,78,697.3186964,2.739568977,23.91027832,0.527306028,-0.006084509,41.43766785,41.81784485,3.77573071,3.512060036,33.63475598 +2016-10-03 09:30:00-07:00,78,733.2331392,2.308537709,24.05127869,0.52741141,0.003230065,41.70236206,41.82880079,3.954321451,3.677019896,33.54390653 +2016-10-03 09:40:00-07:00,78,770.1828075,0.248993388,24.70240784,0.52877412,-0.002786605,45.33100891,41.51075553,4.133999509,3.834325568,33.11741979 +2016-10-03 09:50:00-07:00,78,795.3691767,1.454486456,24.32557678,0.527547443,-0.009729536,45.51493835,41.46920298,4.242516129,3.935129805,33.0373041 +2016-10-03 10:00:00-07:00,78,821.1673139,1.545531317,25.0869397,0.526423558,-0.002166144,46.19491577,41.44335593,4.36194216,4.049474864,32.87375272 +2016-10-03 10:10:00-07:00,78,862.3798241,2.921658698,24.5453949,0.527474351,-0.006422428,45.02146912,41.72728616,4.562692316,4.235815815,33.06668654 +2016-10-03 10:20:00-07:00,78,901.0153502,3.858022965,24.60499573,0.528301548,-0.006048683,45.79052734,41.64972069,4.754009953,4.409228854,32.89415518 +2016-10-03 10:30:00-07:00,78,923.4111972,2.361850804,24.85429382,0.528701734,-0.004240186,47.17481995,41.53894373,4.866353415,4.507257944,32.72123696 +2016-10-03 10:40:00-07:00,78,950.100943,2.854686733,25.10360718,0.529412509,-0.000146211,47.35746765,41.60803664,5.000071306,4.625248921,32.72415163 +2016-10-03 10:50:00-07:00,78,969.9042195,2.677964712,25.54837036,0.530257289,-0.00791368,49.14552307,41.33871322,5.101553206,4.719646224,32.3884693 +2016-10-03 11:00:00-07:00,78,982.6156917,3.395989132,25.32406616,0.530253737,-0.000960535,50.05172729,41.2462691,5.176443529,4.778237697,32.25542392 +2016-10-03 11:10:00-07:00,78,1012.900121,0.56843156,25.60220337,0.531558935,0.001152523,50.19656372,41.30095064,5.325843899,4.916260764,32.23739496 +2016-10-03 11:20:00-07:00,78,1015.662385,2.124165036,25.68551636,0.531763204,-0.002352786,51.32579041,41.16261777,5.337704703,4.932573668,32.02987021 +2016-10-03 11:30:00-07:00,78,1044.954941,3.626985792,26.08542297,0.532148942,-0.00436728,50.46636963,41.37637905,5.492136494,5.07425088,32.1766664 +2016-10-03 11:40:00-07:00,78,1051.458342,1.50119042,26.12260071,0.533120398,-0.003156399,50.92332458,41.28460946,5.525965859,5.102659199,32.06515832 +2016-10-03 11:50:00-07:00,78,1067.687473,2.058915691,26.97688293,0.532856821,-0.000762641,50.1055603,41.37481481,5.607321457,5.179114101,32.10922125 +2016-10-03 12:00:00-07:00,78,1076.156525,3.561055488,26.80513,0.532190344,0.001488547,50.7150354,41.34556069,5.655319146,5.21741099,32.0637651 +2016-10-03 12:10:00-07:00,78,1070.96872,2.585157556,26.77372742,0.532890954,-0.003073598,51.49113464,41.20405589,5.62432688,5.189104896,31.92687848 +2016-10-03 12:20:00-07:00,78,1082.4751,4.59523384,27.2819519,0.532174788,-0.01050071,50.54711914,41.36805557,5.677145154,5.242640397,32.07602971 +2016-10-03 12:30:00-07:00,78,1075.434513,4.035666436,27.69467163,0.533201229,0.902750018,51.862854,41.19185328,5.645024374,5.206545765,31.90206378 +2016-10-03 12:40:00-07:00,78,1074.057246,4.163722149,26.95701599,0.532712822,0.904065245,49.27626038,41.51491405,5.631659954,5.212064219,32.23718194 +2016-10-03 12:50:00-07:00,78,1057.933524,5.58819551,27.35372925,0.533207545,0.89985784,49.73834229,41.40889924,5.548822626,5.122615508,32.18323461 +2016-10-03 13:00:00-07:00,78,1017.941471,4.372929074,27.07044983,0.533068852,0.893119697,48.91288757,41.47655397,5.332256981,4.924103483,32.41845337 +2016-10-03 13:10:00-07:00,78,1043.122745,4.917235547,27.90808105,0.531954547,0.900062717,50.22091675,41.35391157,5.479528016,5.058369563,32.15377454 +2016-10-03 13:20:00-07:00,78,1028.055181,4.157313206,27.70043945,0.53233776,0.905204344,49.28843689,41.48109499,5.395372723,4.973662538,32.3942501 +2016-10-03 13:30:00-07:00,78,1014.811832,3.751877197,27.9446106,0.5316914,0.903691095,48.78086853,41.56076076,5.319271128,4.912150106,32.5100777 +2016-10-03 13:40:00-07:00,78,996.2753082,3.028405029,28.32209778,0.531659524,0.90259224,48.66999634,41.49623234,5.213902068,4.814782603,32.496506 +2016-10-03 13:50:00-07:00,78,975.9219241,1.143700364,28.07983398,0.531230055,0.903280507,48.30084229,41.52780785,5.106063489,4.721178479,32.57997222 +2016-10-03 14:00:00-07:00,78,955.7872126,2.845714535,28.14585205,0.530502159,0.893238324,49.27754211,41.32059966,5.006575156,4.627135377,32.42205935 +2016-10-03 14:10:00-07:00,78,928.1570722,2.751305318,27.73825073,0.530595643,0.885987146,46.52047729,41.64397637,4.869139875,4.507144111,32.82390669 +2016-10-03 14:20:00-07:00,78,899.5198971,3.186141271,28.50794983,0.529919782,0.880989223,46.40512085,41.60972247,4.725410268,4.379380323,32.85246504 +2016-10-03 14:30:00-07:00,78,862.4158127,2.223861488,28.85786438,0.529051315,0.87855314,46.80375671,41.48241091,4.540454082,4.20821937,32.82594086 +2016-10-03 14:40:00-07:00,78,831.7615376,2.226865771,28.36503601,0.528172177,0.875138178,45.65658569,41.6071998,4.396903526,4.072438412,33.10282044 +2016-10-03 14:50:00-07:00,78,796.0809388,2.602661415,28.41886902,0.527357732,0.878779102,45.09645081,41.59832121,4.224759758,3.914398578,33.17923488 +2016-10-03 15:00:00-07:00,78,750.862622,3.696641293,28.25352478,0.526773351,0.860546162,44.9221344,41.471076,3.999051953,3.711621962,33.16440455 +2016-10-03 15:10:00-07:00,78,721.4261212,2.333412054,28.69444275,0.524312147,0.856847142,45.50468445,41.33979581,3.861776872,3.580390033,33.09900765 +2016-10-03 15:20:00-07:00,78,678.4070285,1.450921772,28.94630432,0.5236672,0.86094418,43.2353363,41.59210966,3.641374148,3.383571667,33.47331637 +2016-10-03 15:30:00-07:00,78,635.9175159,2.59589212,28.97514343,0.521761682,0.852892436,42.69636536,41.51135431,3.424187473,3.18475279,33.49790551 +2016-10-03 15:40:00-07:00,78,593.2530593,1.434218735,28.80467224,0.519766848,0.843450618,42.26889038,41.45495675,3.201816111,2.970825265,33.64350724 +2016-10-03 15:50:00-07:00,78,553.2970239,3.83110567,28.70533752,0.516221381,0.845740772,40.77436829,41.5429052,2.99487591,2.785499928,33.82629232 +2016-10-03 16:00:00-07:00,78,510.2085598,3.20741049,28.94374084,0.51345959,0.841183844,39.25675964,41.59827189,2.769108821,2.575790526,34.00510552 +2016-10-03 16:10:00-07:00,78,470.1164258,1.429332225,28.60151672,0.510112369,0.837702101,37.52127075,41.67768125,2.552763827,2.376980158,34.19683955 +2016-10-03 16:20:00-07:00,78,426.3085175,2.565850751,28.64894104,0.506317392,0.832911677,36.16836548,41.70603202,2.314432618,2.152431507,34.44031567 +2016-10-03 16:30:00-07:00,78,379.897741,6.534253238,28.44194031,0.502262584,0.835809338,34.87635803,41.66845702,2.066364344,1.92116031,34.52533274 +2016-10-03 16:40:00-07:00,78,331.5803688,1.896292521,28.5085907,0.497174477,0.82251906,33.21903992,41.64343421,1.801920687,1.674964164,34.63027528 +2016-10-03 16:50:00-07:00,78,285.5677931,1.809093137,28.77326965,0.490379567,0.811615362,32.64866638,41.42559972,1.547786396,1.436446561,34.55165752 +2016-10-03 17:00:00-07:00,78,237.9159835,2.969644535,28.38938904,0.483032016,0.775060562,31.15861511,41.27489196,1.286940336,1.189522332,34.61840593 +2016-10-03 17:10:00-07:00,78,190.7859944,3.223272474,28.29389954,0.474906181,0.744017806,29.98516846,40.99112672,1.023219688,0.943232159,34.45457149 +2016-10-03 17:20:00-07:00,78,140.6853758,1.215999448,28.36824036,0.467367733,0.726994528,28.61689758,40.51652648,0.736575605,0.671555343,34.20019588 +2016-10-03 17:30:00-07:00,78,102.3222591,1.734270123,28.27146912,0.45052652,0.626241637,27.25823975,40.02926798,0.526523801,0.477718222,33.75174527 +2016-10-03 17:40:00-07:00,78,66.71127301,2.051985813,27.88308716,0.434563733,0.548230766,25.56118774,38.49470687,0.207407089,0.184709744,33.00287323 +2016-10-03 17:50:00-07:00,78,32.38500054,4.510437688,27.16467285,0.444152258,0.258097993,24.51335144,37.39819654,0.12541148,0.107460491,31.45613172 +2016-10-03 18:00:00-07:00,78,13.52215717,3.966010935,26.90959167,0.539371328,-0.080783277,23.75839233,35.45771908,0.060185557,0.049934664,28.23854703 +2016-10-03 18:10:00-07:00,78,5.774914139,1.433137469,26.32704163,0.547106104,0.616614249,22.7111969,32.66250591,0.025110505,0.019574184,24.71914638 +2016-11-18 07:00:00-07:00,78,5.512831281,0.657954407,8.784896851,0.555955125,-0.1,4.334625244,35.80425504,0.024532121,0.019225836,27.1976469 +2016-11-18 07:10:00-07:00,78,11.75947719,1.018769075,8.83744812,0.580844184,0.100851237,4.362182617,38.6423591,0.054879458,0.045374985,31.19586332 +2016-11-18 07:20:00-07:00,78,88.77567525,0.572797554,8.968826294,0.304784114,0.477204897,5.036392212,42.02915254,0.137550336,0.08096088,38.73620003 +2016-11-18 07:30:00-07:00,78,136.9825241,0.777277853,9.350143433,0.353441945,0.583017868,8.237579346,43.21441717,0.241517597,0.1149141,41.05335 +2016-11-18 07:40:00-07:00,78,181.2169976,1.043442814,10.34671021,0.391533578,0.683788247,11.45799255,43.90549107,1.008505616,0.929744285,37.79879855 +2016-11-18 07:50:00-07:00,78,222.9461264,1.312772292,11.436203,0.425365949,0.719569005,14.13751221,43.91642725,1.29438411,1.189089428,37.6056748 +2016-11-18 08:00:00-07:00,78,285.0642419,1.423724103,12.09246826,0.437342023,0.7189927,15.9095459,43.78619752,1.343316313,1.260762531,37.74712314 +2016-11-18 08:10:00-07:00,78,334.938689,1.211112868,12.46481323,0.453749552,0.796535274,18.22567749,43.88318868,1.786028554,1.620265367,37.63431979 +2016-11-18 08:20:00-07:00,78,386.9819886,1.619553021,12.61669922,0.464915102,0.79837982,20.39505005,43.81742619,2.082640204,1.945313661,36.84719403 +2016-11-18 08:30:00-07:00,78,433.6418093,0.999382292,13.29475403,0.473892385,0.817167262,22.52278137,43.72929913,2.365736386,2.212972259,36.4764112 +2016-11-18 08:40:00-07:00,78,482.6812027,2.073495383,14.00036621,0.481430005,0.847629377,24.05063782,43.70371935,2.621865016,2.451981758,36.30544615 +2016-11-18 08:50:00-07:00,78,527.758412,2.992155743,14.81364014,0.487453763,0.853835057,25.90982056,43.62884972,2.859109715,2.668770109,36.13160446 +2016-11-18 09:00:00-07:00,78,571.938917,2.71401416,15.95697021,0.492603272,0.858068424,27.78759766,43.5187622,3.085758203,2.885708995,35.79382513 +2016-11-18 09:10:00-07:00,78,613.2207601,5.002752962,16.28573608,0.496641596,0.865393657,29.365448,43.44712805,3.294074978,3.074625141,35.61968135 +2016-11-18 09:20:00-07:00,78,653.2463793,3.708457681,16.63885498,0.500112009,0.869994213,30.2492218,43.456665,3.495495895,3.264012081,35.52524842 +2016-11-18 09:30:00-07:00,78,690.7382509,3.290043902,16.83496704,0.502797478,0.87553941,30.6625824,43.48296979,3.689115812,3.439150163,35.47892804 +2016-11-18 09:40:00-07:00,78,728.8107564,4.913270068,17.15092468,0.505794619,0.879581641,32.19683838,43.34563376,3.868445228,3.60516411,35.23381028 +2016-11-18 09:50:00-07:00,78,763.9413635,4.70266155,17.39445496,0.508169229,0.884084464,32.93513489,43.3041304,4.042119272,3.765913848,35.02077359 +2016-11-18 10:00:00-07:00,78,796.1118027,4.780127518,17.58158875,0.510154997,0.882777356,33.90927124,43.23957064,4.197257022,3.919145357,34.86867084 +2016-11-18 10:10:00-07:00,78,828.3669971,4.986370043,17.63221741,0.511848878,0.892156687,34.39955139,43.24517202,4.353927181,4.058653079,34.79065873 +2016-11-18 10:20:00-07:00,78,856.2412791,5.597128104,18.05007935,0.512997691,0.894597026,34.51426697,43.23065807,4.49746119,4.189097242,34.71922592 +2016-11-18 10:30:00-07:00,78,881.0116319,3.767658924,18.51086426,0.514671546,0.892880444,36.83360291,43.0067052,4.635538846,4.304377813,34.4282839 +2016-11-18 10:40:00-07:00,78,903.8417454,6.142555727,18.77297974,0.515821333,0.894645078,37.49884033,42.93913476,4.743976947,4.408338293,34.298209 +2016-11-18 10:50:00-07:00,78,925.4539109,4.446229655,18.81463623,0.516589562,0.894144093,38.18457031,42.83011475,4.849795128,4.505915096,34.12003646 +2016-11-18 11:00:00-07:00,78,943.6538745,5.74284798,19.25236511,0.517909779,0.900106312,38.89146423,42.79894822,4.943211608,4.598742088,33.96523095 +2016-11-18 11:10:00-07:00,78,957.9841398,5.466148295,19.59074402,0.51903934,0.89536218,39.37275696,42.76929033,5.022988519,4.66764725,33.90021424 +2016-11-18 11:20:00-07:00,78,971.5769231,3.429474975,19.91951294,0.519640029,0.900239619,39.45159363,42.70360078,5.084381289,4.724387969,33.80096523 +2016-11-18 11:30:00-07:00,78,982.7544636,3.408205826,19.91694641,0.520275495,0.899452495,39.66629028,42.72283759,5.145114305,4.779415216,33.79673532 +2016-11-18 11:40:00-07:00,78,991.5960444,4.331832742,20.53796387,0.520649334,0.89548434,41.45625427,42.51005389,5.190698312,4.821362282,33.54920563 +2016-11-18 11:50:00-07:00,78,997.2697484,2.013773485,20.50463867,0.521268946,0.900784532,42.15994263,42.39641356,5.22329092,4.844616412,33.41871314 +2016-11-18 12:00:00-07:00,78,1001.355224,3.487955444,21.00965637,0.521499861,0.903178506,41.72735596,42.39944887,5.242066065,4.85961392,33.40978282 +2016-11-18 12:10:00-07:00,78,1003.634388,2.175114783,21.35380554,0.521541214,0.901998129,43.59103394,42.23135185,5.255727937,4.864983896,33.23373124 +2016-11-18 12:20:00-07:00,78,1004.302392,4.20117361,21.75819397,0.52150667,0.901634264,44.83882141,42.05479419,5.2538793,4.86366598,33.05614074 +2016-11-18 12:30:00-07:00,78,999.7390272,1.960941022,21.59989929,0.52165842,0.900682557,45.69631958,41.92704121,5.235954182,4.842868451,32.94136661 +2016-11-18 12:40:00-07:00,78,997.2003577,2.966480227,22.21195984,0.521280911,0.905479739,46.16030884,41.79426463,5.21185397,4.822205992,32.80854366 +2016-11-18 12:50:00-07:00,78,990.4269499,3.592698919,22.32539368,0.521121955,0.905172248,45.73220825,41.79645974,5.179495022,4.793684522,32.83091278 +2016-11-18 13:00:00-07:00,78,980.9301523,2.26143281,21.93891907,0.520908063,0.905011508,43.64678955,42.00457018,5.12187085,4.746058143,33.07150542 +2016-11-18 13:10:00-07:00,78,969.4468484,2.705041403,22.93934631,0.520249721,0.903297171,45.47840881,41.80359609,5.063165155,4.683785306,32.89887774 +2016-11-18 13:20:00-07:00,78,955.5199761,2.335775122,23.18481445,0.519552208,0.90027395,47.05241394,41.55275884,4.988882201,4.616904597,32.6756815 +2016-11-18 13:30:00-07:00,78,940.0617199,1.54124523,23.50076294,0.518575077,0.897284658,47.3004303,41.530051,4.908546386,4.541725997,32.68919523 +2016-11-18 13:40:00-07:00,78,921.9517712,0.296979435,23.83850098,0.517529793,0.896533983,47.37733459,41.37144677,4.815243362,4.454169199,32.57967612 +2016-11-18 13:50:00-07:00,78,903.4382945,0.485757915,23.85067749,0.516572762,0.893793788,49.09617615,41.18249884,4.718493455,4.361466122,32.43960683 +2016-11-18 14:00:00-07:00,78,879.3516194,2.23299427,23.30593872,0.515278573,0.896678636,46.99601746,41.31851351,4.589006513,4.246989469,32.63812864 +2016-11-18 14:10:00-07:00,78,853.1270909,3.362423172,24.18202209,0.51396554,0.895038735,48.10473633,41.14717133,4.455581063,4.123227588,32.52996684 +2016-11-18 14:20:00-07:00,78,823.4593036,1.180791333,24.40504456,0.511913831,0.894366272,46.49612427,41.26401014,4.305921743,3.97911364,32.80149848 +2016-11-18 14:30:00-07:00,78,794.5418148,1.743402975,24.74150085,0.510633479,0.884015054,46.58841309,41.24796342,4.163924673,3.854138029,32.86011252 +2016-11-18 14:40:00-07:00,78,759.8609642,1.828359221,23.95513916,0.508364554,0.879217734,44.48248291,41.42784637,3.990958947,3.699754153,33.13036207 +2016-11-18 14:50:00-07:00,78,724.0469691,2.042693356,24.1736908,0.506338554,0.866874671,41.1499176,41.81457833,3.808985499,3.537364528,33.6115266 +2016-11-18 15:00:00-07:00,78,686.8300643,2.428302672,23.97692871,0.503249267,0.870166449,40.3699646,41.83574425,3.625228506,3.368547658,33.72984628 +2016-11-18 15:10:00-07:00,78,647.6009624,0.796704451,24.47425842,0.500356012,0.868432037,40.19564819,41.78936643,3.428209821,3.184099923,33.86436738 +2016-11-18 15:20:00-07:00,78,603.9654597,1.263905377,24.40119934,0.496831766,0.86149528,38.60435486,41.89993759,3.217122768,2.98864121,34.08304504 +2016-11-18 15:30:00-07:00,78,562.8093114,0.717876563,25.27087402,0.49222466,0.85420867,38.79789734,41.70123671,2.997247221,2.785952433,33.9951244 +2016-11-18 15:40:00-07:00,78,518.5930301,1.180671053,24.91004944,0.487094915,0.857954633,37.93399048,41.74122057,2.762606191,2.571065557,34.14796159 +2016-11-18 15:50:00-07:00,78,474.1505292,1.189202783,25.59899902,0.480909369,0.834389892,37.81671143,41.56839242,2.529266859,2.354176554,34.09386829 +2016-11-18 16:00:00-07:00,78,427.1949628,2.174794315,24.46913147,0.472511209,0.826941984,34.29187622,41.8608228,2.278452139,2.119196809,34.6097615 +2016-11-18 16:10:00-07:00,78,377.8472969,1.331718187,24.45054626,0.462351564,0.788690259,32.25580811,41.94117938,2.015283813,1.877991112,34.82176384 +2016-11-18 16:20:00-07:00,78,329.5427894,1.391760134,24.54988098,0.449451842,0.796480173,31.7437439,41.76011991,1.755439484,1.633716656,34.76288054 +2016-11-18 16:30:00-07:00,78,193.5636133,1.018048162,24.37364197,0.432361515,0.765295534,30.07745361,41.67375064,1.483794554,1.375703204,34.91333513 +2016-11-18 16:40:00-07:00,78,226.653929,1.72001055,24.37043762,0.409185114,0.605541887,28.14777161,40.01823371,0.202163193,0.1649383,37.08271001 +2016-11-18 16:50:00-07:00,78,172.5345329,0.93609585,24.58769226,0.379212835,0.64091381,24.86711121,40.69555451,0.51348104,0.4733146,36.08551 +2016-11-18 17:00:00-07:00,78,117.8858561,0.741108055,24.50437927,0.336642962,0.39046222,23.33605957,40.85697163,0.588959223,0.538383859,34.65095722 +2016-11-18 17:10:00-07:00,78,56.74404649,0.912383096,23.26428223,0.309741908,0.402973616,20.77893066,37.3155623,0.075581374,0.062622054,31.53074945 +2016-11-18 17:20:00-07:00,78,7.576207811,0.916028107,22.31770325,0.577772458,-0.1,18.23529053,35.11959664,0.039924526,0.03186923,27.73705002 +2016-11-18 17:30:00-07:00,78,3.428946352,1.121029132,22.32539368,0.507812619,1.1,16.54336548,31.68799771,0.016246525,0.0122947,23.72542001 +2016-12-18 07:20:00-07:00,78,2.480802064,1.138693364,4.149414063,0.561937842,,0.620101929,33.30080152,0.013134897,0.009840512,24.51384153 +2016-12-18 07:30:00-07:00,78,7.496509761,1.254332266,4.316680908,0.56215657,,0.401550293,38.29331567,0.040318129,0.032612675,30.07766602 +2016-12-18 07:40:00-07:00,78,54.10512226,1.393322661,4.849899292,0.290731685,,0.743148804,41.30133478,0.09575784,0.078875961,35.88868737 +2016-12-18 07:50:00-07:00,78,111.2977188,1.571927466,5.46321106,0.315130162,,3.539942627,43.11840363,0.144060186,0.1222332,39.29588002 +2016-12-18 08:00:00-07:00,78,166.4036413,1.239872435,6.00604248,0.352797195,,6.764846802,43.94550197,0.244101793,0.156825198,41.73776 +2016-12-18 08:10:00-07:00,78,201.4905003,3.978027301,6.54309082,0.389905437,,9.068161011,44.53011818,1.193324175,0.749153001,41.38602 +2016-12-18 08:20:00-07:00,78,258.6547904,2.665147036,7.041702271,0.41563137,,10.5793457,44.632657,1.361525591,1.273750917,38.52874491 +2016-12-18 08:30:00-07:00,78,326.2769355,3.785282783,7.685791016,0.426633682,,11.97647095,44.67922334,1.473467235,1.384472613,39.01361776 +2016-12-18 08:40:00-07:00,78,374.7073597,3.038138514,7.97354126,0.441233041,,14.05548096,44.82541343,2.036268684,1.903816896,37.86856281 +2016-12-18 08:50:00-07:00,78,421.7502387,3.448781641,8.190155029,0.453104385,,16.10757446,44.75747767,2.301764583,2.155880712,37.64991568 +2016-12-18 09:00:00-07:00,78,470.3527984,4.312445959,8.558654785,0.462054906,,17.69245911,44.7201997,2.560892597,2.404474798,37.37663675 +2016-12-18 09:10:00-07:00,78,514.1219097,3.53013339,8.771438599,0.469542523,,19.34529114,44.64964687,2.788718602,2.617031381,37.20101875 +2016-12-18 09:20:00-07:00,78,557.3362519,2.559762555,9.15852356,0.475922,,21.64476013,44.469503,3.02087914,2.833130184,36.9030078 +2016-12-18 09:30:00-07:00,78,596.5959379,1.981529491,9.700707397,0.481090067,,23.72891235,44.26397565,3.226235097,3.017570879,36.60025025 +2016-12-18 09:40:00-07:00,78,637.9576721,2.319152271,10.31082153,0.485306347,,25.9213562,44.0711566,3.433751218,3.21604893,36.19166399 +2016-12-18 09:50:00-07:00,78,676.0276683,2.504446674,10.76905823,0.488868537,,27.24926758,43.94065973,3.624770211,3.392969719,35.96356319 +2016-12-18 10:00:00-07:00,78,711.2738172,1.741119674,11.08885193,0.492237271,,28.56626892,43.87761103,3.801648767,3.551484428,35.81050039 +2016-12-18 10:10:00-07:00,78,745.574389,3.528851448,11.38813782,0.495812576,,29.35134888,43.85229712,3.965124726,3.702403952,35.71011416 +2016-12-18 10:20:00-07:00,78,776.4215203,2.893980676,11.50541687,0.497973346,,30.12808228,43.80829266,4.123786834,3.855911609,35.49163225 +2016-12-18 10:30:00-07:00,78,804.9407311,4.825229351,12.11361694,0.499885957,,31.73861694,43.59690254,4.270701055,3.988108308,35.20014952 +2016-12-18 10:40:00-07:00,78,832.3911117,4.64017537,12.27383423,0.501377142,,31.31500244,43.68637425,4.403155856,4.116713637,35.22742472 +2016-12-18 10:50:00-07:00,78,855.4061868,4.775881455,12.27832031,0.502729891,,31.54058838,43.7354938,4.522407362,4.22712817,35.21854276 +2016-12-18 11:00:00-07:00,78,875.7130917,3.281111866,12.7884613,0.504208238,,33.25557434,43.50886219,4.633689686,4.320535843,34.93137299 +2016-12-18 11:10:00-07:00,78,896.3849592,4.017000985,12.63528442,0.505321317,,33.64138794,43.53705238,4.739022869,4.415053055,34.90446769 +2016-12-18 11:20:00-07:00,78,912.8171182,4.738670485,12.88395691,0.506130099,,34.23034668,43.51394457,4.82254152,4.490026316,34.83958811 +2016-12-18 11:30:00-07:00,78,926.7797957,3.302420829,12.92304993,0.507189044,,35.24485779,43.38800237,4.894363119,4.554376914,34.66866652 +2016-12-18 11:40:00-07:00,78,940.5884721,3.021796038,14.06317139,0.507323981,,37.70327759,43.17414487,4.964269023,4.610312411,34.41933814 +2016-12-18 11:50:00-07:00,78,950.8640967,2.884607753,14.44512939,0.507680534,,39.2099762,43.03186034,5.022507427,4.663512056,34.17582439 +2016-12-18 12:00:00-07:00,78,956.218912,4.60048133,13.84976196,0.5081152,,37.55075073,43.07574498,5.040364282,4.691255211,34.2136714 +2016-12-18 12:10:00-07:00,78,961.3116637,3.543231301,13.76579285,0.508298407,,37.8276062,43.04824568,5.071417187,4.715576398,34.16545229 +2016-12-18 12:20:00-07:00,78,962.7378998,4.651350961,14.49319458,0.508203955,,38.90684509,42.96533881,5.079382,4.723169752,34.06778592 +2016-12-18 12:30:00-07:00,78,964.0226713,3.850292126,14.19775391,0.508296404,,38.9690094,42.85416003,5.088187376,4.727837248,33.96036354 +2016-12-18 12:40:00-07:00,78,960.1733173,3.151574093,14.86619568,0.508312792,,39.54260254,42.85499152,5.067303241,4.705308038,33.96706017 +2016-12-18 12:50:00-07:00,78,959.697976,1.741920775,15.43785095,0.50791937,,41.10505676,42.68423084,5.059264198,4.693554283,33.79897035 +2016-12-18 13:00:00-07:00,78,953.4566864,3.332742504,15.61857605,0.507541301,,41.60879517,42.64411637,5.020083153,4.665950858,33.76511401 +2016-12-18 13:10:00-07:00,78,944.812739,0.693362709,15.89865051,0.506972165,,41.82284546,42.49202952,4.974424576,4.614485671,33.64670077 +2016-12-18 13:20:00-07:00,78,932.5587922,1.935826745,15.5282135,0.506601006,,41.69210815,42.3940783,4.911240985,4.562295425,33.56990969 +2016-12-18 13:30:00-07:00,78,917.9253501,2.102174624,15.80314636,0.506189691,,39.70346069,42.66691553,4.838446526,4.484839818,33.96578246 +2016-12-18 13:40:00-07:00,78,902.9346951,1.263264092,16.11013794,0.505163053,,41.57354736,42.36798417,4.758552477,4.418163569,33.62201791 +2016-12-18 13:50:00-07:00,78,885.6778186,2.587079806,15.8300647,0.503231223,,38.53514099,42.68599985,4.670421356,4.335751668,34.06541099 +2016-12-18 14:00:00-07:00,78,865.8925219,2.468797881,16.73370361,0.501876494,,39.67333984,42.58425335,4.568223604,4.240121854,34.01178672 +2016-12-18 14:10:00-07:00,78,843.3679305,3.559293333,15.92556763,0.500184469,,36.82270813,42.77209363,4.442669246,4.135320475,34.26887572 +2016-12-18 14:20:00-07:00,78,817.0227547,3.814122537,16.10757446,0.49864301,,34.89109802,43.03181354,4.302425057,4.009208319,34.59746254 +2016-12-18 14:30:00-07:00,78,789.1844131,3.717309739,15.73136902,0.496470656,,33.21199036,43.14845875,4.1663233,3.884024165,34.79231308 +2016-12-18 14:40:00-07:00,78,761.4283077,3.343877862,16.04669189,0.493376793,,33.03190613,43.13983705,4.015606664,3.746260603,34.85535339 +2016-12-18 14:50:00-07:00,78,728.9135783,2.868866189,16.61706543,0.490391938,,32.51216125,43.17799244,3.846600439,3.588286332,35.06791408 +2016-12-18 15:00:00-07:00,78,694.9701518,2.951539345,16.26202393,0.487219084,,30.41648865,43.3834576,3.668681826,3.426211331,35.36326389 +2016-12-18 15:10:00-07:00,78,656.1113688,3.635477778,16.47927856,0.483448999,,29.85955811,43.35244458,3.476356784,3.249752915,35.43496017 +2016-12-18 15:20:00-07:00,78,617.409212,2.055991106,16.65039063,0.478452507,,30.15563965,43.20836213,3.279187078,3.062882499,35.37849956 +2016-12-18 15:30:00-07:00,78,577.4016402,2.994638742,16.61065674,0.472730901,,28.57203674,43.30346254,3.074644351,2.877693311,35.57941572 +2016-12-18 15:40:00-07:00,78,533.1517928,3.792773131,16.50170898,0.46674519,,27.69210815,43.33953044,2.840633709,2.659443037,35.82644759 +2016-12-18 15:50:00-07:00,78,490.3153841,1.748529486,16.63757324,0.45836134,,27.30053711,43.22473995,2.617294433,2.449782224,35.82767883 +2016-12-18 16:00:00-07:00,78,443.3264349,1.772522894,16.72601318,0.448448399,,25.79446411,43.26985012,2.373534795,2.22349573,35.98591239 +2016-12-18 16:10:00-07:00,78,395.792802,1.648192098,16.99327087,0.436426472,,25.68743896,43.07315472,2.116464048,1.981831937,35.91383786 +2016-12-18 16:20:00-07:00,78,345.6331096,1.711438796,16.73498535,0.419377777,,23.73083496,43.1009758,1.849362383,1.727679983,36.18031235 +2016-12-18 16:30:00-07:00,78,293.1095371,1.076568235,16.59463501,0.399416065,,21.71846008,43.08112628,1.565515742,1.462336527,36.29726337 +2016-12-18 16:40:00-07:00,78,223.7375382,2.591005121,16.37225342,0.376733961,,20.08166504,42.75271958,1.081942458,0.889022599,38.73080002 +2016-12-18 16:50:00-07:00,78,129.5310557,2.364534899,16.22293091,0.365123997,,17.77192688,41.71327176,0.531921423,0.4625263,37.02514 +2016-12-18 17:00:00-07:00,78,39.22753848,0.807038569,15.78392029,0.431233258,,14.57394409,39.53756985,0.16309775,0.125699682,34.44361851 +2016-12-18 17:10:00-07:00,78,21.03275741,1.897013504,15.08473206,0.432028369,,12.29626465,38.44500976,0.085957867,0.073560957,31.75288685 +2016-12-18 17:20:00-07:00,78,7.712316022,1.656002984,14.98091125,0.517470372,,11.04975891,36.15789226,0.038123801,0.0310234,27.91891003 +2016-12-18 17:30:00-07:00,78,2.455111073,1.245680116,14.72454834,0.555397197,,9.927581787,30.927837,0.012009201,0.009101328,21.89337997 diff --git a/docs/tutorials/mlfm_data/meas_gtw/n05667_Y13_R1k6_fClear_041.csv b/docs/tutorials/mlfm_data/meas_gtw/n05667_Y13_R1k6_fClear_041.csv new file mode 100644 index 0000000000..c200c034ff --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/n05667_Y13_R1k6_fClear_041.csv @@ -0,0 +1,1616 @@ +date_time,module_id,poa_global,temp_module,i_sc,p_mp,i_mp,v_mp,v_oc,ff,temp_air,relative_humidity,pressure,precipitation,dni,ghi,dhi,soil,wind_speed +2013-01-04 08:05:12-06:00,n05667,24,4.7,0.1361,4.8684,0.1255,38.8033,45.8512,78.01,4.9,82.2,1007.1,0,0,18.1,18.3,1,0 +2013-01-04 08:10:12-06:00,n05667,33,5.2,0.1788,6.5303,0.1657,39.4118,46.4089,78.72,5,82.9,1007,0,1.6,24.9,25,1,0 +2013-01-04 08:15:12-06:00,n05667,204.7,6.5,1.1024,45.3502,1.0548,42.9932,50.078,82.15,5.2,81.9,1007.1,0,353.4,53,31.5,1,0 +2013-01-04 08:20:12-06:00,n05667,238,8.4,1.2937,52.966,1.2344,42.9074,50.0932,81.73,5.3,80.8,1007.2,0,395.1,65.2,36.7,1,0 +2013-01-04 08:25:12-06:00,n05667,272.4,10.3,1.4898,60.8224,1.4194,42.8509,50.1119,81.47,5.6,79.7,1007.3,0,435.6,78.2,41.6,1,0 +2013-01-04 08:30:12-06:00,n05667,209.1,10.7,1.151,46.3729,1.0956,42.3254,49.4631,81.46,5.9,78.9,1007.2,0,284.3,72.2,44.9,1,0 +2013-01-04 08:35:12-06:00,n05667,204.3,10.7,1.1235,45.1776,1.068,42.3026,49.4346,81.34,5.7,78.6,1007.2,0,264.6,75.5,47.3,1,0 +2013-01-04 08:50:12-06:00,n05667,258.3,12.8,1.4203,56.9459,1.3445,42.3548,49.6118,80.81,5.7,78.1,1007.3,0,337.2,96.8,49.5,1,0 +2013-01-04 08:55:12-06:00,n05667,372.3,12.9,2.0529,83.85,1.9587,42.8097,50.3039,81.2,5.4,79.5,1007.4,0,498.5,129.1,52.8,1,0 +2013-01-04 09:00:12-06:00,n05667,407.7,14.6,2.2527,91.4999,2.1463,42.6307,50.2297,80.86,5,79.9,1007.4,0,537.6,146,57.7,1,0 +2013-01-04 09:05:12-06:00,n05667,190.2,13.6,1.0489,41.4664,0.9953,41.6617,48.7755,81.05,4.5,80.6,1007.4,0,167.1,93.6,64.9,1,0 +2013-01-04 09:10:12-06:00,n05667,359.7,13,1.9773,80.1503,1.8782,42.675,50.1471,80.83,4.3,81.5,1007.3,0,423,148.7,70.2,1,0 +2013-01-04 09:15:12-06:00,n05667,533.2,15.8,2.9297,119.4426,2.7935,42.7567,50.6181,80.54,4.2,81.9,1007.4,0,663.6,200.4,70,1,0 +2013-01-04 09:20:12-06:00,n05667,453.9,15.4,2.5028,101.1774,2.3784,42.5393,50.2115,80.51,4.2,82.5,1007.6,0,540.1,176.8,65.2,1,0 +2013-01-04 09:25:12-06:00,n05667,267.1,14.9,1.4653,58.563,1.3946,41.9913,49.262,81.13,4.4,82.7,1007.7,0,257.2,118.7,63.4,1,0 +2013-01-04 09:30:12-06:00,n05667,439,15.8,2.4122,97.3753,2.2917,42.4907,50.1588,80.48,4.7,81.9,1007.6,0,499.1,180.8,67.8,1,0 +2013-01-04 09:35:12-06:00,n05667,582,17.9,3.2032,128.7131,3.0349,42.4108,50.3813,79.76,4.9,81.1,1007.7,0,683.1,233.5,72.2,1,0 +2013-01-04 09:40:12-06:00,n05667,520.4,18.1,2.8781,115.5213,2.7311,42.299,50.1335,80.06,5,81,1007.7,0,577.7,217.4,75.3,1,0 +2013-01-04 09:45:12-06:00,n05667,646.8,20.9,3.5582,141.8391,3.3723,42.0597,50.1874,79.43,5.3,80.3,1007.6,0,752.5,265.9,74.1,1,0 +2013-01-04 09:50:12-06:00,n05667,654.7,22.3,3.5986,142.4343,3.4081,41.7934,49.9388,79.26,5.6,79.2,1007.6,0,766.3,266.5,64.1,1,0 +2013-01-04 09:55:12-06:00,n05667,600.1,22.2,3.2928,130.0167,3.115,41.7389,49.7594,79.35,5.8,78.9,1007.7,0,697.9,245,54.4,1,0 +2013-01-04 10:00:12-06:00,n05667,665.7,23.6,3.6725,144.7154,3.4755,41.6385,49.7978,79.13,6.1,77.9,1007.9,0,775.7,267,48.9,1,0 +2013-01-04 10:05:12-06:00,n05667,680,23.1,3.7383,147.1766,3.5355,41.6277,49.8225,79.02,6.3,77.4,1007.8,0,787,274.2,46.3,1,0 +2013-01-04 10:10:12-06:00,n05667,694.4,25.3,3.8227,149.8462,3.6123,41.4818,49.725,78.83,6.5,76.6,1007.8,0,793.9,281.4,45.5,1,0 +2013-01-04 10:15:12-06:00,n05667,709.8,26.1,3.9065,152.8871,3.6927,41.4029,49.6749,78.79,7.4,72.9,1007.7,0,802.6,290.7,46.1,1,0 +2013-01-04 10:20:12-06:00,n05667,723.4,27.9,3.9805,154.8632,3.7602,41.1851,49.4967,78.6,7.7,72.2,1007.7,0,806.8,298.7,47.1,1,0 +2013-01-04 10:25:12-06:00,n05667,736.2,27.5,4.0517,156.8424,3.8199,41.0597,49.3978,78.36,7.8,71.2,1007.7,0,811.7,307.3,48.2,1,0 +2013-01-04 10:30:12-06:00,n05667,751.6,28.9,4.139,159.7639,3.9018,40.9458,49.3256,78.25,7.4,72.2,1007.8,0,819.7,316,48.9,1,0 +2013-01-04 10:35:12-06:00,n05667,762.6,29.2,4.1965,161.621,3.956,40.8542,49.2508,78.2,8,70.5,1007.6,0,823.1,322,48.6,1,0 +2013-01-04 10:40:12-06:00,n05667,762.8,30.2,4.1986,161.4075,3.9562,40.7989,49.2026,78.13,8,70.4,1007.6,0,812.5,322.7,47.7,1,0 +2013-01-04 10:45:12-06:00,n05667,779.8,29.1,4.2829,165.0018,4.0383,40.8595,49.2911,78.16,7.9,69.7,1007.4,0,828.6,332,46.1,1,0 +2013-01-04 10:50:12-06:00,n05667,794.3,30.1,4.3728,167.631,4.1143,40.7436,49.2235,77.88,7.7,71,1007.3,0,840.6,340,45.3,1,0 +2013-01-04 10:55:12-06:00,n05667,803.5,31,4.4164,169.2311,4.1539,40.7403,49.2326,77.83,7.9,71,1007.2,0,844.7,345.5,45.2,1,0 +2013-01-04 11:00:12-06:00,n05667,813.6,31.3,4.4793,171.1884,4.211,40.6529,49.1662,77.73,8.6,68.4,1007.1,0,850.1,351.8,45.3,1,0 +2013-01-04 11:05:12-06:00,n05667,820.9,30.2,4.516,173.1551,4.2522,40.7214,49.2618,77.83,8.9,67.1,1006.9,0,852.2,356.6,45.5,1,0 +2013-01-04 11:10:12-06:00,n05667,829.6,30.8,4.5516,174.5412,4.2878,40.7068,49.2586,77.85,8.5,68.4,1006.8,0,855.8,362.2,45.6,1,0 +2013-01-04 11:15:12-06:00,n05667,837.2,31.8,4.5992,175.4184,4.3295,40.5172,49.0888,77.7,8.8,67.5,1006.7,0,859.5,366.9,45.4,1,0 +2013-01-04 11:20:12-06:00,n05667,842.6,32.6,4.633,176.1003,4.356,40.4267,49.0205,77.54,9.3,65.9,1006.7,0,860.9,370.5,45.6,1,0 +2013-01-04 11:25:12-06:00,n05667,851,32.3,4.6757,177.596,4.3936,40.4211,49.0205,77.48,9.2,65.6,1006.5,0,865.2,375.4,45.5,1,0 +2013-01-04 11:30:12-06:00,n05667,857.5,32.5,4.7175,179.0146,4.4326,40.3855,49.0081,77.43,9.1,66.4,1006.4,0,869.1,379.7,45.4,1,0 +2013-01-04 11:35:12-06:00,n05667,862.1,32.7,4.7407,180.1501,4.4542,40.4449,49.068,77.44,9.2,66.4,1006.3,0,871.3,383.1,45.5,1,0 +2013-01-04 11:40:12-06:00,n05667,866.6,32.6,4.7602,180.6873,4.4734,40.3918,49.027,77.42,9.4,65.6,1006.2,0,873.2,386,45.4,1,0 +2013-01-04 11:45:12-06:00,n05667,869.6,32.2,4.7798,181.1018,4.4901,40.3335,48.9737,77.37,9.7,65,1006.1,0,874.2,388,45.2,1,0 +2013-01-04 11:50:12-06:00,n05667,873.9,33.7,4.7966,181.5834,4.5085,40.2762,48.9229,77.38,10.2,63.9,1006,0,877,390.8,45.1,1,0 +2013-01-04 11:55:12-06:00,n05667,875.3,35.7,4.805,180.9269,4.5136,40.0844,48.7486,77.24,10.6,62.2,1005.9,0,877.4,391.7,45,1,0 +2013-01-04 12:05:12-06:00,n05667,877.9,35.2,4.8146,181.0087,4.5222,40.0264,48.6998,77.2,11.1,59.6,1005.7,0,876.7,394.2,45.6,1,0 +2013-01-04 12:10:12-06:00,n05667,883,35.8,4.8583,182.1459,4.5556,39.9826,48.6647,77.04,11,60.1,1005.6,0,882.1,396.5,45.3,1,0 +2013-01-04 12:15:12-06:00,n05667,883.4,36.8,4.8567,182.138,4.5605,39.9385,48.625,77.13,11.8,57.9,1005.5,0,881.5,397,45.9,1,0 +2013-01-04 12:25:12-06:00,n05667,849.2,34.4,4.6737,175.6544,4.3882,40.029,48.6393,77.27,10.3,61.3,1005.4,0,838.5,383.1,48.5,1,0 +2013-01-04 12:30:12-06:00,n05667,882.9,34.1,4.8534,182.3551,4.5565,40.0208,48.6998,77.15,10.3,61.8,1005.2,0,880.9,396.9,46.2,1,0 +2013-01-04 12:35:12-06:00,n05667,877.9,34.2,4.8271,181.7657,4.5315,40.1119,48.7675,77.21,10.4,62.2,1005.1,0,878.4,393.5,45.4,1,0 +2013-01-04 12:40:12-06:00,n05667,872,37.2,4.7957,179.8876,4.5064,39.918,48.5782,77.22,10.6,61.6,1004.9,0,874.4,391.1,45.4,1,0 +2013-01-04 12:45:12-06:00,n05667,869.9,36.2,4.7951,179.3583,4.4958,39.8945,48.5483,77.05,10.7,61.8,1004.8,0,873.6,389.4,45.4,1,0 +2013-01-04 12:50:12-06:00,n05667,864.9,34.7,4.7662,179.2634,4.4763,40.047,48.6914,77.25,10.6,62.4,1004.7,0,870.7,386.7,46.1,1,0 +2013-01-04 12:55:12-06:00,n05667,860.6,35.3,4.7394,178.3594,4.4488,40.0917,48.7141,77.25,10.8,61.7,1004.5,0,867.6,384.3,46.6,1,0 +2013-01-04 13:00:12-06:00,n05667,853.6,34.6,4.7072,177.1318,4.42,40.0749,48.6901,77.29,11.1,61.5,1004.5,0,862.8,380.2,46.7,1,0 +2013-01-04 13:05:12-06:00,n05667,843.2,34.5,4.6528,175.6953,4.3692,40.2125,48.8013,77.38,11.3,60.4,1004.5,0,855.5,375.9,47.4,1,0 +2013-01-04 13:10:12-06:00,n05667,838.7,33.7,4.6176,175.2312,4.3396,40.3797,48.9581,77.51,11.2,60.6,1004.4,0,852.2,372,47.8,1,0 +2013-01-04 13:15:12-06:00,n05667,834,32.5,4.5875,174.7836,4.3137,40.5187,49.0706,77.64,11.3,61,1004.4,0,851.7,369.2,48.1,1,0 +2013-01-04 13:20:12-06:00,n05667,823.6,31,4.5387,173.9203,4.2673,40.7563,49.2748,77.77,11.4,61,1004.3,0,845.5,364.3,48.4,1,0 +2013-01-04 13:25:12-06:00,n05667,815.6,31.3,4.4901,172.4637,4.2294,40.7774,49.2872,77.93,11.3,61.1,1004.3,0,838.4,359.4,50,1,0 +2013-01-04 13:30:12-06:00,n05667,811.8,32.4,4.4577,170.8499,4.194,40.7364,49.2371,77.84,11.3,61.4,1004.3,0,839.6,358.1,52.3,1,0 +2013-01-04 13:35:12-06:00,n05667,798.5,31,4.4077,169.1238,4.1487,40.7653,49.2417,77.92,11.4,61.3,1004.1,0,833.6,349.8,49.7,1,0 +2013-01-04 13:40:12-06:00,n05667,789,30.6,4.3547,167.1982,4.0989,40.7913,49.2456,77.97,11.5,61.5,1004.1,0,831.5,344.9,49.7,1,0 +2013-01-04 13:45:12-06:00,n05667,779.6,29.6,4.3039,165.6572,4.0519,40.8838,49.3152,78.05,11.1,62,1004,0,828.5,339.2,49.3,1,0 +2013-01-04 13:50:12-06:00,n05667,768.7,27.8,4.2427,164.1628,3.9963,41.0791,49.4739,78.21,11,63.1,1003.9,0,823.9,332.5,48.6,1,0 +2013-01-04 13:55:12-06:00,n05667,755.3,28.9,4.1677,161.053,3.9268,41.0139,49.3757,78.26,11.1,64,1003.8,0,817,324.3,47.7,1,0 +2013-01-04 14:00:12-06:00,n05667,736.8,29,4.0721,157.1783,3.8376,40.957,49.2976,78.3,11.3,64.2,1003.8,0,803.2,314.1,47.3,1,0 +2013-01-04 14:05:12-06:00,n05667,733.6,29.4,4.0631,156.8653,3.8268,40.9916,49.3204,78.28,11.3,63.9,1003.7,0,806.6,310.1,47.4,1,0 +2013-01-04 14:10:12-06:00,n05667,722.7,28.9,3.997,154.5668,3.7684,41.0161,49.3204,78.41,11.2,64,1003.7,0,800.8,303.9,48.5,1,0 +2013-01-04 14:15:12-06:00,n05667,709.3,30.1,3.9295,151.7279,3.7017,40.9886,49.2709,78.37,11.3,64.4,1003.6,0,793.6,296.2,48.8,1,0 +2013-01-04 14:20:12-06:00,n05667,694.2,29.7,3.8464,148.5665,3.6253,40.9806,49.2235,78.47,11.4,63.6,1003.5,0,785.3,288.8,49.4,1,0 +2013-01-04 14:25:12-06:00,n05667,683.5,30.1,3.7933,146.6547,3.5764,41.0057,49.2261,78.54,11.5,63.5,1003.5,0,781.7,282.3,50.6,1,0 +2013-01-04 14:30:12-06:00,n05667,665.8,30,3.6969,142.7397,3.4865,40.9402,49.1376,78.58,11.7,62.8,1003.4,0,768.9,273,51,1,0 +2013-01-04 14:35:12-06:00,n05667,650,28.6,3.6184,140.0512,3.4116,41.0515,49.202,78.67,11.5,62.7,1003.4,0,756,262.4,50,1,0 +2013-01-04 14:40:12-06:00,n05667,621.3,28.3,3.4498,133.8368,3.2529,41.1436,49.228,78.81,11.4,63.1,1003.3,0,734,248.4,48.5,1,0 +2013-01-04 14:45:12-06:00,n05667,578.6,29.1,3.2266,124.7469,3.044,40.9818,48.9951,78.91,11.7,62.6,1003.3,0,688.4,228.1,47,1,0 +2013-01-04 14:50:12-06:00,n05667,553.4,27.5,3.0785,119.5135,2.9044,41.1496,49.083,79.09,11.7,62.6,1003.3,0,662.7,216.7,48,1,0 +2013-01-04 14:55:12-06:00,n05667,415,24.9,2.3239,90.7725,2.2027,41.21,48.8377,79.98,11.4,64.3,1003.2,0,477.6,165.5,48.4,1,0 +2013-01-04 15:00:12-06:00,n05667,288.2,21.6,1.5997,62.3339,1.5125,41.2114,48.5424,80.27,11.2,65.9,1003.1,0,307.3,120.3,48.1,1,0 +2013-01-04 15:05:12-06:00,n05667,336.5,20,1.8606,73.4307,1.7601,41.7195,49.1567,80.28,11,66.9,1003.1,0,389.2,137.4,49.3,1,0 +2013-01-04 15:10:12-06:00,n05667,171,20.1,0.9487,36.4434,0.8967,40.6413,47.733,80.48,11.1,67.4,1003.1,0,144.7,80.3,49.5,1,0 +2013-01-04 15:15:12-06:00,n05667,503,21.9,2.8058,111.3261,2.6563,41.9105,49.7177,79.8,11.1,67.7,1003.1,0,649.3,186.6,52.5,1,0 +2013-01-04 15:20:12-06:00,n05667,496.5,22.6,2.7727,109.5876,2.6237,41.7676,49.5601,79.75,11.1,67.6,1003.1,0,662.7,183.4,53.4,1,0 +2013-01-04 15:25:12-06:00,n05667,469,23.1,2.6218,103.3246,2.4821,41.6278,49.3735,79.82,11.1,67.6,1003,0,631.7,175.2,57.8,1,0 +2013-01-04 15:30:12-06:00,n05667,471,23,2.6372,103.9003,2.4936,41.6667,49.4246,79.71,11,68,1002.8,0,641.6,175.9,63.7,1,0 +2013-01-04 15:35:12-06:00,n05667,421.6,23,2.3572,92.6792,2.232,41.5239,49.1699,79.96,11.1,67.8,1002.7,0,572,158,64.3,1,0 +2013-01-04 15:40:12-06:00,n05667,301.2,21.8,1.6866,65.8968,1.5958,41.295,48.675,80.27,11.1,67.7,1002.6,0,379.6,119.7,62,1,0 +2013-01-04 15:45:12-06:00,n05667,293.7,21.4,1.6568,64.849,1.5664,41.4012,48.7578,80.28,11.3,67.4,1002.8,0,380.1,111.1,57.6,1,0 +2013-01-04 15:50:12-06:00,n05667,251.8,20.4,1.407,54.9461,1.3316,41.2638,48.546,80.44,11.3,67.6,1002.8,0,326.7,97.3,54.8,1,0 +2013-01-04 15:55:12-06:00,n05667,179.4,18.7,1.0022,38.7803,0.9458,41.0035,48.1118,80.43,11.2,68,1002.9,0,209.3,74.8,50.2,1,0 +2013-01-04 16:00:12-06:00,n05667,154.6,16.7,0.8596,33.3015,0.8115,41.0374,48.089,80.56,10.9,69.1,1002.9,0,180.7,63.1,43.8,1,0 +2013-01-04 16:05:12-06:00,n05667,72.7,14.9,0.394,14.6387,0.3682,39.7591,46.6694,79.61,10.7,69.6,1002.8,0,47.7,39.1,35,1,0 +2013-01-04 16:10:12-06:00,n05667,118.9,14.2,0.6604,25.4646,0.6222,40.9284,47.8698,80.55,10.6,69.8,1002.9,0,161.9,41.4,28.1,1,0 +2013-01-04 16:15:12-06:00,n05667,83.2,13.4,0.3758,14.6905,0.3581,41.0252,46.9544,83.24,10.5,70,1002.9,0,101.3,30.7,23.7,1,0 +2013-01-04 16:20:12-06:00,n05667,66.4,12.7,0.2607,9.0249,0.2223,40.5949,46.1141,75.07,10.4,70.6,1002.9,0,96.4,27.8,22.3,1,0 +2013-01-04 16:25:12-06:00,n05667,34.9,11.9,0.1716,6.1808,0.1603,38.5581,45.3327,79.47,10.3,71.1,1002.9,0,20.5,22.7,21.4,1,0 +2013-01-04 16:30:13-06:00,n05667,26.5,11.4,0.1356,4.7142,0.1247,37.8142,44.8104,77.61,10.3,71.5,1002.9,0,6.7,18.6,18.2,1,0 +2013-02-24 07:20:12-06:00,n05667,28.4,1.2,0.1574,5.7674,0.1455,39.629,46.6125,78.61,1.3,86.7,1011.5,0,6.5,25.2,24.8,1,0 +2013-02-24 07:25:12-06:00,n05667,50.4,1.8,0.2383,9.0528,0.2231,40.5796,47.4844,79.99,1.4,86.4,1011.5,0,62.2,33.9,27.9,1,0 +2013-02-24 07:30:12-06:00,n05667,58.2,2.1,0.289,11.0778,0.2705,40.9487,47.8555,80.1,1.7,85.5,1011.6,0,73.6,38.7,30.7,1,0 +2013-02-24 07:35:12-06:00,n05667,41.6,2.3,0.2255,8.4558,0.2097,40.329,47.2688,79.33,1.7,85.4,1011.6,0,13.5,35.6,34.4,1,0 +2013-02-24 07:40:12-06:00,n05667,45,2.5,0.2485,9.3568,0.2308,40.5488,47.4021,79.43,1.7,85.6,1011.7,0,4,40.8,40.9,1,0 +2013-02-24 07:45:12-06:00,n05667,49,2.6,0.2721,10.3,0.253,40.7094,47.622,79.49,1.2,86.4,1011.7,0,1.5,45.6,45.9,1,0 +2013-02-24 07:50:12-06:00,n05667,54.3,2.5,0.2994,11.4379,0.2795,40.9274,47.8321,79.86,0.7,88,1011.7,0,0.6,51.7,52.3,1,0 +2013-02-24 07:55:12-06:00,n05667,67.6,2.7,0.3761,14.5989,0.3527,41.3951,48.2881,80.38,0.7,89.4,1011.7,0,1.1,65.9,66.7,1,0 +2013-02-24 08:00:12-06:00,n05667,81.9,3.1,0.4566,17.8944,0.4287,41.7404,48.6257,80.59,0.9,89,1011.6,0,4.7,75.9,76.3,1,0 +2013-02-24 08:05:12-06:00,n05667,72.5,3.1,0.389,15.0822,0.3646,41.3626,48.266,80.33,0.6,89.7,1011.6,0,16.4,64.1,61.9,1,0 +2013-02-24 08:10:12-06:00,n05667,119.2,3.3,0.6077,24.3751,0.5769,42.2498,49.1695,81.57,0.9,89.8,1011.7,0,110.8,77.8,57.1,1,0 +2013-02-24 08:15:12-06:00,n05667,90.8,4.1,0.4682,18.3626,0.4411,41.6294,48.5275,80.81,1.3,89.2,1011.7,0,69.2,66.9,53.8,1,0 +2013-02-24 08:20:12-06:00,n05667,62.5,4.1,0.3379,12.9358,0.3158,40.9587,47.8328,80.05,1.4,88.1,1011.7,0,2.4,63.3,63.6,1,0 +2013-02-24 08:25:12-06:00,n05667,89.1,4.4,0.4879,19.1585,0.4594,41.701,48.558,80.87,1.6,87.9,1011.5,0,6.9,85.9,85.5,1,0 +2013-02-24 08:30:12-06:00,n05667,134.1,5,0.7351,29.5685,0.6975,42.3933,49.3305,81.54,2.1,86.3,1011.5,0,2.7,128.8,129.8,1,0 +2013-02-24 08:35:12-06:00,n05667,157.9,5.3,0.843,34.0492,0.7995,42.5856,49.5649,81.49,2.5,85,1011.4,0,7.6,138.7,138.6,1,0 +2013-02-24 08:40:12-06:00,n05667,206.7,5.8,1.095,44.7404,1.0422,42.9278,49.9546,81.79,2.8,83.4,1011.3,0,30,158,152.5,1,0 +2013-02-24 08:45:12-06:00,n05667,242.3,6.8,1.2691,51.9074,1.2074,42.9902,50.1392,81.57,3.1,81.3,1011.3,0,54,172.4,160.2,1,0 +2013-02-24 08:50:12-06:00,n05667,272.9,7.9,1.4306,58.6219,1.3635,42.9922,50.2106,81.61,3.3,79.7,1011.3,0,78.8,183.8,163,1,0 +2013-02-24 08:55:12-06:00,n05667,347,7.7,1.8238,75.2562,1.7388,43.2812,50.6424,81.48,3.4,79.4,1011.3,0,191.2,209.5,151.7,1,0 +2013-02-24 09:05:12-06:00,n05667,408.1,9.7,2.1829,90.4363,2.0892,43.2881,50.7956,81.56,3.8,77.4,1011.3,0,307.7,245.1,139.1,1,0 +2013-02-24 09:10:12-06:00,n05667,577.9,12.8,3.0999,127.3876,2.9514,43.1624,51.0506,80.5,4,77.1,1011.3,0,603.8,350,131.6,1,0 +2013-02-24 09:15:12-06:00,n05667,569.2,14.2,3.063,124.9181,2.9136,42.8735,50.7579,80.35,4.3,76.7,1011.2,0,598,349.1,124.1,1,0 +2013-02-24 09:20:12-06:00,n05667,605,14.7,3.2535,131.9379,3.0861,42.7519,50.7169,79.96,4.5,74.4,1011.2,0,634.7,373.6,127.1,1,0 +2013-02-24 09:25:12-06:00,n05667,618.6,15.4,3.3042,133.7893,3.1363,42.6585,50.6402,79.96,4.6,74.3,1011.2,0,622.1,383.6,134.8,1,0 +2013-02-24 09:30:12-06:00,n05667,632.9,16.2,3.3681,135.9991,3.1955,42.5601,50.5576,79.87,4.7,73.2,1011.2,0,614.5,391.7,139.6,1,0 +2013-02-24 09:40:12-06:00,n05667,654.7,18.1,3.4964,140.5516,3.3151,42.3969,50.458,79.67,5.1,72.7,1011.1,0,602,410.6,152,1,0 +2013-02-24 09:45:12-06:00,n05667,692.9,19.2,3.7097,148.5822,3.5153,42.2668,50.4112,79.45,5,73,1011.1,0,621.9,437.9,165.4,1,0 +2013-02-24 09:50:12-06:00,n05667,654.8,19,3.4994,140.0328,3.3144,42.2494,50.311,79.54,5.4,72.2,1011.1,0,550.8,425,179,1,0 +2013-02-24 09:55:12-06:00,n05667,588.6,19.9,3.159,126.1818,2.9947,42.1346,50.073,79.77,5.4,72,1011,0,427.7,383.3,189.4,1,0 +2013-02-24 10:00:12-06:00,n05667,512.7,17.1,2.7516,110.3001,2.6082,42.289,50.0535,80.09,5.5,70.3,1011,0,324.6,341.1,190.3,1,0 +2013-02-24 10:05:12-06:00,n05667,671.3,18.9,3.5966,144.1028,3.4059,42.3096,50.4112,79.48,5.5,70.9,1011,0,520.1,430.3,184.3,1,0 +2013-02-24 10:10:12-06:00,n05667,746.8,19.7,3.9889,159.285,3.7757,42.1873,50.4346,79.18,5.6,70.4,1010.9,0,597.2,474.8,187.3,1,0 +2013-02-24 10:15:12-06:00,n05667,736.1,19.7,3.9456,157.4007,3.7373,42.1163,50.3683,79.2,5.9,69.3,1010.9,0,553.9,460.4,189.4,1,0 +2013-02-24 10:20:12-06:00,n05667,521.8,19.8,2.771,109.7033,2.6206,41.8611,49.651,79.74,6.1,68.9,1010.9,0,332.8,338,173,1,0 +2013-02-24 10:25:12-06:00,n05667,786.2,19.3,4.2174,168.6309,3.9909,42.2541,50.5959,79.03,6,68.3,1010.9,0,627.4,481.6,163.1,1,0 +2013-02-24 10:30:12-06:00,n05667,875.7,21.4,4.6926,185.8871,4.4301,41.9599,50.4815,78.47,6.2,68.4,1010.8,0,733.4,532.9,155.7,1,0 +2013-02-24 10:35:12-06:00,n05667,835.3,23.3,4.4801,176.2238,4.2283,41.6768,50.138,78.45,6.3,65.4,1010.8,0,677.3,512.2,159,1,0 +2013-02-24 10:40:12-06:00,n05667,814.8,24.6,4.3662,171.2153,4.1228,41.5288,49.9539,78.5,6.6,65.7,1010.8,0,643,500.2,160.8,1,0 +2013-02-24 10:45:12-06:00,n05667,787.7,25,4.2243,165.2234,3.9855,41.4559,49.8225,78.5,6.7,66.5,1010.7,0,617.4,483.1,153,1,0 +2013-02-24 10:50:12-06:00,n05667,828.3,25.3,4.4459,173.7052,4.192,41.4374,49.8973,78.3,6.7,63.8,1010.7,0,669.7,504,141.1,1,0 +2013-02-24 10:55:12-06:00,n05667,945.5,25.2,5.0891,198.0632,4.7919,41.3332,50.0391,77.78,6.8,64.3,1010.6,0,801.7,572.9,133.1,1,0 +2013-02-24 11:00:12-06:00,n05667,1000.3,25.6,5.3757,208.4461,5.0637,41.1647,50.0008,77.55,7.2,64.9,1010.6,0,852.5,615.5,142.6,1,0 +2013-02-24 11:05:12-06:00,n05667,880.1,26.9,4.7232,182.832,4.4503,41.0832,49.6684,77.94,7.3,65.3,1010.6,0,694.7,555.9,167.2,1,0 +2013-02-24 11:10:12-06:00,n05667,806.4,26.8,4.3181,167.2042,4.0663,41.1199,49.5402,78.16,7.5,64.7,1010.5,0,603.6,519.3,178.4,1,0 +2013-02-24 11:15:12-06:00,n05667,843.2,28.4,4.5425,175.6894,4.2811,41.0382,49.5604,78.04,7.1,62.9,1010.3,0,625.1,523.5,167.7,1,0 +2013-02-24 11:20:12-06:00,n05667,892.5,28,4.7972,185.3663,4.5162,41.0444,49.6534,77.82,7.4,62.9,1010.3,0,693,548.8,150.4,1,0 +2013-02-24 11:25:12-06:00,n05667,997,29.3,5.3763,206.327,5.0539,40.8257,49.6593,77.28,7.2,64.3,1010.2,0,804.1,608.2,142.5,1,0 +2013-02-24 11:30:12-06:00,n05667,998.4,29.4,5.3855,205.8825,5.0587,40.6983,49.5461,77.16,7.4,63.1,1010.2,0,790.1,612.3,152.1,1,0 +2013-02-24 11:35:12-06:00,n05667,861.6,30,4.6363,177.7069,4.3609,40.7499,49.3009,77.75,8.2,61.1,1010.1,0,632.7,537.8,167.3,1,0 +2013-02-24 11:40:12-06:00,n05667,899.3,30.8,4.8478,185.2004,4.5579,40.6328,49.2748,77.53,8.2,61.6,1010,0,653.6,561.3,177,1,0 +2013-02-24 11:45:12-06:00,n05667,868,29.2,4.6851,179.8368,4.408,40.7978,49.3718,77.75,8.5,56.5,1009.9,0,615.8,540.7,176.2,1,0 +2013-02-24 11:50:12-06:00,n05667,882.7,30.6,4.7541,181.9635,4.4723,40.6868,49.2976,77.64,7.4,60,1009.9,0,643.6,552.8,169.6,1,0 +2013-02-24 11:55:12-06:00,n05667,928.3,30.8,5.0052,190.2261,4.7007,40.4677,49.1669,77.3,8,62.3,1009.8,0,690.9,576.5,163.6,1,0 +2013-02-24 12:00:12-06:00,n05667,960.6,32.4,5.1751,196.5363,4.86,40.4395,49.2183,77.16,8.3,57.6,1009.7,0,736.8,598.2,156.4,1,0 +2013-02-24 12:05:12-06:00,n05667,927.9,32.3,4.9927,188.8696,4.6872,40.2944,48.9951,77.21,8.1,58.6,1009.6,0,706.7,582.9,157.9,1,0 +2013-02-24 12:10:12-06:00,n05667,880.6,33.1,4.7465,179.6942,4.4559,40.3274,48.9346,77.37,7.9,58.6,1009.5,0,649,552.7,161.2,1,0 +2013-02-24 12:15:12-06:00,n05667,875.3,32.4,4.7329,179.629,4.4486,40.3787,48.9893,77.47,7.4,60.2,1009.5,0,627.8,548.3,168.3,1,0 +2013-02-24 12:20:12-06:00,n05667,914.7,33.4,4.9371,186.5388,4.632,40.2715,48.9561,77.18,8,58.9,1009.5,0,669,574.6,170.4,1,0 +2013-02-24 12:25:12-06:00,n05667,831.8,33.2,4.4868,170.1365,4.2183,40.3334,48.8455,77.63,8.4,59,1009.4,0,590.3,525.2,168.2,1,0 +2013-02-24 12:30:12-06:00,n05667,872.5,32.3,4.7179,179.2694,4.4359,40.4136,49.0153,77.52,8,60.4,1009.3,0,645.6,542.9,152.2,1,0 +2013-02-24 12:35:12-06:00,n05667,966.5,32.1,5.2288,197.8695,4.9067,40.3264,49.1226,77.04,8.4,57.7,1009.2,0,767,598.2,133.5,1,0 +2013-02-24 12:40:12-06:00,n05667,1016.7,35.4,5.4901,206.0161,5.1462,40.0326,48.9412,76.67,9,57.8,1009.1,0,854.5,628.1,112.5,1,0 +2013-02-24 12:45:12-06:00,n05667,1035.3,34,5.5831,209.6938,5.2342,40.0624,49.0094,76.64,10,54.9,1009,0,883.2,638.1,106.6,1,0 +2013-02-24 12:50:12-06:00,n05667,996.2,36.2,5.3775,201.5735,5.0432,39.9691,48.8338,76.76,9.9,51.9,1008.9,0,843.1,614.5,108.3,1,0 +2013-02-24 13:00:12-06:00,n05667,1002,36,5.4113,201.0928,5.0632,39.7169,48.5977,76.47,8.7,55.3,1008.7,0,861.4,621.2,106.8,1,0 +2013-02-24 13:05:12-06:00,n05667,966.2,35.2,5.2333,194.9744,4.9047,39.7524,48.5749,76.7,9.3,54.6,1008.6,0,819.3,597.2,110.4,1,0 +2013-02-24 13:10:12-06:00,n05667,970.9,32.5,5.2352,196.767,4.9086,40.0863,48.8924,76.87,10.3,53.2,1008.5,0,830.4,603.4,112.2,1,0 +2013-02-24 13:15:12-06:00,n05667,970.1,35.3,5.2396,196.5185,4.9134,39.9963,48.8124,76.84,10.6,52.1,1008.5,0,832,604.6,115.7,1,0 +2013-02-24 13:20:12-06:00,n05667,959.2,36.6,5.1873,194.5016,4.8624,40.0013,48.7922,76.85,10.4,50.2,1008.4,0,816.7,595.9,119.1,1,0 +2013-02-24 13:25:12-06:00,n05667,959.5,34.4,5.193,194.7729,4.8703,39.9916,48.7844,76.88,10.4,50.3,1008.4,0,817.6,597,123,1,0 +2013-02-24 13:30:12-06:00,n05667,950.3,37.8,5.1462,191.8533,4.8238,39.7721,48.5528,76.78,10.5,48.5,1008.3,0,813.8,595.5,127,1,0 +2013-02-24 13:35:12-06:00,n05667,921.4,35.7,4.989,186.1656,4.6778,39.7973,48.5171,76.91,9.4,51.7,1008.2,0,772.6,576.8,135.1,1,0 +2013-02-24 13:40:12-06:00,n05667,907.7,36.4,4.9098,183.8515,4.6055,39.9197,48.599,77.05,9.1,53.9,1008.2,0,769.5,568.1,131.7,1,0 +2013-02-24 13:45:12-06:00,n05667,910.3,35.3,4.9323,184.7334,4.6257,39.9366,48.6218,77.03,9.4,51.9,1008.1,0,785.7,567.7,126.7,1,0 +2013-02-24 13:50:12-06:00,n05667,869,34.8,4.7134,176.967,4.4208,40.0301,48.6309,77.2,9.4,52.1,1008,0,747.8,540.4,124.9,1,0 +2013-02-24 13:55:12-06:00,n05667,894.3,37.2,4.8433,181.1742,4.5428,39.8819,48.5411,77.06,9.8,52.1,1007.8,0,783.6,558.4,127.3,1,0 +2013-02-24 14:00:12-06:00,n05667,892.1,36.3,4.8507,181.6049,4.5493,39.9197,48.5756,77.07,10.1,50.3,1007.7,0,784.9,555,127.6,1,0 +2013-02-24 14:05:12-06:00,n05667,880.2,35.1,4.7699,179.2759,4.4768,40.0455,48.668,77.23,9.9,49.9,1007.6,0,784.4,550.1,128.4,1,0 +2013-02-24 14:10:12-06:00,n05667,880.7,31.8,4.7665,180.667,4.4723,40.3973,49.014,77.33,9.7,50,1007.5,0,789.3,549.4,129.9,1,0 +2013-02-24 14:15:12-06:00,n05667,860.3,32.7,4.6784,177.212,4.3926,40.3432,48.921,77.43,9.6,50.3,1007.4,0,754.9,533.7,137.9,1,0 +2013-02-24 14:25:12-06:00,n05667,852.6,35.9,4.6615,174.5552,4.3712,39.9334,48.5223,77.17,10.1,49.9,1007.2,0,792.3,515.7,112.2,1,0 +2013-02-24 14:30:12-06:00,n05667,836,35.6,4.5604,171.0183,4.2755,39.9996,48.5476,77.24,10.3,49.2,1007.1,0,809.7,509.5,103.4,1,0 +2013-02-24 14:35:12-06:00,n05667,833.9,36.4,4.5372,170.1769,4.2581,39.9659,48.4923,77.35,10.5,50.3,1007,0,834.2,505.5,94.6,1,0 +2013-02-24 14:40:12-06:00,n05667,817.5,33.9,4.4407,167.6559,4.1713,40.1928,48.6842,77.55,11.3,48.9,1006.9,0,834.4,492.3,88.8,1,0 +2013-02-24 14:45:12-06:00,n05667,801.4,34.9,4.3595,164.3032,4.0928,40.1449,48.5925,77.56,11.4,47.6,1006.8,0,825.5,480.1,87.7,1,0 +2013-02-24 14:50:12-06:00,n05667,783.5,32.5,4.2498,161.1426,3.9936,40.3497,48.7616,77.76,11.3,48.5,1006.8,0,823.7,469.2,85.9,1,0 +2013-02-24 14:55:12-06:00,n05667,763.9,32.5,4.1485,158.0008,3.8995,40.5185,48.8657,77.94,11.7,45.4,1006.8,0,818.9,453.1,79.8,1,0 +2013-02-24 15:00:12-06:00,n05667,712.9,33,3.8791,147.3678,3.6496,40.3796,48.6439,78.1,12,46.2,1006.7,0,750.4,418.6,83.9,1,0 +2013-02-24 15:05:12-06:00,n05667,721,28.8,3.91,149.9791,3.6811,40.7433,49.0029,78.28,12.4,45.2,1006.6,0,782.9,427.1,85.3,1,0 +2013-02-24 15:10:12-06:00,n05667,710.2,27.5,3.8495,148.5448,3.6264,40.9623,49.1831,78.46,12,43.2,1006.5,0,781.2,420.7,87.9,1,0 +2013-02-24 15:15:12-06:00,n05667,690.9,26,3.7361,144.9067,3.5208,41.1577,49.3392,78.61,11.6,45.6,1006.5,0,770,409.4,89.1,1,0 +2013-02-24 15:20:12-06:00,n05667,649.8,24.9,3.5036,136.6021,3.3045,41.3378,49.403,78.92,11.4,45.9,1006.4,0,724.8,387.3,93.9,1,0 +2013-02-24 15:25:12-06:00,n05667,636.5,26.3,3.438,134.0174,3.2441,41.3109,49.3672,78.96,11.4,45,1006.3,0,720.2,377.2,93.4,1,0 +2013-02-24 15:30:12-06:00,n05667,551.8,25.2,2.9869,116.3385,2.8213,41.2355,49.1129,79.31,11.6,46.5,1006.2,0,601.7,325.7,95.2,1,0 +2013-02-24 15:35:12-06:00,n05667,573.6,23.2,3.0801,120.8164,2.9075,41.5532,49.4648,79.3,11.5,45.6,1006.2,0,655.7,340.8,96.9,1,0 +2013-02-24 15:40:12-06:00,n05667,554,23.7,2.9879,117.5156,2.8243,41.6094,49.4583,79.52,11.5,46.5,1006.1,0,641,325.8,95.2,1,0 +2013-02-24 15:45:12-06:00,n05667,480.2,23.6,2.6073,102.1275,2.4645,41.4396,49.148,79.7,11.8,44.4,1005.9,0,549.7,282.7,91.9,1,0 +2013-02-24 15:50:12-06:00,n05667,508.9,21.8,2.7335,107.6113,2.5847,41.6334,49.3906,79.71,11.6,44.4,1005.8,0,621,297.2,89,1,0 +2013-02-24 15:55:12-06:00,n05667,474.2,23,2.5571,100.6144,2.4184,41.6038,49.2962,79.82,11.7,46.8,1005.9,0,597.2,279.5,86.6,1,0 +2013-02-24 16:00:12-06:00,n05667,467.6,22.3,2.5227,99.2495,2.3842,41.6283,49.3114,79.79,11.7,46.2,1005.9,0,604.2,273.8,86.1,1,0 +2013-02-24 16:05:12-06:00,n05667,457.1,21.1,2.4605,97.1979,2.329,41.7336,49.3813,80,11.7,44.6,1005.7,0,597.4,266.3,88.2,1,0 +2013-02-24 16:10:12-06:00,n05667,420.2,20.1,2.2513,89.1289,2.1312,41.8216,49.3913,80.16,11.5,45.7,1005.7,0,545.6,246.6,91,1,0 +2013-02-24 16:15:12-06:00,n05667,296.8,19.7,1.5889,62.1739,1.5018,41.3982,48.7141,80.33,11.6,46.3,1005.6,0,324.7,183.8,95.7,1,0 +2013-02-24 16:20:12-06:00,n05667,313.1,18.7,1.6709,65.9477,1.581,41.7117,49.0517,80.46,11.3,47.3,1005.5,0,363.3,192.2,98.5,1,0 +2013-02-24 16:25:12-06:00,n05667,311.2,18.2,1.6573,65.4099,1.5671,41.7396,49.0599,80.45,11.3,47.6,1005.4,0,379.9,190.6,97.8,1,0 +2013-02-24 16:30:12-06:00,n05667,262.3,18,1.3918,54.7209,1.3159,41.5842,48.7976,80.57,11.3,49,1005.4,0,305.4,164.2,94,1,0 +2013-02-24 16:35:12-06:00,n05667,212.9,17.2,1.1294,44.2103,1.0689,41.3614,48.4866,80.74,11.1,51,1005.3,0,213,135.7,90,1,0 +2013-02-24 16:40:12-06:00,n05667,167.7,16.8,0.8867,34.2717,0.8358,41.0058,48.0198,80.49,11.3,50.9,1005.3,0,140.1,116.2,88.2,1,0 +2013-02-24 16:45:12-06:00,n05667,131.7,15.7,0.695,26.5994,0.6535,40.7059,47.6988,80.23,11.1,50.6,1005.2,0,79.3,99.1,84.6,1,0 +2013-02-24 16:50:12-06:00,n05667,101.5,14.3,0.536,20.3192,0.5025,40.437,47.3387,80.08,10.9,52.1,1005.2,0,28.4,83.1,78.6,1,0 +2013-02-24 16:55:12-06:00,n05667,93.2,13.7,0.4929,18.651,0.4624,40.3393,47.2762,80.04,10.9,52.7,1005.2,0,26.9,76.9,73,1,0 +2013-02-24 17:00:12-06:00,n05667,79.3,12.9,0.4226,15.8529,0.3947,40.1624,47.036,79.74,10.7,53.1,1005.2,0,13.3,68.6,67.1,1,0 +2013-02-24 17:05:12-06:00,n05667,66.6,12.4,0.3567,13.2472,0.3322,39.8793,46.7534,79.43,10.4,54.8,1005.1,0,3.6,60.3,60.1,1,0 +2013-02-24 17:10:12-06:00,n05667,54.9,12,0.2944,10.8197,0.2738,39.511,46.4112,79.19,10.4,55.5,1005.1,0,1.4,51.3,51.4,1,0 +2013-02-24 17:15:12-06:00,n05667,44.8,11.7,0.2435,8.8185,0.2253,39.143,46.0498,78.64,10.4,56.5,1005,0,0.9,42.8,43,1,0 +2013-02-24 17:20:12-06:00,n05667,37.7,11.2,0.206,7.3808,0.1901,38.8164,45.7282,78.34,10.2,56.7,1005,0,1,36.2,36.3,1,0 +2013-02-24 17:25:12-06:00,n05667,30.8,11,0.1699,5.9989,0.1562,38.4103,45.3654,77.82,10.2,57.6,1004.9,0,0.1,30.2,30.3,1,0 +2013-02-24 17:30:13-06:00,n05667,23.7,10.7,0.1327,4.587,0.1214,37.7828,44.8243,77.13,10.1,57.4,1005,0,0.4,23.3,23.4,1,0 +2013-03-07 06:50:12-06:00,n05667,27.3,2,0.1133,4.0957,0.1055,38.8057,45.8679,78.78,2.7,83.7,998.4,0,130.2,13.3,9,1,0 +2013-03-07 06:55:12-06:00,n05667,44.5,2.1,0.1839,6.8673,0.1715,40.033,46.8616,79.68,2.9,82.9,998.4,0,213.6,21.5,11.6,1,0 +2013-03-07 07:00:12-06:00,n05667,37,2.4,0.1665,6.1471,0.1549,39.6887,46.5702,79.29,2.9,82.8,998.4,0,130.5,21.7,14.3,1,0 +2013-03-07 07:05:12-06:00,n05667,20.4,2.3,0.107,3.767,0.0979,38.4887,45.618,77.16,2.9,82.3,998.4,0,5.9,17.6,17.4,1,0 +2013-03-07 07:10:12-06:00,n05667,26.9,2.3,0.1377,4.9765,0.127,39.1787,46.2131,78.2,2.8,83.1,998.4,0,15.1,21.7,20.6,1,0 +2013-03-07 07:15:12-06:00,n05667,104.5,2.7,0.4773,19.0172,0.453,41.9843,48.8332,81.6,2.8,82.9,998.4,0,331.6,58.8,24.2,1,0 +2013-03-07 07:20:12-06:00,n05667,123.3,3.3,0.5765,23.114,0.5472,42.2428,49.1168,81.63,3,82.7,998.3,0,359.3,68.5,25.8,1,0 +2013-03-07 07:25:12-06:00,n05667,175.9,4.1,0.8307,33.8647,0.7917,42.7747,49.6944,82.03,3.2,81.2,998.3,0,518,96.5,27.5,1,0 +2013-03-07 07:30:12-06:00,n05667,197.7,4.6,0.9411,38.6001,0.8994,42.918,49.8915,82.21,3.2,81.7,998.4,0,548.9,110.5,29.3,1,0 +2013-03-07 07:35:12-06:00,n05667,220,5.2,1.0575,43.3659,1.0087,42.9925,50.0288,81.97,3.4,81.6,998.3,0,576.1,124.8,31.2,1,0 +2013-03-07 07:40:12-06:00,n05667,243.3,5.9,1.1777,48.351,1.1225,43.0757,50.1453,81.87,3.7,80.4,998.4,0,603.1,139.7,32.9,1,0 +2013-03-07 07:45:12-06:00,n05667,267.2,6,1.3043,53.6302,1.2422,43.175,50.2948,81.75,3.6,80.5,998.4,0,629.2,154.6,34.5,1,0 +2013-03-07 07:50:12-06:00,n05667,291.1,7,1.437,59.2296,1.3716,43.1824,50.3696,81.83,3.7,80.3,998.3,0,654.1,170,35.9,1,0 +2013-03-07 07:55:12-06:00,n05667,315,7.2,1.5695,64.7388,1.4974,43.2344,50.458,81.75,3.8,80.3,998.3,0,675.7,185.5,37.3,1,0 +2013-03-07 08:00:12-06:00,n05667,338.6,7.8,1.6969,70.0869,1.6201,43.26,50.5589,81.69,3.8,80.1,998.4,0,695.5,201,38.7,1,0 +2013-03-07 08:05:12-06:00,n05667,362.2,8.5,1.8294,75.4694,1.7457,43.2316,50.6037,81.52,4.1,78.9,998.4,0,713.9,216.5,39.9,1,0 +2013-03-07 08:10:12-06:00,n05667,385.8,8.9,1.9637,80.8361,1.8699,43.2296,50.648,81.28,4.2,78.3,998.4,0,730.9,232.1,41,1,0 +2013-03-07 08:15:12-06:00,n05667,409.3,11,2.0863,85.8565,1.9913,43.1167,50.5745,81.37,4.5,77.2,998.5,0,745.2,247.5,42.1,1,0 +2013-03-07 08:20:12-06:00,n05667,432.3,12,2.2148,90.7992,2.1145,42.9408,50.4665,81.24,4.8,75.6,998.5,0,759.7,263.1,43.2,1,0 +2013-03-07 08:25:12-06:00,n05667,455.2,14.1,2.3451,95.4693,2.2339,42.7371,50.339,80.87,4.9,75.3,998.5,0,774.2,278.2,43.7,1,0 +2013-03-07 08:35:12-06:00,n05667,500.8,15.9,2.6042,105.3028,2.477,42.5118,50.1985,80.55,5.4,74.4,998.5,0,799.9,309.2,45.6,1,0 +2013-03-07 08:40:12-06:00,n05667,522,16.9,2.7246,109.7547,2.5897,42.3813,50.1322,80.35,5.3,72.4,998.5,0,811.1,324.6,46.2,1,0 +2013-03-07 08:45:12-06:00,n05667,543.9,18.5,2.851,114.3046,2.7079,42.212,50.0294,80.14,5.3,73.9,998.5,0,821.1,339.3,46.9,1,0 +2013-03-07 08:50:12-06:00,n05667,565.4,18.5,2.9664,119.0526,2.8188,42.2354,50.0866,80.13,4.8,74.3,998.4,0,830.3,354.7,48.1,1,0 +2013-03-07 08:55:12-06:00,n05667,586.1,18.2,3.0823,123.7257,2.9298,42.2295,50.1322,80.07,4.7,76,998.4,0,839.1,369.3,48.7,1,0 +2013-03-07 09:00:12-06:00,n05667,607.3,19.4,3.2062,127.9839,3.0387,42.1182,50.0717,79.72,4.8,76.6,998.3,0,847.2,383.4,49.2,1,0 +2013-03-07 09:05:12-06:00,n05667,627.4,19.3,3.3157,132.2746,3.1439,42.0732,50.0639,79.68,5.1,75.8,998.4,0,855.1,397.8,50.1,1,0 +2013-03-07 09:10:12-06:00,n05667,648,20.3,3.4275,136.6266,3.2506,42.0314,50.0775,79.6,5,77.4,998.3,0,863.5,411.8,50.5,1,0 +2013-03-07 09:15:12-06:00,n05667,667.4,20.1,3.5328,140.5851,3.3478,41.9932,50.0723,79.47,5.3,75.7,998.3,0,869.7,425.5,51.2,1,0 +2013-03-07 09:20:12-06:00,n05667,687,20.1,3.6432,144.8482,3.4513,41.9686,50.099,79.36,5.2,76.2,998.3,0,875.4,438.4,51.6,1,0 +2013-03-07 09:25:12-06:00,n05667,707,20.5,3.7443,149.0668,3.5479,42.0154,50.1725,79.35,5.1,75.7,998.3,0,882.7,452.6,52.3,1,0 +2013-03-07 09:30:12-06:00,n05667,725.9,19.9,3.8472,152.9262,3.6439,41.968,50.1679,79.23,5.3,75.2,998.3,0,889.2,465.8,52.8,1,0 +2013-03-07 09:35:12-06:00,n05667,744.3,20.6,3.953,156.7864,3.7412,41.9083,50.1497,79.09,5.3,74.3,998.3,0,895.3,478.5,53.2,1,0 +2013-03-07 09:40:12-06:00,n05667,762.9,21.2,4.0495,160.2999,3.829,41.8644,50.153,78.93,5.4,74.1,998.4,0,901,491.4,53.6,1,0 +2013-03-07 09:45:12-06:00,n05667,779,22.7,4.141,163.5423,3.919,41.7308,50.0704,78.88,5.7,73.9,998.4,0,905.3,502.9,54,1,0 +2013-03-07 09:50:12-06:00,n05667,797.1,23.5,4.2457,166.6601,4.0076,41.5857,49.9448,78.59,6.2,72.2,998.4,0,911.9,515.8,54.5,1,0 +2013-03-07 09:55:12-06:00,n05667,813.5,25.1,4.3249,169.1074,4.0888,41.3582,49.7711,78.56,6.3,72.8,998.4,0,915.4,526.9,55,1,0 +2013-03-07 10:00:12-06:00,n05667,828.1,27.4,4.4121,171.0488,4.1608,41.1095,49.5578,78.23,7,70.8,998.4,0,917.4,537.1,55.3,1,0 +2013-03-07 10:05:12-06:00,n05667,844.2,28.9,4.5056,173.5935,4.2428,40.9144,49.4153,77.97,7.8,70.5,998.3,0,922.4,548.1,55.5,1,0 +2013-03-07 10:10:12-06:00,n05667,859.1,29.5,4.5905,176.196,4.3212,40.7748,49.3087,77.84,7.9,66.3,998.2,0,926.5,558.9,55.8,1,0 +2013-03-07 10:15:12-06:00,n05667,873.6,31.2,4.6734,178.3652,4.3984,40.5518,49.1343,77.68,8,66.9,998.2,0,929.8,569.3,56,1,0 +2013-03-07 10:20:12-06:00,n05667,887.3,29.4,4.7457,181.076,4.4626,40.5764,49.1825,77.58,7.7,66.2,998.2,0,931.4,578.8,56.8,1,0 +2013-03-07 10:25:12-06:00,n05667,900.5,29.3,4.812,184.3893,4.5288,40.7148,49.3386,77.66,7.5,67.4,998.2,0,932.9,588.5,57.5,1,0 +2013-03-07 10:35:12-06:00,n05667,926.6,31,4.9596,188.8208,4.6591,40.5276,49.2156,77.36,7.7,66.7,998.2,0,940.2,606.4,57.7,1,0 +2013-03-07 10:40:12-06:00,n05667,938.6,31.5,5.0181,190.761,4.7186,40.4278,49.1461,77.35,8.3,66.4,998.1,0,942.1,614.8,58.2,1,0 +2013-03-07 10:45:12-06:00,n05667,948.8,33.7,5.0815,192.078,4.7691,40.2753,49.014,77.12,8.9,63.2,998.1,0,943.1,622.2,58.8,1,0 +2013-03-07 10:50:12-06:00,n05667,959.9,34.9,5.139,193.4529,4.8246,40.0975,48.8709,77.03,9.2,64.9,998.1,0,946.8,630.4,59.2,1,0 +2013-03-07 10:55:12-06:00,n05667,968.8,36.6,5.1978,194.3683,4.8732,39.8853,48.6771,76.82,10,61.3,998.1,0,947.3,636.7,59,1,0 +2013-03-07 11:00:12-06:00,n05667,980.1,33.3,5.2493,197.123,4.922,40.0493,48.8517,76.87,9.1,61.6,998.1,0,950,645.1,59.7,1,0 +2013-03-07 11:05:12-06:00,n05667,989.3,34.9,5.3009,198.2466,4.9705,39.8843,48.7213,76.76,9.2,62.8,998,0,951.5,650.9,59.6,1,0 +2013-03-07 11:10:12-06:00,n05667,997.4,33.7,5.3418,200.9438,5.0102,40.107,48.9522,76.84,9.3,63.6,997.9,0,951.5,657.2,60.9,1,0 +2013-03-07 11:15:12-06:00,n05667,1005.5,31.7,5.3773,203.4785,5.0461,40.3236,49.174,76.95,9.1,63.6,997.9,0,951,663.2,62.4,1,0 +2013-03-07 11:20:12-06:00,n05667,1011.8,32.4,5.416,205.199,5.0827,40.3721,49.2371,76.95,9.4,62.9,998,0,950.5,667.1,62.6,1,0 +2013-03-07 11:25:12-06:00,n05667,1018.9,30.7,5.4442,207.2381,5.1108,40.5491,49.4075,77.04,9.1,63.6,998,0,951.4,672.3,63.4,1,0 +2013-03-07 11:30:12-06:00,n05667,1025.7,30.5,5.4806,208.9386,5.1478,40.5877,49.4589,77.08,9.1,62.5,998,0,953.8,677.3,63.1,1,0 +2013-03-07 11:35:12-06:00,n05667,1035.3,32.1,5.5363,210.0419,5.1959,40.4243,49.323,76.92,9.3,62.4,998,0,959.7,683.7,62.6,1,0 +2013-03-07 11:40:12-06:00,n05667,1041.4,32.4,5.5741,210.8954,5.2269,40.3478,49.2696,76.79,9.5,61.7,997.9,0,962.1,688.7,62.5,1,0 +2013-03-07 11:45:12-06:00,n05667,1045.8,32.5,5.5972,211.3704,5.2514,40.2505,49.1896,76.77,9.7,61.5,997.8,0,962.3,690.9,62.1,1,0 +2013-03-07 11:50:12-06:00,n05667,1054,31.9,5.6466,212.7798,5.2876,40.2412,49.1883,76.61,9.8,59.9,997.8,0,964.9,696,63.1,1,0 +2013-03-07 11:55:12-06:00,n05667,1057.6,32.3,5.6673,213.1012,5.304,40.1773,49.1317,76.53,9.9,59.6,997.8,0,964.5,697.5,62.9,1,0 +2013-03-07 12:00:12-06:00,n05667,1064.7,31.8,5.6931,215.2032,5.3422,40.2835,49.254,76.75,9.6,57.3,997.7,0,970.3,703.2,63.1,1,0 +2013-03-07 12:05:12-06:00,n05667,1067.6,31.7,5.714,215.4874,5.3526,40.2584,49.2306,76.6,9.6,58.1,997.7,0,970.2,704.9,62.8,1,0 +2013-03-07 12:10:12-06:00,n05667,1067.1,32.6,5.7136,215.1378,5.3539,40.1837,49.1552,76.6,10,57.4,997.6,0,969.4,705.3,62.7,1,0 +2013-03-07 12:15:12-06:00,n05667,1074.2,31.6,5.7451,217.7614,5.3873,40.4215,49.4004,76.73,10.1,56.4,997.5,0,975.1,710.2,63.4,1,0 +2013-03-07 12:20:12-06:00,n05667,1072.8,33.3,5.7388,217.3713,5.385,40.3661,49.3549,76.75,10.2,56.4,997.5,0,973.5,708.8,63,1,0 +2013-03-07 12:25:12-06:00,n05667,1074.4,31.3,5.7516,217.6334,5.3933,40.3526,49.3425,76.69,10.2,56.6,997.4,0,974.8,709.8,63.3,1,0 +2013-03-07 12:30:12-06:00,n05667,1075.5,33.2,5.7557,217.2588,5.3979,40.249,49.2404,76.66,10,55.1,997.4,0,976.4,710.4,63,1,0 +2013-03-07 12:35:12-06:00,n05667,1076.3,32.8,5.7555,217.9102,5.3958,40.3852,49.3731,76.68,9.9,55.2,997.2,0,977.4,710.7,63.6,1,0 +2013-03-07 12:40:12-06:00,n05667,1072.5,32.8,5.7404,217.1159,5.3832,40.332,49.3191,76.69,10.2,53.4,997.2,0,977.3,709.2,62.7,1,0 +2013-03-07 12:45:12-06:00,n05667,1070.9,33.2,5.7344,215.7827,5.3745,40.1495,49.1265,76.6,10.5,52.4,997.1,0,977.5,707.7,62.7,1,0 +2013-03-07 12:50:12-06:00,n05667,1068.6,32.6,5.7192,215.6719,5.3618,40.2237,49.1968,76.65,10.6,50.7,997.1,0,977.8,707,63.1,1,0 +2013-03-07 12:55:12-06:00,n05667,1064,33.3,5.6981,215.0339,5.342,40.2536,49.2235,76.67,10.5,52.7,997.1,0,975.1,703.5,63.3,1,0 +2013-03-07 13:00:12-06:00,n05667,1057.4,33.1,5.6657,213.8916,5.315,40.2428,49.1987,76.73,10.7,52.6,997.1,0,972,700,63.9,1,0 +2013-03-07 13:05:12-06:00,n05667,1053.2,33.2,5.6436,213.214,5.2935,40.2785,49.2274,76.75,10.9,51.7,997,0,970.4,696.7,64.3,1,0 +2013-03-07 13:10:12-06:00,n05667,1050.4,31.9,5.6268,212.8788,5.2839,40.2884,49.2274,76.85,11,52.1,996.9,0,971,693.8,64.2,1,0 +2013-03-07 13:15:12-06:00,n05667,1042.9,31.3,5.5942,211.9752,5.2478,40.3934,49.308,76.85,10.9,49.4,996.8,0,968.6,689.6,64.6,1,0 +2013-03-07 13:20:12-06:00,n05667,1040.8,32.8,5.5825,210.89,5.2357,40.279,49.1974,76.79,11.1,48.9,996.8,0,970.3,686.4,64.2,1,0 +2013-03-07 13:25:12-06:00,n05667,1028.6,32,5.5155,209.5913,5.1788,40.4708,49.3633,76.98,11,47.6,996.8,0,963.5,678.9,65.1,1,0 +2013-03-07 13:30:12-06:00,n05667,1015.8,31.2,5.4467,207.4031,5.1168,40.5337,49.3984,77.09,10.9,47.4,996.8,0,956.4,671,65.3,1,0 +2013-03-07 13:35:12-06:00,n05667,1009.1,33.1,5.4201,205.7777,5.089,40.4359,49.2846,77.03,11.4,43.8,996.8,0,956.3,665.6,65,1,0 +2013-03-07 13:40:12-06:00,n05667,1000.7,33.6,5.382,203.7158,5.0491,40.3467,49.1942,76.94,11.8,40.6,996.6,0,955.1,660,65,1,0 +2013-03-07 13:45:12-06:00,n05667,993.8,31.6,5.3389,202.2273,5.0088,40.3748,49.2059,76.98,11.8,41.8,996.5,0,954.2,655.3,65.5,1,0 +2013-03-07 13:50:12-06:00,n05667,981.4,32.8,5.2785,200.1525,4.9556,40.3891,49.2013,77.07,11.4,42,996.5,0,953.5,646.9,63.4,1,0 +2013-03-07 13:55:12-06:00,n05667,970.6,32.5,5.2175,199.2606,4.9024,40.6455,49.4153,77.29,11.7,42.1,996.5,0,952.6,639.7,63,1,0 +2013-03-07 14:00:12-06:00,n05667,955.8,33.4,5.1459,194.8994,4.8317,40.3381,49.0882,77.16,11.9,44.4,996.4,0,948.1,631,62.8,1,0 +2013-03-07 14:05:12-06:00,n05667,941,32.6,5.0708,192.7437,4.7588,40.5026,49.2202,77.23,11.7,46,996.4,0,942.8,621.9,62.6,1,0 +2013-03-07 14:10:12-06:00,n05667,926.9,30.2,4.9845,190.656,4.6922,40.6328,49.323,77.55,11.6,45.3,996.3,0,939,612.8,62.7,1,0 +2013-03-07 14:15:12-06:00,n05667,915.5,29.9,4.9318,188.399,4.6315,40.6776,49.3366,77.43,11.7,46.3,996.4,0,937.5,605,62.4,1,0 +2013-03-07 14:20:12-06:00,n05667,905.9,30,4.8786,187.1916,4.588,40.7998,49.4218,77.64,11.7,46.6,996.4,0,936.6,598.9,63.6,1,0 +2013-03-07 14:25:12-06:00,n05667,896.9,29.7,4.8366,185.3487,4.5475,40.7586,49.3783,77.61,11.9,46.6,996.3,0,932.3,591.9,66.4,1,0 +2013-03-07 14:30:12-06:00,n05667,875.8,28.4,4.7202,181.8913,4.4413,40.9545,49.5162,77.82,11.7,43.5,996.3,0,928.7,578.6,62.8,1,0 +2013-03-07 14:35:12-06:00,n05667,858.8,30.3,4.6328,177.854,4.3557,40.8324,49.3626,77.77,12.1,43.7,996.4,0,926.3,567,60.6,1,0 +2013-03-07 14:40:12-06:00,n05667,841.5,29.1,4.5379,174.5531,4.2705,40.874,49.3672,77.92,12.2,41.6,996.3,0,919.7,555.5,60.7,1,0 +2013-03-07 14:50:12-06:00,n05667,812.4,28.6,4.3818,169.2478,4.127,41.0096,49.4465,78.12,12.1,40.5,996.4,0,914.7,534.4,59.4,1,0 +2013-03-07 14:55:12-06:00,n05667,792.3,28.6,4.2744,165.2858,4.0287,41.0269,49.429,78.23,12.2,43,996.4,0,905.7,520.9,59.4,1,0 +2013-03-07 15:00:12-06:00,n05667,774.7,29.1,4.1858,161.432,3.942,40.9518,49.3119,78.21,12.2,43.9,996.4,0,900.5,508.4,58.7,1,0 +2013-03-07 15:05:12-06:00,n05667,757.6,28.6,4.0927,157.6374,3.8515,40.9293,49.2566,78.2,12.3,43.7,996.3,0,897.6,496.8,57.9,1,0 +2013-03-07 15:10:12-06:00,n05667,738.1,29.7,3.9922,153.5079,3.7553,40.8776,49.1506,78.23,12.7,43.5,996.4,0,890.9,483.1,57,1,0 +2013-03-07 15:15:12-06:00,n05667,715.3,26.5,3.8685,150.1887,3.644,41.2148,49.4511,78.51,12.3,43.6,996.2,0,874.5,467.5,58.1,1,0 +2013-03-07 15:20:12-06:00,n05667,704.1,26.4,3.7941,147.8873,3.5779,41.3332,49.5038,78.74,12.1,45.2,996.3,0,879.8,460.9,58.4,1,0 +2013-03-07 15:25:12-06:00,n05667,685.4,25.8,3.6932,143.8138,3.4838,41.281,49.4349,78.77,12.4,43.8,996.2,0,874.2,447.2,57.3,1,0 +2013-03-07 15:30:12-06:00,n05667,668.8,26.1,3.5974,140.4132,3.3941,41.3701,49.4804,78.88,12.1,44.9,996.2,0,869.6,435.7,57.5,1,0 +2013-03-07 15:35:12-06:00,n05667,649.3,24.2,3.4855,136.7395,3.2894,41.5695,49.6241,79.06,12,45.2,996.1,0,862.9,422,57,1,0 +2013-03-07 15:40:12-06:00,n05667,631.2,23.9,3.3882,133.0409,3.1988,41.5903,49.6059,79.16,12.1,45.1,996.2,0,858.2,409.3,56.3,1,0 +2013-03-07 15:45:12-06:00,n05667,609.6,24.8,3.2764,128.1523,3.0903,41.4697,49.4446,79.11,12.4,43.5,996.2,0,849.1,394.3,55.4,1,0 +2013-03-07 15:50:12-06:00,n05667,591.1,24.6,3.1712,124.273,2.9924,41.5291,49.4609,79.23,12.2,44.7,996.2,0,843.7,381.3,55,1,0 +2013-03-07 15:55:12-06:00,n05667,570.4,22.9,3.0549,120.1658,2.884,41.6669,49.5337,79.41,12.1,44.1,996.1,0,833.8,366.3,54.3,1,0 +2013-03-07 16:00:12-06:00,n05667,543.9,23.5,2.9139,114.2769,2.7506,41.546,49.3731,79.43,12.3,44.6,996.1,0,815.3,347,52.5,1,0 +2013-03-07 16:05:12-06:00,n05667,529.8,22.8,2.8271,111.4077,2.6724,41.6875,49.4771,79.65,12.1,43,996.1,0,816.6,336.8,52.1,1,0 +2013-03-07 16:10:12-06:00,n05667,507.9,22.9,2.7133,106.5009,2.5617,41.574,49.3314,79.57,12.3,42.4,996,0,804.3,320.7,51.2,1,0 +2013-03-07 16:15:12-06:00,n05667,487.8,24,2.5983,101.9192,2.4538,41.5351,49.2462,79.65,12.4,43.9,996.1,0,794.1,306.6,51.4,1,0 +2013-03-07 16:20:12-06:00,n05667,474.7,22.7,2.5199,98.9818,2.3801,41.5873,49.267,79.73,12.4,42.3,996.1,0,785.7,296.5,54.2,1,0 +2013-03-07 16:25:12-06:00,n05667,460.6,21,2.4346,96.2945,2.3044,41.7875,49.4212,80.03,12.1,41,996.1,0,778.2,287.3,57.7,1,0 +2013-03-07 16:30:12-06:00,n05667,87.1,18.3,0.4484,16.5098,0.4191,39.3976,46.3016,79.52,11.9,41.4,996.2,0,17.9,64.5,60.2,1,0 +2013-03-07 16:35:12-06:00,n05667,105,15.8,0.5488,20.7255,0.5153,40.2192,47.1104,80.16,11.9,41.2,996.3,0,39.8,75.3,65.6,1,0 +2013-03-07 16:40:12-06:00,n05667,132.6,15,0.6976,26.7785,0.6557,40.8386,47.8054,80.29,11.6,42.9,996.3,0,80.8,96.8,77.2,1,0 +2013-03-07 16:45:12-06:00,n05667,126.3,14.4,0.6694,25.679,0.6291,40.8197,47.7879,80.28,11.5,43.9,996.4,0,54.5,98.8,86.5,1,0 +2013-03-07 16:50:12-06:00,n05667,253.3,15,1.3365,53.0716,1.2635,42.0021,49.1623,80.77,11.4,44.6,996.5,0,380.5,175.9,91.1,1,0 +2013-03-07 16:55:12-06:00,n05667,337.4,16.5,1.7394,69.2714,1.6442,42.1307,49.4524,80.53,11.6,42.9,996.5,0,659.4,229.6,91.7,1,0 +2013-03-07 17:00:12-06:00,n05667,301.7,18.1,1.537,60.6427,1.4517,41.7737,49.0257,80.48,11.8,45,996.6,0,643.5,204.2,79.3,1,0 +2013-03-07 17:05:12-06:00,n05667,272.3,17.1,1.367,53.7345,1.2907,41.6312,48.8254,80.51,11.7,43.8,996.5,0,624.5,179.7,67.5,1,0 +2013-03-07 17:10:12-06:00,n05667,247.6,17.1,1.2291,48.1357,1.1593,41.5196,48.6198,80.55,11.7,45.2,996.5,0,597.5,159.4,60.8,1,0 +2013-03-07 17:15:12-06:00,n05667,225.4,16.8,1.1084,43.2388,1.0449,41.3807,48.4655,80.49,11.9,45.3,996.5,0,571.8,142.4,56.6,1,0 +2013-03-07 17:20:12-06:00,n05667,204.6,16,0.993,38.6586,0.9352,41.3361,48.3475,80.52,11.6,45,996.5,0,542.7,128.9,55.2,1,0 +2013-03-07 17:25:13-06:00,n05667,56.9,15.2,0.3159,11.481,0.2936,39.1093,46.0108,78.99,11.6,44.5,996.6,0,1.9,55.1,55.6,1,0 +2013-03-07 17:30:12-06:00,n05667,52.1,13.9,0.291,10.5753,0.2699,39.1797,46.0329,78.93,11.4,45.8,996.6,0,0.2,54.3,54.7,1,0 +2013-03-07 17:35:12-06:00,n05667,46.8,13.2,0.265,9.5892,0.2454,39.0763,45.9832,78.69,11.3,44.3,996.7,0,0.4,51.3,51.5,1,0 +2013-03-07 17:40:12-06:00,n05667,41.3,12.9,0.2375,8.529,0.2193,38.8843,45.7818,78.45,11.3,44.7,996.7,0,1.2,48.2,48.3,1,0 +2013-03-07 17:45:12-06:00,n05667,35,12.9,0.1916,6.7059,0.1747,38.378,45.307,77.27,11.4,46.1,996.8,0,17.8,41,40.3,1,0 +2013-03-07 17:50:12-06:00,n05667,34,12.6,0.124,4.1553,0.1109,37.4806,44.3508,75.56,11.3,44.3,996.9,0,110.5,32,28.2,1,0 +2013-04-23 05:45:12-06:00,n05667,23.7,3.2,0.114,4.0213,0.1044,38.5312,45.5947,77.38,4.1,69.9,1006.7,0,278.7,45.2,24.3,1,0 +2013-04-23 05:50:13-06:00,n05667,25,3.3,0.1221,4.3254,0.1118,38.6753,45.7046,77.52,3.9,71.1,1006.8,0,156.5,41.9,28,1,0 +2013-04-23 05:55:12-06:00,n05667,33.4,3.4,0.148,5.3459,0.1364,39.1876,46.1454,78.26,3.9,67.7,1006.8,0,353.7,69.3,32.4,1,0 +2013-04-23 06:00:12-06:00,n05667,37.7,3.5,0.1615,5.8713,0.149,39.3966,46.3193,78.47,4,65.9,1006.8,0,392.9,82.2,35.3,1,0 +2013-04-23 06:05:12-06:00,n05667,41.1,3.7,0.1745,6.3962,0.1618,39.5229,46.4299,78.94,4,65.7,1006.9,0,433.3,96.9,38.6,1,0 +2013-04-23 06:10:12-06:00,n05667,46.6,3.9,0.189,6.9653,0.1754,39.7019,46.6029,79.09,4.3,64.1,1006.9,0,466.9,111.4,41.5,1,0 +2013-04-23 06:15:12-06:00,n05667,56.2,4.2,0.2125,7.9386,0.1985,39.9854,46.8286,79.79,4.4,64.1,1006.8,0,463.8,120.8,44.4,1,0 +2013-04-23 06:20:12-06:00,n05667,67.2,4.5,0.2445,9.1756,0.2281,40.2297,47.081,79.71,4.8,63,1006.8,0,454.3,129.2,47.4,1,0 +2013-04-23 06:25:12-06:00,n05667,80.5,4.9,0.2862,10.8711,0.2683,40.5206,47.3509,80.22,5.4,61.4,1006.6,0,469.1,142.3,50.6,1,0 +2013-04-23 06:30:12-06:00,n05667,92.4,5.4,0.3296,12.5948,0.3092,40.7392,47.574,80.33,5.7,59.3,1006.6,0,475.6,153.7,53.4,1,0 +2013-04-23 06:35:12-06:00,n05667,113.3,6.1,0.4048,15.6527,0.3807,41.115,47.9038,80.73,5.7,59.4,1006.6,0,540,178.8,56.4,1,0 +2013-04-23 06:40:12-06:00,n05667,132.7,6.7,0.488,19.0627,0.4607,41.3801,48.2206,81.01,5.7,59,1006.7,0,571.6,197.2,58.8,1,0 +2013-04-23 06:45:12-06:00,n05667,153.7,7.2,0.5804,22.8422,0.5487,41.6305,48.4957,81.16,5.9,57.1,1006.6,0,614.7,218.7,60.4,1,0 +2013-04-23 06:50:12-06:00,n05667,167.3,7.8,0.6525,25.7344,0.6162,41.7636,48.6102,81.13,5.6,58.2,1006.6,0,618,230.6,62.1,1,0 +2013-04-23 06:55:12-06:00,n05667,189.3,8.4,0.759,30.1533,0.7192,41.9288,48.8513,81.32,6,57.1,1006.6,0,635.8,247.5,64.3,1,0 +2013-04-23 07:00:12-06:00,n05667,209.4,9,0.8655,34.5172,0.8205,42.0693,49.0245,81.35,6,55.7,1006.6,0,662.3,267.1,65.8,1,0 +2013-04-23 07:05:12-06:00,n05667,230.9,9.6,0.9666,38.808,0.9193,42.2161,49.1804,81.63,6,57.4,1006.5,0,670.3,279.6,66,1,0 +2013-04-23 07:10:12-06:00,n05667,268.6,9.6,1.1225,45.3605,1.0698,42.4027,49.4128,81.78,5.9,56.4,1006.5,0,728.3,309.6,66.5,1,0 +2013-04-23 07:15:12-06:00,n05667,298.6,10.8,1.2471,50.5293,1.191,42.4255,49.5136,81.83,6.1,56.2,1006.4,0,745.7,327.4,67.2,1,0 +2013-04-23 07:20:12-06:00,n05667,343.4,11.5,1.3763,55.7571,1.3105,42.5477,49.5832,81.71,6.5,55.3,1006.4,0,758.6,344.5,68.4,1,0 +2013-04-23 07:25:12-06:00,n05667,324.1,11.7,1.4831,60.2994,1.4164,42.5713,49.6567,81.88,6.6,53,1006.4,0,769.1,361.1,69.7,1,0 +2013-04-23 07:30:12-06:00,n05667,346.1,12.6,1.6069,65.2071,1.5301,42.6162,49.6905,81.66,6.7,53.9,1006.4,0,780.6,377.9,70.6,1,0 +2013-04-23 07:40:12-06:00,n05667,403.5,14.8,1.8441,74.9624,1.7673,42.4175,49.6749,81.83,7.2,55.8,1006.5,0,800.9,410.7,73.1,1,0 +2013-04-23 07:45:12-06:00,n05667,456.3,15.7,1.9687,79.9779,1.887,42.3827,49.7205,81.71,7.3,55,1006.6,0,812.8,428.8,73.9,1,0 +2013-04-23 07:50:12-06:00,n05667,430,16.7,2.0877,84.2063,1.9916,42.2806,49.6834,81.18,7.6,53.7,1006.5,0,822,445.4,74.5,1,0 +2013-04-23 07:55:12-06:00,n05667,449.3,17.8,2.2029,88.2204,2.094,42.1299,49.6535,80.65,8.2,52,1006.4,0,829.5,470.7,81.6,1,0 +2013-04-23 08:00:12-06:00,n05667,472.3,18.9,2.3304,92.9225,2.2097,42.0518,49.6157,80.37,8.4,48.2,1006.3,0,840.1,477.2,74.6,1,0 +2013-04-23 08:05:12-06:00,n05667,493.2,18.9,2.448,97.3498,2.3192,41.9762,49.5904,80.19,8.4,45.1,1006.4,0,846.4,494.9,77.4,1,0 +2013-04-23 08:10:12-06:00,n05667,514.6,19.6,2.5656,101.9509,2.4298,41.9594,49.6216,80.08,8.4,44.7,1006.3,0,853.1,509.8,77,1,0 +2013-04-23 08:15:12-06:00,n05667,535.4,21.3,2.6848,106.6165,2.5518,41.7805,49.5266,80.18,9.1,43.2,1006.3,0,857.6,524.1,77.9,1,0 +2013-04-23 08:20:12-06:00,n05667,567.5,23,2.7925,109.8292,2.643,41.5541,49.3328,79.72,9.9,42.8,1006.3,0,860.9,538.6,79.1,1,0 +2013-04-23 08:25:12-06:00,n05667,572,22.6,2.8731,112.9401,2.7188,41.5402,49.3497,79.65,10,43.4,1006.3,0,851.6,549.1,83.9,1,0 +2013-04-23 08:30:12-06:00,n05667,591.4,22.6,3.0094,118.4759,2.8439,41.659,49.4967,79.54,9.8,43.2,1006.3,0,866.2,568.5,83.3,1,0 +2013-04-23 08:35:12-06:00,n05667,610.7,22.8,3.1201,122.5425,2.9459,41.597,49.4941,79.35,9.8,43.5,1006.3,0,871,582.3,83.4,1,0 +2013-04-23 08:40:12-06:00,n05667,629.1,23.8,3.2208,126.5152,3.0451,41.5466,49.4922,79.37,10.1,43.4,1006.3,0,874.9,596.2,84.2,1,0 +2013-04-23 08:45:12-06:00,n05667,650.9,24.9,3.3416,130.7773,3.1595,41.3924,49.3959,79.23,10.5,43.6,1006.2,0,885.2,612.5,83.4,1,0 +2013-04-23 08:50:12-06:00,n05667,670.8,24.1,3.4435,134.974,3.2555,41.46,49.4889,79.2,9.9,44.9,1006.2,0,892.2,628.7,84.2,1,0 +2013-04-23 08:55:12-06:00,n05667,694.5,24.3,3.5697,139.6949,3.3746,41.3956,49.4883,79.08,10,46.2,1006.1,0,905.5,647.1,83.4,1,0 +2013-04-23 09:00:12-06:00,n05667,714.2,25.3,3.6785,143.5754,3.4713,41.3604,49.4798,78.88,10.1,46.2,1006.1,0,911.7,662.3,83.8,1,0 +2013-04-23 09:05:12-06:00,n05667,730.4,25.3,3.7653,147.0357,3.5558,41.3506,49.5065,78.88,10,46.8,1006.1,0,914.1,674.8,84.4,1,0 +2013-04-23 09:10:12-06:00,n05667,750.6,24.7,3.8688,151.4321,3.6557,41.4233,49.632,78.87,9.9,44,1006.1,0,920.1,689.5,84.9,1,0 +2013-04-23 09:15:12-06:00,n05667,766.6,24.6,3.9583,155.1171,3.7419,41.4543,49.6951,78.86,10,45.2,1006.1,0,923.2,701.7,85.6,1,0 +2013-04-23 09:20:12-06:00,n05667,785.2,26.2,4.0567,158.6972,3.8349,41.3823,49.6645,78.77,10.2,44.8,1006.1,0,928.8,715.5,85.9,1,0 +2013-04-23 09:25:12-06:00,n05667,800.7,26.5,4.1489,161.5594,3.9182,41.2328,49.5644,78.57,10.5,45.3,1006.1,0,1.5,728.1,730,1,0 +2013-04-23 09:30:12-06:00,n05667,817.9,26.4,4.2418,164.9869,4.0025,41.2208,49.5897,78.43,10.5,44.9,1006.1,0,1.2,692.8,741.8,1,0 +2013-04-23 09:35:12-06:00,n05667,833.3,27.9,4.3213,167.3761,4.0814,41.0094,49.4167,78.38,10.5,46.3,1006.1,0,937.9,750.9,86.4,1,0 +2013-04-23 09:40:12-06:00,n05667,850.6,26.9,4.4137,170.8366,4.1641,41.0264,49.4713,78.24,10.4,45.2,1006,0,942.2,764.2,87,1,0 +2013-04-23 09:45:12-06:00,n05667,865.6,28.8,4.4917,173.5313,4.2354,40.9712,49.4362,78.15,10.5,46.6,1006,0,944.5,775,86.9,1,0 +2013-04-23 09:50:12-06:00,n05667,878.8,28.9,4.5697,176.2332,4.3097,40.8924,49.3959,78.07,11,46.3,1006,0,946.8,785.3,87.4,1,0 +2013-04-23 09:55:12-06:00,n05667,892.5,28.6,4.6423,178.9569,4.3757,40.8975,49.4252,78,11.1,44.9,1006.1,0,948.1,795.3,87.9,1,0 +2013-04-23 10:00:12-06:00,n05667,904.5,30.3,4.7137,180.4283,4.4401,40.6361,49.206,77.79,11.4,45.9,1006.1,0,948.3,804.4,88.4,1,0 +2013-04-23 10:05:12-06:00,n05667,919.5,27.3,4.7879,184.7376,4.5135,40.9301,49.5201,77.92,10.9,45.4,1006,0,951.6,816.4,89.4,1,0 +2013-04-23 10:10:12-06:00,n05667,929.6,26.8,4.8395,187.4177,4.5629,41.0738,49.6671,77.97,10.8,45.6,1006,0,950.1,824,90.4,1,0 +2013-04-23 10:15:12-06:00,n05667,941.5,28.5,4.9065,189.1331,4.6238,40.9045,49.539,77.81,11.2,48.5,1006,0,950.9,832.4,91,1,0 +2013-04-23 10:20:12-06:00,n05667,952.5,29.6,4.9715,191.3274,4.6822,40.8629,49.5195,77.72,11.2,48.8,1006.1,0,951.7,840.2,91.2,1,0 +2013-04-23 10:25:12-06:00,n05667,964.6,31.3,5.0312,193.1725,4.7411,40.7439,49.4317,77.67,11.9,47,1006.1,0,955.4,849.8,91.5,1,0 +2013-04-23 10:30:12-06:00,n05667,974.1,32.9,5.0871,193.9767,4.7904,40.4929,49.2157,77.48,12.6,46.2,1006,0,956.1,857.3,91.7,1,0 +2013-04-23 10:35:12-06:00,n05667,988.1,31.7,5.1573,197.0353,4.8522,40.6078,49.353,77.41,12,45.5,1006,0,960.6,867.2,92.2,1,0 +2013-04-23 10:40:12-06:00,n05667,998.3,32.3,5.2182,198.2864,4.9073,40.406,49.1816,77.26,12.3,45.1,1005.9,0,963.1,874.6,91.5,1,0 +2013-04-23 10:45:12-06:00,n05667,1007.1,32.5,5.2645,199.7009,4.9526,40.3225,49.1136,77.24,12.2,45,1005.8,0,962.4,881.2,93,1,0 +2013-04-23 10:50:12-06:00,n05667,1028.9,30.2,5.3661,203.9994,5.0476,40.415,49.2456,77.2,12.7,40.4,1005.6,0,968.5,899.7,100.6,1,0 +2013-04-23 10:55:12-06:00,n05667,1026.5,33.6,5.3641,203.2186,5.0414,40.3096,49.1318,77.11,12.4,43.1,1005.6,0,965.1,894.4,94.4,1,0 +2013-04-23 11:00:12-06:00,n05667,1027.1,36.2,5.3835,202.1412,5.0559,39.9816,48.8287,76.9,13.4,42,1005.5,0,959.7,892.9,93.1,1,0 +2013-04-23 11:05:12-06:00,n05667,1032.1,35.9,5.4177,202.2562,5.083,39.7904,48.6602,76.72,14,40.1,1005.4,0,959.4,897.4,93.9,1,0 +2013-04-23 11:10:12-06:00,n05667,1033.6,35.1,5.4241,202.8464,5.0892,39.8586,48.7279,76.75,13.5,41.5,1005.4,0,955.7,900.7,95.9,1,0 +2013-04-23 11:15:12-06:00,n05667,1039.2,33.4,5.4557,204.8925,5.1186,40.0286,48.9009,76.8,13.6,41.3,1005.3,0,951.2,903.3,98,1,0 +2013-04-23 11:20:12-06:00,n05667,1043.9,34.7,5.4873,204.974,5.1456,39.8345,48.7298,76.66,14.1,41.1,1005.1,0,950,905.1,98.1,1,0 +2013-04-23 11:25:12-06:00,n05667,1047.4,34.5,5.4992,206.143,5.1595,39.9539,48.8424,76.75,13.9,41.2,1005.1,0,949.7,908.3,98.6,1,0 +2013-04-23 11:30:12-06:00,n05667,1050.8,35,5.5304,206.4732,5.1853,39.8191,48.7233,76.63,14.4,39.3,1005,0,952.3,911.2,96.4,1,0 +2013-04-23 11:35:12-06:00,n05667,1057.8,37.8,5.5687,207.0476,5.2185,39.6755,48.6056,76.49,15.1,40.1,1005,0,954.1,913.9,95.3,1,0 +2013-04-23 11:40:12-06:00,n05667,1065.8,37.7,5.6107,207.7913,5.2548,39.5429,48.4976,76.36,14.8,40.3,1004.9,0,962.5,922.1,94.3,1,0 +2013-04-23 11:45:12-06:00,n05667,1068.8,35.8,5.6249,209.6325,5.2683,39.7909,48.7324,76.48,14.8,36.3,1004.9,0,962.2,924,94.6,1,0 +2013-04-23 11:50:12-06:00,n05667,1075.8,36.3,5.6551,211.1725,5.3013,39.8339,48.7903,76.54,15,37.5,1004.8,0,969.6,929.8,92.6,1,0 +2013-04-23 11:55:12-06:00,n05667,1077.8,36.1,5.6644,211.1455,5.3068,39.7877,48.7435,76.47,15.3,37.4,1004.7,0,971.7,932.8,92.1,1,0 +2013-04-23 12:00:12-06:00,n05667,1072.2,37.2,5.6488,210.4523,5.2921,39.767,48.7253,76.46,15.2,37.9,1004.6,0,964.2,926.8,91.8,1,0 +2013-04-23 12:05:12-06:00,n05667,1072.6,34.7,5.6439,211.5265,5.2918,39.9723,48.9149,76.62,15.1,37.6,1004.5,0,964.4,927.9,92.2,1,0 +2013-04-23 12:10:12-06:00,n05667,1075.8,34.5,5.6611,212.0048,5.3088,39.9349,48.8866,76.6,15.3,37.2,1004.4,0,968.2,930.5,90.9,1,0 +2013-04-23 12:15:12-06:00,n05667,1073.6,35.6,5.6519,211.2948,5.2942,39.9109,48.8645,76.51,15.4,35.8,1004.4,0,968.7,929.7,90.8,1,0 +2013-04-23 12:20:12-06:00,n05667,1073.3,34.6,5.6476,211.9412,5.2928,40.0431,48.9842,76.61,15.6,34.4,1004.3,0,967.5,929,91.2,1,0 +2013-04-23 12:25:12-06:00,n05667,1078.3,34.2,5.6714,213.0835,5.3148,40.0926,49.0362,76.62,15.6,34.6,1004.3,0,974.2,933.6,90.4,1,0 +2013-04-23 12:30:12-06:00,n05667,1070.7,34.8,5.6433,211.1754,5.2899,39.9207,48.8677,76.58,15.7,38,1004.2,0,970.2,928.1,89.6,1,0 +2013-04-23 12:35:12-06:00,n05667,1068.3,35.2,5.626,210.3848,5.2729,39.8993,48.8385,76.57,15.7,36.8,1004.2,0,970.5,927,90.2,1,0 +2013-04-23 12:40:12-06:00,n05667,1064,36,5.6084,209.5988,5.2567,39.8728,48.8046,76.58,15.9,36.6,1004,0,967.7,922.9,90.1,1,0 +2013-04-23 12:45:12-06:00,n05667,1058.8,35.7,5.5848,208.4772,5.2322,39.8449,48.7695,76.54,16,36.6,1004.1,0,966.1,919.2,90.1,1,0 +2013-04-23 12:50:12-06:00,n05667,1053.7,36.5,5.5617,207.4234,5.2111,39.8038,48.711,76.56,16.5,36,1003.9,0,964.9,915.8,89.9,1,0 +2013-04-23 12:55:12-06:00,n05667,1048.8,36.5,5.5356,205.6091,5.1873,39.6367,48.5503,76.5,17.2,33.5,1004,0,964.8,912.9,89.6,1,0 +2013-04-23 13:00:12-06:00,n05667,1048.3,34.9,5.5237,206.9525,5.1761,39.9825,48.869,76.67,16.4,32.9,1003.9,0,967.5,914.1,91.2,1,0 +2013-04-23 13:05:12-06:00,n05667,1049.1,34.4,5.5187,206.9989,5.1729,40.0163,48.9048,76.7,16.5,32.4,1003.8,0,973.6,915.9,91.2,1,0 +2013-04-23 13:10:12-06:00,n05667,1034.3,33.8,5.4434,205.2803,5.1088,40.182,49.0291,76.92,16.4,33.1,1003.9,0,961.9,903.9,92.5,1,0 +2013-04-23 13:15:12-06:00,n05667,1026.2,33.7,5.4031,204.194,5.0727,40.2535,49.0824,77,16.6,31.3,1003.8,0,961.3,898.2,90.9,1,0 +2013-04-23 13:20:12-06:00,n05667,1021.8,31.8,5.3739,203.1914,5.0421,40.2989,49.1234,76.97,16.8,30.3,1003.8,0,964.1,896.1,90.7,1,0 +2013-04-23 13:25:12-06:00,n05667,1014,31.7,5.3346,202.1633,5.011,40.344,49.1494,77.1,16.8,33.2,1003.7,0,963,890.7,90.9,1,0 +2013-04-23 13:30:12-06:00,n05667,1003.8,33.7,5.286,199.6468,4.9619,40.2361,49.0297,77.03,16.9,35.6,1003.7,0,959.2,883.1,91.2,1,0 +2013-04-23 13:35:12-06:00,n05667,994.5,33,5.237,198.3088,4.9175,40.3275,49.1012,77.12,17.1,35.3,1003.7,0,957,877.1,91.6,1,0 +2013-04-23 13:40:12-06:00,n05667,983.9,31.2,5.1701,196.3529,4.8594,40.4067,49.1481,77.27,17,36,1003.5,0,953.2,868.8,92.1,1,0 +2013-04-23 13:45:12-06:00,n05667,978.7,32,5.1476,195.2574,4.8375,40.3633,49.1025,77.25,17.2,35.6,1003.4,0,958.2,866.4,91.2,1,0 +2013-04-23 13:50:12-06:00,n05667,971.1,31.7,5.0961,193.5849,4.7906,40.4094,49.1227,77.33,17.3,34,1003.5,0,960.1,861.8,91,1,0 +2013-04-23 13:55:12-06:00,n05667,956.6,32.2,5.0397,190.096,4.7297,40.192,48.8801,77.17,17.8,32.9,1003.5,0,953.6,848.1,89.5,1,0 +2013-04-23 14:00:12-06:00,n05667,953.1,31,4.9974,189.9945,4.6986,40.4366,49.1149,77.41,17.8,30.3,1003.4,0,961.4,848.1,89.6,1,0 +2013-04-23 14:05:12-06:00,n05667,933.7,29.3,4.9019,187.3034,4.6095,40.6339,49.2613,77.57,17.4,32.5,1003.5,0,950.5,834.4,91.2,1,0 +2013-04-23 14:10:12-06:00,n05667,917.8,30.3,4.8199,184.5977,4.5381,40.6772,49.2613,77.75,17.5,33.3,1003.6,0,939.9,819.1,91.7,1,0 +2013-04-23 14:15:12-06:00,n05667,912.7,32.4,4.7908,181.7901,4.4991,40.4057,49.003,77.44,18,31.2,1003.6,0,949.4,816.9,90.6,1,0 +2013-04-23 14:20:12-06:00,n05667,891.1,30.8,4.6832,178.5956,4.4023,40.5683,49.113,77.65,17.7,32.1,1003.5,0,935.4,800.4,92,1,0 +2013-04-23 14:25:12-06:00,n05667,874,31.6,4.6038,175.0062,4.3252,40.4621,48.9777,77.61,17.8,27.3,1003.6,0,930.6,786.7,90.3,1,0 +2013-04-23 14:30:12-06:00,n05667,859.7,32.1,4.5207,172.0712,4.2531,40.458,48.9425,77.77,18,27.9,1003.6,0,930.3,777.1,89.1,1,0 +2013-04-23 14:35:12-06:00,n05667,836,32.5,4.4112,167.1833,4.1467,40.3171,48.7591,77.73,18,29.3,1003.5,0,916.2,755.9,87.4,1,0 +2013-04-23 14:40:12-06:00,n05667,824.4,34.8,4.3547,164.0483,4.0902,40.1075,48.5237,77.64,18.2,27.5,1003.5,0,922.6,748,83.4,1,0 +2013-04-23 14:45:12-06:00,n05667,811,35.3,4.2843,160.6499,4.024,39.9233,48.3233,77.6,18.8,26.9,1003.4,0,920.4,735.4,81.4,1,0 +2013-04-23 14:50:12-06:00,n05667,796.2,35.3,4.1942,157.3024,3.9386,39.9388,48.2934,77.66,18.5,28.2,1003.4,0,922.2,728.4,81.9,1,0 +2013-04-23 14:55:12-06:00,n05667,776.9,33.8,4.0912,154.1639,3.8438,40.1066,48.4241,77.82,18.7,25.8,1003.2,0,913.5,713,81.8,1,0 +2013-04-23 15:00:12-06:00,n05667,763.8,33.1,4.0183,152.2695,3.7791,40.2922,48.5822,78,18.2,26,1003.2,0,916.6,704.8,80.9,1,0 +2013-04-23 15:05:12-06:00,n05667,746.5,30.1,3.9067,149.2753,3.6804,40.5596,48.7832,78.33,18.3,19.5,1002.9,0,912.8,692.7,80.6,1,0 +2013-04-23 15:10:12-06:00,n05667,725.5,32.7,3.8099,144.4656,3.5825,40.3256,48.5113,78.16,18.5,24.4,1002.9,0,905,674.9,78.8,1,0 +2013-04-23 15:15:12-06:00,n05667,707.5,33.8,3.7159,140.1759,3.4942,40.1169,48.2771,78.14,18.7,23.5,1002.7,0,902,661,77.3,1,0 +2013-04-23 15:20:12-06:00,n05667,693.6,33.2,3.6295,137.4867,3.4166,40.2411,48.365,78.32,18.7,23.7,1002.6,0,905.3,652,76.2,1,0 +2013-04-23 15:25:12-06:00,n05667,673.4,32.7,3.5227,133.7472,3.311,40.3947,48.4729,78.33,18.7,24.5,1002.5,0,897,636,76.2,1,0 +2013-04-23 15:30:12-06:00,n05667,653.4,32.6,3.41,129.5468,3.2064,40.4024,48.4293,78.44,18.7,25.3,1002.4,0,889.3,619.8,75.8,1,0 +2013-04-23 15:35:12-06:00,n05667,634.2,32.3,3.305,125.2817,3.1079,40.3109,48.2823,78.51,19.1,22.1,1002.3,0,884.5,605.7,75.2,1,0 +2013-04-23 15:40:12-06:00,n05667,614.7,30.4,3.1901,121.5107,3.0007,40.4945,48.4272,78.65,19.2,20.4,1002.2,0,876.7,591.7,75.8,1,0 +2013-04-23 15:45:12-06:00,n05667,594.2,30.7,3.077,117.444,2.8949,40.5692,48.4471,78.78,19.3,20.7,1002.2,0,870.8,576.3,74.9,1,0 +2013-04-23 15:50:12-06:00,n05667,576.1,29.7,2.9735,113.7267,2.7975,40.6524,48.488,78.88,19.2,21.7,1002,0,866.3,562.6,74.5,1,0 +2013-04-23 15:55:12-06:00,n05667,553.7,29,2.8465,109.1306,2.681,40.7048,48.485,79.07,19.3,23.4,1002,0,822,546.2,74.8,1,0 +2013-04-23 16:00:12-06:00,n05667,533.8,29,2.7348,104.9145,2.5745,40.7518,48.48,79.13,19.2,24,1002,0,848.6,530.9,74.4,1,0 +2013-04-23 16:05:12-06:00,n05667,511.2,28.7,2.6094,99.9441,2.4546,40.7167,48.3844,79.16,19.2,24.5,1001.9,0,836.1,512.5,73.9,1,0 +2013-04-23 16:10:12-06:00,n05667,488.9,28.7,2.4921,95.5495,2.3476,40.7007,48.3129,79.36,19.1,24.9,1001.9,0,829.3,497.5,73.4,1,0 +2013-04-23 16:15:12-06:00,n05667,469.2,27.6,2.3799,91.2604,2.2375,40.7875,48.3513,79.31,19.2,23.4,1001.8,0,824.3,482.4,71.9,1,0 +2013-04-23 16:20:12-06:00,n05667,451.1,26.5,2.2694,87.501,2.1382,40.9219,48.4511,79.58,19,24.2,1001.8,0,822.4,469.2,71,1,0 +2013-04-23 16:25:12-06:00,n05667,431.5,25.9,2.1549,83.0858,2.0291,40.9479,48.4176,79.63,19,25,1001.8,0,817.3,454.2,69.8,1,0 +2013-04-23 16:30:12-06:00,n05667,410.5,25.7,2.0344,78.3552,1.9149,40.9184,48.3227,79.71,18.9,25.9,1001.8,0,808.9,437.6,68.6,1,0 +2013-04-23 16:35:12-06:00,n05667,389.3,25.7,1.9129,73.6182,1.8006,40.8844,48.2497,79.76,18.9,26.6,1001.7,0,800.1,421.1,67.3,1,0 +2013-04-23 16:40:12-06:00,n05667,368.1,26.2,1.7929,68.7189,1.6858,40.7639,48.0892,79.7,19,26.9,1001.7,0,792.8,404.4,65.5,1,0 +2013-04-23 16:45:12-06:00,n05667,349.1,25.6,1.6791,64.3237,1.5782,40.758,48.03,79.76,19.1,27.1,1001.6,0,787.6,389.8,64.3,1,0 +2013-04-23 16:50:12-06:00,n05667,328.3,25.1,1.5594,59.6388,1.4657,40.6905,47.9079,79.83,19.1,27.5,1001.5,0,777.9,373.4,63.2,1,0 +2013-04-23 16:55:12-06:00,n05667,307.9,24.6,1.4386,54.9652,1.3522,40.6495,47.8163,79.91,19.2,26.3,1001.3,0,767.1,357.5,62.8,1,0 +2013-04-23 17:00:12-06:00,n05667,286.9,23.9,1.3168,50.2841,1.2376,40.6297,47.7223,80.02,19,26.4,1001.4,0,752.4,340.8,62.5,1,0 +2013-04-23 17:05:12-06:00,n05667,265.3,23.4,1.1939,45.4922,1.1215,40.5643,47.6257,80.01,19,26.4,1001.4,0,734.8,323.1,62.2,1,0 +2013-04-23 17:10:12-06:00,n05667,243.4,22.9,1.0743,40.777,1.0083,40.4406,47.4558,79.99,19,26.8,1001.4,0,710.5,303.5,62.1,1,0 +2013-04-23 17:15:12-06:00,n05667,224.7,22.7,0.9687,36.6542,0.9088,40.3311,47.2935,80.01,19,26.6,1001.4,0,698.4,288.2,61.4,1,0 +2013-04-23 17:20:12-06:00,n05667,206.6,22,0.8653,32.6313,0.8115,40.209,47.1352,80,19,26.1,1001.2,0,682.5,272.8,61.9,1,0 +2013-04-23 17:25:12-06:00,n05667,186.6,21.8,0.7598,28.5143,0.7123,40.0337,46.9252,79.97,18.9,26.5,1001.4,0,661.3,254.7,59.9,1,0 +2013-04-23 17:30:12-06:00,n05667,167.4,21.4,0.6624,24.6917,0.6197,39.8468,46.7024,79.81,18.8,26.9,1001.4,0,637.1,236.6,58.6,1,0 +2013-04-23 17:35:12-06:00,n05667,150.4,21.1,0.5755,21.2976,0.5375,39.6228,46.452,79.66,18.9,26.4,1001.4,0,625.3,221.8,56.6,1,0 +2013-04-23 17:40:12-06:00,n05667,132.1,20.8,0.4915,18.0347,0.4585,39.3319,46.1625,79.49,18.7,26.9,1001.2,0,605.8,205.3,54.5,1,0 +2013-04-23 17:45:12-06:00,n05667,115.5,20.6,0.4174,15.1579,0.3883,39.0343,45.8406,79.22,18.8,28.4,1001.4,0,589.4,189.7,52.1,1,0 +2013-04-23 17:50:12-06:00,n05667,97.6,20.3,0.3488,12.5074,0.3234,38.672,45.488,78.82,18.7,27.4,1001.3,0,561.9,173,50.4,1,0 +2013-04-23 17:55:12-06:00,n05667,82.3,20,0.2919,10.3995,0.2714,38.3141,45.1498,78.91,18.6,27.3,1001.1,0,539.2,158.4,49,1,0 +2013-04-23 18:00:12-06:00,n05667,68.2,19.8,0.246,8.7501,0.2302,38.0146,44.7888,79.4,18.5,29.1,1001.3,0,512.4,143.2,47.1,1,0 +2013-04-23 18:05:12-06:00,n05667,55.9,19.5,0.2126,7.5145,0.1992,37.7268,44.5401,79.37,18.4,30,1001.3,0,482.1,128.3,45.3,1,0 +2013-04-23 18:10:12-06:00,n05667,45.6,19.3,0.1898,6.5383,0.1748,37.4089,44.2372,77.88,18.4,30.5,1001.2,0,439.9,112.1,43,1,0 +2013-04-23 18:15:12-06:00,n05667,42,19.1,0.1763,6.0581,0.1624,37.303,44.1254,77.87,18.4,28.7,1001.1,0,236.2,86.7,40.6,1,0 +2013-04-23 18:20:12-06:00,n05667,33.2,18.8,0.163,5.5832,0.1503,37.1407,44.0239,77.79,18.2,30.7,1001.1,0,359.2,84.1,37.9,1,0 +2013-04-23 18:25:12-06:00,n05667,29.8,18.6,0.1504,5.1106,0.1384,36.939,43.8658,77.44,18.1,31.4,1001.1,0,299.3,71.6,35,1,0 +2013-04-23 18:30:13-06:00,n05667,26.3,18.4,0.1364,4.5956,0.1251,36.7319,43.6889,77.11,18,30.2,1001,0,280.3,58.8,31.6,1,0 +2013-04-23 18:35:13-06:00,n05667,23.3,18.2,0.1217,4.0504,0.111,36.5029,43.4339,76.63,18,31.2,1001.1,0,37.2,29.9,28.6,1,0 +2013-05-01 05:35:12-06:00,n05667,23.6,2.7,0.1236,4.3954,0.1131,38.8641,45.8802,77.5,3.1,78.4,1012.4,0,244.3,44.7,25.5,0.995,0 +2013-05-01 05:40:12-06:00,n05667,27.6,2.7,0.1391,5.0222,0.1284,39.1163,46.1138,78.29,3.1,78.3,1012.5,0,289,55.9,29.1,0.995,0 +2013-05-01 05:45:12-06:00,n05667,31.8,2.7,0.1541,5.6156,0.1425,39.4133,46.3092,78.7,3.2,78.1,1012.5,0,330.6,68.1,32.5,0.995,0 +2013-05-01 05:50:12-06:00,n05667,36,2.9,0.1687,6.1971,0.1564,39.6261,46.465,79.07,3.6,77.1,1012.6,0,368.7,81.1,35.8,0.995,0 +2013-05-01 05:55:12-06:00,n05667,40.2,3,0.1822,6.7266,0.1689,39.829,46.6494,79.12,3.7,75.8,1012.6,0,406,94.8,38.8,0.995,0 +2013-05-01 06:00:12-06:00,n05667,43.9,3.2,0.1937,7.1852,0.1799,39.9449,46.7362,79.39,3.7,75.8,1012.6,0,438.2,108.6,41.6,0.995,0 +2013-05-01 06:05:12-06:00,n05667,46.8,3.2,0.205,7.6472,0.1909,40.0558,46.8553,79.62,3.5,76.2,1012.6,0,470.8,123.6,44.4,0.995,0 +2013-05-01 06:10:12-06:00,n05667,53.6,3.3,0.2225,8.4315,0.2079,40.5628,47.0738,80.51,3.5,77.4,1012.7,0,497.4,137.7,46.6,0.995,0 +2013-05-01 06:15:12-06:00,n05667,65.3,3.6,0.2509,9.7992,0.2371,41.327,47.3782,82.43,3.7,76.5,1012.7,0,519.5,152.3,49.2,0.995,0 +2013-05-01 06:20:12-06:00,n05667,79.1,3.9,0.286,11.3697,0.2733,41.6001,47.6358,83.46,3.8,76.1,1012.6,0,544.3,167.7,51.4,0.995,0 +2013-05-01 06:25:12-06:00,n05667,94.4,4.4,0.3359,13.3308,0.3205,41.5936,47.8576,82.92,4,75.2,1012.8,0,564.7,183.2,54.1,0.995,0 +2013-05-01 06:30:12-06:00,n05667,111.3,4.7,0.398,15.745,0.3788,41.5703,48.1002,82.24,4,74.1,1012.9,0,589.6,200.4,56.5,0.995,0 +2013-05-01 06:35:12-06:00,n05667,128.8,5.1,0.4685,18.4515,0.4435,41.6038,48.3396,81.47,3.9,74.9,1012.9,0,612,217.3,58.6,0.995,0 +2013-05-01 06:40:12-06:00,n05667,146.3,5.6,0.5464,21.5362,0.5164,41.7085,48.5614,81.17,4.1,74.7,1013,0,631,233.5,60.2,0.995,0 +2013-05-01 06:45:12-06:00,n05667,165,6.3,0.6328,25.0608,0.598,41.9112,48.7767,81.19,4.2,74.3,1013,0,651.3,250.4,61.8,0.995,0 +2013-05-01 06:50:12-06:00,n05667,184.3,6.8,0.7246,28.8273,0.6853,42.0633,48.9659,81.25,4.2,73.6,1013.1,0,671.3,268.2,63.3,0.995,0 +2013-05-01 06:55:12-06:00,n05667,203.4,7.5,0.8222,32.8514,0.7786,42.1922,49.1277,81.33,4.2,74.2,1013.2,0,685.2,284.6,65,0.995,0 +2013-05-01 07:00:12-06:00,n05667,223.9,8.3,0.9275,37.1349,0.878,42.2932,49.2583,81.28,4.7,73.2,1013.2,0,700.1,301.1,66.6,0.995,0 +2013-05-01 07:10:12-06:00,n05667,264.9,9.5,1.1432,45.9914,1.0851,42.3849,49.4473,81.36,4.9,71.2,1013.2,0,723.7,334.4,70.5,0.995,0 +2013-05-01 07:15:12-06:00,n05667,295.9,10.2,1.2602,50.7184,1.1945,42.4603,49.5722,81.19,5.2,70.3,1013.2,0,738.6,351.4,70.8,0.995,0 +2013-05-01 07:20:12-06:00,n05667,316.6,10.3,1.3755,55.566,1.3056,42.5581,49.7107,81.26,5.1,69.5,1013.1,0,750.6,368.5,72.4,0.995,0 +2013-05-01 07:25:12-06:00,n05667,326.1,11.2,1.4935,60.5377,1.4226,42.5549,49.781,81.42,5,70.1,1013.2,0,763.3,385.2,73.4,0.995,0 +2013-05-01 07:30:12-06:00,n05667,346.2,11.8,1.6112,65.6415,1.5402,42.6197,49.8512,81.72,5.2,70.2,1013.3,0,774,402.4,74.6,0.995,0 +2013-05-01 07:35:12-06:00,n05667,367.5,12.5,1.7337,70.3209,1.65,42.6182,49.8889,81.3,5.4,69.4,1013.3,0,786.2,419.9,75.3,0.995,0 +2013-05-01 07:40:12-06:00,n05667,388.6,12.9,1.8536,75.0539,1.7623,42.5877,49.898,81.15,5.8,67.1,1013.2,0,796.7,436.1,75.3,0.995,0 +2013-05-01 07:45:12-06:00,n05667,417.4,12.8,1.9732,79.7702,1.8717,42.6182,50.0073,80.84,5.2,68.4,1013.2,0,807,452.6,76.5,0.995,0 +2013-05-01 07:50:12-06:00,n05667,433.1,13.4,2.0904,84.5238,1.9826,42.6321,50.0808,80.74,5.3,68.5,1013.2,0,815.3,469.2,77.9,0.995,0 +2013-05-01 07:55:12-06:00,n05667,492.8,14.4,2.2071,89.1998,2.0969,42.5388,50.0333,80.78,5.8,68.1,1013.2,0,824.4,486,78.6,0.995,0 +2013-05-01 08:00:12-06:00,n05667,486.6,15.4,2.3257,93.799,2.2089,42.4637,50.0262,80.62,5.8,67.5,1013.1,0,832,502.5,79.3,0.995,0 +2013-05-01 08:05:12-06:00,n05667,505.1,17.2,2.4423,98.1284,2.32,42.2962,49.913,80.5,6.4,66.4,1013.1,0,837.6,516.5,79.9,0.995,0 +2013-05-01 08:10:12-06:00,n05667,513,18.2,2.5612,102.1555,2.4243,42.1374,49.7992,80.09,6.9,64.1,1013.2,0,845.1,532.9,81.2,0.995,0 +2013-05-01 08:15:12-06:00,n05667,533.7,18.3,2.676,106.6994,2.5332,42.1199,49.8122,80.05,6.8,63.1,1013.1,0,850.7,549,82.1,0.995,0 +2013-05-01 08:20:12-06:00,n05667,554.8,19.2,2.7925,111.3103,2.6449,42.085,49.8343,79.99,6.7,62.4,1013.1,0,859,564,82.2,0.995,0 +2013-05-01 08:25:12-06:00,n05667,575.6,19.3,2.9054,115.7448,2.7492,42.1013,49.9013,79.83,6.9,62.3,1013.1,0,863,579.7,84.2,0.995,0 +2013-05-01 08:30:12-06:00,n05667,592.5,20.1,3.0047,119.6479,2.8474,42.0207,49.8421,79.89,7.2,62.8,1013.1,0,869.7,595.1,84.6,0.995,0 +2013-05-01 08:35:12-06:00,n05667,613.2,20.6,3.1211,123.9816,2.9516,42.0055,49.8857,79.63,7.4,61.5,1013.1,0,875,610.5,85.6,0.995,0 +2013-05-01 08:40:12-06:00,n05667,631.3,20.4,3.2202,127.8379,3.0479,41.943,49.8649,79.61,7.6,59.7,1013,0,879.7,624.9,85.9,0.995,0 +2013-05-01 08:45:12-06:00,n05667,650,21.2,3.3304,131.9515,3.1498,41.8924,49.8694,79.45,7.3,61.8,1013,0,883.6,638.9,86.8,0.995,0 +2013-05-01 08:50:12-06:00,n05667,669.6,20.9,3.4366,136.1169,3.2501,41.8814,49.8935,79.39,7.3,61.6,1013,0,890.1,653.9,87.1,0.995,0 +2013-05-01 08:55:12-06:00,n05667,688.1,21.4,3.539,140.1034,3.3446,41.889,49.9481,79.26,7.5,61.4,1012.9,0,894.9,668.2,87.7,0.995,0 +2013-05-01 09:00:12-06:00,n05667,707.5,21.9,3.6419,144.0213,3.4459,41.7944,49.9039,79.24,7.8,62.2,1013,0,900.5,682.4,88,0.995,0 +2013-05-01 09:05:12-06:00,n05667,724.5,21.3,3.7363,147.8663,3.5315,41.8706,50.0099,79.14,7.8,60,1013,0,904,696.3,88.4,0.995,0 +2013-05-01 09:10:12-06:00,n05667,741.6,21.8,3.8291,151.1472,3.6217,41.7337,49.9097,79.09,8.1,59.9,1013,0,908.1,708.7,88.7,0.995,0 +2013-05-01 09:15:12-06:00,n05667,758.5,23.3,3.9212,154.4324,3.7066,41.6642,49.8603,78.99,7.9,62.2,1013,0,911.5,721.4,89.7,0.995,0 +2013-05-01 09:20:12-06:00,n05667,772.4,25.8,4.0083,156.9793,3.7834,41.4918,49.7491,78.72,8.4,61.7,1013,0,911.5,732,90.8,0.995,0 +2013-05-01 09:25:12-06:00,n05667,789.1,24.1,4.0891,160.3619,3.8656,41.4842,49.7784,78.78,9.1,60,1012.9,0,912.7,744.1,92.2,0.995,0 +2013-05-01 09:30:12-06:00,n05667,805.6,24.3,4.1767,163.9924,3.9481,41.5369,49.8447,78.77,8.8,60.2,1012.9,0,916.8,756.6,92.6,0.995,0 +2013-05-01 09:35:12-06:00,n05667,821.8,25,4.263,166.8316,4.0289,41.4091,49.7699,78.63,9.1,59.9,1013,0,922.6,769.8,92.2,0.995,0 +2013-05-01 09:40:12-06:00,n05667,838.5,25.2,4.3571,170.049,4.1138,41.3366,49.7484,78.45,9.3,59,1013,0,926.9,782.4,92.7,0.995,0 +2013-05-01 09:45:12-06:00,n05667,852.3,24.9,4.4258,173.2317,4.1803,41.4399,49.8532,78.51,8.9,59.8,1013,0,927.2,793,94,0.995,0 +2013-05-01 09:50:12-06:00,n05667,865.2,25.7,4.5015,175.6369,4.2491,41.3351,49.7933,78.36,9.1,60.4,1013,0,928.6,802.9,94.3,0.995,0 +2013-05-01 09:55:12-06:00,n05667,880.6,24.8,4.5769,179.011,4.324,41.3997,49.8948,78.39,9.4,59.1,1012.9,0,933.1,814.5,94.6,0.995,0 +2013-05-01 10:00:12-06:00,n05667,893.2,25.9,4.6499,181.1302,4.3848,41.3086,49.8252,78.18,9.5,60.1,1013,0,933.4,823.5,95.3,0.995,0 +2013-05-01 10:05:12-06:00,n05667,905.8,26.2,4.7209,183.4917,4.4506,41.2283,49.7738,78.09,9.8,59.1,1012.9,0,935.6,833.4,95.6,0.995,0 +2013-05-01 10:10:12-06:00,n05667,918.1,27.7,4.7823,185.3616,4.513,41.0732,49.6548,78.06,10.1,58.3,1012.9,0,937.7,843.2,96.4,0.995,0 +2013-05-01 10:15:12-06:00,n05667,930.4,25.5,4.8454,188.2376,4.5738,41.1553,49.7523,78.08,10,57.6,1012.8,0,939.3,852.6,97.2,0.995,0 +2013-05-01 10:20:12-06:00,n05667,941.5,26.9,4.909,190.5519,4.6301,41.1554,49.7764,77.98,10.3,56.6,1012.9,0,941.6,860.4,96.5,0.995,0 +2013-05-01 10:25:12-06:00,n05667,952.2,28.7,4.9685,192.3549,4.6863,41.0464,49.7036,77.89,10.5,56.6,1012.8,0,944.6,868.1,96.1,0.995,0 +2013-05-01 10:30:12-06:00,n05667,963.9,28.7,5.0338,193.7544,4.7393,40.8827,49.554,77.67,11,54.8,1012.7,0,947.6,876.6,95.8,0.995,0 +2013-05-01 10:35:12-06:00,n05667,975.2,28.2,5.0936,196.0166,4.795,40.8792,49.5865,77.61,10.7,55.7,1012.6,0,951.9,886,95.4,0.995,0 +2013-05-01 10:40:12-06:00,n05667,983,28.5,5.1371,197.1478,4.8409,40.725,49.4557,77.6,11.1,55.1,1012.5,0,950.2,890.5,95.7,0.995,0 +2013-05-01 10:45:12-06:00,n05667,992.5,29.5,5.1876,198.6102,4.8857,40.6512,49.4044,77.49,11.2,56,1012.4,0,951.9,898.1,96.1,0.995,0 +2013-05-01 10:50:12-06:00,n05667,1002.7,30.3,5.2465,200.4065,4.9349,40.6099,49.3907,77.34,11.8,53.6,1012.5,0,956.1,905.6,95.3,0.995,0 +2013-05-01 10:55:12-06:00,n05667,1009.7,29.5,5.2769,202.6322,4.9739,40.739,49.5201,77.54,11.5,54.9,1012.4,0,955.9,910.4,95.9,0.995,0 +2013-05-01 11:00:12-06:00,n05667,1018.2,29.6,5.3219,203.9482,5.0078,40.7259,49.5208,77.39,11.7,53.6,1012.3,0,957,916.9,97.2,0.995,0 +2013-05-01 11:05:12-06:00,n05667,1021.2,30.9,5.3519,204.0572,5.0341,40.5353,49.3517,77.26,12,53.6,1012.3,0,953.9,918.3,97.4,0.995,0 +2013-05-01 11:10:12-06:00,n05667,1027.8,30.4,5.3855,205.1493,5.0646,40.5062,49.3393,77.21,12.7,49.2,1012.2,0,954.4,923.3,97.4,0.995,0 +2013-05-01 11:15:12-06:00,n05667,1033.2,31.2,5.4181,206.0558,5.0902,40.4812,49.3126,77.12,12.7,50.5,1012.2,0,955.3,927.8,97.8,0.995,0 +2013-05-01 11:20:12-06:00,n05667,1040.7,30.1,5.4515,207.9856,5.1248,40.5845,49.4349,77.18,12.1,50.9,1012.2,0,957.5,932.9,97.8,0.995,0 +2013-05-01 11:25:12-06:00,n05667,1042.6,30.4,5.4657,208.485,5.1379,40.578,49.4336,77.16,12.5,51.9,1012.2,0,954.5,934.4,98.7,0.995,0 +2013-05-01 11:30:12-06:00,n05667,1045.6,32.7,5.4891,207.9868,5.1551,40.3459,49.2177,76.99,12.8,51.8,1012.1,0,954.6,936.5,98.7,0.995,0 +2013-05-01 11:35:12-06:00,n05667,1049.5,32.7,5.516,207.6131,5.1751,40.1174,49.0089,76.8,13.6,49.7,1012,0,954.9,938.9,98.6,0.995,0 +2013-05-01 11:40:12-06:00,n05667,1052.7,32.3,5.5286,208.3081,5.1878,40.1533,49.046,76.82,13.3,48.6,1012,0,955,941.6,99.1,0.995,0 +2013-05-01 11:45:12-06:00,n05667,1052.1,33,5.5202,208.3549,5.1918,40.1317,49.0277,76.99,13.3,50.6,1012,0,950.5,940.9,100.4,0.995,0 +2013-05-01 11:50:12-06:00,n05667,1057.8,32.3,5.5599,210.6774,5.2187,40.3697,49.2697,76.91,13.6,47.3,1012.1,0,955,946,100.4,0.995,0 +2013-05-01 11:55:12-06:00,n05667,1058.4,30.6,5.5552,211.3136,5.2182,40.4958,49.3848,77.03,13.2,49,1012,0,952.4,946.1,101.6,0.995,0 +2013-05-01 12:00:12-06:00,n05667,1058.6,29.9,5.5624,212.1966,5.2239,40.6201,49.4974,77.07,13.2,49.2,1012.1,0,951,946.2,102.1,0.995,0 +2013-05-01 12:05:12-06:00,n05667,1058.2,29.5,5.5641,212.1765,5.2239,40.6165,49.5039,77.03,13.4,47.9,1011.9,0,950.8,946.5,102.3,0.995,0 +2013-05-01 12:10:12-06:00,n05667,1056.7,29.4,5.5561,212.5277,5.2195,40.7179,49.5995,77.12,13.4,48.5,1011.8,0,948.1,944.8,102.8,0.995,0 +2013-05-01 12:15:12-06:00,n05667,1055.9,31.9,5.5506,211.3546,5.2165,40.5167,49.3889,77.1,13.7,47.9,1011.9,0,949.9,944.5,101.1,0.995,0 +2013-05-01 12:20:12-06:00,n05667,1059,31.5,5.566,212.1363,5.2295,40.565,49.4453,77.08,14,47.2,1011.8,0,954.8,947.8,100.2,0.995,0 +2013-05-01 12:25:12-06:00,n05667,1057.2,31,5.5573,211.9221,5.2205,40.5945,49.4792,77.07,14.1,46.8,1011.7,0,955,947.3,99.9,0.995,0 +2013-05-01 12:30:12-06:00,n05667,1053.4,31.9,5.54,210.0964,5.202,40.3872,49.2736,76.96,14.2,47.2,1011.7,0,952.4,943.4,99.8,0.995,0 +2013-05-01 12:35:12-06:00,n05667,1050.4,31.4,5.5256,209.6379,5.19,40.3929,49.2814,76.99,14.3,46.6,1011.7,0,952.5,941.5,99.3,0.995,0 +2013-05-01 12:40:12-06:00,n05667,1046.5,32.5,5.511,208.6273,5.1715,40.3417,49.2157,76.92,14.5,46.5,1011.8,0,952.7,938.5,98.3,0.995,0 +2013-05-01 12:45:12-06:00,n05667,1043.6,34,5.4994,207.3579,5.1615,40.1742,49.0525,76.87,15.1,46.7,1011.7,0,954.1,936.3,97.3,0.995,0 +2013-05-01 12:50:12-06:00,n05667,1037.3,32.9,5.4655,206.5859,5.1318,40.2563,49.1097,76.97,15,45.1,1011.6,0,950.9,932.2,97.8,0.995,0 +2013-05-01 12:55:12-06:00,n05667,1031.2,34.4,5.4412,204.7053,5.1039,40.1077,48.9712,76.82,15.5,43.7,1011.8,0,949.9,927.7,97.1,0.995,0 +2013-05-01 13:00:12-06:00,n05667,1025.8,33.3,5.4024,204.6588,5.0738,40.3364,49.1637,77.06,15.3,44,1011.8,0,947.5,923.6,97.8,0.995,0 +2013-05-01 13:05:12-06:00,n05667,1018,34.1,5.3699,202.4182,5.0418,40.1481,48.9738,76.97,15.3,46.1,1011.7,0,946.4,918.5,97.1,0.995,0 +2013-05-01 13:10:12-06:00,n05667,1012.6,33.3,5.3374,201.8874,5.0118,40.2827,49.0928,77.05,15.3,44.7,1011.6,0,948,916.2,96.3,0.995,0 +2013-05-01 13:15:12-06:00,n05667,1006.3,31.8,5.3056,200.7229,4.9811,40.297,49.0967,77.06,15.6,45.5,1011.6,0,947.2,910.7,95.8,0.995,0 +2013-05-01 13:20:12-06:00,n05667,997.7,32.6,5.2621,198.7154,4.9389,40.2348,49.0115,77.05,15.9,45.3,1011.5,0,946.4,904.7,94.4,0.995,0 +2013-05-01 13:25:12-06:00,n05667,990.4,34.5,5.2209,196.7548,4.9008,40.1475,48.9159,77.04,15.9,43.5,1011.6,0,947.4,899.6,93.2,0.995,0 +2013-05-01 13:30:12-06:00,n05667,979.1,33.6,5.166,195.055,4.8526,40.1963,48.9425,77.15,15.9,45.2,1011.5,0,943.6,892.2,93.2,0.995,0 +2013-05-01 13:35:12-06:00,n05667,972.8,32.7,5.1283,194.3286,4.8182,40.332,49.0577,77.24,16,43.7,1011.5,0,944.5,886.7,92.2,0.995,0 +2013-05-01 13:40:12-06:00,n05667,963.4,31.3,5.0766,193.0627,4.771,40.4659,49.1682,77.35,15.8,44.3,1011.4,0,943.7,880.6,92.3,0.995,0 +2013-05-01 13:45:12-06:00,n05667,951.6,32.7,5.0241,190.0426,4.7171,40.2876,48.977,77.23,16.2,43.6,1011.4,0,940.5,871.6,91.5,0.995,0 +2013-05-01 13:50:12-06:00,n05667,940.7,32,4.9596,188.5451,4.6609,40.4527,49.1012,77.42,15.9,44.4,1011.4,0,938.3,865,91.8,0.995,0 +2013-05-01 13:55:12-06:00,n05667,928.9,32.8,4.9003,185.8782,4.6072,40.3449,48.9868,77.43,16.3,43.9,1011.4,0,937.1,856.5,90.7,0.995,0 +2013-05-01 14:00:12-06:00,n05667,918.3,32,4.8413,184.0081,4.5512,40.4307,49.0434,77.5,16.3,42.9,1011.2,0,936.5,848.9,90.3,0.995,0 +2013-05-01 14:05:12-06:00,n05667,905,32.5,4.772,180.6261,4.482,40.3003,48.8814,77.43,16.9,42.6,1011.2,0,932.8,838.6,89.8,0.995,0 +2013-05-01 14:10:12-06:00,n05667,893.3,31.9,4.7087,178.7121,4.4259,40.3786,48.9354,77.56,16.9,42.3,1011.1,0,931.3,829.9,89.5,0.995,0 +2013-05-01 14:15:12-06:00,n05667,879.6,32,4.6404,176.3869,4.3611,40.4458,48.979,77.61,16.6,43.5,1011.1,0,927.3,819.6,89.5,0.995,0 +2013-05-01 14:20:12-06:00,n05667,866.1,32.2,4.5663,173.5248,4.2956,40.3956,48.8964,77.72,17.1,41.9,1011.1,0,924.8,809.5,88.7,0.995,0 +2013-05-01 14:25:12-06:00,n05667,852.9,32.3,4.4968,171.0757,4.2291,40.4517,48.9276,77.76,16.9,41.4,1011.1,0,923.7,799.6,87.9,0.995,0 +2013-05-01 14:30:12-06:00,n05667,838.2,32.2,4.4147,168.1657,4.1522,40.5002,48.9347,77.84,16.8,42,1011.1,0,920.2,788.6,88,0.995,0 +2013-05-01 14:35:12-06:00,n05667,822.5,31,4.3332,165.2547,4.0739,40.5638,48.9647,77.89,17.2,41,1010.9,0,915.9,776.2,87.3,0.995,0 +2013-05-01 14:40:12-06:00,n05667,808.6,30.3,4.2563,162.8322,4.0067,40.64,49.0043,78.07,17.1,40.9,1010.9,0,914.4,766.3,86.8,0.995,0 +2013-05-01 14:45:12-06:00,n05667,792.9,30.1,4.1734,159.6962,3.927,40.6666,49.005,78.08,17.4,40.8,1010.7,0,909.6,754.6,87.3,0.995,0 +2013-05-01 14:50:12-06:00,n05667,777.5,29.6,4.0855,157.1624,3.8494,40.8275,49.1156,78.32,17.1,40.5,1010.8,0,905.4,743.5,88,0.995,0 +2013-05-01 14:55:12-06:00,n05667,760.3,30.6,3.9966,153.1169,3.7615,40.7061,48.9601,78.25,17.3,40.3,1010.8,0,900.8,730.1,87.7,0.995,0 +2013-05-01 15:00:12-06:00,n05667,740.7,30.1,3.8885,149.095,3.657,40.7702,48.9835,78.28,17.3,40.5,1010.6,0,891.5,715.2,88.2,0.995,0 +2013-05-01 15:05:12-06:00,n05667,719.2,29.2,3.7745,144.7049,3.5508,40.7533,48.9061,78.39,17.8,38.4,1010.2,0,879.9,697.9,88.3,0.995,0 +2013-05-01 15:10:12-06:00,n05667,707.5,28.5,3.7078,142.9342,3.4893,40.963,49.0915,78.53,17.3,39.9,1010.6,0,882.4,689.5,87.9,0.995,0 +2013-05-01 15:15:12-06:00,n05667,692,28.4,3.6213,139.6634,3.4093,40.9649,49.0518,78.62,17.4,39.7,1010.5,0,883.9,679.2,86.7,0.995,0 +2013-05-01 15:20:12-06:00,n05667,672.6,27.9,3.5148,135.422,3.3097,40.9165,48.9621,78.69,17.8,39.3,1010.4,0,876.1,664.9,87.2,0.995,0 +2013-05-01 15:25:12-06:00,n05667,647.6,28.1,3.376,130.135,3.1793,40.9315,48.9061,78.82,17.7,39.3,1010.5,0,858,644.5,88.8,0.995,0 +2013-05-01 15:30:12-06:00,n05667,636.1,28.1,3.3105,127.5797,3.117,40.9306,48.8755,78.85,18.1,38.4,1010.3,0,862.1,636.9,88.7,0.995,0 +2013-05-01 15:35:12-06:00,n05667,615,28.1,3.1873,122.9552,2.9988,41.0019,48.9016,78.89,17.7,39.5,1010.5,0,856.1,623.4,89.3,0.995,0 +2013-05-01 15:40:12-06:00,n05667,601,28.4,3.1111,120.0138,2.9304,40.9553,48.8311,79,18,38.3,1010.5,0,854.1,610,87.7,0.995,0 +2013-05-01 15:45:12-06:00,n05667,582,27.7,3.0074,115.8998,2.8283,40.9782,48.8116,78.95,18.1,38.7,1010.4,0,848.5,594.3,85.8,0.995,0 +2013-05-01 15:50:12-06:00,n05667,561.7,27.2,2.8902,111.8382,2.7207,41.1067,48.8764,79.17,17.9,38.4,1010.4,0,842.1,578.8,84.7,0.995,0 +2013-05-01 15:55:12-06:00,n05667,543.1,26.9,2.7844,107.4712,2.62,41.0197,48.7565,79.16,18.2,38.6,1010.2,0,838.6,564.1,82.6,0.995,0 +2013-05-01 16:00:12-06:00,n05667,523.6,26.9,2.674,103.313,2.5205,40.9884,48.6841,79.36,18.3,39.3,1010.2,0,833.9,549.4,81.6,0.995,0 +2013-05-01 16:05:12-06:00,n05667,501.7,26.4,2.5599,98.9172,2.4099,41.0462,48.6925,79.36,18.2,38.9,1010.1,0,827.6,534.2,80.9,0.995,0 +2013-05-01 16:10:12-06:00,n05667,482,26.6,2.4454,94.5012,2.3046,41.0055,48.5828,79.54,18.3,39.4,1010.2,0,820.5,518.6,80.1,0.995,0 +2013-05-01 16:15:12-06:00,n05667,462.8,25.6,2.333,90.2813,2.197,41.093,48.6294,79.58,18.2,39,1010.1,0,813.8,503.9,80,0.995,0 +2013-05-01 16:20:12-06:00,n05667,442.6,25.7,2.2199,85.6871,2.09,40.9995,48.4974,79.59,18.4,38.1,1010.1,0,806.8,488.1,78.6,0.995,0 +2013-05-01 16:25:12-06:00,n05667,422.1,26,2.0995,80.9721,1.9786,40.923,48.3641,79.74,18.5,38.1,1010.1,0,798.8,471.8,77.6,0.995,0 +2013-05-01 16:30:12-06:00,n05667,402.4,25,1.9832,76.5651,1.8685,40.9765,48.3649,79.82,18.4,38.2,1010,0,790.4,456.8,77.3,0.995,0 +2013-05-01 16:35:12-06:00,n05667,379.8,24.5,1.8559,71.5777,1.7468,40.9764,48.3165,79.82,18.4,38.2,1010,0,772.9,437.5,77.2,0.995,0 +2013-05-01 16:40:12-06:00,n05667,353.3,24,1.7082,65.8195,1.6067,40.966,48.2348,79.88,18.3,37.4,1010,0,744.5,413.8,77.3,0.995,0 +2013-05-01 16:45:12-06:00,n05667,330,23.9,1.5777,60.6588,1.4833,40.8939,48.1173,79.91,18.4,36.7,1010.1,0,724.8,393.7,76.5,0.995,0 +2013-05-01 16:50:12-06:00,n05667,315,23.3,1.4869,57.1558,1.3977,40.893,48.0661,79.97,18.4,36.3,1010,0,725.3,383,75.9,0.995,0 +2013-05-01 16:55:12-06:00,n05667,299.7,22.9,1.3937,53.5141,1.3098,40.8581,47.9938,80,18.3,37.1,1010,0,727.2,372.8,75.5,0.995,0 +2013-05-01 17:00:12-06:00,n05667,276.4,23.1,1.2633,48.3229,1.1871,40.7059,47.7943,80.03,18.5,38.1,1010.1,0,703.5,351.6,74.1,0.995,0 +2013-05-01 17:05:12-06:00,n05667,259.8,22.9,1.1677,44.4477,1.0953,40.5811,47.6299,79.92,18.6,38,1010,0,699,338.9,73.7,0.995,0 +2013-05-01 17:10:12-06:00,n05667,239.2,22.8,1.0525,39.9628,0.9873,40.4789,47.4824,79.96,18.5,38.5,1010,0,678.1,320.7,73.5,0.995,0 +2013-05-01 17:15:12-06:00,n05667,224.2,22.2,0.9633,36.4684,0.9031,40.38,47.3462,79.96,18.6,37.9,1009.9,0,680,311.1,73.1,0.995,0 +2013-05-01 17:20:12-06:00,n05667,192.4,22,0.8076,30.3832,0.7571,40.1284,47.0371,79.98,18.6,38.9,1009.9,0,604.9,274.2,71.6,0.995,0 +2013-05-01 17:25:12-06:00,n05667,188.1,21.8,0.7682,28.8169,0.7197,40.0395,46.9452,79.9,18.6,38.8,1010,0,647.7,279.2,72,0.995,0 +2013-05-01 17:30:12-06:00,n05667,169.4,21.4,0.6788,25.3011,0.6343,39.8866,46.7063,79.8,18.5,37.9,1009.9,0,621.5,261.8,72.2,0.995,0 +2013-05-01 17:35:12-06:00,n05667,151.5,21.4,0.5945,21.9849,0.5545,39.6461,46.4422,79.63,18.6,38.1,1010,0,597.7,244.9,71.7,0.995,0 +2013-05-01 17:40:12-06:00,n05667,135.5,20.9,0.5185,19.0653,0.4835,39.4291,46.2588,79.49,18.4,37.7,1010,0,581.1,230.6,71.2,0.995,0 +2013-05-01 17:45:12-06:00,n05667,120.3,20.7,0.4516,16.4662,0.4203,39.1748,45.9739,79.31,18.4,37.1,1010,0,572.3,217.9,69.6,0.995,0 +2013-05-01 17:50:12-06:00,n05667,106.4,20.4,0.3927,14.1868,0.3646,38.9116,45.7235,79,18.4,36.8,1010,0,574.5,208.9,68.8,0.995,0 +2013-05-01 17:55:12-06:00,n05667,73.4,20.2,0.2903,10.2883,0.2689,38.2574,45.1108,78.55,18.4,36.9,1010,0,349.5,144.6,64.6,0.995,0 +2013-05-01 18:00:12-06:00,n05667,55.9,19.8,0.2341,8.1978,0.2165,37.8652,44.6912,78.37,18.3,36.2,1009.9,0,224.3,107.7,59.6,0.995,0 +2013-05-01 18:05:12-06:00,n05667,51.3,19.5,0.2171,7.61,0.2017,37.7202,44.5891,78.62,18.2,37,1010,0,258.9,108.8,57.3,0.995,0 +2013-05-01 18:10:12-06:00,n05667,46.2,19.3,0.2041,7.0991,0.1888,37.5992,44.4259,78.31,18.1,37.4,1010.1,0,252.7,101.3,55,0.995,0 +2013-05-01 18:15:12-06:00,n05667,45.1,19.1,0.2034,7.0754,0.188,37.6262,44.4909,78.19,18.1,36.8,1010,0,226.3,92.4,54.4,0.995,0 +2013-05-01 18:20:12-06:00,n05667,45.2,19,0.205,7.1174,0.1891,37.6418,44.5182,78,18,37.7,1009.9,0,282.3,96.7,53.5,0.995,0 +2013-05-01 18:25:12-06:00,n05667,44.2,18.9,0.2042,7.0999,0.1885,37.658,44.539,78.08,17.9,37.8,1010,0,307.4,95.7,53.2,0.995,0 +2013-05-01 18:30:12-06:00,n05667,39.9,18.8,0.1933,6.6821,0.1779,37.5521,44.4317,77.82,17.8,38.6,1010,0,127.3,65.6,50.2,0.995,0 +2013-05-01 18:35:12-06:00,n05667,34.7,18.7,0.1761,6.0567,0.1622,37.3507,44.1813,77.86,17.8,38.7,1010,0,19.9,47.7,45.5,0.995,0 +2013-05-01 18:40:13-06:00,n05667,27.5,18.4,0.1453,4.9008,0.1328,36.8963,43.8184,76.96,17.7,39.8,1010,0,33.7,40.7,37,0.995,0 +2013-05-01 18:45:13-06:00,n05667,22.7,18,0.1219,4.0629,0.1113,36.5099,43.4574,76.71,17.6,40.4,1010,0,15.9,31.5,30.4,0.995,0 +2013-06-09 05:30:12-06:00,n05667,32.4,13.4,0.1543,5.3635,0.142,37.7686,44.6573,77.86,12.5,71,999.6,0,456.5,105,35.7,0.994,0 +2013-06-09 05:35:12-06:00,n05667,35.4,13.5,0.1624,5.6814,0.1502,37.8343,44.7784,78.13,12.6,70.4,999.6,0,491,119.1,37.5,0.994,0 +2013-06-09 05:40:12-06:00,n05667,38.1,13.6,0.1698,5.9559,0.1568,37.9726,44.822,78.25,12.7,70,999.7,0,521.5,133.4,39.3,0.994,0 +2013-06-09 05:45:12-06:00,n05667,41.1,13.7,0.177,6.2188,0.1634,38.0524,44.943,78.17,12.6,70.2,999.7,0,549.4,148.1,41,0.994,0 +2013-06-09 05:50:12-06:00,n05667,44.3,13.8,0.1826,6.4436,0.1688,38.1671,45.0119,78.4,12.5,70.8,999.7,0,574.8,163,42.4,0.994,0 +2013-06-09 05:55:12-06:00,n05667,47.3,13.8,0.1887,6.6871,0.1749,38.2347,45.0353,78.7,12.8,69.5,999.7,0,592.1,176.5,43.9,0.994,0 +2013-06-09 06:00:12-06:00,n05667,50.5,14,0.1952,6.9282,0.1811,38.2588,45.142,78.61,12.8,69.6,999.7,0,611.6,191.2,45.4,0.994,0 +2013-06-09 06:05:12-06:00,n05667,52.5,14.1,0.2018,7.1799,0.1871,38.3652,45.2097,78.7,12.7,70.1,999.7,0,626.6,205.8,47.1,0.994,0 +2013-06-09 06:10:12-06:00,n05667,56.6,14,0.2099,7.495,0.1949,38.4528,45.302,78.82,12.6,70,999.8,0,643.9,222.1,49.3,0.994,0 +2013-06-09 06:15:12-06:00,n05667,67.3,13.9,0.2386,8.7453,0.2242,39.0112,45.6123,80.35,12.6,70.6,999.8,0,659.7,237.3,50.7,0.994,0 +2013-06-09 06:20:12-06:00,n05667,81.3,14.2,0.2811,10.2089,0.2603,39.2147,45.8991,79.12,12.7,70.5,999.9,0,677.6,253,51.6,0.994,0 +2013-06-09 06:25:12-06:00,n05667,96.8,14.2,0.326,11.9937,0.3032,39.5519,46.212,79.61,12.5,71.4,999.8,0,692.2,269.2,53,0.994,0 +2013-06-09 06:30:12-06:00,n05667,112.8,14.3,0.379,14.1226,0.3546,39.8284,46.5327,80.07,12.3,71.8,999.8,0,702.1,284.5,54.8,0.994,0 +2013-06-09 06:35:12-06:00,n05667,129.2,14.8,0.443,16.6887,0.4167,40.0467,46.8117,80.48,12.5,71.8,999.9,0,714.4,299.8,56,0.994,0 +2013-06-09 06:40:12-06:00,n05667,146.5,15.1,0.514,19.51,0.4849,40.2367,47.0797,80.62,12.7,71.2,999.9,0,728.7,316.1,56.7,0.994,0 +2013-06-09 06:45:12-06:00,n05667,163.8,15.2,0.5918,22.6336,0.5593,40.4654,47.3333,80.8,12.6,71.8,999.8,0,737.8,331.6,57.9,0.994,0 +2013-06-09 06:50:12-06:00,n05667,182,15.6,0.6814,26.1673,0.6435,40.6624,47.5356,80.78,12.8,71.4,999.8,0,749.7,347.8,58.9,0.994,0 +2013-06-09 06:55:12-06:00,n05667,199.4,16.2,0.7684,29.6246,0.726,40.8025,47.7264,80.78,13.2,70.5,999.9,0,757.7,363,60.1,0.994,0 +2013-06-09 07:00:12-06:00,n05667,218.3,16.2,0.8657,33.5455,0.8184,40.9904,47.9554,80.8,13,69.9,999.8,0,768.5,379.5,61,0.994,0 +2013-06-09 07:05:12-06:00,n05667,236.7,16.6,0.9663,37.5449,0.913,41.121,48.1288,80.73,13.1,70,999.9,0,777.1,395.6,62.3,0.994,0 +2013-06-09 07:10:12-06:00,n05667,255.4,16.8,1.0723,41.7891,1.0135,41.2306,48.2875,80.71,13.1,69.8,999.8,0,779.4,409.6,64.3,0.994,0 +2013-06-09 07:15:12-06:00,n05667,274.7,17.7,1.1843,46.0318,1.1155,41.2658,48.3656,80.36,13.4,69.5,999.9,0,767.2,427.1,76.5,0.994,0 +2013-06-09 07:20:12-06:00,n05667,295,17.6,1.2971,50.6772,1.2244,41.3904,48.5028,80.55,13.4,68.9,999.9,0,792.6,442.8,68.9,0.994,0 +2013-06-09 07:25:12-06:00,n05667,314.5,18.3,1.403,54.9103,1.3251,41.4377,48.6245,80.49,13.3,69.7,999.9,0,812.3,462.3,67.5,0.994,0 +2013-06-09 07:30:12-06:00,n05667,332.5,18.9,1.5054,58.9646,1.4224,41.4544,48.683,80.46,13.5,69.8,999.9,0,805.4,471.5,69,0.994,0 +2013-06-09 07:35:12-06:00,n05667,352.4,19.6,1.6195,63.6124,1.5339,41.4709,48.7448,80.58,13.8,68.6,999.9,0,805.4,487.2,73.6,0.994,0 +2013-06-09 07:40:12-06:00,n05667,376.4,20.6,1.7365,67.9457,1.6411,41.4028,48.7311,80.29,14,68.7,999.9,0,825.5,506,70.9,0.994,0 +2013-06-09 07:45:12-06:00,n05667,388.3,20.3,1.8328,71.7956,1.7312,41.4728,48.8359,80.21,13.8,68,999.8,0,828.7,518.9,70.6,0.994,0 +2013-06-09 07:50:12-06:00,n05667,409.8,21.1,1.9554,76.6332,1.8474,41.4812,48.8788,80.18,14.1,68.1,999.8,0,842.9,536.5,68.8,0.994,0 +2013-06-09 07:55:12-06:00,n05667,428.5,22.5,2.0696,80.6905,1.9512,41.3537,48.8151,79.87,14.5,66.1,999.8,0,851.7,551.7,68.1,0.994,0 +2013-06-09 08:00:12-06:00,n05667,447.4,22.6,2.1762,84.9722,2.054,41.3692,48.8801,79.88,14.5,65.6,999.8,0,859.2,567.2,68.6,0.994,0 +2013-06-09 08:05:12-06:00,n05667,466.6,23.1,2.2823,89.3273,2.1565,41.4224,48.9679,79.93,14.5,66.5,999.8,0,862.9,581.8,68.6,0.994,0 +2013-06-09 08:10:12-06:00,n05667,505.2,22.8,2.3929,93.781,2.2631,41.4399,49.0304,79.93,14.5,65.3,999.8,0,870.8,598.7,69.4,0.994,0 +2013-06-09 08:15:12-06:00,n05667,520.1,24.2,2.4924,97.2899,2.3566,41.2842,48.9094,79.81,15,65.2,999.8,0,872.7,610.2,69.9,0.994,0 +2013-06-09 08:20:12-06:00,n05667,524.4,23.9,2.6026,101.7651,2.4608,41.3541,49.0512,79.71,14.7,65,999.8,0,876.7,626.5,72.2,0.994,0 +2013-06-09 08:25:12-06:00,n05667,540.5,24.1,2.7021,105.5858,2.5522,41.3702,49.0759,79.62,15.1,63.8,999.7,0,874.5,638.3,74.3,0.994,0 +2013-06-09 08:30:12-06:00,n05667,556.3,25.3,2.7963,108.9308,2.6423,41.225,48.99,79.52,15.1,63.5,999.8,0,876.9,650.2,74,0.994,0 +2013-06-09 08:35:12-06:00,n05667,575.5,26.5,2.9084,112.7208,2.7411,41.1228,48.9198,79.23,15.4,63.2,999.8,0,885.2,665.7,73.4,0.994,0 +2013-06-09 08:40:12-06:00,n05667,592.8,26.8,3.0059,116.3352,2.8343,41.0454,48.8879,79.17,15.6,61.7,999.8,0,887.4,679.4,74.4,0.994,0 +2013-06-09 08:45:12-06:00,n05667,610,25.7,3.0995,120.4783,2.9264,41.1696,49.044,79.26,15.2,62.7,999.8,0,888.5,693.5,77.7,0.994,0 +2013-06-09 08:50:12-06:00,n05667,625.3,25.3,3.1869,124.0296,3.008,41.2336,49.1591,79.17,15.3,63,999.7,0,888,703.3,77.9,0.994,0 +2013-06-09 08:55:12-06:00,n05667,644.7,25.8,3.295,128.1174,3.1094,41.2029,49.1708,79.08,15.5,62.7,999.7,0,898.1,720.6,77.3,0.994,0 +2013-06-09 09:00:12-06:00,n05667,662.4,26.8,3.393,131.955,3.2014,41.2174,49.2222,79.01,15.5,62.3,999.8,0,903.8,734,76.9,0.994,0 +2013-06-09 09:05:12-06:00,n05667,680,26.9,3.4919,135.3239,3.2897,41.1359,49.1715,78.81,15.6,62.6,999.7,0,910.7,749.1,76.4,0.994,0 +2013-06-09 09:10:12-06:00,n05667,694.1,26.6,3.5687,138.1659,3.3631,41.0826,49.137,78.79,15.6,63,999.5,0,911.6,759.9,77.8,0.994,0 +2013-06-09 09:15:12-06:00,n05667,710.3,28.5,3.6622,141.3066,3.4544,40.906,49.0369,78.69,15.9,63,999.7,0,914.4,771.8,77.7,0.994,0 +2013-06-09 09:20:12-06:00,n05667,726,28.1,3.7504,144.6091,3.5363,40.8927,49.0557,78.6,16.3,60.1,999.5,0,919.3,785.4,77.7,0.994,0 +2013-06-09 09:25:12-06:00,n05667,741.7,28.9,3.8391,147.7406,3.6151,40.8677,49.0577,78.44,16.3,60.4,999.6,0,921.1,796.4,78.1,0.994,0 +2013-06-09 09:30:12-06:00,n05667,756,29.3,3.9158,150.8176,3.6893,40.8796,49.111,78.42,16.1,60.5,999.6,0,923.7,808.2,78.5,0.994,0 +2013-06-09 09:35:12-06:00,n05667,769.7,29.5,3.9933,153.3553,3.7635,40.7484,49.0212,78.34,16.6,59.5,999.4,0,925.4,818.8,79.2,0.994,0 +2013-06-09 09:40:12-06:00,n05667,783.2,29.2,4.063,156.1969,3.8266,40.8189,49.1084,78.28,16.5,58.4,999.5,0,925.7,828.8,80.3,0.994,0 +2013-06-09 09:45:12-06:00,n05667,798,30.2,4.1439,158.3848,3.9019,40.5914,48.9256,78.12,16.7,59.6,999.5,0,930.5,839.5,78.9,0.994,0 +2013-06-09 09:50:12-06:00,n05667,810,30,4.2075,161.0927,3.9628,40.6514,48.9946,78.15,16.7,58.1,999.4,0,930.4,848.6,80.2,0.994,0 +2013-06-09 09:55:12-06:00,n05667,824.4,29.7,4.2847,164.4065,4.037,40.7247,49.1156,78.12,16.6,58.4,999.4,0,934.7,859.6,80,0.994,0 +2013-06-09 10:00:12-06:00,n05667,836.2,30.4,4.3546,166.3048,4.0986,40.5762,48.9848,77.96,16.9,58,999.4,0,937.3,868.6,79.3,0.994,0 +2013-06-09 10:05:12-06:00,n05667,848.9,30.6,4.4212,168.8425,4.1612,40.5756,49.0076,77.92,17,59.2,999.3,0,939.2,877.4,79.6,0.994,0 +2013-06-09 10:10:12-06:00,n05667,859.8,31.5,4.4826,170.471,4.2192,40.4035,48.8807,77.8,17.2,57.7,999.3,0,939.7,885.8,80.2,0.994,0 +2013-06-09 10:15:12-06:00,n05667,870.2,33.4,4.5364,171.814,4.2683,40.2539,48.7468,77.7,17.6,57.4,999.3,0,941.4,893.3,79.5,0.994,0 +2013-06-09 10:20:12-06:00,n05667,880,32.9,4.589,174.2026,4.3174,40.3492,48.8599,77.69,17.5,56.4,999.4,0,941.4,900,80.3,0.994,0 +2013-06-09 10:25:12-06:00,n05667,891.7,30.9,4.6457,177.1101,4.3734,40.4974,49.0304,77.75,17.4,56.8,999.3,0,944.4,909.4,80.5,0.994,0 +2013-06-09 10:30:12-06:00,n05667,900.8,33.5,4.7031,178.0558,4.4246,40.2422,48.804,77.57,17.6,56.5,999.4,0,946.4,916.3,79.4,0.994,0 +2013-06-09 10:35:12-06:00,n05667,912.3,32.3,4.7558,180.5744,4.4738,40.3625,48.9432,77.58,17.7,55.1,999.3,0,950.5,925.5,79.1,0.994,0 +2013-06-09 10:40:12-06:00,n05667,922,33.8,4.8169,182.1412,4.5269,40.2352,48.845,77.41,17.6,57.4,999.3,0,952.4,932.5,79.4,0.994,0 +2013-06-09 10:45:12-06:00,n05667,927.9,33.9,4.8494,182.8543,4.5582,40.1159,48.7572,77.34,18.2,55.6,999.3,0,950.7,935.7,78.8,0.994,0 +2013-06-09 10:50:12-06:00,n05667,936.6,33.8,4.8989,184.0047,4.5982,40.0163,48.6681,77.18,18.4,54.2,999.2,0,953.3,942.6,78.4,0.994,0 +2013-06-09 10:55:12-06:00,n05667,945.1,33.2,4.9419,187.2427,4.6451,40.3098,48.9653,77.38,17.9,54.6,999.2,0,957.1,950.3,78,0.994,0 +2013-06-09 11:00:12-06:00,n05667,953,34.5,4.985,188.1272,4.6832,40.1708,48.8482,77.26,18.1,54.9,999.3,0,960.4,956.3,76.6,0.994,0 +2013-06-09 11:05:12-06:00,n05667,960.1,35.2,5.0219,189.3554,4.7145,40.1649,48.858,77.17,18.1,54.4,999.3,0,961.9,961.6,76.2,0.994,0 +2013-06-09 11:10:12-06:00,n05667,966.2,35.9,5.0623,190.3613,4.756,40.0258,48.7409,77.15,18.5,53.2,999.2,0,962.6,965.7,75.9,0.994,0 +2013-06-09 11:15:12-06:00,n05667,970.6,34.4,5.0839,191.3466,4.7727,40.0921,48.8007,77.13,18.4,52.7,999,0,960.8,968.7,77.1,0.994,0 +2013-06-09 11:20:12-06:00,n05667,978.6,32.8,5.1191,193.4985,4.8087,40.2391,48.9595,77.21,18.4,53.4,998.9,0,965.1,976,76.7,0.994,0 +2013-06-09 11:25:12-06:00,n05667,982.1,35,5.1406,193.8261,4.8271,40.1536,48.8853,77.13,18.3,55.1,999.1,0,965.1,977.5,75.8,0.994,0 +2013-06-09 11:30:12-06:00,n05667,986.3,36.3,5.1753,193.2059,4.8541,39.803,48.5575,76.88,18.9,54.4,999,0,965.9,980.8,75.9,0.994,0 +2013-06-09 11:35:12-06:00,n05667,991.7,35.1,5.1986,194.8092,4.8796,39.923,48.6876,76.97,19,51.3,998.8,0,969.1,985.6,74.5,0.994,0 +2013-06-09 11:40:12-06:00,n05667,994.2,35.6,5.205,195.5593,4.8866,40.0199,48.7734,77.03,18.8,51.8,998.9,0,970.2,988.4,74.4,0.994,0 +2013-06-09 11:45:12-06:00,n05667,997.1,36.1,5.2291,195.4652,4.9044,39.8547,48.6297,76.87,19.1,51.5,998.8,0,972,990.4,73,0.994,0 +2013-06-09 11:50:12-06:00,n05667,1001.2,34.3,5.2503,197.3929,4.9276,40.0585,48.843,76.97,18.9,51.8,998.8,0,973.6,994.3,73.7,0.994,0 +2013-06-09 11:55:12-06:00,n05667,999.3,35.4,5.2429,196.7039,4.9176,40,48.7721,76.93,19.1,52.7,998.8,0,970.1,992.6,74.3,0.994,0 +2013-06-09 12:00:12-06:00,n05667,1002.8,36.3,5.266,196.486,4.9376,39.7934,48.588,76.79,19.5,51.7,998.7,0,973.7,995.4,72.6,0.994,0 +2013-06-09 12:05:12-06:00,n05667,1004,35.4,5.267,197.7688,4.9422,40.0165,48.7975,76.95,19.1,52.7,998.7,0,975.3,997,72.5,0.994,0 +2013-06-09 12:10:12-06:00,n05667,1006.2,35.4,5.283,198.018,4.9573,39.9446,48.737,76.91,19.2,51.6,998.6,0,978.5,999.2,71.7,0.994,0 +2013-06-09 12:15:12-06:00,n05667,1004,35.5,5.2735,197.2734,4.9455,39.8891,48.6804,76.84,19.5,51.9,998.6,0,974.4,996.2,72.3,0.994,0 +2013-06-09 12:20:12-06:00,n05667,1001.6,37.7,5.2641,196.2795,4.9384,39.7457,48.549,76.8,19.6,51.4,998.5,0,972.7,994.4,72.5,0.994,0 +2013-06-09 12:25:12-06:00,n05667,998,35.9,5.2505,195.1067,4.924,39.6238,48.4332,76.72,20.1,50.6,998.4,0,971.4,991.5,71.9,0.994,0 +2013-06-09 12:30:12-06:00,n05667,1001.8,35.7,5.2666,196.1449,4.9347,39.7477,48.5425,76.72,20.1,47.7,998.2,0,978.6,996.6,70.2,0.994,0 +2013-06-09 12:35:12-06:00,n05667,998,34.4,5.2405,196.0273,4.9161,39.8747,48.6583,76.88,19.9,48.1,998.2,0,975.3,993.6,71.3,0.994,0 +2013-06-09 12:40:12-06:00,n05667,996.1,35.3,5.2322,196.0297,4.9046,39.9689,48.7298,76.89,19.9,46.4,998.3,0,976.8,992.5,70.8,0.994,0 +2013-06-09 12:45:12-06:00,n05667,994.8,37.2,5.227,194.4142,4.901,39.6679,48.4541,76.76,20.3,48.8,998.2,0,978.1,990.8,70.3,0.994,0 +2013-06-09 12:50:12-06:00,n05667,989.6,38.7,5.2051,192.0743,4.8775,39.3797,48.1705,76.61,20.8,48.4,998.2,0,976.9,986,68.7,0.994,0 +2013-06-09 12:55:12-06:00,n05667,987.7,36.2,5.1812,192.9024,4.8571,39.7157,48.4723,76.81,20.6,46,998.2,0,978.5,986.4,69.8,0.994,0 +2013-06-09 13:00:12-06:00,n05667,983.6,36.1,5.1457,192.5025,4.8282,39.8705,48.618,76.95,20.4,48,998.1,0,974.7,982.5,71.6,0.994,0 +2013-06-09 13:05:12-06:00,n05667,974.8,35.7,5.1104,191.1096,4.7949,39.8569,48.588,76.97,20.6,46.1,998,0,973.8,977.9,70.9,0.994,0 +2013-06-09 13:10:12-06:00,n05667,969.2,37.5,5.0908,189.556,4.7693,39.7451,48.4658,76.83,20.4,48.6,998.1,0,972,972.4,71.2,0.994,0 +2013-06-09 13:15:12-06:00,n05667,963.9,36.2,5.0587,188.9663,4.746,39.8156,48.5198,76.99,20.5,48.1,997.8,0,971.6,969.3,71.6,0.994,0 +2013-06-09 13:20:12-06:00,n05667,955.3,38.1,5.0102,186.6435,4.7052,39.6677,48.363,77.03,20.9,47.5,998,0,968.8,961.6,71.1,0.994,0 +2013-06-09 13:25:12-06:00,n05667,948.7,36,4.9754,185.9353,4.6684,39.8285,48.5009,77.05,20.9,45.6,997.9,0,969.3,958.2,71.3,0.994,0 +2013-06-09 13:30:12-06:00,n05667,941,37.4,4.9414,184.1395,4.632,39.7535,48.4098,76.98,20.6,47.2,997.8,0,968.1,952.3,71.2,0.994,0 +2013-06-09 13:35:12-06:00,n05667,936.3,35.1,4.9134,183.8938,4.6082,39.9061,48.5484,77.09,20.7,45.3,997.8,0,972,950.3,70.3,0.994,0 +2013-06-09 13:40:12-06:00,n05667,926.7,37.9,4.8601,181.3642,4.5633,39.7441,48.3799,77.13,21.1,43.6,997.8,0,970.3,941.6,68.9,0.994,0 +2013-06-09 13:45:12-06:00,n05667,916.8,37,4.8075,179.6653,4.5139,39.8027,48.4189,77.18,21,45,997.7,0,966.9,934.4,69.8,0.994,0 +2013-06-09 13:50:12-06:00,n05667,906.3,37.3,4.7598,177.162,4.4627,39.6988,48.2778,77.1,21.2,44.4,997.7,0,965.1,926.7,69.8,0.994,0 +2013-06-09 13:55:12-06:00,n05667,900.3,37.1,4.7221,175.6195,4.4278,39.663,48.242,77.09,21.4,42.9,997.7,0,969.8,923.8,68.9,0.994,0 +2013-06-09 14:00:12-06:00,n05667,887.7,36.9,4.6542,173.5844,4.3655,39.7632,48.2979,77.22,21.4,42.4,997.6,0,964.6,913.8,69.1,0.994,0 +2013-06-09 14:05:12-06:00,n05667,874.6,35.6,4.5866,171.4594,4.3035,39.8414,48.3552,77.31,21.4,42.7,997.3,0,961.1,903.9,69,0.994,0 +2013-06-09 14:10:12-06:00,n05667,867.4,35.8,4.5448,169.8817,4.2629,39.8517,48.3526,77.31,21.4,41.4,997.4,0,965.4,899.6,67.7,0.994,0 +2013-06-09 14:15:12-06:00,n05667,860.9,34.3,4.5003,169.4548,4.2283,40.0763,48.5484,77.56,21.1,42.3,997.4,0,970.5,897.1,67.4,0.994,0 +2013-06-09 14:20:12-06:00,n05667,849,35.1,4.4373,166.4268,4.1674,39.9352,48.3903,77.51,21.4,41.9,997.3,0,970.1,887.9,66.3,0.994,0 +2013-06-09 14:25:12-06:00,n05667,834.7,35.6,4.3676,163.6047,4.0949,39.9528,48.3675,77.45,21.3,42.5,997.4,0,967.2,878.1,66.5,0.994,0 +2013-06-09 14:30:12-06:00,n05667,824.8,34.6,4.3082,161.7066,4.0441,39.9857,48.3754,77.59,21.7,39.5,997.1,0,969.1,871.7,66,0.994,0 +2013-06-09 14:35:12-06:00,n05667,811.4,34.4,4.237,159.4817,3.9781,40.0894,48.4547,77.68,21.4,41.1,997.2,0,965.6,861.1,66.5,0.994,0 +2013-06-09 14:40:12-06:00,n05667,799,33.6,4.1645,156.93,3.9105,40.1308,48.4615,77.76,21.5,40.4,997.1,0,968.1,854.5,65.9,0.994,0 +2013-06-09 14:45:12-06:00,n05667,779.4,34.9,4.0664,153.1768,3.8184,40.115,48.4048,77.82,21.7,39.8,997.1,0,955.8,836.6,66.3,0.994,0 +2013-06-09 14:50:12-06:00,n05667,772.2,33.9,4.0152,151.6355,3.7729,40.1906,48.4654,77.92,21.8,37.6,997,0,966,834.1,64.9,0.994,0 +2013-06-09 14:55:12-06:00,n05667,752.7,34.6,3.9182,147.6067,3.6811,40.0982,48.3162,77.97,22,37.7,997,0,956.7,817,64.6,0.994,0 +2013-06-09 15:00:12-06:00,n05667,741.3,33.8,3.851,145.1538,3.6172,40.1285,48.3136,78.02,22,36.1,996.8,0,961,810.2,63.7,0.994,0 +2013-06-09 15:05:12-06:00,n05667,727.5,34.2,3.7731,141.9806,3.5436,40.0665,48.2378,78.01,21.9,35.6,997,0,961.7,799.5,62.8,0.994,0 +2013-06-09 15:10:12-06:00,n05667,710.1,34,3.6786,138.4332,3.455,40.0674,48.1983,78.08,22,35.3,996.9,0,957.9,786.7,62.6,0.994,0 +2013-06-09 15:15:12-06:00,n05667,695.2,33.7,3.5969,135.8065,3.3772,40.2132,48.294,78.18,21.9,35.7,996.9,0,956.7,775.1,62.2,0.994,0 +2013-06-09 15:20:12-06:00,n05667,677.7,34.4,3.4992,131.7112,3.2858,40.0852,48.1361,78.2,22.1,36.6,996.8,0,953.3,761.5,61.5,0.994,0 +2013-06-09 15:25:12-06:00,n05667,662.4,32.8,3.4104,128.6846,3.2019,40.1907,48.2087,78.27,22,35.5,996.6,0,951.8,750.6,61.5,0.994,0 +2013-06-09 15:30:12-06:00,n05667,645.7,33.3,3.3182,125.1299,3.1158,40.1594,48.1369,78.34,22.3,32.9,996.7,0,951.7,737.9,60.1,0.994,0 +2013-06-09 15:35:12-06:00,n05667,626.7,31.7,3.2104,121.7502,3.0184,40.3363,48.2604,78.58,22,33.3,996.6,0,945.5,723.3,60.4,0.994,0 +2013-06-09 15:40:12-06:00,n05667,609.6,31.4,3.1134,118.1529,2.9278,40.356,48.2467,78.66,22,32,996.5,0,941.5,710,59.9,0.994,0 +2013-06-09 15:45:12-06:00,n05667,589.2,31.3,2.9993,113.8829,2.8199,40.386,48.2261,78.73,21.9,32.3,996.5,0,933.5,694.1,61,0.994,0 +2013-06-09 15:50:12-06:00,n05667,570.6,31.3,2.8992,110.017,2.7252,40.3699,48.168,78.78,22,35.2,996.4,0,927.1,678,60.4,0.994,0 +2013-06-09 15:55:12-06:00,n05667,556.2,31.5,2.811,106.3767,2.6398,40.2974,48.041,78.77,22.5,34.7,996.5,0,931.4,668.6,59.5,0.994,0 +2013-06-09 16:00:12-06:00,n05667,537.8,30.6,2.7028,102.7009,2.5397,40.4388,48.1394,78.93,22.2,33.4,996.4,0,926.3,654,59.6,0.994,0 +2013-06-09 16:05:12-06:00,n05667,520.7,30.6,2.6039,98.8408,2.446,40.4096,48.0649,78.97,22.2,34.5,996.5,0,927.4,641.9,58.4,0.994,0 +2013-06-09 16:10:12-06:00,n05667,499.3,31.2,2.483,94.0721,2.3324,40.3329,47.9346,79.04,22.4,33.8,996.4,0,917.5,623.3,57.9,0.994,0 +2013-06-09 16:15:12-06:00,n05667,478,30.1,2.369,89.8038,2.2248,40.3645,47.9203,79.11,22.3,33,996.3,0,910.8,608.2,58.4,0.994,0 +2013-06-09 16:20:12-06:00,n05667,459.7,29.3,2.2602,85.8681,2.123,40.4473,47.9557,79.22,22.1,33.5,996.3,0,906.4,594,58.4,0.994,0 +2013-06-09 16:25:12-06:00,n05667,438.6,28.8,2.1388,81.2925,2.0092,40.4606,47.9229,79.31,22.2,30.3,996.2,0,897.6,576.6,57.7,0.994,0 +2013-06-09 16:30:12-06:00,n05667,419.3,29.7,2.0284,76.8292,1.9052,40.3269,47.7106,79.39,22.4,31.4,996.2,0,892.7,560.4,56.9,0.994,0 +2013-06-09 16:35:12-06:00,n05667,399.7,29.6,1.9169,72.461,1.8,40.2561,47.6258,79.37,22.5,33.2,996.1,0,886.1,544.8,57.1,0.994,0 +2013-06-09 16:40:12-06:00,n05667,380.7,28.3,1.8009,68.2297,1.6918,40.3297,47.6413,79.52,22.3,30,995.8,0,877.9,529.6,57.7,0.994,0 +2013-06-09 16:45:12-06:00,n05667,361.5,28,1.6883,63.9394,1.5863,40.3064,47.5718,79.61,22.4,31,996,0,873.5,514.4,56.7,0.994,0 +2013-06-09 16:50:12-06:00,n05667,342,28.3,1.5753,59.523,1.4783,40.2648,47.488,79.57,22.2,32.6,996,0,866,497.7,56.5,0.994,0 +2013-06-09 16:55:12-06:00,n05667,323.3,27.7,1.4638,55.2423,1.3735,40.2205,47.3761,79.66,22.2,33,995.9,0,862,483,56,0.994,0 +2013-06-09 17:00:12-06:00,n05667,302.6,27.7,1.3492,50.5773,1.2631,40.0434,47.1574,79.49,22.6,34.2,995.8,0,851.5,464.8,54.8,0.994,0 +2013-06-09 17:05:12-06:00,n05667,283.7,26.9,1.2377,46.4147,1.1585,40.0629,47.1078,79.6,22.3,33.1,995.7,0,843.1,449.3,54.9,0.994,0 +2013-06-09 17:10:12-06:00,n05667,265,27.1,1.1304,42.2779,1.0581,39.9561,46.9746,79.62,22.2,35,995.9,0,837.6,433.8,54.1,0.994,0 +2013-06-09 17:15:12-06:00,n05667,244.6,26.1,1.0167,37.9539,0.952,39.8684,46.8367,79.7,22.2,34.1,995.8,0,822.7,415.5,53.9,0.994,0 +2013-06-09 17:20:12-06:00,n05667,225.4,25.9,0.9115,33.9313,0.8532,39.7686,46.6769,79.75,22.1,34,995.8,0,811.3,398.4,53.2,0.994,0 +2013-06-09 17:25:12-06:00,n05667,206.2,25.6,0.8123,30.0248,0.7589,39.5653,46.4465,79.58,22.2,34.8,995.7,0,801.7,381.4,52.2,0.994,0 +2013-06-09 17:30:12-06:00,n05667,188.8,25.3,0.721,26.5483,0.6731,39.4446,46.2874,79.55,22,35.1,995.7,0,795,367,52,0.994,0 +2013-06-09 17:35:12-06:00,n05667,170.1,25.1,0.6309,23.0335,0.5875,39.2059,46.0292,79.31,22,36.5,995.7,0,782.2,349.1,50.8,0.994,0 +2013-06-09 17:40:12-06:00,n05667,152.8,24.7,0.5467,19.8258,0.509,38.9474,45.7554,79.26,22.1,35.7,995.7,0,772.2,334.1,50.5,0.994,0 +2013-06-09 17:45:12-06:00,n05667,135.6,24.5,0.4718,16.9007,0.4367,38.6998,45.4835,78.76,22,36.8,995.8,0,759.5,317.8,49.9,0.994,0 +2013-06-09 17:50:12-06:00,n05667,118.4,24.1,0.4018,14.2781,0.3715,38.4387,45.1947,78.62,21.9,35.6,995.6,0,744.4,301.1,49.5,0.994,0 +2013-06-09 17:55:12-06:00,n05667,102.1,23.7,0.3402,12.097,0.3169,38.1776,44.9026,79.2,21.7,36.2,995.7,0,731.9,285.2,48.6,0.994,0 +2013-06-09 18:00:12-06:00,n05667,86.2,23.7,0.2864,10.2064,0.2683,38.0404,44.539,80,21.7,36.5,995.7,0,718.2,269.3,47.5,0.994,0 +2013-06-09 18:05:12-06:00,n05667,72.1,23.5,0.2446,8.7393,0.2311,37.8228,44.2841,80.67,21.8,35.8,995.6,0,704.5,253.1,46.1,0.994,0 +2013-06-09 18:10:12-06:00,n05667,59.6,23.3,0.2125,7.4329,0.1997,37.2257,43.968,79.54,21.7,35.3,995.5,0,688,237.5,45.3,0.994,0 +2013-06-09 18:15:12-06:00,n05667,55.3,23.1,0.2029,6.9517,0.1876,37.0469,43.8528,78.12,21.7,35.8,995.6,0,670.1,221.7,44.4,0.994,0 +2013-06-09 18:20:12-06:00,n05667,53.8,22.9,0.1972,6.7403,0.1823,36.9661,43.8099,78.02,21.6,36.5,995.5,0,654.5,206.6,43,0.994,0 +2013-06-09 18:25:12-06:00,n05667,50.9,22.9,0.1919,6.554,0.1775,36.9273,43.7696,78.03,21.5,37.2,995.6,0,635.1,191.6,42,0.994,0 +2013-06-09 18:30:13-06:00,n05667,47.3,22.9,0.1862,6.3325,0.1719,36.844,43.7052,77.81,21.6,37.4,995.5,0,614.7,176.1,40.3,0.994,0 +2013-06-09 18:35:12-06:00,n05667,43.8,23,0.1799,6.117,0.1662,36.8009,43.6401,77.93,21.6,38.2,995.6,0,593.5,160.8,38.4,0.994,0 +2013-06-09 18:40:13-06:00,n05667,40.8,23,0.1742,5.8836,0.1604,36.6906,43.5634,77.52,21.6,38.8,995.7,0,572.4,146.7,37.1,0.994,0 +2013-06-09 18:45:13-06:00,n05667,37.9,23,0.1668,5.6229,0.1536,36.6174,43.4489,77.6,21.5,38.6,995.6,0,550.4,133,35.5,0.994,0 +2013-06-09 18:50:12-06:00,n05667,34.9,23.4,0.1588,5.3234,0.146,36.4547,43.3546,77.32,21.4,39.8,995.7,0,518.8,118.1,33.6,0.994,0 +2013-06-09 18:55:13-06:00,n05667,31.5,23.5,0.1487,4.9597,0.1366,36.3009,43.2167,77.2,21.4,40.6,995.7,0,485.5,103.5,31.5,0.994,0 +2013-06-09 19:00:12-06:00,n05667,28.3,23.5,0.1392,4.6213,0.1277,36.1809,43.0879,77.05,21.3,41.3,995.7,0,447.2,89.6,29.5,0.994,0 +2013-06-09 19:05:13-06:00,n05667,25.8,23.3,0.131,4.3171,0.1198,36.0436,42.9555,76.7,21,45.1,995.7,0,12.7,29.9,28.4,0.994,0 +2013-06-09 19:10:13-06:00,n05667,23.1,22.9,0.1196,3.9141,0.1091,35.8901,42.781,76.51,20.8,47.2,995.7,0,0.6,25.8,26.1,0.994,0 +2013-06-09 19:15:13-06:00,n05667,20.5,21.8,0.1081,3.5176,0.0987,35.6547,42.6189,76.36,20.6,48.3,995.7,0,-0.2,23.4,23.7,0.994,0 +2013-07-21 05:30:12-06:00,n05667,23.6,14.1,0.1202,4.0891,0.1103,37.0745,44.0076,77.31,13.9,76.8,996,0,402.8,65.1,23.9,0.989,0 +2013-07-21 05:35:13-06:00,n05667,26.4,14.1,0.1304,4.4603,0.1198,37.2311,44.1481,77.5,13.8,77.1,996.1,0,434.1,76.8,26.3,0.989,0 +2013-07-21 05:40:12-06:00,n05667,29.5,14,0.1386,4.7754,0.1276,37.4226,44.3034,77.79,13.7,76.4,996,0,463.1,89.4,28.8,0.989,0 +2013-07-21 05:45:13-06:00,n05667,32.5,14.5,0.1475,5.0972,0.1359,37.5149,44.4096,77.79,13.8,75.9,996,0,492.2,102.1,30.7,0.989,0 +2013-07-21 05:50:12-06:00,n05667,35.4,14.7,0.1564,5.4196,0.1441,37.622,44.554,77.78,14.2,75.4,996,0,519,115.2,32.5,0.989,0 +2013-07-21 05:55:12-06:00,n05667,38.9,14.6,0.1644,5.7181,0.1514,37.773,44.6457,77.92,13.9,76.1,996.1,0,543.6,129.4,34.7,0.989,0 +2013-07-21 06:00:12-06:00,n05667,42.3,14.6,0.1713,5.9934,0.1584,37.8329,44.7201,78.23,13.9,75.8,996,0,569.1,143.8,36.4,0.989,0 +2013-07-21 06:05:12-06:00,n05667,45.8,14.6,0.1781,6.2543,0.1647,37.9757,44.8181,78.34,14.2,74.6,996,0,592.3,158.6,38,0.989,0 +2013-07-21 06:10:12-06:00,n05667,48.4,14.7,0.1845,6.498,0.1708,38.0467,44.8896,78.44,14,74.8,996,0,615.7,173.9,39.4,0.989,0 +2013-07-21 06:15:12-06:00,n05667,50.2,14.7,0.1912,6.7566,0.1772,38.1403,44.9709,78.58,14,74.9,996,0,631.9,188.7,40.9,0.989,0 +2013-07-21 06:20:12-06:00,n05667,59.1,14.9,0.2069,7.5491,0.195,38.7066,45.1979,80.71,13.8,76.1,996,0,646.3,203.9,43,0.989,0 +2013-07-21 06:25:12-06:00,n05667,72.3,15,0.2495,9.0549,0.2334,38.7931,45.4835,79.8,13.9,74.9,996.1,0,656.7,218.9,45.4,0.989,0 +2013-07-21 06:30:12-06:00,n05667,87.1,15.4,0.2936,10.684,0.2737,39.0406,45.7814,79.48,14.1,74.9,996.2,0,671.5,234,46.5,0.989,0 +2013-07-21 06:35:12-06:00,n05667,103.2,15.7,0.3432,12.6218,0.321,39.3242,46.063,79.84,14.2,74.2,996.2,0,689.2,250.3,47.4,0.989,0 +2013-07-21 06:40:12-06:00,n05667,119.6,16.2,0.4017,14.9217,0.3771,39.5666,46.3739,80.11,14.7,72.6,996.1,0,707.4,266.3,47.8,0.989,0 +2013-07-21 06:45:12-06:00,n05667,137.3,16.8,0.4715,17.6507,0.4432,39.8218,46.6458,80.25,14.9,72.1,996.1,0,721.8,283,49.1,0.989,0 +2013-07-21 06:50:12-06:00,n05667,155,17.1,0.5491,20.648,0.5157,40.04,46.8995,80.17,14.8,71.7,996.1,0,732.3,299,50.4,0.989,0 +2013-07-21 06:55:12-06:00,n05667,173.1,17.4,0.6341,24.0024,0.5965,40.2416,47.0966,80.37,14.9,71.6,996.2,0,743.7,315.1,51.5,0.989,0 +2013-07-21 07:00:12-06:00,n05667,191.6,17.7,0.7221,27.5256,0.6806,40.4413,47.3493,80.51,14.9,71.7,996.2,0,754.6,331.5,52.5,0.989,0 +2013-07-21 07:05:12-06:00,n05667,210.7,18.3,0.8185,31.36,0.7725,40.5959,47.5168,80.64,14.9,72.2,996.2,0,767.7,348.1,52.9,0.989,0 +2013-07-21 07:10:12-06:00,n05667,230.1,18.5,0.9202,35.4313,0.8696,40.7443,47.7464,80.64,15.1,70.5,996.2,0,778.1,365.2,54.2,0.989,0 +2013-07-21 07:15:12-06:00,n05667,249,19.4,1.0242,39.4875,0.9676,40.8109,47.8563,80.57,15.3,70.3,996.3,0,787.2,381,54.9,0.989,0 +2013-07-21 07:20:12-06:00,n05667,268.4,20,1.1296,43.6708,1.068,40.8887,47.9584,80.61,15.4,69.8,996.4,0,793.4,396.5,56,0.989,0 +2013-07-21 07:25:12-06:00,n05667,289.9,20.6,1.2399,47.9778,1.1721,40.9333,48.0482,80.54,15.3,70,996.4,0,802.1,413.5,57.3,0.989,0 +2013-07-21 07:30:12-06:00,n05667,308.8,20.6,1.3486,52.3543,1.2764,41.0173,48.177,80.58,15.3,69.7,996.3,0,810.7,429.7,58,0.989,0 +2013-07-21 07:35:12-06:00,n05667,328.7,20.7,1.4616,56.846,1.3825,41.1182,48.3058,80.51,15.1,70.6,996.3,0,819.8,446.4,58.3,0.989,0 +2013-07-21 07:40:12-06:00,n05667,348.2,21.8,1.5757,61.1688,1.4892,41.0749,48.3207,80.34,15.4,70.6,996.3,0,827.3,460.9,58.2,0.989,0 +2013-07-21 07:45:12-06:00,n05667,368.9,22.5,1.6868,65.4665,1.5943,41.0618,48.3695,80.24,15.2,70.9,996.4,0,832.2,476,59.1,0.989,0 +2013-07-21 07:50:12-06:00,n05667,396.9,23.5,1.7989,69.7429,1.7004,41.0147,48.3584,80.17,16,68.5,996.4,0,837.9,491.2,59.8,0.989,0 +2013-07-21 07:55:12-06:00,n05667,410,23.8,1.9118,74.2018,1.8086,41.0275,48.4313,80.14,15.7,69.8,996.3,0,845.3,507.8,60.8,0.989,0 +2013-07-21 08:00:12-06:00,n05667,451.4,25.1,2.0245,78.3704,1.9151,40.9224,48.3747,80.02,16.2,67.9,996.3,0,851.4,522.5,60.9,0.989,0 +2013-07-21 08:05:12-06:00,n05667,470.2,26.3,2.1371,82.4203,2.0183,40.8365,48.3077,79.84,16.7,66.7,996.3,0,856.5,537.6,61.2,0.989,0 +2013-07-21 08:10:12-06:00,n05667,468.6,26.2,2.2449,86.7634,2.1239,40.851,48.3884,79.87,16.7,66.5,996.3,0,860.5,553,62.2,0.989,0 +2013-07-21 08:15:12-06:00,n05667,485.7,26.9,2.3607,90.926,2.2289,40.7933,48.3871,79.6,16.6,67.1,996.2,0,867.5,568.6,62.3,0.989,0 +2013-07-21 08:20:12-06:00,n05667,504.6,27.7,2.4729,95.1844,2.3343,40.7761,48.4157,79.5,16.6,66.8,996.3,0,872.9,583.8,62.3,0.989,0 +2013-07-21 08:25:12-06:00,n05667,522.3,28.1,2.579,99.0729,2.4341,40.7017,48.3773,79.41,17.3,65.1,996.3,0,876.5,597.7,63.3,0.989,0 +2013-07-21 08:30:12-06:00,n05667,559.6,28.7,2.6805,102.9148,2.5308,40.6651,48.3871,79.35,17,65.8,996.2,0,879.9,612.3,64.1,0.989,0 +2013-07-21 08:35:12-06:00,n05667,565.5,29.5,2.7865,107.0566,2.6338,40.6466,48.415,79.36,17,65.9,996.1,0,885.7,626.7,63.9,0.989,0 +2013-07-21 08:40:12-06:00,n05667,575.6,30.1,2.8887,110.4158,2.7246,40.5262,48.3539,79.05,17.4,64.8,996.1,0,885.3,638.8,64.9,0.989,0 +2013-07-21 08:45:12-06:00,n05667,593.2,29.9,2.9849,114.4337,2.8163,40.6325,48.4788,79.08,17.4,64.8,996,0,889.5,652.4,66.3,0.989,0 +2013-07-21 08:50:12-06:00,n05667,611.7,31.2,3.096,118.1403,2.9172,40.4976,48.3936,78.85,17.8,64.4,996,0,892.5,666.9,67.2,0.989,0 +2013-07-21 08:55:12-06:00,n05667,629.1,31.8,3.1882,121.4411,3.003,40.4399,48.3819,78.73,17.7,63.9,996,0,893.8,679.1,67.8,0.989,0 +2013-07-21 09:00:12-06:00,n05667,646.7,32.2,3.2952,125.017,3.1022,40.2994,48.2908,78.56,18,63.7,996,0,898.1,693.7,68.2,0.989,0 +2013-07-21 09:05:12-06:00,n05667,661.6,32.8,3.3763,128.3677,3.1797,40.371,48.389,78.57,18.3,62.6,996,0,897.9,705,69.8,0.989,0 +2013-07-21 09:10:12-06:00,n05667,680.1,32.5,3.4755,132.1123,3.2733,40.3601,48.4157,78.51,18.2,63.8,995.9,0,903.6,719.4,69.5,0.989,0 +2013-07-21 09:15:12-06:00,n05667,696.1,32.9,3.5655,135.2777,3.3574,40.292,48.3806,78.42,18.5,62.7,995.8,0,906.3,731.5,69.5,0.989,0 +2013-07-21 09:20:12-06:00,n05667,712.5,33.7,3.6552,138.6228,3.4421,40.2723,48.4111,78.34,18.5,62,995.8,0,908.5,744,70.8,0.989,0 +2013-07-21 09:25:12-06:00,n05667,728.3,34.2,3.7458,141.4524,3.5243,40.1368,48.3175,78.16,18.8,61,995.8,0,912.7,756.5,70,0.989,0 +2013-07-21 09:30:12-06:00,n05667,744.4,34.4,3.8332,144.6461,3.6059,40.1135,48.3227,78.09,18.9,60.9,995.8,0,915.9,768.4,70.3,0.989,0 +2013-07-21 09:35:12-06:00,n05667,758.7,34.5,3.9126,147.4265,3.6757,40.1083,48.3552,77.92,19,60.4,995.8,0,917.3,779.6,70.9,0.989,0 +2013-07-21 09:40:12-06:00,n05667,773.9,34.6,3.9945,150.6033,3.758,40.0755,48.3571,77.97,19.2,59.5,995.8,0,920.3,791.1,70.8,0.989,0 +2013-07-21 09:45:12-06:00,n05667,786.8,37.1,4.0712,152.171,3.8261,39.7719,48.0963,77.71,19.6,60,995.8,0,921.4,800.7,70.7,0.989,0 +2013-07-21 09:50:12-06:00,n05667,800.7,36.2,4.1448,154.7502,3.893,39.751,48.1015,77.62,19.5,58.8,995.7,0,923.9,811.3,71,0.989,0 +2013-07-21 09:55:12-06:00,n05667,815.3,36,4.2129,158.2073,3.9652,39.8987,48.2713,77.8,19.7,58.3,995.7,0,926.7,822.2,71,0.989,0 +2013-07-21 10:00:12-06:00,n05667,828.8,36,4.2891,160.5941,4.0317,39.8327,48.2258,77.64,19.8,57.5,995.6,0,929.9,832.5,70.4,0.989,0 +2013-07-21 10:05:12-06:00,n05667,842.2,36.6,4.3677,163.1835,4.1021,39.7804,48.2186,77.48,20.2,56.1,995.5,0,933.4,842.4,70.3,0.989,0 +2013-07-21 10:10:12-06:00,n05667,854.6,37.1,4.4284,165.676,4.162,39.8065,48.2667,77.51,20.4,55,995.5,0,935.2,851.6,70.6,0.989,0 +2013-07-21 10:15:12-06:00,n05667,867.7,37.3,4.5017,168.0474,4.2243,39.7807,48.27,77.34,20.4,54.5,995.4,0,937.9,861,70,0.989,0 +2013-07-21 10:20:12-06:00,n05667,878.6,37.4,4.5612,170.188,4.2794,39.7692,48.2804,77.28,20.7,53.7,995.5,0,939.6,868.3,69.4,0.989,0 +2013-07-21 10:25:12-06:00,n05667,891.7,37.9,4.6284,172.5863,4.3446,39.724,48.2602,77.27,21.2,51.5,995.4,0,943.9,878.8,68.7,0.989,0 +2013-07-21 10:30:12-06:00,n05667,901.3,38.6,4.6844,173.8019,4.3963,39.5334,48.1145,77.11,21.4,51.4,995.3,0,946.2,886.1,67.9,0.989,0 +2013-07-21 10:35:12-06:00,n05667,912.4,38.9,4.7459,176.0953,4.4523,39.5519,48.1496,77.06,21.6,49.8,995.3,0,948.1,894.1,67.7,0.989,0 +2013-07-21 10:40:12-06:00,n05667,922.4,39,4.7938,177.3812,4.4975,39.4398,48.0657,76.98,21.9,48.4,995.3,0,951.5,902.1,66.6,0.989,0 +2013-07-21 10:45:12-06:00,n05667,930,41.2,4.8421,177.7807,4.539,39.1673,47.8095,76.79,22,49,995.2,0,950.8,907.7,66.6,0.989,0 +2013-07-21 10:50:12-06:00,n05667,940.4,40.3,4.8946,179.8922,4.5884,39.206,47.8674,76.78,22.5,45.7,995.1,0,953.4,915.9,66.7,0.989,0 +2013-07-21 10:55:12-06:00,n05667,947.5,40.4,4.9361,181.4287,4.6252,39.2265,47.9096,76.72,22.5,45.4,995.2,0,953.8,920.9,66.7,0.989,0 +2013-07-21 11:00:12-06:00,n05667,955.5,39.9,4.9781,183.3537,4.6661,39.2949,47.9948,76.74,22.9,44.6,995.2,0,954.1,926.4,67.3,0.989,0 +2013-07-21 11:05:12-06:00,n05667,963.6,40.1,5.0234,184.8198,4.7034,39.2949,48.0098,76.63,22.6,46.3,995.1,0,956.3,933.2,67.3,0.989,0 +2013-07-21 11:10:12-06:00,n05667,969.5,41.6,5.0536,184.9247,4.7324,39.0764,47.7952,76.56,23.3,43.8,995.1,0,956.2,937,66.9,0.989,0 +2013-07-21 11:15:12-06:00,n05667,974.4,41.1,5.0796,186.5181,4.7593,39.1904,47.9292,76.61,23.4,43.7,995,0,954.7,941.3,68.5,0.989,0 +2013-07-21 11:20:12-06:00,n05667,982.1,41.4,5.1256,187.6579,4.8021,39.0782,47.8491,76.52,23.4,43.3,995,0,957.2,945.8,67.3,0.989,0 +2013-07-21 11:25:12-06:00,n05667,988.2,41,5.1505,189.5215,4.8252,39.2771,48.041,76.59,23.5,42.4,995.1,0,958.2,951.2,67.9,0.989,0 +2013-07-21 11:30:12-06:00,n05667,993.2,40.6,5.177,190.1072,4.8514,39.1858,47.9597,76.57,23.5,43.2,995.1,0,959.6,955,67.4,0.989,0 +2013-07-21 11:35:12-06:00,n05667,997.7,41.6,5.2055,190.8321,4.8736,39.156,47.9402,76.47,23.6,42.5,995.1,0,959.5,957.9,67.6,0.989,0 +2013-07-21 11:40:12-06:00,n05667,1001.7,41.8,5.2272,190.9587,4.8966,38.9984,47.8075,76.41,24,42.4,994.9,0,960.7,960.8,66.7,0.989,0 +2013-07-21 11:45:12-06:00,n05667,1004.3,41.8,5.2502,191.5226,4.9137,38.9769,47.7874,76.34,24.1,41.1,994.9,0,961.2,963.5,66.8,0.989,0 +2013-07-21 11:50:12-06:00,n05667,1006.9,43.5,5.2672,191.0401,4.928,38.7663,47.602,76.19,24.3,41.5,994.9,0,961.1,964.9,66.6,0.989,0 +2013-07-21 11:55:12-06:00,n05667,1009.9,42.6,5.2798,191.8808,4.9373,38.8632,47.6852,76.21,24.3,40.7,995,0,960.8,967,67.2,0.989,0 +2013-07-21 12:00:12-06:00,n05667,1011.3,42.9,5.2851,192.3566,4.9466,38.8863,47.7145,76.28,24.3,41.5,994.9,0,959.8,967.8,67.3,0.989,0 +2013-07-21 12:05:12-06:00,n05667,1012.6,42.7,5.2985,192.6473,4.9567,38.8663,47.6904,76.24,25,39.8,994.8,0,959.7,968.8,67.4,0.989,0 +2013-07-21 12:10:12-06:00,n05667,1012.5,42.7,5.3003,193.2025,4.9557,38.9856,47.8114,76.24,24.9,39.4,994.8,0,960.2,969.5,67,0.989,0 +2013-07-21 12:15:12-06:00,n05667,1015.2,41.4,5.3093,194.2185,4.9693,39.0837,47.9096,76.35,24.8,38.7,994.7,0,963.1,972.2,66.5,0.989,0 +2013-07-21 12:20:12-06:00,n05667,1015.3,43,5.3168,193.3515,4.9716,38.8916,47.7269,76.2,25,39.3,994.7,0,963.1,971.3,65.9,0.989,0 +2013-07-21 12:25:12-06:00,n05667,1015.6,42.7,5.3167,193.3283,4.9716,38.8868,47.7249,76.19,25.3,38.4,994.7,0,964.8,972.6,65.5,0.989,0 +2013-07-21 12:30:12-06:00,n05667,1014.8,44,5.3128,192.6208,4.9659,38.7887,47.6091,76.15,25.6,38.2,994.7,0,964.8,971.8,65.2,0.989,0 +2013-07-21 12:35:12-06:00,n05667,1010.2,44.5,5.2966,191.5831,4.9493,38.7094,47.5538,76.06,25.9,37,994.7,0,961.8,967.7,65,0.989,0 +2013-07-21 12:40:12-06:00,n05667,1010.6,42.2,5.2883,192.725,4.9456,38.9688,47.7913,76.26,25.8,36.2,994.5,0,963.7,969.5,65.4,0.989,0 +2013-07-21 12:45:12-06:00,n05667,1008.9,43,5.2813,192.0246,4.9391,38.8787,47.6995,76.23,25.6,38.5,994.7,0,964.7,967.9,64.9,0.989,0 +2013-07-21 12:50:12-06:00,n05667,1006.1,42.8,5.2701,191.3599,4.9285,38.8274,47.6547,76.2,25.8,37.3,994.7,0,965.1,966.5,64.4,0.989,0 +2013-07-21 12:55:12-06:00,n05667,1002.1,42.6,5.2422,190.7435,4.9027,38.9056,47.706,76.27,25.8,38.2,994.7,0,963.9,963.7,65.1,0.989,0 +2013-07-21 13:00:12-06:00,n05667,998.8,42.7,5.2252,190.0817,4.8867,38.8978,47.6982,76.27,26.1,36.6,994.6,0,964.8,960.7,63.8,0.989,0 +2013-07-21 13:05:12-06:00,n05667,994,41.9,5.1974,189.5116,4.8612,38.9844,47.7691,76.33,26,37.6,994.5,0,963.8,957.4,64.2,0.989,0 +2013-07-21 13:10:12-06:00,n05667,988.9,44.4,5.1757,187.7427,4.8392,38.7959,47.5766,76.24,26.2,36.5,994.6,0,965,954.2,63.3,0.989,0 +2013-07-21 13:15:12-06:00,n05667,984.5,42.5,5.1412,187.4427,4.8117,38.9552,47.7243,76.39,26.2,35.4,994.6,0,964,951,63.7,0.989,0 +2013-07-21 13:20:12-06:00,n05667,978.3,43.2,5.1177,185.8566,4.7861,38.8327,47.5877,76.31,26.7,35.8,994.6,0,964.8,946.6,62.4,0.989,0 +2013-07-21 13:25:12-06:00,n05667,972,42.9,5.0811,184.3013,4.7526,38.7791,47.5265,76.32,26.7,34.2,994.6,0,965.2,942.8,62.3,0.989,0 +2013-07-21 13:30:12-06:00,n05667,965.3,43.4,5.0416,183.7635,4.7198,38.9345,47.6631,76.47,26.7,34.5,994.6,0,963.8,937.4,62.5,0.989,0 +2013-07-21 13:35:12-06:00,n05667,954.9,44.5,4.993,180.7313,4.67,38.7002,47.4127,76.34,26.8,34.8,994.6,0,959.2,929.3,63,0.989,0 +2013-07-21 13:40:12-06:00,n05667,948.2,43.1,4.953,180.3336,4.6324,38.9291,47.6202,76.46,26.8,34.4,994.5,0,958.8,924.5,64,0.989,0 +2013-07-21 13:45:12-06:00,n05667,941.6,43.3,4.9174,178.8863,4.5999,38.8891,47.5714,76.47,27.1,33.1,994.4,0,960.4,919.7,62.6,0.989,0 +2013-07-21 13:50:12-06:00,n05667,930.3,42.2,4.8548,176.8649,4.5472,38.8953,47.5499,76.62,27,35.2,994.4,0,956.9,911.2,62.5,0.989,0 +2013-07-21 13:55:12-06:00,n05667,921,43.2,4.8086,175.3328,4.5023,38.9427,47.5831,76.63,26.9,33.8,994.4,0,956.2,904.9,62.3,0.989,0 +2013-07-21 14:00:12-06:00,n05667,911.1,43.2,4.7574,172.7578,4.4494,38.8274,47.4368,76.55,27.3,33.4,994.3,0,956,897.8,61.3,0.989,0 +2013-07-21 14:05:12-06:00,n05667,901.6,44.1,4.7072,170.8249,4.4046,38.7831,47.3802,76.59,27.4,35,994.3,0,956,891.1,61.3,0.989,0 +2013-07-21 14:10:12-06:00,n05667,891.1,43.6,4.6468,168.5569,4.3486,38.7608,47.3366,76.63,27.5,34.2,994.3,0,954.5,883.3,60.8,0.989,0 +2013-07-21 14:15:12-06:00,n05667,878.9,42.5,4.5856,167.2911,4.2908,38.9879,47.5194,76.77,27.4,33.7,994.2,0,952.9,875.1,61,0.989,0 +2013-07-21 14:20:12-06:00,n05667,869.5,41.5,4.5279,165.7917,4.2419,39.0843,47.5935,76.93,27.4,33.8,994.2,0,953.1,869.5,61,0.989,0 +2013-07-21 14:25:12-06:00,n05667,854.9,42.8,4.4558,162.1708,4.1729,38.8629,47.3581,76.85,27.7,34.2,994.1,0,949.4,857.9,60.7,0.989,0 +2013-07-21 14:30:12-06:00,n05667,842.4,42.8,4.3922,159.7585,4.1118,38.8537,47.3151,76.88,27.8,33.8,994.1,0,947.7,848.7,60.4,0.989,0 +2013-07-21 14:35:12-06:00,n05667,827.3,41.5,4.3068,157.782,4.0354,39.0993,47.5103,77.11,27.9,32.9,994,0,941.8,837.2,61.3,0.989,0 +2013-07-21 14:40:12-06:00,n05667,814.8,44,4.2466,154.5929,3.9766,38.876,47.2703,77.01,28.1,34.2,994,0,941.4,827.6,60.5,0.989,0 +2013-07-21 14:45:12-06:00,n05667,803,42.6,4.1772,151.9837,3.9098,38.8725,47.2338,77.03,28.5,31.7,994,0,942.1,819.4,59.3,0.989,0 +2013-07-21 14:50:12-06:00,n05667,790.8,41.4,4.1063,150.3196,3.8484,39.0599,47.4101,77.21,28.2,31.4,993.8,0,943.3,811.2,59.2,0.989,0 +2013-07-21 14:55:12-06:00,n05667,773.9,40.9,4.0163,146.997,3.7609,39.086,47.3802,77.25,28.3,31.9,993.7,0,937.1,797.6,59.2,0.989,0 +2013-07-21 15:00:12-06:00,n05667,763.2,41.8,3.9537,144.9444,3.7037,39.1352,47.401,77.34,28.4,32,993.8,0,940.9,790.8,58.7,0.989,0 +2013-07-21 15:05:12-06:00,n05667,745,41.7,3.8554,141.275,3.6134,39.0978,47.3294,77.42,28.4,32.4,993.8,0,934.2,775.6,58.6,0.989,0 +2013-07-21 15:10:12-06:00,n05667,727.8,41.7,3.7658,137.6328,3.5273,39.0194,47.2169,77.4,28.7,32.7,993.8,0,929.7,762,57.8,0.989,0 +2013-07-21 15:15:12-06:00,n05667,713.3,42.2,3.6885,134.5428,3.4533,38.9605,47.1272,77.4,28.8,32.7,993.7,0,930.3,751.6,56.9,0.989,0 +2013-07-21 15:20:12-06:00,n05667,698.3,40.6,3.5989,131.8113,3.3753,39.0523,47.1831,77.62,28.7,32.7,993.6,0,928.1,740.5,56.9,0.989,0 +2013-07-21 15:25:12-06:00,n05667,681.9,40.5,3.5046,128.6005,3.2882,39.11,47.202,77.74,28.6,32,993.6,0,925.2,727.9,56.5,0.989,0 +2013-07-21 15:30:12-06:00,n05667,666.3,41.4,3.4212,125.1328,3.2062,39.0286,47.0979,77.66,28.9,31.2,993.6,0,922.7,716.2,55.4,0.989,0 +2013-07-21 15:35:12-06:00,n05667,647.4,40.6,3.3156,121.3158,3.1086,39.0261,47.0231,77.81,28.9,31.6,993.4,0,920.3,701.5,54.9,0.989,0 +2013-07-21 15:45:12-06:00,n05667,612.5,40.6,3.1221,114.2128,2.9254,39.0417,46.9724,77.88,29.1,31.7,993.5,0,914,674.9,54.2,0.989,0 +2013-07-21 15:50:12-06:00,n05667,594,41.6,3.0208,110.3069,2.8282,39.0023,46.881,77.89,29,30.9,993.4,0,910.6,660.7,53.6,0.989,0 +2013-07-21 15:55:12-06:00,n05667,578,39.8,2.9189,107.2687,2.7365,39.1995,47.0153,78.17,29,30.7,993.4,0,909.4,649.2,53.9,0.989,0 +2013-07-21 16:00:12-06:00,n05667,559,39.9,2.8167,103.5846,2.6404,39.2302,47.0112,78.23,28.8,30,993.4,0,906,634.4,52.6,0.989,0 +2013-07-21 16:05:12-06:00,n05667,541.8,38.7,2.7126,100.0155,2.5442,39.3116,47.0565,78.35,28.9,31.2,993.3,0,903.3,621.2,52.5,0.989,0 +2013-07-21 16:10:12-06:00,n05667,520.8,37.7,2.5942,95.8922,2.433,39.4127,47.0974,78.49,28.7,31.7,993.3,0,893.2,604.1,53.4,0.989,0 +2013-07-21 16:15:12-06:00,n05667,502.2,37.4,2.4953,92.217,2.3401,39.4068,47.0342,78.57,28.7,31.6,993.3,0,893,591.7,52.4,0.989,0 +2013-07-21 16:20:12-06:00,n05667,481.9,37,2.385,88.227,2.2392,39.4008,47.0049,78.7,28.7,31.1,993.2,0,888.9,576.8,51.9,0.989,0 +2013-07-21 16:25:12-06:00,n05667,461.3,37,2.2677,83.7803,2.1274,39.3819,46.9159,78.75,28.8,31.6,993.3,0,881.8,560.5,51.5,0.989,0 +2013-07-21 16:30:12-06:00,n05667,442,37.3,2.1582,79.4983,2.0244,39.2694,46.7681,78.76,29,30.8,993.2,0,876.9,544.6,50.8,0.989,0 +2013-07-21 16:35:14-06:00,n05667,423.3,36.6,2.0449,75.49,1.9183,39.3528,46.8042,78.88,28.9,29.4,993.2,0,872.1,529.8,50.2,0.989,0 +2013-07-21 16:40:12-06:00,n05667,403.8,36.2,1.9343,71.3355,1.8127,39.3534,46.7585,78.87,28.8,31.5,993.2,0,866.8,515,50.1,0.989,0 +2013-07-21 16:45:12-06:00,n05667,384.1,35.8,1.8178,66.9729,1.7041,39.3009,46.646,78.98,29,31.2,993.1,0,861.7,499.1,49.1,0.989,0 +2013-07-21 16:50:12-06:00,n05667,364.4,35.9,1.704,62.5788,1.5951,39.2331,46.5209,78.94,29,31.6,993,0,855.7,483.2,48.3,0.989,0 +2013-07-21 16:55:12-06:00,n05667,346.2,35,1.5923,58.6213,1.4921,39.2887,46.5364,79.11,28.8,30.6,992.9,0,851,469.3,48.7,0.989,0 +2013-07-21 17:00:12-06:00,n05667,325.4,34.5,1.4762,54.2493,1.3823,39.2467,46.4322,79.14,28.8,31,993,0,840.8,451.2,48,0.989,0 +2013-07-21 17:05:12-06:00,n05667,306.8,34.2,1.3659,50.0796,1.2781,39.1828,46.3229,79.15,28.8,31.4,993,0,837.4,436.7,47,0.989,0 +2013-07-21 17:10:12-06:00,n05667,285.9,33.9,1.2477,45.6075,1.1669,39.0835,46.1813,79.15,28.8,31,992.9,0,825,419,47.1,0.989,0 +2013-07-21 17:15:12-06:00,n05667,266.4,34,1.1382,41.451,1.0643,38.9473,45.9905,79.18,29,30.3,992.9,0,817.7,402.5,46.1,0.989,0 +2013-07-21 17:20:12-06:00,n05667,248.5,33.2,1.0327,37.5555,0.9658,38.8836,45.8464,79.32,28.8,30.8,992.8,0,812.3,388.2,45.7,0.989,0 +2013-07-21 17:25:12-06:00,n05667,228.1,32.9,0.9237,33.4095,0.8629,38.7186,45.6743,79.19,28.8,29.9,992.8,0,799.3,370.5,45.1,0.989,0 +2013-07-21 17:30:12-06:00,n05667,209.7,32.5,0.8223,29.6559,0.768,38.6121,45.5103,79.24,28.7,30.8,992.9,0,791.3,354.8,44.5,0.989,0 +2013-07-21 17:35:12-06:00,n05667,191.6,32.3,0.7271,26.0404,0.678,38.4093,45.2415,79.17,28.8,30.1,992.8,0,785.1,339.5,43.4,0.989,0 +2013-07-21 17:40:12-06:00,n05667,172.1,32.1,0.6362,22.6121,0.5922,38.1804,45.0256,78.94,28.8,31.3,992.7,0,768.6,321.2,43,0.989,0 +2013-07-21 17:45:12-06:00,n05667,154.3,31.8,0.5506,19.4025,0.5115,37.9354,44.7491,78.74,28.9,31.4,992.8,0,757.1,305.2,42.4,0.989,0 +2013-07-21 17:50:12-06:00,n05667,136.9,31.5,0.4719,16.4978,0.4381,37.6567,44.4571,78.64,28.8,31.2,992.8,0,744.6,288.8,41.7,0.989,0 +2013-07-21 17:55:12-06:00,n05667,119.5,31.2,0.4003,13.823,0.3701,37.3508,44.1351,78.23,28.8,30.6,992.9,0,733.4,273.3,40.9,0.989,0 +2013-07-21 18:00:12-06:00,n05667,102.6,30.7,0.3352,11.4974,0.3105,37.0312,43.8073,78.29,28.6,31.9,992.9,0,717.2,256.5,40.1,0.989,0 +2013-07-21 18:05:13-06:00,n05667,86.6,30.7,0.2787,9.5679,0.2602,36.7764,43.4587,79,28.7,31.7,993,0,707.5,241.2,38.4,0.989,0 +2013-07-21 18:10:13-06:00,n05667,72,30.4,0.2323,7.9882,0.2186,36.5417,43.1165,79.74,28.6,31.4,993,0,690.6,225.6,38.1,0.989,0 +2013-07-21 18:15:13-06:00,n05667,58.8,30.1,0.1946,6.6857,0.1849,36.1654,42.777,80.33,28.5,31.7,993,0,670.8,209.3,37.1,0.989,0 +2013-07-21 18:20:13-06:00,n05667,50.3,29.7,0.1783,5.8621,0.1641,35.7206,42.5474,77.29,28.3,32.4,992.9,0,653.3,193.7,36,0.989,0 +2013-07-21 18:25:13-06:00,n05667,48.6,29.5,0.1721,5.6496,0.1583,35.69,42.4713,77.29,28.3,31.6,992.9,0,636.8,178.6,34.6,0.989,0 +2013-07-21 18:30:12-06:00,n05667,46.1,29.4,0.1667,5.4604,0.1534,35.606,42.4485,77.17,28.3,32.1,993,0,618.9,163.9,33.3,0.989,0 +2013-07-21 18:35:13-06:00,n05667,42.5,29.2,0.1598,5.2185,0.1469,35.5248,42.3783,77.06,28.1,32.1,992.8,0,598.6,149.1,31.8,0.989,0 +2013-07-21 18:40:13-06:00,n05667,39.1,29.1,0.154,5.0017,0.141,35.474,42.3002,76.8,28.1,32.2,993,0,580.2,135.2,30,0.989,0 +2013-07-21 18:45:13-06:00,n05667,35.7,29.1,0.1458,4.7242,0.1336,35.3548,42.1916,76.82,28,32.7,993,0,563.5,121.8,28.1,0.989,0 +2013-07-21 18:50:13-06:00,n05667,32.4,29,0.1386,4.4825,0.1271,35.2671,42.0945,76.83,28,32.8,993.1,0,538.2,108.4,26.5,0.989,0 +2013-07-21 18:55:13-06:00,n05667,29,29.2,0.1307,4.1823,0.1191,35.1165,41.9737,76.22,27.7,33.8,993.1,0,505.8,94.2,24.7,0.989,0 +2013-07-21 19:00:13-06:00,n05667,25.1,29.3,0.1214,3.8622,0.1106,34.9167,41.8144,76.11,27.6,34.7,993.1,0,471,81.1,23,0.989,0 +2013-07-21 19:05:13-06:00,n05667,21.7,29.2,0.1107,3.4994,0.1009,34.6825,41.6199,75.96,27.5,36.7,993.1,0,436.4,68.6,21,0.989,0 +2013-08-20 05:50:13-06:00,n05667,21.2,14.3,0.1025,3.4103,0.0931,36.6187,43.5991,76.34,13.8,74.1,1000.8,0,274.3,39.6,20.1,0.995,0 +2013-08-20 05:55:13-06:00,n05667,27.3,14.3,0.1288,4.3909,0.1181,37.177,44.1172,77.25,13.8,74.2,1000.9,0,320.1,52.2,24.7,0.995,0 +2013-08-20 06:00:13-06:00,n05667,35.6,14.4,0.1646,5.7403,0.1518,37.8024,44.6223,78.18,13.8,73.9,1001,0,363.8,68.2,31.6,0.995,0 +2013-08-20 06:05:13-06:00,n05667,40.4,14.7,0.1788,6.2593,0.1649,37.9675,44.783,78.17,13.9,73.9,1001,0,408.2,84.7,37.5,0.995,0 +2013-08-20 06:10:13-06:00,n05667,42,15,0.183,6.409,0.1687,37.9896,44.8233,78.13,14,73.6,1001,0,441.6,93.6,35.9,0.995,0 +2013-08-20 06:15:13-06:00,n05667,49.9,15.1,0.2099,7.449,0.1945,38.3011,45.0796,78.74,14.2,73,1001,0,479.4,111.7,42,0.995,0 +2013-08-20 06:20:13-06:00,n05667,67.4,15.4,0.2719,9.8986,0.2546,38.8837,45.6643,79.72,14.3,73.1,1001,0,504.4,132.2,51.3,0.995,0 +2013-08-20 06:25:12-06:00,n05667,81.6,15.6,0.3164,11.5766,0.296,39.1161,45.9434,79.63,14.6,72.2,1000.9,0,530.4,145.1,51.8,0.995,0 +2013-08-20 06:30:12-06:00,n05667,116,16.3,0.4733,17.6977,0.4439,39.8681,46.7031,80.06,14.7,71.8,1001,0,546.4,181.7,77.4,0.995,0 +2013-08-20 06:35:12-06:00,n05667,123.2,16.9,0.4976,18.6131,0.4671,39.8522,46.677,80.14,15,70.4,1001,0,496.9,183.3,81,0.995,0 +2013-08-20 06:40:12-06:00,n05667,145.8,17.4,0.5775,21.7924,0.5434,40.1023,46.9587,80.37,15,69.9,1001.1,0,573.5,212.8,85.9,0.995,0 +2013-08-20 06:45:12-06:00,n05667,125.2,17.4,0.5547,20.7267,0.5184,39.9846,46.8364,79.78,14.9,70.6,1001.1,0,304.2,173.2,102,0.995,0 +2013-08-20 06:50:12-06:00,n05667,104.3,17.7,0.4916,18.2366,0.4592,39.7097,46.5528,79.69,14.9,70.8,1001.1,0,90.6,123.6,102,0.995,0 +2013-08-20 06:55:12-06:00,n05667,111.7,17.5,0.5142,19.4318,0.4876,39.8535,46.6757,80.96,14.7,71.7,1001.1,0,141.2,133.9,97.3,0.995,0 +2013-08-20 07:05:12-06:00,n05667,229,18.1,0.9724,37.6141,0.9191,40.9264,47.9425,80.69,14.7,71.2,1001.2,0,650.8,271,76.9,0.995,0 +2013-08-20 07:15:12-06:00,n05667,274.5,19.1,1.1818,46.0174,1.1196,41.1003,48.1809,80.82,14.8,70.7,1001.1,0,709.7,304.1,70.6,0.995,0 +2013-08-20 07:20:12-06:00,n05667,291,19.7,1.2838,49.9168,1.2144,41.1043,48.2297,80.62,15.2,68.4,1001.2,0,683.2,314.8,80.3,0.995,0 +2013-08-20 07:25:12-06:00,n05667,324.5,19.7,1.443,56.7443,1.3731,41.3249,48.5191,81.05,15,68.8,1001.2,0,662.7,330.9,94.6,0.995,0 +2013-08-20 07:30:12-06:00,n05667,346.9,19.8,1.5419,61.0054,1.4718,41.4484,48.6505,81.33,15.2,68.4,1001.2,0,703.8,346.7,85.1,0.995,0 +2013-08-20 07:35:12-06:00,n05667,341.1,21.4,1.5895,62.4834,1.5142,41.2652,48.4436,81.15,15.7,67.3,1001.2,0,721.9,355.3,76,0.995,0 +2013-08-20 07:50:12-06:00,n05667,408.7,23.2,1.9619,76.8102,1.8652,41.1799,48.6017,80.55,15.8,66.5,1001.1,0,769.9,411.1,79.1,0.995,0 +2013-08-20 07:55:12-06:00,n05667,417.4,23.8,2.0351,79.3141,1.9287,41.1228,48.575,80.23,15.8,66.9,1001,0,796.3,424.3,69.1,0.995,0 +2013-08-20 08:00:12-06:00,n05667,434.7,23.6,2.1357,83.3184,2.0244,41.1564,48.6596,80.17,15.9,66.5,1000.9,0,804.2,437.6,67.4,0.995,0 +2013-08-20 08:05:12-06:00,n05667,466.7,23.8,2.2382,87.4178,2.125,41.1383,48.6817,80.23,16,66,1000.9,0,806,449.5,67.1,0.995,0 +2013-08-20 08:10:12-06:00,n05667,472.2,25.3,2.3505,91.1988,2.2219,41.0446,48.6336,79.78,16.2,65.9,1000.9,0,815.4,464.5,66.5,0.995,0 +2013-08-20 08:15:12-06:00,n05667,491.9,26.5,2.4676,95.3762,2.329,40.9523,48.5822,79.56,16.6,64.4,1000.9,0,825.1,479.7,65.9,0.995,0 +2013-08-20 08:20:12-06:00,n05667,512.1,26.6,2.6119,101.046,2.4695,40.9176,48.6173,79.58,16.6,64.2,1000.8,0,832.7,495.3,65.8,0.995,0 +2013-08-20 08:25:12-06:00,n05667,549.2,27.6,2.6953,104.2222,2.5463,40.9305,48.6589,79.47,16.6,64.3,1000.8,0,840.2,510.6,66.4,0.995,0 +2013-08-20 08:30:12-06:00,n05667,559.7,27.7,2.8044,108.3317,2.6482,40.9075,48.6759,79.36,16.7,64.3,1000.7,0,846,525.8,67.2,0.995,0 +2013-08-20 08:35:12-06:00,n05667,571.8,28.5,2.9208,112.5488,2.7552,40.8489,48.6674,79.18,16.9,64.1,1000.8,0,851,539.9,67.6,0.995,0 +2013-08-20 08:40:12-06:00,n05667,591.8,28.4,3.0304,116.7497,2.8617,40.7967,48.6563,79.18,16.9,64.3,1000.8,0,858.3,555.6,67.9,0.995,0 +2013-08-20 08:45:12-06:00,n05667,611.5,28.7,3.1407,120.6661,2.9654,40.691,48.6095,79.04,17,63.9,1000.7,0,865.7,570.1,67.6,0.995,0 +2013-08-20 08:50:12-06:00,n05667,631,29.8,3.252,124.39,3.0645,40.5904,48.5536,78.78,17.2,63.2,1000.6,0,871.8,584.8,67.8,0.995,0 +2013-08-20 08:55:12-06:00,n05667,651.3,29.7,3.3633,128.8258,3.1714,40.6209,48.6303,78.76,17.5,62.2,1000.6,0,879,600.5,68.5,0.995,0 +2013-08-20 09:00:12-06:00,n05667,668.8,31.6,3.4584,131.9657,3.2623,40.4523,48.5061,78.67,17.6,62.6,1000.6,0,882.4,612.8,68.7,0.995,0 +2013-08-20 09:05:12-06:00,n05667,686.8,33.2,3.5603,134.9736,3.357,40.2064,48.324,78.45,18.3,60.3,1000.6,0,886.4,626.3,69.4,0.995,0 +2013-08-20 09:10:12-06:00,n05667,703,33.3,3.6556,138.5595,3.4432,40.241,48.3838,78.34,18.5,58.2,1000.5,0,886.4,638.4,71.3,0.995,0 +2013-08-20 09:15:12-06:00,n05667,722.1,33.6,3.7531,142.224,3.5374,40.2062,48.3975,78.3,18.2,60,1000.5,0,892.3,653.3,72,0.995,0 +2013-08-20 09:20:12-06:00,n05667,737.2,32.8,3.8365,145.3753,3.6142,40.2229,48.4384,78.23,18.4,58.8,1000.5,0,894.8,664.7,72.2,0.995,0 +2013-08-20 09:25:12-06:00,n05667,753.8,35,3.9309,148.2643,3.695,40.1258,48.3656,77.98,18.6,58.6,1000.5,0,898.3,676.6,72.1,0.995,0 +2013-08-20 09:30:12-06:00,n05667,771.8,32.8,4.0222,151.9686,3.7866,40.1336,48.4209,78.03,18.8,56.6,1000.3,0,904.3,691.1,72.4,0.995,0 +2013-08-20 09:35:12-06:00,n05667,788.1,33.8,4.1149,155.1868,3.8702,40.0979,48.4215,77.89,18.7,57.9,1000.4,0,907.6,703.1,72.7,0.995,0 +2013-08-20 09:40:12-06:00,n05667,803.8,34.1,4.1977,158.0378,3.9505,40.0045,48.3669,77.84,19,56.6,1000.3,0,911.8,715,72.8,0.995,0 +2013-08-20 09:45:12-06:00,n05667,821.5,34.1,4.2903,162.3509,4.0381,40.2048,48.5998,77.86,18.9,57,1000.3,0,912.8,727.9,76.9,0.995,0 +2013-08-20 09:50:12-06:00,n05667,836.9,36,4.374,163.9581,4.1161,39.8336,48.2654,77.66,19.3,56.1,1000.3,0,916.1,739.3,77,0.995,0 +2013-08-20 09:55:12-06:00,n05667,850.4,35,4.4434,167.4819,4.1837,40.0316,48.4892,77.73,19.3,55.5,1000.3,0,919,749.4,76.4,0.995,0 +2013-08-20 10:00:13-06:00,n05667,859.5,36.5,4.5027,168.4791,4.2334,39.7978,48.2843,77.49,19.6,55.5,1000.2,0,916.5,756.3,76.5,0.995,0 +2013-08-20 10:05:12-06:00,n05667,875,37.1,4.5815,170.9624,4.3072,39.6925,48.2147,77.4,19.9,53.4,1000.2,0,920.6,767.8,77.7,0.995,0 +2013-08-20 10:10:12-06:00,n05667,887.3,37.4,4.6576,173.5691,4.3737,39.6848,48.2316,77.26,20.2,51.5,1000.2,0,920.7,777,78.4,0.995,0 +2013-08-20 10:15:12-06:00,n05667,898.5,37.8,4.7142,175.7939,4.4271,39.7087,48.2719,77.25,20.4,49.9,1000.2,0,922.1,785.3,78.6,0.995,0 +2013-08-20 10:20:12-06:00,n05667,913,37.5,4.7861,178.6865,4.4948,39.7538,48.361,77.2,20.3,50.2,1000,0,925.5,796.7,79.8,0.995,0 +2013-08-20 10:30:12-06:00,n05667,931.9,38.2,4.8966,181.9529,4.5969,39.5813,48.2368,77.03,20.5,48.1,1000,0,922.7,810.3,82.7,0.995,0 +2013-08-20 10:35:12-06:00,n05667,948.5,37.4,4.977,185.7591,4.6729,39.7522,48.4287,77.07,20.7,46.7,999.8,0,931.9,823.5,81.1,0.995,0 +2013-08-20 10:40:12-06:00,n05667,961.7,37,5.0473,188.5653,4.7383,39.7963,48.4989,77.03,20.9,46.3,999.7,0,934.5,834.2,84.8,0.995,0 +2013-08-20 10:45:12-06:00,n05667,978.1,38.8,5.1297,190.5525,4.8198,39.5355,48.2832,76.94,21.2,45.8,999.7,0,935.6,846.7,90.1,0.995,0 +2013-08-20 10:50:12-06:00,n05667,988.6,38.1,5.1937,193.0248,4.8701,39.635,48.3981,76.79,21.2,44.5,999.6,0,939.4,853.8,89.5,0.995,0 +2013-08-20 10:55:12-06:00,n05667,992.3,38.2,5.2154,193.2263,4.8911,39.5058,48.296,76.71,21.5,44.1,999.6,0,939.7,855.7,85.3,0.995,0 +2013-08-20 11:00:12-06:00,n05667,995.8,40,5.2363,192.9694,4.9097,39.3039,48.1041,76.61,21.5,44.5,999.5,0,936.3,857.4,84.8,0.995,0 +2013-08-20 11:05:12-06:00,n05667,1002.9,38.4,5.2703,195.4256,4.9421,39.5428,48.3571,76.68,21.7,43.4,999.3,0,938.2,863.2,84.8,0.995,0 +2013-08-20 11:10:12-06:00,n05667,1008.2,38.4,5.2993,196.4188,4.9681,39.5364,48.35,76.66,22.1,41.8,999.3,0,935.8,866.6,85.9,0.995,0 +2013-08-20 11:15:12-06:00,n05667,1011,38.8,5.3188,196.5419,4.983,39.4422,48.2531,76.58,21.9,42.8,999.3,0,934.2,868.6,85.5,0.995,0 +2013-08-20 11:20:12-06:00,n05667,1018.6,39.1,5.3635,198.0191,5.0251,39.4063,48.2433,76.53,22.2,41.7,999.2,0,937.8,875.1,85,0.995,0 +2013-08-20 11:25:12-06:00,n05667,1027.9,39.1,5.4162,199.818,5.0722,39.3948,48.2485,76.46,22.4,41.8,999.1,0,941.3,882.1,86,0.995,0 +2013-08-20 11:30:12-06:00,n05667,1030.6,39.7,5.4281,200.583,5.0853,39.4436,48.2993,76.51,22.4,41,999.1,0,938.9,883.2,86.3,0.995,0 +2013-08-20 11:35:12-06:00,n05667,1030.5,39.9,5.4391,200.1015,5.0923,39.2949,48.1718,76.37,22.5,41.5,999.1,0,933,881.8,87.1,0.995,0 +2013-08-20 11:40:12-06:00,n05667,1030.4,39.5,5.4332,199.7334,5.0858,39.2729,48.1431,76.36,22.7,41,999,0,926.1,881.9,90.2,0.995,0 +2013-08-20 11:45:12-06:00,n05667,1034.2,41.4,5.4526,199.7947,5.1026,39.1554,48.0306,76.29,23,39.8,999,0,928.7,884.8,89.3,0.995,0 +2013-08-20 11:50:12-06:00,n05667,1038.8,42.2,5.4849,199.7304,5.1287,38.944,47.8498,76.1,23.2,40,999,0,932.9,889.4,88.7,0.995,0 +2013-08-20 11:55:12-06:00,n05667,1042.2,42.6,5.5085,200.5245,5.1522,38.9199,47.8355,76.1,23.8,38.8,999,0,930.2,890.7,90.8,0.995,0 +2013-08-20 12:00:12-06:00,n05667,1048.7,42,5.5348,202.0695,5.1809,39.0025,47.9233,76.18,23.5,38.4,998.8,0,938.4,896,87.7,0.995,0 +2013-08-20 12:05:12-06:00,n05667,1050.2,39.3,5.5469,203.6694,5.1908,39.2362,48.1588,76.24,23.5,38.2,998.7,0,936.3,897.1,89.2,0.995,0 +2013-08-20 12:10:12-06:00,n05667,1048,40.5,5.5362,203.163,5.1811,39.2126,48.1217,76.26,23.6,37.7,998.8,0,930,895.1,92.4,0.995,0 +2013-08-20 12:15:12-06:00,n05667,1042.3,42.2,5.5101,201.4755,5.1619,39.0313,47.9467,76.26,24.1,38.2,998.8,0,917.9,889,96.3,0.995,0 +2013-08-20 12:20:12-06:00,n05667,1046,42.7,5.5337,201.279,5.1726,38.9126,47.8355,76.04,24.3,36.9,998.7,0,918.8,890.4,97.6,0.995,0 +2013-08-20 12:25:12-06:00,n05667,1055.4,40.8,5.5745,203.698,5.2127,39.0774,48.0137,76.1,24.2,35.6,998.5,0,925.2,899.9,101.6,0.995,0 +2013-08-20 12:30:12-06:00,n05667,1054.2,39.7,5.5671,204.1653,5.2097,39.1892,48.1041,76.24,24.2,36.5,998.4,0,922.9,899.1,102.8,0.995,0 +2013-08-20 12:35:12-06:00,n05667,1041.2,42.4,5.5168,200.6251,5.1527,38.9357,47.8478,76,24.3,36.7,998.5,0,914,888.4,101.5,0.995,0 +2013-08-20 12:40:12-06:00,n05667,1040.7,42.5,5.5105,200.3942,5.1521,38.8959,47.8088,76.06,24.8,34.4,998.4,0,916.8,886.2,97.6,0.995,0 +2013-08-20 12:45:12-06:00,n05667,1038.8,41.5,5.4986,200.7073,5.1456,39.0054,47.9155,76.18,24.6,35.1,998.3,0,925.7,890.3,95.9,0.995,0 +2013-08-20 12:50:12-06:00,n05667,1037.5,41,5.4841,200.9018,5.1327,39.1414,48.0365,76.26,24.4,36,998.4,0,932.3,890.8,92.6,0.995,0 +2013-08-20 12:55:12-06:00,n05667,1024.1,41,5.4106,198.5913,5.0644,39.2131,48.0794,76.34,24.6,36.8,998.4,0,917.3,881.1,97.5,0.995,0 +2013-08-20 13:00:12-06:00,n05667,1019.9,40.9,5.3852,197.7169,5.0435,39.202,48.0527,76.41,24.6,36.3,998.3,0,920.8,878.7,94.8,0.995,0 +2013-08-20 13:05:12-06:00,n05667,1014.7,41.2,5.364,196.6191,5.0224,39.1487,47.9929,76.38,24.7,36.9,998.2,0,918.7,873.9,94.7,0.995,0 +2013-08-20 13:10:12-06:00,n05667,1017.3,39.6,5.3628,197.8927,5.0274,39.3625,48.2017,76.56,24.8,35.1,998,0,930.8,876.9,90.2,0.995,0 +2013-08-20 13:15:12-06:00,n05667,1005.1,40,5.2982,195.2397,4.9695,39.2874,48.1048,76.6,25,35,998,0,926.1,869.1,89.8,0.995,0 +2013-08-20 13:20:12-06:00,n05667,994.1,42.7,5.2613,191.9063,4.9215,38.9932,47.8004,76.31,25.5,35.3,998.1,0,920.4,860.9,90.7,0.995,0 +2013-08-20 13:25:12-06:00,n05667,986.9,40.9,5.2147,190.6426,4.8799,39.0671,47.8563,76.39,25.7,33.4,998,0,916.9,855.8,92.1,0.995,0 +2013-08-20 13:30:12-06:00,n05667,977.5,39.8,5.1594,190.1197,4.8367,39.3074,48.0696,76.66,25.4,32.4,997.7,0,908.8,849.6,96.4,0.995,0 +2013-08-20 13:35:12-06:00,n05667,972.3,39.9,5.1373,189.0584,4.8151,39.2636,48.0137,76.65,25.6,32.6,997.8,0,916.1,846.1,91.4,0.995,0 +2013-08-20 13:40:12-06:00,n05667,960.5,39.4,5.0704,186.7492,4.7498,39.3177,48.0417,76.66,25.6,32.7,997.9,0,907,838.6,95.9,0.995,0 +2013-08-20 13:45:12-06:00,n05667,952.3,40,5.027,185.0589,4.7127,39.2681,47.976,76.73,25.8,31.4,997.7,0,906.2,832.6,96.1,0.995,0 +2013-08-20 13:50:12-06:00,n05667,933.9,42,4.9417,180.8175,4.6294,39.0587,47.749,76.63,26,31.4,997.8,0,890.6,817.3,99.2,0.995,0 +2013-08-20 13:55:12-06:00,n05667,927,41.1,4.9035,179.5282,4.5919,39.0967,47.7652,76.65,26.2,30.2,997.6,0,891.2,813,99.3,0.995,0 +2013-08-20 14:00:13-06:00,n05667,920.5,40.3,4.8533,178.3715,4.5486,39.2148,47.8557,76.8,26.2,29.9,997.6,0,902.8,811.7,95.1,0.995,0 +2013-08-20 14:05:12-06:00,n05667,904.8,40.4,4.7828,176.3344,4.4834,39.3303,47.9259,76.93,26.2,28.7,997.3,0,888.3,795.3,96.3,0.995,0 +2013-08-20 14:10:12-06:00,n05667,883,39.3,4.6658,172.2691,4.3762,39.3654,47.9252,77.04,26.3,29.2,997.4,0,867.2,779.6,103.3,0.995,0 +2013-08-20 14:15:12-06:00,n05667,877.4,39.3,4.6348,171.4978,4.3516,39.4102,47.9565,77.16,26.4,29.8,997.3,0,873.2,773.7,99.9,0.995,0 +2013-08-20 14:20:12-06:00,n05667,868.9,40,4.5908,169.315,4.3034,39.344,47.8804,77.03,26.6,28.3,997.3,0,883.2,768.9,94.6,0.995,0 +2013-08-20 14:25:12-06:00,n05667,861,40.7,4.5498,167.4442,4.2618,39.2897,47.8036,76.99,26.8,27.6,997.3,0,884.4,763.4,96,0.995,0 +2013-08-20 14:30:12-06:00,n05667,832.5,40.4,4.4007,162.0933,4.124,39.3046,47.7574,77.13,26.8,27.6,997.2,0,849.1,739,105,0.995,0 +2013-08-20 14:35:12-06:00,n05667,823.6,39.5,4.3466,160.3139,4.0764,39.3273,47.7646,77.22,26.9,27.3,997.2,0,853.7,734.7,104.5,0.995,0 +2013-08-20 14:40:12-06:00,n05667,806.1,38.7,4.2516,157.639,3.9888,39.5208,47.8979,77.41,26.7,27.2,997.1,0,841.9,720.7,107.6,0.995,0 +2013-08-20 14:45:12-06:00,n05667,785.7,38.9,4.1442,153.3565,3.8898,39.4258,47.7672,77.47,27.1,27,997,0,834.4,705.8,105.7,0.995,0 +2013-08-20 14:50:12-06:00,n05667,772.7,39,4.081,150.8717,3.826,39.4332,47.7392,77.44,27.1,26.5,996.9,0,827.3,694.5,107.5,0.995,0 +2013-08-20 14:55:12-06:00,n05667,760.1,39.8,4.0073,148.1932,3.7583,39.4306,47.7139,77.5,27.1,26.3,997,0,833,686.8,104.3,0.995,0 +2013-08-20 15:00:12-06:00,n05667,745.7,39.5,3.9318,145.0977,3.686,39.3642,47.6169,77.5,27.1,26.3,996.8,0,836.9,676,99.4,0.995,0 +2013-08-20 15:05:12-06:00,n05667,739.4,39,3.8877,144.202,3.6536,39.4688,47.6885,77.78,27.3,24.2,996.7,0,851.4,672.7,94.7,0.995,0 +2013-08-20 15:10:12-06:00,n05667,716.3,39,3.7694,139.6628,3.5392,39.4616,47.6358,77.78,27.3,24.9,996.8,0,835.3,655,97.1,0.995,0 +2013-08-20 15:15:12-06:00,n05667,696.1,39.6,3.666,135.2216,3.4389,39.3216,47.4711,77.7,27.5,26.1,996.8,0,825.5,639.2,96.8,0.995,0 +2013-08-20 15:20:12-06:00,n05667,680.4,39.6,3.574,131.8648,3.3552,39.3015,47.4181,77.81,27.7,24.7,996.7,0,824.5,626.8,94.4,0.995,0 +2013-08-20 15:25:12-06:00,n05667,664.4,38.6,3.4849,129.0744,3.2706,39.4655,47.5273,77.93,27.4,25.7,996.6,0,828,618,92.5,0.995,0 +2013-08-20 15:30:12-06:00,n05667,644.2,37.5,3.3705,125.488,3.1668,39.6256,47.6434,78.14,27.2,25.7,996.6,0,813.8,600.8,93.5,0.995,0 +2013-08-20 15:35:12-06:00,n05667,636.7,37.2,3.3249,123.7081,3.1236,39.604,47.603,78.16,27.4,24.9,996.4,0,835.8,597.6,86.7,0.995,0 +2013-08-20 15:40:12-06:00,n05667,612.7,37.3,3.1917,118.7678,2.9973,39.6252,47.5663,78.23,27.4,24.2,996.5,0,817.8,577.4,87.3,0.995,0 +2013-08-20 15:45:12-06:00,n05667,595,36.4,3.091,115.2429,2.9024,39.7059,47.6001,78.33,27.3,25.5,996.3,0,810.7,564.7,88.6,0.995,0 +2013-08-20 15:50:12-06:00,n05667,573.7,36.1,2.9717,111.0344,2.7913,39.7793,47.6149,78.47,27.3,25.1,996.2,0,803.5,548.5,86.9,0.995,0 +2013-08-20 15:55:12-06:00,n05667,555.2,37.1,2.8693,107.002,2.6971,39.6729,47.4769,78.55,27.5,25.3,996.3,0,798.7,532.8,84.4,0.995,0 +2013-08-20 16:00:13-06:00,n05667,537.8,36.6,2.7656,103.0685,2.5975,39.6806,47.4222,78.59,27.5,24.5,996.2,0,797.9,521,83.3,0.995,0 +2013-08-20 16:05:12-06:00,n05667,516.5,35.9,2.6467,98.5621,2.4865,39.6394,47.3281,78.68,27.6,24.9,996.1,0,779.2,504,86.6,0.995,0 +2013-08-20 16:10:12-06:00,n05667,493.5,36,2.5175,93.6723,2.3646,39.6141,47.2597,78.73,27.6,27,996.2,0,764.9,485.2,85.8,0.995,0 +2013-08-20 16:15:12-06:00,n05667,474.7,35.9,2.4153,89.8665,2.2675,39.6333,47.2388,78.76,27.5,26.2,996.1,0,761,472.2,85.1,0.995,0 +2013-08-20 16:20:12-06:00,n05667,453.7,34.9,2.2911,85.4418,2.1523,39.6971,47.2362,78.95,27.5,25.6,996.1,0,757.4,455.7,80.8,0.995,0 +2013-08-20 16:25:12-06:00,n05667,437.7,34.8,2.1998,81.9929,2.0671,39.6647,47.1818,79,27.6,25.9,996,0,762.6,445.2,78.7,0.995,0 +2013-08-20 16:30:12-06:00,n05667,412.5,34.8,2.0617,76.788,1.9378,39.6254,47.0757,79.12,27.6,26.1,996.1,0,736.8,424.1,80.2,0.995,0 +2013-08-20 16:35:12-06:00,n05667,388.9,34.7,1.93,71.7085,1.813,39.5528,46.9443,79.15,27.7,26.4,996,0,714.9,405.2,81.7,0.995,0 +2013-08-20 16:40:12-06:00,n05667,372.9,33.6,1.8296,68.1467,1.7193,39.637,46.9781,79.28,27.6,25.9,996,0,720.1,392.8,77.3,0.995,0 +2013-08-20 16:45:12-06:00,n05667,350.5,33,1.7058,63.4057,1.6007,39.6115,46.9038,79.25,27.5,26.4,995.9,0,699.8,374.1,77.4,0.995,0 +2013-08-20 16:50:12-06:00,n05667,327.9,33,1.5777,58.5766,1.4806,39.563,46.7958,79.34,27.5,26.5,995.9,0,684,355.5,75.5,0.995,0 +2013-08-20 16:55:12-06:00,n05667,310.9,33.3,1.4794,54.7381,1.3876,39.4479,46.6317,79.34,27.6,26.6,996,0,682.6,342.5,73.2,0.995,0 +2013-08-20 17:00:12-06:00,n05667,288.9,32.4,1.353,50.0579,1.2694,39.4336,46.5762,79.44,27.5,26.1,995.9,0,656.9,324.8,75.1,0.995,0 +2013-08-20 