From 8c09ebd309a4351c80879d6709efb19cafa26a36 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 18:05:46 +0100 Subject: [PATCH 1/2] Add simple example --- .github/workflows/jobflow.yml | 4 +- .github/workflows/pyiron.yml | 4 +- ...e.ipynb => jobflow_to_pyiron_base_qe.ipynb | 0 jobflow_to_pyiron_base_simple.ipynb | 1 + ...w.ipynb => pyiron_base_to_jobflow_qe.ipynb | 0 pyiron_base_to_jobflow_simple.ipynb | 447 ++++++++++++++++++ simple_workflow.py | 8 + universal_simple_to_jobflow.ipynb | 163 +++++++ universal_simple_to_pyiron_base.ipynb | 204 ++++++++ workflow_simple.json | 21 + 10 files changed, 850 insertions(+), 2 deletions(-) rename jobflow_to_pyiron_base.ipynb => jobflow_to_pyiron_base_qe.ipynb (100%) create mode 100644 jobflow_to_pyiron_base_simple.ipynb rename pyiron_base_to_jobflow.ipynb => pyiron_base_to_jobflow_qe.ipynb (100%) create mode 100644 pyiron_base_to_jobflow_simple.ipynb create mode 100644 simple_workflow.py create mode 100644 universal_simple_to_jobflow.ipynb create mode 100644 universal_simple_to_pyiron_base.ipynb create mode 100644 workflow_simple.json diff --git a/.github/workflows/jobflow.yml b/.github/workflows/jobflow.yml index 0889295..e6d8375 100644 --- a/.github/workflows/jobflow.yml +++ b/.github/workflows/jobflow.yml @@ -25,5 +25,7 @@ jobs: pip install -e python_workflow_definition conda install -c conda-forge jupyter papermill export ESPRESSO_PSEUDO=$(pwd)/espresso/pseudo + papermill universal_simple_to_jobflow.ipynb universal_simple_to_jobflow_out.ipynb -k "python3" + papermill jobflow_to_pyiron_base_simple.ipynb jobflow_to_pyiron_base_simple_out.ipynb -k "python3" papermill universal_qe_to_jobflow.ipynb universal_qe_to_jobflow_out.ipynb -k "python3" - papermill jobflow_to_pyiron_base.ipynb jobflow_to_pyiron_base_out.ipynb -k "python3" \ No newline at end of file + papermill jobflow_to_pyiron_base_qe.ipynb jobflow_to_pyiron_base_qe_out.ipynb -k "python3" \ No newline at end of file diff --git a/.github/workflows/pyiron.yml b/.github/workflows/pyiron.yml index dd8a8eb..7482a96 100644 --- a/.github/workflows/pyiron.yml +++ b/.github/workflows/pyiron.yml @@ -25,5 +25,7 @@ jobs: pip install -e python_workflow_definition conda install -c conda-forge jupyter papermill export ESPRESSO_PSEUDO=$(pwd)/espresso/pseudo + papermill universal_simple_to_pyiron_base.ipynb universal_simple_to_pyiron_base_out.ipynb -k "python3" + papermill pyiron_base_to_jobflow_simple.ipynb pyiron_base_to_jobflow_simple_out.ipynb -k "python3" papermill universal_qe_to_pyiron_base.ipynb universal_qe_to_pyiron_base_out.ipynb -k "python3" - papermill pyiron_base_to_jobflow.ipynb pyiron_base_to_jobflow_out.ipynb -k "python3" \ No newline at end of file + papermill pyiron_base_to_jobflow_qe.ipynb pyiron_base_to_jobflow_qe_out.ipynb -k "python3" \ No newline at end of file diff --git a/jobflow_to_pyiron_base.ipynb b/jobflow_to_pyiron_base_qe.ipynb similarity index 100% rename from jobflow_to_pyiron_base.ipynb rename to jobflow_to_pyiron_base_qe.ipynb diff --git a/jobflow_to_pyiron_base_simple.ipynb b/jobflow_to_pyiron_base_simple.ipynb new file mode 100644 index 0000000..3dd58b4 --- /dev/null +++ b/jobflow_to_pyiron_base_simple.ipynb @@ -0,0 +1 @@ +{"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.12.8","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":5,"nbformat":4,"cells":[{"id":"c9e32d6d-5a26-43b3-8455-fae305761a5d","cell_type":"code","source":"import numpy as np","metadata":{"trusted":true},"outputs":[],"execution_count":1},{"id":"000bbd4a-f53c-4eea-9d85-76f0aa2ca10b","cell_type":"code","source":"from jobflow import job, Flow","metadata":{"trusted":true},"outputs":[],"execution_count":2},{"id":"b4a78447-e87c-4fb4-8d17-d9a280eb7254","cell_type":"code","source":"from pyiron_base import Project","metadata":{"trusted":true},"outputs":[],"execution_count":3},{"id":"06c2bd9e-b2ac-4b88-9158-fa37331c3418","cell_type":"code","source":"from python_workflow_definition.jobflow import write_workflow_json","metadata":{"trusted":true},"outputs":[],"execution_count":4},{"id":"fb6dbdaa-8cab-48b2-8307-448003eca3f5","cell_type":"code","source":"from python_workflow_definition.pyiron_base import load_workflow_json","metadata":{"trusted":true},"outputs":[],"execution_count":5},{"id":"fb847d49-7bf9-4839-9b99-c116d1b0e9ee","cell_type":"code","source":"from simple_workflow import (\n add_x_and_y as _add_x_and_y, \n add_x_and_y_and_z as _add_x_and_y_and_z,\n)","metadata":{"trusted":true},"outputs":[],"execution_count":6},{"id":"07598344-0f75-433b-8902-bea21a42088c","cell_type":"code","source":"add_x_and_y = job(_add_x_and_y, data=[\"x\", \"y\", \"z\"])\nadd_x_and_y_and_z = job(_add_x_and_y_and_z)","metadata":{"trusted":true},"outputs":[],"execution_count":7},{"id":"ecef1ed5-a8d3-48c3-9e01-4a40e55c1153","cell_type":"code","source":"obj = add_x_and_y(x=1, y=2)","metadata":{"trusted":true},"outputs":[],"execution_count":8},{"id":"2b88a30a-e26b-4802-89b7-79ca08cc0af9","cell_type":"code","source":"w = add_x_and_y_and_z(x=obj.output.x, y=obj.output.y, z=obj.output.z)","metadata":{"trusted":true},"outputs":[],"execution_count":9},{"id":"a5e5ca63-2906-47c9-bac6-adebf8643cba","cell_type":"code","source":"flow = Flow([obj, w])","metadata":{"trusted":true},"outputs":[],"execution_count":10},{"id":"e464da97-16a1-4772-9a07-0a47f152781d","cell_type":"code","source":"write_workflow_json(flow=flow, file_name=\"workflow_jobflow.json\")","metadata":{"trusted":true},"outputs":[],"execution_count":11},{"id":"bca646b2-0a9a-4271-966a-e5903a8c9031","cell_type":"code","source":"!cat workflow_jobflow.json","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"{\"nodes\": {\"0\": \"simple_workflow.add_x_and_y\", \"1\": \"simple_workflow.add_x_and_y_and_z\", \"2\": 1, \"3\": 2}, \"edges\": [{\"target\": 0, \"targetHandle\": \"x\", \"source\": 2, \"sourceHandle\": null}, {\"target\": 0, \"targetHandle\": \"y\", \"source\": 3, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"x\", \"source\": 0, \"sourceHandle\": \"x\"}, {\"target\": 1, \"targetHandle\": \"y\", \"source\": 0, \"sourceHandle\": \"y\"}, {\"target\": 1, \"targetHandle\": \"z\", \"source\": 0, \"sourceHandle\": \"z\"}]}"}],"execution_count":12},{"id":"f45684a8-2613-415a-ab0a-5cb2bafaffea","cell_type":"code","source":"pr = Project(\"test\")\npr.remove_jobs(recursive=True, silently=True)","metadata":{"trusted":true},"outputs":[{"output_type":"display_data","data":{"text/plain":"0it [00:00, ?it/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"1dc9fa2d8f8044c8977e1ad0669596b5"}},"metadata":{}}],"execution_count":13},{"id":"8f2a621d-b533-4ddd-8bcd-c22db2f922ec","cell_type":"code","source":"delayed_object = load_workflow_json(project=pr, file_name=\"workflow_jobflow.json\")\ndelayed_object.draw()","metadata":{"trusted":true},"outputs":[{"output_type":"display_data","data":{"text/plain":"","image/svg+xml":"\n\n\n\n\ncreate_function_job_2c457c823cb47e0ef9ae0df5b2d1fb40\n\ncreate_function_job=<pyiron_base.project.delayed.DelayedObject object at 0x7e21ef5bc560>\n\n\n\nx_7bbe883cf8e84e98be86ef51b3b4b3f0\n\nx=<pyiron_base.project.delayed.DelayedObject object at 0x7e21ef56ffb0>\n\n\n\nx_7bbe883cf8e84e98be86ef51b3b4b3f0->create_function_job_2c457c823cb47e0ef9ae0df5b2d1fb40\n\n\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce\n\nx=1\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->x_7bbe883cf8e84e98be86ef51b3b4b3f0\n\n\n\n\n\ny_8ac62ebe82912d404811d7b4f684816a\n\ny=<pyiron_base.project.delayed.DelayedObject object at 0x7e21ef5bc200>\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->y_8ac62ebe82912d404811d7b4f684816a\n\n\n\n\n\nz_5e7b48ebebaa407e4bfec5ab40e64557\n\nz=<pyiron_base.project.delayed.DelayedObject object at 0x7e21ef5bc170>\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->z_5e7b48ebebaa407e4bfec5ab40e64557\n\n\n\n\n\ny_8ac62ebe82912d404811d7b4f684816a->create_function_job_2c457c823cb47e0ef9ae0df5b2d1fb40\n\n\n\n\n\nz_5e7b48ebebaa407e4bfec5ab40e64557->create_function_job_2c457c823cb47e0ef9ae0df5b2d1fb40\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6\n\ny=2\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->x_7bbe883cf8e84e98be86ef51b3b4b3f0\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->y_8ac62ebe82912d404811d7b4f684816a\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->z_5e7b48ebebaa407e4bfec5ab40e64557\n\n\n\n\n"},"metadata":{}}],"execution_count":14},{"id":"cf80267d-c2b0-4236-bf1d-a57596985fc1","cell_type":"code","source":"delayed_object.pull()","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"The job add_x_and_y_68901482a2c5221cc845f828aabebd27 was saved and received the ID: 1\nThe job add_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8d was saved and received the ID: 2\n"},{"execution_count":15,"output_type":"execute_result","data":{"text/plain":"6"},"metadata":{}}],"execution_count":15}]} \ No newline at end of file diff --git a/pyiron_base_to_jobflow.ipynb b/pyiron_base_to_jobflow_qe.ipynb similarity index 100% rename from pyiron_base_to_jobflow.ipynb rename to pyiron_base_to_jobflow_qe.ipynb diff --git a/pyiron_base_to_jobflow_simple.ipynb b/pyiron_base_to_jobflow_simple.ipynb new file mode 100644 index 0000000..3b9760c --- /dev/null +++ b/pyiron_base_to_jobflow_simple.ipynb @@ -0,0 +1,447 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "28d69730-d8cb-4174-ae3f-aa70da8a8108", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "cacaa0a8-27c8-44de-9e37-69cd3d13408b", + "metadata": {}, + "outputs": [], + "source": [ + "from jobflow.managers.local import run_locally" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "78ca455d-d0b8-4814-81fa-6039f6adb4c4", + "metadata": {}, + "outputs": [], + "source": [ + "from python_workflow_definition.jobflow import load_workflow_json" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "14d87342-706e-4120-99e6-b5363f724601", + "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_base import Project, job" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a2ed2608-9e1b-4a81-81cb-5079573ea2d1", + "metadata": {}, + "outputs": [], + "source": [ + "from python_workflow_definition.pyiron_base import write_workflow_json" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "444347b0-d5ba-4903-b8d4-a9d7fc35d268", + "metadata": {}, + "outputs": [], + "source": [ + "from python_workflow_definition.jobflow import load_workflow_json" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b75c2530-9b89-4185-838f-a17e517fa68f", + "metadata": {}, + "outputs": [], + "source": [ + "from simple_workflow import (\n", + " add_x_and_y as _add_x_and_y, \n", + " add_x_and_y_and_z as _add_x_and_y_and_z,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "208ddfb8-dfda-4227-aa1f-3dc29e34ea82", + "metadata": {}, + "outputs": [], + "source": [ + "add_x_and_y = job(_add_x_and_y, output_key_lst=[\"x\", \"y\", \"z\"])\n", + "add_x_and_y_and_z = job(_add_x_and_y_and_z)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "13debfcd-362d-4fd0-a91f-5ab33632fceb", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "608ee4a6ac244e54b0967a29532bb2c3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pr = Project(\"test\")\n", + "pr.remove_jobs(recursive=True, silently=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "1f1cb12f-4001-478d-8ea0-b369f4f2981a", + "metadata": {}, + "outputs": [], + "source": [ + "obj = add_x_and_y(x=1, y=2, pyiron_project=pr)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4140f07b-af54-41ef-be22-df6b5b53bf95", + "metadata": {}, + "outputs": [], + "source": [ + "w = add_x_and_y_and_z(x=obj.output.x, y=obj.output.y, z=obj.output.z, pyiron_project=pr)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "52646121-335f-48e6-bd5e-a1d69d00e8bc", + "metadata": {}, + "outputs": [], + "source": [ + "write_workflow_json(delayed_object=w, file_name=\"workflow_pyiron.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "72c8e6e6-8e60-4a4f-81f3-968b4b5f36ee", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"nodes\": {\"0\": \"quantum_espresso_workflow.plot_energy_volume_curve\", \"1\": \"python_workflow_definition.pyiron_base.get_list\", \"2\": \"quantum_espresso_workflow.calculate_qe\", \"3\": \"python_workflow_definition.pyiron_base.get_dict\", \"4\": \"quantum_espresso_workflow.generate_structures\", \"5\": \"quantum_espresso_workflow.calculate_qe\", \"6\": \"python_workflow_definition.pyiron_base.get_dict\", \"7\": \"quantum_espresso_workflow.get_bulk_structure\", \"8\": \"quantum_espresso_workflow.calculate_qe\", \"9\": \"python_workflow_definition.pyiron_base.get_dict\", \"10\": \"quantum_espresso_workflow.calculate_qe\", \"11\": \"python_workflow_definition.pyiron_base.get_dict\", \"12\": \"quantum_espresso_workflow.calculate_qe\", \"13\": \"python_workflow_definition.pyiron_base.get_dict\", \"14\": \"quantum_espresso_workflow.calculate_qe\", \"15\": \"python_workflow_definition.pyiron_base.get_dict\", \"16\": \"python_workflow_definition.pyiron_base.get_list\", \"17\": \"strain_0\", \"18\": \"mini\", \"19\": \"Al\", \"20\": 4.05, \"21\": true, \"22\": {\"Al\": \"Al.pbe-n-kjpaw_psl.1.0.0.UPF\"}, \"23\": [3, 3, 3], \"24\": \"vc-relax\", \"25\": 0.02, \"26\": [0.9, 0.9500000000000001, 1.0, 1.05, 1.1], \"27\": \"scf\", \"28\": \"strain_1\", \"29\": \"strain_2\", \"30\": \"strain_3\", \"31\": \"strain_4\"}, \"edges\": [{\"target\": 0, \"targetHandle\": \"volume_lst\", \"source\": 1, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"0\", \"source\": 2, \"sourceHandle\": \"volume\"}, {\"target\": 2, \"targetHandle\": \"working_directory\", \"source\": 17, \"sourceHandle\": null}, {\"target\": 2, \"targetHandle\": \"input_dict\", \"source\": 3, \"sourceHandle\": null}, {\"target\": 3, \"targetHandle\": \"structure\", \"source\": 4, \"sourceHandle\": 0}, {\"target\": 4, \"targetHandle\": \"structure\", \"source\": 5, \"sourceHandle\": \"structure\"}, {\"target\": 5, \"targetHandle\": \"working_directory\", \"source\": 18, \"sourceHandle\": null}, {\"target\": 