diff --git a/cyclegan/README.md b/cyclegan/README.md
new file mode 100644
index 0000000000000..ef35c3ab1b3ec
--- /dev/null
+++ b/cyclegan/README.md
@@ -0,0 +1,139 @@
+# Cycle GAN
+---
+## 内容
+
+- [安装](#安装)
+- [简介](#简介)
+- [代码结构](#代码结构)
+- [数据准备](#数据准备)
+- [模型训练与预测](#模型训练与预测)
+
+## 安装
+
+运行本目录下的程序示例需要使用PaddlePaddle develop最新版本。如果您的PaddlePaddle安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新PaddlePaddle安装版本。
+
+## 简介
+Cycle GAN 是一种image to image 的图像生成网络,实现了非对称图像数据集的生成和风格迁移。模型结构如下图所示,我们的模型包含两个生成网络 G: X → Y 和 F: Y → X,以及相关的判别器 DY 和 DX 。通过训练DY,使G将X图尽量转换为Y图,反之亦然。同时引入两个“周期一致性损失”,它们保证:如果我们从一个领域转换到另一个领域,它还可以被转换回去:(b)正向循环一致性损失:x→G(x)→F(G(x))≈x, (c)反向循环一致性损失:y→F(y)→G(F(y))≈y
+
+
+
+图1.网络结构
+
+
+
+## 代码结构
+```
+├── data.py # 读取、处理数据。
+├── layers.py # 封装定义基础的layers。
+├── cyclegan.py # 定义基础生成网络和判别网络。
+├── train.py # 训练脚本。
+└── infer.py # 预测脚本。
+```
+
+
+## 数据准备
+
+CycleGAN 支持的数据集可以参考download.py中的`cycle_pix_dataset`,可以通过指定`python download.py --dataset xxx` 下载得到。
+
+由于版权问题,cityscapes 数据集无法通过脚本直接获得,需要从[官方](https://www.cityscapes-dataset.com/)下载数据,
+下载完之后执行`python prepare_cityscapes_dataset.py --gtFine_dir ./gtFine/ --leftImg8bit_dir ./leftImg8bit --output_dir ./data/cityscapes/`处理,
+将数据存放在`data/cityscapes`。
+
+数据下载处理完毕后,需要您将数据组织为以下路径结构:
+```
+data
+|-- cityscapes
+| |-- testA
+| |-- testB
+| |-- trainA
+| |-- trainB
+
+```
+
+然后运行txt生成脚本:`python generate_txt.py`,最终数据组织如下所示:
+```
+data
+|-- cityscapes
+| |-- testA
+| |-- testA.txt
+| |-- testB
+| |-- testB.txt
+| |-- trainA
+| |-- trainA.txt
+| |-- trainB
+| `-- trainB.txt
+
+```
+
+以上数据文件中,`data`文件夹需要放在训练脚本`train.py`同级目录下。`testA`为存放真实街景图片的文件夹,`testB`为存放语义分割图片的文件夹,`testA.txt`和`testB.txt`分别为测试图片路径列表文件,格式如下:
+
+```
+data/cityscapes/testA/234_A.jpg
+data/cityscapes/testA/292_A.jpg
+data/cityscapes/testA/412_A.jpg
+```
+
+训练数据组织方式与测试数据相同。
+
+
+## 模型训练与预测
+
+### 训练
+
+在GPU单卡上训练:
+
+```
+env CUDA_VISIBLE_DEVICES=0 python train.py
+```
+
+执行`python train.py --help`可查看更多使用方式和参数详细说明。
+
+图1为训练152轮的训练损失示意图,其中横坐标轴为训练轮数,纵轴为在训练集上的损失。其中,'g_loss','da_loss'和'db_loss'分别为生成器、判别器A和判别器B的训练损失。
+
+
+### 测试
+
+执行以下命令可以选择已保存的训练权重,对测试集进行测试,通过 `--epoch` 制定权重轮次:
+
+```
+env CUDA_VISIBLE_DEVICES=0 python test.py --init_model=checkpoint/199
+```
+生成结果在 `output/eval`中
+
+
+### 预测
+
+执行以下命令读取单张或多张图片进行预测:
+
+真实街景生成分割图像:
+
+```
+env CUDA_VISIBLE_DEVICES=0 python infer.py \
+ --init_model="./checkpoints/199" --input="./image/testA/123_A.jpg" \
+ --input_style=A
+```
+
+分割图像生成真实街景:
+
+```
+env CUDA_VISIBLE_DEVICES=0 python infer.py \
+ --init_model="checkpoints/199" --input="./image/testB/78_B.jpg" \
+ --input_style=B
+```
+生成结果在 `output/single`中
+
+训练180轮的模型预测效果如fakeA和fakeB所示:
+
+
+
+
+A2B
+
+
+
+
+
+B2A
+
+
+>在本文示例中,均可通过修改`CUDA_VISIBLE_DEVICES`改变使用的显卡号。
diff --git a/cyclegan/__init__.py b/cyclegan/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/cyclegan/check.py b/cyclegan/check.py
new file mode 100644
index 0000000000000..79ab4862d3c20
--- /dev/null
