-
-
Notifications
You must be signed in to change notification settings - Fork 655
metrics: add SSIM #1217
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
metrics: add SSIM #1217
Changes from 13 commits
Commits
Show all changes
18 commits
Select commit
Hold shift + click to select a range
7d43ff1
metrics: add SSIM
cf15120
add scikit-image dependency
577d451
Merge branch 'master' into metrics/add-ssim
sdesrozis 9779aa9
add distributed tests, fix docstring
3990f5b
.gitignore back to normal
b6c3a14
Update ignite/metrics/ssim.py
47c33a5
.format(), separate functions
ad94064
scalar input for kernel, sigma, fix py3.5 CI
435aa5b
apply suggestions
114e94e
some fixes
952e66c
fixed tpu tests
6eaa88f
Minor code cosmetrics and raised err tolerance in tests
vfdev-5 499cd85
used list comprehension convolution, fixed tests
f6f6e7c
added uniform kernel, change tolerance, various image size tests
52d7261
Merge branch 'master' into metrics/add-ssim
624818d
Update ignite/metrics/ssim.py
7f5ae64
Update ignite/metrics/ssim.py
99d5a92
Fix flake8
vfdev-5 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,149 @@ | ||
| from typing import Callable, Sequence, Union | ||
|
|
||
| import torch | ||
| import torch.nn.functional as F | ||
|
|
||
| from ignite.exceptions import NotComputableError | ||
| from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce | ||
|
|
||
| __all__ = ["SSIM"] | ||
|
|
||
|
|
||
| class SSIM(Metric): | ||
| """ | ||
| Computes Structual Similarity Index Measure | ||
|
|
||
| Args: | ||
| kernel_size (int or list or tuple of int): Size of the gaussian kernel. Default: (11, 11) | ||
| sigma (float or list or tuple of float): Standard deviation of the gaussian kernel. Default: (1.5, 1.5) | ||
ydcjeff marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| data_range (int or float): Range of the image. Typically, ``1.0`` or ``255``. | ||
| k1 (float): Parameter of SSIM. Default: 0.01 | ||
| k2 (float): Parameter of SSIM. Default: 0.03 | ||
| output_transform (callable, optional): A callable that is used to transform the | ||
| :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the | ||
| form expected by the metric. | ||
|
|
||
| Example: | ||
|
|
||
| To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. | ||
| The output of the engine's ``process_function`` needs to be in the format of | ||
| ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. | ||
|
|
||
| ``y_pred`` and ``y`` can be un-normalized or normalized image tensors. Depending on that, the user might need | ||
| to adjust ``data_range``. ``y_pred`` and ``y`` should have the same shape. | ||
|
|
||
| .. code-block:: python | ||
|
|
||
| def process_function(engine, batch): | ||
| # ... | ||
| return y_pred, y | ||
| engine = Engine(process_function) | ||
| metric = SSIM(data_range=1.0) | ||
| metric.attach(engine, "ssim") | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| data_range: Union[int, float], | ||
| kernel_size: Union[int, Sequence[int]] = (11, 11), | ||
| sigma: Union[float, Sequence[float]] = (1.5, 1.5), | ||
| k1: float = 0.01, | ||
| k2: float = 0.03, | ||
| output_transform: Callable = lambda x: x, | ||
| ): | ||
| if isinstance(kernel_size, int): | ||
| self.kernel_size = [kernel_size, kernel_size] | ||
| elif isinstance(kernel_size, Sequence): | ||
| self.kernel_size = kernel_size | ||
| else: | ||
| raise ValueError("Argument kernel_size should be either int or a sequence of int.") | ||
|
|
||
| if isinstance(sigma, float): | ||
| self.sigma = [sigma, sigma] | ||
| elif isinstance(sigma, Sequence): | ||
| self.sigma = sigma | ||
| else: | ||
| raise ValueError("Argument sigma should be either float or a sequence of float.") | ||
|
|
||
| if any(x % 2 == 0 or x <= 0 for x in self.kernel_size): | ||
| raise ValueError("Expected kernel_size to have odd positive number. Got {}.".format(kernel_size)) | ||
|
|
||
| if any(y <= 0 for y in self.sigma): | ||
| raise ValueError("Expected sigma to have positive number. Got {}.".format(sigma)) | ||
|
|
||
| self.data_range = data_range | ||
| self.k1 = k1 | ||
| self.k2 = k2 | ||
| self._kernel = self._gaussian_kernel(kernel_size=self.kernel_size, sigma=self.sigma) | ||
| super(SSIM, self).__init__(output_transform=output_transform) | ||