5, \"targetHandle\": \"input_dict\", \"source\": 6, \"sourceHandle\": null}, {\"target\": 6, \"targetHandle\": \"structure\", \"source\": 7, \"sourceHandle\": null}, {\"target\": 7, \"targetHandle\": \"name\", \"source\": 19, \"sourceHandle\": null}, {\"target\": 7, \"targetHandle\": \"a\", \"source\": 20, \"sourceHandle\": null}, {\"target\": 7, \"targetHandle\": \"cubic\", \"source\": 21, \"sourceHandle\": null}, {\"target\": 6, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 6, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 6, \"targetHandle\": \"calculation\", \"source\": 24, \"sourceHandle\": null}, {\"target\": 6, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 4, \"targetHandle\": \"strain_lst\", \"source\": 26, \"sourceHandle\": null}, {\"target\": 3, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 3, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 3, \"targetHandle\": \"calculation\", \"source\": 27, \"sourceHandle\": null}, {\"target\": 3, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"1\", \"source\": 8, \"sourceHandle\": \"volume\"}, {\"target\": 8, \"targetHandle\": \"working_directory\", \"source\": 28, \"sourceHandle\": null}, {\"target\": 8, \"targetHandle\": \"input_dict\", \"source\": 9, \"sourceHandle\": null}, {\"target\": 9, \"targetHandle\": \"structure\", \"source\": 4, \"sourceHandle\": 1}, {\"target\": 9, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 9, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 9, \"targetHandle\": \"calculation\", \"source\": 27, \"sourceHandle\": null}, {\"target\": 9, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"2\", \"source\": 10, \"sourceHandle\": \"volume\"}, {\"target\": 10, \"targetHandle\": \"working_directory\", \"source\": 29, \"sourceHandle\": null}, {\"target\": 10, \"targetHandle\": \"input_dict\", \"source\": 11, \"sourceHandle\": null}, {\"target\": 11, \"targetHandle\": \"structure\", \"source\": 4, \"sourceHandle\": 2}, {\"target\": 11, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 11, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 11, \"targetHandle\": \"calculation\", \"source\": 27, \"sourceHandle\": null}, {\"target\": 11, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"3\", \"source\": 12, \"sourceHandle\": \"volume\"}, {\"target\": 12, \"targetHandle\": \"working_directory\", \"source\": 30, \"sourceHandle\": null}, {\"target\": 12, \"targetHandle\": \"input_dict\", \"source\": 13, \"sourceHandle\": null}, {\"target\": 13, \"targetHandle\": \"structure\", \"source\": 4, \"sourceHandle\": 3}, {\"target\": 13, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 13, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 13, \"targetHandle\": \"calculation\", \"source\": 27, \"sourceHandle\": null}, {\"target\": 13, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 1, \"targetHandle\": \"4\", \"source\": 14, \"sourceHandle\": \"volume\"}, {\"target\": 14, \"targetHandle\": \"working_directory\", \"source\": 31, \"sourceHandle\": null}, {\"target\": 14, \"targetHandle\": \"input_dict\", \"source\": 15, \"sourceHandle\": null}, {\"target\": 15, \"targetHandle\": \"structure\", \"source\": 4, \"sourceHandle\": 4}, {\"target\": 15, \"targetHandle\": \"pseudopotentials\", \"source\": 22, \"sourceHandle\": null}, {\"target\": 15, \"targetHandle\": \"kpts\", \"source\": 23, \"sourceHandle\": null}, {\"target\": 15, \"targetHandle\": \"calculation\", \"source\": 27, \"sourceHandle\": null}, {\"target\": 15, \"targetHandle\": \"smearing\", \"source\": 25, \"sourceHandle\": null}, {\"target\": 0, \"targetHandle\": \"energy_lst\", \"source\": 16, \"sourceHandle\": null}, {\"target\": 16, \"targetHandle\": \"0\", \"source\": 2, \"sourceHandle\": \"energy\"}, {\"target\": 16, \"targetHandle\": \"1\", \"source\": 8, \"sourceHandle\": \"energy\"}, {\"target\": 16, \"targetHandle\": \"2\", \"source\": 10, \"sourceHandle\": \"energy\"}, {\"target\": 16, \"targetHandle\": \"3\", \"source\": 12, \"sourceHandle\": \"energy\"}, {\"target\": 16, \"targetHandle\": \"4\", \"source\": 14, \"sourceHandle\": \"energy\"}]}" + ] + } + ], + "source": [ + "!cat workflow_pyiron.json" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "32fcd4b2-4f0a-442d-b098-827672823796", + "metadata": {}, + "outputs": [], + "source": [ + "flow = load_workflow_json(file_name=\"workflow_pyiron.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a80b59bd-fe30-49c6-92ca-35ef2d77a6fb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:38:56,039 INFO Started executing jobs locally\n", + "2025-03-10 16:38:56,147 INFO Starting job - get_bulk_structure (d225b216-cf8b-4284-b487-8132a379ce7a)\n", + "2025-03-10 16:38:56,149 INFO Finished job - get_bulk_structure (d225b216-cf8b-4284-b487-8132a379ce7a)\n", + "2025-03-10 16:38:56,150 INFO Starting job - get_dict (f5459e80-71f4-4d38-8854-f242a3247074)\n", + "2025-03-10 16:38:56,152 INFO Finished job - get_dict (f5459e80-71f4-4d38-8854-f242a3247074)\n", + "2025-03-10 16:38:56,152 INFO Starting job - calculate_qe (665ff236-0eb5-4367-a5ed-082534d29d1a)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00187] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n", + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:39:49,114 INFO Finished job - calculate_qe (665ff236-0eb5-4367-a5ed-082534d29d1a)\n", + "2025-03-10 16:39:49,115 INFO Starting job - generate_structures (01571f0f-f408-45d0-8423-595fc90526ff)\n", + "2025-03-10 16:39:49,119 INFO Finished job - generate_structures (01571f0f-f408-45d0-8423-595fc90526ff)\n", + "2025-03-10 16:39:49,121 INFO Starting job - get_dict (a878e866-8470-4879-b575-7e24a3c95fdd)\n", + "2025-03-10 16:39:49,129 INFO Finished job - get_dict (a878e866-8470-4879-b575-7e24a3c95fdd)\n", + "2025-03-10 16:39:49,130 INFO Starting job - get_dict (25c17a94-9fb0-4d08-9921-92788a44afd6)\n", + "2025-03-10 16:39:49,132 INFO Finished job - get_dict (25c17a94-9fb0-4d08-9921-92788a44afd6)\n", + "2025-03-10 16:39:49,132 INFO Starting job - get_dict (f7e36155-7aeb-4524-b457-f123a2d6f729)\n", + "2025-03-10 16:39:49,135 INFO Finished job - get_dict (f7e36155-7aeb-4524-b457-f123a2d6f729)\n", + "2025-03-10 16:39:49,135 INFO Starting job - get_dict (ed33e685-d3d5-4ac0-9d7c-8165cc74bea0)\n", + "2025-03-10 16:39:49,137 INFO Finished job - get_dict (ed33e685-d3d5-4ac0-9d7c-8165cc74bea0)\n", + "2025-03-10 16:39:49,138 INFO Starting job - get_dict (e8691a64-1171-4a69-aac9-516a453683bd)\n", + "2025-03-10 16:39:49,140 INFO Finished job - get_dict (e8691a64-1171-4a69-aac9-516a453683bd)\n", + "2025-03-10 16:39:49,141 INFO Starting job - calculate_qe (91c3c740-fe89-4fab-b360-27cfaf21ce49)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00202] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:00,374 INFO Finished job - calculate_qe (91c3c740-fe89-4fab-b360-27cfaf21ce49)\n", + "2025-03-10 16:40:00,375 INFO Starting job - calculate_qe (f7eef1e1-8e2e-4777-89c2-9d55677fde93)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n", + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00213] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n", + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:11,977 INFO Finished job - calculate_qe (f7eef1e1-8e2e-4777-89c2-9d55677fde93)\n", + "2025-03-10 16:40:11,978 INFO Starting job - calculate_qe (c9993c95-b035-4e4c-ab8b-159d2d985d72)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00225] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:25,737 INFO Finished job - calculate_qe (c9993c95-b035-4e4c-ab8b-159d2d985d72)\n", + "2025-03-10 16:40:25,738 INFO Starting job - calculate_qe (3c82296d-31e6-44a8-880b-ad1cb239caa1)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n", + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00236] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:38,874 INFO Finished job - calculate_qe (3c82296d-31e6-44a8-880b-ad1cb239caa1)\n", + "2025-03-10 16:40:38,875 INFO Starting job - calculate_qe (b18a0c6c-3928-4346-996a-5792bd9b039b)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n", + "[jupyter-jan-janssen-pyt-flow-definition-qzxqmlze:00247] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:48,775 INFO Finished job - calculate_qe (b18a0c6c-3928-4346-996a-5792bd9b039b)\n", + "2025-03-10 16:40:48,776 INFO Starting job - get_list (0e734db9-f476-42bf-aaa4-3b23a68c8cde)\n", + "2025-03-10 16:40:48,780 INFO Finished job - get_list (0e734db9-f476-42bf-aaa4-3b23a68c8cde)\n", + "2025-03-10 16:40:48,781 INFO Starting job - get_list (8bf6a8a4-2ff8-4089-a8c1-cb2f6467fd96)\n", + "2025-03-10 16:40:48,783 INFO Finished job - get_list (8bf6a8a4-2ff8-4089-a8c1-cb2f6467fd96)\n", + "2025-03-10 16:40:48,784 INFO Starting job - plot_energy_volume_curve (3a85a837-d8bd-4f12-8b47-945345938fc6)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-10 16:40:48,863 INFO Finished job - plot_energy_volume_curve (3a85a837-d8bd-4f12-8b47-945345938fc6)\n", + "2025-03-10 16:40:48,864 INFO Finished executing jobs locally\n" + ] + }, + { + "data": { + "text/plain": [ + "{'d225b216-cf8b-4284-b487-8132a379ce7a': {1: Response(output={'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.025, 2.025],\n", + " [2.025, 0. , 2.025],\n", + " [2.025, 2.025, 0. ]]), 'cell': array([[4.05, 0. , 0. ],\n", + " [0. , 4.05, 0. ],\n", + " [0. , 0. , 4.05]]), 'pbc': array([ True, True, True])}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'f5459e80-71f4-4d38-8854-f242a3247074': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.025, 2.025], [2.025, 0.0, 2.025], [2.025, 2.025, 0.0]], 'cell': [[4.05, 0.0, 0.0], [0.0, 4.05, 0.0], [0.0, 0.0, 4.05]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '665ff236-0eb5-4367-a5ed-082534d29d1a': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.02281861, 2.02281861],\n", + " [2.02281861, 0. , 2.02281861],\n", + " [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n", + " [0. , 4.04563722, 0. ],\n", + " [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, 'energy': -1074.936526225356, 'volume': np.float64(66.21567448236688)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '01571f0f-f408-45d0-8423-595fc90526ff': {1: Response(output={'0': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 1.95300989, 1.95300989],\n", + " [1.95300989, 0. , 1.95300989],\n", + " [1.95300989, 1.95300989, 0. ]]), 'cell': array([[3.90601979, 0. , 0. ],\n", + " [0. , 3.90601979, 0. ],\n", + " [0. , 0. , 3.90601979]]), 'pbc': array([ True, True, True])}, '1': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 1.98852692, 1.98852692],\n", + " [1.98852692, 0. , 1.98852692],\n", + " [1.98852692, 1.98852692, 0. ]]), 'cell': array([[3.97705384, 0. , 0. ],\n", + " [0. , 3.97705384, 0. ],\n", + " [0. , 0. , 3.97705384]]), 'pbc': array([ True, True, True])}, '2': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.02281861, 2.02281861],\n", + " [2.02281861, 0. , 2.02281861],\n", + " [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n", + " [0. , 4.04563722, 0. ],\n", + " [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, '3': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.05598546, 2.05598546],\n", + " [2.05598546, 0. , 2.05598546],\n", + " [2.05598546, 2.05598546, 0. ]]), 'cell': array([[4.11197093, 0. , 0. ],\n", + " [0. , 4.11197093, 0. ],\n", + " [0. , 0. , 4.11197093]]), 'pbc': array([ True, True, True])}, '4': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.08811543, 2.08811543],\n", + " [2.08811543, 0. , 2.08811543],\n", + " [2.08811543, 2.08811543, 0. ]]), 'cell': array([[4.17623085, 0. , 0. ],\n", + " [0. , 4.17623085, 0. ],\n", + " [0. , 0. , 4.17623085]]), 'pbc': array([ True, True, True])}}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'a878e866-8470-4879-b575-7e24a3c95fdd': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.9885269221590678, 1.9885269221590678], [1.9885269221590678, 0.0, 1.9885269221590678], [1.9885269221590678, 1.9885269221590678, 0.0]], 'cell': [[3.9770538443181365, 0.0, 0.0], [0.0, 3.9770538443181365, 0.0], [0.0, 0.0, 3.9770538443181365]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '25c17a94-9fb0-4d08-9921-92788a44afd6': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0228186079734645, 2.0228186079734645], [2.0228186079734645, 0.0, 2.0228186079734645], [2.0228186079734645, 2.0228186079734645, 0.0]], 'cell': [[4.04563721594693, 0.0, 0.0], [0.0, 4.04563721594693, 0.0], [0.0, 0.0, 4.04563721594693]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'f7e36155-7aeb-4524-b457-f123a2d6f729': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0559854636415227, 2.0559854636415227], [2.0559854636415227, 0.0, 2.0559854636415227], [2.0559854636415227, 2.0559854636415227, 0.0]], 'cell': [[4.111970927283046, 0.0, 0.0], [0.0, 4.111970927283046, 0.0], [0.0, 0.0, 4.111970927283046]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'ed33e685-d3d5-4ac0-9d7c-8165cc74bea0': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.088115426186136, 2.088115426186136], [2.088115426186136, 0.0, 2.088115426186136], [2.088115426186136, 2.088115426186136, 0.0]], 'cell': [[4.176230852372273, 0.0, 0.0], [0.0, 4.176230852372273, 0.0], [0.0, 0.0, 4.176230852372273]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'e8691a64-1171-4a69-aac9-516a453683bd': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.9530098929811168, 1.9530098929811168], [1.9530098929811168, 0.0, 1.9530098929811168], [1.9530098929811168, 1.9530098929811168, 0.0]], 'cell': [[3.9060197859622345, 0.0, 0.0], [0.0, 3.9060197859622345, 0.0], [0.0, 0.0, 3.9060197859622345]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '91c3c740-fe89-4fab-b360-27cfaf21ce49': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 1.98852691, 1.98852691],\n", + " [1.98852691, 0. , 1.98852691],\n", + " [1.98852691, 1.98852691, 0. ]]), 'cell': array([[3.97705383, 0. , 0. ],\n", + " [0. , 3.97705383, 0. ],\n", + " [0. , 0. , 3.97705383]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9161488594582, 