diff --git a/references/classification/README.md b/references/classification/README.md index ff5371066d2..a73fde3679f 100644 --- a/references/classification/README.md +++ b/references/classification/README.md @@ -143,28 +143,6 @@ torchrun --nproc_per_node=8 train.py\ ``` Here `$MODEL` is one of `regnet_x_32gf`, `regnet_y_16gf` and `regnet_y_32gf`. -### Vision Transformer - -#### Base models -``` -torchrun --nproc_per_node=8 train.py\ - --model $MODEL --epochs 300 --batch-size 64 --opt adamw --lr 0.003 --wd 0.3\ - --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\ - --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\ - --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema -``` -Here `$MODEL` is one of `vit_b_16` and `vit_b_32`. - -#### Large models -``` -torchrun --nproc_per_node=8 train.py\ - --model $MODEL --epochs 300 --batch-size 16 --opt adamw --lr 0.003 --wd 0.3\ - --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\ - --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\ - --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema -``` -Here `$MODEL` is one of `vit_l_16` and `vit_l_32`. - ## Mixed precision training Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [torch.cuda.amp](https://pytorch.org/docs/stable/amp.html?highlight=amp#module-torch.cuda.amp).