
Privacy-Preserving Machine Learning in Trusted Hardware Enclaves

Nick Hynes <nhynes@berkeley.edu>

Model CodeML User

Data Providers

Trusted Model
Training Enclave

Myelin

Enclave-Enabled
Untrusted Cloud

TEE

Privacy-Preserving
Trained Model

or How We’re Actually Going to “Democratize AI”

The Goal
train a model on multiple users’ private
data without compromising their privacy

Killer App: ML on the Blockchain

data provider
contract

data consumer
contract

Blockchain of Privacy-Preserving Smart Contracts

data provider data consumer

1 23

4 5

$

TEE

Imagine going from prototype to production, all within the
same framework and without compromising privacy

Who cares about privacy? Several major cloud providers

PyTorch is well poised to take the lead:

• Glow: already has support for autograd, has easy-to-use
programming model

• active developer community
• emphasis on research to production

What we need:

• multi-threading for Glow CPUBackend: for non-private,
splitting model across cores maximizes throughput, but
switching between TEEs is incredibly expensive

• tiny tweaks to the runtime to support loading enclave libs

• otherwise, just code reviews! :)

1. data providers upload encrypted data to privacy-preserving
smart contracts which only yield data to data consumer smart
contracts which satisfy certain constraints (e.g., price, privacy)

2. data consumers create smart contracts which train models
on data of providers whose constraints are satisfied

3. consumer smart contract acts as a virtual trusted third party,
trains model on data, and returns privacy-preserving outputs

• Sterling, a privacy-preserving data marketplace, enables
uncoordinate sharing and use of private data

• Use cases: secure credit scoring, medical research,
user-owned advertising profiles, unlocking value of IoT data

Blazing the Way

Privacy-Preserving Machine Learning
High level idea: train differentially private models in TEEs

• TEE provides confidentiality and ensures that DP is correctly
applied => privacy during and after training

• TEE-based training is ~1000x as fast as training using
Homomorphic Encryption or Garbled Circuits and is actually
comparable to native performance

Main challenge: code in TEE can’t trust the rest of the system.
This means: limited memory, no filesystem, no GPU, and no JIT
compilation. How do we do it?

Key observation: TEE programming model is similar to hardware
accelerators like FPGAs and TPUs. We already have tools for this!
Specifically, compilers like TVM, JAX, and Glow.

Approach: Use tensor compiler to generate dependency-free ML
code which runs in TEE and requests resources from OS

• currently using TVM
• performance is good but challenging to deploy
• limited support for autograd, training

Where we are now

Encrypted
Data

Enclave

Encrypted
Labels

yLoss(f(X), y)

Use Cases
private MLaaS: a cloud provider runs their architecture on your data.
You get model outputs, your data stays private, you can’t steal model.

trustworthy ML competitions: you train a model on contest data.
Organizer sends private test data to your model and gets verifiable
report of accuracy. Your model stays safe until organizer decides to
purchase it. Other participants can‘t cheat by training on test data.

training on shared private data: you (a researcher) want to train a
model on several hospitals’ data. Directly sharing is too complicated.
Instead, have a “trusted third party” train a privacy-preserving model

Privacy Preservation Primitives
Differential Privacy (DP): formal guarantee that models trained
on similar datasets are indistinguishable.
• Informally, a user’s privacy is not compromised by choosing to

contribute data to a model

Trusted Execution Environments (TEEs): hardware enforced
isolation of computation+memory (enclave) & remote attestation
of loaded code

Remote Attestation: a signed proof that a trusted processor has
loaded the user’s code. Used to establish secure link into enclave.
• Examples of TEEs: Intel SGX, Komodo, Keystone/Eyrie

(your laptop probably already has SGX!)

f(Di) f(Dj)

0.5 0.5

f(Di) f(Dj)

Privacy!

Add noise

O A S I S L A B S