+++ b/cyclegan/check.py
@@ -0,0 +1,58 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import sys
+
+import paddle.fluid as fluid
+
+__all__ = ['check_gpu', 'check_version']
+
+
+def check_gpu(use_gpu):
+ """
+ Log error and exit when set use_gpu=true in paddlepaddle
+ cpu version.
+ """
+ err = "Config use_gpu cannot be set as true while you are " \
+ "using paddlepaddle cpu version ! \nPlease try: \n" \
+ "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
+ "\t2. Set use_gpu as false in config file to run " \
+ "model on CPU"
+
+ try:
+ if use_gpu and not fluid.is_compiled_with_cuda():
+ print(err)
+ sys.exit(1)
+ except Exception as e:
+ pass
+
+
+def check_version():
+ """
+ Log error and exit when the installed version of paddlepaddle is
+ not satisfied.
+ """
+ err = "PaddlePaddle version 1.6 or higher is required, " \
+ "or a suitable develop version is satisfied as well. \n" \
+ "Please make sure the version is good with your code." \
+
+ try:
+ fluid.require_version('1.7.0')
+ except Exception as e:
+ print(err)
+ sys.exit(1)
diff --git a/cyclegan/cyclegan.py b/cyclegan/cyclegan.py
new file mode 100644
index 0000000000000..6fdd21c1bdf41
--- /dev/null
+++ b/cyclegan/cyclegan.py
@@ -0,0 +1,232 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+
+from layers import ConvBN, DeConvBN
+import paddle.fluid as fluid
+from model import Model, Loss
+
+
+class ResnetBlock(fluid.dygraph.Layer):
+ def __init__(self, dim, dropout=False):
+ super(ResnetBlock, self).__init__()
+ self.dropout = dropout
+ self.conv0 = ConvBN(dim, dim, 3, 1)
+ self.conv1 = ConvBN(dim, dim, 3, 1, act=None)
+
+ def forward(self, inputs):
+ out_res = fluid.layers.pad2d(inputs, [1, 1, 1, 1], mode="reflect")
+ out_res = self.conv0(out_res)
+ if self.dropout:
+ out_res = fluid.layers.dropout(out_res, dropout_prob=0.5)
+ out_res = fluid.layers.pad2d(out_res, [1, 1, 1, 1], mode="reflect")
+ out_res = self.conv1(out_res)
+ return out_res + inputs
+
+
+class ResnetGenerator(fluid.dygraph.Layer):
+ def __init__(self, input_channel, n_blocks=9, dropout=False):
+ super(ResnetGenerator, self).__init__()
+
+ self.conv0 = ConvBN(input_channel, 32, 7, 1)
+ self.conv1 = ConvBN(32, 64, 3, 2, padding=1)
+ self.conv2 = ConvBN(64, 128, 3, 2, padding=1)
+
+ dim = 128
+ self.resnet_blocks = []
+ for i in range(n_blocks):
+ block = self.add_sublayer("generator_%d" % (i + 1),
+ ResnetBlock(dim, dropout))
+ self.resnet_blocks.append(block)
+
+ self.deconv0 = DeConvBN(
+ dim, 32 * 2, 3, 2, padding=[1, 1], outpadding=[0, 1, 0, 1])
+ self.deconv1 = DeConvBN(
+ 32 * 2, 32, 3, 2, padding=[1, 1], outpadding=[0, 1, 0, 1])
+
+ self.conv3 = ConvBN(
+ 32, input_channel, 7, 1, norm=False, act=False, use_bias=True)
+
+ def forward(self, inputs):
+ pad_input = fluid.layers.pad2d(inputs, [3, 3, 3, 3], mode="reflect")
+ y = self.conv0(pad_input)
+ y = self.conv1(y)
+ y = self.conv2(y)
+ for resnet_block in self.resnet_blocks:
