
Pattern Recognition, Vol. 23, No. 1/2, pp. 171 178. 1990
Printed in Great Britain.

0031 3203/90 $3.00 + .00
Pergamon Press plc

Pattern Recognition Society

STRATEGIES FOR EFFICIENT INCREMENTAL NEAREST
NEIGHBOR SEARCH

ALAN J. BRODER*
The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102, U.S.A.

(Received 29 September 1988; received for publication 7 February 1989)

Abstract--Algorithms for determining the m nearest neighbors of a query point in k-dimensional space
can be inappropriate when m cannot be determined in advance. We recast the m nearest neighbor problem
into a problem of searching for the next nearest neighbor. Repeated invocations of an incremental
searching algorithm allow an arbitrary number of nearest neighbors to be determined. It is shown that
incremental search can be implemented as a sequence of invocations of a previously published non-
incremental algorithm. A new incremental search algorithm is then presented which finds the next nearest
neighbor more efficiently by eliminating redundant computations. Finally, the results of experimental
computer runs comparing the two approaches are presented.

Nearest neighbor classification Multi-dimensional searching
Computational geometry Algorithms

Search trees

1. INTRODUCTION

The need to determine the m nearest neighbors of a
query point from a collection of k-dimensional data
points arises in many diverse applications. Examples
of such applications include nonparametric clas-
sification and density estimation. Ill The use of "brute
force" to determine the m nearest neighbors (comput-
ing and ordering the distances between the query
point and all data points) can be prohibitive, especially
when considering the cost of thousands of queries on
data sets containing hundreds of thousands of data
points.

If the data points are approximately uniformly
distributed in k-space, a simple uniformly spaced k-
dimensional grid structure can yield excellent
results3 2) However, the measurement of natural or
man-made phenomena will tend to produce non-
uniform, highly clustered data. In such cases it is
desirable to use a data structure which can adaptively
partition the k-space, partitioning more finely in
areas of higher data point density. A variety of data
structures having this adaptive partitioning property
have been proposed, and an excellent survey can be
found in Ref. (3).

Bentley t4) introduced a multi-dimensional tree
structure, the k-d tree, which allows for the efficient
implementation of many types of associative queries.
Friedman et al. ~) presented an algorithm that per-
forms an m nearest neighbor search on a collection
of N points stored in a k-d tree with expected time
proportional to log N.

*Supported by MITRE Sponsored Research Project:
Spatial Data Base Technology.

For many applications, it may not be known a
priori how many of the nearest neighbors to a query
point will be needed. Rather, it may be more desirable
to incrementally perform a nearest neighbor search,
with each invocation of the search routine returning
the next nearest neighbor.

This paper describes two different strategies for
implementing incremental nearest neighbor search
algorithms on records stored in k-d trees. The first
strategy involves repeatedly invoking a non-incremen-
tal algorithm. Because of the significant amount of
redundant computation involved, this technique can
be highly inefficient.

The second strategy presented in this paper involves
a modified search algorithm along with auxiliary
data structures for preserving the search state. The
auxiliary data structure allows for an unlimited (sub-
ject only to memory constraints) number of searches
from different query points being conducted in paral-
lel.

2. k-d TREES

A k-d tree is a binary tree structure for storing
and performing operations on records containing k-
dimensional keys. Each key is a vector of k real or
integer values. The key thus specifies the record's
position in k-space.

The root of a k-d tree represents the infinite k-
dimensional space containing the collection of reco-
rds. Each node represents a sub-space containing a
subset of the collection of records. The two children
of a non-terminal node are obtained by partitioning
the node's sub-space into two parts by a hyper-plane
perpendicular to one of the k coordinate axes (the
discriminating axis). The position of the hyper-plane

171

172

• em •

f
• O • e •

ALAN J. BRODER

% • • • • •
• • • • e •

o • • o e e

• o

D

0 o

o t •

• e j q ~ •

f
• a o e m

• C .

• e •

m •

• • • 0 0 ° o

0 o •

• C . • ~ q) • • • •

• o o

.jm

• • • o j 0 •

o • •

f

n

r o l e o

Fig. 1. The construction of a k-d tree.

is chosen so that each of the children contains
approximately half of the parent's records. The dis-
criminating axis is determined by choosing the axis
along which the parent's records are most dispersed
(see Ref. (5) for a discussion of methods for measuring
the dispersion). Children that contain less than a
threshold number of records (the bucket size) become
the leaf nodes in the tree.

