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Abstract--Algorithms for determining the m nearest neighbors of a query point in k-dimensional space 
can be inappropriate when m cannot be determined in advance. We recast the m nearest neighbor problem 
into a problem of searching for the next nearest neighbor. Repeated invocations of an incremental 
searching algorithm allow an arbitrary number of nearest neighbors to be determined. It is shown that 
incremental search can be implemented as a sequence of invocations of a previously published non- 
incremental algorithm. A new incremental search algorithm is then presented which finds the next nearest 
neighbor more efficiently by eliminating redundant computations. Finally, the results of experimental 
computer runs comparing the two approaches are presented. 
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1. INTRODUCTION 

The need to determine the m nearest neighbors of a 
query point from a collection of k-dimensional data 
points arises in many diverse applications. Examples 
of such applications include nonparametric clas- 
sification and density estimation. Ill The use of "brute 
force" to determine the m nearest neighbors (comput- 
ing and ordering the distances between the query 
point and all data points) can be prohibitive, especially 
when considering the cost of thousands of queries on 
data sets containing hundreds of thousands of data 
points. 

If the data points are approximately uniformly 
distributed in k-space, a simple uniformly spaced k- 
dimensional grid structure can yield excellent 
results3 2) However, the measurement of natural or 
man-made phenomena will tend to produce non- 
uniform, highly clustered data. In such cases it is 
desirable to use a data structure which can adaptively 
partition the k-space, partitioning more finely in 
areas of higher data point density. A variety of data 
structures having this adaptive partitioning property 
have been proposed, and an excellent survey can be 
found in Ref. (3). 

Bentley t4) introduced a multi-dimensional tree 
structure, the k-d tree, which allows for the efficient 
implementation of many types of associative queries. 
Friedman et al. ~) presented an algorithm that per- 
forms an m nearest neighbor search on a collection 
of N points stored in a k-d tree with expected time 
proportional to log N. 

*Supported by MITRE Sponsored Research Project: 
Spatial Data Base Technology. 

For many applications, it may not be known a 
priori how many of the nearest neighbors to a query 
point will be needed. Rather, it may be more desirable 
to incrementally perform a nearest neighbor search, 
with each invocation of the search routine returning 
the next nearest neighbor. 

This paper describes two different strategies for 
implementing incremental nearest neighbor search 
algorithms on records stored in k-d trees. The first 
strategy involves repeatedly invoking a non-incremen- 
tal algorithm. Because of the significant amount of 
redundant computation involved, this technique can 
be highly inefficient. 

The second strategy presented in this paper involves 
a modified search algorithm along with auxiliary 
data structures for preserving the search state. The 
auxiliary data structure allows for an unlimited (sub- 
ject only to memory constraints) number of searches 
from different query points being conducted in paral- 
lel. 

2. k-d TREES 

A k-d tree is a binary tree structure for storing 
and performing operations on records containing k- 
dimensional keys. Each key is a vector of k real or 
integer values. The key thus specifies the record's 
position in k-space. 

The root of a k-d tree represents the infinite k- 
dimensional space containing the collection of reco- 
rds. Each node represents a sub-space containing a 
subset of the collection of records. The two children 
of a non-terminal node are obtained by partitioning 
the node's sub-space into two parts by a hyper-plane 
perpendicular to one of the k coordinate axes (the 
discriminating axis). The position of the hyper-plane 
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Fig. 1. The construction of a k-d tree. 

is chosen so that each of the children contains 
approximately half of the parent's records. The dis- 
criminating axis is determined by choosing the axis 
along which the parent's records are most dispersed 
(see Ref. (5) for a discussion of methods for measuring 
the dispersion). Children that contain less than a 
threshold number of records (the bucket size) become 
the leaf nodes in the tree. 

Figures l(a)-l(d) illustrate the steps in building a 
k-d tree on a small 2-dimensional data set. The 
root of the tree is represented by the box drawn 
surrounding the record points in Fig. l(a). The left 
and right children of the root are the smaller boxes 
each surrounding half the records, as shown in Fig. 

l(b). The remaining figures show successively deeper 
levels of the tree represented in a similar fashion. 

3. INCREMENTAL SEARCH 

3.1. Nearest neighbor classification 

Friedman et al.'s a l g o r i t h m  S E A R C H  (s) finds the 
m nearest neighbors of a point from a collection of N 

points stored in a k-d tree. The requirement that m 

be specified in advance of the search can be very 
restrictive in applications such as non-parametric 
classification. 