17:05:12-06:00,n05667,270,31.7,1.2488,46.1063,1.1713,39.3642,46.458,79.47,27.5,26.8,995.5,0,641.5,308.6,74.3,0.995,0 +2013-08-20 17:10:12-06:00,n05667,251.3,32,1.1421,42.0118,1.0708,39.2332,46.2918,79.46,27.5,28,995.9,0,632.9,293.7,72.3,0.995,0 +2013-08-20 17:15:12-06:00,n05667,231.4,31.3,1.0313,37.8193,0.9663,39.1397,46.1105,79.53,27.4,27.4,995.7,0,612.3,276.4,71.5,0.995,0 +2013-08-20 17:20:12-06:00,n05667,215.6,30.9,0.941,34.4273,0.8813,39.0662,46.0292,79.48,27.3,27.5,995.8,0,606.6,263,69.2,0.995,0 +2013-08-20 17:25:13-06:00,n05667,194.2,30.7,0.8289,30.1457,0.7756,38.8659,45.7879,79.42,27.3,27.2,995.8,0,583.1,244.1,67.8,0.995,0 +2013-08-20 17:30:12-06:00,n05667,175.1,30.3,0.7283,26.3337,0.6805,38.6959,45.5687,79.35,27.2,27.4,995.9,0,555.8,226.2,65.6,0.995,0 +2013-08-20 17:35:12-06:00,n05667,158.4,29.8,0.6421,23.1073,0.5999,38.5187,45.3521,79.35,27.2,27.6,995.7,0,545.7,211.5,62.1,0.995,0 +2013-08-20 17:40:13-06:00,n05667,142,29.5,0.5602,20.0153,0.5227,38.2928,45.1212,79.19,27.1,27.8,995.9,0,520.5,195.6,61.2,0.995,0 +2013-08-20 17:45:12-06:00,n05667,126.7,29.3,0.4881,17.3105,0.4547,38.0719,44.8285,79.11,27.1,26.8,995.8,0,502.2,181.5,59.5,0.995,0 +2013-08-20 17:50:12-06:00,n05667,111.8,29,0.4238,14.8921,0.3939,37.8071,44.5976,78.79,27,27.4,995.8,0,487.4,167.5,56.7,0.995,0 +2013-08-20 17:55:12-06:00,n05667,97.8,28.8,0.3733,13.012,0.3465,37.5496,44.3582,78.58,27,27.2,995.7,0,474.1,155.9,54.7,0.995,0 +2013-08-20 18:00:12-06:00,n05667,84.2,28.5,0.3251,11.2621,0.302,37.2905,44.0896,78.57,26.9,27.2,995.8,0,449.4,141.3,53,0.995,0 +2013-08-20 18:05:13-06:00,n05667,72.1,28.3,0.2834,9.7961,0.2646,37.0216,43.8294,78.87,26.9,28.1,995.8,0,446.5,130.2,49.5,0.995,0 +2013-08-20 18:10:13-06:00,n05667,60.5,28.1,0.2489,8.5708,0.2332,36.7558,43.5803,79.02,26.9,27.4,995.7,0,417.2,115.7,46.6,0.995,0 +2013-08-20 18:15:13-06:00,n05667,50.6,27.8,0.2231,7.524,0.2062,36.4906,43.298,77.9,26.7,27.7,995.8,0,389.1,101.6,43.1,0.995,0 +2013-08-20 18:20:13-06:00,n05667,45.9,27.5,0.2069,6.9366,0.1908,36.3596,43.2108,77.59,26.6,26.4,995.8,0,102.1,52.2,40,0.995,0 +2013-08-20 18:25:13-06:00,n05667,37.4,27.4,0.1912,6.3895,0.1764,36.2318,43.0528,77.61,26.5,24.5,995.7,0,15.9,40.5,36.5,0.995,0 +2013-08-20 18:30:13-06:00,n05667,32.9,27,0.1753,5.8121,0.1611,36.0684,42.9123,77.26,26.5,25.1,995.8,0,11.3,34.9,32.8,0.995,0 +2013-08-20 18:35:13-06:00,n05667,29.2,26.7,0.158,5.1992,0.1451,35.8425,42.6742,77.1,26.5,25,995.9,0,19,36.5,29.1,0.995,0 +2013-08-20 18:40:13-06:00,n05667,25,26.5,0.1391,4.526,0.1273,35.549,42.4615,76.62,26.3,24.5,995.9,0,20.3,30.9,24.9,0.995,0 +2013-08-20 18:45:13-06:00,n05667,20.8,26.2,0.1204,3.8627,0.1096,35.2325,42.1103,76.21,26.1,24.3,995.9,0,77.7,22.9,21.2,0.995,0 +2013-09-01 06:05:13-06:00,n05667,23.1,14.7,0.1066,3.5602,0.0974,36.5708,43.5718,76.64,14.8,79.1,994.7,0,190,35.5,20.7,1,0 +2013-09-01 06:10:13-06:00,n05667,28.8,15.2,0.1233,4.1706,0.1129,36.9412,43.888,77.04,15,78.3,994.6,0,324.4,53.5,23.6,1,0 +2013-09-01 06:15:13-06:00,n05667,37.2,15.3,0.1414,4.8902,0.131,37.3411,44.1663,78.29,15.1,77.8,994.6,0,360.9,64.9,26.2,1,0 +2013-09-01 06:20:12-06:00,n05667,48.3,15.5,0.1714,5.9979,0.159,37.7303,44.5935,78.49,15.1,78,994.6,0,396.9,77.4,28.8,1,0 +2013-09-01 06:25:12-06:00,n05667,61.3,16,0.2134,7.5609,0.198,38.1902,45.0118,78.72,15.6,76.2,994.7,0,431.5,90.7,31.4,1,0 +2013-09-01 06:30:12-06:00,n05667,76,16.5,0.2658,9.5681,0.2477,38.6266,45.4386,79.22,15.9,74.6,994.8,0,464.2,104.8,33.8,1,0 +2013-09-01 06:35:12-06:00,n05667,91.1,16.9,0.3253,11.8586,0.3041,39.0017,45.8035,79.6,16.2,73.6,994.8,0,488.1,118.1,36,1,0 +2013-09-01 06:40:12-06:00,n05667,107.3,17.4,0.3952,14.5833,0.3708,39.3242,46.1612,79.94,16.2,73.1,994.8,0,514.6,132.4,37.9,1,0 +2013-09-01 06:45:12-06:00,n05667,124.5,17.9,0.4745,17.6503,0.4455,39.6191,46.4657,80.06,16.6,71.9,994.8,0,539,147.1,39.9,1,0 +2013-09-01 06:50:12-06:00,n05667,128.2,18.4,0.5186,19.4088,0.4885,39.7309,46.5827,80.35,16.8,71.5,994.8,0,457.8,140.7,42.5,1,0 +2013-09-01 06:55:12-06:00,n05667,160.8,18.8,0.6633,24.9586,0.6219,40.1352,47.0205,80.02,16.9,70.4,994.8,0,586.3,178.9,44,1,0 +2013-09-01 07:00:12-06:00,n05667,179.3,19.8,0.7667,29.3012,0.7272,40.2923,47.2099,80.96,17.1,70.4,994.7,0,612.2,193.6,43.4,1,0 +2013-09-01 07:05:12-06:00,n05667,198.9,20.5,0.8742,33.7065,0.8318,40.523,47.3761,81.38,17.5,69.1,994.7,0,632.6,209.4,44.4,1,0 +2013-09-01 07:10:12-06:00,n05667,218.7,21.7,0.9832,37.8328,0.9325,40.5723,47.4783,81.04,17.4,69.5,994.7,0,652.1,225.5,45.4,1,0 +2013-09-01 07:15:12-06:00,n05667,239.1,21.8,1.0827,41.6068,1.027,40.511,47.576,80.78,17,70.5,994.7,0,669.3,242,46.7,1,0 +2013-09-01 07:20:12-06:00,n05667,257.8,22.1,1.1907,45.6292,1.1239,40.5977,47.6774,80.37,16.6,72.7,994.6,0,679.4,256.1,47.7,1,0 +2013-09-01 07:25:12-06:00,n05667,279.4,22.6,1.3122,50.4341,1.2403,40.6631,47.8283,80.36,16.7,72.5,994.7,0,697.8,273.6,49,1,0 +2013-09-01 07:30:12-06:00,n05667,300,23.1,1.4285,54.9498,1.3498,40.7083,47.9129,80.28,16.8,72.9,994.7,0,712.2,290,50,1,0 +2013-09-01 07:35:12-06:00,n05667,320.4,24,1.5488,59.5847,1.4632,40.7232,47.9922,80.16,17.1,72,994.6,0,724.3,305.6,50.8,1,0 +2013-09-01 07:40:12-06:00,n05667,341.3,24.5,1.6691,64.2219,1.5773,40.7164,48.0404,80.09,17.2,71.2,994.6,0,737.5,322,51.6,1,0 +2013-09-01 07:45:12-06:00,n05667,362.2,24.6,1.7869,68.8647,1.6901,40.7456,48.1119,80.1,17.1,71,994.6,0,749.9,338.4,52.5,1,0 +2013-09-01 07:50:12-06:00,n05667,382.2,25.4,1.9047,73.3395,1.8001,40.7429,48.147,79.97,17.3,70.8,994.6,0,759.6,353.8,53,1,0 +2013-09-01 07:55:12-06:00,n05667,404,26.2,2.0285,78.0746,1.9173,40.7204,48.1789,79.89,17.5,70.1,994.4,0,771.3,369.8,53.5,1,0 +2013-09-01 08:00:12-06:00,n05667,424.5,26.4,2.146,82.5896,2.0302,40.6799,48.1939,79.86,17.6,69.4,994.3,0,781,385.2,53.9,1,0 +2013-09-01 08:05:12-06:00,n05667,445.1,26.5,2.2649,87.1405,2.1397,40.7253,48.2843,79.68,17.5,69.5,994.3,0,789.7,401.3,55,1,0 +2013-09-01 08:10:12-06:00,n05667,466.8,27,2.3814,91.5857,2.2497,40.7095,48.3233,79.59,17.7,69.4,994.3,0,797.1,416.3,55.8,1,0 +2013-09-01 08:15:12-06:00,n05667,488,27.8,2.5045,96.1647,2.3649,40.6634,48.324,79.46,17.8,69.5,994.2,0,806.7,432.1,56.3,1,0 +2013-09-01 08:20:12-06:00,n05667,506.4,29.2,2.6129,99.902,2.4661,40.5109,48.216,79.3,18.3,67,994.2,0,811.4,445.9,56.9,1,0 +2013-09-01 08:25:12-06:00,n05667,526.7,30.4,2.7224,103.8288,2.5692,40.4127,48.1737,79.17,18.5,66.4,994.2,0,818.7,460.9,57.5,1,0 +2013-09-01 08:30:12-06:00,n05667,546.4,30.9,2.8397,107.9338,2.6772,40.316,48.1126,79,18.7,65.7,994.2,0,825.4,475.7,58.2,1,0 +2013-09-01 08:35:12-06:00,n05667,565,31.5,2.9455,111.6167,2.7765,40.1999,48.0599,78.85,18.9,63.8,994.3,0,829.3,489.6,59.4,1,0 +2013-09-01 08:40:12-06:00,n05667,583.1,33.5,3.0475,115.1126,2.8723,40.0768,47.9805,78.73,19,64.3,994.3,0,832.9,502.7,60.2,1,0 +2013-09-01 08:45:12-06:00,n05667,602,33.2,3.1553,118.8205,2.9696,40.0128,47.9487,78.54,19.2,63.7,994.3,0,838.1,516.8,60.9,1,0 +2013-09-01 08:50:12-06:00,n05667,620.8,34.8,3.2616,122.3912,3.0695,39.8733,47.8706,78.39,19.5,62.6,994.3,0,844.4,531.1,61.3,1,0 +2013-09-01 08:55:12-06:00,n05667,638,35.7,3.3593,125.628,3.1599,39.7566,47.7861,78.26,19.6,61.4,994.3,0,847.7,543.3,61.7,1,0 +2013-09-01 09:00:12-06:00,n05667,651.9,37.1,3.4387,127.8565,3.2321,39.5589,47.6286,78.07,20.3,59.6,994.3,0,846.3,553.6,62.5,1,0 +2013-09-01 09:05:12-06:00,n05667,673.3,36.7,3.5567,132.3266,3.3432,39.5804,47.708,77.98,21,56.7,994.3,0,853.9,569,63.6,1,0 +2013-09-01 09:10:12-06:00,n05667,691.8,38,3.6586,135.7811,3.4384,39.4898,47.6475,77.89,21.3,55.3,994.3,0,854.2,581.9,66.9,1,0 +2013-09-01 09:15:13-06:00,n05667,707.9,40.1,3.7511,138.3456,3.5229,39.2702,47.4777,77.68,21.4,55,994.4,0,857.2,596.6,70.1,1,0 +2013-09-01 09:20:12-06:00,n05667,730.5,41.3,3.88,142.1043,3.6393,39.0471,47.319,77.4,21.2,56,994.4,0,865.6,614.3,72.5,1,0 +2013-09-01 09:25:12-06:00,n05667,743.6,40.5,3.9495,144.6779,3.7058,39.0405,47.3477,77.37,21.3,55.3,994.4,0,866.1,621.9,70.2,1,0 +2013-09-01 09:30:12-06:00,n05667,758.3,41.7,4.0278,147.498,3.7782,39.039,47.3763,77.3,20.7,56.6,994.3,0,874.5,632,66,1,0 +2013-09-01 09:35:12-06:00,n05667,773.3,41.7,4.1107,150.8804,3.8554,39.1344,47.494,77.28,21.1,55.2,994.3,0,878.4,644,67,1,0 +2013-09-01 09:40:12-06:00,n05667,791.1,39.9,4.1984,154.1446,3.9405,39.1183,47.5109,77.28,21.1,54.3,994.2,0,887.4,657.8,65.1,1,0 +2013-09-01 09:45:12-06:00,n05667,807.3,41.9,4.2887,157.0717,4.0242,39.0314,47.4699,77.15,21.7,52.3,994.2,0,893.1,668.7,64.1,1,0 +2013-09-01 09:50:12-06:00,n05667,823.4,41.5,4.3823,160.5165,4.1066,39.0875,47.5389,77.05,21.7,51.3,994.1,0,896.3,680.3,65.1,1,0 +2013-09-01 09:55:12-06:00,n05667,839,41.6,4.4492,163.4249,4.1805,39.092,47.5877,77.19,21.3,52.2,994.2,0,899,691.9,65.9,1,0 +2013-09-01 10:00:12-06:00,n05667,852.8,42.5,4.5374,165.334,4.2533,38.8717,47.4088,76.86,21.7,50.6,994.1,0,904.3,701.8,64.5,1,0 +2013-09-01 10:05:12-06:00,n05667,866.8,44.3,4.6166,167.5746,4.3245,38.7503,47.3242,76.7,21.8,50.2,994.1,0,910.1,711.5,63.6,1,0 +2013-09-01 10:10:12-06:00,n05667,879.6,45.6,4.6881,168.7632,4.387,38.4692,47.092,76.44,22.8,48,994,0,913.6,721.2,63.1,1,0 +2013-09-01 10:15:12-06:00,n05667,891.7,46.2,4.7552,171.2347,4.454,38.4452,47.0953,76.46,23,45.7,994,0,916.5,730.8,62.9,1,0 +2013-09-01 10:20:12-06:00,n05667,903.8,46.8,4.8194,173.3495,4.5112,38.4266,47.0992,76.37,23.4,44,993.9,0,921,739.7,62.3,1,0 +2013-09-01 10:25:12-06:00,n05667,917.6,45.8,4.8903,176.1979,4.5738,38.5229,47.2052,76.33,24,42.8,993.9,0,926.3,749.6,61.7,1,0 +2013-09-01 10:30:12-06:00,n05667,926,47.1,4.9448,176.9319,4.6211,38.2881,47.014,76.11,24.1,41.3,993.9,0,926.7,756.2,61.6,1,0 +2013-09-01 10:35:12-06:00,n05667,937.6,45.3,4.9963,179.1974,4.6729,38.3481,47.0966,76.15,23.2,44.1,993.8,0,928.8,765.6,61.8,1,0 +2013-09-01 10:40:12-06:00,n05667,948.1,46.6,5.0572,181.9621,4.7308,38.4631,47.2208,76.2,23.2,44.2,993.8,0,932,773.4,61.6,1,0 +2013-09-01 10:45:12-06:00,n05667,953.1,46.8,5.0879,182.1704,4.7534,38.3241,47.0959,76.03,24.3,41.3,993.7,0,929.5,776.8,61.4,1,0 +2013-09-01 10:50:12-06:00,n05667,966.5,47.3,5.1668,183.6312,4.8191,38.1053,46.9041,75.77,24.5,42.3,993.6,0,936.5,787,60.7,1,0 +2013-09-01 10:55:12-06:00,n05667,976.1,50.1,5.2061,184.7247,4.86,38.0089,46.8403,75.75,24.4,40.3,993.6,0,937.3,792.4,60.1,1,0 +2013-09-01 11:00:12-06:00,n05667,984.7,49,5.2587,186.6174,4.9068,38.0326,46.8845,75.69,25.3,36.3,993.6,0,943,801.6,60.7,1,0 +2013-09-01 11:05:12-06:00,n05667,994.5,50.1,5.3135,188.1914,4.9571,37.9643,46.8397,75.61,25.4,35.7,993.6,0,948.1,808,58.6,1,0 +2013-09-01 11:10:12-06:00,n05667,1001,51.1,5.3445,188.4666,4.9806,37.8402,46.7317,75.46,25.8,34.7,993.6,0,949.5,813.1,58.6,1,0 +2013-09-01 11:15:12-06:00,n05667,1005.5,51.8,5.378,189.5454,5.0141,37.8021,46.7076,75.46,25.5,35.4,993.6,0,947.7,815.8,58.8,1,0 +2013-09-01 11:20:12-06:00,n05667,1011.5,50.1,5.3989,190.5775,5.0342,37.8569,46.7694,75.48,26.5,33.8,993.5,0,947.5,819.9,59.4,1,0 +2013-09-01 11:25:12-06:00,n05667,1014.3,50.2,5.4171,191.8629,5.0544,37.9596,46.8806,75.55,26,34.2,993.5,0,946.5,822.1,59.8,1,0 +2013-09-01 11:30:12-06:00,n05667,1021,50.9,5.4533,192.7795,5.0856,37.9072,46.8436,75.47,25.7,35,993.4,0,949.1,826.8,59.2,1,0 +2013-09-01 11:35:12-06:00,n05667,1022.7,48.6,5.4676,193.9497,5.097,38.0517,46.986,75.5,26.1,33.7,993.4,0,947,828.9,59.7,1,0 +2013-09-01 11:40:12-06:00,n05667,1027.9,49.2,5.498,195.4987,5.1271,38.1305,47.0732,75.54,26,34.6,993.3,0,950.2,833,59.6,1,0 +2013-09-01 11:45:12-06:00,n05667,1029.8,49.3,5.5071,195.4921,5.1362,38.0617,47.0003,75.53,25.6,35.1,993.3,0,948.8,834.3,59.8,1,0 +2013-09-01 11:50:12-06:00,n05667,1034.9,48,5.5299,197.6922,5.1601,38.3115,47.2566,75.65,25.3,35.2,993.2,0,953.6,840.1,60.7,1,0 +2013-09-01 11:55:12-06:00,n05667,1034.6,51.3,5.5395,195.2882,5.1615,37.8355,46.7993,75.33,25.3,35.4,993.1,0,950,837.7,58.9,1,0 +2013-09-01 12:00:12-06:00,n05667,1040,49.8,5.5647,196.28,5.1852,37.8539,46.8338,75.31,26.2,32.8,992.9,0,954.9,841.5,58.4,1,0 +2013-09-01 12:05:12-06:00,n05667,1040.7,49.6,5.5617,196.3188,5.1849,37.8635,46.8462,75.35,26.7,31.4,993,0,954.9,842.3,58.4,1,0 +2013-09-01 12:10:12-06:00,n05667,1042.7,48.4,5.5759,196.7627,5.1947,37.8778,46.8579,75.31,26.6,32.4,992.8,0,957.5,844.1,58.2,1,0 +2013-09-01 12:15:12-06:00,n05667,1040.8,49.1,5.5717,196.5978,5.1922,37.8639,46.8462,75.32,26.6,32.9,992.8,0,956.5,842.2,58.3,1,0 +2013-09-01 12:20:12-06:00,n05667,1040.6,49.1,5.5667,197.1495,5.187,38.0083,46.975,75.39,26.5,33.8,992.8,0,956.1,844,59.3,1,0 +2013-09-01 12:25:12-06:00,n05667,1036.9,49.6,5.5579,196.7371,5.1803,37.9777,46.9307,75.43,25.9,34.7,992.8,0,954.2,841.9,60,1,0 +2013-09-01 12:30:12-06:00,n05667,1037.9,47.5,5.5525,197.3374,5.1707,38.1647,47.1083,75.44,25.3,36.9,992.8,0,953.6,841.7,60.4,1,0 +2013-09-01 12:35:12-06:00,n05667,1032.7,50.5,5.5387,194.7671,5.1571,37.7668,46.7323,75.25,26.1,35.6,992.7,0,952.4,837,58.5,1,0 +2013-09-01 12:40:12-06:00,n05667,1028.7,50.2,5.518,194.6593,5.1413,37.8619,46.8162,75.35,26.5,33.5,992.7,0,953.2,835.4,58.7,1,0 +2013-09-01 12:45:12-06:00,n05667,1024.8,52.2,5.4985,192.8516,5.1218,37.653,46.6166,75.24,26.7,33.5,992.7,0,952.9,831.5,57.4,1,0 +2013-09-01 12:50:12-06:00,n05667,1020.3,52.3,5.4751,191.5743,5.0985,37.5746,46.5281,75.2,27.4,31.7,992.6,0,952.4,828.8,57.1,1,0 +2013-09-01 12:55:12-06:00,n05667,1016,51.7,5.459,190.5282,5.0806,37.5011,46.4442,75.15,27.3,32,992.6,0,950.9,825.3,57.1,1,0 +2013-09-01 13:00:12-06:00,n05667,1010.5,53.7,5.4283,188.8988,5.0517,37.393,46.3362,75.1,27.4,31.5,992.5,0,950.8,822.3,57,1,0 +2013-09-01 13:05:12-06:00,n05667,1003.5,53,5.3908,187.6417,5.0177,37.3959,46.3187,75.15,27.6,32,992.5,0,948.2,817.6,57.4,1,0 +2013-09-01 13:10:12-06:00,n05667,998,51.7,5.3587,187.9232,4.9921,37.6443,46.5483,75.34,27.2,32.6,992.4,0,948.2,814,57.7,1,0 +2013-09-01 13:15:12-06:00,n05667,991.7,52.7,5.3254,187.2111,4.9617,37.7309,46.6075,75.43,27.3,32.5,992.4,0,945.6,809.8,57.8,1,0 +2013-09-01 13:20:12-06:00,n05667,985.6,51.1,5.2815,185.5696,4.923,37.6943,46.5678,75.45,26.9,32.8,992.4,0,946.9,805.1,57.4,1,0 +2013-09-01 13:25:12-06:00,n05667,974.8,50.9,5.2376,185.031,4.8839,37.8863,46.7284,75.6,26.7,32.9,992.3,0,942.9,797.3,57.9,1,0 +2013-09-01 13:30:12-06:00,n05667,966.3,50.6,5.1907,182.5756,4.8371,37.7446,46.5704,75.53,27.1,34.5,992.1,0,937.7,791,57.5,1,0 +2013-09-01 13:35:12-06:00,n05667,959.2,48.5,5.1397,182.6829,4.7952,38.0971,46.8871,75.81,26.4,35.7,992.1,0,939.7,787.4,60,1,0 +2013-09-01 13:40:12-06:00,n05667,949.4,47.3,5.0953,180.9259,4.7503,38.0869,46.8663,75.77,26.5,35.3,992,0,937.2,779.5,59.1,1,0 +2013-09-01 13:45:12-06:00,n05667,938,50.4,5.0446,177.8954,4.6984,37.8629,46.6289,75.63,26.5,34.7,992,0,936,770.4,57.9,1,0 +2013-09-01 13:50:12-06:00,n05667,931.9,48.9,4.9999,177.138,4.6623,37.9937,46.7343,75.81,26.6,35.8,991.9,0,937.4,766.3,58.2,1,0 +2013-09-01 13:55:12-06:00,n05667,920.6,47.5,4.937,175.6,4.6077,38.1097,46.8221,75.96,26.8,33.8,991.8,0,935.8,759,58.2,1,0 +2013-09-01 14:00:12-06:00,n05667,908.1,47.9,4.8667,173.9717,4.5517,38.2209,46.9001,76.22,26.5,34.8,991.9,0,933,749.7,58.1,1,0 +2013-09-01 14:05:12-06:00,n05667,896.7,45.2,4.8056,172.3706,4.492,38.3731,47.0205,76.28,26.5,34.7,991.8,0,931.3,741.4,58.3,1,0 +2013-09-01 14:10:12-06:00,n05667,882.7,46.9,4.7348,169.3828,4.423,38.2955,46.9112,76.26,26.5,35.7,991.8,0,927.1,730.7,57.8,1,0 +2013-09-01 14:15:12-06:00,n05667,870,46.7,4.6728,166.8422,4.365,38.2231,46.8306,76.24,26.7,35.2,991.7,0,925.3,722.3,57.4,1,0 +2013-09-01 14:20:12-06:00,n05667,857.9,46.1,4.603,164.9865,4.3013,38.3573,46.9216,76.39,26.7,35,991.6,0,923.5,713.1,57.6,1,0 +2013-09-01 14:25:12-06:00,n05667,842.3,47,4.5204,161.8438,4.2247,38.3086,46.8468,76.43,26.9,34.6,991.6,0,919.4,701.9,56.9,1,0 +2013-09-01 14:30:12-06:00,n05667,825.8,49.7,4.4457,157.5451,4.1474,37.9863,46.4969,76.22,27.5,33.6,991.6,0,914.4,688.9,55.7,1,0 +2013-09-01 14:35:12-06:00,n05667,811.3,48.5,4.363,154.8554,4.0775,37.9783,46.4689,76.38,27.4,33.9,991.6,0,910.5,678.2,55.9,1,0 +2013-09-01 14:40:12-06:00,n05667,796.7,47.9,4.2764,152.1929,3.9946,38.0997,46.5483,76.46,27.3,35.4,991.5,0,907.6,667.3,55.9,1,0 +2013-09-01 14:45:12-06:00,n05667,781.9,46.8,4.1923,150.0453,3.917,38.3063,46.6849,76.66,27.2,36.2,991.5,0,904,657.2,56.4,1,0 +2013-09-01 14:50:12-06:00,n05667,767.7,46.1,4.1143,147.6192,3.8465,38.3776,46.7551,76.74,27.3,34.2,991.4,0,902.5,647.3,55.9,1,0 +2013-09-01 14:55:12-06:00,n05667,751.7,46.5,4.0319,144.426,3.7699,38.3102,46.6406,76.8,27.5,34.3,991.4,0,900.2,635,55.1,1,0 +2013-09-01 15:00:12-06:00,n05667,735.1,46.9,3.9372,141.463,3.6841,38.3985,46.6836,76.96,27.5,34.1,991.3,0,895,621.8,55.3,1,0 +2013-09-01 15:05:12-06:00,n05667,720.2,43.1,3.8521,139.37,3.6048,38.6619,46.9132,77.12,27.4,33.8,991.1,0,893.8,612.8,55.5,1,0 +2013-09-01 15:10:12-06:00,n05667,704.4,42,3.7597,137.0061,3.5196,38.9264,47.1175,77.34,27.1,34.9,991.2,0,890.8,601.5,55.5,1,0 +2013-09-01 15:15:12-06:00,n05667,681.6,42.5,3.6574,133.3842,3.4282,38.9084,47.055,77.5,27.2,35.3,991.2,0,886.1,587.5,54.7,1,0 +2013-09-01 15:20:12-06:00,n05667,668.8,44.8,3.5682,129.1357,3.3427,38.632,46.7656,77.39,27.6,34.9,991.2,0,884.1,574.1,53.5,1,0 +2013-09-01 15:25:12-06:00,n05667,649.3,44.8,3.4611,125.2584,3.242,38.6356,46.7217,77.46,28,33.7,991.2,0,877.4,559.5,53,1,0 +2013-09-01 15:30:12-06:00,n05667,630.7,43.9,3.3536,121.3837,3.1406,38.6494,46.6803,77.54,27.9,34.2,991.2,0,871,545.7,53.2,1,0 +2013-09-01 15:35:12-06:00,n05667,611.3,43.1,3.2443,118.2253,3.0393,38.8984,46.8816,77.73,28,33.5,991.2,0,864.4,531.6,53.1,1,0 +2013-09-01 15:40:12-06:00,n05667,591.3,43.1,3.1291,114.0216,2.9353,38.8455,46.7867,77.88,27.9,34.2,991.1,0,856.9,516,52.4,1,0 +2013-09-01 15:45:12-06:00,n05667,571.6,42.8,3.0233,110.1361,2.8325,38.8831,46.7713,77.89,28.3,32.8,991.1,0,850.8,501.3,51.9,1,0 +2013-09-01 15:50:12-06:00,n05667,554.2,41.8,2.9189,106.6493,2.7362,38.977,46.8181,78.04,27.9,33.3,991,0,846.4,488.6,52.6,1,0 +2013-09-01 15:55:12-06:00,n05667,535.4,43.1,2.8184,102.4718,2.6389,38.8319,46.6396,77.96,28.4,32.8,991,0,843.1,475.1,51.9,1,0 +2013-09-01 16:00:12-06:00,n05667,514.9,40.6,2.6936,98.4741,2.5229,39.0316,46.7746,78.16,28.1,32.9,990.9,0,833.9,460.4,52.2,1,0 +2013-09-01 16:05:12-06:00,n05667,492.8,39.8,2.5666,94.1839,2.4058,39.1492,46.8331,78.36,27.7,33.9,991,0,822.1,442.6,51.3,1,0 +2013-09-01 16:10:12-06:00,n05667,473.4,39.1,2.4557,90.1884,2.3019,39.1802,46.8184,78.44,27.8,33.5,990.9,0,817.3,428,50.1,1,0 +2013-09-01 16:15:12-06:00,n05667,452.5,39.5,2.3466,86.0324,2.1993,39.1189,46.7083,78.49,28.1,33.3,990.9,0,812.8,413.4,48.7,1,0 +2013-09-01 16:20:12-06:00,n05667,432.1,38.4,2.2275,81.8759,2.0897,39.1815,46.7073,78.69,28.4,33,990.8,0,805.5,398.5,47.8,1,0 +2013-09-01 16:25:12-06:00,n05667,412.5,38.9,2.1103,77.6507,1.9804,39.2089,46.6851,78.82,28.4,33,990.9,0,799.3,383.7,47.1,1,0 +2013-09-01 16:30:12-06:00,n05667,392.3,37.6,1.9913,73.3243,1.8688,39.2369,46.668,78.9,28.4,33.3,990.9,0,790,368.3,47,1,0 +2013-09-01 16:35:12-06:00,n05667,371,35.7,1.8695,69.012,1.7543,39.3389,46.7101,79.03,28.1,34.8,990.9,0,779.4,352.2,46.2,1,0 +2013-09-01 16:40:12-06:00,n05667,349.5,34.9,1.7399,64.6203,1.6349,39.5262,46.8219,79.32,27.6,36.3,991.1,0,766.2,336.7,46.5,1,0 +2013-09-01 16:45:12-06:00,n05667,329.5,34.7,1.6247,60.0694,1.5246,39.399,46.6675,79.23,27.4,37,991.1,0,757.9,320.5,45.1,1,0 +2013-09-01 16:50:12-06:00,n05667,308.6,33.3,1.501,55.6823,1.4094,39.5067,46.7007,79.44,26.9,37.5,991.1,0,745.2,304.4,44.4,1,0 +2013-09-01 16:55:12-06:00,n05667,288.6,32,1.3856,51.4283,1.3,39.5598,46.7047,79.47,26.5,38.4,991.1,0,733.5,288.8,43.7,1,0 +2013-09-01 17:00:12-06:00,n05667,268.3,31.8,1.2668,46.9214,1.1896,39.4431,46.5412,79.59,26.5,39,991.1,0,721.8,272.7,42.2,1,0 +2013-09-01 17:05:12-06:00,n05667,247.8,32,1.1492,42.2967,1.0771,39.2688,46.3254,79.45,26.5,39.2,991.2,0,707.7,256,41.1,1,0 +2013-09-01 17:10:12-06:00,n05667,228.2,30.9,1.0341,38.0183,0.9685,39.2535,46.2525,79.49,26.2,39.1,991.2,0,694.2,241.2,40.7,1,0 +2013-09-01 17:15:12-06:00,n05667,208.5,30.4,0.9228,33.8329,0.8642,39.1481,46.0942,79.54,25.8,40,991.2,0,677,224.4,39.4,1,0 +2013-09-01 17:20:12-06:00,n05667,189.6,29.6,0.8125,29.6937,0.7609,39.0228,45.9224,79.58,25.6,40.3,991.3,0,661.4,209.4,38.5,1,0 +2013-09-01 17:25:12-06:00,n05667,170,29.6,0.7067,25.6587,0.6617,38.7747,45.654,79.53,25.7,40.8,991.4,0,641.3,192.6,37.1,1,0 +2013-09-01 17:30:12-06:00,n05667,152.7,28.3,0.6134,22.1552,0.573,38.6681,45.4991,79.39,25.4,40.6,991.4,0,625.6,178.4,36.1,1,0 +2013-09-01 17:35:12-06:00,n05667,134.6,27.9,0.519,18.5766,0.4835,38.4199,45.2214,79.15,25.1,41.3,991.5,0,605,162.7,34.5,1,0 +2013-09-01 17:40:12-06:00,n05667,117.6,27.4,0.433,15.3342,0.4026,38.0905,44.861,78.94,25.1,41.1,991.5,0,582.2,147.3,32.8,1,0 +2013-09-01 17:45:12-06:00,n05667,101.5,26.9,0.3549,12.4297,0.3293,37.75,44.5085,78.68,24.9,41.4,991.5,0,557.3,132.7,31.6,1,0 +2013-09-01 17:50:12-06:00,n05667,86.2,26.5,0.2866,9.8876,0.2649,37.321,44.0811,78.26,24.8,41.7,991.6,0,532.8,118,29.8,1,0 +2013-09-01 17:55:13-06:00,n05667,69.2,26.1,0.2272,7.7284,0.2099,36.8187,43.6135,78,24.6,42.2,991.7,0,505.2,103.9,28,1,0 +2013-09-01 18:00:13-06:00,n05667,53.8,25.7,0.1765,5.9509,0.1638,36.3315,43.0931,78.24,24.4,42.7,991.8,0,471,90.1,26.1,1,0 +2013-09-01 18:05:13-06:00,n05667,42.6,25.4,0.1391,4.6313,0.1295,35.7677,42.6306,78.1,24.3,43.2,991.8,0,437.2,76.1,23.8,1,0 +2013-09-01 18:10:13-06:00,n05667,30.5,25.1,0.1163,3.7516,0.1063,35.2988,42.2176,76.41,24.2,43.4,991.9,0,402.8,63.5,21.5,1,0 +2013-09-01 18:15:13-06:00,n05667,25.5,24.8,0.1028,3.2751,0.0934,35.0692,41.9557,75.93,24,43.6,991.9,0,363.8,51.5,19.1,1,0 +2013-10-06 06:30:13-06:00,n05667,42.5,7.8,0.1696,6.1294,0.1575,38.9113,45.7185,79.06,7.7,85.4,999.6,0,202.9,20.1,11.3,1,0 +2013-10-06 06:35:12-06:00,n05667,60.7,8,0.2484,9.2712,0.2333,39.7322,46.4842,80.29,7.7,85.6,999.6,0,269.5,29.3,14.1,1,0 +2013-10-06 06:40:12-06:00,n05667,77,8.3,0.3256,12.3905,0.3074,40.3049,47.0423,80.89,7.7,85.1,999.6,0,308.1,38.6,17,1,0 +2013-10-06 06:45:12-06:00,n05667,100.3,8.6,0.4355,16.854,0.4124,40.8652,47.6238,81.25,7.6,85.7,999.6,0,370.9,50.9,19.8,1,0 +2013-10-06 06:50:12-06:00,n05667,120.8,8.9,0.5379,21.0261,0.5102,41.208,47.9881,81.46,7.8,85.1,999.7,0,413.7,62.8,22.3,1,0 +2013-10-06 06:55:12-06:00,n05667,142.9,9.3,0.6548,25.7505,0.6206,41.4954,48.342,81.35,8.2,83.6,999.6,0,454.9,75.3,24.6,1,0 +2013-10-06 07:00:12-06:00,n05667,165.3,10.2,0.7646,30.2617,0.7265,41.6552,48.5653,81.49,8.6,81.6,999.7,0,492.5,88.7,26.8,1,0 +2013-10-06 07:05:12-06:00,n05667,188.6,10.6,0.8829,35.0278,0.8373,41.835,48.7488,81.39,9.2,78.9,999.7,0,531.3,103.3,28.7,1,0 +2013-10-06 07:10:12-06:00,n05667,187.3,11.2,0.8892,35.2024,0.8431,41.7555,48.6811,81.33,9.2,79.2,999.8,0,486.3,105.4,30.3,1,0 +2013-10-06 07:15:12-06:00,n05667,236.2,11.4,1.1302,45.3409,1.0775,42.0782,49.0852,81.73,9,80,999.8,0,593.4,133,32.8,1,0 +2013-10-06 07:20:12-06:00,n05667,256.3,11.8,1.242,49.7445,1.1801,42.1513,49.2234,81.37,8.7,81.3,999.8,0,609.9,146,34.4,1,0 +2013-10-06 07:25:12-06:00,n05667,250.6,11.8,1.2353,49.4826,1.1751,42.1089,49.1837,81.45,8.4,82,999.9,0,561.2,146.3,35.7,1,0 +2013-10-06 07:30:12-06:00,n05667,302.6,12.2,1.5122,60.9131,1.4378,42.3654,49.5246,81.34,8.2,82.8,999.8,0,657,176.4,37.5,1,0 +2013-10-06 07:35:12-06:00,n05667,325.3,12.9,1.6507,66.4061,1.5652,42.4263,49.5955,81.12,8.3,82.6,999.8,0,675.8,191.4,38.9,1,0 +2013-10-06 07:40:12-06:00,n05667,347,13.2,1.7849,72.0742,1.6935,42.5601,49.7158,81.22,8.4,82.1,999.8,0,692.2,206,40.1,1,0 +2013-10-06 07:45:12-06:00,n05667,369.9,13.8,1.9047,77.1681,1.8099,42.6362,49.7789,81.39,8.6,81.6,999.8,0,708.4,220.9,41.2,1,0 +2013-10-06 07:50:12-06:00,n05667,392,13.9,2.0251,82.0163,1.9306,42.4831,49.8244,81.29,8.7,81.1,999.8,0,723.5,236,42.3,1,0 +2013-10-06 07:55:12-06:00,n05667,415.2,14.4,2.136,86.7301,2.0412,42.4889,49.8628,81.43,8.7,81.1,999.8,0,738.8,251.2,43.3,1,0 +2013-10-06 08:00:12-06:00,n05667,438.2,15,2.2781,91.7692,2.168,42.3289,49.801,80.89,8.9,81.2,999.8,0,752.7,266.1,44.2,1,0 +2013-10-06 08:05:12-06:00,n05667,460.3,17.1,2.3943,96.0211,2.279,42.1336,49.6878,80.71,9.1,80.6,999.8,0,765.1,280.6,44.9,1,0 +2013-10-06 08:10:12-06:00,n05667,481.9,18.5,2.513,100.3114,2.391,41.9541,49.548,80.56,9.3,80.4,999.8,0,776.7,295.4,45.7,1,0 +2013-10-06 08:15:13-06:00,n05667,503.9,19.9,2.642,104.8655,2.5104,41.7727,49.4491,80.27,9.5,79.9,999.8,0,787.8,310.1,46.6,1,0 +2013-10-06 08:20:12-06:00,n05667,527.9,20.9,2.7545,109.1423,2.6182,41.6853,49.3958,80.22,9.7,78.7,999.8,0,797.6,324.5,47.3,1,0 +2013-10-06 08:25:12-06:00,n05667,548.4,21.2,2.8781,113.7059,2.7327,41.6096,49.3802,80.01,9.9,78.6,999.8,0,807.6,339.4,48.1,1,0 +2013-10-06 08:30:12-06:00,n05667,568.2,22.9,2.9945,117.7038,2.8422,41.4124,49.2318,79.84,10.3,77.8,999.9,0,816.8,353.4,48.8,1,0 +2013-10-06 08:35:12-06:00,n05667,588.9,24.2,3.1228,122.0485,2.9573,41.2698,49.1531,79.51,10.7,76.7,1000,0,825.4,367.7,49.5,1,0 +2013-10-06 08:40:12-06:00,n05667,609.4,25.4,3.2354,126.004,3.0646,41.1162,49.0458,79.41,11.2,74.2,1000,0,832.2,381,50.3,1,0 +2013-10-06 08:45:12-06:00,n05667,628.3,27,3.337,129.4594,3.157,41.0075,48.9834,79.2,11.2,74.4,1000.1,0,837.6,393.9,51.2,1,0 +2013-10-06 08:50:12-06:00,n05667,646.6,27.7,3.4408,132.7823,3.2484,40.8765,48.8968,78.92,11.6,74.1,1000.1,0,843.3,406.9,52,1,0 +2013-10-06 08:55:12-06:00,n05667,665.9,28.6,3.5451,136.3683,3.3498,40.7095,48.7869,78.85,12,72,1000.1,0,848.6,419.8,52.8,1,0 +2013-10-06 09:00:12-06:00,n05667,684.6,29.1,3.652,139.9642,3.4485,40.5873,48.7043,78.69,12.4,71.9,1000.2,0,856.4,433.3,53.3,1,0 +2013-10-06 09:05:12-06:00,n05667,702.7,30.3,3.7539,143.4464,3.5424,40.4938,48.6627,78.53,12.7,68.9,1000.2,0,859.9,445.4,54,1,0 +2013-10-06 09:10:12-06:00,n05667,723.5,31.2,3.8648,147.3903,3.6438,40.4492,48.6666,78.36,12.8,68.9,1000.3,0,869,459.6,54.7,1,0 +2013-10-06 09:15:12-06:00,n05667,741.2,32.3,3.9568,150.0971,3.7287,40.2551,48.5033,78.21,13.3,67.5,1000.2,0,874,471.8,55.2,1,0 +2013-10-06 09:20:12-06:00,n05667,759.1,32.9,4.0561,153.5492,3.8215,40.1809,48.4675,78.11,13.5,65.7,1000.1,0,878.9,484.2,56,1,0 +2013-10-06 09:25:12-06:00,n05667,776.3,32,4.1467,157.4034,3.9044,40.3148,48.6275,78.06,13.2,67.1,1000.1,0,882.8,496.6,57.5,1,0 +2013-10-06 09:30:12-06:00,n05667,792.1,31.1,4.234,161.193,3.989,40.4095,48.7628,78.07,13.3,67.5,1000.1,0,885.1,507.9,58.5,1,0 +2013-10-06 09:35:12-06:00,n05667,808.7,30.4,4.3085,164.3804,4.0633,40.4554,48.835,78.13,13.6,66.4,1000.1,0,888.3,519.2,59.5,1,0 +2013-10-06 09:40:12-06:00,n05667,822.8,31.9,4.3997,166.8584,4.1388,40.3155,48.7349,77.82,13.8,67,1000,0,890.4,529.3,60.8,1,0 +2013-10-06 09:45:12-06:00,n05667,836.2,32.8,4.48,168.754,4.2146,40.04,48.4955,77.67,14.3,64.4,999.9,0,893,539.5,61.9,1,0 +2013-10-06 09:50:12-06:00,n05667,849.9,33,4.5396,171.0421,4.2773,39.9881,48.4805,77.72,14.5,63.3,999.9,0,894.1,549.1,62.8,1,0 +2013-10-06 09:55:12-06:00,n05667,863.8,35.4,4.6222,172.8322,4.3432,39.7936,48.3212,77.38,15,62.1,1000,0,896.6,558.8,63.4,1,0 +2013-10-06 10:00:12-06:00,n05667,878,37,4.71,174.9907,4.421,39.5814,48.1598,77.15,15.4,61,999.9,0,900.8,568.6,63.7,1,0 +2013-10-06 10:05:12-06:00,n05667,891.6,39.6,4.7803,176.3927,4.485,39.3293,47.9452,76.96,15.9,59.5,999.9,0,903.6,577.9,64.3,1,0 +2013-10-06 10:10:12-06:00,n05667,904,41,4.8515,177.5071,4.5485,39.0256,47.6856,76.73,16.4,56.8,999.9,0,906.1,586.4,64.7,1,0 +2013-10-06 10:15:12-06:00,n05667,916.1,42.4,4.914,179.5036,4.607,38.963,47.6394,76.68,17.4,53.5,999.8,0,907.9,595,65.6,1,0 +2013-10-06 10:20:12-06:00,n05667,926.7,41.9,4.9754,181.4318,4.6602,38.9319,47.6394,76.55,18,51.2,999.8,0,907.6,602.7,67,1,0 +2013-10-06 10:25:12-06:00,n05667,937.2,42.7,5.031,182.941,4.7117,38.8273,47.5523,76.47,17.8,52,999.8,0,908.1,610.1,68.2,1,0 +2013-10-06 10:30:12-06:00,n05667,947,43.8,5.087,184.0121,4.7589,38.667,47.4183,76.28,17.8,52,999.7,0,908.1,616.9,69.2,1,0 +2013-10-06 10:35:13-06:00,n05667,955.5,43.9,5.1343,185.4653,4.8021,38.6218,47.3877,76.23,18.7,49.4,999.7,0,908.4,623.5,70.4,1,0 +2013-10-06 10:40:12-06:00,n05667,965.7,43.9,5.1849,186.992,4.85,38.5548,47.3474,76.17,18.6,49.9,999.7,0,910.2,631.1,71.4,1,0 +2013-10-06 10:45:12-06:00,n05667,972.5,43.9,5.2267,188.3795,4.8866,38.5506,47.3604,76.1,17.9,51.1,999.7,0,909.2,636.4,72,1,0 +2013-10-06 10:50:12-06:00,n05667,983.1,43.6,5.2767,190.3947,4.9329,38.5971,47.4258,76.08,18,51.6,999.7,0,913.8,643.9,72.2,1,0 +2013-10-06 10:55:12-06:00,n05667,993.9,40.6,5.3248,193.778,4.9859,38.8652,47.6986,76.29,17.9,51.6,999.6,0,919.1,652.3,72.3,1,0 +2013-10-06 11:00:12-06:00,n05667,1003,41.9,5.377,195.0058,5.0297,38.7707,47.6342,76.14,18.3,51.8,999.5,0,923.1,657.5,71.4,1,0 +2013-10-06 11:05:12-06:00,n05667,1010.6,43.3,5.4227,195.9033,5.0681,38.6539,47.5412,75.99,18.7,51.7,999.4,0,927,662.9,70.8,1,0 +2013-10-06 11:10:12-06:00,n05667,1020.1,42,5.4663,198.2141,5.1127,38.769,47.672,76.06,18.6,50.8,999.3,0,932,670.1,70.8,1,0 +2013-10-06 11:15:12-06:00,n05667,1027.7,41.7,5.5021,199.9963,5.1436,38.8825,47.7897,76.06,18.8,50.3,999.2,0,935.1,675,70.8,1,0 +2013-10-06 11:20:12-06:00,n05667,1031.2,41.1,5.5252,200.3851,5.1679,38.7752,47.6999,76.03,19.1,48.8,999.2,0,934.8,677.2,70.5,1,0 +2013-10-06 11:25:12-06:00,n05667,1035.5,42.3,5.5482,200.4696,5.1835,38.6749,47.6115,75.89,19.3,48.7,999.2,0,935.6,680.2,70.6,1,0 +2013-10-06 11:30:12-06:00,n05667,1039.9,43,5.5706,201.0309,5.2048,38.6242,47.5705,75.86,19.7,47.4,999.2,0,936.4,683,70.7,1,0 +2013-10-06 11:35:12-06:00,n05667,1041.9,45.7,5.5865,200.3051,5.214,38.4168,47.3701,75.69,20.1,46.9,999.1,0,936.3,683.8,70.5,1,0 +2013-10-06 11:40:12-06:00,n05667,1044.3,45.2,5.6001,200.4176,5.2251,38.357,47.3148,75.64,20.4,45.4,998.9,0,936.6,686.4,70.9,1,0 +2013-10-06 11:45:12-06:00,n05667,1044.9,42.9,5.5996,201.7309,5.2317,38.5592,47.5145,75.82,20.3,45.1,998.8,0,934.4,687.6,71.8,1,0 +2013-10-06 11:50:12-06:00,n05667,1043.6,45.1,5.5981,200.7844,5.2274,38.4102,47.3708,75.72,20.7,45.3,998.8,0,932.2,686.2,71.7,1,0 +2013-10-06 11:55:12-06:00,n05667,1044.4,44.2,5.6012,201.2605,5.2274,38.501,47.4612,75.71,20.6,44.3,998.7,0,932.8,687.7,72.1,1,0 +2013-10-06 12:00:12-06:00,n05667,1046.5,44,5.6169,201.8726,5.2452,38.4874,47.4554,75.73,20.9,44.2,998.6,0,933.7,689,72.5,1,0 +2013-10-06 12:05:12-06:00,n05667,1043.2,44.3,5.5991,201.4607,5.2303,38.5181,47.4827,75.78,21.1,43.5,998.5,0,929.9,687.2,73.3,1,0 +2013-10-06 12:10:12-06:00,n05667,1044.3,45.8,5.6048,200.6567,5.2325,38.3478,47.3096,75.67,21.3,42.8,998.5,0,930.8,687.9,74.2,1,0 +2013-10-06 12:15:12-06:00,n05667,1038.8,46.6,5.58,199.293,5.2084,38.2638,47.2244,75.63,21.3,43.5,998.4,0,924.7,684.3,75.3,1,0 +2013-10-06 12:20:12-06:00,n05667,1035.2,48.1,5.5717,197.4636,5.1938,38.0194,46.9759,75.44,21.6,42.9,998.3,0,923.5,681.6,74.9,1,0 +2013-10-06 12:25:13-06:00,n05667,1030.9,49.6,5.5542,196.3641,5.1752,37.9436,46.9102,75.37,21.9,42,998.2,0,921.7,679.4,75.1,1,0 +2013-10-06 12:30:13-06:00,n05667,1024.7,47.6,5.5247,196.0929,5.152,38.0619,47.0072,75.51,21.9,41.7,998.1,0,918.3,676,75.3,1,0 +2013-10-06 12:35:12-06:00,n05667,1025.1,47,5.5226,196.5853,5.1514,38.1618,47.1002,75.58,22,41.3,998.1,0,921.6,676.1,75.3,1,0 +2013-10-06 12:40:12-06:00,n05667,1013.9,47.8,5.4676,194.2022,5.0989,38.087,47.0072,75.56,22.5,42.2,998.1,0,915.1,667.8,74.3,1,0 +2013-10-06 12:45:12-06:00,n05667,1009.1,45.3,5.4348,195.0582,5.0758,38.4294,47.3217,75.84,22.8,39.8,998,0,913,664.3,75.3,1,0 +2013-10-06 12:50:12-06:00,n05667,1001.4,45.8,5.3926,193.455,5.0356,38.4177,47.294,75.85,22.7,40.4,998,0,909,658.8,75.5,1,0 +2013-10-06 12:55:12-06:00,n05667,995.8,46.8,5.373,191.8562,5.0144,38.2607,47.1405,75.75,23,39.9,998.1,0,908.9,654.9,75.2,1,0 +2013-10-06 13:00:13-06:00,n05667,988.6,47.1,5.3314,190.101,4.9733,38.2245,47.0846,75.73,23.1,37,998,0,906.9,650.2,75.7,1,0 +2013-10-06 13:05:12-06:00,n05667,989.7,45.1,5.328,191.2007,4.973,38.4478,47.2921,75.88,23.3,36.2,997.9,0,913,650.5,75.3,1,0 +2013-10-06 13:10:12-06:00,n05667,983.9,47.5,5.3031,189.5252,4.9483,38.3012,47.1418,75.81,23.7,33.6,997.9,0,914.3,645.8,74.5,1,0 +2013-10-06 13:15:12-06:00,n05667,978,45.1,5.2612,190.1415,4.9162,38.6767,47.4872,76.11,24.5,26.5,997.9,0,915.9,642.3,74,1,0 +2013-10-06 13:20:12-06:00,n05667,970.4,43.7,5.2122,189.5953,4.8731,38.9067,47.6837,76.28,24.9,24.3,997.8,0,915.3,636.4,73.4,1,0 +2013-10-06 13:25:13-06:00,n05667,961.2,41.4,5.1628,188.5126,4.8299,39.0307,47.7956,76.4,25.1,24.1,997.8,0,913.4,630.2,72.9,1,0 +2013-10-06 13:30:12-06:00,n05667,951.1,42.8,5.1141,186.4529,4.7853,38.9639,47.711,76.42,25.2,23.4,997.7,0,913.3,623.3,71.8,1,0 +2013-10-06 13:35:12-06:00,n05667,938.9,44.3,5.0526,183.1969,4.7278,38.7487,47.471,76.38,25.2,24.3,997.7,0,910.1,614.6,71,1,0 +2013-10-06 13:40:12-06:00,n05667,923.5,42.5,4.9738,180.7267,4.6517,38.8514,47.5334,76.44,25.5,24.2,997.7,0,902.9,604.3,70.6,1,0 +2013-10-06 13:45:12-06:00,n05667,914.2,42.9,4.9226,179.3485,4.6061,38.9373,47.5972,76.55,25.3,24.4,997.7,0,903,597.6,70.3,1,0 +2013-10-06 13:50:12-06:00,n05667,902,44.7,4.8641,176.5293,4.5498,38.7992,47.4404,76.5,25.7,22.5,997.6,0,901.5,589.5,69.6,1,0 +2013-10-06 13:55:12-06:00,n05667,889.3,42.2,4.7913,174.5694,4.4846,38.9267,47.5341,76.65,25.5,22.7,997.7,0,896.2,580.1,69.9,1,0 +2013-10-06 14:00:12-06:00,n05667,880.2,42,4.7337,172.9274,4.431,39.0265,47.6128,76.73,25.6,21.7,997.6,0,897.3,573.3,69.5,1,0 +2013-10-06 14:05:12-06:00,n05667,864.9,40,4.6509,170.7669,4.3563,39.1997,47.7448,76.9,25.5,21.1,997.6,0,892.6,563,69.2,1,0 +2013-10-06 14:10:12-06:00,n05667,849.5,40,4.5648,168.1625,4.2798,39.2924,47.8073,77.06,25.4,22,997.6,0,885.3,552,69.7,1,0 +2013-10-06 14:15:12-06:00,n05667,831.4,41,4.4786,164.4709,4.1969,39.1888,47.6524,77.07,25.6,22,997.6,0,878,539.8,69.3,1,0 +2013-10-06 14:20:12-06:00,n05667,819.9,40.7,4.4138,161.9325,4.1352,39.1598,47.6071,77.06,25.7,21.5,997.6,0,876.6,531.4,69.6,1,0 +2013-10-06 14:25:12-06:00,n05667,798.7,40.3,4.2978,158.3028,4.0292,39.2888,47.6908,77.23,25.5,21.7,997.5,0,863.8,517.3,70.1,1,0 +2013-10-06 14:30:12-06:00,n05667,782.5,40.3,4.215,155.0484,3.951,39.2432,47.6134,77.26,25.4,21.5,997.4,0,859.8,506.4,69.8,1,0 +2013-10-06 14:35:12-06:00,n05667,766.3,39.4,4.1243,151.7324,3.8681,39.2269,47.5542,77.36,25.8,20.4,997.3,0,853.3,494.8,69.8,1,0 +2013-10-06 14:40:12-06:00,n05667,748.1,40.6,4.0254,148.3308,3.7752,39.2911,47.5672,77.47,25.6,21.9,997.4,0,846.1,482.3,69.6,1,0 +2013-10-06 14:45:12-06:00,n05667,728.9,40.8,3.9242,144.4598,3.6813,39.2414,47.4911,77.52,25.9,21.1,997.3,0,840.7,469.1,67.9,1,0 +2013-10-06 14:50:12-06:00,n05667,711.5,42.3,3.8395,140.4262,3.5994,39.014,47.2377,77.43,26.1,21.3,997.3,0,837,456.6,66.3,1,0 +2013-10-06 14:55:12-06:00,n05667,690.7,42.1,3.7187,136.1469,3.4884,39.0286,47.2113,77.55,26.2,20.6,997.3,0,826.5,443,66.4,1,0 +2013-10-06 15:00:12-06:00,n05667,669.8,39.3,3.6026,132.6245,3.382,39.2144,47.3377,77.77,26.3,20.5,997.3,0,814.4,428.5,66.3,1,0 +2013-10-06 15:05:12-06:00,n05667,651.7,40.2,3.5113,129.1191,3.2945,39.1927,47.2716,77.79,26.3,20.7,997.3,0,809.2,416.1,65.6,1,0 +2013-10-06 15:10:12-06:00,n05667,631.3,39.9,3.3972,125.1944,3.1889,39.2596,47.2951,77.92,26.3,20.8,997.3,0,799.6,402.3,65.4,1,0 +2013-10-06 15:15:12-06:00,n05667,612.3,38.6,3.2907,121.8303,3.0916,39.4065,47.3869,78.13,26.1,21.1,997.2,0,792.5,389.4,64.7,1,0 +2013-10-06 15:20:12-06:00,n05667,587.8,38.4,3.1563,116.8894,2.9656,39.4154,47.3419,78.23,25.7,22,997.1,0,778.1,373,63.7,1,0 +2013-10-06 15:25:12-06:00,n05667,565.1,36.2,3.0246,112.6525,2.843,39.624,47.497,78.42,25.8,21.9,997,0,762.6,358.1,64,1,0 +2013-10-06 15:30:12-06:00,n05667,545.5,36.9,2.9174,108.6229,2.7425,39.6071,47.4344,78.49,25.9,22,997,0,753.5,344.3,63.3,1,0 +2013-10-06 15:35:12-06:00,n05667,526.5,35.6,2.8083,104.8796,2.6409,39.7138,47.4809,78.65,25.8,21.4,997,0,745.3,331.7,63,1,0 +2013-10-06 15:40:12-06:00,n05667,502.1,35.2,2.6751,100.0757,2.516,39.7761,47.4821,78.79,25.8,21.2,996.9,0,730.9,316.4,62.4,1,0 +2013-10-06 15:45:12-06:00,n05667,478.2,33.4,2.5465,95.7717,2.3974,39.9489,47.602,79.01,25.5,20.6,996.8,0,715.5,301.2,61.9,1,0 +2013-10-06 15:50:12-06:00,n05667,454.4,34.4,2.4165,90.6572,2.274,39.8676,47.4698,79.03,25.5,22.2,996.9,0,699.9,284.9,60.4,1,0 +2013-10-06 15:55:12-06:00,n05667,434.3,34.4,2.3028,86.3008,2.1681,39.8046,47.356,79.14,25.4,22.5,996.8,0,691.7,271.3,58.7,1,0 +2013-10-06 16:00:12-06:00,n05667,410.7,34.1,2.1721,81.3535,2.0458,39.7662,47.2628,79.25,25.3,22.8,996.8,0,675.5,255.5,57.2,1,0 +2013-10-06 16:05:12-06:00,n05667,386.9,33.4,2.0332,76.2895,1.9159,39.8193,47.2548,79.4,25.3,23.3,996.8,0,655.6,240.1,56.4,1,0 +2013-10-06 16:10:12-06:00,n05667,360.9,33.6,1.8936,70.8278,1.7835,39.7117,47.0859,79.44,25.2,24.2,996.8,0,631.8,222.7,54.8,1,0 +2013-10-06 16:15:12-06:00,n05667,338.3,33.5,1.7637,65.9491,1.6619,39.6829,47.0221,79.52,25.2,25,996.9,0,614.5,208.3,53.6,1,0 +2013-10-06 16:20:12-06:00,n05667,315.5,33,1.638,61.1487,1.5423,39.6466,46.9242,79.55,25.2,25.6,996.9,0,595.9,193.4,52.1,1,0 +2013-10-06 16:25:12-06:00,n05667,291.7,31.8,1.502,56.1297,1.4146,39.6788,46.8878,79.7,24.9,26.1,996.9,0,571.4,177.8,50.5,1,0 +2013-10-06 16:30:12-06:00,n05667,269.5,31,1.3748,51.3243,1.2946,39.6445,46.8093,79.75,24.7,26,997,0,548.7,163.3,49,1,0 +2013-10-06 16:35:12-06:00,n05667,245.9,30.3,1.2421,46.3287,1.1687,39.6397,46.7353,79.81,24.4,26.6,997,0,523.1,148.5,47.2,1,0 +2013-10-06 16:40:13-06:00,n05667,221.7,29.8,1.1075,41.229,1.0423,39.5543,46.5911,79.9,24.2,27,997,0,493.4,132.7,44.5,1,0 +2013-10-06 16:45:12-06:00,n05667,203.1,29,1.0027,37.2696,0.9441,39.4771,46.4606,80,24.1,28.1,997.1,0,477.2,120.3,42.1,1,0 +2013-10-06 16:50:12-06:00,n05667,179.2,28,0.8721,32.3164,0.821,39.363,46.312,80.01,23.6,29.1,997.2,0,440.7,105.4,39.7,1,0 +2013-10-06 16:55:13-06:00,n05667,156.4,26.5,0.7482,27.6312,0.7036,39.2691,46.1368,80.04,23.2,29,997.1,0,404.4,91.9,37.3,1,0 +2013-10-06 17:00:12-06:00,n05667,132.8,25.6,0.6277,23.0328,0.5893,39.0866,45.9566,79.84,22.6,30.3,997.3,0,362.1,77.6,34.2,1,0 +2013-10-06 17:05:13-06:00,n05667,94.7,24.5,0.3655,12.3538,0.3108,39.7528,44.9685,75.16,22.4,30.7,997.3,0,253.3,56.3,30.8,1,0 +2013-10-06 17:10:13-06:00,n05667,34.6,23.3,0.1899,6.269,0.1694,37.0067,43.5316,75.83,22,31.9,997.3,0,39.5,31.2,27.3,1,0 +2013-10-06 17:15:13-06:00,n05667,32.2,22.3,0.1509,5.075,0.1393,36.4371,43.2011,77.87,21.6,33,997.3,0,115,33.1,22.4,1,0 +2013-11-21 07:40:12-06:00,n05667,66.7,-4.1,0.3287,12.8631,0.3039,42.325,48.8019,80.19,-2.9,72.1,1012.6,0,89.8,21.5,16.1,1,0 +2013-11-21 07:45:13-06:00,n05667,197.7,-2.2,1.0722,45.2605,1.0283,44.0137,50.9077,82.92,-2.7,71.8,1012.7,0,404.4,45.4,18.2,1,0 +2013-11-21 07:50:12-06:00,n05667,227.8,-0.5,1.2435,52.3387,1.1908,43.9533,50.9322,82.64,-2.5,71.5,1012.7,0,450.3,56.1,20.4,1,0 +2013-11-21 07:55:12-06:00,n05667,254.5,0.6,1.3861,58.601,1.3333,43.9514,50.988,82.92,-2.2,70.8,1012.6,0,483.9,67,22.5,1,0 +2013-11-21 08:00:12-06:00,n05667,284.7,1.5,1.5488,65.5061,1.4893,43.9851,51.0751,82.81,-2,70.2,1012.7,0,521.5,78.9,24.6,1,0 +2013-11-21 08:05:12-06:00,n05667,313.5,2.2,1.7054,71.4062,1.6195,44.0928,51.1521,81.86,-2,67.9,1012.7,0,556.1,91.3,26.6,1,0 +2013-11-21 08:10:12-06:00,n05667,343,2.6,1.8337,77.54,1.7625,43.9935,51.2236,82.55,-1.8,69,1012.8,0,589.9,104.1,28.4,1,0 +2013-11-21 08:15:12-06:00,n05667,370.4,3.7,1.9852,83.5962,1.9042,43.9,51.2009,82.24,-1.4,66.8,1012.7,0,616.8,116.5,29.9,1,0 +2013-11-21 08:20:12-06:00,n05667,398.4,4.7,2.1434,89.5568,2.0388,43.9259,51.1814,81.64,-1.1,65.2,1012.8,0,644.5,129.6,31.5,1,0 +2013-11-21 08:25:12-06:00,n05667,424.1,5.9,2.2512,94.3346,2.1559,43.7563,51.1066,81.99,-1.2,66,1012.8,0,668.2,142.4,32.9,1,0 +2013-11-21 08:30:12-06:00,n05667,451.4,7.2,2.3888,99.3979,2.2846,43.5076,50.9849,81.61,-0.9,63.2,1012.8,0,692.1,155.9,34.2,1,0 +2013-11-21 08:35:12-06:00,n05667,475.7,9.7,2.5213,104.038,2.4055,43.2495,50.7904,81.24,-0.8,63.5,1012.9,0,707.8,168,35.5,1,0 +2013-11-21 08:40:12-06:00,n05667,496.5,10.8,2.6391,108.5158,2.517,43.113,50.7085,81.09,-0.4,61.9,1013,0,721.9,180.3,36.9,1,0 +2013-11-21 08:45:12-06:00,n05667,519.4,13.3,2.7758,113.0764,2.6384,42.8575,50.5192,80.63,-0.2,62,1013,0,737.5,192.8,37.9,1,0 +2013-11-21 09:00:12-06:00,n05667,582.2,15.8,3.108,126.108,2.9579,42.6341,50.4314,80.46,-0.5,63,1013.2,0,771.8,229.7,43,1,0 +2013-11-21 09:05:12-06:00,n05667,599.7,16.5,3.2051,129.4226,3.0454,42.4976,50.3227,80.24,0,60.5,1013.2,0,780.6,240.1,43.3,1,0 +2013-11-21 09:10:12-06:00,n05667,619,17.8,3.3138,133.2517,3.1477,42.3332,50.1959,80.11,0.1,59.5,1013.2,0,790,251.3,44.1,1,0 +2013-11-21 09:15:12-06:00,n05667,638.3,18.6,3.4224,136.8756,3.2455,42.1739,50.1146,79.81,-0.6,62.7,1013.3,0,801.5,263.3,44.8,1,0 +2013-11-21 09:20:12-06:00,n05667,661.1,19.6,3.5458,141.3802,3.3616,42.0579,50.0482,79.67,-0.1,62.9,1013.2,0,815.6,274.9,45.2,1,0 +2013-11-21 09:25:12-06:00,n05667,682.1,19.6,3.647,145.86,3.461,42.1436,50.1816,79.7,0,60.2,1013.1,0,828.5,287,45.9,1,0 +2013-11-21 09:30:12-06:00,n05667,700.5,19.4,3.7498,149.7633,3.5537,42.1424,50.218,79.53,0.2,60.2,1013.2,0,837.3,297.7,46.4,1,0 +2013-11-21 09:35:12-06:00,n05667,721,19.6,3.8559,153.8411,3.6545,42.096,50.2069,79.47,0.7,58.3,1013.3,0,849.5,309.4,46.7,1,0 +2013-11-21 09:40:12-06:00,n05667,735.5,21.7,3.9411,156.6134,3.7359,41.9215,50.0749,79.36,0.7,57.6,1013.4,0,853.4,319,47.5,1,0 +2013-11-21 09:45:12-06:00,n05667,747.4,21.5,3.9994,158.5642,3.7871,41.8695,50.0515,79.21,1,58.3,1013.3,0,856.3,327.9,48.6,1,0 +2013-11-21 09:50:12-06:00,n05667,762.4,22.2,4.0852,161.8767,3.8646,41.8865,50.0911,79.11,0.8,58.4,1013.4,0,860.5,337.5,49.8,1,0 +2013-11-21 09:55:12-06:00,n05667,776,22.9,4.1598,164.2544,3.9356,41.7351,49.983,79,1.2,58,1013.4,0,865.3,345.7,49.9,1,0 +2013-11-21 10:00:12-06:00,n05667,793.6,22.5,4.2449,167.5166,4.0216,41.6542,49.948,79.01,1.1,55.5,1013.4,0,872.1,355.8,50.7,1,0 +2013-11-21 10:05:12-06:00,n05667,809.2,22.5,4.3165,170.3691,4.0853,41.703,50.004,78.93,0.6,57.4,1013.4,0,878,364.8,51.3,1,0 +2013-11-21 10:10:12-06:00,n05667,825.7,22.8,4.4047,173.647,4.1751,41.5908,49.9344,78.95,1.2,54.6,1013.4,0,889.2,375.3,51.5,1,0 +2013-11-21 10:15:12-06:00,n05667,837.5,24.1,4.4845,175.8884,4.2322,41.5593,49.9298,78.55,1,56.5,1013.4,0,891.5,381.6,51.6,1,0 +2013-11-21 10:20:12-06:00,n05667,849.5,24.2,4.5412,178.0934,4.2895,41.5187,49.9259,78.55,1.3,56.5,1013.5,0,894.9,388.9,51.9,1,0 +2013-11-21 10:25:12-06:00,n05667,862.9,25.6,4.6118,180.2035,4.3566,41.363,49.8082,78.45,1.6,56.4,1013.4,0,902.6,397.3,51.7,1,0 +2013-11-21 10:30:12-06:00,n05667,872,25.5,4.6618,181.731,4.399,41.312,49.777,78.31,1.5,55.5,1013.4,0,905.2,403.7,51.9,1,0 +2013-11-21 10:35:12-06:00,n05667,882.7,24.9,4.7034,184.0636,4.4444,41.4151,49.8875,78.44,1.3,55.5,1013.5,0,908.5,410.8,52.2,1,0 +2013-11-21 10:40:12-06:00,n05667,893.4,22.3,4.7686,187.075,4.4998,41.574,50.0632,78.36,0.8,56.8,1013.4,0,914.3,417.9,52.4,1,0 +2013-11-21 10:45:12-06:00,n05667,898.4,24.5,4.7947,187.3958,4.5309,41.3594,49.8726,78.37,1,59.1,1013.4,0,914.4,422.3,52.3,1,0 +2013-11-21 10:50:12-06:00,n05667,907.3,24.6,4.8512,189.2719,4.5749,41.3716,49.9097,78.17,1.2,58,1013.5,0,915.6,427.4,52.8,1,0 +2013-11-21 11:00:12-06:00,n05667,927,21.4,4.9315,194.5983,4.6599,41.7603,50.3013,78.45,1.1,55.4,1013.4,0,925.2,439.8,53.8,1,0 +2013-11-21 11:05:12-06:00,n05667,931.9,20.8,4.9658,196.4588,4.6892,41.8963,50.4359,78.44,1,56.1,1013.5,0,925.2,443.2,53.8,1,0 +2013-11-21 11:10:12-06:00,n05667,937.8,21.8,4.9885,197.0862,4.7138,41.8105,50.3611,78.45,1.3,56.3,1013.5,0,929,447.4,53.5,1,0 +2013-11-21 11:15:12-06:00,n05667,943,22.2,5.0301,198.2167,4.7485,41.7429,50.3175,78.31,1.7,55.3,1013.6,0,928.9,451,53.9,1,0 +2013-11-21 11:20:12-06:00,n05667,950,21.7,5.0575,199.7628,4.7757,41.829,50.4099,78.35,1.7,55.5,1013.5,0,932.1,455.2,54.2,1,0 +2013-11-21 11:25:12-06:00,n05667,953.8,21.6,5.0727,200.2959,4.7945,41.7764,50.3643,78.4,2,55,1013.5,0,933.4,457.9,54,1,0 +2013-11-21 11:30:12-06:00,n05667,955.3,22.2,5.0912,200.0249,4.7995,41.676,50.2661,78.16,2.3,54.6,1013.5,0,932.6,459.1,54,1,0 +2013-11-21 11:35:12-06:00,n05667,958.4,23.2,5.1097,200.4546,4.821,41.5791,50.1881,78.17,2.7,52.1,1013.4,0,933.7,460.8,53.6,1,0 +2013-11-21 11:40:12-06:00,n05667,959.2,22,5.1007,201.2612,4.8238,41.7228,50.339,78.38,2.7,51.8,1013.3,0,933.3,462,53.8,1,0 +2013-11-21 11:45:13-06:00,n05667,964.9,22.5,5.1368,202.5271,4.8476,41.7784,50.3865,78.25,2.8,51.1,1013.3,0,938.4,464.9,53.5,1,0 +2013-11-21 11:50:12-06:00,n05667,963,23.1,5.1363,201.8817,4.8439,41.6774,50.2837,78.17,3,51.4,1013.3,0,936.9,464.8,53.3,1,0 +2013-11-21 11:55:12-06:00,n05667,964.3,22.2,5.1456,202.6071,4.8527,41.7514,50.3591,78.19,3.2,50.1,1013.2,0,937.4,465.7,53.4,1,0 +2013-11-21 12:00:12-06:00,n05667,963.5,23.9,5.1412,201.1938,4.8484,41.4971,50.1289,78.07,3.2,51.5,1013.1,0,935.8,464.5,53.3,1,0 +2013-11-21 12:05:12-06:00,n05667,963.1,23.7,5.1406,201.6266,4.8472,41.5964,50.2099,78.12,3.4,49.2,1013,0,936.4,464.5,53.1,1,0 +2013-11-21 12:10:12-06:00,n05667,958.4,23.1,5.1236,201.0471,4.8327,41.6018,50.2206,78.13,3.5,50,1013,0,934.8,463.4,53.3,1,0 +2013-11-21 12:15:12-06:00,n05667,958.6,23.1,5.1198,201.2586,4.8266,41.6974,50.2974,78.16,3.6,49,1012.9,0,935.5,462.8,53.1,1,0 +2013-11-21 12:20:12-06:00,n05667,959.3,22.5,5.1128,201.2917,4.8256,41.7133,50.3188,78.24,3.6,49.3,1012.8,0,937.5,462.2,52.9,1,0 +2013-11-21 12:25:12-06:00,n05667,954.8,23.3,5.1026,200.6937,4.8131,41.6978,50.2876,78.21,3.8,49.3,1012.8,0,935.5,459.5,52.6,1,0 +2013-11-21 12:30:12-06:00,n05667,949.7,24.3,5.0857,198.4241,4.7963,41.3706,49.9747,78.07,4.2,49.3,1012.7,0,933.3,456.1,52,1,0 +2013-11-21 12:35:12-06:00,n05667,946.2,23.7,5.0552,197.1401,4.7679,41.3477,49.9532,78.07,4.4,47.3,1012.5,0,934.4,454.8,52.2,1,0 +2013-11-21 12:40:12-06:00,n05667,938.1,25.8,5.023,195.56,4.7365,41.2883,49.8726,78.07,4.4,48,1012.5,0,929.2,450.1,52.3,1,0 +2013-11-21 12:45:12-06:00,n05667,933.7,24,5.0036,195.0359,4.712,41.3916,49.9552,78.03,4.4,47.2,1012.5,0,928.3,446.9,52.2,1,0 +2013-11-21 12:50:12-06:00,n05667,928.3,25.6,4.9701,193.739,4.6818,41.3815,49.9194,78.09,4.6,47.6,1012.4,0,927,443.1,51.8,1,0 +2013-11-21 12:55:12-06:00,n05667,918.8,25.5,4.9247,191.7704,4.6406,41.3247,49.8732,78.08,4.9,46.5,1012.3,0,925,438.9,51.5,1,0 +2013-11-21 13:00:12-06:00,n05667,910.7,25.2,4.8841,190.1106,4.6054,41.2796,49.7965,78.17,5.1,45,1012.3,0,920.6,433.5,51.3,1,0 +2013-11-21 13:05:12-06:00,n05667,903.9,25.4,4.8506,188.6957,4.5684,41.3045,49.8056,78.11,5,44.5,1012.2,0,918.1,428.6,51.2,1,0 +2013-11-21 13:10:12-06:00,n05667,895.5,24,4.8055,187.9975,4.531,41.4911,49.9656,78.3,5.3,44.3,1012.1,0,918.2,423.8,50.5,1,0 +2013-11-21 13:15:12-06:00,n05667,886.6,23.5,4.7591,186.5945,4.4876,41.5796,50.0521,78.33,5.3,43,1012,0,915.5,418.1,50.2,1,0 +2013-11-21 13:20:12-06:00,n05667,875.7,23.4,4.7052,184.4089,4.4357,41.5742,50.0124,78.37,5.3,43.9,1012,0,911.1,411.8,50.1,1,0 +2013-11-21 13:25:12-06:00,n05667,863.1,23.9,4.6363,181.4261,4.3725,41.4924,49.9077,78.41,5.6,43.8,1012.1,0,905,403.8,49.7,1,0 +2013-11-21 13:30:12-06:00,n05667,851.2,21.6,4.5679,180.0966,4.3185,41.7036,50.0775,78.73,5.6,44.1,1012,0,900.2,397.1,49.7,1,0 +2013-11-21 13:35:12-06:00,n05667,839.4,24,4.5212,177.0586,4.2646,41.5187,49.8934,78.49,5.8,43.6,1012.1,0,896.8,389.2,48.8,1,0 +2013-11-21 13:40:12-06:00,n05667,829.3,22.5,4.4598,175.6139,4.2071,41.7426,50.0827,78.62,5.8,41.7,1012.1,0,894.3,382.9,48.7,1,0 +2013-11-21 13:45:12-06:00,n05667,816.2,21.9,4.3893,173.3607,4.1433,41.8413,50.1373,78.78,5.7,44.1,1012,0,889.2,374.8,48.5,1,0 +2013-11-21 13:50:12-06:00,n05667,802.5,21.4,4.3192,170.7884,4.0781,41.8797,50.1458,78.85,5.8,42.4,1012,0,884.8,366.6,47.9,1,0 +2013-11-21 13:55:12-06:00,n05667,788.8,21.5,4.2481,167.9966,4.0139,41.8533,50.099,78.94,5.9,42.3,1012,0,878.7,357.6,47.4,1,0 +2013-11-21 14:00:12-06:00,n05667,772.3,21.3,4.1624,164.9689,3.9305,41.9711,50.1555,79.02,6,41.4,1011.9,0,873.7,349.1,47,1,0 +2013-11-21 14:05:12-06:00,n05667,758.3,19.4,4.0879,162.8812,3.8652,42.1405,50.3141,79.19,5.9,41.4,1011.8,0,866.2,339.8,46.7,1,0 +2013-11-21 14:10:12-06:00,n05667,743.3,22.1,4.0163,158.7202,3.7882,41.8984,50.0313,78.99,6,43.3,1011.9,0,861.9,329.9,45.6,1,0 +2013-11-21 14:15:12-06:00,n05667,727.1,19.3,3.925,156.1951,3.7104,42.0962,50.1848,79.3,6,41.4,1011.8,0,853.7,320.6,45.6,1,0 +2013-11-21 14:20:12-06:00,n05667,710.7,19.1,3.8344,153.0014,3.6247,42.2108,50.2733,79.37,6,41.5,1011.8,0,846.4,310.5,45,1,0 +2013-11-21 14:25:12-06:00,n05667,692.5,18.4,3.7372,149.5143,3.5336,42.3124,50.3225,79.5,6,41.5,1011.8,0,837.2,299.8,44.6,1,0 +2013-11-21 14:30:12-06:00,n05667,673.9,17.2,3.6342,145.9503,3.4395,42.4333,50.4084,79.67,5.9,42.3,1011.8,0,826.8,288.8,44.1,1,0 +2013-11-21 14:35:12-06:00,n05667,653.1,18.4,3.5334,141.6003,3.3432,42.3553,50.2869,79.69,5.9,44.1,1011.9,0,816,276.8,43.2,1,0 +2013-11-21 14:40:12-06:00,n05667,636.5,17.1,3.4399,138.1966,3.2553,42.4521,50.3521,79.79,6,42.5,1011.9,0,808.3,266.5,42.7,1,0 +2013-11-21 14:45:13-06:00,n05667,616.7,16.7,3.3318,134.1314,3.1533,42.5364,50.3778,79.91,6,43.4,1011.9,0,797.3,255,42,1,0 +2013-11-21 14:50:12-06:00,n05667,595.2,17.5,3.2193,129.5342,3.049,42.4846,50.2894,80.01,6.1,43.3,1011.9,0,785.4,242.7,41,1,0 +2013-11-21 14:55:12-06:00,n05667,574.8,17.2,3.1083,125.0935,2.9446,42.4821,50.2331,80.12,6.1,44.2,1011.9,0,772.6,230.6,40,1,0 +2013-11-21 15:00:12-06:00,n05667,553.7,17,2.9963,120.4649,2.838,42.4468,50.1591,80.15,6.2,43.1,1011.8,0,760.5,218.7,39.1,1,0 +2013-11-21 15:05:12-06:00,n05667,530.6,16.4,2.8715,115.5163,2.7206,42.4599,50.1182,80.27,6.2,43.4,1011.9,0,743.7,206.3,38.4,1,0 +2013-11-21 15:10:12-06:00,n05667,508.8,15.3,2.7478,111.0065,2.6057,42.602,50.1946,80.48,6.1,42.3,1012,0,729.1,194.2,37.7,1,0 +2013-11-21 15:15:12-06:00,n05667,486.2,14.9,2.6264,106.1052,2.4909,42.5977,50.1572,80.54,6.2,42.6,1011.9,0,713.5,181.8,36.5,1,0 +2013-11-21 15:20:12-06:00,n05667,461.3,14.7,2.499,101.0591,2.3732,42.5834,50.0994,80.72,6.2,42.8,1012.1,0,698.1,169.5,35.1,1,0 +2013-11-21 15:25:12-06:00,n05667,437,14.6,2.3682,95.7452,2.2462,42.6252,50.0717,80.74,6.2,42.6,1012.1,0,677.1,156.4,33.9,1,0 +2013-11-21 15:30:12-06:00,n05667,411.5,14,2.2268,90.0688,2.1136,42.6148,50.0151,80.87,6.2,41.9,1012.1,0,656.8,143.8,32.6,1,0 +2013-11-21 15:35:12-06:00,n05667,388.3,13.6,2.0998,84.9826,1.9932,42.6353,49.9801,80.98,6.2,42.3,1012.2,0,636.7,131.5,31.2,1,0 +2013-11-21 15:40:12-06:00,n05667,362,13,1.9545,78.9322,1.854,42.5731,49.8583,81,6.2,40.9,1012.2,0,611.8,118.9,29.6,1,0 +2013-11-21 15:45:13-06:00,n05667,336.5,12.6,1.8121,73.1709,1.7189,42.5685,49.7993,81.08,6.2,41.9,1012.4,0,586.8,106.5,28.1,1,0 +2013-11-21 15:50:12-06:00,n05667,306.8,12.5,1.6421,66.3018,1.5593,42.519,49.6756,81.28,6.2,42.2,1012.5,0,553,93.4,26.3,1,0 +2013-11-21 15:55:12-06:00,n05667,282.7,11.7,1.507,60.8097,1.4326,42.447,49.5628,81.41,6.2,41.8,1012.4,0,528.4,81.9,24.3,1,0 +2013-11-21 16:10:12-06:00,n05667,196.8,8.7,0.4047,12.6331,0.2985,42.321,47.2361,66.09,6,41.8,1012.2,0,414.6,47.2,17.6,1,0 +2013-11-21 16:15:12-06:00,n05667,138.4,7.9,0.3278,11.3311,0.2663,42.5515,47.2368,73.19,6,42.4,1012.2,0,331.2,34.2,15.4,1,0 +2013-11-21 16:20:12-06:00,n05667,48.7,6.8,0.1202,3.9722,0.1004,39.5788,45.0336,73.37,5.9,41.9,1012.3,0,68.9,17.7,13.2,1,0 +2013-12-04 07:55:12-06:00,n05667,68.4,-5.5,0.2758,10.7586,0.2548,42.2199,48.6562,80.16,-4.8,79.4,1006.2,0,45.6,23.4,18,1,0 +2013-12-04 08:00:12-06:00,n05667,219.2,-3.9,0.9426,39.7457,0.9007,44.1254,50.8733,82.88,-4.7,78.1,1006.2,0,342.8,62.4,21.9,1,0 +2013-12-04 08:05:12-06:00,n05667,259.1,-2.3,1.1319,47.6829,1.0812,44.1002,50.9721,82.64,-4.3,76.3,1006.3,0,391.1,75.7,25.1,1,0 +2013-12-04 08:10:12-06:00,n05667,297.6,-1.2,1.311,55.5646,1.2567,44.2141,51.094,82.95,-4.1,76.6,1006.4,0,436.3,89.9,27.2,1,0 +2013-12-04 08:15:12-06:00,n05667,336.5,-0.4,1.4896,63.1967,1.4305,44.1779,51.1671,82.91,-3.8,75.8,1006.5,0,476.8,104.4,29.5,1,0 +2013-12-04 08:20:12-06:00,n05667,369.4,0.7,1.6453,69.8173,1.5813,44.1524,51.2334,82.82,-3.5,74.5,1006.6,0,511,118.7,31.9,1,0 +2013-12-04 08:25:12-06:00,n05667,403.2,1.6,1.8083,76.7143,1.7392,44.1088,51.318,82.67,-3.1,73.1,1006.7,0,542.6,132.8,33.8,1,0 +2013-12-04 08:30:12-06:00,n05667,435.7,1.7,1.9674,83.4621,1.8898,44.1643,51.4331,82.48,-2.9,72.1,1006.7,0,570.8,146.5,35.7,1,0 +2013-12-04 08:40:12-06:00,n05667,412,2.3,2.2438,94.8043,2.1504,44.0878,51.4585,82.11,-3.2,72.1,1006.8,0,617.7,130.8,34.5,1,0 +2013-12-04 08:45:12-06:00,n05667,437.1,3.6,2.3765,99.6024,2.2586,44.0999,51.4287,81.49,-3.1,71.8,1006.8,0,638.6,143,35.1,1,0 +2013-12-04 08:50:12-06:00,n05667,462.6,4.2,2.4967,104.0541,2.3662,43.9743,51.383,81.11,-3.2,71.3,1006.8,0,659.9,154.3,36.4,1,0 +2013-12-04 08:55:12-06:00,n05667,482.1,5.8,2.5745,107.6396,2.4613,43.7335,51.275,81.54,-3.1,71.7,1006.9,0,670.4,164.4,37.8,1,0 +2013-12-04 09:00:12-06:00,n05667,504.5,7.4,2.7003,112.3333,2.5765,43.599,51.1612,81.31,-2.8,70.6,1006.9,0,687,176.2,38.9,1,0 +2013-12-04 09:05:12-06:00,n05667,524.2,8.5,2.8047,116.1659,2.6766,43.3999,51.0409,81.15,-2.7,71.5,1006.9,0,700,187.1,40.2,1,0 +2013-12-04 09:10:12-06:00,n05667,545.4,8.9,2.9221,120.6107,2.7869,43.2785,50.9745,80.97,-2.2,68.7,1007,0,711.9,198.1,41.6,1,0 +2013-12-04 09:15:12-06:00,n05667,568.4,9.2,3.0465,125.4631,2.9039,43.2056,50.9374,80.85,-2.1,68,1007,0,727.4,209.8,42.6,1,0 +2013-12-04 09:20:12-06:00,n05667,588.8,10.5,3.1624,129.5259,3.0089,43.0473,50.821,80.59,-2.2,67.3,1007,0,740.8,221,43.5,1,0 +2013-12-04 09:25:12-06:00,n05667,604,11.9,3.2459,132.456,3.0882,42.8907,50.7163,80.46,-2,67.4,1007.1,0,747.5,230.5,44.6,1,0 +2013-12-04 09:30:12-06:00,n05667,627.2,12,3.3691,137.275,3.2059,42.8192,50.7026,80.36,-2.1,68.2,1007.1,0,764.3,242.7,45.5,1,0 +2013-12-04 09:35:12-06:00,n05667,643.7,14.1,3.4647,140.4532,3.291,42.6776,50.5979,80.12,-1.9,67.1,1007.1,0,773.3,252.2,45.7,1,0 +2013-12-04 09:40:12-06:00,n05667,663.4,15.4,3.5722,144.0668,3.3897,42.501,50.4684,79.91,-1.8,67.1,1007.1,0,785.2,262.8,46.3,1,0 +2013-12-04 09:45:13-06:00,n05667,679.5,17.5,3.6573,146.9845,3.4729,42.3237,50.3474,79.82,-1.4,66.2,1007.2,0,793.3,272.4,47,1,0 +2013-12-04 09:50:12-06:00,n05667,694.3,19,3.7352,149.4571,3.5423,42.1924,50.231,79.66,-1,64.9,1007.3,0,798.6,281.4,48,1,0 +2013-12-04 10:00:12-06:00,n05667,724.7,21.8,3.9067,154.7732,3.7029,41.7974,49.9279,79.35,-0.9,64.7,1007.2,0,814.1,299.6,48.9,1,0 +2013-12-04 10:05:12-06:00,n05667,740.7,21.4,3.998,157.9558,3.7855,41.726,49.896,79.18,-0.6,62.9,1007.3,0,820.4,308.3,49.9,1,0 +2013-12-04 10:10:12-06:00,n05667,754.6,21.6,4.064,160.4363,3.8499,41.6733,49.8914,79.13,-0.8,64.6,1007.3,0,825.6,317.2,51.2,1,0 +2013-12-04 10:15:12-06:00,n05667,768.8,22.1,4.1454,163.564,3.923,41.6937,49.9305,79.02,-0.1,60.9,1007.2,0,832.5,325.3,51.5,1,0 +2013-12-04 10:20:12-06:00,n05667,779.5,22.5,4.1951,165.7611,3.9731,41.7214,49.9786,79.06,-0.4,62.6,1007.2,0,835.6,332.1,51.9,1,0 +2013-12-04 10:25:12-06:00,n05667,788.8,23.8,4.2527,167.0684,4.0198,41.5613,49.842,78.82,0,61.1,1007.3,0,836.2,339.1,53.3,1,0 +2013-12-04 10:30:12-06:00,n05667,802.1,22.7,4.3205,169.9758,4.0881,41.5785,49.8887,78.86,0.3,59.3,1007.3,0,841.7,346.8,54.2,1,0 +2013-12-04 10:35:12-06:00,n05667,810.2,24.2,4.3661,171.2983,4.1294,41.4822,49.8095,78.77,0,61.9,1007.3,0,842.8,351.8,54.4,1,0 +2013-12-04 10:40:12-06:00,n05667,824.8,23.6,4.447,174.7324,4.203,41.5735,49.9279,78.7,-0.2,60,1007.3,0,851.5,360.1,54.6,1,0 +2013-12-04 10:45:12-06:00,n05667,832.1,23,4.4736,176.3906,4.2312,41.6877,50.0424,78.79,-0.5,60.8,1007.2,0,851.5,365.1,55.4,1,0 +2013-12-04 10:50:12-06:00,n05667,837.6,22.4,4.5062,177.6127,4.2583,41.7094,50.0755,78.71,-0.6,60,1007.1,0,851.2,369.4,55.6,1,0 +2013-12-04 10:55:12-06:00,n05667,844.9,21.6,4.542,179.3733,4.2939,41.7744,50.1523,78.74,-0.7,60.9,1007,0,852.7,374,55.7,1,0 +2013-12-04 11:00:12-06:00,n05667,855.2,22.9,4.5968,181.2003,4.3454,41.6996,50.1035,78.68,-0.8,61.8,1007,0,858.7,380.2,56.2,1,0 +2013-12-04 11:05:12-06:00,n05667,862.3,22.3,4.6333,182.6705,4.3792,41.7136,50.1367,78.64,-0.6,61.1,1006.8,0,860.3,384.7,56.8,1,0 +2013-12-04 11:10:12-06:00,n05667,872.1,21.8,4.6899,185.4145,4.4323,41.8325,50.2635,78.66,-0.9,61.8,1006.8,0,867.1,390.5,56.9,1,0 +2013-12-04 11:15:12-06:00,n05667,877.9,22,4.7073,185.5074,4.4471,41.7142,50.1445,78.59,-0.8,61.3,1006.7,0,869.5,393.7,56.7,1,0 +2013-12-04 11:20:12-06:00,n05667,882.2,23.4,4.741,186.3772,4.4819,41.584,50.0638,78.52,-0.8,62.3,1006.6,0,871.2,397,56.4,1,0 +2013-12-04 11:25:12-06:00,n05667,884.1,23.8,4.7542,185.9308,4.4872,41.4358,49.9194,78.34,0,58.1,1006.6,0,871.9,398.6,55.8,1,0 +2013-12-04 11:30:12-06:00,n05667,891.6,24.9,4.8007,187.5799,4.5275,41.4315,49.9188,78.27,0,58.1,1006.5,0,875.6,402.4,55.9,1,0 +2013-12-04 11:35:12-06:00,n05667,888.4,25.5,4.7771,186.0942,4.5077,41.2836,49.7692,78.27,-0.1,58.8,1006.5,0,867.9,401.3,56.5,1,0 +2013-12-04 11:40:12-06:00,n05667,883.4,24.6,4.7418,184.7103,4.4731,41.2934,49.7679,78.27,-0.2,63.3,1006.5,0,859.5,399.9,57.1,1,0 +2013-12-04 11:45:13-06:00,n05667,901,25.3,4.8535,188.824,4.5755,41.2686,49.7958,78.13,0.4,60,1006.4,0,877.9,407.9,56.4,1,0 +2013-12-04 11:50:12-06:00,n05667,910.6,24.8,4.9023,190.4477,4.6205,41.2182,49.7574,78.08,0.5,58.4,1006.4,0,889.3,412.5,55.7,1,0 +2013-12-04 11:55:12-06:00,n05667,912,22.2,4.8943,192.0705,4.6188,41.5845,50.0996,78.33,-0.1,58.9,1006.3,0,889.2,414.2,56.9,1,0 +2013-12-04 12:00:12-06:00,n05667,910.4,23.4,4.8917,192.3084,4.6179,41.6438,50.1555,78.38,-0.2,61.9,1006.3,0,888.8,414.3,56.7,1,0 +2013-12-04 12:05:12-06:00,n05667,912.1,22.9,4.8942,192.6764,4.6192,41.7118,50.2063,78.41,0,61.4,1006.3,0,889.4,414.6,56.5,1,0 +2013-12-04 12:10:12-06:00,n05667,908.7,22.7,4.8733,191.8178,4.6006,41.6943,50.1978,78.41,0.2,58.1,1006.3,0,886.9,413,56,1,0 +2013-12-04 12:15:12-06:00,n05667,910.8,21.3,4.8866,192.8014,4.6121,41.8037,50.311,78.42,0,58.3,1006.3,0,890.6,414,56,1,0 +2013-12-04 12:20:12-06:00,n05667,909,22.6,4.8784,192.0458,4.6059,41.6958,50.1946,78.43,0.2,59.1,1006.2,0,891.1,412.5,55.3,1,0 +2013-12-04 12:25:12-06:00,n05667,911.2,21.8,4.8904,192.9255,4.6199,41.7593,50.2694,78.48,0,60.7,1006.2,0,893.9,412.7,55.6,1,0 +2013-12-04 12:30:12-06:00,n05667,904.2,20.4,4.8576,191.8988,4.5823,41.8786,50.3624,78.44,0,62,1006.1,0,889.1,409.8,55.8,1,0 +2013-12-04 12:35:12-06:00,n05667,905.2,19.7,4.863,192.5294,4.5904,41.9414,50.4301,78.51,0,62.5,1006.1,0,894.1,409.3,55.1,1,0 +2013-12-04 12:40:12-06:00,n05667,896.6,21.3,4.8208,190.3479,4.5503,41.832,50.3,78.5,0.3,62.1,1006,0,888.3,404.5,54.7,1,0 +2013-12-04 12:45:12-06:00,n05667,893.3,20.9,4.7981,190.5465,4.5318,42.0469,50.4918,78.65,0.3,62.5,1005.9,0,887.3,402.5,55.1,1,0 +2013-12-04 12:50:12-06:00,n05667,883.7,20.9,4.7479,188.2948,4.4799,42.0315,50.4496,78.61,0.5,60.8,1005.9,0,881.6,397.7,55.3,1,0 +2013-12-04 12:55:12-06:00,n05667,883.4,20.5,4.7424,188.3182,4.4783,42.0513,50.4639,78.69,0.4,61,1005.9,0,887.2,396.4,54.3,1,0 +2013-12-04 13:00:12-06:00,n05667,873.6,22.2,4.7028,185.4977,4.4371,41.8065,50.233,78.52,0.6,59.9,1005.8,0,882,390.6,53.9,1,0 +2013-12-04 13:05:12-06:00,n05667,859.9,23.8,4.6325,182.2896,4.3715,41.7,50.0957,78.55,0.7,61.6,1005.8,0,872.5,383.7,54,1,0 +2013-12-04 13:10:12-06:00,n05667,851.2,22.3,4.5864,180.5409,4.328,41.7144,50.0931,78.58,0.7,60.5,1005.8,0,868.2,378.9,54.3,1,0 +2013-12-04 13:15:12-06:00,n05667,845.9,22.4,4.5671,179.7982,4.3083,41.7329,50.0996,78.58,0.7,60.3,1005.7,0,869.1,374.5,53.4,1,0 +2013-12-04 13:20:12-06:00,n05667,837.1,22.6,4.5172,177.2796,4.2614,41.6014,49.9545,78.56,1,60.8,1005.8,0,865.7,368.3,52.7,1,0 +2013-12-04 13:25:12-06:00,n05667,830.4,21.2,4.4816,176.652,4.2315,41.7465,50.0703,78.72,0.9,60.1,1005.7,0,867.5,364.3,52,1,0 +2013-12-04 13:30:12-06:00,n05667,818.3,19.9,4.4133,175.0758,4.1685,41.9993,50.2869,78.89,0.9,59.3,1005.6,0,862.6,358.2,52,1,0 +2013-12-04 13:35:12-06:00,n05667,804.8,19.2,4.3409,172.6621,4.0987,42.1256,50.3741,78.96,0.7,59.3,1005.6,0,855.6,350.6,51.7,1,0 +2013-12-04 13:40:12-06:00,n05667,794.9,18.9,4.286,170.8552,4.0486,42.201,50.4444,79.03,0.8,60.8,1005.6,0,853.9,344.2,51,1,0 +2013-12-04 13:45:12-06:00,n05667,784.3,18.9,4.2372,169.1985,4.0022,42.2759,50.4723,79.12,1,61.1,1005.5,0,850.9,336.9,50.1,1,0 +2013-12-04 13:50:12-06:00,n05667,772,19.1,4.1686,166.5703,3.9402,42.2745,50.4541,79.2,1.1,60.7,1005.5,0,847,330.1,49.8,1,0 +2013-12-04 13:55:12-06:00,n05667,760.7,18.3,4.1078,164.1501,3.885,42.2523,50.4066,79.28,1.1,58,1005.4,0,844.3,322.7,49.1,1,0 +2013-12-04 14:00:12-06:00,n05667,744.1,18.8,4.0236,160.6957,3.8045,42.2381,50.3533,79.32,1.1,58.9,1005.4,0,834.2,313.3,48.8,1,0 +2013-12-04 14:05:12-06:00,n05667,727.9,18.9,3.9441,157.4964,3.7252,42.2791,50.3468,79.31,1.1,59.1,1005.4,0,827,304.6,48.5,1,0 +2013-12-04 14:10:12-06:00,n05667,709.3,16.7,3.8364,154.1187,3.6296,42.4616,50.499,79.55,1,57.9,1005.4,0,814.4,294.1,48,1,0 +2013-12-04 14:15:13-06:00,n05667,694.1,16.9,3.7558,150.9426,3.5526,42.4878,50.5068,79.57,0.9,58.9,1005.4,0,808,285.8,47.8,1,0 +2013-12-04 14:20:12-06:00,n05667,677.6,16.6,3.6682,147.6353,3.4717,42.5259,50.4951,79.71,1.1,59,1005.4,0,800.2,276.1,47,1,0 +2013-12-04 14:25:12-06:00,n05667,657.5,15.8,3.5635,143.4776,3.3753,42.5081,50.4307,79.84,1.3,57.3,1005.2,0,787.2,264.9,46.1,1,0 +2013-12-04 14:30:12-06:00,n05667,638,16.2,3.4579,139.6332,3.2764,42.6182,50.4964,79.97,1.2,57.5,1005.3,0,775.4,254.4,45.7,1,0 +2013-12-04 14:35:12-06:00,n05667,619.8,14.9,3.3605,136.0764,3.1841,42.7356,50.5831,80.05,1.3,57.1,1005.2,0,765.9,244.3,45,1,0 +2013-12-04 14:40:12-06:00,n05667,599.5,14.9,3.2564,131.725,3.0859,42.6866,50.489,80.12,1.4,55.9,1005.2,0,752.3,233.2,44.3,1,0 +2013-12-04 14:45:13-06:00,n05667,578.9,14.9,3.1433,127.3093,2.9787,42.7404,50.4954,80.21,1.2,57.5,1005.3,0,737.4,222.1,43.8,1,0 +2013-12-04 14:50:12-06:00,n05667,557.2,14.4,3.0227,122.8703,2.8653,42.8821,50.5639,80.39,1.4,57.9,1005.3,0,723.5,210.5,42.6,1,0 +2013-12-04 14:55:12-06:00,n05667,539.9,15.6,2.9345,118.6527,2.782,42.6509,50.3167,80.36,1.7,56,1005.3,0,716.1,199.5,40.7,1,0 +2013-12-04 15:00:12-06:00,n05667,521,14,2.833,114.5796,2.6842,42.6859,50.3129,80.39,1.7,55.4,1005.2,0,705.5,189.6,39.9,1,0 +2013-12-04 15:05:12-06:00,n05667,502.6,13.7,2.7251,110.5254,2.5836,42.7795,50.365,80.53,1.5,54.4,1005.2,0,695.2,179,38.7,1,0 +2013-12-04 15:10:12-06:00,n05667,476.4,13.8,2.588,105.0926,2.4559,42.7925,50.3307,80.68,1.6,54.3,1005.3,0,675.3,166.3,37,1,0 +2013-12-04 15:15:12-06:00,n05667,452.5,12,2.4676,100.4408,2.341,42.9057,50.3755,80.8,1.5,53.9,1005.3,0,658.2,155,36,1,0 +2013-12-04 15:20:12-06:00,n05667,430.2,11.1,2.3426,95.6455,2.2241,43.0048,50.4263,80.97,1.5,50.8,1005.3,0,640.2,143.6,34.6,1,0 +2013-12-04 15:25:12-06:00,n05667,406.6,11.2,2.2099,90.3608,2.1016,42.9955,50.3719,81.17,1.7,50.7,1005.3,0,621.7,131.9,33,1,0 +2013-12-04 15:30:12-06:00,n05667,381.5,10.6,2.0729,84.6784,1.9697,42.9894,50.2921,81.23,1.6,49,1005.4,0,599.2,119.7,31.2,1,0 +2013-12-04 15:35:12-06:00,n05667,356.7,10,1.9311,78.9786,1.8335,43.0763,50.3074,81.3,1.4,47.7,1005.3,0,576.5,108.6,29.8,1,0 +2013-12-04 15:40:12-06:00,n05667,330.6,9.3,1.788,73.105,1.6992,43.0221,50.2114,81.43,1.5,48.7,1005.3,0,550.7,96.7,27.9,1,0 +2013-12-04 15:45:12-06:00,n05667,307.1,8.3,1.6564,67.7431,1.5735,43.0522,50.1899,81.48,1.4,47.9,1005.3,0,527.3,86.1,26.1,1,0 +2013-12-04 15:50:12-06:00,n05667,277.6,7.8,1.4898,60.8595,1.4165,42.9639,50.0367,81.64,1.3,48.2,1005.2,0,492.7,74.1,24,1,0 +2013-12-04 15:55:12-06:00,n05667,250,7.9,1.3349,54.3271,1.2666,42.8938,49.8503,81.64,1.3,48.9,1005.3,0,459.2,62.8,21.6,1,0 +2013-12-04 16:00:12-06:00,n05667,220.5,6.6,0.9371,36.444,0.821,44.3905,49.4829,78.59,1.3,49.6,1005.2,0,419.7,52.2,19.6,1,0 +2013-12-04 16:05:12-06:00,n05667,126.8,5.5,0.2112,7.6558,0.1796,42.6346,47.006,77.11,1.2,50.6,1005.2,0,342.6,38.4,17.3,1,0 +2013-12-04 16:10:13-06:00,n05667,26.4,3.5,0.1227,4.3171,0.1104,39.1161,45.58,77.19,1.1,50.7,1005.1,0,73.8,18.6,15.1,1,0 +2013-12-04 16:15:13-06:00,n05667,25.9,2.2,0.0951,3.3327,0.0872,38.2336,45.2171,77.54,1,51.5,1005.1,0,32.3,14.1,12.9,1,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041.csv new file mode 100644 index 0000000000..76a05814d0 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041.csv @@ -0,0 +1,28 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +0,19074001,15,100,0.595,65.78,0.543,55.56,30.16,0 +1,19074001,15,200,1.183,67.79,1.093,57.7,63.06,0 +2,19074001,15,400,2.354,69.65,2.185,59.42,129.85,0 +3,19074001,15,600,3.532,70.65,3.292,60.06,197.74,0 +4,19074001,15,800,4.706,71.35,4.398,60.21,264.83,0 +5,19074001,15,1000,5.891,71.85,5.503,60.12,330.86,0 +6,19074001,25,100,0.599,63.95,0.547,53.47,29.25,0 +7,19074001,25,200,1.183,66.01,1.09,56.07,61.14,0 +8,19074001,25,400,2.365,67.92,2.19,57.75,126.45,0 +9,19074001,25,600,3.542,68.96,3.298,58.31,192.28,0 +10,19074001,25,800,4.718,69.68,4.4,58.54,257.56,0 +11,19074001,25,1000,5.903,70.21,5.506,58.54,322.3,0 +12,19074001,25,1100,6.488,70.44,6.055,58.49,354.17,0 +13,19074001,50,100,0.602,59.36,0.541,49.64,26.85,0 +14,19074001,50,200,1.199,61.52,1.096,51.75,56.7,0 +15,19074001,50,400,2.379,63.56,2.214,52.88,117.06,0 +16,19074001,50,600,3.567,64.66,3.302,53.89,177.96,0 +17,19074001,50,800,4.754,65.43,4.399,54.25,238.63,0 +18,19074001,50,1000,5.944,65.99,5.511,54.25,298.95,0 +19,19074001,50,1100,6.528,66.24,6.061,54.18,328.41,0 +20,19074001,75,100,0.606,54.6,0.543,44.32,24.07,0 +21,19074001,75,200,1.207,56.92,1.086,47.06,51.1,0 +22,19074001,75,400,2.399,59.07,2.188,48.7,106.55,0 +23,19074001,75,600,3.593,60.25,3.298,49.42,162.97,0 +24,19074001,75,800,4.784,61.05,4.386,49.84,218.58,0 +25,19074001,75,1000,5.976,61.67,5.493,49.82,273.65,0 +26,19074001,75,1100,6.578,61.92,6.031,49.91,301.01,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_6pts.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_6pts.csv new file mode 100644 index 0000000000..705b045c3d --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_6pts.csv @@ -0,0 +1,7 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +5,19074001,15,1000,5.891,71.85,5.503,60.12,330.86,0 +7,19074001,25,200,1.183,66.01,1.09,56.07,61.14,0 +9,19074001,25,600,3.542,68.96,3.298,58.31,192.28,0 +11,19074001,25,1000,5.903,70.21,5.506,58.54,322.3,0 +12,19074001,25,1100,6.488,70.44,6.055,58.49,354.17,0 +18,19074001,50,1000,5.944,65.99,5.511,54.25,298.95,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand1pc.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand1pc.csv new file mode 100644 index 0000000000..62ffc18666 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand1pc.csv @@ -0,0 +1,28 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +0,19074001,15,100,0.602557908,66.04604926,0.543752916,55.73108297,30.3039389,0 +1,19074001,15,200,1.170242456,68.1750458,1.093985604,56.70940442,62.03927202,0 +2,19074001,15,400,2.367030485,69.40014068,2.1590955,59.75887347,129.0251148,0 +3,19074001,15,600,3.500676296,70.97044673,3.264833315,59.63981583,194.7140576,0 +4,19074001,15,800,4.71490535,70.73167576,4.384503058,61.12687296,268.0109614,0 +5,19074001,15,1000,5.874275465,72.94587119,5.556625816,59.32675419,329.6565739,0 +6,19074001,25,100,0.605655846,64.0995778,0.538877871,54.29888464,29.26046738,0 +7,19074001,25,200,1.185849602,65.70917319,1.08396994,57.0996608,61.89431588,0 +8,19074001,25,400,2.362015917,67.93751925,2.1908791,57.555151,126.0963775,0 +9,19074001,25,600,3.584954984,68.74527497,3.255423797,58.16421558,189.3491715,0 +10,19074001,25,800,4.637918847,71.53467497,4.438803886,59.4503713,263.8885391,0 +11,19074001,25,1000,5.853321397,70.86560044,5.432826514,58.15988708,315.9725766,0 +12,19074001,25,1100,6.495537272,70.85644761,6.088485903,58.76163064,357.7693598,0 +13,19074001,50,100,0.586187552,58.64552986,0.550787524,49.01676566,26.997823,0 +14,19074001,50,200,1.213570417,62.02018863,1.107926016,51.59192614,57.1600372,0 +15,19074001,50,400,2.373423495,63.71260944,2.215462491,53.18028947,117.8189366,0 +16,19074001,50,600,3.5974455,65.2005596,3.313715656,53.9201965,178.6761993,0 +17,19074001,50,800,4.748564218,65.51517046,4.424846417,54.22302009,239.9285362,0 +18,19074001,50,1000,5.994142724,66.0560528,5.533623756,54.11288914,299.4403688,0 +19,19074001,50,1100,6.616982374,66.76375111,6.098910144,54.3370045,331.3965079,0 +20,19074001,75,100,0.588654206,54.25773906,0.539319052,44.79129168,24.15679698,0 +21,19074001,75,200,1.219995615,56.19816618,1.090796201,47.38552062,51.68794588,0 +22,19074001,75,400,2.400251777,60.06377488,2.19827613,48.6690317,106.9879706,0 +23,19074001,75,600,3.577538275,61.007287,3.258584056,49.66718175,161.8446866,0 +24,19074001,75,800,4.798549946,61.61795986,4.349111793,49.88186878,216.9418237,0 +25,19074001,75,1000,5.927884052,61.49334546,5.48662033,49.83602224,273.4313328,0 +26,19074001,75,1100,6.599442464,63.65122656,5.980563781,50.45106778,301.7258286,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand2pc.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand2pc.csv new file mode 100644 index 0000000000..76a05814d0 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand2pc.csv @@ -0,0 +1,28 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +0,19074001,15,100,0.595,65.78,0.543,55.56,30.16,0 +1,19074001,15,200,1.183,67.79,1.093,57.7,63.06,0 +2,19074001,15,400,2.354,69.65,2.185,59.42,129.85,0 +3,19074001,15,600,3.532,70.65,3.292,60.06,197.74,0 +4,19074001,15,800,4.706,71.35,4.398,60.21,264.83,0 +5,19074001,15,1000,5.891,71.85,5.503,60.12,330.86,0 +6,19074001,25,100,0.599,63.95,0.547,53.47,29.25,0 +7,19074001,25,200,1.183,66.01,1.09,56.07,61.14,0 +8,19074001,25,400,2.365,67.92,2.19,57.75,126.45,0 +9,19074001,25,600,3.542,68.96,3.298,58.31,192.28,0 +10,19074001,25,800,4.718,69.68,4.4,58.54,257.56,0 +11,19074001,25,1000,5.903,70.21,5.506,58.54,322.3,0 +12,19074001,25,1100,6.488,70.44,6.055,58.49,354.17,0 +13,19074001,50,100,0.602,59.36,0.541,49.64,26.85,0 +14,19074001,50,200,1.199,61.52,1.096,51.75,56.7,0 +15,19074001,50,400,2.379,63.56,2.214,52.88,117.06,0 +16,19074001,50,600,3.567,64.66,3.302,53.89,177.96,0 +17,19074001,50,800,4.754,65.43,4.399,54.25,238.63,0 +18,19074001,50,1000,5.944,65.99,5.511,54.25,298.95,0 +19,19074001,50,1100,6.528,66.24,6.061,54.18,328.41,0 +20,19074001,75,100,0.606,54.6,0.543,44.32,24.07,0 +21,19074001,75,200,1.207,56.92,1.086,47.06,51.1,0 +22,19074001,75,400,2.399,59.07,2.188,48.7,106.55,0 +23,19074001,75,600,3.593,60.25,3.298,49.42,162.97,0 +24,19074001,75,800,4.784,61.05,4.386,49.84,218.58,0 +25,19074001,75,1000,5.976,61.67,5.493,49.82,273.65,0 +26,19074001,75,1100,6.578,61.92,6.031,49.91,301.01,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc.csv new file mode 100644 index 0000000000..c44d03f1a7 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc.csv @@ -0,0 +1,28 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +0,19074001,15,100,0.572611398,66.95035583,0.562332421,52.22281453,29.36658173,0 +1,19074001,15,200,1.143940699,67.42032019,1.097345652,58.03356179,63.68287668,0 +2,19074001,15,400,2.365556657,59.36224806,2.14195145,59.94277151,128.3945063,0 +3,19074001,15,600,3.549793772,73.69072083,3.431067423,62.98931469,216.1205856,0 +4,19074001,15,800,4.861012985,67.51238632,4.006120754,59.00863673,236.3957242,0 +5,19074001,15,1000,5.914092571,72.74673871,5.818529195,56.54862664,329.029835,0 +6,19074001,25,100,0.657282867,61.21728035,0.549887794,55.09939288,30.29848362,0 +7,19074001,25,200,1.17935404,66.81760116,1.017463181,59.89152215,60.93741863,0 +8,19074001,25,400,2.562581228,66.39520721,2.016477056,53.6113741,108.1061058,0 +9,19074001,25,600,3.465935936,76.73483611,3.206194621,65.82265194,211.0402326,0 +10,19074001,25,800,4.591839974,72.68186351,4.127640997,57.97983441,239.3199415,0 +11,19074001,25,1000,5.672220175,65.28318713,5.509716612,58.49968302,322.3166753,0 +12,19074001,25,1100,6.322854056,66.05136101,6.124626301,54.89003941,336.180979,0 +13,19074001,50,100,0.597890187,55.03039151,0.546579797,53.46018206,29.22025547,0 +14,19074001,50,200,1.221498686,57.44341519,1.079104271,55.28919258,59.66280384,0 +15,19074001,50,400,2.548127323,63.66282257,2.24302407,52.3621296,117.4495171,0 +16,19074001,50,600,3.312554391,65.84180865,3.148860374,53.4681552,168.3637552,0 +17,19074001,50,800,5.079831045,72.49529379,4.119613155,58.1827831,239.6905587,0 +18,19074001,50,1000,6.085239512,68.95042163,5.662503076,54.32720586,307.6279703,0 +19,19074001,50,1100,6.822614659,63.52196512,6.265730431,57.32849888,359.20492,0 +20,19074001,75,100,0.5951576,55.84815926,0.590324335,45.24482255,26.70911979,0 +21,19074001,75,200,1.205013219,56.85298139,1.067858743,48.47651469,51.76607003,0 +22,19074001,75,400,2.366222606,56.20141957,2.402414334,49.5892931,119.1340286,0 +23,19074001,75,600,3.641637352,57.63081454,3.242521381,55.54510201,180.1061809,0 +24,19074001,75,800,4.664565498,63.57099813,4.756656034,46.98305009,223.4822087,0 +25,19074001,75,1000,5.607940866,60.68060891,5.132737995,52.09647815,267.3975728,0 +26,19074001,75,1100,6.604861088,56.83179966,6.21249486,54.80049027,340.4477641,0 diff --git a/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc_6pts.csv b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc_6pts.csv new file mode 100644 index 0000000000..38781cd6a5 --- /dev/null +++ b/docs/tutorials/mlfm_data/meas_gtw/x19074001_iec61853_041_rand5pc_6pts.csv @@ -0,0 +1,7 @@ +date_time,module_id,temp_module,poa_global,i_sc,v_oc,i_mp,v_mp,p_mp,wind_speed +5,19074001,15,1000,5.914092571,72.74673871,5.818529195,56.54862664,329.029835,0 +7,19074001,25,200,1.17935404,66.81760116,1.017463181,59.89152215,60.93741863,0 +9,19074001,25,600,3.465935936,76.73483611,3.206194621,65.82265194,211.0402326,0 +11,19074001,25,1000,5.672220175,65.28318713,5.509716612,58.49968302,322.3166753,0 +12,19074001,25,1100,6.322854056,66.05136101,6.124626301,54.89003941,336.180979,0 +18,19074001,50,1000,6.085239512,68.95042163,5.662503076,54.32720586,307.6279703,0 diff --git a/docs/tutorials/mlfm_data/ref/mlfm_matrix.csv b/docs/tutorials/mlfm_data/ref/mlfm_matrix.csv new file mode 100644 index 0000000000..fcf59e818f --- /dev/null +++ b/docs/tutorials/mlfm_data/ref/mlfm_matrix.csv @@ -0,0 +1,181 @@ +id,mid,poa_global,temp_module,wind_speed +1,matrix,100,0,0 +2,matrix,100,5,0 +3,matrix,100,10,0 +4,matrix,100,15,0 +5,matrix,100,20,0 +6,matrix,100,25,0 +7,matrix,100,30,0 +8,matrix,100,35,0 +9,matrix,100,40,0 +10,matrix,100,45,0 +11,matrix,100,50,0 +12,matrix,100,55,0 +13,matrix,100,60,0 +14,matrix,100,65,0 +15,matrix,100,70,0 +16,matrix,200,0,0 +17,matrix,200,5,0 +18,matrix,200,10,0 +19,matrix,200,15,0 +20,matrix,200,20,0 +21,matrix,200,25,0 +22,matrix,200,30,0 +23,matrix,200,35,0 +24,matrix,200,40,0 +25,matrix,200,45,0 +26,matrix,200,50,0 +27,matrix,200,55,0 +28,matrix,200,60,0 +29,matrix,200,65,0 +30,matrix,200,70,0 +31,matrix,300,0,0 +32,matrix,300,5,0 +33,matrix,300,10,0 +34,matrix,300,15,0 +35,matrix,300,20,0 +36,matrix,300,25,0 +37,matrix,300,30,0 +38,matrix,300,35,0 +39,matrix,300,40,0 +40,matrix,300,45,0 +41,matrix,300,50,0 +42,matrix,300,55,0 +43,matrix,300,60,0 +44,matrix,300,65,0 +45,matrix,300,70,0 +46,matrix,400,0,0 +47,matrix,400,5,0 +48,matrix,400,10,0 +49,matrix,400,15,0 +50,matrix,400,20,0 +51,matrix,400,25,0 +52,matrix,400,30,0 +53,matrix,400,35,0 +54,matrix,400,40,0 +55,matrix,400,45,0 +56,matrix,400,50,0 +57,matrix,400,55,0 +58,matrix,400,60,0 +59,matrix,400,65,0 +60,matrix,400,70,0 +61,matrix,500,0,0 +62,matrix,500,5,0 +63,matrix,500,10,0 +64,matrix,500,15,0 +65,matrix,500,20,0 +66,matrix,500,25,0 +67,matrix,500,30,0 +68,matrix,500,35,0 +69,matrix,500,40,0 +70,matrix,500,45,0 +71,matrix,500,50,0 +72,matrix,500,55,0 +73,matrix,500,60,0 +74,matrix,500,65,0 +75,matrix,500,70,0 +76,matrix,600,0,0 +77,matrix,600,5,0 +78,matrix,600,10,0 +79,matrix,600,15,0 +80,matrix,600,20,0 +81,matrix,600,25,0 +82,matrix,600,30,0 +83,matrix,600,35,0 +84,matrix,600,40,0 +85,matrix,600,45,0 +86,matrix,600,50,0 +87,matrix,600,55,0 +88,matrix,600,60,0 +89,matrix,600,65,0 +90,matrix,600,70,0 +91,matrix,700,0,0 +92,matrix,700,5,0 +93,matrix,700,10,0 +94,matrix,700,15,0 +95,matrix,700,20,0 +96,matrix,700,25,0 +97,matrix,700,30,0 +98,matrix,700,35,0 +99,matrix,700,40,0 +100,matrix,700,45,0 +101,matrix,700,50,0 +102,matrix,700,55,0 +103,matrix,700,60,0 +104,matrix,700,65,0 +105,matrix,700,70,0 +106,matrix,800,0,0 +107,matrix,800,5,0 +108,matrix,800,10,0 +109,matrix,800,15,0 +110,matrix,800,20,0 +111,matrix,800,25,0 +112,matrix,800,30,0 +113,matrix,800,35,0 +114,matrix,800,40,0 +115,matrix,800,45,0 +116,matrix,800,50,0 +117,matrix,800,55,0 +118,matrix,800,60,0 +119,matrix,800,65,0 +120,matrix,800,70,0 +121,matrix,900,0,0 +122,matrix,900,5,0 +123,matrix,900,10,0 +124,matrix,900,15,0 +125,matrix,900,20,0 +126,matrix,900,25,0 +127,matrix,900,30,0 +128,matrix,900,35,0 +129,matrix,900,40,0 +130,matrix,900,45,0 +131,matrix,900,50,0 +132,matrix,900,55,0 +133,matrix,900,60,0 +134,matrix,900,65,0 +135,matrix,900,70,0 +136,matrix,1000,0,0 +137,matrix,1000,5,0 +138,matrix,1000,10,0 +139,matrix,1000,15,0 +140,matrix,1000,20,0 +141,matrix,1000,25,0 +142,matrix,1000,30,0 +143,matrix,1000,35,0 +144,matrix,1000,40,0 +145,matrix,1000,45,0 +146,matrix,1000,50,0 +147,matrix,1000,55,0 +148,matrix,1000,60,0 +149,matrix,1000,65,0 +150,matrix,1000,70,0 +151,matrix,1100,0,0 +152,matrix,1100,5,0 +153,matrix,1100,10,0 +154,matrix,1100,15,0 +155,matrix,1100,20,0 +156,matrix,1100,25,0 +157,matrix,1100,30,0 +158,matrix,1100,35,0 +159,matrix,1100,40,0 +160,matrix,1100,45,0 +161,matrix,1100,50,0 +162,matrix,1100,55,0 +163,matrix,1100,60,0 +164,matrix,1100,65,0 +165,matrix,1100,70,0 +166,matrix,1200,0,0 +167,matrix,1200,5,0 +168,matrix,1200,10,0 +169,matrix,1200,15,0 +170,matrix,1200,20,0 +171,matrix,1200,25,0 +172,matrix,1200,30,0 +173,matrix,1200,35,0 +174,matrix,1200,40,0 +175,matrix,1200,45,0 +176,matrix,1200,50,0 +177,matrix,1200,55,0 +178,matrix,1200,60,0 +179,matrix,1200,65,0 +180,matrix,1200,70,0 diff --git a/docs/tutorials/mlfm_data/ref/mlfm_reference_modules.csv b/docs/tutorials/mlfm_data/ref/mlfm_reference_modules.csv new file mode 100644 index 0000000000..84dbe59739 --- /dev/null +++ b/docs/tutorials/mlfm_data/ref/mlfm_reference_modules.csv @@ -0,0 +1,21 @@ +module_id,source,site,manufacturer,technology,module_type,module_serial,i_sc,i_mp,v_mp,v_oc,alpha_i_sc,alpha_i_mp,beta_v_mp,beta_v_oc,gamma_pdc,delta_ff,p_mp,ff,comments +t1,test,test,test,test,test,test,10,8,25,30,0.0005,0.0001,-0.004,-0.0035,-0.0045,-0.0075,200,0.666666667,tes +g31,gantner ,tempe,Sanyo,hit,HIP-210NKHEI, ,5.57,5.09,41.3,50.9,0.0002998,0,0,-0.002459,-0.003,,210.217,0.741472172,https://www.gantner-instruments.com/ +g71,gantner ,tempe,FirstSolar,CdTe,FS-380, ,1.88,1.65,48.5,60.8,0.0004,0,0,-0.0027,-0.0025,,80.025,0.700106733,https://www.gantner-instruments.com/ +g78,gantner ,tempe,TrinaSolar,csi,TSM-180DC01, ,5.35,4.9,36.8,44.2,0.0005,0,0,-0.0035,-0.0045,,180.32,0.762549161,https://www.gantner-instruments.com/ +g81,gantner ,tempe,MiaSole,CIS/CIGS,MR-107, ,6.46,5.33,20,25.4,-0.0003,0,0,-0.0036,-0.0044,,106.6,0.649667244,https://www.gantner-instruments.com/ +n0188,nrel,cocoa,Manufacturer 2,msi,Model C,118,2.73,2.522,18.16,22.07,0.000426165,0.00000298,-0.004133773,-0.003298414,-0.004137609,,45.79952,0.76014413,https://www.nrel.gov/docs/fy14osti/61610.pdf +n05667,nrel,eugene,Manufacturer 6,hit,Model G,5667,5.456,5.1,41.58,50.11,0.000349521,-0.000108326,-0.003372754,-0.002666783,-0.003466138,,212.058,0.775632319,https://www.nrel.gov/docs/fy14osti/61610.pdf +n75669,nrel,golden,Manufacturer 3,cdte,Model D,75669,1.177,1.02,64.12,87.66,0.000388,0.00037,-0.00247,-0.00231,-0.00214,,65.4024,0.633892709,https://www.nrel.gov/docs/fy14osti/61610.pdf +x19074001,cfv,indoor,Panasonic,HIT,VBHN325SA 16,W0JH9NH02089,5.902849487,5.50600091,58.53700524,70.21442506,0.000254238,-4.31E-05,-0.00297779,-0.002441497,-0.002940601,-0.000867764,322.3048041,0.777640239,https://pvpmc.sandia.gov/download/7701/ +x19074002,cfv,indoor,LG,,LG320N1K-A5,,10.35517229,9.788568757,32.72393392,40.13233059,0.000292305,-0.000192674,-0.003839589,-0.002909917,-0.004001761,-0.001512487,320.3204772,0.770784535,https://pvpmc.sandia.gov/download/7701/ +x19074003,cfv,indoor,Hanwah Q Cells,,Q.PLUS BFR-G4-1 280,,9.488280901,8.9279505,31.12943344,38.75616482,0.000377717,-0.000163595,-0.00381762,-0.002876365,-0.003953902,-0.001574468,277.9220408,0.755778725,https://pvpmc.sandia.gov/download/7701/ +x19074004,cfv,indoor,Jinko Solar,,JKM260P-60,,8.98846222,8.436453776,30.64339913,37.69974132,0.000373517,-0.000160436,-0.004092276,-0.003117413,-0.004226894,-0.001618429,258.5216203,0.762909638,https://pvpmc.sandia.gov/download/7701/ +x19074005,cfv,indoor,Canadian Solar,cSi,CS6K-275M,1.16E+13,9.29909371,8.81042239,31.48246048,38.29373004,0.000350383,-0.000165735,-0.004038306,-0.003075087,-0.004181404,-0.001560515,277.3737747,0.778927615,https://pvpmc.sandia.gov/download/7701/ +x19074006,cfv,indoor,Canadian Solar,,CS6K-270P,,9.150327478,8.600350021,31.10742638,38.07417146,0.000376151,-0.000142885,-0.003951002,-0.003052053,-0.003981806,-0.001530851,267.5347551,0.767914928,https://pvpmc.sandia.gov/download/7701/ +x19074007,cfv,indoor,Mission Solar,,MSE300SQ5T,,9.425221741,8.945631878,31.9608779,39.37453464,0.000329992,-0.000168207,-0.003848512,-0.002852233,-0.004141737,-0.001596551,285.9102482,0.770411421,https://pvpmc.sandia.gov/download/7701/ +x19074008,cfv,indoor,Hanwha Q CELLS,,Q.Peak-G4.1 300,,9.590035307,9.078192813,31.93130479,39.53341539,0.00031755,-0.000189238,-0.00387389,-0.002865072,-0.004034699,-0.001618217,289.8785417,0.764595127,https://pvpmc.sandia.gov/download/7701/ +x19074009,cfv,indoor,itek Energy,,IT-360-SE72,,9.635601996,9.128439457,38.85677238,47.51235266,0.000355585,-0.000115779,-0.003804129,-0.002844126,-0.003902273,-0.001529759,354.7016942,0.774779059,https://pvpmc.sandia.gov/download/7701/ +g10,gantner,tempe,KANEKA ,"a-Si, uc-Si ",U-EA105,109021380624108X7,2.4,1.96,53.5,71,0.00056,,,-0.0039,-0.0035,0,104.86,0.615375587, +g11,gantner,tempe,First Solar,CdTe,FS-275,80924070800,1.2,1.08,69.4,92,0.0004,,,-0.0025,-0.0025,0,74.952,0.678913043, +g12,gantner,tempe,Solarworld,c-Si,SW220,108128556,8,7.4,29.8,36.6,0.00034,,,-0.0034,-0.0048,0,220.52,0.753142077, diff --git a/mlfm.py b/mlfm.py new file mode 100644 index 0000000000..97c09154cf --- /dev/null +++ b/mlfm.py @@ -0,0 +1,1226 @@ +"""Analyse, fit + predict PV performance measurements using MPM & LFM.""" +import numpy as np +import os +import pandas as pd +from scipy import optimize + +# import pvlib + +""" +ver : 221213t22 <-- delete when finalised + +``mlfm.py`` module contains functions to analyse, fit, predict and display +performance of PV modules using the mechanistic performance model (MPM) and +loss factors model (LFM). + +Authors : Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) +Comments : Cliff Hansen, Kevin Anderson, Anton Driesse and Mark Campanelli +https://pvlib-python.readthedocs.io/en/stable/variables_style_rules.html#variables-style-rules +https://github.com/python/peps/blob/master/pep-0008.txt + +OVERVIEW + +I) The Loss Factors Model (LFM) 2011 ref [1] quantifies +normalised losses from module parameters (e.g. pr_dc, i_sc, r_sc, i_mp, +v_mp, r_oc and v_oc) by analysing module measurements or the shape of the +IV curve and comparing it with STC reference values from the datasheet. + + Depending on the number of measurements available the LFM is defined +with a suffix number x = 1..12 LFM_n as in ref [4] - + + parameters modelled +|LFM_1 | ``p_mp`` | +|LFM_2 | ``i_mp``, ``v_mp``, | +|LFM_4 | ``i_sc``, ``i_mp``, ``v_mp``, ``v_oc`` | +|LFM_6 | ``i_sc``, ``r_sc``, ``i_ff`, ``v_ff`, ``r_oc``, ``v_oc`` | + +|LFM_>6| (can include normalised losses for : + soiling, reflectivity vs. aoi, spectrum <- affecting i_sc, + current mismatch/shading, rollover, + clipping etc.) + + This file just contains - +LFM_6 : 'measurements with r_sc and r_oc' + e.g. iv curves with good smooth data. + +LFM_4 : 'measurements without r_sc or r_oc' + e.g. indoor matrix measurements or iv curves without smoooth data. + +II) The Mechanistic performance model (MPM) 2017 ref [2] +has "meaningful,independent, robust and normalised" coefficients +which fit how the LFM values depend on irradiance, module temperature +(and windspeed) and time. + +Two MPM versions have been included here : + +mpm_a : (mpm_original 2017 ref [2] now deprecated) + The original model to fit normalised parameters such as + pr_dc, v_oc, r_sc, v_mp, i_mp, ff ... + with an extra low light coefficient c_6 to help fit data with + unusual low light performance and/or poor measurements. + c_5 is only used if there is windspeed data, otherwise it is ignored + + mpm_a = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + +mpm_b : (GI name 'mpm_advanced' 2022 ref [7]) + Is an improved model to fit normalised parameters such as + pr_dc, v_oc, r_sc, v_mp, i_mp, ff ... + It better fits precise measurements (see CFV and GI) where the + low light data is measured well and has an improvement for even + better v_oc fitting [ref 7 : 2022 PVSC PHILADELPHIA] + c_5 is only used if there is windspeed data, otherwise it is ignored + + mpm_b = c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + +for mpm_a and mpm_b : + g = (G_POA (W/m^2) / G_STC=1000 (W/m^2)) --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + +Note that both mpm_a or mpm_b can be used with either LFM_6 or LFM_4 + + A later MPM version (not detailed here) can be used to model clipping and +other effects [See ref [8] Sutterlueti et al PVPMC 2022] 'mpm professional' + +The pairs of functions "mpm_a_calc and mpm_b_calc", and +"mpm_a_fit and mom_b_fit" should probably be merged but so far I haven't +found a way to do this as they call each other and at least one combination +breaks. + +Using DATAFRAMES or SERIES for variables +---------------------------------------- + +Many pvlib functions pass series of weather data separately for parameters e.g. + poa_global, temp_module, wind_speed +and measurements such as + pr_dc or p_mp + +This mlfm code keeps all its met and measurement data in dataframes - + meas, norm etc. e.g. + +meas.columns + Index(['module_id', 'poa_global', 'wind_speed', 'temp_air', + 'temp_module', 'v_oc', 'i_sc', 'i_mp', 'v_mp', 'r_sc', + 'r_oc', 'p_mp', 'pr_dc', 'v_oc_temp_corr', 'pr_dc_temp_corr'], + dtype='object') + + It's easier when modelling all 6 or more measurement parameters in one +frame and then use an lfm_sel var to choose which to analyse +e.g. lfm_sel = 'pr_dc' + +If individual series are needed