+ y = resnet_block(y)
+ y = self.deconv0(y)
+ y = self.deconv1(y)
+ y = fluid.layers.pad2d(y, [3, 3, 3, 3], mode="reflect")
+ y = self.conv3(y)
+ y = fluid.layers.tanh(y)
+ return y
+
+
+class NLayerDiscriminator(fluid.dygraph.Layer):
+ def __init__(self, input_channel, d_dims=64, d_nlayers=3):
+ super(NLayerDiscriminator, self).__init__()
+ self.conv0 = ConvBN(
+ input_channel,
+ d_dims,
+ 4,
+ 2,
+ 1,
+ norm=False,
+ use_bias=True,
+ relufactor=0.2)
+
+ nf_mult, nf_mult_prev = 1, 1
+ self.conv_layers = []
+ for n in range(1, d_nlayers):
+ nf_mult_prev = nf_mult
+ nf_mult = min(2**n, 8)
+ conv = self.add_sublayer(
+ 'discriminator_%d' % (n),
+ ConvBN(
+ d_dims * nf_mult_prev,
+ d_dims * nf_mult,
+ 4,
+ 2,
+ 1,
+ relufactor=0.2))
+ self.conv_layers.append(conv)
+
+ nf_mult_prev = nf_mult
+ nf_mult = min(2**d_nlayers, 8)
+ self.conv4 = ConvBN(
+ d_dims * nf_mult_prev, d_dims * nf_mult, 4, 1, 1, relufactor=0.2)
+ self.conv5 = ConvBN(
+ d_dims * nf_mult,
+ 1,
+ 4,
+ 1,
+ 1,
+ norm=False,
+ act=None,
+ use_bias=True,
+ relufactor=0.2)
+
+ def forward(self, inputs):
+ y = self.conv0(inputs)
+ for conv in self.conv_layers:
+ y = conv(y)
+ y = self.conv4(y)
+ y = self.conv5(y)
+ return y
+
+
+class Generator(Model):
+ def __init__(self, input_channel=3):
+ super(Generator, self).__init__()
+ self.g = ResnetGenerator(input_channel)
+
+ def forward(self, input):
+ fake = self.g(input)
+ return fake
+
+
+class GeneratorCombine(Model):
+ def __init__(self, g_AB=None, g_BA=None, d_A=None, d_B=None,
+ is_train=True):
+ super(GeneratorCombine, self).__init__()
+ self.g_AB = g_AB
+ self.g_BA = g_BA
+ self.is_train = is_train
+ if self.is_train:
+ self.d_A = d_A
+ self.d_B = d_B
+
+ def forward(self, input_A, input_B):
+ # Translate images to the other domain
+ fake_B = self.g_AB(input_A)
+ fake_A = self.g_BA(input_B)
+
+ # Translate images back to original domain
+ cyc_A = self.g_BA(fake_B)
+ cyc_B = self.g_AB(fake_A)
+ if not self.is_train:
+ return fake_A, fake_B, cyc_A, cyc_B
+
+ # Identity mapping of images
+ idt_A = self.g_AB(input_B)
+ idt_B = self.g_BA(input_A)
+
+ # Discriminators determines validity of translated images
+ # d_A(g_AB(A))
+ valid_A = self.d_A.d(fake_B)
+ # d_B(g_BA(A))
+ valid_B = self.d_B.d(fake_A)
+ return input_A, input_B, fake_A, fake_B, cyc_A, cyc_B, idt_A, idt_B, valid_A, valid_B
+
+
+class GLoss(Loss):
+ def __init__(self, lambda_A=10., lambda_B=10., lambda_identity=0.5):
+ super(GLoss, self).__init__()
+ self.lambda_A = lambda_A
+ self.lambda_B = lambda_B
+ self.lambda_identity = lambda_identity
+
+ def forward(self, outputs, labels=None):
+ input_A, input_B, fake_A, fake_B, cyc_A, cyc_B, idt_A, idt_B, valid_A, valid_B = outputs
+
+ def mse(a, b):
+ return fluid.layers.reduce_mean(fluid.layers.square(a - b))
+
+ def mae(a, b): # L1Loss
+ return fluid.layers.reduce_mean(fluid.layers.abs(a - b))
+
+ g_A_loss = mse(valid_A, 1.)