T o  illustrate this, consider a collection of records 
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whose keys are k element vectors in a k-dimensional 
feature space. Further, assume that each of the records 
has been assigned a label ~ i ,  from among I possible 
labels. Given a new k element record, Rk, it is desired 
to assign a label to Rk based in some way on the 
labels already assigned to its nearest neighbors in k- 
space. The m nearest neighbor ruld 11 assigns to Rk 
the most frequently represented label from among 
Rk's m nearest neighbors. Using SEARCH, all of Rk'S 
m nearest neighbors will need to be retrieved to 
determine the "winning" label. However, if the m 
nearest neighbors could be retrieved one at a time 
(ordered by distance from Rk), then it might be 
possible to determine the "winning" label well before 
m neighbors have been retrieved. Likewise, it is 
possible that after the m nearest neighbors have 
been retrieved using SEARCH, no single label has a 
significant plurality. In this case, it may be desirable 
to continue retrieving additional nearest neighbors 
until a higher level of confidence is attained. SEARCH 
is clearly inappropriate for this problem, since all 
m + n nearest neighbors must be retrieved in order 
to obtain the n additional nearest neighbors beyond 
the already retrieved m nearest neighbors. 

Ideally, we would like to treat the collection of N 
records as if it were formed into a list, ordered by 
distance from the query key. The nearest neighbor 
search process would then consist of removing records 
one at a time from the head of the list. However, 
rather than construct and order the entire list, a 
function can be defined which in conjunction with a 
small amount of auxiliary storage effectively encodes 
the fully ordered list. Thus, each time the function is 
called, the next record in the implicit list is returned; 
the auxiliary storage contains just enough information 
so that the following record in the implicit list can be 
identified on the next call. A function operating in 
this way is known as a generator and the auxiliary 
storage is known as the seed. (6"7) An initialization 
function is used in conjunction with the generator, 
the sole purpose of which is to initialize the seed data 
structure before the generator is called the first time. 

3.2. A naive algorithm 

A generator naive-search which incrementally 
returns the next nearest neighbor upon each invoc- 
ation can be implemented using repeated calls to the 
non-incremental algorithm SEARCH. To do this, 
simply use SEARCH to compute an ordered list of 
the first c nearest neighbors. Each call to naive-search 
then returns the next record in the list. Each time the 
list is exhausted, naive-search calls SEARCH again, 
multiplying its parameter m (the number of neighbors 
to find) by the same constant c. 

Naive-search maintains no state information about 
previous searches, and thus can be extremely 
inefficient due to the many nearest-neighbor compu- 
tations that are repeatedly performed. To illustrate 
this, and without loss of generality, consider the case 

where naive-search has been called n times to return 
the first n nearest neighbors, where n is a power of c 
(i.e. n = cl). Then the total number of nearest neigh- 
bors which will have been retrieved by naive-search 
through multiple calls to SEARCH is 

n /I /1 
/ 1 + c + - ~  + ~ + . . .  + c. (1) 

Note that when the user calls naive-search just one 
more time to request the (n + 1)th nearest neighbor, 
SEARCH must be called again to find the first 
c i÷l neighbors (in addition to all those previously 
computed)! Figure 2 illustrates the behavior of naive- 
search by plotting (for c = 2) the total number of 
records retrieved to incrementally find the nth nearest 
neighbor. 

The next section describes a much more efficient 
algorithm which avoids all redundant nearest 
neighbor calculations by preserving the search state 
between invocations. 

3.3. An efficient incremental search algorithm 

We will now describe a time and space efficient 
generator algorithm which performs incremental 
nearest neighbor search. To that end we will need to 
describe both the initialization function search-init 
and the generator function search-next. As the devel- 
opment proceeds we will also describe the contents 
of the seed data structure. 

The function of search-init is to initialize the seed 
for a nearest neighbor search. Search-init is passed a 
pointer to the k-d tree containing the collection of 
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Fig. 2. Total number of records retrieved by naive-search to 
incrementally find the nth nearest neighbor. 
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records, and a pointer to a query key specifying a 
location in k space. The pointers to the trec and to 
the query key are stored in the seed. Search-init 
recursivcly descends the tree and locates the leaf node 
which spatially contains the query key. A list of 
pointers to the non-terminal nodes that were traversed 
during the descent is then stored in the seed (we call 
this the recursion trace). 

Search-next can now use the information in the 
seed to locate the first nearest neighbor to the search- 
key. The Euclidean distance is computed between the 
query key and each of the records contained in the 
leaf node pointed to by the head of the recursion 
trace. The pointers to the records become elements 
of a queue which is ordered by distance to the query 
key. 

