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The Goal 
train a model on multiple users’ private 
data without compromising their privacy

Killer App: ML on the Blockchain
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Imagine going from prototype to production, all within the 
same framework and without compromising privacy

Who cares about privacy? Several major cloud providers

PyTorch is well poised to take the lead:

• Glow: already has support for autograd, has easy-to-use 
programming model

• active developer community
• emphasis on research to production

What we need:

• multi-threading for Glow CPUBackend: for non-private, 
splitting model across cores maximizes throughput, but 
switching between TEEs is incredibly expensive

• tiny tweaks to the runtime to support loading enclave libs

• otherwise, just code reviews! :)

1. data providers upload encrypted data to privacy-preserving 
smart contracts which only yield data to data consumer smart 
contracts which satisfy certain constraints (e.g., price, privacy)

2. data consumers create smart contracts which train models 
on data of providers whose constraints are satisfied

3. consumer smart contract acts as a virtual trusted third party, 
trains model on data, and returns privacy-preserving outputs

• Sterling,  a privacy-preserving data marketplace, enables 
uncoordinate sharing and use of private data

• Use cases: secure credit scoring, medical research, 
user-owned advertising profiles, unlocking value of IoT data

Blazing the Way

Privacy-Preserving Machine Learning
High level idea: train differentially private models in TEEs

• TEE provides confidentiality and ensures that DP is correctly 
applied => privacy during and after training

• TEE-based training is ~1000x as fast as training using 
Homomorphic Encryption or Garbled Circuits and is actually 
comparable to native performance

Main challenge: code in TEE can’t trust the rest of the system. 
This means: limited memory, no filesystem, no GPU, and no JIT 
compilation. How do we do it?

Key observation: TEE programming model is similar to hardware 
accelerators like FPGAs and TPUs. We already have tools for this! 
Specifically, compilers like TVM, JAX, and Glow.

Approach: Use tensor compiler to generate dependency-free ML 
code which runs in TEE and requests resources from OS

• currently using TVM 
• performance is good but challenging to deploy
• limited support for autograd, training

Where we are now
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Use Cases
private MLaaS: a cloud provider runs their architecture on your data. 
You get model outputs, your data stays private, you can’t steal model.

trustworthy ML competitions: you train a model on contest data. 
Organizer sends private test data to your model and gets verifiable 
report of accuracy. Your model stays safe until organizer decides to 
purchase it. Other participants can‘t cheat by training on test data.

training on shared private data: you (a researcher) want to train a 
model on several hospitals’ data. Directly sharing is too complicated. 
Instead, have a “trusted third party” train a privacy-preserving model

Privacy Preservation Primitives
Differential Privacy (DP): formal guarantee that models trained 
on similar datasets are indistinguishable.
• Informally, a user’s privacy is not compromised by choosing to 

contribute data to a model

Trusted Execution Environments (TEEs): hardware enforced 
isolation of computation+memory (enclave) & remote attestation 
of loaded code

Remote Attestation: a signed proof that a trusted processor has 
loaded the user’s code. Used to establish secure link into enclave.
• Examples of TEEs: Intel SGX, Komodo, Keystone/Eyrie

(your laptop probably already has SGX!)
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