'volume': np.float64(62.90488993338882)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'f7eef1e1-8e2e-4777-89c2-9d55677fde93': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.0228186, 2.0228186],\n", + " [2.0228186, 0. , 2.0228186],\n", + " [2.0228186, 2.0228186, 0. ]]), 'cell': array([[4.0456372, 0. , 0. ],\n", + " [0. , 4.0456372, 0. ],\n", + " [0. , 0. , 4.0456372]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365241668331, 'volume': np.float64(66.21567361409329)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'c9993c95-b035-4e4c-ab8b-159d2d985d72': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.05598545, 2.05598545],\n", + " [2.05598545, 0. , 2.05598545],\n", + " [2.05598545, 2.05598545, 0. ]]), 'cell': array([[4.11197091, 0. , 0. ],\n", + " [0. , 4.11197091, 0. ],\n", + " [0. , 0. , 4.11197091]]), 'pbc': array([ True, True, True])}, 'energy': -1074.919286002585, 'volume': np.float64(69.52645729479822)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '3c82296d-31e6-44a8-880b-ad1cb239caa1': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 2.08811542, 2.08811542],\n", + " [2.08811542, 0. , 2.08811542],\n", + " [2.08811542, 2.08811542, 0. ]]), 'cell': array([[4.17623083, 0. , 0. ],\n", + " [0. , 4.17623083, 0. ],\n", + " [0. , 0. , 4.17623083]]), 'pbc': array([ True, True, True])}, 'energy': -1074.873790469342, 'volume': np.float64(72.83724097550255)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " 'b18a0c6c-3928-4346-996a-5792bd9b039b': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n", + " [0. , 1.95300988, 1.95300988],\n", + " [1.95300988, 0. , 1.95300988],\n", + " [1.95300988, 1.95300988, 0. ]]), 'cell': array([[3.90601977, 0. , 0. ],\n", + " [0. , 3.90601977, 0. ],\n", + " [0. , 0. , 3.90601977]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8457446150617, 'volume': np.float64(59.59410625268378)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '0e734db9-f476-42bf-aaa4-3b23a68c8cde': {1: Response(output=[-1074.8457446150617, -1074.9161488594582, -1074.9365241668331, -1074.919286002585, -1074.873790469342], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '8bf6a8a4-2ff8-4089-a8c1-cb2f6467fd96': {1: Response(output=[59.59410625268378, 62.90488993338882, 66.21567361409329, 69.52645729479822, 72.83724097550255], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n", + " '3a85a837-d8bd-4f12-8b47-945345938fc6': {1: Response(output=None, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))}}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "result = run_locally(flow)\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6a8d1a17-3698-4873-8937-616e9e7dc7ca", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/simple_workflow.py b/simple_workflow.py new file mode 100644 index 0000000..a686a81 --- /dev/null +++ b/simple_workflow.py @@ -0,0 +1,8 @@ +def add_x_and_y(x, y): + z = x + y + return {"x": x, "y": y, "z": z} + + +def add_x_and_y_and_z(x, y, z): + w = x + y + z + return w \ No newline at end of file diff --git a/universal_simple_to_jobflow.ipynb b/universal_simple_to_jobflow.ipynb new file mode 100644 index 0000000..c3a09a0 --- /dev/null +++ b/universal_simple_to_jobflow.ipynb @@ -0,0 +1,163 @@ +{ + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.12.8", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + } + }, + "nbformat_minor": 5, + "nbformat": 4, + "cells": [ + { + "id": "eab942d5-f3c5-47e9-8b3b-a7a5a8481aed", + "cell_type": "code", + "source": "from jobflow.managers.local import run_locally", + "metadata": { + "trusted": true + }, + "outputs": [], + "execution_count": 1 + }, + { + "id": "f6f83a43-4d91-4028-9661-a4700509be1b", + "cell_type": "code", + "source": "from python_workflow_definition.jobflow import load_workflow_json", + "metadata": { + "trusted": true + }, + "outputs": [], + "execution_count": 2 + }, + { + "id": "285ca46b-19e3-4870-9fd1-0c8ddbcf819c", + "cell_type": "code", + "source": "flow = load_workflow_json(file_name=\"workflow_simple.json\")", + "metadata": { + "trusted": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "0 {'name': 'Al', 'a': 4.05, 'cubic': True}\n13 {'structure': OutputReference(ace8829d-55a4-495b-8eda-3f198fdd3065), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}\n1 {'working_directory': 'mini', 'input_dict': OutputReference(a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)}\n2 {'structure': OutputReference(ce43667c-2190-4ffb-95f1-c59851f79410, .structure), 'strain_lst': [0.9, 0.95, 1.0, 1.05, 1.1]}\n20 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .0), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n23 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .1), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n25 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .2), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n27 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .3), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n29 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .4), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n3 {'working_directory': 'strain_0', 'input_dict': OutputReference(c0965326-daff-49de-b646-b02feb004e20)}\n4 {'working_directory': 'strain_1', 'input_dict': OutputReference(21fcb964-3358-49af-bf2e-2abc8ad96ad7)}\n5 {'working_directory': 'strain_2', 'input_dict': OutputReference(2b1ecec3-49ef-407b-9efd-0b24c6ee380c)}\n6 {'working_directory': 'strain_3', 'input_dict': OutputReference(999770bf-41dd-4993-ae26-c191f53d1af3)}\n7 {'working_directory': 'strain_4', 'input_dict': OutputReference(d3251d67-1ca2-4435-bdc6-3f8c52c26c71)}\n30 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .volume), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .volume), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .volume), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .volume), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .volume)}\n31 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .energy), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .energy), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .energy), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .energy), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .energy)}\n8 {'volume_lst': OutputReference(e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1), 'energy_lst': OutputReference(6e68cba7-a495-4c97-8f12-966e12082acc)}\n" + } + ], + "execution_count": 3 + }, + { + "id": "663ac4b3-dee8-474f-a9bc-089a89bde011", + "cell_type": "code", + "source": "result = run_locally(flow)\nresult", + "metadata": { + "trusted": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:05:03,677 INFO Started executing jobs locally\n2025-03-10 12:05:03,774 INFO Starting job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,776 INFO Finished job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,777 INFO Starting job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Finished job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Starting job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00168] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:05:54,551 INFO Finished job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n2025-03-10 12:05:54,553 INFO Starting job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,556 INFO Finished job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,557 INFO Starting job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,559 INFO Finished job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,560 INFO Starting job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Finished job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Starting job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,569 INFO Finished job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,570 INFO Starting job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Finished job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Starting job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,576 INFO Finished job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,577 INFO Starting job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00183] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:05,518 INFO Finished job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n2025-03-10 12:06:05,518 INFO Starting job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00194] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:17,223 INFO Finished job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n2025-03-10 12:06:17,224 INFO Starting job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00205] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:30,082 INFO Finished job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n2025-03-10 12:06:30,082 INFO Starting job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00216] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:43,619 INFO Finished job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n2025-03-10 12:06:43,621 INFO Starting job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00228] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:57,039 INFO Finished job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n2025-03-10 12:06:57,040 INFO Starting job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,043 INFO Finished job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,044 INFO Starting job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,047 INFO Finished job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,048 INFO Starting job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "2025-03-10 12:06:57,122 INFO Finished job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n2025-03-10 12:06:57,123 INFO Finished executing jobs locally\n" + }, + { + "execution_count": 4, + "output_type": "execute_result", + "data": { + "text/plain": "{'ace8829d-55a4-495b-8eda-3f198fdd3065': {1: Response(output={'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.025, 2.025],\n [2.025, 0. , 2.025],\n [2.025, 2.025, 0. ]]), 'cell': array([[4.05, 0. , 0. ],\n [0. , 4.05, 0. ],\n [0. , 0. , 4.05]]), 'pbc': array([ True, True, True])}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'a85d701c-f357-4cdc-a4b0-12dbd8d25a9e': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.025, 2.025], [2.025, 0.0, 2.025], [2.025, 2.025, 0.0]], 'cell': [[4.05, 0.0, 0.0], [0.0, 4.05, 0.0], [0.0, 0.0, 4.05]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ce43667c-2190-4ffb-95f1-c59851f79410': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365262253611, 'volume': np.float64(66.21567448236429)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'eed8f93d-3d87-41ee-891e-5c172d77fc95': {1: Response(output={'0': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300989, 1.95300989],\n [1.95300989, 0. , 1.95300989],\n [1.95300989, 1.95300989, 0. ]]), 'cell': array([[3.90601979, 0. , 0. ],\n [0. , 3.90601979, 0. ],\n [0. , 0. , 3.90601979]]), 'pbc': array([ True, True, True])}, '1': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852692, 1.98852692],\n [1.98852692, 0. , 1.98852692],\n [1.98852692, 1.98852692, 0. ]]), 'cell': array([[3.97705384, 0. , 0. ],\n [0. , 3.97705384, 0. ],\n [0. , 0. , 3.97705384]]), 'pbc': array([ True, True, True])}, '2': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, '3': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598546, 2.05598546],\n [2.05598546, 0. , 2.05598546],\n [2.05598546, 2.05598546, 0. ]]), 'cell': array([[4.11197093, 0. , 0. ],\n [0. , 4.11197093, 0. ],\n [0. , 0. , 4.11197093]]), 'pbc': array([ True, True, True])}, '4': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811543, 2.08811543],\n [2.08811543, 0. , 2.08811543],\n [2.08811543, 2.08811543, 0. ]]), 'cell': array([[4.17623085, 0. , 0. ],\n [0. , 4.17623085, 0. ],\n [0. , 0. , 4.17623085]]), 'pbc': array([ True, True, True])}}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'c0965326-daff-49de-b646-b02feb004e20': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.953009892981092, 1.953009892981092], [1.953009892981092, 0.0, 1.953009892981092], [1.953009892981092, 1.953009892981092, 0.0]], 'cell': [[3.906019785962185, 0.0, 0.0], [0.0, 3.906019785962185, 0.0], [0.0, 0.0, 3.906019785962185]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '21fcb964-3358-49af-bf2e-2abc8ad96ad7': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.9885269221590425, 1.9885269221590425], [1.9885269221590425, 0.0, 1.9885269221590425], [1.9885269221590425, 1.9885269221590425, 0.0]], 'cell': [[3.977053844318086, 0.0, 0.0], [0.0, 3.977053844318086, 0.0], [0.0, 0.0, 3.977053844318086]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '2b1ecec3-49ef-407b-9efd-0b24c6ee380c': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0228186079734387, 2.0228186079734387], [2.0228186079734387, 0.0, 2.0228186079734387], [2.0228186079734387, 2.0228186079734387, 0.0]], 'cell': [[4.045637215946878, 0.0, 0.0], [0.0, 4.045637215946878, 0.0], [0.0, 0.0, 4.045637215946878]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '999770bf-41dd-4993-ae26-c191f53d1af3': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0559854636414965, 2.0559854636414965], [2.0559854636414965, 0.0, 2.0559854636414965], [2.0559854636414965, 2.0559854636414965, 0.0]], 'cell': [[4.111970927282994, 0.0, 0.0], [0.0, 4.111970927282994, 0.0], [0.0, 0.0, 4.111970927282994]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd3251d67-1ca2-4435-bdc6-3f8c52c26c71': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0881154261861092, 2.0881154261861092], [2.0881154261861092, 0.0, 2.0881154261861092], [2.0881154261861092, 2.0881154261861092, 0.0]], 'cell': [[4.176230852372219, 0.0, 0.0], [0.0, 4.176230852372219, 0.0], [0.0, 0.0, 4.176230852372219]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300988, 1.95300988],\n [1.95300988, 0. , 1.95300988],\n [1.95300988, 1.95300988, 0. ]]), 'cell': array([[3.90601977, 0. , 0. ],\n [0. , 3.90601977, 0. ],\n [0. , 0. , 