From 97a86afad978d5e8e56974d5258f4670f225dd8b Mon Sep 17 00:00:00 2001 From: AdriaJ <43072455+AdriaJ@users.noreply.github.com> Date: Thu, 25 Apr 2024 13:57:09 +0200 Subject: [PATCH] [Doc][typo] Consistency of \mathbf notation for vectors. --- src/pyxu/opt/solver/nlcg.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/pyxu/opt/solver/nlcg.py b/src/pyxu/opt/solver/nlcg.py index d22dd2193..62f4652d2 100644 --- a/src/pyxu/opt/solver/nlcg.py +++ b/src/pyxu/opt/solver/nlcg.py @@ -18,7 +18,7 @@ class NLCG(pxa.Solver): .. math:: - \min_{x\in\mathbb{R}^{N}} f(x), + \min_{\mathbf{x}\in\mathbb{R}^{N}} f(\mathbf{x}), where :math:`f: \mathbb{R}^{N} \to \mathbb{R}` is a *differentiable* functional. When :math:`f` is quadratic, NLCG is equivalent to the Conjugate Gradient (CG) method. NLCG hence has similar convergence behaviour to CG if @@ -26,7 +26,7 @@ class NLCG(pxa.Solver): [NumOpt_NocWri]_. The norm of the `gradient `_ :math:`\nabla f_k = - \nabla f(x_k)` is used as the default stopping criterion. By default, the iterations stop when the norm of the + \nabla f(\mathbf{x}_k)` is used as the default stopping criterion. By default, the iterations stop when the norm of the gradient is smaller than 1e-4. Multiple variants of NLCG exist. They differ mainly in how the weights applied to conjugate directions are updated.