Figures l(a)-l(d) illustrate the steps in building a
k-d tree on a small 2-dimensional data set. The
root of the tree is represented by the box drawn
surrounding the record points in Fig. l(a). The left
and right children of the root are the smaller boxes
each surrounding half the records, as shown in Fig.

l(b). The remaining figures show successively deeper
levels of the tree represented in a similar fashion.

3. INCREMENTAL SEARCH

3.1. Nearest neighbor classification

Friedman et al.'s a l g o r i t h m S E A R C H (s) finds the
m nearest neighbors of a point from a collection of N

points stored in a k-d tree. The requirement that m

be specified in advance of the search can be very
restrictive in applications such as non-parametric
classification.

T o illustrate this, consider a collection of records

Incremental nearest neighbor search 173

whose keys are k element vectors in a k-dimensional
feature space. Further, assume that each of the records
has been assigned a label ~ i , from among I possible
labels. Given a new k element record, Rk, it is desired
to assign a label to Rk based in some way on the
labels already assigned to its nearest neighbors in k-
space. The m nearest neighbor ruld 11 assigns to Rk
the most frequently represented label from among
Rk's m nearest neighbors. Using SEARCH, all of Rk'S
m nearest neighbors will need to be retrieved to
determine the "winning" label. However, if the m
nearest neighbors could be retrieved one at a time
(ordered by distance from Rk), then it might be
possible to determine the "winning" label well before
m neighbors have been retrieved. Likewise, it is
possible that after the m nearest neighbors have
been retrieved using SEARCH, no single label has a
significant plurality. In this case, it may be desirable
to continue retrieving additional nearest neighbors
until a higher level of confidence is attained. SEARCH
is clearly inappropriate for this problem, since all
m + n nearest neighbors must be retrieved in order
to obtain the n additional nearest neighbors beyond
the already retrieved m nearest neighbors.

Ideally, we would like to treat the collection of N
records as if it were formed into a list, ordered by
distance from the query key. The nearest neighbor
search process would then consist of removing records
one at a time from the head of the list. However,
rather than construct and order the entire list, a
function can be defined which in conjunction with a
small amount of auxiliary storage effectively encodes
the fully ordered list. Thus, each time the function is
called, the next record in the implicit list is returned;
the auxiliary storage contains just enough information
so that the following record in the implicit list can be
identified on the next call. A function operating in
this way is known as a generator and the auxiliary
storage is known as the seed. (6"7) An initialization
function is used in conjunction with the generator,
the sole purpose of which is to initialize the seed data
structure before the generator is called the first time.

3.2. A naive algorithm

A generator naive-search which incrementally
returns the next nearest neighbor upon each invoc-
ation can be implemented using repeated calls to the
non-incremental algorithm SEARCH. To do this,
simply use SEARCH to compute an ordered list of
the first c nearest neighbors. Each call to naive-search
then returns the next record in the list. Each time the
list is exhausted, naive-search calls SEARCH again,
multiplying its parameter m (the number of neighbors
to find) by the same constant c.

Naive-search maintains no state information about
previous searches, and thus can be extremely
inefficient due to the many nearest-neighbor compu-
tations that are repeatedly performed. To illustrate
this, and without loss of generality, consider the case

where naive-search has been called n times to return
the first n nearest neighbors, where n is a power of c
(i.e. n = cl). Then the total number of nearest neigh-
bors which will have been retrieved by naive-search
through multiple calls to SEARCH is

n /I /1
/ 1 + c + - ~ + ~ + . . . + c. (1)

Note that when the user calls naive-search just one
more time to request the (n + 1)th nearest neighbor,
SEARCH must be called again to find the first
c i÷l neighbors (in addition to all those previously
computed)! Figure 2 illustrates the behavior of naive-
search by plotting (for c = 2) the total number of
records retrieved to incrementally find the nth nearest
neighbor.

The next section describes a much more efficient
algorithm which avoids all redundant nearest
neighbor calculations by preserving the search state
between invocations.