+ g_B_loss = mse(valid_B, 1.)
+ g_loss = g_A_loss + g_B_loss
+
+ cyc_A_loss = mae(input_A, cyc_A) * self.lambda_A
+ cyc_B_loss = mae(input_B, cyc_B) * self.lambda_B
+ cyc_loss = cyc_A_loss + cyc_B_loss
+
+ idt_loss_A = mae(input_B, idt_A) * (self.lambda_B *
+ self.lambda_identity)
+ idt_loss_B = mae(input_A, idt_B) * (self.lambda_A *
+ self.lambda_identity)
+ idt_loss = idt_loss_A + idt_loss_B
+
+ loss = cyc_loss + g_loss + idt_loss
+ return loss
+
+
+class Discriminator(Model):
+ def __init__(self, input_channel=3):
+ super(Discriminator, self).__init__()
+ self.d = NLayerDiscriminator(input_channel)
+
+ def forward(self, real, fake):
+ pred_real = self.d(real)
+ pred_fake = self.d(fake)
+ return pred_real, pred_fake
+
+
+class DLoss(Loss):
+ def __init__(self):
+ super(DLoss, self).__init__()
+
+ def forward(self, inputs, labels=None):
+ pred_real, pred_fake = inputs
+ loss = fluid.layers.square(pred_fake) + fluid.layers.square(pred_real -
+ 1.)
+ loss = fluid.layers.reduce_mean(loss / 2.0)
+ return loss
diff --git a/cyclegan/data.py b/cyclegan/data.py
new file mode 100644
index 0000000000000..effa4eeee12a7
--- /dev/null
+++ b/cyclegan/data.py
@@ -0,0 +1,121 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+import os
+import random
+import numpy as np
+from PIL import Image, ImageOps
+
+DATASET = "cityscapes"
+A_LIST_FILE = "./data/" + DATASET + "/trainA.txt"
+B_LIST_FILE = "./data/" + DATASET + "/trainB.txt"
+A_TEST_LIST_FILE = "./data/" + DATASET + "/testA.txt"
+B_TEST_LIST_FILE = "./data/" + DATASET + "/testB.txt"
+IMAGES_ROOT = "./data/" + DATASET + "/"
+
+import paddle.fluid as fluid
+
+
+class Cityscapes(fluid.io.Dataset):
+ def __init__(self, root_path, file_path, mode='train', return_name=False):
+ self.root_path = root_path
+ self.file_path = file_path
+ self.mode = mode
+ self.return_name = return_name
+ self.images = [root_path + l for l in open(file_path, 'r').readlines()]
+
+ def _train(self, image):
+ ## Resize
+ image = image.resize((286, 286), Image.BICUBIC)
+ ## RandomCrop
+ i = np.random.randint(0, 30)
+ j = np.random.randint(0, 30)
+ image = image.crop((i, j, i + 256, j + 256))
+ # RandomHorizontalFlip
+ if np.random.rand() > 0.5:
+ image = ImageOps.mirror(image)
+ return image
+
+ def __getitem__(self, idx):
+ f = self.images[idx].strip("\n\r\t ")
+ image = Image.open(f)
+ if self.mode == 'train':
+ image = self._train(image)
+ else:
+ image = image.resize((256, 256), Image.BICUBIC)
+ # ToTensor
+ image = np.array(image).transpose([2, 0, 1]).astype('float32')
+ image = image / 255.0
+ # Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]
+ image = (image - 0.5) / 0.5
+ if self.return_name:
+ return [image], os.path.basename(f)
+ else:
+ return [image]
+
+ def __len__(self):
+ return len(self.images)
+
+
+def DataA(root=IMAGES_ROOT, fpath=A_LIST_FILE):
+ """
+ Reader of images with A style for training.