The record at the head of the queue is now a 
possible candidate for the nearest neighbor. In fact, 
the distance r from the query key to this record will 
serve as an upper bound for the distance to the 
actual nearest neighbor. Any subsequent candidate for 
nearest neighbor must lie within the hyper-sphere S, 
centered at the query key with radius r. If Sr is 
completely enclosed by the hyper-volume of the leaf 

node, then it is certain that the first record in the 
candidate queue must be the nearest neighbor (since 
all the records within the leaf have already been 
examined). If S~ is not contained entirely within the 
leaf node, then it is possible that a record closer than 
r may lie on the other side of one of the leaf node's 
bounding hyper-planes. 

To ensure finding the correct result the tree is 
ascended one level by removing an element from the 
head of the recursion trace stored in the seed. New 
candidate records are determined by rccursivcly 
descending the other child of the new non-terminal 
node. Howcver, it is only necessary to consider records 
contained in leaf nodes that spatially intersect S, 
(this is known as the bounds-overlap-ball testt5~). The 
distances between the new candidate records and the 
query key are computed and the records are then 
merged into the candidate queue. The first record of 
the queue is now the new best candidate for nearest 
neighbor and defines a new value of r. 

This process of ascending the tree and evaluating 
new candidate records is repeated until Sr (whose 
radius is monotonically decreasing as the process 
continues) is entirely enclosed by the space defined 

(defun search-next (seed &aux key queue trace) 
(setq key (get-seed-value seed KEY)) 
(setq queue (get-seed-value seed QUEUE)) 
(setq trace (get-seed-value seed TRACE)) 
(descend-tree key (current-node trace) (bounds-of-current-node trace)) 
; while there is more left on the recursion trace and either the queue 
; is empty or the ball is not within bounds 
(while (and (cdr trace) 

(or 
(not queue) 
(not (ball-withln-bounds key (current-node trace) 

(distance-to (car queue)))))) 
(setq trace (cdr trace)) ; pop the recursion trace 
(descend-tree key (other-child trace) (bounds-of-other-child trace))) 

(set-seed-value seed QUEUE (cdr queue)) 
(set-seed-value seed TRACE trace) 
(car queue)) 

; Returns t if all the records beneath this node have been evaluated. As the 

; recursion returns, this enables internal nodes on the examined-list to be 
combined. 

(defun descend-tree (key node bounds ~aux leftp rightp) 
(cond 

((on-examined-list node) t) 

((not (bounds-overlap-ball key bounds (distance-to (car queue)))) nil) 
((leafp node) (setq queue 

(merge queue (build-queue node key) 'order-rune)) 
(add-to-examined-list node) t) 

(t (setq leftp (descend-tree key (LEFT node) (bounds-of (LEFT node)))) 
(setq rightp (descend-tree key (RIGHT node) (bounds-of (RIGHT node)))) 
(cond ((and leftp rlghtp) 

(remove-from-examlned-llst (LEFT node) (RIGHT node)) 
(add-to-examined-list node) t))))) 

Fig. 3. Search-nextin FranzLisp. 
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Fig. 4. A typical nearest neighbor search. 

by the current non-terminal node. At this point, it is 
guaranteed that all the relevant records have been 
examined, and search-next can return the record at 
the head of the candidate queue. Before returning, 
search-next saves the remainder of the candidate 
queue in the seed. The value of r is also saved in the 
seed. 

On the next call to search-next, the search for the 
next nearest neighbor can proceed in a similar fashion. 
The first element in the candidate queue is now the 
current best candidate for the next nearest neighbor 
and defines a new hyper-sphere S,, of radius r' (which 
by definition is at least as large as S,). The current sub- 
tree is recursively descended to locate new candidate 
records contained in leaves which intersect S,, but 

not St. To make this process efficient, a list is 
maintained in the seed (the examined list) of all sub- 
trees whose records have been completely exhausted. 
The examined list thus enables the recursive descent 
to avoid redescending sub-trees that cannot contri- 
bute new records to the candidate list. 

Once again, as before, the process of ascending the 
tree and obtaining new candidate records is then 
repeated until S,, is entirely contained within the 
space defined by the current non-terminal node. 

Figure 3 presents a fragment of FranzLisp code that 
implements the algorithm described in this section. A 
complete listing of the FranzLisp code for all the 
algorithms mentioned in this paper is available by 
writing to the author. 
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Fig. 5. The test data set. 