3.90601977]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8457446150655, 'volume': np.float64(59.594106252681506)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '4864e20e-c3a7-4999-98d4-548194964fa0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852691, 1.98852691],\n [1.98852691, 0. , 1.98852691],\n [1.98852691, 1.98852691, 0. ]]), 'cell': array([[3.97705383, 0. , 0. ],\n [0. , 3.97705383, 0. ],\n [0. , 0. , 3.97705383]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9161488594586, 'volume': np.float64(62.90488993338648)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '5d5a43ea-9a17-4164-84c7-9d8d53f404a0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.0228186, 2.0228186],\n [2.0228186, 0. , 2.0228186],\n [2.0228186, 2.0228186, 0. ]]), 'cell': array([[4.0456372, 0. , 0. ],\n [0. , 4.0456372, 0. ],\n [0. , 0. , 4.0456372]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365241668363, 'volume': np.float64(66.21567361409089)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd162726f-a5f1-4788-bdca-acd1cb35f01e': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598545, 2.05598545],\n [2.05598545, 0. , 2.05598545],\n [2.05598545, 2.05598545, 0. ]]), 'cell': array([[4.11197091, 0. , 0. ],\n [0. , 4.11197091, 0. ],\n [0. , 0. , 4.11197091]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9192860025807, 'volume': np.float64(69.52645729479514)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '87fa0240-178e-4cdc-b034-118d305096c6': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811542, 2.08811542],\n [2.08811542, 0. , 2.08811542],\n [2.08811542, 2.08811542, 0. ]]), 'cell': array([[4.17623083, 0. , 0. ],\n [0. , 4.17623083, 0. ],\n [0. , 0. , 4.17623083]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8737904693394, 'volume': np.float64(72.83724097549984)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1': {1: Response(output=[59.594106252681506, 62.90488993338648, 66.21567361409089, 69.52645729479514, 72.83724097549984], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '6e68cba7-a495-4c97-8f12-966e12082acc': {1: Response(output=[-1074.8457446150655, -1074.9161488594586, -1074.9365241668363, -1074.9192860025807, -1074.8737904693394], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'bbe7e050-8051-46c9-b930-ec6d82dabe76': {1: Response(output=None, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))}}" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII=" + }, + "metadata": {} + } + ], + "execution_count": 4 + } + ] +} diff --git a/universal_simple_to_pyiron_base.ipynb b/universal_simple_to_pyiron_base.ipynb new file mode 100644 index 0000000..a47681f --- /dev/null +++ b/universal_simple_to_pyiron_base.ipynb @@ -0,0 +1,204 @@ +{ + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.12.8", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + } + }, + "nbformat_minor": 5, + "nbformat": 4, + "cells": [ + { + "id": "4eb91f39-a8ea-4eb8-839f-076accfcf394", + "cell_type": "code", + "source": "from pyiron_base import Project", + "metadata": { + "trusted": true + }, + "outputs": [], + "execution_count": 1 + }, + { + "id": "8200fd07-13a3-49a8-892d-2a4d906fc778", + "cell_type": "code", + "source": "from python_workflow_definition.pyiron_base import load_workflow_json", + "metadata": { + "trusted": true + }, + "outputs": [], + "execution_count": 2 + }, + { + "id": "9907178d-8edd-478e-a6f7-f7ccd1c9441a", + "cell_type": "code", + "source": "pr = Project(\"test\")\npr.remove_jobs(recursive=True, silently=True)", + "metadata": { + "trusted": true + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "0it [00:00, ?it/s]", + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "bd070a78bbf5494ab7b897a398fed5e4" + } + }, + "metadata": {} + } + ], + "execution_count": 3 + }, + { + "id": "0c393ada-0eb9-4627-9f3a-25afdd30545e", + "cell_type": "code", + "source": [ + "delayed_object = load_workflow_json(project=pr, file_name=\"workflow_simple.json\")\n", + "delayed_object.draw()" + ], + "metadata": { + "trusted": true + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "", + "image/svg+xml": "\n\n\n\n\ncreate_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\ncreate_function_job=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159b20>\n\n\n\nvolume_lst_74a33bbe8538871b072f8e4324ac7b85\n\nvolume_lst=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1597c0>\n\n\n\nvolume_lst_74a33bbe8538871b072f8e4324ac7b85->create_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\n\n\n\n\n0_27d3db7d59eb1a48e0f492de59dadec3\n\n0=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159190>\n\n\n\n0_27d3db7d59eb1a48e0f492de59dadec3->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add\n\nworking_directory=strain_0\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add->0_27d3db7d59eb1a48e0f492de59dadec3\n\n\n\n\n\n0_ce9337dde2aa0891165a1485e5796f51\n\n0=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158d70>\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add->0_ce9337dde2aa0891165a1485e5796f51\n\n\n\n\n\nenergy_lst_e1bd60be583a391653a59a793309896d\n\nenergy_lst=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159670>\n\n\n\n0_ce9337dde2aa0891165a1485e5796f51->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd122d20>\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e->0_27d3db7d59eb1a48e0f492de59dadec3\n\n\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e->0_ce9337dde2aa0891165a1485e5796f51\n\n\n\n\n\nstructure_787d4ff452f2045ee21a7dd34d486d21\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158290>\n\n\n\nstructure_787d4ff452f2045ee21a7dd34d486d21->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123230>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_787d4ff452f2045ee21a7dd34d486d21\n\n\n\n\n\nstructure_013017a0fa01e903fecb7e4c4853e8e3\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123ef0>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_013017a0fa01e903fecb7e4c4853e8e3\n\n\n\n\n\nstructure_3516ab9ac6406876732e28b56f0974fb\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123bc0>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_3516ab9ac6406876732e28b56f0974fb\n\n\n\n\n\nstructure_eb1be1e641b6c02024da92cc1fb87816\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123890>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_eb1be1e641b6c02024da92cc1fb87816\n\n\n\n\n\nstructure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123560>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\n\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123c50>\n\n\n\nstructure_013017a0fa01e903fecb7e4c4853e8e3->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158c20>\n\n\n\nstructure_3516ab9ac6406876732e28b56f0974fb->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1588f0>\n\n\n\nstructure_eb1be1e641b6c02024da92cc1fb87816->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1585c0>\n\n\n\nstructure_0ebb88b277b3cc0c38ba5c6c0e339d72->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\nworking_directory_a17ade9a563d8dcadb655fb2e1c743a7\n\nworking_directory=mini\n\n\n\nworking_directory_a17ade9a563d8dcadb655fb2e1c743a7->structure_ddca652705a39f2caae3608a0f941948\n\n\n\n\n\ninput_dict_2662b1c341beb0518cc5d55d452c0b32\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd122f00>\n\n\n\ninput_dict_2662b1c341beb0518cc5d55d452c0b32->structure_ddca652705a39f2caae3608a0f941948\n\n\n\n\n\nstructure_0a1277654a3dd8a8029784b7359713fc\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd100320>\n\n\n\nstructure_0a1277654a3dd8a8029784b7359713fc->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nname_467734216d9bd2497ffd28d5cd6daba0\n\nname=Al\n\n\n\nname_467734216d9bd2497ffd28d5cd6daba0->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\na_aea0574e321c6f75f923c059730e9537\n\na=4.05\n\n\n\na_aea0574e321c6f75f923c059730e9537->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\ncubic_bad787c53fa02a5559fe570238fdb23a\n\ncubic=True\n\n\n\ncubic_bad787c53fa02a5559fe570238fdb23a->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10\n\npseudopotentials={'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\n1_0d132798d5ce6231eef2e49a1f6a1079\n\n1=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159160>\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb->1_0d132798d5ce6231eef2e49a1f6a1079\n\n\n\n\n\n1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n1=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158ad0>\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb->1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n\n\n\n\n2_fd2b845827bf18e6d21eb2142a18f5cb\n\n2=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158380>\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888->2_fd2b845827bf18e6d21eb2142a18f5cb\n\n\n\n\n\n2_5cad2bac7c5d540ce15c120747a6205e\n\n2=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158770>\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888->2_5cad2bac7c5d540ce15c120747a6205e\n\n\n\n\n\n3_0183a93cfcf0395de4d61f71f74fac1b\n\n3=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1592b0>\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa->3_0183a93cfcf0395de4d61f71f74fac1b\n\n\n\n\n\n3_5c9da80286167bb025d65eb396a25df0\n\n3=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158c50>\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa->3_5c9da80286167bb025d65eb396a25df0\n\n\n\n\n\n4_c8145c4182f92559d7334a2dd6d38449\n\n4=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1593a0>\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20->4_c8145c4182f92559d7334a2dd6d38449\n\n\n\n\n\n4_6656fd041c789dbf871c2abd343566fb\n\n4=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158920>\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20->4_6656fd041c789dbf871c2abd343566fb\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa\n\nkpts=[3, 3, 3]\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\ncalculation_77b75a01e65d83962d14fa8a882d6c34\n\ncalculation=vc-relax\n\n\n\ncalculation_77b75a01e65d83962d14fa8a882d6c34->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9\n\nsmearing=0.02\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781\n\nstrain_lst=[0.9, 0.95, 1.0, 1.05, 1.1]\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_787d4ff452f2045ee21a7dd34d486d21\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_013017a0fa01e903fecb7e4c4853e8e3\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_3516ab9ac6406876732e28b56f0974fb\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_eb1be1e641b6c02024da92cc1fb87816\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83\n\ncalculation=scf\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\n1_0d132798d5ce6231eef2e49a1f6a1079->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd\n\nworking_directory=strain_1\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd->1_0d132798d5ce6231eef2e49a1f6a1079\n\n\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd->1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n\n\n\n\n1_edfea7f93db4c3fa5913c3c1c8d6af5b->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n2_fd2b845827bf18e6d21eb2142a18f5cb->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992\n\nworking_directory=strain_2\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992->2_fd2b845827bf18e6d21eb2142a18f5cb\n\n\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992->2_5cad2bac7c5d540ce15c120747a6205e\n\n\n\n\n\n2_5cad2bac7c5d540ce15c120747a6205e->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n3_0183a93cfcf0395de4d61f71f74fac1b->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f\n\nworking_directory=strain_3\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f->3_0183a93cfcf0395de4d61f71f74fac1b\n\n\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f->3_5c9da80286167bb025d65eb396a25df0\n\n\n\n\n\n3_5c9da80286167bb025d65eb396a25df0->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n4_c8145c4182f92559d7334a2dd6d38449->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7\n\nworking_directory=strain_4\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7->4_c8145c4182f92559d7334a2dd6d38449\n\n\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7->4_6656fd041c789dbf871c2abd343566fb\n\n\n\n\n\n4_6656fd041c789dbf871c2abd343566fb->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\nenergy_lst_e1bd60be583a391653a59a793309896d->create_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\n\n\n\n" + }, + "metadata": {} + } + ], + "execution_count": 4 + }, + { + "id": "006f309a-d82c-457d-a77a-8771a72dc6d3", + "cell_type": "code", + "source": "delayed_object.pull()", + "metadata": { + "trusted": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_bulk_structure_40d4be995c851afca48e5650f5e2d787 was saved and received the ID: 1\nThe job get_dict_bccb1cf45d545b4187a57ac7e53a7f00 was saved and received the ID: 2\nThe job calculate_qe_1b41e67724a7f43d770185783035d160 was saved and received the ID: 3\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00189] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job generate_structures_4d1c642077aade979968c6a26b7282cb was saved and received the ID: 4\nThe job get_dict_dfd8d70c5af1189f6f78052595cf450e was saved and received the ID: 5\nThe job calculate_qe_e066a4b1a579b311063411694a31331c was saved and received the ID: 6\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00201] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_dict_11cd633613014ecf2108aa23f9897350 was saved and received the ID: 7\nThe job calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 was saved and received the ID: 8\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00211] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_dict_a511a057e39eaf356b98a7d1b1ecdf3f was saved and received the ID: 9\nThe job calculate_qe_0465c89bf510cf25374997a5fb1033b8 was saved and received the ID: 10\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00221] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_dict_10ab0c9e927741eb3948cb3a35cc90cc