to interface with existing code and +methodolgies they can be easily created by the following + + +#pvlib series <-- mlfm dataframe + poa_global = meas['poa_global'] + temp_module = meas['temp_module'] + wind_speed = meas['wind_speed'] + pr_dc = meas['pr_dc'] + +# mlfm dataframe <-- pvlib series + meas['poa_global'] = poa_global + meas['temp_module'] = temp_module + meas['wind_speed'] = wind_speed + meas['pr_dc'] = pr_dc + +DATAFRAME DEFINITIONS (for this python file and tutorials) +---------------------------------------------------------- + +A full definition is given here to keep the code in each function shorter + +dmeas : DataFrame +----------------- + Measured weather and module electrical values per time or measurement + + Parameters [units] + ---------- + Index either - + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``module_id`` - unique identifier to match data in ref [alpha num] + + Weather measurements - + + * ``poa_global`` - global plane of array irradiance [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/s] + + [optional weather] + + * ``temp_air`` - air temperature optional [C] + + /Columns as needed by LFM_4 and/or LFM_6/ : + + * ``i_sc`` | 4 6 | current at short circuit condition [A] + * ``i_mp`` | 4 6 | current at maximum power point [A] + * ``v_mp`` | 4 6 | voltage at maximum power point [V] + * ``v_oc`` | 4 6 | voltage at open circuit condition [V] + + * ``r_sc`` | 6 | -1/ (dI/dV|V=0) of IV curve at short circuit [Ohm] + * ``r_oc`` | 6 | -1/(dI/dV|I=0) of IV curve at open circuit [Ohm] + + Optional columns include + + * ``p_mp`` - power at maximum power point = i_mp * v_mp [W] + +ref : dict +---------- + Reference electrical and thermal datasheet module values at STC. + + Parameters [units] + ---------- + Index + * ``module_id`` - unique identifier to match data in dmeas [alpha num] + + * ``p_mp`` - Max Power at Standard Test Condition (STC). [W] + * ``i_sc`` - Current at short circuit at STC. [A] + * ``i_mp`` - Current at max power at STC. [A] + * ``v_mp`` - Voltage at max power at STC. [V] + * ``v_oc`` - Voltage at open circuit at STC. [V] + * ``ff`` - Fill Factor [1] + + * ``gamma_pdc`` - Temperature coefficient of max power point + power at STC. [1/C] + * ``beta_v_oc`` - Temperature coefficient of open circuit + voltage at STC. [1/C] + [optional thermal] + + * ``alpha_i_sc`` - Temperature coefficient of short circuit + current STC. [1/C] + + * ``alpha_i_mp`` - Temperature coefficient of max power point + current at STC. [1/C] + + * ``beta_v_mp`` - Temperature coefficient of max power point + voltage at STC. [1/C] + + [optional ID related] + * ``source`` - Data Source [alpha num] + * ``site`` - Sitename [alpha num] + * ``manufacturer`` - Module manufacturer [alpha num] + * ``technology`` - Module technology e.g. cSi, HIT, CdTe [alpha num] + * ``module_type`` - Type ID e.g. ABC-123 [alpha num] + * ``module_serial`` - Serial number [alpha num] + * ``comments`` - General comments [alpha num] + + +dnorm : DataFrame +----------------- + Normalised multiplicative loss factors per parameter to model fall from + start 1/ref_ff to meas pr_dc where - + + LFM_6 - multiplicative + pr_dc = 1/ff * ( norm(i_sc) *norm(r_sc) *norm(i_ff) + *norm(v_ff) *norm(r_oc) *norm(v_oc_t) *norm(temp_corr) ). + + LFM_4 - multiplicative + pr_dc = 1/ff * ( norm(i_sc) *norm(i_mp) + *norm(v_mp) *norm(v_oc_t) *norm(temp_corr) ). + + Parameters [units] + ---------- + Index (copied from dmeas) either + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``poa_global`` - global plane of array [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/ + + |Columns as used by LFM_4 and/or LFM_6| : + + * ``pr_dc``| 4 6 | Performance ratio dc. + pr_dc = meas_p_mp / ref_p_mp /(poa_global/G_STC) [%] + * ``pr_dc_temp_corr`` + | 4 6 | pr_dc adjusted to 25C by gamma_p_mp. + * ``i_sc`` | 4 6 | loss due to current at short circuit condition [%] + * ``v_oc`` | 4 6 | Loss due to voltage at open circuit condition [%] + * ``v_oc_temp_corr`` + | 4 6 | v_oc adjusted to 25C by gamma_p_mp (not beta_v_oc) + for simplicity + + * ``i_mp`` | 4 | Loss due to current part of ff [%] + * ``v_mp`` | 4 | Loss due to voltage part of ff [%] + + * ``r_sc`` | 6 | Loss due to r_sc ~r_shunt [%] + * ``i_ff`` | 6 | Loss due to r_sc corrected current part of ff [%] + * ``v_ff`` | 6 | Loss due to r_oc corrected voltage part of ff [%] + * ``r_oc`` | 6 | Loss due to r_oc related to r_series [%] + +dstack : DataFrame +------------------ + Stacked subtractive normalized loss factors per parameter to model fall + from start 1/ref_ff to meas pr_dc where - + + LFM_6 - subtractive losses + pr_dc = 1/ff - (stack(i_sc) +stack(r_sc) +stack(i_ff) + +stack(v_ ff) +stack(r_oc) +stack(v_oc_t) +stack(temp_corr)) + + LFM_4 - subtractive losses + pr_dc = 1/ff - (stack(i_sc) +stack(i_mp) + +stack(v_mp) +stack(v_oc_t) +stack(temp_corr) ). + + Parameters [units] + ---------- + Index (copied from dmeas) + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``poa_global`` - global plane of array irradiance [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/ + + |Columns as needed by LFM_4 and/or LFM_6| : + + * ``pr_dc`` equal to `dnorm['pr_dc']` + + * ``i_sc`` | 4 6 | loss due to current at short circuit condition [%] + * ``v_oc`` | 4 6 | Loss due to voltage at open circuit condition [%] + * ``v_oc_temp_corr`` + | 4 6 | v_oc adjusted to 25C by gamma_p_mp (not beta_v_oc) + for simplicity + + * ``i_mp`` | 4 | Loss due to current part of ff [%] + * ``v_mp`` | 4 | Loss due to voltage part of ff [%] + + * ``r_sc`` | 6 | Loss due to r_sc ~r_shunt [%] + * ``i_ff`` | 6 | Loss due to r_sc corrected current part of ff [%] + * ``v_ff`` | 6 | Loss due to r_oc corrected voltage part of ff [%] + * ``r_oc`` | 6 | Loss due to r_oc related to r_series [%] +""" + +# DEFINE REFERENCE MEASUREMENT CONDITIONS +# or use existing definitions in pvlib. These might not all have +# been used in this code but are included for completeness + +# NAME value # comment unit PV_LIB name + +T_STC = 25.0 # STC temperature [C] temperature_ref +G_STC = 1000.0 # STC irradiance [W/m^2] + +# not all yet used below , added here for completeness +T_LIC = 25.0 # LIC temperature [C] +G_LIC = 200.0 # LIC irradiance [W/m^2] + +T_HTC = 75.0 # HTC temperature [C] +G_HTC = 1000.0 # HTC irradiance [W/m^2] + +T_PTC = 55.0 # HTC temperature [C] +G_PTC = 1000.0 # HTC irradiance [W/m^2] + +G_LTC = 500.0 # HTC irradiance [W/m^2] +T_LTC = 15.0 # LTC temperature [C] + +G_NOCT = 800 # NOCT irradiance [W/m^2] +T_NOCT = 45 # NOCT temperature [C] + +T_MAX = 100 # maximum temperature on right y axis + +T0C_K = 273.15 # 0C to Kelvin +T25C_K = 298.15 # 25C to Kelvin + +# Define standardised LFM graph colours as a dict ``CLR`` +CLR = { + # parameter_CLR colour R G B + 'irradiance': 'darkgreen', # 000 064 000 + 'temp_module': 'red', # 255 000 000 + 'temp_air': 'yellow', # 245 245 220 + 'wind_speed': 'grey', # 127 127 127 + + 'i_sc': 'purple', # 128 000 128 + 'r_sc': 'orange', # 255 165 000 + 'i_ff': 'lightgreen', # 144 238 144 + 'i_mp': 'green', # 000 255 000 + 'i_v': 'black', # 000 000 000 between i and v losses + 'v_ff': 'cyan', # 000 255 255 + 'v_mp': 'blue', # 000 000 255 + 'r_oc': 'pink', # 255 192 203 + 'v_oc': 'sienna', # 160 082 045 + + 'pr_dc': 'black', # 000 000 000 +} + + +def meas_to_norm(dmeas, ref): + """ + Convert measured P(W), I(A), V(V), R(Ohms) to values normalized to STC. + + Parameters + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + ref : dict + Reference electrical and thermal datasheet module values at STC. + + Returns + ------- + dnorm : DataFrame + Normalised multiplicative loss values (values approx 1). + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + 'Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements' 36th EU PVSEC, Marseille, France. September 2019. + + """ + dnorm = pd.DataFrame() + + # copy weather data to meas dataframe for ease of use later + dnorm['poa_global'] = dmeas['poa_global'] + dnorm['temp_module'] = dmeas['temp_module'] + dnorm['wind_speed'] = dmeas['wind_speed'] + + dnorm['pr_dc'] = dmeas['p_mp']/ref['p_mp'] / (dmeas['poa_global']/G_STC) + + # calc temperature corrected pr_dc + dnorm['pr_dc_temp_corr'] = ( + dnorm['pr_dc'] + * (1 - ref['gamma_pdc']*(dmeas['temp_module'] - T_STC))) + + # calculate normalised loss coefficients + if 'i_sc' in dmeas.columns: + dnorm['i_sc'] = (dmeas['i_sc'] / ref['i_sc'] + / (dmeas['poa_global'] / G_STC)) + + if 'i_mp' in dmeas.columns: + dnorm['i_mp'] = dmeas['i_mp'] / dmeas['i_sc'] + + if 'v_oc' in dmeas.columns: + dnorm['v_oc'] = dmeas['v_oc'] / ref['v_oc'] + + # temperature corrected + dnorm['v_oc_temp_corr'] = ( + dnorm['v_oc'] + * (1 - ref['beta_v_oc']*(dmeas['temp_module'] - T_STC))) + + if 'v_mp' in dmeas.columns: + dnorm['v_mp'] = dmeas['v_mp'] / dmeas['v_oc'] + + if all(c in dmeas.columns for c in ['i_sc', 'v_oc', 'r_sc', 'r_oc']): + ''' LFM_6 including r_sc and r_oc + + create temporary variables (i_r, v_r) from the + intercept of r_sc (at i_sc) with r_oc (at v_oc) + to make maths easier ''' + + i_r = ((dmeas['i_sc'] * dmeas['r_sc'] - dmeas['v_oc']) + / (dmeas['r_sc'] - dmeas['r_oc'])) + + v_r = ((dmeas['r_sc'] * (dmeas['v_oc'] - dmeas['i_sc'] + * dmeas['r_oc']) / (dmeas['r_sc'] - dmeas['r_oc']))) + + # calculate normalised resistances r_sc and r_oc + dnorm['r_sc'] = i_r / dmeas['i_sc'] # norm_r @ isc + dnorm['r_oc'] = v_r / dmeas['v_oc'] # norm_r @ roc + + # calculate remaining fill factor losses partitioned to i_ff, v_ff + dnorm['i_ff'] = dmeas['i_mp'] / i_r + dnorm['v_ff'] = dmeas['v_mp'] / v_r + + return dnorm + + +def mpm_a_calc(dmeas, c_1, c_2, c_3, c_4, c_5=0., c_6=0.): + """ + Predict norm LFM values from weather data (g,t,w) in ``dmeas``. + + const temp_coeff low_light high_light wind extra + | | | | | | + norm = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters [units] + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + c_1 : float + Constant term in model. [%] + c_2 : float + Temperature coefficient in model. [1/C] + c_3 : float + Coefficient for low light log irradiance drop. [suns] + c_4 : float + Coefficient for high light linear irradiance drop. [1/suns] + c_5 : float, default 0 + Coefficient for wind speed dependence optional. [1/(m/s)] + c_6 : float, default 0 [suns] + Coefficient for dependence on inverse irradiance. + + Returns + ------- + mpm_a_out : Series + Predicted values of mpm coefficient. + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality + Module IV Measurements" + 36th EU PVSEC, Marseille, France. September 2019 + + """ + mpm_a_out = ( + c_1 + + c_2 * (dmeas['temp_module'] - T_STC) + + c_3 * np.log10(dmeas['poa_global'] / G_STC) + + c_4 * (dmeas['poa_global'] / G_STC) + + c_6 / (dmeas['poa_global'] / G_STC) + ) + + if 'wind_speed' in dmeas.columns: + mpm_a_out += c_5 * dmeas['wind_speed'] + + return mpm_a_out + + +def mpm_a_fit(data, var_to_fit): + """ + Fit mpm_a to normalised measured data 'var_to_fit' using mpm_a model. + + const temp_coeff low_light high_light wind extra + | | | | | | + fit = = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters + ---------- + data : DataFrame (see norm) + Normalised multiplicative loss values (values approx 1). + + var_to_fit : string + Column name in ``data`` containing variable being fitted. + e.g. pr_dc, i_mp, v_mp, v_oc ... + + Returns + ------- + pred : Series + Values predicted by the fitted model. + + coeff : list + Model coefficients ``c_1`` to ``c_6``. + + resid : Series + Residuals of the fitted model. + + coeff_err : list + Standard deviation of error in each model coefficient. + + See Also + -------- + mpm_a_calc + + """ + # drop any missing data + data = data.dropna() + + c5_zero = 'wind_speed' not in data.columns + # if wind_speed is not present, add it and force it to 0 + if c5_zero: + data['wind_speed'] = 0. + + # define function name + func = mpm_a_calc + + # setup initial values and initial boundary conditions + # init c1 c2 c3 c4 c5 c6<0 + + p_0 = (1.0, 0.01, 0.01, 0.01, 0.01, -0.01) + # boundaries + bounds = ([-2, -2, -2, -2, -2, -2], + [+2, +2, +2, +2, +2, 0]) + + """ + # full_outputboolean, optional + If True, this function returns additioal information: + infodict, mesg, and ier. + """ + + coeff, pcov, infodict, mesg, ier = optimize.curve_fit( + f=func, # fit function + xdata=data, # input data + ydata=data[var_to_fit], # fit parameter + p0=p_0, # initial + bounds=bounds, # boundaries + full_output=True + ) + + # if data had no wind_speed measurements then c_5 coefficient is + # meaningless but a non-zero value may have been returned. + if c5_zero: + coeff[4] = 0. + + # get error of mpm coefficients as sqrt of covariance + perr = np.sqrt(np.diag(pcov)) + coeff_err = list(perr) + + # save fit and error to dataframe + pred = mpm_a_calc(data, *coeff) + + resid = pred - data[var_to_fit] + + return pred, coeff, resid, coeff_err, infodict, mesg, ier + + +def mpm_b_fit(data, var_to_fit): + """ + Fit mpm_b to normalised measured data 'var_to_fit' using mpm_b model. + + const temp_coeff low_light improvement high_light ws + | | | | | | + fit =c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters + ---------- + data : DataFrame (see norm) + Normalised multiplicative loss values (values approx 1). + + var_to_fit : string + Column name in ``data`` containing variable being fitted. + e.g. pr_dc, i_mp, v_mp ... + + Returns + ------- + pred : Series + Values predicted by the fitted model. + + coeff : list + Model coefficients ``c_1`` to ``c_5``. + + resid : Series + Residuals of the fitted model. + + coeff_err : list + Standard deviation of error in each model coefficient. + + See Also + -------- + mpm_a + + """ + # drop missing data + data = data.dropna() + + # define function name + func = mpm_b_calc + + # setup initial values and initial boundary conditions + # init c1 c2 c3 c4 c5 + + p_0 = (1.0, 0.01, 0.01, 0.01, 0.01) + # boundaries + bounds = ([-2, -2, -2, -2, -2], + [+2, +2, +2, +2, +2]) + + coeff, pcov, infodict, mesg, ier = optimize.curve_fit( + f=func, # fit function + xdata=data, # input data + ydata=data[var_to_fit], # fit parameter + p0=p_0, # initial + bounds=bounds, # boundaries + full_output=True + ) + + # get error of mpm coefficients as sqrt of covariance + perr = np.sqrt(np.diag(pcov)) + coeff_err = list(perr) + + # save fit and error to dataframe + pred = mpm_b_calc(data, *coeff) + + resid = pred - data[var_to_fit] + + # fvec = infodict["fvec"] + + return pred, coeff, resid, coeff_err, infodict, mesg, ier + + +def mpm_b_calc(dmeas, c_1, c_2, c_3, c_4, c_5=0.): + """ + Predict normalised LFM values from weather data (g,t,w) in ``dmeas``. + + const temp_coeff low_light improvement high_light ws + | | | | | | + norm =c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters [units] + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + c_1 : float + Constant term in model. [%] + c_2 : float + Temperature coefficient in model. [1/C] + c_3 : float + Coefficient for low light log irradiance drop. [suns] + c_4 : float + Coefficient for high light linear irradiance drop. [1/suns] + c_5 : float, default 0 + Coefficient for wind speed dependence optional. [1/(m/s)] + + Returns + ------- + mpm_b_out : Series + Predicted values of mpm coefficient. + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements" + 36th EU PVSEC, Marseille, France. September 2019 + + """ + mpm_b_out = ( + c_1 + + c_2 * (dmeas['temp_module'] - T_STC) + + c_3 * ((np.log10(dmeas['poa_global'] / G_STC) + * (dmeas['temp_module'] + T0C_K) / T25C_K)) + + c_4 * (dmeas['poa_global'] / G_STC) + ) + + return mpm_b_out + + +def plot_scatter(dnorm, title, qty_lfm_vars, save_figs=False): + """ + Scatterplot of normalised values (y) vs. irradiance (x). + + Electrical quantities are plotted on the left y-axis, temperature + quantities are plotted on the right y-axis. + + Parameters + ---------- + dnorm : DataFrame + Normalised multiplicative loss values (values approx 1). + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + title : string + Title for the figure. + + qty_lfm_vars : int + number of lfm_vars : 6=iv with rsc, roc ; 4=indoor + + save_figs : boolean + save a high resolution png file of figure + + Returns + ------- + fig : Figure + Instance of matplotlib.figure.Figure + + See Also + -------- + meas_to_norm + + """ + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError('plot_scatter requires matplotlib') + + # offset legend to the right to not overlap graph, use ~1.2 + bbox = 1.2 + + # set x_axis as irradiance in W/m2 + xdata = dnorm['poa_global'] + + fig, ax1 = plt.subplots() + + ax1.set_title(title) + + ax1.set_ylabel('Normalised values') + ax1.axhline(y=1, c='grey', linewidth=3) # show 100% line + + # optional normalised y scale usually ~0.8 to 1.1 + ax1.set_ylim(0.8, 1.1) + + ax1.set_xlabel('Plane of array irradiance [W/m$^2$]') + ax1.axvline(x=G_STC, c='grey', linewidth=3) # show 1000W/m^2 STC + ax1.axvline(x=G_NOCT, c='grey', linewidth=3) # show 800W/m^2 NOCT + ax1.axvline(x=G_LIC, c='grey', linewidth=3) # show 200W/m^2 LIC + + # check which lines to plot + if qty_lfm_vars == 6: + # LFM_6 + lines = { + 'pr_dc_temp_corr': 'pr_dc', + 'i_sc': 'i_sc', + 'r_sc': 'r_sc', + 'r_oc': 'r_oc', + 'i_ff': 'i_ff', + 'v_ff': 'v_ff', + 'v_oc_temp_corr': 'v_oc'} + + labels = { + 'pr_dc_temp_corr': 'pr_dc_temp_corr', + 'i_sc': 'norm_i_sc', + 'r_sc': 'norm_r_sc', + 'r_oc': 'norm_r_oc', + 'i_ff': 'norm_i_ff', + 'v_ff': 'norm_v_ff', + 'v_oc_temp_corr': 'norm_v_oc_temp_corr'} + + elif qty_lfm_vars == 4: + # LFM_4 + lines = { + 'pr_dc_temp_corr': 'pr_dc', + 'i_mp': 'i_mp', + 'v_mp': 'v_mp', + 'i_sc': 'i_sc', + 'v_oc_temp_corr': 'v_oc'} + + labels = { + 'pr_dc_temp_corr': 'pr_dc_temp_corr', + 'i_mp': 'norm_i_mp', + 'v_mp': 'norm_v_mp', + 'i_sc': 'norm_i_sc', + 'v_oc_temp_corr': 'norm_v_oc_temp_corr'} + + # plot the LFM parameters depending on qty_lfm_vars + for k in lines.keys(): + try: + ax1.scatter(xdata, dnorm[k], c=CLR[lines[k]], label=labels[k]) + except KeyError: + pass + + ax1.legend(bbox_to_anchor=(bbox, 1), + loc='upper left', borderaxespad=0.) + + # y2axis plot met on right y axis + ax2 = ax1.twinx() + ax2.set_ylabel('Temperature (C/100)') + + # set wide limits 0 to 4 so they don't overlap with LFM params + ax2.set_ylim(0, 4) + + ax2.scatter(xdata, + dnorm['temp_module']/T_MAX, + c=CLR['temp_module'], + label='temp_module C/' + str(T_MAX)) + + # temp_air may not exist particularly for indoor measurements + try: + ax2.scatter(xdata, + dnorm['temp_air']/T_MAX, + c=CLR['temp_air'], + label='temp_air C/' + str(T_MAX)) + except KeyError: + pass + + # make second legend box low enough ~0.1 not to overlap first box + ax2.legend(bbox_to_anchor=(bbox, 0.1), + loc='upper left', borderaxespad=0.) + + if save_figs: + # remove '.csv', high resolution= 300 dots per inch + plt.savefig(os.path.join('mlfm_data', 'output', + 'scatter_' + title[:len(title)-4]), dpi=300) + + plt.show() + + return fig + + +def plot_stack(dstack, fill_factor, title, + xaxis_labels=0, is_i_sc_self_ref=False, + save_figs=False + ): + """ + Plot stacked subtractive losses from 1/ref_ff down to pr_dc. + + Parameters + ---------- + dstack : DataFrame + Stacked subtractive losses. + + fill_factor : float + Reference value of fill factor for IV curve at STC conditions. + + title : string + Title for the figure. + + xaxis_labels : int, default 0 + Number of x-axis labels to show. Default 0 shows all. + + is_i_sc_self_ref : bool, default False + Self-correct ``i_sc`` to remove angle of incidence, + spectrum, snow or soiling. + + save_figs : boolean + save a high resolution png file of figure + + # is_v_oc_temp_module_corr : bool, default True + # Calculate loss due to temperature and subtract from ``v_oc`` loss. + + Returns + ------- + fig : Figure + Instance of matplotlib.figure.Figure + + See Also + -------- + norm_to_stack + + """ + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError('plt_stack requires matplotlib') + + # label names for LFM_6 + stack6 = ['i_sc', 'r_sc', 'i_ff', 'i_v', + 'v_ff', 'r_oc', 'v_oc_temp_corr'] + + if all([c in dstack.columns for c in stack6]): + + # data order from bottom to top + ydata = [dstack['pr_dc'] + (dstack['i_sc'] * (is_i_sc_self_ref)), + dstack['v_oc_temp_corr'], + dstack['temp_module_corr'], + dstack['r_oc'], + dstack['v_ff'], + dstack['i_v'], + dstack['i_ff'], + dstack['r_sc'], + dstack['i_sc'] * (not is_i_sc_self_ref)] + + labels = [ + 'pr_dc', + 'stack_t_mod', + 'stack_v_oc', + 'stack_r_oc', + 'stack_v_ff', + '- - -', + 'stack_i_ff', + 'stack_r_sc', + 'stack_i_sc'] + + color_map = [ + 'white', # colour to bottom of graph + CLR['temp_module'], + CLR['v_oc'], + CLR['r_oc'], + CLR['v_ff'], + CLR['i_v'], + CLR['i_ff'], + CLR['r_sc'], + CLR['i_sc']] + + stack4 = ['i_sc', 'i_mp', 'i_v', + 'v_mp', 'v_oc_temp_corr'] + + if all([c in dstack.columns for c in stack4]): + + # data order from bottom to top + ydata = [dstack['pr_dc'] + (dstack['i_sc'] * (is_i_sc_self_ref)), + dstack['v_oc_temp_corr'], + dstack['temp_module_corr'], + dstack['v_mp'], + dstack['i_v'], + dstack['i_mp'], + dstack['i_sc'] * (not is_i_sc_self_ref)] + + labels = [ + 'pr_dc', + 'stack_t_mod', + 'stack_v_oc', + 'stack_v_mp', + '- - -', + 'stack_i_mp', + 'stack_i_sc'] + + color_map = [ + 'white', # colour to bottom of graph + CLR['temp_module'], + CLR['v_oc'], + CLR['v_mp'], + CLR['i_v'], + CLR['i_mp'], + CLR['i_sc']] + + # offset legend right, use ~1.2 + bbox = 1.2 + + # select x axis usually date_time + xdata = dstack.index.values + fig, ax1 = plt.subplots() + + ax1.set_title(title) + + # plot stack in order bottom to top, + # allowing self_ref and temp_module corrections + ax1.stackplot(xdata, *tuple(ydata), labels=labels, colors=color_map) + + ax1.axhline(y=1/fill_factor, c='grey', lw=3) # show initial 1/FF + ax1.axhline(y=1, c='grey', lw=3) # show 100% line + ax1.set_ylabel('stacked lfm losses') + + # find number of x date values + x_ticks = dstack.shape[0] + plt.xticks(np.arange(0, x_ticks), rotation=90) + + # if (xaxis_labels > 0 and xaxis_labels < x_ticks): + if 0 < xaxis_labels < x_ticks: + xaxis_skip = np.floor(x_ticks / xaxis_labels) + else: + xaxis_skip = 2 + + # + xax2 = [''] * x_ticks + x_count = 0 + while x_count < x_ticks: + if x_count % xaxis_skip == 0: + # + # try to reformat any date indexes (not for matrices) + # + # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 + # y y y y - m m - d d t h h : m m : s s --> yy-mm-dd hh'h' + # + try: + xax2[x_count] = xdata[x_count][2:13]+'h' + except IndexError: + xax2[x_count] = xdata[x_count] + except TypeError: # xdata can't be subscripted + xax2[x_count] = xdata[0] + + x_count += 1 + + ax1.set_xticklabels(xax2) + ax1.set_ylim(0.6, 1/fill_factor + 0.1) # optional normalised y scale + plt.legend(bbox_to_anchor=(bbox, 1), loc='upper left', borderaxespad=0.) + + # plot met data on right y axis + ax2 = ax1.twinx() + ax2.set_ylabel('poa_global (kW/m^2), temp_module (C/ ' + str(T_MAX)) + ax2.set_ylim(0, 4) # set so doesn't overlap lfm params + + plt.plot(xdata, dstack['poa_global'] / G_STC, + c=CLR['irradiance'], label='poa_global (kW/m^2)') + plt.plot(xdata, dstack['temp_module'] / T_MAX, + c=CLR['temp_module'], label='temp_module / ' + str(T_MAX)) + + # temp_air may not exist particularly for indoor measurements + try: + plt.plot(xdata, dstack['temp_air']/100, + c=CLR['temp_air'], label='temp_air/ ' + str(T_MAX)) + except KeyError: + pass + + ax2.legend(bbox_to_anchor=(bbox, 0.3), loc='upper left', borderaxespad=0.) + ax1.set_xticklabels(xax2, rotation=90) + + # remove '.csv', high resolution= 300 dots per inch + plt.savefig(os.path.join('mlfm_data', 'output', + 'stack_' + title[:len(title)-4]), dpi=300) + + return fig + + +def meas_to_stack_lin(dmeas, ref, qty_lfm_vars, gap=0.01): + """ + Convert measured values to stacked subtractive normalized losses. + + Stacked subtractive losses show the relative loss proportions + from max possible "ref_i_sc * ref_v_oc" (1/reference fill factor) + to the measured normalized power. + + This version is done in a linear fashion so that LFM4 and LFM6 give the + same answers for Isc and Voc and the loss(i_mp)=loss(r_sc)+loss(i_ff) + + Parameters + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + ref : dict + Reference electrical and thermal datasheet module values at STC. + + gap : float + create a gap to differentiate i and v losses ~ 0.01 + + qty_lfm_vars : int + number of lfm_vars : 6=iv with rsc, roc ; 4=without rsc, roc + + Returns + ------- + dstack : DataFrame + Stacked subtractive normalized losses + + See Also + -------- + meas_to_norm + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements" 36th EU PVSEC, Marseille, France. September 2019 + """ + # create an empty DataFrame to put stack results + dstack = pd.DataFrame() + + # copy weather data for ease of use + dstack['poa_global'] = dmeas['poa_global'] + dstack['temp_module'] = dmeas['temp_module'] + dstack['wind_speed'] = dmeas['wind_speed'] + + # ref['p_mp'] = ref['i_mp'] * ref['v_mp'] + + # ref['ff'] = ref['p_mp'] / (ref['i_sc'] * ref['v_oc']) + + # ref['ff'] = (ref['i_mp']*ref['v_mp'])/(ref['i_sc']*ref['v_oc']) + inv_ff = 1 / ref['ff'] + + dstack['pr_dc'] = dmeas['pr_dc'] + + # Find linear values on i and v axes normalised to i_mp, v_mp + lin_i_ratio = ref['i_sc']/ref['i_mp'] + lin_v_ratio = ref['v_oc']/ref['v_mp'] + + lin_i_sc = dmeas['i_sc']/ref['i_mp']/(dmeas['poa_global']/G_STC) + + lin_v_oc = dmeas['v_oc']/ref['v_mp'] + lin_v_oc_temp_corr = dmeas['v_oc_temp_corr']/ref['v_mp'] + + # transform multiplicative to subtractive losses find + # correction factor to scale losses to keep 1/ff --> pr_dc + + if qty_lfm_vars == 6: + # subtractive losses with series and shunt resistance effects + i_r = ((dmeas['i_sc'] * dmeas['r_sc'] - dmeas['v_oc']) / + (dmeas['r_sc'] - dmeas['r_oc'])) + + v_r = ((dmeas['r_sc'] * (dmeas['v_oc'] - dmeas['i_sc'] * + dmeas['r_oc']) / (dmeas['r_sc'] - dmeas['r_oc']))) + + lin_i_r = i_r/ref['i_mp'] / (dmeas['poa_global']/G_STC) + lin_i_ff = dmeas['i_mp'] / ref['i_mp']/(dmeas['poa_global']/G_STC) + + lin_v_ff = dmeas['v_mp'] / ref['v_mp'] + lin_v_r = v_r / ref['v_mp'] + + sub_i = lin_i_ratio - lin_i_ff # current drop + sub_v = lin_v_ratio - lin_v_ff # voltage drop + + # correction factor mult --> lin loss + corr = (inv_ff - dstack['pr_dc']) / (sub_i + sub_v) + + # put 6 LFM values in a stack from pr_dc (bottom) to 1/ff_ref (top) + # accounting for series and shunt resistance losses + + dstack['i_sc'] = (lin_i_ratio-lin_i_sc) * corr + dstack['r_sc'] = (lin_i_sc-lin_i_r) * corr + dstack['i_ff'] = (lin_i_r-lin_i_ff) * corr - gap/2 + dstack['i_v'] = gap + dstack['v_ff'] = (lin_v_r-lin_v_ff) * corr - gap/2 + dstack['r_oc'] = (lin_v_oc-lin_v_r) * corr + dstack['v_oc_temp_corr'] = (lin_v_oc_temp_corr-lin_v_oc) * corr + dstack['temp_module_corr'] = (lin_v_ratio-lin_v_oc_temp_corr) * corr + + if qty_lfm_vars == 4: + + lin_i_mp = dmeas['i_mp'] / ref['i_mp'] / (dmeas['poa_global']/G_STC) + lin_v_mp = dmeas['v_mp'] / ref['v_mp'] + + sub_i = lin_i_ratio - lin_i_mp # current drop + sub_v = lin_v_ratio - lin_v_mp # voltage drop + + # correction factor mult --> lin loss + corr = (inv_ff-dstack['pr_dc']) / (sub_i + sub_v) + + # put 4 LFM values in a stack from pr_dc (bottom) to 1/ff_ref (top) + # accounting for series and shunt resistance losse + + dstack['i_sc'] = (lin_i_ratio-lin_i_sc) * corr + dstack['i_mp'] = (lin_i_sc-lin_i_mp) * corr - gap/2 + dstack['i_v'] = gap + dstack['v_mp'] = (lin_v_oc-lin_v_mp) * corr - gap/2 + dstack['v_oc_temp_corr'] = (lin_v_oc_temp_corr-lin_v_oc) * corr + dstack['temp_module_corr'] = (lin_v_ratio-lin_v_oc_temp_corr) * corr + + return dstack + + +""" +The Loss Factors Model (LFM) and Mechanistic Performance Model (MPM) +together known as "MLFM" have been developed by SRCL and Gantner Instruments +(previously Oerlikon Solar and Tel Solar) since 2011 MLFM and 2017 MPM + +.. [1] J. Sutterlueti(now Gantner Instruments) and S. Ransome + '4AV.2.41 Characterising PV Modules under Outdoor Conditions: +What's Most Important for Energy Yield' +26th EU PVSEC 8 September 2011; Hamburg, Germany. +http://www.steveransome.com/pubs/2011Hamburg_4AV2_41.pdf + +.. [2] Steve Ransome and Juergen Sutterlueti(Gantner Instruments) + 'Choosing the best Empirical Model for predicting energy yield' + 7th PV Energy Rating and Module Performance Modeling Workshop, + Canobbio, Switzerland 30-31 March, 2017. + +.. [3] S. Ransome and J. Sutterlueti (Gantner Instruments) +'Checking the new IEC 61853.1-4 with high quality 3rd party data to +benchmark its practical relevance in energy yield prediction' +PVSC June 2019 [Chicago], USA. +http://www.steveransome.com/PUBS/1906_PVSC46_Chicago_Ransome.pdf + +.. [4] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) +'5CV.4.35 Quantifying Long Term PV Performance and Degradation +under Real Outdoor and IEC 61853 Test Conditions +Using High Quality Module IV Measurements'. +36th EU PVSEC Sep 2019 [Marseille] + +.. [5] Steve Ransome (SRCL) +'How to use the Loss Factors and Mechanistic Performance Models +effectively with PVPMC/PVLIB' +[PVPMC] Webinar on PV Performance Modeling Methods, Aug 2020. +https://pvpmc.sandia.gov/download/7879/ + +.. [6] W.Marion et al (NREL) +'New Data Set for Validating PV Module Performance Models'. +https://www.researchgate.net/publication/286746041_New_data_set_for_validating_PV_module_performance_models +Many more papers are available at www.steveransome.com + +.. [7] Steve Ransome (SRCL) +'Benchmarking PV performance models with high quality IEC 61853 Matrix +measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode)' +http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf + +.. [8] Juergen Sutterlueti (Gantner Instruments) +'Advanced system monitoring and artificial intelligent data-driven analytics +to serve GW-scale photovoltaic power plant and energy storage requirements' +https://pvpmc.sandia.gov/download/8574/ + +""" diff --git a/pvlib/__init__.py b/pvlib/__init__.py index ff6b375017..2142853a25 100644 --- a/pvlib/__init__.py +++ b/pvlib/__init__.py @@ -12,6 +12,7 @@ ivtools, location, modelchain, + mlfm, pvsystem, scaling, shading, diff --git a/pvlib/mlfm.py b/pvlib/mlfm.py new file mode 100644 index 0000000000..cdf8e1bb06 --- /dev/null +++ b/pvlib/mlfm.py @@ -0,0 +1,1221 @@ +"""Analyse, fit + predict PV performance measurements using MPM & LFM.""" +import numpy as np +import pandas as pd +from scipy import optimize + +# import pvlib + +import os + +""" +ver : 221212t09 +``mlfm.py`` module contains functions to analyse, fit, predict and display +performance of PV modules using the mechanistic performance model (MPM) and +loss factors model (LFM). + +Authors : Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) +Comments : Cliff Hansen, Kevin Anderson, Anton Driesse and Mark Campanelli +https://pvlib-python.readthedocs.io/en/stable/variables_style_rules.html#variables-style-rules +https://github.com/python/peps/blob/master/pep-0008.txt + +OVERVIEW + +I) The Loss Factors Model (LFM) 2011 ref [1] quantifies +normalised losses from module parameters (e.g. pr_dc, i_sc, r_sc, i_mp, +v_mp, r_oc and v_oc) by analysing module measurements or the shape of the +IV curve and comparing it with STC reference values from the datasheet. + + Depending on the number of measurements available the LFM is defined +with a suffix number x = 1..12 LFM_n as in ref [4] - + + parameters modelled +|LFM_1 | ``p_mp`` | +|LFM_2 | ``i_mp``, ``v_mp``, | +|LFM_4 | ``i_sc``, ``i_mp``, ``v_mp``, ``v_oc`` | +|LFM_6 | ``i_sc``, ``r_sc``, ``i_mp``, ``v_mp``, ``r_oc``, ``v_oc`` | + +|LFM_>6| (can include normalised losses for : + soiling, reflectivity vs. aoi, spectrum <- affecting i_sc, + current mismatch/shading, rollover, + clipping etc.) + + This file just contains - +LFM_6 : 'measurements with r_sc and r_oc' + e.g. iv curves with good smooth data. + +LFM_4 : 'measurements without r_sc or r_oc' + e.g. indoor matrix measurements or iv curves without smoooth data. + +II) The Mechanistic performance model (MPM) 2017 ref [2] +has "meaningful,independent, robust and normalised" coefficients +which fit how the LFM values depend on irradiance, module temperature +(and windspeed) and time. + +Two MPM versions have been included here : + +mpm_a : (mpm_original 2017 ref [2] now deprecated) + The original model to fit normalised parameters such as + pr_dc, v_oc, r_sc, v_mp, i_mp, ff ... + with an extra low light coefficient c_6 to help fit data with + unusual low light performance and/or poor measurements. + c_5 is only used if there is windspeed data, otherwise it is ignored + + mpm_a = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + +mpm_b : (GI name 'mpm_advanced' 2022 ref [7]) + Is an improved model to fit normalised parameters such as + pr_dc, v_oc, r_sc, v_mp, i_mp, ff ... + It better fits precise measurements (see CFV and GI) where the + low light data is measured well and has an improvement for even + better v_oc fitting [ref 7 : 2022 PVSC PHILADELPHIA] + c_5 is only used if there is windspeed data, otherwise it is ignored + + mpm_b = c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + +for mpm_a and mpm_b : + g = (G_POA (W/m^2) / G_STC=1000 (W/m^2)) --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + +Note that both mpm_a or mpm_b can be used with either LFM_6 or LFM_4 + + A later MPM version (not detailed here) can be used to model clipping and +other effects [See ref [8] Sutterlueti et al PVPMC 2022] 'mpm professional' + +Using DATAFRAMES or SERIES for variables +---------------------------------------- + +Many pvlib functions pass series of weather data separately for parameters e.g. + poa_global, temp_module, wind_speed +and measurements such as + pr_dc or p_mp + +This mlfm code keeps all its met and measurement data in dataframes - + meas, norm etc. e.g. + +meas.columns + Index(['module_id', 'poa_global', 'wind_speed', 'temp_air', + 'temp_module', 'v_oc', 'i_sc', 'i_mp', 'v_mp', 'r_sc', + 'r_oc', 'p_mp', 'pr_dc', 'v_oc_temp_corr', 'pr_dc_temp_corr'], + dtype='object') + + It's easier when modelling all 6 or more measurement parameters in one +frame and then use an lfm_sel var to choose which to analyse +e.g. lfm_sel = 'pr_dc' + +If individual series are needed to interface with existing code and +methodolgies they can be created by the following + + +#pvlib series <-- mlfm dataframe + poa_global = meas['poa_global'] + temp_module = meas['temp_module'] + wind_speed = meas['wind_speed'] + pr_dc = meas['pr_dc'] + +# mlfm dataframe <-- pvlib series + meas['poa_global'] = poa_global + meas['temp_module'] = temp_module + meas['wind_speed'] = wind_speed + meas['pr_dc'] = pr_dc + +DATAFRAME DEFINITIONS (for this python file and tutorials) +---------------------------------------------------------- + +A full definition is given here to keep the code in each function shorter + +dmeas : DataFrame +----------------- + Measured weather and module electrical values per time or measurement + + Parameters [units] + ---------- + Index either - + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``module_id`` - unique identifier to match data in ref [alpha num] + + Weather measurements - + + * ``poa_global`` - global plane of array irradiance [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/s] + + [optional weather] + + * ``temp_air`` - air temperature optional [C] + + /Columns as needed by LFM_4 and/or LFM_6/ : + + * ``i_sc`` | 4 6 | current at short circuit condition [A] + * ``i_mp`` | 4 6 | current at maximum power point [A] + * ``v_mp`` | 4 6 | voltage at maximum power point [V] + * ``v_oc`` | 4 6 | voltage at open circuit condition [V] + + * ``r_sc`` | 6 | -1/ (dI/dV|V=0) of IV curve at short circuit [Ohm] + * ``r_oc`` | 6 | -1/(dI/dV|I=0) of IV curve at open circuit [Ohm] + + Optional columns include + + * ``p_mp`` - power at maximum power point = i_mp * v_mp [W] + +ref : dict +---------- + Reference electrical and thermal datasheet module values at STC. + + Parameters [units] + ---------- + Index + * ``module_id`` - unique identifier to match data in dmeas [alpha num] + + * ``p_mp`` - Max Power at Standard Test Condition (STC). [W] + * ``i_sc`` - Current at short circuit at STC. [A] + * ``i_mp`` - Current at max power at STC. [A] + * ``v_mp`` - Voltage at max power at STC. [V] + * ``v_oc`` - Voltage at open circuit at STC. [V] + * ``ff`` - Fill Factor [1] + + * ``gamma_pdc`` - Temperature coefficient of max power point + power at STC. [1/C] + * ``beta_v_oc`` - Temperature coefficient of open circuit + voltage at STC. [1/C] + [optional thermal] + + * ``alpha_i_sc`` - Temperature coefficient of short circuit + current STC. [1/C] + + * ``alpha_i_mp`` - Temperature coefficient of max power point + current at STC. [1/C] + + * ``beta_v_mp`` - Temperature coefficient of max power point + voltage at STC. [1/C] + + [optional ID related] + * ``source`` - Data Source [alpha num] + * ``site`` - Sitename [alpha num] + * ``manufacturer`` - Module manufacturer [alpha num] + * ``technology`` - Module technology e.g. cSi, HIT, CdTe [alpha num] + * ``module_type`` - Type ID e.g. ABC-123 [alpha num] + * ``module_serial`` - Serial number [alpha num] + * ``comments`` - General comments [alpha num] + + +dnorm : DataFrame +----------------- + Normalised multiplicative loss factors per parameter to model fall from + start 1/ref_ff to meas pr_dc where - + + LFM_6 - multiplicative + pr_dc = 1/ff * ( norm(i_sc) *norm(r_sc) *norm(i_ff) + *norm(v_ff) *norm(r_oc) *norm(v_oc_t) *norm(temp_corr) ). + + LFM_4 - multiplicative + pr_dc = 1/ff * ( norm(i_sc) *norm(i_mp) + *norm(v_mp) *norm(v_oc_t) *norm(temp_corr) ). + + Parameters [units] + ---------- + Index (copied from dmeas) either + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``poa_global`` - global plane of array [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/ + + |Columns as used by LFM_4 and/or LFM_6| : + + * ``pr_dc``| 4 6 | Performance ratio dc. + pr_dc = meas_p_mp / ref_p_mp /(poa_global/G_STC) [%] + * ``pr_dc_temp_corr`` + | 4 6 | pr_dc adjusted to 25C by gamma_p_mp. + * ``i_sc`` | 4 6 | loss due to current at short circuit condition [%] + * ``v_oc`` | 4 6 | Loss due to voltage at open circuit condition [%] + * ``v_oc_temp_corr`` + | 4 6 | v_oc adjusted to 25C by gamma_p_mp (not beta_v_oc) + for simplicity + + * ``i_mp`` | 4 | Loss due to current part of ff [%] + * ``v_mp`` | 4 | Loss due to voltage part of ff [%] + + * ``r_sc`` | 6 | Loss due to r_sc ~r_shunt [%] + * ``i_ff`` | 6 | Loss due to r_sc corrected current part of ff [%] + * ``v_ff`` | 6 | Loss due to r_oc corrected voltage part of ff [%] + * ``r_oc`` | 6 | Loss due to r_oc related to r_series [%] + +dstack : DataFrame +------------------ + Stacked subtractive normalized loss factors per parameter to model fall + from start 1/ref_ff to meas pr_dc where - + + LFM_6 - subtractive losses + pr_dc = 1/ff - (stack(i_sc) +stack(r_sc) +stack(i_ff) + +stack(v_ ff) +stack(r_oc) +stack(v_oc_t) +stack(temp_corr)) + + LFM_4 - subtractive losses + pr_dc = 1/ff - (stack(i_sc) +stack(i_mp) + +stack(v_mp) +stack(v_oc_t) +stack(temp_corr) ). + + Parameters [units] + ---------- + Index (copied from dmeas) + date_time : usually for external measurements or + measurement_number : for indoor measurements e.g. IEC 61853 + + * ``poa_global`` - global plane of array irradiance [W/m^2] + * ``temp_module`` - module temperature [C] + * ``wind_speed`` - wind speed optional [m/ + + |Columns as needed by LFM_4 and/or LFM_6| : + + * ``pr_dc`` equal to `dnorm['pr_dc']` + + * ``i_sc`` | 4 6 | loss due to current at short circuit condition [%] + * ``v_oc`` | 4 6 | Loss due to voltage at open circuit condition [%] + * ``v_oc_temp_corr`` + | 4 6 | v_oc adjusted to 25C by gamma_p_mp (not beta_v_oc) + for simplicity + + * ``i_mp`` | 4 | Loss due to current part of ff [%] + * ``v_mp`` | 4 | Loss due to voltage part of ff [%] + + * ``r_sc`` | 6 | Loss due to r_sc ~r_shunt [%] + * ``i_ff`` | 6 | Loss due to r_sc corrected current part of ff [%] + * ``v_ff`` | 6 | Loss due to r_oc corrected voltage part of ff [%] + * ``r_oc`` | 6 | Loss due to r_oc related to r_series [%] +""" + +# DEFINE REFERENCE MEASUREMENT CONDITIONS +# or use existing definitions in pvlib. These might not all have +# been used in this code but are included for completeness + +# NAME value # comment unit PV_LIB name + +T_STC = 25.0 # STC temperature [C] temperature_ref +G_STC = 1000.0 # STC irradiance [W/m^2] + +# not all yet used below , added here for completeness +T_LIC = 25.0 # LIC temperature [C] +G_LIC = 200.0 # LIC irradiance [W/m^2] + +T_HTC = 75.0 # HTC temperature [C] +G_HTC = 1000.0 # HTC irradiance [W/m^2] + +T_PTC = 55.0 # HTC temperature [C] +G_PTC = 1000.0 # HTC irradiance [W/m^2] + +G_LTC = 500.0 # HTC irradiance [W/m^2] +T_LTC = 15.0 # LTC temperature [C] + +G_NOCT = 800 # NOCT irradiance [W/m^2] +T_NOCT = 45 # NOCT temperature [C] + +T_MAX = 100 # maximum temperature on right y axis + +T0C_K = 273.15 # 0C to Kelvin +T25C_K = 298.15 # 25C to Kelvin + +# Define standardised LFM graph colours as a dict ``CLR`` +CLR = { + # parameter_CLR colour R G B + 'irradiance': 'darkgreen', # 000 064 000 + 'temp_module': 'red', # 255 000 000 + 'temp_air': 'yellow', # 245 245 220 + 'wind_speed': 'grey', # 127 127 127 + + 'i_sc': 'purple', # 128 000 128 + 'r_sc': 'orange', # 255 165 000 + 'i_ff': 'lightgreen', # 144 238 144 + 'i_mp': 'green', # 000 255 000 + 'i_v': 'black', # 000 000 000 between i and v losses + 'v_ff': 'cyan', # 000 255 255 + 'v_mp': 'blue', # 000 000 255 + 'r_oc': 'pink', # 255 192 203 + 'v_oc': 'sienna', # 160 082 045 + + 'pr_dc': 'black', # 000 000 000 +} + + +def meas_to_norm(dmeas, ref): + """ + Convert measured P(W), I(A), V(V), R(Ohms) to values normalized to STC. + + Parameters + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + ref : dict + Reference electrical and thermal datasheet module values at STC. + + Returns + ------- + dnorm : DataFrame + Normalised multiplicative loss values (values approx 1). + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + 'Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements' 36th EU PVSEC, Marseille, France. September 2019. + + """ + dnorm = pd.DataFrame() + + # copy weather data to meas dataframe for ease of use later + dnorm['poa_global'] = dmeas['poa_global'] + dnorm['temp_module'] = dmeas['temp_module'] + dnorm['wind_speed'] = dmeas['wind_speed'] + + dnorm['pr_dc'] = dmeas['p_mp']/ref['p_mp'] / (dmeas['poa_global']/G_STC) + + # calc temperature corrected pr_dc + dnorm['pr_dc_temp_corr'] = ( + dnorm['pr_dc'] + * (1 - ref['gamma_pdc']*(dmeas['temp_module'] - T_STC))) + + # calculate