3.4. An example 

Figures 4(a)-4(c) illustrate the search algorithm on 
a simple two-dimensional example. Figure 4(a) shows 
a k-d tree with a bucket size of 1 for a collection of 
16 records. The query point location is labeled a. The 
algorithm begins by descending the tree and locating 
the leaf node which spatially contains the query point. 
Figure 4(b) shows that the distance has now been 
computed from the query point a to the record labeled 
b in the same leaf. Record b is now our best current 
candidate for the nearest neighbor to a. The tree is 
ascended and other branches of the tree are explored 
in order to locate the two other leaves that overlap 
the circle defined by the line from a to b (denoted by 
ab). In Fig. 4(c), the distances from a to the records c 
and d contained in those leaves are then computed. 
Since the length of ad is smaller than the length of 
ab, record d is our new candidate for nearest neighbor 
to a. In fact, we can return record d as the actual 
nearest neighbor since the circle defined by ad does 

not overlap any as yet unexamined leaves. Records b 
and c are saved on the candidate queue. 

On the next call to search-next record b would be 
returned since the circle defined by ab also does not 
overlap any as yet unexamined leaves. However, on 
the third call to search-next, the circle defined by ac 
does overlap several unexamined leaves. As before, 
the distances to the records contained in those leaves 
will have to be computed before the next nearest 
neighbor can be determined. 

3.5. Performance improvement 

For each call to search-next, the additional leaf 
nodes that are ovelapped by S,, have to be located. 
Some of these leaf nodes will be children of sub-trees 
that have already been partially explored. As a result 
some non-terminal nodes will have the bounds-over- 
lap-ball test applied to them many times (possibly as 
many times as there are leaves beneath the node). 
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However, for a particular call to search-next no non- 
terminal node is tested more than once. This suggests 
that the performance of the algorithm will be 
improved if the number of repeated visits to non- 
terminal nodes can be reduced. 2.5- 

This can be achieved by modifying search-next to 
"look ahead" for the next i nearest neighbors rather 
than just the next 1 nearest neighbor. The first time 
search-next is called, a candidate queue is built using 2- 
a hypersphere whose radius is determined by the 
distance from the key to the ith entry in the queue. 
The tree is ascended, as described above, until the -~ t-- 

hypersphere is entirely enclosed by the current internal o 
node. We are then assured that the first i entries in ~ ~~1 
the candidate queue are the i nearest neighbors. 0~ r Search-next then returns the first element in the queue. E = I 

An entry in the seed allows search-next to keep >~ J 
track of how many valid nearest neighbors remain at _5 1~ 
the head of the queue. On subsequent calls to search- E 
next, if the valid entries in the queue have been -~ 
exhausted, then the above process is repeated to find 
the next i nearest neighbors. In any case, search-next o.s 
returns the first entry in the queue after decrementing 
the valid nearest neighbor counter. The effect of this 
simple modification is that the number of bounds- 
overlap-ball tests on non-terminal nodes is reduced 
by as much as a factor of 1/i. Another result of this 
"look-ahead" technique is that the computation time 
is greatly dominated by the non-redundant record- 
to-record distance computations. 

4. E M P I R I C A L  ANALYSIS  

Computer experiments were designed to measure 
and compare the performances of naive-search (for 
varying constant values of c) and search-next. For 
this experiment, the algorithm was coded in the C 
programming language and run on a Sun-3/180 under 
the SUN OS3.4. To obtain consistent results, both 
naive-search and search-next employ the identical 
underlying C code for k-d tree manipulation, access, 
interrogation, and distance computations. 

The synthetic test data set for these experiments 
consisted of 10,000 2-dimensional records. Each 
record was represented as a pair of double precision 
floating point values. The records were randomly 
drawn from a non-uniformly distributed population 
of 2-dimensional points. The distribution function was 
synthesized by the superposition of seven bivariate 
normal distributions. Figure 5 shows a graphical 
display of the 10,000 record data set, overlaid by the 
computed k-d tree. 

The CPU time used by the two algorithms was 
measured for numbers of nearest neighbors, m, rang- 
ing between 1 and 100, and for several different values 
of the naive-search's constant c. For each value of m, 
a group of 100 query keys was drawn from a uniform 
random distribution covering the space enclosing the 
test data set. 

The total amount of CPU time respectively used 
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Fig. 6. Experimental data for first 100 neighbors. 
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by naive-search and search-next to find the first 
through the ruth nearest neighbors was measured for 
each of the query keys. The CPU times for each 
group of queries were averaged to produce estimated 
expected CPU times for each value of m. Figure 6 
plots the results of these experiments, and dramatically 
demonstrates the increased performance of search- 
next. 

5. C O N C L U S I O N  

Two algorithms have been presented which perform 
incremental nearest neighbor search on records stored 
in a k-d tree. It is experimentally shown that an 
algorithm employing a simple state-preservation data 
structure can significantly outperform an algorithm 
constructed of calls to a non-incremental algorithm. 
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