was saved and received the ID: 11\nThe job calculate_qe_96621a0614889d5a19b53c1e7f67b06e was saved and received the ID: 12\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00231] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_dict_17f50e68d128290a2119734cf04e045c was saved and received the ID: 13\nThe job calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 was saved and received the ID: 14\n" + }, + { + "name": "stderr", + "output_type": "stream", + "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00242] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" + }, + { + "name": "stdout", + "output_type": "stream", + "text": "The job get_list_c37b37b7f8c1f167f8fac22d85046d8b was saved and received the ID: 15\nThe job get_list_d1b58f3f2c80182ea50900bf545997b2 was saved and received the ID: 16\nThe job plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 was saved and received the ID: 17\n" + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII=" + }, + "metadata": {} + } + ], + "execution_count": 5 + }, + { + "id": "12a6e779-766b-442a-a800-8e4e91bc95d3", + "cell_type": "code", + "source": "pr.job_table()", + "metadata": { + "trusted": true + }, + "outputs": [ + { + "execution_count": 6, + "output_type": "execute_result", + "data": { + "text/plain": " id status chemicalformula \\\n0 1 finished None \n1 2 finished None \n2 3 finished None \n3 4 finished None \n4 5 finished None \n5 6 finished None \n6 7 finished None \n7 8 finished None \n8 9 finished None \n9 10 finished None \n10 11 finished None \n11 12 finished None \n12 13 finished None \n13 14 finished None \n14 15 finished None \n15 16 finished None \n16 17 finished None \n\n job \\\n0 get_bulk_structure_40d4be995c851afca48e5650f5e2d787 \n1 get_dict_bccb1cf45d545b4187a57ac7e53a7f00 \n2 calculate_qe_1b41e67724a7f43d770185783035d160 \n3 generate_structures_4d1c642077aade979968c6a26b7282cb \n4 get_dict_dfd8d70c5af1189f6f78052595cf450e \n5 calculate_qe_e066a4b1a579b311063411694a31331c \n6 get_dict_11cd633613014ecf2108aa23f9897350 \n7 calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 \n8 get_dict_a511a057e39eaf356b98a7d1b1ecdf3f \n9 calculate_qe_0465c89bf510cf25374997a5fb1033b8 \n10 get_dict_10ab0c9e927741eb3948cb3a35cc90cc \n11 calculate_qe_96621a0614889d5a19b53c1e7f67b06e \n12 get_dict_17f50e68d128290a2119734cf04e045c \n13 calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 \n14 get_list_c37b37b7f8c1f167f8fac22d85046d8b \n15 get_list_d1b58f3f2c80182ea50900bf545997b2 \n16 plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 \n\n subjob projectpath \\\n0 /get_bulk_structure_40d4be995c851afca48e5650f5e2d787 None \n1 /get_dict_bccb1cf45d545b4187a57ac7e53a7f00 None \n2 /calculate_qe_1b41e67724a7f43d770185783035d160 None \n3 /generate_structures_4d1c642077aade979968c6a26b7282cb None \n4 /get_dict_dfd8d70c5af1189f6f78052595cf450e None \n5 /calculate_qe_e066a4b1a579b311063411694a31331c None \n6 /get_dict_11cd633613014ecf2108aa23f9897350 None \n7 /calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 None \n8 /get_dict_a511a057e39eaf356b98a7d1b1ecdf3f None \n9 /calculate_qe_0465c89bf510cf25374997a5fb1033b8 None \n10 /get_dict_10ab0c9e927741eb3948cb3a35cc90cc None \n11 /calculate_qe_96621a0614889d5a19b53c1e7f67b06e None \n12 /get_dict_17f50e68d128290a2119734cf04e045c None \n13 /calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 None \n14 /get_list_c37b37b7f8c1f167f8fac22d85046d8b None \n15 /get_list_d1b58f3f2c80182ea50900bf545997b2 None \n16 /plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 None \n\n project timestart timestop totalcputime \\\n0 /home/jovyan/test/ 2025-03-10 11:52:12.028327 None None \n1 /home/jovyan/test/ 2025-03-10 11:52:12.124720 None None \n2 /home/jovyan/test/ 2025-03-10 11:52:12.237225 None None \n3 /home/jovyan/test/ 2025-03-10 11:53:07.023611 None None \n4 /home/jovyan/test/ 2025-03-10 11:53:07.158295 None None \n5 /home/jovyan/test/ 2025-03-10 11:53:07.266154 None None \n6 /home/jovyan/test/ 2025-03-10 11:53:17.308506 None None \n7 /home/jovyan/test/ 2025-03-10 11:53:17.397100 None None \n8 /home/jovyan/test/ 2025-03-10 11:53:28.561574 None None \n9 /home/jovyan/test/ 2025-03-10 11:53:28.650751 None None \n10 /home/jovyan/test/ 2025-03-10 11:53:40.508244 None None \n11 /home/jovyan/test/ 2025-03-10 11:53:40.598856 None None \n12 /home/jovyan/test/ 2025-03-10 11:53:54.557383 None None \n13 /home/jovyan/test/ 2025-03-10 11:53:54.800933 None None \n14 /home/jovyan/test/ 2025-03-10 11:54:09.777904 None None \n15 /home/jovyan/test/ 2025-03-10 11:54:10.088454 None None \n16 /home/jovyan/test/ 2025-03-10 11:54:10.273121 None None \n\n computer \\\n0 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n1 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n2 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n3 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n4 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n5 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n6 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n7 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n8 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n9 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n10 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n11 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n12 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n13 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n14 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n15 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n16 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n\n hamilton hamversion parentid masterid \n0 PythonFunctionContainerJob 0.4 None None \n1 PythonFunctionContainerJob 0.4 None None \n2 PythonFunctionContainerJob 0.4 None None \n3 PythonFunctionContainerJob 0.4 None None \n4 PythonFunctionContainerJob 0.4 None None \n5 PythonFunctionContainerJob 0.4 None None \n6 PythonFunctionContainerJob 0.4 None None \n7 PythonFunctionContainerJob 0.4 None None \n8 PythonFunctionContainerJob 0.4 None None \n9 PythonFunctionContainerJob 0.4 None None \n10 PythonFunctionContainerJob 0.4 None None \n11 PythonFunctionContainerJob 0.4 None None \n12 PythonFunctionContainerJob 0.4 None None \n13 PythonFunctionContainerJob 0.4 None None \n14 PythonFunctionContainerJob 0.4 None None \n15 PythonFunctionContainerJob 0.4 None None \n16 PythonFunctionContainerJob 0.4 None None ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
01finishedNoneget_bulk_structure_40d4be995c851afca48e5650f5e2d787/get_bulk_structure_40d4be995c851afca48e5650f5e2d787None/home/jovyan/test/2025-03-10 11:52:12.028327NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
12finishedNoneget_dict_bccb1cf45d545b4187a57ac7e53a7f00/get_dict_bccb1cf45d545b4187a57ac7e53a7f00None/home/jovyan/test/2025-03-10 11:52:12.124720NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
23finishedNonecalculate_qe_1b41e67724a7f43d770185783035d160/calculate_qe_1b41e67724a7f43d770185783035d160None/home/jovyan/test/2025-03-10 11:52:12.237225NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
34finishedNonegenerate_structures_4d1c642077aade979968c6a26b7282cb/generate_structures_4d1c642077aade979968c6a26b7282cbNone/home/jovyan/test/2025-03-10 11:53:07.023611NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
45finishedNoneget_dict_dfd8d70c5af1189f6f78052595cf450e/get_dict_dfd8d70c5af1189f6f78052595cf450eNone/home/jovyan/test/2025-03-10 11:53:07.158295NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
56finishedNonecalculate_qe_e066a4b1a579b311063411694a31331c/calculate_qe_e066a4b1a579b311063411694a31331cNone/home/jovyan/test/2025-03-10 11:53:07.266154NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
67finishedNoneget_dict_11cd633613014ecf2108aa23f9897350/get_dict_11cd633613014ecf2108aa23f9897350None/home/jovyan/test/2025-03-10 11:53:17.308506NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
78finishedNonecalculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674/calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674None/home/jovyan/test/2025-03-10 11:53:17.397100NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
89finishedNoneget_dict_a511a057e39eaf356b98a7d1b1ecdf3f/get_dict_a511a057e39eaf356b98a7d1b1ecdf3fNone/home/jovyan/test/2025-03-10 11:53:28.561574NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
910finishedNonecalculate_qe_0465c89bf510cf25374997a5fb1033b8/calculate_qe_0465c89bf510cf25374997a5fb1033b8None/home/jovyan/test/2025-03-10 11:53:28.650751NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1011finishedNoneget_dict_10ab0c9e927741eb3948cb3a35cc90cc/get_dict_10ab0c9e927741eb3948cb3a35cc90ccNone/home/jovyan/test/2025-03-10 11:53:40.508244NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1112finishedNonecalculate_qe_96621a0614889d5a19b53c1e7f67b06e/calculate_qe_96621a0614889d5a19b53c1e7f67b06eNone/home/jovyan/test/2025-03-10 11:53:40.598856NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1213finishedNoneget_dict_17f50e68d128290a2119734cf04e045c/get_dict_17f50e68d128290a2119734cf04e045cNone/home/jovyan/test/2025-03-10 11:53:54.557383NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1314finishedNonecalculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671/calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671None/home/jovyan/test/2025-03-10 11:53:54.800933NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1415finishedNoneget_list_c37b37b7f8c1f167f8fac22d85046d8b/get_list_c37b37b7f8c1f167f8fac22d85046d8bNone/home/jovyan/test/2025-03-10 11:54:09.777904NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1516finishedNoneget_list_d1b58f3f2c80182ea50900bf545997b2/get_list_d1b58f3f2c80182ea50900bf545997b2None/home/jovyan/test/2025-03-10 11:54:10.088454NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1617finishedNoneplot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137/plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137None/home/jovyan/test/2025-03-10 11:54:10.273121NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
\n
" + }, + "metadata": {} + } + ], + "execution_count": 6 + }, + { + "id": "e59d8cff-e204-4202-a204-692e4fb66997", + "cell_type": "code", + "source": "", + "metadata": { + "trusted": true + }, + "outputs": [], + "execution_count": null + } + ] +} diff --git a/workflow_simple.json b/workflow_simple.json new file mode 100644 index 0000000..1bde53d --- /dev/null +++ b/workflow_simple.json @@ -0,0 +1,21 @@ +{ + "nodes": { + "0": "simple_workflow.add_x_and_y_and_z", + "1": "simple_workflow.add_x_and_y", + "2": "simple_workflow.add_x_and_y", + "3": "simple_workflow.add_x_and_y", + "4": 1, + "5": 2 + }, + "edges": [ + {"target": 0, "targetHandle": "x", "source": 1, "sourceHandle": "x"}, + {"target": 1, "targetHandle": "x", "source": 4, "sourceHandle": null}, + {"target": 1, "targetHandle": "y", "source": 5, "sourceHandle": null}, + {"target": 0, "targetHandle": "y", "source": 2, "sourceHandle": "y"}, + {"target": 2, "targetHandle": "x", "source": 4, "sourceHandle": null}, + {"target": 2, "targetHandle": "y", "source": 5, "sourceHandle": null}, + {"target": 0, "targetHandle": "z", "source": 3, "sourceHandle": "z"}, + {"target": 3, "targetHandle": "x", "source": 4, "sourceHandle": null}, + {"target": 3, "targetHandle": "y", "source": 5, "sourceHandle": null} + ] +} \ No newline at end of file From 4ddbd5916e247ba0127822e25960459495b437c7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 18:09:15 +0100 Subject: [PATCH 2/2] update notebooks --- universal_simple_to_jobflow.ipynb | 164 +-------------------- universal_simple_to_pyiron_base.ipynb | 205 +------------------------- 2 files changed, 2 insertions(+), 367 deletions(-) diff --git a/universal_simple_to_jobflow.ipynb b/universal_simple_to_jobflow.ipynb index c3a09a0..16e508e 100644 --- a/universal_simple_to_jobflow.ipynb +++ b/universal_simple_to_jobflow.ipynb @@ -1,163 +1 @@ -{ - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.12.8", - "mimetype": "text/x-python", - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "pygments_lexer": "ipython3", - "nbconvert_exporter": "python", - "file_extension": ".py" - } - }, - "nbformat_minor": 5, - "nbformat": 4, - "cells": [ - { - "id": "eab942d5-f3c5-47e9-8b3b-a7a5a8481aed", - "cell_type": "code", - "source": "from jobflow.managers.local import run_locally", - "metadata": { - "trusted": true - }, - "outputs": [], - "execution_count": 1 - }, - { - "id": "f6f83a43-4d91-4028-9661-a4700509be1b", - "cell_type": "code", - "source": "from python_workflow_definition.jobflow import load_workflow_json", - "metadata": { - "trusted": true - }, - "outputs": [], - "execution_count": 2 - }, - { - "id": "285ca46b-19e3-4870-9fd1-0c8ddbcf819c", - "cell_type": "code", - "source": "flow = load_workflow_json(file_name=\"workflow_simple.json\")", - "metadata": { - "trusted": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "0 {'name': 'Al', 'a': 4.05, 'cubic': True}\n13 {'structure': OutputReference(ace8829d-55a4-495b-8eda-3f198fdd3065), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}\n1 {'working_directory': 'mini', 'input_dict': OutputReference(a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)}\n2 {'structure': OutputReference(ce43667c-2190-4ffb-95f1-c59851f79410, .structure), 'strain_lst': [0.9, 0.95, 1.0, 1.05, 1.1]}\n20 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .0), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n23 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .1), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n25 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .2), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n27 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .3), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n29 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .4), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n3 {'working_directory': 'strain_0', 'input_dict': OutputReference(c0965326-daff-49de-b646-b02feb004e20)}\n4 {'working_directory': 'strain_1', 'input_dict': OutputReference(21fcb964-3358-49af-bf2e-2abc8ad96ad7)}\n5 {'working_directory': 'strain_2', 'input_dict': OutputReference(2b1ecec3-49ef-407b-9efd-0b24c6ee380c)}\n6 {'working_directory': 'strain_3', 'input_dict': OutputReference(999770bf-41dd-4993-ae26-c191f53d1af3)}\n7 {'working_directory': 'strain_4', 'input_dict': OutputReference(d3251d67-1ca2-4435-bdc6-3f8c52c26c71)}\n30 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .volume), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .volume), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .volume), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .volume), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .volume)}\n31 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .energy), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .energy), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .energy), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .energy), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .energy)}\n8 {'volume_lst': OutputReference(e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1), 'energy_lst': OutputReference(6e68cba7-a495-4c97-8f12-966e12082acc)}\n" - } - ], - "execution_count": 3 - }, - { - "id": "663ac4b3-dee8-474f-a9bc-089a89bde011", - "cell_type": "code", - "source": "result = run_locally(flow)\nresult", - "metadata": { - "trusted": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:05:03,677 INFO Started executing jobs locally\n2025-03-10 12:05:03,774 INFO Starting job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,776 INFO Finished job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,777 INFO Starting job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Finished job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Starting job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00168] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:05:54,551 INFO Finished job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n2025-03-10 12:05:54,553 INFO Starting job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,556 INFO Finished job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,557 INFO Starting job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,559 INFO Finished job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,560 INFO Starting job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Finished job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Starting job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,569 INFO Finished job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,570 INFO Starting job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Finished job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Starting job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,576 INFO Finished job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,577 INFO Starting job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00183] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:05,518 INFO Finished job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n2025-03-10 12:06:05,518 INFO Starting job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00194] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:17,223 INFO Finished job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n2025-03-10 12:06:17,224 INFO Starting job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00205] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:30,082 INFO Finished job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n2025-03-10 12:06:30,082 INFO Starting job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00216] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:43,619 INFO Finished job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n2025-03-10 12:06:43,621 INFO Starting job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00228] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:57,039 INFO Finished job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n2025-03-10 12:06:57,040 INFO Starting job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,043 INFO Finished job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,044 INFO Starting job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,047 INFO Finished job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,048 INFO Starting job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "2025-03-10 12:06:57,122 INFO Finished job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n2025-03-10 12:06:57,123 INFO Finished executing jobs locally\n" - }, - { - "execution_count": 4, - "output_type": "execute_result", - "data": { - "text/plain": "{'ace8829d-55a4-495b-8eda-3f198fdd3065': {1: Response(output={'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.025, 2.025],\n [2.025, 0. , 2.025],\n [2.025, 2.025, 0. ]]), 'cell': array([[4.05, 0. , 0. ],\n [0. , 4.05, 0. ],\n [0. , 0. , 4.05]]), 'pbc': array([ True, True, True])}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'a85d701c-f357-4cdc-a4b0-12dbd8d25a9e': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.025, 2.025], [2.025, 0.0, 2.025], [2.025, 2.025, 0.0]], 'cell': [[4.05, 0.0, 0.0], [0.0, 4.05, 0.0], [0.0, 0.0, 4.05]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ce43667c-2190-4ffb-95f1-c59851f79410': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365262253611, 'volume': np.float64(66.21567448236429)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'eed8f93d-3d87-41ee-891e-5c172d77fc95': {1: Response(output={'0': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300989, 1.95300989],\n [1.95300989, 0. , 1.95300989],\n [1.95300989, 1.95300989, 0. ]]), 'cell': array([[3.90601979, 0. , 0. ],\n [0. , 3.90601979, 0. ],\n [0. , 0. , 3.90601979]]), 'pbc': array([ True, True, True])}, '1': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852692, 1.98852692],\n [1.98852692, 0. , 1.98852692],\n [1.98852692, 1.98852692, 0. ]]), 'cell': array([[3.97705384, 0. , 0. ],\n [0. , 3.97705384, 0. ],\n [0. , 0. , 3.97705384]]), 'pbc': array([ True, True, True])}, '2': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, '3': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598546, 2.05598546],\n [2.05598546, 0. , 2.05598546],\n [2.05598546, 2.05598546, 0. ]]), 'cell': array([[4.11197093, 0. , 0. ],\n [0. , 4.11197093, 0. ],\n [0. , 0. , 4.11197093]]), 'pbc': array([ True, True, True])}, '4': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811543, 2.08811543],\n [2.08811543, 0. , 2.08811543],\n [2.08811543, 2.08811543, 0. ]]), 'cell': array([[4.17623085, 0. , 0. ],\n [0. , 4.17623085, 0. ],\n [0. , 0. , 4.17623085]]), 'pbc': array([ True, True, True])}}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'c0965326-daff-49de-b646-b02feb004e20': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.953009892981092, 1.953009892981092], [1.953009892981092, 0.0, 1.953009892981092], [1.953009892981092, 1.953009892981092, 0.0]], 'cell': [[3.906019785962185, 0.0, 0.0], [0.0, 3.906019785962185, 0.0], [0.0, 0.0, 3.906019785962185]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '21fcb964-3358-49af-bf2e-2abc8ad96ad7': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.9885269221590425, 1.9885269221590425], [1.9885269221590425, 0.0, 1.9885269221590425], [1.9885269221590425, 1.9885269221590425, 0.0]], 'cell': [[3.977053844318086, 0.0, 0.0], [0.0, 3.977053844318086, 0.0], [0.0, 0.0, 3.977053844318086]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '2b1ecec3-49ef-407b-9efd-0b24c6ee380c': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0228186079734387, 2.0228186079734387], [2.0228186079734387, 0.0, 2.0228186079734387], [2.0228186079734387, 2.0228186079734387, 0.0]], 'cell': [[4.045637215946878, 0.0, 0.0], [0.0, 4.045637215946878, 0.0], [0.0, 0.0, 4.045637215946878]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '999770bf-41dd-4993-ae26-c191f53d1af3': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0559854636414965, 2.0559854636414965], [2.0559854636414965, 0.0, 2.0559854636414965], [2.0559854636414965, 2.0559854636414965, 0.0]], 'cell': [[4.111970927282994, 0.0, 0.0], [0.0, 4.111970927282994, 0.0], [0.0, 0.0, 4.111970927282994]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd3251d67-1ca2-4435-bdc6-3f8c52c26c71': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0881154261861092, 2.0881154261861092], [2.0881154261861092, 0.0, 2.0881154261861092], [2.0881154261861092, 2.0881154261861092, 0.0]], 'cell': [[4.176230852372219, 0.0, 0.0], [0.0, 4.176230852372219, 0.0], [0.0, 0.0, 4.176230852372219]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300988, 1.95300988],\n [1.95300988, 0. , 1.95300988],\n [1.95300988, 1.95300988, 0. ]]), 'cell': array([[3.90601977, 0. , 0. ],\n [0. , 3.90601977, 0. ],\n [0. , 0. , 3.90601977]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8457446150655, 'volume': np.float64(59.594106252681506)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '4864e20e-c3a7-4999-98d4-548194964fa0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852691, 1.98852691],\n [1.98852691, 0. , 1.98852691],\n [1.98852691, 1.98852691, 0. ]]), 'cell': array([[3.97705383, 0. , 0. ],\n [0. , 3.97705383, 0. ],\n [0. , 0. , 3.97705383]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9161488594586, 'volume': np.float64(62.90488993338648)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '5d5a43ea-9a17-4164-84c7-9d8d53f404a0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.0228186, 2.0228186],\n [2.0228186, 0. , 2.0228186],\n [2.0228186, 2.0228186, 0. ]]), 'cell': array([[4.0456372, 0. , 0. ],\n [0. , 4.0456372, 0. ],\n [0. , 0. , 4.0456372]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365241668363, 'volume': np.float64(66.21567361409089)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd162726f-a5f1-4788-bdca-acd1cb35f01e': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598545, 2.05598545],\n [2.05598545, 0. , 2.05598545],\n [2.05598545, 2.05598545, 0. ]]), 'cell': array([[4.11197091, 0. , 0. ],\n [0. , 4.11197091, 0. ],\n [0. , 0. , 4.11197091]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9192860025807, 'volume': np.float64(69.52645729479514)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '87fa0240-178e-4cdc-b034-118d305096c6': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811542, 2.08811542],\n [2.08811542, 0. , 2.08811542],\n [2.08811542, 2.08811542, 0. ]]), 'cell': array([[4.17623083, 0. , 0. ],\n [0. , 4.17623083, 0. ],\n [0. , 0. , 4.17623083]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8737904693394, 'volume': np.float64(72.83724097549984)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1': {1: Response(output=[59.594106252681506, 62.90488993338648, 66.21567361409089, 69.52645729479514, 72.83724097549984], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '6e68cba7-a495-4c97-8f12-966e12082acc': {1: Response(output=[-1074.8457446150655, -1074.9161488594586, -1074.9365241668363, -1074.9192860025807, -1074.8737904693394], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'bbe7e050-8051-46c9-b930-ec6d82dabe76': {1: Response(output=None, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))}}" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII=" - }, - "metadata": {} - } - ], - "execution_count": 4 - } - ] -} +{"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.12.8","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":5,"nbformat":4,"cells":[{"id":"eab942d5-f3c5-47e9-8b3b-a7a5a8481aed","cell_type":"code","source":"from jobflow.managers.local import run_locally","metadata":{"trusted":true},"outputs":[],"execution_count":1},{"id":"f6f83a43-4d91-4028-9661-a4700509be1b","cell_type":"code","source":"from python_workflow_definition.jobflow import load_workflow_json","metadata":{"trusted":true},"outputs":[],"execution_count":2},{"id":"285ca46b-19e3-4870-9fd1-0c8ddbcf819c","cell_type":"code","source":"flow = load_workflow_json(file_name=\"workflow_simple.json\")","metadata":{"trusted":true},"outputs":[],"execution_count":3},{"id":"663ac4b3-dee8-474f-a9bc-089a89bde011","cell_type":"code","source":"result = run_locally(flow)\nresult","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"2025-03-10 17:08:14,056 INFO Started executing jobs locally\n2025-03-10 17:08:14,311 INFO Starting job - add_x_and_y (34bf39dd-ba8e-4989-b35e-19b7f75d4cb9)\n2025-03-10 17:08:14,312 INFO Finished job - add_x_and_y (34bf39dd-ba8e-4989-b35e-19b7f75d4cb9)\n2025-03-10 17:08:14,312 INFO Starting job - add_x_and_y (406dbc86-1767-488d-98e2-2b1a7ce0186d)\n2025-03-10 17:08:14,313 INFO Finished job - add_x_and_y (406dbc86-1767-488d-98e2-2b1a7ce0186d)\n2025-03-10 17:08:14,314 INFO Starting job - add_x_and_y (c78a4be7-63b2-4023-a0a4-64bdc712e1cb)\n2025-03-10 17:08:14,315 INFO Finished job - add_x_and_y (c78a4be7-63b2-4023-a0a4-64bdc712e1cb)\n2025-03-10 17:08:14,316 INFO Starting job - add_x_and_y_and_z (277b97ac-a5d7-4b8a-9a2e-d1fad9ba33f3)\n2025-03-10 17:08:14,320 INFO Finished job - add_x_and_y_and_z (277b97ac-a5d7-4b8a-9a2e-d1fad9ba33f3)\n2025-03-10 17:08:14,320 INFO Finished executing jobs locally\n"},{"execution_count":4,"output_type":"execute_result","data":{"text/plain":"{'34bf39dd-ba8e-4989-b35e-19b7f75d4cb9': {1: Response(output={'x': 1, 'y': 2, 'z': 3}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '406dbc86-1767-488d-98e2-2b1a7ce0186d': {1: Response(output={'x': 1, 'y': 2, 'z': 3}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'c78a4be7-63b2-4023-a0a4-64bdc712e1cb': {1: Response(output={'x': 1, 'y': 2, 'z': 3}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '277b97ac-a5d7-4b8a-9a2e-d1fad9ba33f3': {1: Response(output=6, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))}}"},"metadata":{}}],"execution_count":4}]} \ No newline at end of file diff --git a/universal_simple_to_pyiron_base.ipynb