normalised loss coefficients + if 'i_sc' in dmeas.columns: + dnorm['i_sc'] = (dmeas['i_sc'] / ref['i_sc'] + / (dmeas['poa_global'] / G_STC)) + + if 'i_mp' in dmeas.columns: + dnorm['i_mp'] = dmeas['i_mp'] / dmeas['i_sc'] + + if 'v_oc' in dmeas.columns: + dnorm['v_oc'] = dmeas['v_oc'] / ref['v_oc'] + + # temperature corrected + dnorm['v_oc_temp_corr'] = ( + dnorm['v_oc'] + * (1 - ref['beta_v_oc']*(dmeas['temp_module'] - T_STC))) + + if 'v_mp' in dmeas.columns: + dnorm['v_mp'] = dmeas['v_mp'] / dmeas['v_oc'] + + if all(c in dmeas.columns for c in ['i_sc', 'v_oc', 'r_sc', 'r_oc']): + ''' LFM_6 including r_sc and r_oc + + create temporary variables (i_r, v_r) from the + intercept of r_sc (at i_sc) with r_oc (at v_oc) + to make maths easier ''' + + i_r = ((dmeas['i_sc'] * dmeas['r_sc'] - dmeas['v_oc']) + / (dmeas['r_sc'] - dmeas['r_oc'])) + + v_r = ((dmeas['r_sc'] * (dmeas['v_oc'] - dmeas['i_sc'] + * dmeas['r_oc']) / (dmeas['r_sc'] - dmeas['r_oc']))) + + # calculate normalised resistances r_sc and r_oc + dnorm['r_sc'] = i_r / dmeas['i_sc'] # norm_r @ isc + dnorm['r_oc'] = v_r / dmeas['v_oc'] # norm_r @ roc + + # calculate remaining fill factor losses partitioned to i_ff, v_ff + dnorm['i_ff'] = dmeas['i_mp'] / i_r + dnorm['v_ff'] = dmeas['v_mp'] / v_r + + return dnorm + + +def mpm_a_calc(dmeas, c_1, c_2, c_3, c_4, c_5=0., c_6=0.): + """ + Predict norm LFM values from weather data (g,t,w) in ``dmeas``. + + const temp_coeff low_light high_light wind extra + | | | | | | + norm = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters [units] + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + c_1 : float + Constant term in model. [%] + c_2 : float + Temperature coefficient in model. [1/C] + c_3 : float + Coefficient for low light log irradiance drop. [suns] + c_4 : float + Coefficient for high light linear irradiance drop. [1/suns] + c_5 : float, default 0 + Coefficient for wind speed dependence optional. [1/(m/s)] + c_6 : float, default 0 [suns] + Coefficient for dependence on inverse irradiance. + + Returns + ------- + mpm_a_out : Series + Predicted values of mpm coefficient. + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality + Module IV Measurements" + 36th EU PVSEC, Marseille, France. September 2019 + + """ + mpm_a_out = ( + c_1 + + c_2 * (dmeas['temp_module'] - T_STC) + + c_3 * np.log10(dmeas['poa_global'] / G_STC) + + c_4 * (dmeas['poa_global'] / G_STC) + + c_6 / (dmeas['poa_global'] / G_STC) + ) + + if 'wind_speed' in dmeas.columns: + mpm_a_out += c_5 * dmeas['wind_speed'] + + return mpm_a_out + + +def mpm_a_fit(data, var_to_fit): + """ + Fit mpm_a to normalised measured data 'var_to_fit' using mpm_a model. + + const temp_coeff low_light high_light wind extra + | | | | | | + fit = = c_1 +c_2*(t_mod-25) +c_3*log10(g) +c_4*g +c_5*ws +c_6/g + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters + ---------- + data : DataFrame (see norm) + Normalised multiplicative loss values (values approx 1). + + var_to_fit : string + Column name in ``data`` containing variable being fitted. + e.g. pr_dc, i_mp, v_mp, v_oc ... + + Returns + ------- + pred : Series + Values predicted by the fitted model. + + coeff : list + Model coefficients ``c_1`` to ``c_6``. + + resid : Series + Residuals of the fitted model. + + coeff_err : list + Standard deviation of error in each model coefficient. + + See Also + -------- + mpm_a_calc + + """ + # drop any missing data + data = data.dropna() + + c5_zero = 'wind_speed' not in data.columns + # if wind_speed is not present, add it and force it to 0 + if c5_zero: + data['wind_speed'] = 0. + + # define function name + func = mpm_a_calc + + # setup initial values and initial boundary conditions + # init c1 c2 c3 c4 c5 c6<0 + + p_0 = (1.0, 0.01, 0.01, 0.01, 0.01, -0.01) + # boundaries + bounds = ([-2, -2, -2, -2, -2, -2], + [+2, +2, +2, +2, +2, 0]) + + """ + # full_outputboolean, optional + If True, this function returns additioal information: + infodict, mesg, and ier. + """ + + coeff, pcov, infodict, mesg, ier = optimize.curve_fit( + f=func, # fit function + xdata=data, # input data + ydata=data[var_to_fit], # fit parameter + p0=p_0, # initial + bounds=bounds, # boundaries + full_output=True + ) + + # if data had no wind_speed measurements then c_5 coefficient is + # meaningless but a non-zero value may have been returned. + if c5_zero: + coeff[4] = 0. + + # get error of mpm coefficients as sqrt of covariance + perr = np.sqrt(np.diag(pcov)) + coeff_err = list(perr) + + # save fit and error to dataframe + pred = mpm_a_calc(data, *coeff) + + resid = pred - data[var_to_fit] + + return pred, coeff, resid, coeff_err, infodict, mesg, ier + + +def mpm_b_fit(data, var_to_fit): + """ + Fit mpm_b to normalised measured data 'var_to_fit' using mpm_b model. + + const temp_coeff low_light improvement high_light ws + | | | | | | + fit =c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters + ---------- + data : DataFrame (see norm) + Normalised multiplicative loss values (values approx 1). + + var_to_fit : string + Column name in ``data`` containing variable being fitted. + e.g. pr_dc, i_mp, v_mp ... + + Returns + ------- + pred : Series + Values predicted by the fitted model. + + coeff : list + Model coefficients ``c_1`` to ``c_5``. + + resid : Series + Residuals of the fitted model. + + coeff_err : list + Standard deviation of error in each model coefficient. + + See Also + -------- + mpm_a + + """ + # drop missing data + data = data.dropna() + + # define function name + func = mpm_b_calc + + # setup initial values and initial boundary conditions + # init c1 c2 c3 c4 c5 + + p_0 = (1.0, 0.01, 0.01, 0.01, 0.01) + # boundaries + bounds = ([-2, -2, -2, -2, -2], + [+2, +2, +2, +2, +2]) + + coeff, pcov, infodict, mesg, ier = optimize.curve_fit( + f=func, # fit function + xdata=data, # input data + ydata=data[var_to_fit], # fit parameter + p0=p_0, # initial + bounds=bounds, # boundaries + full_output=True + ) + + # get error of mpm coefficients as sqrt of covariance + perr = np.sqrt(np.diag(pcov)) + coeff_err = list(perr) + + # save fit and error to dataframe + pred = mpm_b_calc(data, *coeff) + + resid = pred - data[var_to_fit] + + # fvec = infodict["fvec"] + + return pred, coeff, resid, coeff_err, infodict, mesg, ier + + +def mpm_b_calc(dmeas, c_1, c_2, c_3, c_4, c_5=0.): + """ + Predict normalised LFM values from weather data (g,t,w) in ``dmeas``. + + const temp_coeff low_light improvement high_light ws + | | | | | | + norm =c_1 +c_2*(t_mod–25) +c_3*log10(g)*(t_k/t_stc_k) +c_4*g +c_5*ws + + where : + g = G_POA (W/m^2) / G_STC --> 'suns' + t_mod = module temperature (C) + ws = windspeed (ms^-1) + + Parameters [units] + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + c_1 : float + Constant term in model. [%] + c_2 : float + Temperature coefficient in model. [1/C] + c_3 : float + Coefficient for low light log irradiance drop. [suns] + c_4 : float + Coefficient for high light linear irradiance drop. [1/suns] + c_5 : float, default 0 + Coefficient for wind speed dependence optional. [1/(m/s)] + + Returns + ------- + mpm_b_out : Series + Predicted values of mpm coefficient. + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements" + 36th EU PVSEC, Marseille, France. September 2019 + + """ + mpm_b_out = ( + c_1 + + c_2 * (dmeas['temp_module'] - T_STC) + + c_3 * ((np.log10(dmeas['poa_global'] / G_STC) + * (dmeas['temp_module'] + T0C_K) / T25C_K)) + + c_4 * (dmeas['poa_global'] / G_STC) + ) + + return mpm_b_out + + +def plot_scatter(dnorm, title, qty_lfm_vars, save_figs=False): + """ + Scatterplot of normalised values (y) vs. irradiance (x). + + Electrical quantities are plotted on the left y-axis, temperature + quantities are plotted on the right y-axis. + + Parameters + ---------- + dnorm : DataFrame + Normalised multiplicative loss values (values approx 1). + Contains 'poa_global', 'temp_module' and optional 'wind_speed' + + title : string + Title for the figure. + + qty_lfm_vars : int + number of lfm_vars : 6=iv with rsc, roc ; 4=indoor + + save_figs : boolean + save a high resolution png file of figure + + Returns + ------- + fig : Figure + Instance of matplotlib.figure.Figure + + See Also + -------- + meas_to_norm + + """ + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError('plot_scatter requires matplotlib') + + # offset legend to the right to not overlap graph, use ~1.2 + bbox = 1.2 + + # set x_axis as irradiance in W/m2 + xdata = dnorm['poa_global'] + + fig, ax1 = plt.subplots() + + ax1.set_title(title) + + ax1.set_ylabel('Normalised values') + ax1.axhline(y=1, c='grey', linewidth=3) # show 100% line + + # optional normalised y scale usually ~0.8 to 1.1 + ax1.set_ylim(0.8, 1.1) + + ax1.set_xlabel('Plane of array irradiance [W/m$^2$]') + ax1.axvline(x=G_STC, c='grey', linewidth=3) # show 1000W/m^2 STC + ax1.axvline(x=G_NOCT, c='grey', linewidth=3) # show 800W/m^2 NOCT + ax1.axvline(x=G_LIC, c='grey', linewidth=3) # show 200W/m^2 LIC + + # check which lines to plot + if qty_lfm_vars == 6: + # LFM_6 + lines = { + 'pr_dc_temp_corr': 'pr_dc', + 'i_sc': 'i_sc', + 'r_sc': 'r_sc', + 'r_oc': 'r_oc', + 'i_ff': 'i_ff', + 'v_ff': 'v_ff', + 'v_oc_temp_corr': 'v_oc'} + + labels = { + 'pr_dc_temp_corr': 'pr_dc_temp_corr', + 'i_sc': 'norm_i_sc', + 'r_sc': 'norm_r_sc', + 'r_oc': 'norm_r_oc', + 'i_ff': 'norm_i_ff', + 'v_ff': 'norm_v_ff', + 'v_oc_temp_corr': 'norm_v_oc_temp_corr'} + + elif qty_lfm_vars == 4: + # LFM_4 + lines = { + 'pr_dc_temp_corr': 'pr_dc', + 'i_mp': 'i_mp', + 'v_mp': 'v_mp', + 'i_sc': 'i_sc', + 'v_oc_temp_corr': 'v_oc'} + + labels = { + 'pr_dc_temp_corr': 'pr_dc_temp_corr', + 'i_mp': 'norm_i_mp', + 'v_mp': 'norm_v_mp', + 'i_sc': 'norm_i_sc', + 'v_oc_temp_corr': 'norm_v_oc_temp_corr'} + + # plot the LFM parameters depending on qty_lfm_vars + for k in lines.keys(): + try: + ax1.scatter(xdata, dnorm[k], c=CLR[lines[k]], label=labels[k]) + except KeyError: + pass + + ax1.legend(bbox_to_anchor=(bbox, 1), + loc='upper left', borderaxespad=0.) + + # y2axis plot met on right y axis + ax2 = ax1.twinx() + ax2.set_ylabel('Temperature (C/100)') + + # set wide limits 0 to 4 so they don't overlap with LFM params + ax2.set_ylim(0, 4) + + ax2.scatter(xdata, + dnorm['temp_module']/T_MAX, + c=CLR['temp_module'], + label='temp_module C/' + str(T_MAX)) + + # temp_air may not exist particularly for indoor measurements + try: + ax2.scatter(xdata, + dnorm['temp_air']/T_MAX, + c=CLR['temp_air'], + label='temp_air C/' + str(T_MAX)) + except KeyError: + pass + + # make second legend box low enough ~0.1 not to overlap first box + ax2.legend(bbox_to_anchor=(bbox, 0.1), + loc='upper left', borderaxespad=0.) + + if save_figs: + # remove '.csv', high resolution= 300 dots per inch + plt.savefig(os.path.join('mlfm_data', 'output', + 'scatter_' + title[:len(title)-4]), dpi=300) + + plt.show() + + return fig + + +def plot_stack(dstack, fill_factor, title, + xaxis_labels=0, is_i_sc_self_ref=False, + save_figs=False + ): + """ + Plot stacked subtractive losses from 1/ref_ff down to pr_dc. + + Parameters + ---------- + dstack : DataFrame + Stacked subtractive losses. + + fill_factor : float + Reference value of fill factor for IV curve at STC conditions. + + title : string + Title for the figure. + + xaxis_labels : int, default 0 + Number of x-axis labels to show. Default 0 shows all. + + is_i_sc_self_ref : bool, default False + Self-correct ``i_sc`` to remove angle of incidence, + spectrum, snow or soiling. + + save_figs : boolean + save a high resolution png file of figure + + # is_v_oc_temp_module_corr : bool, default True + # Calculate loss due to temperature and subtract from ``v_oc`` loss. + + Returns + ------- + fig : Figure + Instance of matplotlib.figure.Figure + + See Also + -------- + norm_to_stack + + """ + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError('plt_stack requires matplotlib') + + # label names for LFM_6 + stack6 = ['i_sc', 'r_sc', 'i_ff', 'i_v', + 'v_ff', 'r_oc', 'v_oc_temp_corr'] + + if all([c in dstack.columns for c in stack6]): + + # data order from bottom to top + ydata = [dstack['pr_dc'] + (dstack['i_sc'] * (is_i_sc_self_ref)), + dstack['v_oc_temp_corr'], + dstack['temp_module_corr'], + dstack['r_oc'], + dstack['v_ff'], + dstack['i_v'], + dstack['i_ff'], + dstack['r_sc'], + dstack['i_sc'] * (not is_i_sc_self_ref)] + + labels = [ + 'pr_dc', + 'stack_t_mod', + 'stack_v_oc', + 'stack_r_oc', + 'stack_v_ff', + '- - -', + 'stack_i_ff', + 'stack_r_sc', + 'stack_i_sc'] + + color_map = [ + 'white', # colour to bottom of graph + CLR['temp_module'], + CLR['v_oc'], + CLR['r_oc'], + CLR['v_ff'], + CLR['i_v'], + CLR['i_ff'], + CLR['r_sc'], + CLR['i_sc']] + + stack4 = ['i_sc', 'i_mp', 'i_v', + 'v_mp', 'v_oc_temp_corr'] + + if all([c in dstack.columns for c in stack4]): + + # data order from bottom to top + ydata = [dstack['pr_dc'] + (dstack['i_sc'] * (is_i_sc_self_ref)), + dstack['v_oc_temp_corr'], + dstack['temp_module_corr'], + dstack['v_mp'], + dstack['i_v'], + dstack['i_mp'], + dstack['i_sc'] * (not is_i_sc_self_ref)] + + labels = [ + 'pr_dc', + 'stack_t_mod', + 'stack_v_oc', + 'stack_v_mp', + '- - -', + 'stack_i_mp', + 'stack_i_sc'] + + color_map = [ + 'white', # colour to bottom of graph + CLR['temp_module'], + CLR['v_oc'], + CLR['v_mp'], + CLR['i_v'], + CLR['i_mp'], + CLR['i_sc']] + + # offset legend right, use ~1.2 + bbox = 1.2 + + # select x axis usually date_time + xdata = dstack.index.values + fig, ax1 = plt.subplots() + + ax1.set_title(title) + + # plot stack in order bottom to top, + # allowing self_ref and temp_module corrections + ax1.stackplot(xdata, *tuple(ydata), labels=labels, colors=color_map) + + ax1.axhline(y=1/fill_factor, c='grey', lw=3) # show initial 1/FF + ax1.axhline(y=1, c='grey', lw=3) # show 100% line + ax1.set_ylabel('stacked lfm losses') + + # find number of x date values + x_ticks = dstack.shape[0] + plt.xticks(np.arange(0, x_ticks), rotation=90) + + # if (xaxis_labels > 0 and xaxis_labels < x_ticks): + if 0 < xaxis_labels < x_ticks: + xaxis_skip = np.floor(x_ticks / xaxis_labels) + else: + xaxis_skip = 2 + + # + xax2 = [''] * x_ticks + x_count = 0 + while x_count < x_ticks: + if x_count % xaxis_skip == 0: + # + # try to reformat any date indexes (not for matrices) + # + # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 + # y y y y - m m - d d t h h : m m : s s --> yy-mm-dd hh'h' + # + try: + xax2[x_count] = xdata[x_count][2:13]+'h' + except IndexError: + xax2[x_count] = xdata[x_count] + except TypeError: # xdata can't be subscripted + xax2[x_count] = xdata[0] + + x_count += 1 + + ax1.set_xticklabels(xax2) + ax1.set_ylim(0.6, 1/fill_factor + 0.1) # optional normalised y scale + plt.legend(bbox_to_anchor=(bbox, 1), loc='upper left', borderaxespad=0.) + + # plot met data on right y axis + ax2 = ax1.twinx() + ax2.set_ylabel('poa_global (kW/m^2), temp_module (C/ ' + str(T_MAX)) + ax2.set_ylim(0, 4) # set so doesn't overlap lfm params + + plt.plot(xdata, dstack['poa_global'] / G_STC, + c=CLR['irradiance'], label='poa_global (kW/m^2)') + plt.plot(xdata, dstack['temp_module'] / T_MAX, + c=CLR['temp_module'], label='temp_module / ' + str(T_MAX)) + + # temp_air may not exist particularly for indoor measurements + try: + plt.plot(xdata, dstack['temp_air']/100, + c=CLR['temp_air'], label='temp_air/ ' + str(T_MAX)) + except KeyError: + pass + + ax2.legend(bbox_to_anchor=(bbox, 0.3), loc='upper left', borderaxespad=0.) + ax1.set_xticklabels(xax2, rotation=90) + + # remove '.csv', high resolution= 300 dots per inch + plt.savefig(os.path.join('mlfm_data', 'output', + 'stack_' + title[:len(title)-4]), dpi=300) + + return fig + + +def meas_to_stack_lin(dmeas, ref, qty_lfm_vars, gap=0.01): + """ + Convert measured values to stacked subtractive normalized losses. + + Stacked subtractive losses show the relative loss proportions + from max possible "ref_i_sc * ref_v_oc" (1/reference fill factor) + to the measured normalized power. + + This version is done in a linear fashion so that LFM4 and LFM6 give the + same answers for Isc and Voc and the loss(i_mp)=loss(r_sc)+loss(i_ff) + + Parameters + ---------- + dmeas : DataFrame + Measured weather and module electrical values per time or measurement. + Contains 'poa_global', 'temp_module' and optional 'wind_speed'. + + ref : dict + Reference electrical and thermal datasheet module values at STC. + + gap : float + create a gap to differentiate i and v losses ~ 0.01 + + qty_lfm_vars : int + number of lfm_vars : 6=iv with rsc, roc ; 4=without rsc, roc + + Returns + ------- + dstack : DataFrame + Stacked subtractive normalized losses + + See Also + -------- + meas_to_norm + + References + ---------- + .. [1] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) + "Quantifying Long Term PV Performance and Degradation under Real + Outdoor and IEC 61853 Test Conditions Using High Quality Module + IV Measurements" 36th EU PVSEC, Marseille, France. September 2019 + """ + # create an empty DataFrame to put stack results + dstack = pd.DataFrame() + + # copy weather data for ease of use + dstack['poa_global'] = dmeas['poa_global'] + dstack['temp_module'] = dmeas['temp_module'] + dstack['wind_speed'] = dmeas['wind_speed'] + + # ref['p_mp'] = ref['i_mp'] * ref['v_mp'] + + # ref['ff'] = ref['p_mp'] / (ref['i_sc'] * ref['v_oc']) + + # ref['ff'] = (ref['i_mp']*ref['v_mp'])/(ref['i_sc']*ref['v_oc']) + inv_ff = 1 / ref['ff'] + + dstack['pr_dc'] = dmeas['pr_dc'] + + # Find linear values on i and v axes normalised to i_mp, v_mp + lin_i_ratio = ref['i_sc']/ref['i_mp'] + lin_v_ratio = ref['v_oc']/ref['v_mp'] + + lin_i_sc = dmeas['i_sc']/ref['i_mp']/(dmeas['poa_global']/G_STC) + + lin_v_oc = dmeas['v_oc']/ref['v_mp'] + lin_v_oc_temp_corr = dmeas['v_oc_temp_corr']/ref['v_mp'] + + # transform multiplicative to subtractive losses find + # correction factor to scale losses to keep 1/ff --> pr_dc + + if qty_lfm_vars == 6: + # subtractive losses with series and shunt resistance effects + i_r = ((dmeas['i_sc'] * dmeas['r_sc'] - dmeas['v_oc']) / + (dmeas['r_sc'] - dmeas['r_oc'])) + + v_r = ((dmeas['r_sc'] * (dmeas['v_oc'] - dmeas['i_sc'] * + dmeas['r_oc']) / (dmeas['r_sc'] - dmeas['r_oc']))) + + lin_i_r = i_r/ref['i_mp'] / (dmeas['poa_global']/G_STC) + lin_i_ff = dmeas['i_mp'] / ref['i_mp']/(dmeas['poa_global']/G_STC) + + lin_v_ff = dmeas['v_mp'] / ref['v_mp'] + lin_v_r = v_r / ref['v_mp'] + + sub_i = lin_i_ratio - lin_i_ff # current drop + sub_v = lin_v_ratio - lin_v_ff # voltage drop + + # correction factor mult --> lin loss + corr = (inv_ff - dstack['pr_dc']) / (sub_i + sub_v) + + # put 6 LFM values in a stack from pr_dc (bottom) to 1/ff_ref (top) + # accounting for series and shunt resistance losses + + dstack['i_sc'] = (lin_i_ratio-lin_i_sc) * corr + dstack['r_sc'] = (lin_i_sc-lin_i_r) * corr + dstack['i_ff'] = (lin_i_r-lin_i_ff) * corr - gap/2 + dstack['i_v'] = gap + dstack['v_ff'] = (lin_v_r-lin_v_ff) * corr - gap/2 + dstack['r_oc'] = (lin_v_oc-lin_v_r) * corr + dstack['v_oc_temp_corr'] = (lin_v_oc_temp_corr-lin_v_oc) * corr + dstack['temp_module_corr'] = (lin_v_ratio-lin_v_oc_temp_corr) * corr + + if qty_lfm_vars == 4: + + lin_i_mp = dmeas['i_mp'] / ref['i_mp'] / (dmeas['poa_global']/G_STC) + lin_v_mp = dmeas['v_mp'] / ref['v_mp'] + + sub_i = lin_i_ratio - lin_i_mp # current drop + sub_v = lin_v_ratio - lin_v_mp # voltage drop + + # correction factor mult --> lin loss + corr = (inv_ff-dstack['pr_dc']) / (sub_i + sub_v) + + # put 4 LFM values in a stack from pr_dc (bottom) to 1/ff_ref (top) + # accounting for series and shunt resistance losse + + dstack['i_sc'] = (lin_i_ratio-lin_i_sc) * corr + dstack['i_mp'] = (lin_i_sc-lin_i_mp) * corr - gap/2 + dstack['i_v'] = gap + dstack['v_mp'] = (lin_v_oc-lin_v_mp) * corr - gap/2 + dstack['v_oc_temp_corr'] = (lin_v_oc_temp_corr-lin_v_oc) * corr + dstack['temp_module_corr'] = (lin_v_ratio-lin_v_oc_temp_corr) * corr + + return dstack + + +""" +The Loss Factors Model (LFM) and Mechanistic Performance Model (MPM) +together known as "MLFM" have been developed by SRCL and Gantner Instruments +(previously Oerlikon Solar and Tel Solar) since 2011 MLFM and 2017 MPM + +.. [1] J. Sutterlueti(now Gantner Instruments) and S. Ransome + '4AV.2.41 Characterising PV Modules under Outdoor Conditions: +What's Most Important for Energy Yield' +26th EU PVSEC 8 September 2011; Hamburg, Germany. +http://www.steveransome.com/pubs/2011Hamburg_4AV2_41.pdf + +.. [2] Steve Ransome and Juergen Sutterlueti(Gantner Instruments) + 'Choosing the best Empirical Model for predicting energy yield' + 7th PV Energy Rating and Module Performance Modeling Workshop, + Canobbio, Switzerland 30-31 March, 2017. + +.. [3] S. Ransome and J. Sutterlueti (Gantner Instruments) +'Checking the new IEC 61853.1-4 with high quality 3rd party data to +benchmark its practical relevance in energy yield prediction' +PVSC June 2019 [Chicago], USA. +http://www.steveransome.com/PUBS/1906_PVSC46_Chicago_Ransome.pdf + +.. [4] Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) +'5CV.4.35 Quantifying Long Term PV Performance and Degradation +under Real Outdoor and IEC 61853 Test Conditions +Using High Quality Module IV Measurements'. +36th EU PVSEC Sep 2019 [Marseille] + +.. [5] Steve Ransome (SRCL) +'How to use the Loss Factors and Mechanistic Performance Models +effectively with PVPMC/PVLIB' +[PVPMC] Webinar on PV Performance Modeling Methods, Aug 2020. +https://pvpmc.sandia.gov/download/7879/ + +.. [6] W.Marion et al (NREL) +'New Data Set for Validating PV Module Performance Models'. +https://www.researchgate.net/publication/286746041_New_data_set_for_validating_PV_module_performance_models +Many more papers are available at www.steveransome.com + +.. [7] Steve Ransome (SRCL) +'Benchmarking PV performance models with high quality IEC 61853 Matrix +measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode)' +http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf + +.. [8] Juergen Sutterlueti (Gantner Instruments) +'Advanced system monitoring and artificial intelligent data-driven analytics +to serve GW-scale photovoltaic power plant and energy storage requirements' +https://pvpmc.sandia.gov/download/8574/ + +""" diff --git a/pvlib/temperature.py b/pvlib/temperature.py index 9748965ccd..e52032f6ec 100644 --- a/pvlib/temperature.py +++ b/pvlib/temperature.py @@ -9,7 +9,6 @@ from pvlib._deprecation import warn_deprecated from pvlib.tools import _get_sample_intervals import scipy -import scipy.constants import warnings @@ -319,7 +318,7 @@ def pvsyst_cell(poa_global, temp_air, wind_speed=1.0, u_c=29.0, u_v=0.0, u_v : float, default 0.0 Combined heat loss factor influenced by wind. Parameter :math:`U_{v}` in :eq:`pvsyst`. - :math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]` + :math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]` # noQA: E501 eta_m : numeric, default None (deprecated, use module_efficiency instead) @@ -376,7 +375,7 @@ def pvsyst_cell(poa_global, temp_air, wind_speed=1.0, u_c=29.0, u_v=0.0, >>> params = TEMPERATURE_MODEL_PARAMETERS['pvsyst']['freestanding'] >>> pvsyst_cell(1000, 10, **params) 37.93103448275862 - """ # noQA: E501 + """ if eta_m: warn_deprecated( @@ -414,14 +413,12 @@ def faiman(poa_global, temp_air, wind_speed=1.0, u0=25.0, u1=6.84): u0 : numeric, default 25.0 Combined heat loss factor coefficient. The default value is one - determined by Faiman for 7 silicon modules - in the Negev desert on an open rack at 30.9° tilt. + determined by Faiman for 7 silicon modules. :math:`\left[\frac{\text{W}/{\text{m}^2}}{\text{C}}\right]` u1 : numeric, default 6.84 Combined heat loss factor influenced by wind. The default value is one - determined by Faiman for 7 silicon modules - in the Negev desert on an open rack at 30.9° tilt. + determined by Faiman for 7 silicon modules. :math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]` Returns @@ -437,7 +434,6 @@ def faiman(poa_global, temp_air, wind_speed=1.0, u0=25.0, u1=6.84): ---------- .. [1] Faiman, D. (2008). "Assessing the outdoor operating temperature of photovoltaic modules." Progress in Photovoltaics 16(4): 307-315. - :doi:`10.1002/pip.813` .. [2] "IEC 61853-2 Photovoltaic (PV) module performance testing and energy rating - Part 2: Spectral responsivity, incidence angle and module @@ -446,12 +442,7 @@ def faiman(poa_global, temp_air, wind_speed=1.0, u0=25.0, u1=6.84): .. [3] "IEC 61853-3 Photovoltaic (PV) module performance testing and energy rating - Part 3: Energy rating of PV modules". IEC, Geneva, 2018. - See also - -------- - pvlib.temperature.faiman_rad - - ''' # noQA: E501 - + ''' # Contributed by Anton Driesse (@adriesse), PV Performance Labs. Dec., 2019 # The following lines may seem odd since u0 & u1 are probably scalar, @@ -466,115 +457,6 @@ def faiman(poa_global, temp_air, wind_speed=1.0, u0=25.0, u1=6.84): return temp_air + temp_difference -def faiman_rad(poa_global, temp_air, wind_speed=1.0, ir_down=None, - u0=25.0, u1=6.84, sky_view=1.0, emissivity=0.88): - r''' - Calculate cell or module temperature using the Faiman model augmented - with a radiative loss term. - - The Faiman model uses an empirical heat loss factor model [1]_ and is - adopted in the IEC 61853 standards [2]_ and [3]_. The radiative loss - term was proposed and developed by Driesse [4]_. - - The model can be used to represent cell or module temperature. - - Parameters - ---------- - poa_global : numeric - Total incident irradiance [W/m^2]. - - temp_air : numeric - Ambient dry bulb temperature [C]. - - wind_speed : numeric, default 1.0 - Wind speed measured at the same height for which the wind loss - factor was determined. The default value 1.0 m/s is the wind - speed at module height used to determine NOCT. [m/s] - - ir_down : numeric, default 0.0 - Downwelling infrared radiation from the sky, measured on a horizontal - surface. [W/m^2] - - u0 : numeric, default 25.0 - Combined heat loss factor coefficient. The default value is one - determined by Faiman for 7 silicon modules - in the Negev desert on an open rack at 30.9° tilt. - :math:`\left[\frac{\text{W}/{\text{m}^2}}{\text{C}}\right]` - - u1 : numeric, default 6.84 - Combined heat loss factor influenced by wind. The default value is one - determined by Faiman for 7 silicon modules - in the Negev desert on an open rack at 30.9° tilt. - :math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]` - - sky_view : numeric, default 1.0 - Effective view factor limiting the radiative exchange between the - module and the sky. For a tilted array the expressions - (1 + 3*cos(tilt)) / 4 can be used as a first estimate for sky_view - as discussed in [4]_. The default value is for a horizontal module. - [unitless] - - emissivity : numeric, default 0.88 - Infrared emissivity of the module surface facing the sky. The default - value represents the middle of a range of values found in the - literature. [unitless] - - Returns - ------- - numeric, values in degrees Celsius - - Notes - ----- - All arguments may be scalars or vectors. If multiple arguments - are vectors they must be the same length. - - When only irradiance, air temperature and wind speed inputs are provided - (`ir_down` is `None`) this function calculates the same device temperature - as the original faiman model. When down-welling long-wave radiation data - are provided as well (`ir_down` is not None) the default u0 and u1 values - from the original model should not be used because a portion of the - radiative losses would be double-counted. - - References - ---------- - .. [1] Faiman, D. (2008). "Assessing the outdoor operating temperature of - photovoltaic modules." Progress in Photovoltaics 16(4): 307-315. - :doi:`10.1002/pip.813` - - .. [2] "IEC 61853-2 Photovoltaic (PV) module performance testing and energy - rating - Part 2: Spectral responsivity, incidence angle and module - operating temperature measurements". IEC, Geneva, 2018. - - .. [3] "IEC 61853-3 Photovoltaic (PV) module performance testing and energy - rating - Part 3: Energy rating of PV modules". IEC, Geneva, 2018. - - .. [4] Driesse, A. et al (2022) "Improving Common PV Module Temperature - Models by Incorporating Radiative Losses to the Sky". SAND2022-11604. - :doi:`10.2172/1884890` - - See also - -------- - pvlib.temperature.faiman - - ''' # noQA: E501 - - # Contributed by Anton Driesse (@adriesse), PV Performance Labs. Nov., 2022 - - abs_zero = -273.15 - sigma = scipy.constants.Stefan_Boltzmann - - if ir_down is None: - qrad_sky = 0.0 - else: - ir_up = sigma * ((temp_air - abs_zero)**4) - qrad_sky = emissivity * sky_view * (ir_up - ir_down) - - heat_input = poa_global - qrad_sky - total_loss_factor = u0 + u1 * wind_speed - temp_difference = heat_input / total_loss_factor - return temp_air + temp_difference - - def ross(poa_global, temp_air, noct): r''' Calculate cell temperature using the Ross model. diff --git a/pvlib/tests/conftest.py b/pvlib/tests/conftest.py index b3e9fcd5a1..c9d5398060 100644 --- a/pvlib/tests/conftest.py +++ b/pvlib/tests/conftest.py @@ -150,6 +150,17 @@ def has_numba(): requires_siphon = pytest.mark.skipif(not has_siphon, reason='requires siphon') +try: + import matplotlib.pyplot as plt # noqa: F401 + import matplotlib + matplotlib.use('agg') + has_mpl = True +except ImportError: + has_mpl = False + +requires_mpl = pytest.mark.skipif(not has_mpl, reason='requires matplotlib') + + try: import netCDF4 # noqa: F401 has_netCDF4 = True diff --git a/pvlib/tests/test_mlfm.py b/pvlib/tests/test_mlfm.py new file mode 100644 index 0000000000..5a4d0cbe20 --- /dev/null +++ b/pvlib/tests/test_mlfm.py @@ -0,0 +1,264 @@ +import numpy as np +import pandas as pd + +from pvlib import mlfm + +import pytest + +from conftest import requires_mpl, assert_frame_equal + +from numpy.testing import assert_allclose + +tolerance = 0.000001 + +qty_mlfm_vars = 6 # check all 6 mlfm params from iv curves + + +@pytest.fixture +def reference(): + # get reference module STC values for normalisation + ref = dict( + module_id='g78', + i_sc=5.35, + i_mp=4.9, + v_mp=36.8, + v_oc=44.2, + alpha_i_sc=0.0005, + alpha_i_mp=0, # often not known, not used here + beta_v_mp=0, # often not known, not used here + beta_v_oc=-0.0035, # 1/C + gamma_pdc=-0.0045, # = alpha_i_mp + beta_v_mp + delta_ff=0, # often not known, not used here + ) + # create p_mp and ff + ref['p_mp'] = ref['i_mp'] * ref['v_mp'] + ref['ff'] = ref['p_mp'] / (ref['i_sc'] * ref['v_oc']) + return ref + + +@pytest.fixture +def measured(): + # get measured data + data_meas = { + # 'date_time': ['2016-03-23 09:00:00-07:00'], + 'module_id': [78], + 'poa_global': [591.3868886], + 'wind_speed': [4.226408028], + # 'temp_air': [17.42457581], + 'temp_module': [27.82861328], + 'v_oc': [43.52636044], + 'i_sc': [3.14995479], + 'i_mp': [2.949264766], + 'v_mp': [35.76882896], + 'r_sc': [674.5517322], + 'r_oc': [1.355690858], + } + + meas = pd.DataFrame(data_meas) + + # create p_mp and ff in case they don't exist + # meas['poa_global_kwm2'] = meas['poa_global'] / 1000 + meas['p_mp'] = meas['i_mp'] * meas['v_mp'] + meas['ff'] = meas['p_mp'] / (meas['i_sc'] * meas['v_oc']) + + return meas + + +@pytest.fixture +def normalized(): + data_norm_target = { + # 'date_time': ['2016-03-23 09:00:00-07:00'], + 'pr_dc': [0.989242790817207], + 'pr_dc_temp_corr': [1.00183462464583], + 'i_sc': [0.995586151149719], + 'i_mp': [0.93628796685047], + 'v_oc': [0.98475928597285], + 'v_mp': [0.821773945683017], + 'v_oc_temp_corr': [0.994508547151521], + 'r_sc': [0.981487711004909], + 'r_oc': [0.903706382978424], + 'i_ff': [0.953947722780796], + 'v_ff': [0.909337325885234], + } + + norm_target = pd.DataFrame(data_norm_target) + + return norm_target + + +@pytest.fixture +def stacked6(): + # get stack data + data_stack_target = { + # 'date_time': ['2016-03-23 09:00:00-07:00'], + 'pr_dc': [0.989242790817207], + 'i_sc': [0.0052435168594609], + 'r_sc': [0.0219920307073518], + 'i_ff': [0.049708690806242], + 'i_v': [0.01], + 'v_ff': [0.102704472076433], + 'r_oc': [0.114393859291095], + 'v_oc': [0.0181055001343123], + 'temp_module_corr': [0.0115818228244058], + } + + stack_target = pd.DataFrame(data_stack_target) + + return stack_target + + +@pytest.fixture +def stacked4(): + data_stack_target = { + # 'date_time': ['2016-03-23 09:00:00-07:00'], + 'pr_dc': [0.989242790817], + 'i_sc': [0.0054355995322], + 'i_mp': [0.0734605702031], + 'i_v': [0.01], + 'v_mp': [0.214483151855], + 'v_oc': [0.0187687482844], + 'temp_module_corr': [0.012006092936], + } + + stack_target = pd.DataFrame(data_stack_target) + + return stack_target + + +@pytest.fixture +def mlfm_6_coeffs(): + # test mlfm coefficients + c_1 = +1.0760136800094817 + c_2 = -0.004619443769147978 + c_3 = +0.018343135214876096 + c_4 = -0.07613482929987923 + c_5 = -0.0006626101399079871 + c_6 = -0.014752223616684625 + expected = 0.9859917396312191 + + return c_1, c_2, c_3, c_4, c_5, c_6, expected + + +@pytest.fixture +def matrix_data(): + # sample ghi, tmod, ws and pr_dc to fit + # this data selectable from mlfm.ipynb + # --- + # select one of the following meas files + # meas_file = 2 # <<< change from 0 to 2 + # --- + + return pd.DataFrame(np.array( + [[100., 15, 0, 0.935774123487434], + [200., 15, 0, 0.978281104560968], + [400., 15, 0, 1.00721377598511], + [600., 15, 0, 1.02254628193195], + [800., 15, 0, 1.02710983555693], + [1000., 15, 0, 1.02655910642259], + [100., 25, 0, 0.907539559416693], + [200., 25, 0, 0.94849519081601], # LIC + [400., 25, 0, 0.980840831523425], + [600., 25, 0, 0.994311717861206], + [800., 25, 0, 0.998914055228048], + [1000., 25, 0, 1], # STC + [1100., 25, 0, 0.998984571122331], + [100., 50, 0, 0.833074775054297], + [200., 50, 0, 0.879615265280794], + [400., 50, 0, 0.908004964318957], + [600., 50, 0, 0.920260626745268], + [800., 50, 0, 0.925496431895749], + [1000., 50, 0, 0.927551970214086], + [1100., 50, 0, 0.926324993653569], + [100., 75, 0, 0.746819733167856], + [200., 75, 0, 0.792739683524666], + [400., 75, 0, 0.826481538938877], + [600., 75, 0, 0.842744854690247], + [800., 75, 0, 0.847735029475644], + [1000., 75, 0, 0.849053676698728], + [1100., 75, 0, 0.849039573519871]]), + columns=[ + 'poa_global', 'temp_module', 'wind_speed', 'pr_dc']) + + +@pytest.fixture +def mlfm_6_fit(): + # fit matrix + ''' + Excel fit GRG linear values + c_1 = +1.0573318761708000 + c_2 = -0.0030251199627269 + c_3 = +0.1228522267570000 + c_4 = -0.0545505400372862 + c_5 = 0 # this is in conflict with the data which include wind_speed + c_6 = -0.002394779219883 + rmse = 0.280% + ''' + c_1 = +1.0579328401731174 + c_2 = -0.0030248261647759975 + c_3 = +0.12378885001559799 + c_4 = -0.05521716508715758 + c_5 = 0. + c_6 = -0.0023546463713093836 + expected = 0.9845007615699125 + + cc_target = [c_1, c_2, c_3, c_4, c_5, c_6] + return c_1, c_2, c_3, c_4, c_5, c_6, expected, cc_target + + +def test_mlfm_meas_to_norm(mlfm_6_coeffs, reference, measured, normalized): + norm_calc = mlfm.mlfm_meas_to_norm(measured, reference) + assert_frame_equal(norm_calc, normalized, atol=1e-6) + + +def test_mlfm_6(measured, mlfm_6_coeffs): + c_1, c_2, c_3, c_4, c_5, c_6, expected = mlfm_6_coeffs + result = mlfm.mlfm_6(measured, c_1, c_2, c_3, c_4, c_5, c_6) + assert_allclose(expected, result[0], atol=1e-6) + + +def test_mlfm_norm_to_stack(normalized, reference, stacked6, stacked4): + stack_calc = mlfm.mlfm_norm_to_stack(normalized, reference['ff']) + assert_frame_equal(stack_calc, stacked6, atol=1e-6) + # test without 'i_ff', 'r_sc', 'v_ff', 'r_oc' + # v_mp = v_ff * r_oc and i_mp = i_ff * r_sc + norm = normalized.drop(columns=['i_ff', 'r_sc', 'v_ff', 'r_oc']) + short_stack_calc = mlfm.mlfm_norm_to_stack(norm, reference['ff']) + assert_frame_equal(short_stack_calc, stacked4, check_less_precise=True) + + +def test_mlfm_fit(matrix_data, mlfm_6_fit): + c_1, c_2, c_3, c_4, c_5, c_6, expected, cc_target = mlfm_6_fit + # choose which parameter to fit - usually pr_dc + mlfm_sel = 'pr_dc' + # drop wind_speed since it's always zero + matrix_data = matrix_data.drop(columns=['wind_speed']) + predictions, cc_fit, residuals, perr = mlfm.mlfm_fit( + matrix_data, mlfm_sel) + # atol is large due to different behavior in conda_linux Python 3.6 env. + assert_allclose(cc_fit, cc_target, atol=5e-3) + + +@requires_mpl +def test_plot_mlfm_scatter(measured, normalized): + import matplotlib.pyplot as plt + fig = mlfm.plot_mlfm_scatter(measured, normalized, 'norm plot') + assert isinstance(fig, plt.Figure) + + +@requires_mpl +def test_plot_mlfm_stack(measured, normalized, stacked6, stacked4, reference): + # stacked plot requires at least index length of 2 + m = pd.concat([measured, measured]) + m.index = [0, 1] + n = pd.concat([normalized, normalized]) + n.index = [0, 1] + s6 = pd.concat([stacked6, stacked6]) + s6.index = [0, 1] + import matplotlib.pyplot as plt + fig = mlfm.plot_mlfm_stack(m, n, s6, reference['ff'], 'stacked 6 plot') + assert isinstance(fig, plt.Figure) + s4 = pd.concat([stacked4, stacked4]) + s4.index = [0, 1] + import matplotlib.pyplot as plt + fig = mlfm.plot_mlfm_stack(m, n, s4, reference['ff'], 'stacked 4 plot') + assert isinstance(fig, plt.Figure) diff --git a/pvlib/tests/test_temperature.py b/pvlib/tests/test_temperature.py index bd6831fd0a..5e36714d12 100644 --- a/pvlib/tests/test_temperature.py +++ b/pvlib/tests/test_temperature.py @@ -108,12 +108,12 @@ def test_pvsyst_cell_eta_m_deprecated(): def test_faiman_default(): result = temperature.faiman(900, 20, 5) - assert_allclose(result, 35.203, atol=0.001) + assert_allclose(result, 35.203, 0.001) def test_faiman_kwargs(): result = temperature.faiman(900, 20, wind_speed=5.0, u0=22.0, u1=6.) - assert_allclose(result, 37.308, atol=0.001) + assert_allclose(result, 37.308, 0.001) def test_faiman_list(): @@ -122,7 +122,7 @@ def test_faiman_list(): winds = [10, 5, 0] result = temperature.faiman(irrads, temps, wind_speed=winds) expected = np.array([0.0, 18.446, 5.0]) - assert_allclose(expected, result, atol=0.001) + assert_allclose(expected, result, 3) def test_faiman_ndarray(): @@ -131,32 +131,7 @@ def test_faiman_ndarray(): winds = np.array([10, 5, 0]) result = temperature.faiman(irrads, temps, wind_speed=winds) expected = np.array([0.0, 18.446, 5.0]) - assert_allclose(expected, result, atol=0.001) - - -def test_faiman_rad_no_ir(): - expected = temperature.faiman(900, 20, 5) - result = temperature.faiman_rad(900, 20, 5) - assert_allclose(result, expected) - - -def test_faiman_rad_ir(): - ir_down = np.array([0, 100, 200, 315.6574, 400]) - expected = [-11.111, -7.591, -4.071, -0.000, 2.969] - result = temperature.faiman_rad(0, 0, 0, ir_down) - assert_allclose(result, expected, atol=0.001) - - sky_view = np.array([1.0, 0.5, 0.0]) - expected = [-4.071, -2.036, 0.000] - result = temperature.faiman_rad(0, 0, 0, ir_down=200, - sky_view=sky_view) - assert_allclose(result, expected, atol=0.001) - - emissivity = np.array([1.0, 0.88, 0.5, 0.0]) - expected = [-4.626, -4.071, -2.313, 0.000] - result = temperature.faiman_rad(0, 0, 0, ir_down=200, - emissivity=emissivity) - assert_allclose(result, expected, atol=0.001) + assert_allclose(expected, result, 3) def test_ross(): diff --git a/pvlib/tests/test_tools.py b/pvlib/tests/test_tools.py index 4d5312088b..167dca8cec 100644 --- a/pvlib/tests/test_tools.py +++ b/pvlib/tests/test_tools.py @@ -45,22 +45,6 @@ def test__golden_sect_DataFrame_vector(): v, x = tools._golden_sect_DataFrame(params, lower, upper, _obj_test_golden_sect) assert np.allclose(x, expected, atol=1e-8) - # some upper and lower bounds equal - params = {'c': np.array([1., 2., 1.]), 'n': np.array([1., 1., 1.])} - lower = np.array([0., 0.001, 1.]) - upper = np.array([1., 1.2, 1.]) - expected = np.array([0.5, 0.25, 1.0]) # x values for maxima - v, x = tools._golden_sect_DataFrame(params, lower, upper, - _obj_test_golden_sect) - assert np.allclose(x, expected, atol=1e-8) - # all upper and lower bounds equal, arrays of length 1 - params = {'c': np.array([1.]), 'n': np.array([1.])} - lower = np.array([1.]) - upper = np.array([1.]) - expected = np.array([1.]) # x values for maxima - v, x = tools._golden_sect_DataFrame(params, lower, upper, - _obj_test_golden_sect) - assert np.allclose(x, expected, atol=1e-8) def test__golden_sect_DataFrame_nans(): diff --git a/pvlib/tools.py b/pvlib/tools.py index 229c5dd444..991568f9e0 100644 --- a/pvlib/tools.py +++ b/pvlib/tools.py @@ -341,8 +341,6 @@ def _golden_sect_DataFrame(params, lower, upper, func, atol=1e-8): -------- pvlib.singlediode._pwr_optfcn """ - if np.any(upper - lower < 0.): - raise ValueError('upper >= lower is required') phim1 = (np.sqrt(5) - 1) / 2 @@ -351,8 +349,16 @@ def _golden_sect_DataFrame(params, lower, upper, func, atol=1e-8): df['VL'] = lower converged = False + iterations = 0 - while not converged: + # handle all NaN case gracefully + with warnings.catch_warnings(): + warnings.filterwarnings(action='ignore', + message='All-NaN slice encountered') + iterlimit = 1 + np.nanmax( + np.trunc(np.log(atol / (df['VH'] - df['VL'])) / np.log(phim1))) + + while not converged and (iterations <= iterlimit): phi = phim1 * (df['VH'] - df['VL']) df['V1'] = df['VL'] + phi @@ -367,16 +373,22 @@ def _golden_sect_DataFrame(params, lower, upper, func, atol=1e-8): err = abs(df['V2'] - df['V1']) - # handle all NaN case gracefully - with warnings.catch_warnings(): - warnings.filterwarnings(action='ignore', - message='All-NaN slice encountered') - converged = np.all(err[~np.isnan(err)] < atol) + # works with single value because err is np.float64 + converged = (err[~np.isnan(err)] < atol).all() + # err will be less than atol before iterations hit the limit + # but just to be safe + iterations += 1 + + if iterations > iterlimit: + raise Exception("Iterations exceeded maximum. Check that func", + " is not NaN in (lower, upper)") # pragma: no cover - # best estimate of location of maximum - df['max'] = 0.5 * (df['V1'] + df['V2']) - func_result = func(df, 'max') - x = np.where(np.isnan(func_result), np.nan, df['max']) + try: + func_result = func(df, 'V1') + x = np.where(np.isnan(func_result), np.nan, df['V1']) + except KeyError: + func_result = np.full_like(upper, np.nan) + x = func_result.copy() return func_result, x diff --git a/setup.py b/setup.py index 134ec1d88c..4eb9304311 100755 --- a/setup.py +++ b/setup.py @@ -46,8 +46,8 @@ 'requests-mock', 'pytest-timeout', 'pytest-rerunfailures', 'pytest-remotedata'] EXTRAS_REQUIRE = { - 'optional': ['cython', 'ephem', 'netcdf4', 'nrel-pysam', 'numba', - 'pvfactors', 'siphon', 'statsmodels', + 'optional': ['cython', 'ephem', 'matplotlib', 'netcdf4', 'nrel-pysam', + 'numba', 'pvfactors', 'siphon', 'statsmodels', 'cftime >= 1.1.1'], 'doc': ['ipython', 'matplotlib', 'sphinx == 4.5.0', 'pydata-sphinx-theme == 0.8.1', 'sphinx-gallery',