|
|
||
| @reinit__is_reduced | ||
| def reset(self) -> None: | ||
| self._sum_of_batchwise_ssim = 0.0 | ||
| self._num_examples = 0 | ||
| self._kernel = self._gaussian_kernel(kernel_size=self.kernel_size, sigma=self.sigma) | ||
|
|
||
| def _gaussian(self, kernel_size, sigma): | ||
| gauss = torch.arange(start=(1 - kernel_size) / 2, end=(1 + kernel_size) / 2, step=1, dtype=torch.float32) | ||
| gauss = torch.exp(-gauss.pow(2) / (2 * pow(sigma, 2))) | ||
| return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size) | ||
|
|
||
| def _gaussian_kernel(self, kernel_size, sigma): | ||
| gaussian_kernel_x = self._gaussian(kernel_size[0], sigma[0]) | ||
| gaussian_kernel_y = self._gaussian(kernel_size[1], sigma[1]) | ||
|
|
||
| return torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) # (kernel_size, 1) * (1, kernel_size) | ||
|
|
||
| @reinit__is_reduced | ||
| def update(self, output: Sequence[torch.Tensor]) -> None: | ||
| y_pred, y = output | ||
| if y_pred.dtype != y.dtype: | ||
| raise TypeError( | ||
| "Expected y_pred and y to have the same data type. Got y_pred: {} and y: {}.".format( | ||
| y_pred.dtype, y.dtype | ||
| ) | ||
| ) | ||
|
|
||
| if y_pred.shape != y.shape: | ||
| raise ValueError( | ||
| "Expected y_pred and y to have the same shape. Got y_pred: {} and y: {}.".format(y_pred.shape, y.shape) | ||
| ) | ||
|
|
||
| if len(y_pred.shape) != 4 or len(y.shape) != 4: | ||
| raise ValueError( | ||
| "Expected y_pred and y to have BxCxHxW shape. Got y_pred: {} and y: {}.".format(y_pred.shape, y.shape) | ||
| ) | ||
|
|
||
| c1 = (self.k1 * self.data_range) ** 2 | ||
| c2 = (self.k2 * self.data_range) ** 2 | ||
|
|
||
| channel = y_pred.size(1) | ||
| if len(self._kernel.shape) < 4: | ||
| self._kernel = self._kernel.expand(channel, 1, -1, -1).to(device=y_pred.device) | ||
|
|
||
| input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y] | ||
| output_list = [F.conv2d(x, self._kernel, groups=channel) for x in input_list] | ||
ydcjeff marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| mu_pred_sq = output_list[0].pow(2) | ||
| mu_target_sq = output_list[1].pow(2) | ||
| mu_pred_target = output_list[0] * output_list[1] | ||
|
|
||
| sigma_pred_sq = output_list[2] - mu_pred_sq | ||
| sigma_target_sq = output_list[3] - mu_target_sq | ||
| sigma_pred_target = output_list[4] - mu_pred_target | ||
|
|
||
| a1 = 2 * mu_pred_target + c1 | ||
| a2 = 2 * sigma_pred_target + c2 | ||
| b1 = mu_pred_sq + mu_target_sq + c1 | ||
| b2 = sigma_pred_sq + sigma_target_sq + c2 | ||
|
|
||
| ssim_idx = (a1 * a2) / (b1 * b2) | ||
|
|
||
| self._sum_of_batchwise_ssim += torch.mean(ssim_idx, (1, 2, 3)) | ||
ydcjeff marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| self._num_examples += y.shape[0] | ||
|
|
||
| @sync_all_reduce("_sum_of_batchwise_ssim", "_num_examples") | ||
| def compute(self) -> torch.Tensor: | ||
| if self._num_examples == 0: | ||
| raise NotComputableError("SSIM must have at least one example before it can be computed.") | ||
| return torch.sum(self._sum_of_batchwise_ssim / self._num_examples) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,145 @@ | ||
| import os | ||
|
|
||
| import pytest | ||
| import torch | ||
| from skimage.measure import compare_ssim as ski_ssim | ||
|
|
||
| import ignite.distributed as idist | ||
| from ignite.exceptions import NotComputableError | ||
| from ignite.metrics import SSIM | ||
|
|
||
|
|
||
| def test_zero_div(): | ||
| ssim = SSIM(data_range=1.0) | ||
| with pytest.raises(NotComputableError): | ||
| ssim.compute() | ||
|
|
||
|
|
||
| def test_invalid_ssim(): | ||
| y_pred = torch.rand(16, 1, 32, 32) | ||
| y = y_pred + 0.125 | ||
| with pytest.raises(ValueError, match=r"Expected kernel_size to have odd positive number. Got 10."): | ||
| ssim = SSIM(data_range=1.0, kernel_size=10) | ||
| ssim.update((y_pred, y)) | ||
| ssim.compute() | ||
|
|
||
| with pytest.raises(ValueError, match=r"Expected kernel_size to have odd positive number. Got -1."): | ||
| ssim = SSIM(data_range=1.0, kernel_size=-1) | ||
| ssim.update((y_pred, y)) | ||
| ssim.compute() | ||
|
|
||
| with pytest.raises(ValueError, match=r"Argument kernel_size should be either int or a sequence of int."): | ||
| ssim = SSIM(data_range=1.0, kernel_size=1.0) | ||