b/universal_simple_to_pyiron_base.ipynb index a47681f..004c5cc 100644 --- a/universal_simple_to_pyiron_base.ipynb +++ b/universal_simple_to_pyiron_base.ipynb @@ -1,204 +1 @@ -{ - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.12.8", - "mimetype": "text/x-python", - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "pygments_lexer": "ipython3", - "nbconvert_exporter": "python", - "file_extension": ".py" - } - }, - "nbformat_minor": 5, - "nbformat": 4, - "cells": [ - { - "id": "4eb91f39-a8ea-4eb8-839f-076accfcf394", - "cell_type": "code", - "source": "from pyiron_base import Project", - "metadata": { - "trusted": true - }, - "outputs": [], - "execution_count": 1 - }, - { - "id": "8200fd07-13a3-49a8-892d-2a4d906fc778", - "cell_type": "code", - "source": "from python_workflow_definition.pyiron_base import load_workflow_json", - "metadata": { - "trusted": true - }, - "outputs": [], - "execution_count": 2 - }, - { - "id": "9907178d-8edd-478e-a6f7-f7ccd1c9441a", - "cell_type": "code", - "source": "pr = Project(\"test\")\npr.remove_jobs(recursive=True, silently=True)", - "metadata": { - "trusted": true - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "0it [00:00, ?it/s]", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "bd070a78bbf5494ab7b897a398fed5e4" - } - }, - "metadata": {} - } - ], - "execution_count": 3 - }, - { - "id": "0c393ada-0eb9-4627-9f3a-25afdd30545e", - "cell_type": "code", - "source": [ - "delayed_object = load_workflow_json(project=pr, file_name=\"workflow_simple.json\")\n", - "delayed_object.draw()" - ], - "metadata": { - "trusted": true - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "image/svg+xml": "\n\n\n\n\ncreate_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\ncreate_function_job=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159b20>\n\n\n\nvolume_lst_74a33bbe8538871b072f8e4324ac7b85\n\nvolume_lst=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1597c0>\n\n\n\nvolume_lst_74a33bbe8538871b072f8e4324ac7b85->create_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\n\n\n\n\n0_27d3db7d59eb1a48e0f492de59dadec3\n\n0=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159190>\n\n\n\n0_27d3db7d59eb1a48e0f492de59dadec3->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add\n\nworking_directory=strain_0\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add->0_27d3db7d59eb1a48e0f492de59dadec3\n\n\n\n\n\n0_ce9337dde2aa0891165a1485e5796f51\n\n0=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158d70>\n\n\n\nworking_directory_2e9abb255f1a31f7d29b4451ad422add->0_ce9337dde2aa0891165a1485e5796f51\n\n\n\n\n\nenergy_lst_e1bd60be583a391653a59a793309896d\n\nenergy_lst=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159670>\n\n\n\n0_ce9337dde2aa0891165a1485e5796f51->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd122d20>\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e->0_27d3db7d59eb1a48e0f492de59dadec3\n\n\n\n\n\ninput_dict_50563eef4ef90e35e26cd6a01209519e->0_ce9337dde2aa0891165a1485e5796f51\n\n\n\n\n\nstructure_787d4ff452f2045ee21a7dd34d486d21\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158290>\n\n\n\nstructure_787d4ff452f2045ee21a7dd34d486d21->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123230>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_787d4ff452f2045ee21a7dd34d486d21\n\n\n\n\n\nstructure_013017a0fa01e903fecb7e4c4853e8e3\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123ef0>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_013017a0fa01e903fecb7e4c4853e8e3\n\n\n\n\n\nstructure_3516ab9ac6406876732e28b56f0974fb\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123bc0>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_3516ab9ac6406876732e28b56f0974fb\n\n\n\n\n\nstructure_eb1be1e641b6c02024da92cc1fb87816\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123890>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_eb1be1e641b6c02024da92cc1fb87816\n\n\n\n\n\nstructure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123560>\n\n\n\nstructure_ddca652705a39f2caae3608a0f941948->structure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\n\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd123c50>\n\n\n\nstructure_013017a0fa01e903fecb7e4c4853e8e3->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158c20>\n\n\n\nstructure_3516ab9ac6406876732e28b56f0974fb->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1588f0>\n\n\n\nstructure_eb1be1e641b6c02024da92cc1fb87816->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1585c0>\n\n\n\nstructure_0ebb88b277b3cc0c38ba5c6c0e339d72->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\nworking_directory_a17ade9a563d8dcadb655fb2e1c743a7\n\nworking_directory=mini\n\n\n\nworking_directory_a17ade9a563d8dcadb655fb2e1c743a7->structure_ddca652705a39f2caae3608a0f941948\n\n\n\n\n\ninput_dict_2662b1c341beb0518cc5d55d452c0b32\n\ninput_dict=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd122f00>\n\n\n\ninput_dict_2662b1c341beb0518cc5d55d452c0b32->structure_ddca652705a39f2caae3608a0f941948\n\n\n\n\n\nstructure_0a1277654a3dd8a8029784b7359713fc\n\nstructure=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd100320>\n\n\n\nstructure_0a1277654a3dd8a8029784b7359713fc->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nname_467734216d9bd2497ffd28d5cd6daba0\n\nname=Al\n\n\n\nname_467734216d9bd2497ffd28d5cd6daba0->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\na_aea0574e321c6f75f923c059730e9537\n\na=4.05\n\n\n\na_aea0574e321c6f75f923c059730e9537->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\ncubic_bad787c53fa02a5559fe570238fdb23a\n\ncubic=True\n\n\n\ncubic_bad787c53fa02a5559fe570238fdb23a->structure_0a1277654a3dd8a8029784b7359713fc\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10\n\npseudopotentials={'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\npseudopotentials_453cdcc0d627a851e196cd899d956d10->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\n1_0d132798d5ce6231eef2e49a1f6a1079\n\n1=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd159160>\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb->1_0d132798d5ce6231eef2e49a1f6a1079\n\n\n\n\n\n1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n1=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158ad0>\n\n\n\ninput_dict_a5ec04a327ab2427b21b7756d70c75bb->1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n\n\n\n\n2_fd2b845827bf18e6d21eb2142a18f5cb\n\n2=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158380>\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888->2_fd2b845827bf18e6d21eb2142a18f5cb\n\n\n\n\n\n2_5cad2bac7c5d540ce15c120747a6205e\n\n2=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158770>\n\n\n\ninput_dict_1bd97d1b34574551c3fabc5d25943888->2_5cad2bac7c5d540ce15c120747a6205e\n\n\n\n\n\n3_0183a93cfcf0395de4d61f71f74fac1b\n\n3=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1592b0>\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa->3_0183a93cfcf0395de4d61f71f74fac1b\n\n\n\n\n\n3_5c9da80286167bb025d65eb396a25df0\n\n3=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158c50>\n\n\n\ninput_dict_6eced990aeae4571f53702e133f246aa->3_5c9da80286167bb025d65eb396a25df0\n\n\n\n\n\n4_c8145c4182f92559d7334a2dd6d38449\n\n4=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd1593a0>\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20->4_c8145c4182f92559d7334a2dd6d38449\n\n\n\n\n\n4_6656fd041c789dbf871c2abd343566fb\n\n4=<pyiron_base.project.delayed.DelayedObject object at 0x703ebd158920>\n\n\n\ninput_dict_bc120cfa29165de8311c044d2a2b7b20->4_6656fd041c789dbf871c2abd343566fb\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa\n\nkpts=[3, 3, 3]\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\nkpts_e961a9390797b0f6f8887a402ea3e9aa->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\ncalculation_77b75a01e65d83962d14fa8a882d6c34\n\ncalculation=vc-relax\n\n\n\ncalculation_77b75a01e65d83962d14fa8a882d6c34->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9\n\nsmearing=0.02\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_2662b1c341beb0518cc5d55d452c0b32\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\nsmearing_64a632a7e5bfbb7d0c6face9b82082a9->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781\n\nstrain_lst=[0.9, 0.95, 1.0, 1.05, 1.1]\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_787d4ff452f2045ee21a7dd34d486d21\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_013017a0fa01e903fecb7e4c4853e8e3\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_3516ab9ac6406876732e28b56f0974fb\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_eb1be1e641b6c02024da92cc1fb87816\n\n\n\n\n\nstrain_lst_2d8c38dac8f1aeeeecfa3c0b1cc8a781->structure_0ebb88b277b3cc0c38ba5c6c0e339d72\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83\n\ncalculation=scf\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_50563eef4ef90e35e26cd6a01209519e\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_a5ec04a327ab2427b21b7756d70c75bb\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_1bd97d1b34574551c3fabc5d25943888\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_6eced990aeae4571f53702e133f246aa\n\n\n\n\n\ncalculation_bc91e0ce7227762f507f47b85f2f0a83->input_dict_bc120cfa29165de8311c044d2a2b7b20\n\n\n\n\n\n1_0d132798d5ce6231eef2e49a1f6a1079->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd\n\nworking_directory=strain_1\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd->1_0d132798d5ce6231eef2e49a1f6a1079\n\n\n\n\n\nworking_directory_5423d2cc67129a6d0383af6f347df5bd->1_edfea7f93db4c3fa5913c3c1c8d6af5b\n\n\n\n\n\n1_edfea7f93db4c3fa5913c3c1c8d6af5b->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n2_fd2b845827bf18e6d21eb2142a18f5cb->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992\n\nworking_directory=strain_2\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992->2_fd2b845827bf18e6d21eb2142a18f5cb\n\n\n\n\n\nworking_directory_cc646e064ddfc4b2811aba3d86d27992->2_5cad2bac7c5d540ce15c120747a6205e\n\n\n\n\n\n2_5cad2bac7c5d540ce15c120747a6205e->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n3_0183a93cfcf0395de4d61f71f74fac1b->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f\n\nworking_directory=strain_3\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f->3_0183a93cfcf0395de4d61f71f74fac1b\n\n\n\n\n\nworking_directory_e27768d53df6cd8dc245c52054ecf31f->3_5c9da80286167bb025d65eb396a25df0\n\n\n\n\n\n3_5c9da80286167bb025d65eb396a25df0->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\n4_c8145c4182f92559d7334a2dd6d38449->volume_lst_74a33bbe8538871b072f8e4324ac7b85\n\n\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7\n\nworking_directory=strain_4\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7->4_c8145c4182f92559d7334a2dd6d38449\n\n\n\n\n\nworking_directory_72bba39b22d2b7ce154d37c7e8c658b7->4_6656fd041c789dbf871c2abd343566fb\n\n\n\n\n\n4_6656fd041c789dbf871c2abd343566fb->energy_lst_e1bd60be583a391653a59a793309896d\n\n\n\n\n\nenergy_lst_e1bd60be583a391653a59a793309896d->create_function_job_862be14fd9cab5fc3aabb761bc5a7e7e\n\n\n\n\n" - }, - "metadata": {} - } - ], - "execution_count": 4 - }, - { - "id": "006f309a-d82c-457d-a77a-8771a72dc6d3", - "cell_type": "code", - "source": "delayed_object.pull()", - "metadata": { - "trusted": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_bulk_structure_40d4be995c851afca48e5650f5e2d787 was saved and received the ID: 1\nThe job get_dict_bccb1cf45d545b4187a57ac7e53a7f00 was saved and received the ID: 2\nThe job calculate_qe_1b41e67724a7f43d770185783035d160 was saved and received the ID: 3\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00189] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job generate_structures_4d1c642077aade979968c6a26b7282cb was saved and received the ID: 4\nThe job get_dict_dfd8d70c5af1189f6f78052595cf450e was saved and received the ID: 5\nThe job calculate_qe_e066a4b1a579b311063411694a31331c was saved and received the ID: 6\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00201] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_dict_11cd633613014ecf2108aa23f9897350 was saved and received the ID: 7\nThe job calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 was saved and received the ID: 8\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00211] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_dict_a511a057e39eaf356b98a7d1b1ecdf3f was saved and received the ID: 9\nThe job calculate_qe_0465c89bf510cf25374997a5fb1033b8 was saved and received the ID: 10\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00221] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_dict_10ab0c9e927741eb3948cb3a35cc90cc was saved and received the ID: 11\nThe job calculate_qe_96621a0614889d5a19b53c1e7f67b06e was saved and received the ID: 12\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00231] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_dict_17f50e68d128290a2119734cf04e045c was saved and received the ID: 13\nThe job calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 was saved and received the ID: 14\n" - }, - { - "name": "stderr", - "output_type": "stream", - "text": "[jupyter-jan-janssen-pyt-flow-definition-qinbp2b8:00242] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n" - }, - { - "name": "stdout", - "output_type": "stream", - "text": "The job get_list_c37b37b7f8c1f167f8fac22d85046d8b was saved and received the ID: 15\nThe job get_list_d1b58f3f2c80182ea50900bf545997b2 was saved and received the ID: 16\nThe job plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 was saved and received the ID: 17\n" - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII=" - }, - "metadata": {} - } - ], - "execution_count": 5 - }, - { - "id": "12a6e779-766b-442a-a800-8e4e91bc95d3", - "cell_type": "code", - "source": "pr.job_table()", - "metadata": { - "trusted": true - }, - "outputs": [ - { - "execution_count": 6, - "output_type": "execute_result", - "data": { - "text/plain": " id status chemicalformula \\\n0 1 