3.3. An efficient incremental search algorithm

We will now describe a time and space efficient
generator algorithm which performs incremental
nearest neighbor search. To that end we will need to
describe both the initialization function search-init
and the generator function search-next. As the devel-
opment proceeds we will also describe the contents
of the seed data structure.

The function of search-init is to initialize the seed
for a nearest neighbor search. Search-init is passed a
pointer to the k-d tree containing the collection of

300

250

-0 200 (D

(¢1 150
0 £)

100 -

50- /

o/ , - q

0 2'0 40 6~0 8TO I 00
of neGresf neighbors found

Fig. 2. Total number of records retrieved by naive-search to
incrementally find the nth nearest neighbor.

174 ALAN J. BRODER

records, and a pointer to a query key specifying a
location in k space. The pointers to the trec and to
the query key are stored in the seed. Search-init
recursivcly descends the tree and locates the leaf node
which spatially contains the query key. A list of
pointers to the non-terminal nodes that were traversed
during the descent is then stored in the seed (we call
this the recursion trace).

Search-next can now use the information in the
seed to locate the first nearest neighbor to the search-
key. The Euclidean distance is computed between the
query key and each of the records contained in the
leaf node pointed to by the head of the recursion
trace. The pointers to the records become elements
of a queue which is ordered by distance to the query
key.

The record at the head of the queue is now a
possible candidate for the nearest neighbor. In fact,
the distance r from the query key to this record will
serve as an upper bound for the distance to the
actual nearest neighbor. Any subsequent candidate for
nearest neighbor must lie within the hyper-sphere S,
centered at the query key with radius r. If Sr is
completely enclosed by the hyper-volume of the leaf

node, then it is certain that the first record in the
candidate queue must be the nearest neighbor (since
all the records within the leaf have already been
examined). If S~ is not contained entirely within the
leaf node, then it is possible that a record closer than
r may lie on the other side of one of the leaf node's
bounding hyper-planes.

To ensure finding the correct result the tree is
ascended one level by removing an element from the
head of the recursion trace stored in the seed. New
candidate records are determined by rccursivcly
descending the other child of the new non-terminal
node. Howcver, it is only necessary to consider records
contained in leaf nodes that spatially intersect S,
(this is known as the bounds-overlap-ball testt5~). The
distances between the new candidate records and the
query key are computed and the records are then
merged into the candidate queue. The first record of
the queue is now the new best candidate for nearest
neighbor and defines a new value of r.

This process of ascending the tree and evaluating
new candidate records is repeated until Sr (whose
radius is monotonically decreasing as the process
continues) is entirely enclosed by the space defined

(defun search-next (seed &aux key queue trace)
(setq key (get-seed-value seed KEY))
(setq queue (get-seed-value seed QUEUE))
(setq trace (get-seed-value seed TRACE))
(descend-tree key (current-node trace) (bounds-of-current-node trace))
; while there is more left on the recursion trace and either the queue
; is empty or the ball is not within bounds
(while (and (cdr trace)

(or
(not queue)
(not (ball-withln-bounds key (current-node trace)

(distance-to (car queue))))))
(setq trace (cdr trace)) ; pop the recursion trace
(descend-tree key (other-child trace) (bounds-of-other-child trace)))

(set-seed-value seed QUEUE (cdr queue))
(set-seed-value seed TRACE trace)
(car queue))

; Returns t if all the records beneath this node have been evaluated. As the

; recursion returns, this enables internal nodes on the examined-list to be
combined.

(defun descend-tree (key node bounds ~aux leftp rightp)
(cond

((on-examined-list node) t)

((not (bounds-overlap-ball key bounds (distance-to (car queue)))) nil)
((leafp node) (setq queue

(merge queue (build-queue node key) 'order-rune))
(add-to-examined-list node) t)

(t (setq leftp (descend-tree key (LEFT node) (bounds-of (LEFT node))))
(setq rightp (descend-tree key (RIGHT node) (bounds-of (RIGHT node))))
(cond ((and leftp rlghtp)

(remove-from-examlned-llst (LEFT node) (RIGHT node))
(add-to-examined-list node) t)))))

Fig. 3. Search-nextin FranzLisp.