+ """
+ return Cityscapes(root, fpath)
+
+
+def DataB(root=IMAGES_ROOT, fpath=B_LIST_FILE):
+ """
+ Reader of images with B style for training.
+ """
+ return Cityscapes(root, fpath)
+
+
+def TestDataA(root=IMAGES_ROOT, fpath=A_TEST_LIST_FILE):
+ """
+ Reader of images with A style for training.
+ """
+ return Cityscapes(root, fpath, mode='test', return_name=True)
+
+
+def TestDataB(root=IMAGES_ROOT, fpath=B_TEST_LIST_FILE):
+ """
+ Reader of images with B style for training.
+ """
+ return Cityscapes(root, fpath, mode='test', return_name=True)
+
+
+class ImagePool(object):
+ def __init__(self, pool_size=50):
+ self.pool = []
+ self.count = 0
+ self.pool_size = pool_size
+
+ def get(self, image):
+ if self.count < self.pool_size:
+ self.pool.append(image)
+ self.count += 1
+ return image
+ else:
+ p = random.random()
+ if p > 0.5:
+ random_id = random.randint(0, self.pool_size - 1)
+ temp = self.pool[random_id]
+ self.pool[random_id] = image
+ return temp
+ else:
+ return image
diff --git a/cyclegan/image/A2B.png b/cyclegan/image/A2B.png
new file mode 100644
index 0000000000000..b67466da9bdf0
Binary files /dev/null and b/cyclegan/image/A2B.png differ
diff --git a/cyclegan/image/B2A.png b/cyclegan/image/B2A.png
new file mode 100644
index 0000000000000..851dd7422144a
Binary files /dev/null and b/cyclegan/image/B2A.png differ
diff --git a/cyclegan/image/net.png b/cyclegan/image/net.png
new file mode 100644
index 0000000000000..46681f8eea989
Binary files /dev/null and b/cyclegan/image/net.png differ
diff --git a/cyclegan/image/testA/123_A.jpg b/cyclegan/image/testA/123_A.jpg
new file mode 100644
index 0000000000000..c78de45861aa3
Binary files /dev/null and b/cyclegan/image/testA/123_A.jpg differ
diff --git a/cyclegan/image/testB/78_B.jpg b/cyclegan/image/testB/78_B.jpg
new file mode 100644
index 0000000000000..849c3be3ce6bd
Binary files /dev/null and b/cyclegan/image/testB/78_B.jpg differ
diff --git a/cyclegan/infer.py b/cyclegan/infer.py
new file mode 100644
index 0000000000000..0b61a958d59e1
--- /dev/null
+++ b/cyclegan/infer.py
@@ -0,0 +1,108 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+import glob
+import numpy as np
+import argparse
+
+from PIL import Image
+from scipy.misc import imsave
+
+import paddle.fluid as fluid
+from check import check_gpu, check_version
+
+from model import Model, Input, set_device
+from cyclegan import Generator, GeneratorCombine
+
+
+def main():
+ place = set_device(FLAGS.device)
+ fluid.enable_dygraph(place) if FLAGS.dynamic else None
+
+ # Generators
+ g_AB = Generator()
+ g_BA = Generator()
+ g = GeneratorCombine(g_AB, g_BA, is_train=False)
+
+ im_shape = [-1, 3, 256, 256]
+ input_A = Input(im_shape, 'float32', 'input_A')
+ input_B = Input(im_shape, 'float32', 'input_B')
+ g.prepare(inputs=[input_A, input_B])
+ g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True)
+
+ out_path = FLAGS.output + "/single"
+ if not os.path.exists(out_path):
+ os.makedirs(out_path)
+ for f in glob.glob(FLAGS.input):
+ image_name = os.path.basename(f)
+ image = Image.open(f).convert('RGB')
+ image = image.resize((256, 256), Image.BICUBIC)
+ image = np.array(image) / 127.5 - 1
+
+ image = image[:, :, 0:3].astype("float32")
+ data = image.transpose([2, 0, 1])[np.newaxis, :]
+