finished None \n1 2 finished None \n2 3 finished None \n3 4 finished None \n4 5 finished None \n5 6 finished None \n6 7 finished None \n7 8 finished None \n8 9 finished None \n9 10 finished None \n10 11 finished None \n11 12 finished None \n12 13 finished None \n13 14 finished None \n14 15 finished None \n15 16 finished None \n16 17 finished None \n\n job \\\n0 get_bulk_structure_40d4be995c851afca48e5650f5e2d787 \n1 get_dict_bccb1cf45d545b4187a57ac7e53a7f00 \n2 calculate_qe_1b41e67724a7f43d770185783035d160 \n3 generate_structures_4d1c642077aade979968c6a26b7282cb \n4 get_dict_dfd8d70c5af1189f6f78052595cf450e \n5 calculate_qe_e066a4b1a579b311063411694a31331c \n6 get_dict_11cd633613014ecf2108aa23f9897350 \n7 calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 \n8 get_dict_a511a057e39eaf356b98a7d1b1ecdf3f \n9 calculate_qe_0465c89bf510cf25374997a5fb1033b8 \n10 get_dict_10ab0c9e927741eb3948cb3a35cc90cc \n11 calculate_qe_96621a0614889d5a19b53c1e7f67b06e \n12 get_dict_17f50e68d128290a2119734cf04e045c \n13 calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 \n14 get_list_c37b37b7f8c1f167f8fac22d85046d8b \n15 get_list_d1b58f3f2c80182ea50900bf545997b2 \n16 plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 \n\n subjob projectpath \\\n0 /get_bulk_structure_40d4be995c851afca48e5650f5e2d787 None \n1 /get_dict_bccb1cf45d545b4187a57ac7e53a7f00 None \n2 /calculate_qe_1b41e67724a7f43d770185783035d160 None \n3 /generate_structures_4d1c642077aade979968c6a26b7282cb None \n4 /get_dict_dfd8d70c5af1189f6f78052595cf450e None \n5 /calculate_qe_e066a4b1a579b311063411694a31331c None \n6 /get_dict_11cd633613014ecf2108aa23f9897350 None \n7 /calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674 None \n8 /get_dict_a511a057e39eaf356b98a7d1b1ecdf3f None \n9 /calculate_qe_0465c89bf510cf25374997a5fb1033b8 None \n10 /get_dict_10ab0c9e927741eb3948cb3a35cc90cc None \n11 /calculate_qe_96621a0614889d5a19b53c1e7f67b06e None \n12 /get_dict_17f50e68d128290a2119734cf04e045c None \n13 /calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671 None \n14 /get_list_c37b37b7f8c1f167f8fac22d85046d8b None \n15 /get_list_d1b58f3f2c80182ea50900bf545997b2 None \n16 /plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137 None \n\n project timestart timestop totalcputime \\\n0 /home/jovyan/test/ 2025-03-10 11:52:12.028327 None None \n1 /home/jovyan/test/ 2025-03-10 11:52:12.124720 None None \n2 /home/jovyan/test/ 2025-03-10 11:52:12.237225 None None \n3 /home/jovyan/test/ 2025-03-10 11:53:07.023611 None None \n4 /home/jovyan/test/ 2025-03-10 11:53:07.158295 None None \n5 /home/jovyan/test/ 2025-03-10 11:53:07.266154 None None \n6 /home/jovyan/test/ 2025-03-10 11:53:17.308506 None None \n7 /home/jovyan/test/ 2025-03-10 11:53:17.397100 None None \n8 /home/jovyan/test/ 2025-03-10 11:53:28.561574 None None \n9 /home/jovyan/test/ 2025-03-10 11:53:28.650751 None None \n10 /home/jovyan/test/ 2025-03-10 11:53:40.508244 None None \n11 /home/jovyan/test/ 2025-03-10 11:53:40.598856 None None \n12 /home/jovyan/test/ 2025-03-10 11:53:54.557383 None None \n13 /home/jovyan/test/ 2025-03-10 11:53:54.800933 None None \n14 /home/jovyan/test/ 2025-03-10 11:54:09.777904 None None \n15 /home/jovyan/test/ 2025-03-10 11:54:10.088454 None None \n16 /home/jovyan/test/ 2025-03-10 11:54:10.273121 None None \n\n computer \\\n0 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n1 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n2 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n3 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n4 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n5 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n6 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n7 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n8 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n9 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n10 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n11 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n12 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n13 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n14 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n15 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n16 pyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1 \n\n hamilton hamversion parentid masterid \n0 PythonFunctionContainerJob 0.4 None None \n1 PythonFunctionContainerJob 0.4 None None \n2 PythonFunctionContainerJob 0.4 None None \n3 PythonFunctionContainerJob 0.4 None None \n4 PythonFunctionContainerJob 0.4 None None \n5 PythonFunctionContainerJob 0.4 None None \n6 PythonFunctionContainerJob 0.4 None None \n7 PythonFunctionContainerJob 0.4 None None \n8 PythonFunctionContainerJob 0.4 None None \n9 PythonFunctionContainerJob 0.4 None None \n10 PythonFunctionContainerJob 0.4 None None \n11 PythonFunctionContainerJob 0.4 None None \n12 PythonFunctionContainerJob 0.4 None None \n13 PythonFunctionContainerJob 0.4 None None \n14 PythonFunctionContainerJob 0.4 None None \n15 PythonFunctionContainerJob 0.4 None None \n16 PythonFunctionContainerJob 0.4 None None ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
01finishedNoneget_bulk_structure_40d4be995c851afca48e5650f5e2d787/get_bulk_structure_40d4be995c851afca48e5650f5e2d787None/home/jovyan/test/2025-03-10 11:52:12.028327NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
12finishedNoneget_dict_bccb1cf45d545b4187a57ac7e53a7f00/get_dict_bccb1cf45d545b4187a57ac7e53a7f00None/home/jovyan/test/2025-03-10 11:52:12.124720NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
23finishedNonecalculate_qe_1b41e67724a7f43d770185783035d160/calculate_qe_1b41e67724a7f43d770185783035d160None/home/jovyan/test/2025-03-10 11:52:12.237225NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
34finishedNonegenerate_structures_4d1c642077aade979968c6a26b7282cb/generate_structures_4d1c642077aade979968c6a26b7282cbNone/home/jovyan/test/2025-03-10 11:53:07.023611NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
45finishedNoneget_dict_dfd8d70c5af1189f6f78052595cf450e/get_dict_dfd8d70c5af1189f6f78052595cf450eNone/home/jovyan/test/2025-03-10 11:53:07.158295NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
56finishedNonecalculate_qe_e066a4b1a579b311063411694a31331c/calculate_qe_e066a4b1a579b311063411694a31331cNone/home/jovyan/test/2025-03-10 11:53:07.266154NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
67finishedNoneget_dict_11cd633613014ecf2108aa23f9897350/get_dict_11cd633613014ecf2108aa23f9897350None/home/jovyan/test/2025-03-10 11:53:17.308506NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
78finishedNonecalculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674/calculate_qe_b2190abc0a1e16d1a47c05d0ea8c8674None/home/jovyan/test/2025-03-10 11:53:17.397100NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
89finishedNoneget_dict_a511a057e39eaf356b98a7d1b1ecdf3f/get_dict_a511a057e39eaf356b98a7d1b1ecdf3fNone/home/jovyan/test/2025-03-10 11:53:28.561574NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
910finishedNonecalculate_qe_0465c89bf510cf25374997a5fb1033b8/calculate_qe_0465c89bf510cf25374997a5fb1033b8None/home/jovyan/test/2025-03-10 11:53:28.650751NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1011finishedNoneget_dict_10ab0c9e927741eb3948cb3a35cc90cc/get_dict_10ab0c9e927741eb3948cb3a35cc90ccNone/home/jovyan/test/2025-03-10 11:53:40.508244NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1112finishedNonecalculate_qe_96621a0614889d5a19b53c1e7f67b06e/calculate_qe_96621a0614889d5a19b53c1e7f67b06eNone/home/jovyan/test/2025-03-10 11:53:40.598856NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1213finishedNoneget_dict_17f50e68d128290a2119734cf04e045c/get_dict_17f50e68d128290a2119734cf04e045cNone/home/jovyan/test/2025-03-10 11:53:54.557383NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1314finishedNonecalculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671/calculate_qe_dcf6a099d5bd9dc0183c0de1c8ac0671None/home/jovyan/test/2025-03-10 11:53:54.800933NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1415finishedNoneget_list_c37b37b7f8c1f167f8fac22d85046d8b/get_list_c37b37b7f8c1f167f8fac22d85046d8bNone/home/jovyan/test/2025-03-10 11:54:09.777904NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1516finishedNoneget_list_d1b58f3f2c80182ea50900bf545997b2/get_list_d1b58f3f2c80182ea50900bf545997b2None/home/jovyan/test/2025-03-10 11:54:10.088454NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
1617finishedNoneplot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137/plot_energy_volume_curve_b91663564ad2009496e45d5ec42ea137None/home/jovyan/test/2025-03-10 11:54:10.273121NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-qinbp2b8#1PythonFunctionContainerJob0.4NoneNone
\n
" - }, - "metadata": {} - } - ], - "execution_count": 6 - }, - { - "id": "e59d8cff-e204-4202-a204-692e4fb66997", - "cell_type": "code", - "source": "", - "metadata": { - "trusted": true - }, - "outputs": [], - "execution_count": null - } - ] -} +{"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.12.8","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":5,"nbformat":4,"cells":[{"id":"4eb91f39-a8ea-4eb8-839f-076accfcf394","cell_type":"code","source":"from pyiron_base import Project","metadata":{"trusted":true},"outputs":[],"execution_count":1},{"id":"8200fd07-13a3-49a8-892d-2a4d906fc778","cell_type":"code","source":"from python_workflow_definition.pyiron_base import load_workflow_json","metadata":{"trusted":true},"outputs":[],"execution_count":2},{"id":"9907178d-8edd-478e-a6f7-f7ccd1c9441a","cell_type":"code","source":"pr = Project(\"test\")\npr.remove_jobs(recursive=True, silently=True)","metadata":{"trusted":true},"outputs":[{"output_type":"display_data","data":{"text/plain":"0it [00:00, ?it/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"82ba857d123f4aa6b4dc3d5ba3c12212"}},"metadata":{}}],"execution_count":3},{"id":"0c393ada-0eb9-4627-9f3a-25afdd30545e","cell_type":"code","source":"delayed_object = load_workflow_json(project=pr, file_name=\"workflow_simple.json\")\ndelayed_object.draw()","metadata":{"trusted":true},"outputs":[{"output_type":"display_data","data":{"text/plain":"","image/svg+xml":"\n\n\n\n\ncreate_function_job_e374dff0ae780ab1e07b210f7f557021\n\ncreate_function_job=<pyiron_base.project.delayed.DelayedObject object at 0x74cfa832c6e0>\n\n\n\nx_9535ed8e05c5e928ad78f0a00c64ef8e\n\nx=<pyiron_base.project.delayed.DelayedObject object at 0x74cfa830cf80>\n\n\n\nx_9535ed8e05c5e928ad78f0a00c64ef8e->create_function_job_e374dff0ae780ab1e07b210f7f557021\n\n\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce\n\nx=1\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->x_9535ed8e05c5e928ad78f0a00c64ef8e\n\n\n\n\n\ny_7b05a8d51a33db1f46a95615fa47192b\n\ny=<pyiron_base.project.delayed.DelayedObject object at 0x74cfa832c2f0>\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->y_7b05a8d51a33db1f46a95615fa47192b\n\n\n\n\n\nz_fd19fa8ccbba821a6d3084f1dbe98416\n\nz=<pyiron_base.project.delayed.DelayedObject object at 0x74cfa832c2c0>\n\n\n\nx_1d847da32ecaabf6731c38f798c3d4ce->z_fd19fa8ccbba821a6d3084f1dbe98416\n\n\n\n\n\ny_7b05a8d51a33db1f46a95615fa47192b->create_function_job_e374dff0ae780ab1e07b210f7f557021\n\n\n\n\n\nz_fd19fa8ccbba821a6d3084f1dbe98416->create_function_job_e374dff0ae780ab1e07b210f7f557021\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6\n\ny=2\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->x_9535ed8e05c5e928ad78f0a00c64ef8e\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->y_7b05a8d51a33db1f46a95615fa47192b\n\n\n\n\n\ny_a9ec4f5f33f0d64e74ed5d9900bceac6->z_fd19fa8ccbba821a6d3084f1dbe98416\n\n\n\n\n"},"metadata":{}}],"execution_count":4},{"id":"006f309a-d82c-457d-a77a-8771a72dc6d3","cell_type":"code","source":"delayed_object.pull()","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"The job add_x_and_y_68901482a2c5221cc845f828aabebd27 was saved and received the ID: 1\nThe job add_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8d was saved and received the ID: 2\n"},{"execution_count":5,"output_type":"execute_result","data":{"text/plain":"6"},"metadata":{}}],"execution_count":5},{"id":"12a6e779-766b-442a-a800-8e4e91bc95d3","cell_type":"code","source":"pr.job_table()","metadata":{"trusted":true},"outputs":[{"execution_count":6,"output_type":"execute_result","data":{"text/plain":" id status chemicalformula \\\n0 1 finished None \n1 2 finished None \n\n job \\\n0 add_x_and_y_68901482a2c5221cc845f828aabebd27 \n1 add_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8d \n\n subjob projectpath \\\n0 /add_x_and_y_68901482a2c5221cc845f828aabebd27 None \n1 /add_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8d None \n\n project timestart timestop totalcputime \\\n0 /home/jovyan/test/ 2025-03-10 17:08:30.001309 None None \n1 /home/jovyan/test/ 2025-03-10 17:08:30.169487 None None \n\n computer \\\n0 pyiron@jupyter-jan-janssen-pyt-flow-definition-2h51dzgy#1 \n1 pyiron@jupyter-jan-janssen-pyt-flow-definition-2h51dzgy#1 \n\n hamilton hamversion parentid masterid \n0 PythonFunctionContainerJob 0.4 None None \n1 PythonFunctionContainerJob 0.4 None None ","text/html":"
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
01finishedNoneadd_x_and_y_68901482a2c5221cc845f828aabebd27/add_x_and_y_68901482a2c5221cc845f828aabebd27None/home/jovyan/test/2025-03-10 17:08:30.001309NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-2h51dzgy#1PythonFunctionContainerJob0.4NoneNone
12finishedNoneadd_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8d/add_x_and_y_and_z_b671e81aaa4670d81d7eee509650af8dNone/home/jovyan/test/2025-03-10 17:08:30.169487NoneNonepyiron@jupyter-jan-janssen-pyt-flow-definition-2h51dzgy#1PythonFunctionContainerJob0.4NoneNone
\n
"},"metadata":{}}],"execution_count":6},{"id":"e59d8cff-e204-4202-a204-692e4fb66997","cell_type":"code","source":"","metadata":{"trusted":true},"outputs":[],"execution_count":null}]} \ No newline at end of file