Incremental nearest neighbor search 175

a

C

Fig. 4. A typical nearest neighbor search.

by the current non-terminal node. At this point, it is
guaranteed that all the relevant records have been
examined, and search-next can return the record at
the head of the candidate queue. Before returning,
search-next saves the remainder of the candidate
queue in the seed. The value of r is also saved in the
seed.

On the next call to search-next, the search for the
next nearest neighbor can proceed in a similar fashion.
The first element in the candidate queue is now the
current best candidate for the next nearest neighbor
and defines a new hyper-sphere S,, of radius r' (which
by definition is at least as large as S,). The current sub-
tree is recursively descended to locate new candidate
records contained in leaves which intersect S,, but

not St. To make this process efficient, a list is
maintained in the seed (the examined list) of all sub-
trees whose records have been completely exhausted.
The examined list thus enables the recursive descent
to avoid redescending sub-trees that cannot contri-
bute new records to the candidate list.

Once again, as before, the process of ascending the
tree and obtaining new candidate records is then
repeated until S,, is entirely contained within the
space defined by the current non-terminal node.

Figure 3 presents a fragment of FranzLisp code that
implements the algorithm described in this section. A
complete listing of the FranzLisp code for all the
algorithms mentioned in this paper is available by
writing to the author.

176 ALAN J. BRODER

Fig. 5. The test data set.

3.4. An example

Figures 4(a)-4(c) illustrate the search algorithm on
a simple two-dimensional example. Figure 4(a) shows
a k-d tree with a bucket size of 1 for a collection of
16 records. The query point location is labeled a. The
algorithm begins by descending the tree and locating
the leaf node which spatially contains the query point.
Figure 4(b) shows that the distance has now been
computed from the query point a to the record labeled
b in the same leaf. Record b is now our best current
candidate for the nearest neighbor to a. The tree is
ascended and other branches of the tree are explored
in order to locate the two other leaves that overlap
the circle defined by the line from a to b (denoted by
ab). In Fig. 4(c), the distances from a to the records c
and d contained in those leaves are then computed.
Since the length of ad is smaller than the length of
ab, record d is our new candidate for nearest neighbor
to a. In fact, we can return record d as the actual
nearest neighbor since the circle defined by ad does

not overlap any as yet unexamined leaves. Records b
and c are saved on the candidate queue.

On the next call to search-next record b would be
returned since the circle defined by ab also does not
overlap any as yet unexamined leaves. However, on
the third call to search-next, the circle defined by ac
does overlap several unexamined leaves. As before,
the distances to the records contained in those leaves
will have to be computed before the next nearest
neighbor can be determined.

3.5. Performance improvement

For each call to search-next, the additional leaf
nodes that are ovelapped by S,, have to be located.
Some of these leaf nodes will be children of sub-trees
that have already been partially explored. As a result
some non-terminal nodes will have the bounds-over-
lap-ball test applied to them many times (possibly as
many times as there are leaves beneath the node).

Incremental nearest neighbor search 177

However, for a particular call to search-next no non-
terminal node is tested more than once. This suggests
that the performance of the algorithm will be
improved if the number of repeated visits to non-
terminal nodes can be reduced. 2.5-

This can be achieved by modifying search-next to
"look ahead" for the next i nearest neighbors rather
than just the next 1 nearest neighbor. The first time
search-next is called, a candidate queue is built using 2-
a hypersphere whose radius is determined by the
distance from the key to the ith entry in the queue.
The tree is ascended, as described above, until the -~ t--

hypersphere is entirely enclosed by the current internal o
node. We are then assured that the first i entries in ~ ~~1
the candidate queue are the i nearest neighbors. 0~ r Search-next then returns the first element in the queue. E = I

An entry in the seed allows search-next to keep >~ J
track of how many valid nearest neighbors remain at _5 1~
the head of the queue. On subsequent calls to search- E
next, if the valid entries in the queue have been -~
exhausted, then the above process is repeated to find
the next i nearest neighbors. In any case, search-next o.s
returns the first entry in the queue after decrementing
the valid nearest neighbor counter. The effect of this
simple modification is that the number of bounds-
overlap-ball tests on non-terminal nodes is reduced
by as much as a factor of 1/i. Another result of this
"look-ahead" technique is that the computation time
is greatly dominated by the non-redundant record-
to-record distance computations.