+ if FLAGS.input_style == "A":
+ _, fake, _, _ = g.test([data, data])
+
+ if FLAGS.input_style == "B":
+ fake, _, _, _ = g.test([data, data])
+
+ fake = np.squeeze(fake[0]).transpose([1, 2, 0])
+
+ opath = "{}/fake{}{}".format(out_path, FLAGS.input_style, image_name)
+ imsave(opath, ((fake + 1) * 127.5).astype(np.uint8))
+ print("transfer {} to {}".format(f, opath))
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser("CycleGAN inference")
+ parser.add_argument(
+ "-d", "--dynamic", action='store_false', help="Enable dygraph mode")
+ parser.add_argument(
+ "-p",
+ "--device",
+ type=str,
+ default='gpu',
+ help="device to use, gpu or cpu")
+ parser.add_argument(
+ "-i",
+ "--input",
+ type=str,
+ default='./image/testA/123_A.jpg',
+ help="input image")
+ parser.add_argument(
+ "-o",
+ '--output',
+ type=str,
+ default='output',
+ help="The test result to be saved to.")
+ parser.add_argument(
+ "-m",
+ "--init_model",
+ type=str,
+ default='checkpoint/199',
+ help="The init model file of directory.")
+ parser.add_argument(
+ "-s", "--input_style", type=str, default='A', help="A or B")
+ FLAGS = parser.parse_args()
+ print(FLAGS)
+ check_gpu(str.lower(FLAGS.device) == 'gpu')
+ check_version()
+ main()
diff --git a/cyclegan/layers.py b/cyclegan/layers.py
new file mode 100644
index 0000000000000..8c79ef5ff5416
--- /dev/null
+++ b/cyclegan/layers.py
@@ -0,0 +1,140 @@
+# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import division
+import paddle.fluid as fluid
+from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, BatchNorm
+
+# cudnn is not better when batch size is 1.
+use_cudnn = False
+import numpy as np
+
+
+class ConvBN(fluid.dygraph.Layer):
+ """docstring for Conv2D"""
+
+ def __init__(self,
+ num_channels,
+ num_filters,
+ filter_size,
+ stride=1,
+ padding=0,
+ stddev=0.02,
+ norm=True,
+ is_test=False,
+ act='leaky_relu',
+ relufactor=0.0,
+ use_bias=False):
+ super(ConvBN, self).__init__()
+
+ pattr = fluid.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(
+ loc=0.0, scale=stddev))
+ self.conv = Conv2D(
+ num_channels=num_channels,
+ num_filters=num_filters,
+ filter_size=filter_size,
+ stride=stride,
+ padding=padding,
+ use_cudnn=use_cudnn,
+ param_attr=pattr,
+ bias_attr=use_bias)
+ if norm:
+ self.bn = BatchNorm(
+ num_filters,
+ param_attr=fluid.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(1.0,
+ 0.02)),
+ bias_attr=fluid.ParamAttr(
+ initializer=fluid.initializer.Constant(0.0)),
+ is_test=False,
+ trainable_statistics=True)
+ self.relufactor = relufactor
+ self.norm = norm
+ self.act = act
+
+ def forward(self, inputs):
+ conv = self.conv(inputs)
+ if self.norm:
+ conv = self.bn(conv)
+
+ if self.act == 'leaky_relu':
+ conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
+ elif self.act == 'relu':
+ conv = fluid.layers.relu(conv)
+ else:
+ conv = conv
+
+ return conv
+
+
+class DeConvBN(fluid.dygraph.Layer):
+ def __init__(self,
+ num_channels,
+ num_filters,
+ filter_size,
+ stride=1,
+ padding=[0, 0],
+ outpadding=[0, 0, 0, 0],
+ stddev=0.02,
+ act='leaky_relu',
+ norm=True,
+ is_test=False,
+ relufactor=0.0,
+ use_bias=False):
+ super(DeConvBN, self).__init__()
+
+ pattr = fluid.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(
+ loc=0.0, scale=stddev))