| ssim.update((y_pred, y)) | ||
| ssim.compute() | ||
|
|
||
| with pytest.raises(ValueError, match=r"Argument sigma should be either float or a sequence of float."): | ||
| ssim = SSIM(data_range=1.0, sigma=-1) | ||
| ssim.update((y_pred, y)) | ||
| ssim.compute() | ||
|
|
||
| with pytest.raises(ValueError, match=r"Argument sigma should be either float or a sequence of float."): | ||
| ssim = SSIM(data_range=1.0, sigma=1) | ||
| ssim.update((y_pred, y)) | ||
| ssim.compute() | ||
|
|
||
|
|
||
| def test_ssim(): | ||
| ssim = SSIM(data_range=1.0) | ||
| device = "cuda" if torch.cuda.is_available() else "cpu" | ||
| y_pred = torch.rand(16, 3, 32, 32, device=device) | ||
| y = y_pred * 0.65 | ||
| ssim.update((y_pred, y)) | ||
|
|
||
| np_pred = y_pred.permute(0, 2, 3, 1).cpu().numpy() | ||
| np_y = np_pred * 0.65 | ||
| np_ssim = ski_ssim(np_pred, np_y, win_size=11, multichannel=True, gaussian_weights=True, data_range=1.0) | ||
|
|
||
| assert isinstance(ssim.compute(), torch.Tensor) | ||
| assert torch.allclose(ssim.compute(), torch.tensor(np_ssim, dtype=torch.float32, device=device)) | ||
|
|
||
|
|
||
| def _test_distrib_integration(device, tol=1e-6): | ||
| from ignite.engine import Engine | ||
|
|
||
| rank = idist.get_rank() | ||
| n_iters = 100 | ||
| s = 10 | ||
| offset = n_iters * s | ||
|
|
||
| y_pred = torch.rand(offset * idist.get_world_size(), 3, 28, 28, dtype=torch.float, device=device) | ||
| y = y_pred * 0.65 | ||
|
|
||
| def update(engine, i): | ||
| return ( | ||
| y_pred[i * s + offset * rank : (i + 1) * s + offset * rank], | ||
| y[i * s + offset * rank : (i + 1) * s + offset * rank], | ||
| ) | ||
|
|
||
| engine = Engine(update) | ||
| SSIM(data_range=1.0).attach(engine, "ssim") | ||
|
|
||
| data = list(range(n_iters)) | ||
| engine.run(data=data, max_epochs=1) | ||
|
|
||
| assert "ssim" in engine.state.metrics | ||
| res = engine.state.metrics["ssim"] | ||
|
|
||
| np_pred = y_pred.permute(0, 2, 3, 1).cpu().numpy() | ||
| np_true = np_pred * 0.65 | ||
| true_res = ski_ssim(np_pred, np_true, win_size=11, multichannel=True, gaussian_weights=True, data_range=1.0) | ||
|
|
||
| assert pytest.approx(res, rel=tol) == true_res | ||
|
|
||
|
|
||
| @pytest.mark.distributed | ||
| @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") | ||
| @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") | ||
| def test_distrib_gpu(local_rank, distributed_context_single_node_nccl): | ||
|
|
||
| device = "cuda:{}".format(local_rank) | ||
| _test_distrib_integration(device) | ||
|
|
||
|
|
||
| @pytest.mark.distributed | ||
| @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") | ||
| def test_distrib_cpu(distributed_context_single_node_gloo): | ||
| device = "cpu" | ||
| _test_distrib_integration(device) | ||
|
|
||
|
|
||
| @pytest.mark.multinode_distributed | ||
| @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") | ||
| @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") | ||
| def test_multinode_distrib_cpu(distributed_context_multi_node_gloo): | ||
| device = "cpu" | ||
| _test_distrib_integration(device) | ||
|
|
||
|
|
||
| @pytest.mark.multinode_distributed | ||
| @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") | ||
| @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") | ||
| def test_multinode_distrib_gpu(distributed_context_multi_node_nccl): | ||
| device = "cuda:{}".format(distributed_context_multi_node_nccl["local_rank"]) | ||
| _test_distrib_integration(device) | ||
|
|
||
|
|
||
| @pytest.mark.tpu | ||
| @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") | ||
| @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") | ||
| def test_distrib_single_device_xla(): | ||
| device = idist.device() | ||
| _test_distrib_integration(device, tol=1e-3) | ||
|
|
||
|
|
||
| def _test_distrib_xla_nprocs(index): | ||
| device = idist.device() | ||
| _test_distrib_integration(device, tol=1e-3) | ||
|
|
||
|
|
||
| @pytest.mark.tpu | ||
| @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") | ||
| @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") | ||
| def test_distrib_xla_nprocs(xmp_executor): | ||
| n = int(os.environ["NUM_TPU_WORKERS"]) | ||
| xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.