4. E M P I R I C A L ANALYSIS

Computer experiments were designed to measure
and compare the performances of naive-search (for
varying constant values of c) and search-next. For
this experiment, the algorithm was coded in the C
programming language and run on a Sun-3/180 under
the SUN OS3.4. To obtain consistent results, both
naive-search and search-next employ the identical
underlying C code for k-d tree manipulation, access,
interrogation, and distance computations.

The synthetic test data set for these experiments
consisted of 10,000 2-dimensional records. Each
record was represented as a pair of double precision
floating point values. The records were randomly
drawn from a non-uniformly distributed population
of 2-dimensional points. The distribution function was
synthesized by the superposition of seven bivariate
normal distributions. Figure 5 shows a graphical
display of the 10,000 record data set, overlaid by the
computed k-d tree.

The CPU time used by the two algorithms was
measured for numbers of nearest neighbors, m, rang-
ing between 1 and 100, and for several different values
of the naive-search's constant c. For each value of m,
a group of 100 query keys was drawn from a uniform
random distribution covering the space enclosing the
test data set.

The total amount of CPU time respectively used

Legend
• sea rch -nex t , l o o k - a h e a d = 1~

n giva-s%orc, h..c_=.2

• na l ve -sea rch , c=4

n a~i v e - s.. ea .rc h ~ .c..=fl~

/ i.::J

_ , - , - ' . - ' , , , , . , . _ . , .

. -

0
0 2 0 4 0 6 0 8 0

of nearesf neighbors found

Fig. 6. Experimental data for first 100 neighbors.

7
100

by naive-search and search-next to find the first
through the ruth nearest neighbors was measured for
each of the query keys. The CPU times for each
group of queries were averaged to produce estimated
expected CPU times for each value of m. Figure 6
plots the results of these experiments, and dramatically
demonstrates the increased performance of search-
next.

5. C O N C L U S I O N

Two algorithms have been presented which perform
incremental nearest neighbor search on records stored
in a k-d tree. It is experimentally shown that an
algorithm employing a simple state-preservation data
structure can significantly outperform an algorithm
constructed of calls to a non-incremental algorithm.

R E F E R E N C E S

1. R. O. Duda and P. E. Hart, Pattern Classification and
Scene Analysis, Chapter 4. Wiley-lnterscience, New York
(1973).

2. L. J. Kitchen and M. Callahan, Optimal cell size for
efficient retrieval of sparse data by approximate 2d
position using a coarse spatial array, Proc. IEEE Comput.
Soc. Conf. Comput. Vision Pattern Recognition 357-361
(1986).

3. H. Samet, The quadtree and related hierarchical data
slructures, ACM Comput. Surv. 16, 187-260 (1984).

4. J. L. Bentley, Multidimensional binary search trees used

178 ALAN J. BRODER

for associative searching, Commun ACM 18, 509-517
(1975).

5. J. H. Friedman, J. L. Bentley and R. A. Finkel, An
algorithm for finding best matches in logarithmic expected
time, ACM Trans. math. Software 3, 209-226 (1977).

6. E. Charniak, C. K. Riesbeck and D. W. McDermott,
Artificial Intelligence Programming, pp. 136-138. Lawr-
ence Erlbaum, Hillsdale, NJ (1980).

7. W. Teitelman, Interlisp Reference Manual. Xerox Palo
Alto Research Center (1978).

About the Author--ALAN JAY BRODER received the B.S. degree, Cure Laude, with honors in Computer
Science from the University of Maryland, College Park in 1980. He received the M.S. degree in Computer
Science from Columbia University in 1982.

Mr Broder has been on the staff of Advanced Technology Systems, where he conducted research in the
areas of computer-assisted photogrammetry and advanced visual simulation systems. Subsequently, he
was on the research staff at CGR Medical Corporation where he investigated and developed techniques
for the compression, display, and interactive analysis of medical imagery.

Since 1984, Mr Broder has been with the MITRE Corporation, McLean VA, where he is currently
Lead Scientist in the Image Processing Technology Center. His research at MITRE has been primarily
in the areas of Hypermedia presentation systems, advanced workstation architectures, stochastic image
synthesis, and spatial data base technologies.