+ self._deconv = Conv2DTranspose(
+ num_channels,
+ num_filters,
+ filter_size=filter_size,
+ stride=stride,
+ padding=padding,
+ param_attr=pattr,
+ bias_attr=use_bias)
+ if norm:
+ self.bn = BatchNorm(
+ num_filters,
+ param_attr=fluid.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(1.0,
+ 0.02)),
+ bias_attr=fluid.ParamAttr(
+ initializer=fluid.initializer.Constant(0.0)),
+ is_test=False,
+ trainable_statistics=True)
+ self.outpadding = outpadding
+ self.relufactor = relufactor
+ self.use_bias = use_bias
+ self.norm = norm
+ self.act = act
+
+ def forward(self, inputs):
+ conv = self._deconv(inputs)
+ conv = fluid.layers.pad2d(
+ conv, paddings=self.outpadding, mode='constant', pad_value=0.0)
+
+ if self.norm:
+ conv = self.bn(conv)
+
+ if self.act == 'leaky_relu':
+ conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
+ elif self.act == 'relu':
+ conv = fluid.layers.relu(conv)
+ else:
+ conv = conv
+
+ return conv
diff --git a/cyclegan/test.py b/cyclegan/test.py
new file mode 100644
index 0000000000000..995663090f07e
--- /dev/null
+++ b/cyclegan/test.py
@@ -0,0 +1,103 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+import argparse
+import numpy as np
+from scipy.misc import imsave
+
+import paddle.fluid as fluid
+from check import check_gpu, check_version
+
+from model import Model, Input, set_device
+from cyclegan import Generator, GeneratorCombine
+import data as data
+
+
+def main():
+ place = set_device(FLAGS.device)
+ fluid.enable_dygraph(place) if FLAGS.dynamic else None
+
+ # Generators
+ g_AB = Generator()
+ g_BA = Generator()
+ g = GeneratorCombine(g_AB, g_BA, is_train=False)
+
+ im_shape = [-1, 3, 256, 256]
+ input_A = Input(im_shape, 'float32', 'input_A')
+ input_B = Input(im_shape, 'float32', 'input_B')
+ g.prepare(inputs=[input_A, input_B])
+ g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True)
+
+ if not os.path.exists(FLAGS.output):
+ os.makedirs(FLAGS.output)
+
+ test_data_A = data.TestDataA()
+ test_data_B = data.TestDataB()
+
+ for i in range(len(test_data_A)):
+ data_A, A_name = test_data_A[i]
+ data_B, B_name = test_data_B[i]
+ data_A = np.array(data_A).astype("float32")
+ data_B = np.array(data_B).astype("float32")
+
+ fake_A, fake_B, cyc_A, cyc_B = g.test([data_A, data_B])
+
+ datas = [fake_A, fake_B, cyc_A, cyc_B, data_A, data_B]
+ odatas = []
+ for o in datas:
+ d = np.squeeze(o[0]).transpose([1, 2, 0])
+ im = ((d + 1) * 127.5).astype(np.uint8)
+ odatas.append(im)
+ imsave(FLAGS.output + "/fakeA_" + B_name, odatas[0])
+ imsave(FLAGS.output + "/fakeB_" + A_name, odatas[1])
+ imsave(FLAGS.output + "/cycA_" + A_name, odatas[2])
+ imsave(FLAGS.output + "/cycB_" + B_name, odatas[3])
+ imsave(FLAGS.output + "/inputA_" + A_name, odatas[4])
+ imsave(FLAGS.output + "/inputB_" + B_name, odatas[5])
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser("CycleGAN test")
+ parser.add_argument(
+ "-d", "--dynamic", action='store_false', help="Enable dygraph mode")
+ parser.add_argument(
+ "-p",
+ "--device",
+ type=str,
+ default='gpu',
+ help="device to use, gpu or cpu")
+ parser.add_argument(
+ "-b", "--batch_size", default=1, type=int, help="batch size")
+ parser.add_argument(
+ "-o",
+ '--output',
+ type=str,
+ default='output/eval',
+ help="The test result to be saved to.")
+ parser.add_argument(
+ "-m",
+ "--init_model",
+ type=str,
+ default='checkpoint/199',
+ help="The init model file of directory.")
+ FLAGS = parser.parse_args()
+ print(FLAGS)
+ check_gpu(str.lower(FLAGS.device) == 'gpu')
+ check_version()
+ main()
diff --git a/cyclegan/train.py b/cyclegan/train.py
new file mode 100644
index 0000000000000..c2203fc19c8e0
--- /dev/null
+++ b/cyclegan/train.py
@@ -0,0 +1,158 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import random
+import argparse
+import contextlib
+import time
+
+import paddle
+import paddle.fluid as fluid
+from check import check_gpu, check_version
+
+from model import Model, Input, set_device
+
+import data as data
+from cyclegan import Generator, Discriminator, GeneratorCombine, GLoss, DLoss
+
+step_per_epoch = 2974
+
+
+def opt(parameters):
+ lr_base = 0.0002
+ bounds = [100, 120, 140, 160, 180]
+ lr = [1., 0.8, 0.6, 0.4, 0.2, 0.1]
+ bounds = [i * step_per_epoch for i in bounds]
+ lr = [i * lr_base for i in lr]
+ optimizer = fluid.optimizer.Adam(
+ learning_rate=fluid.layers.piecewise_decay(
+ boundaries=bounds, values=lr),
+ parameter_list=parameters,
+ beta1=0.5)
+ return optimizer
+
+
+def main():
+ place = set_device(FLAGS.device)
+ fluid.enable_dygraph(place) if FLAGS.dynamic else None
+
+ # Generators
+ g_AB = Generator()
+ g_BA = Generator()
+
+ # Discriminators
+ d_A = Discriminator()
+ d_B = Discriminator()
+
+ g = GeneratorCombine(g_AB, g_BA, d_A, d_B)
+
+ da_params = d_A.parameters()
+ db_params = d_B.parameters()
+ g_params = g_AB.parameters() + g_BA.parameters()
+
+ da_optimizer = opt(da_params)
+ db_optimizer = opt(db_params)
+ g_optimizer = opt(g_params)
+
+ im_shape = [None, 3, 256, 256]
+ input_A = Input(im_shape, 'float32', 'input_A')
+ input_B = Input(im_shape, 'float32', 'input_B')
+ fake_A = Input(im_shape, 'float32', 'fake_A')
+ fake_B = Input(im_shape, 'float32', 'fake_B')
+
+ g_AB.prepare(inputs=[input_A])
+ g_BA.prepare(inputs=[input_B])
+
+ g.prepare(g_optimizer, GLoss(), inputs=[input_A, input_B])
+ d_A.prepare(da_optimizer, DLoss(), inputs=[input_B, fake_B])
+ d_B.prepare(db_optimizer, DLoss(), inputs=[input_A, fake_A])
+
+ if FLAGS.resume:
+ g.load(FLAGS.resume)
+
+ loader_A = fluid.io.DataLoader(
+ data.DataA(),
+ places=place,
+ shuffle=True,
+ return_list=True,
+ batch_size=FLAGS.batch_size)
+ loader_B = fluid.io.DataLoader(
+ data.DataB(),
+ places=place,
+ shuffle=True,
+ return_list=True,
+ batch_size=FLAGS.batch_size)
+
+ A_pool = data.ImagePool()
+ B_pool = data.ImagePool()
+
+ for epoch in range(FLAGS.epoch):
+ for i, (data_A, data_B) in enumerate(zip(loader_A, loader_B)):
+ data_A = data_A[0][0] if not FLAGS.dynamic else data_A[0]
+ data_B = data_B[0][0] if not FLAGS.dynamic else data_B[0]
+ start = time.time()
+
+ fake_B = g_AB.test(data_A)[0]
+ fake_A = g_BA.test(data_B)[0]
+ g_loss = g.train([data_A, data_B])[0]
+ fake_pb = B_pool.get(fake_B)
+ da_loss = d_A.train([data_B, fake_pb])[0]
+
+ fake_pa = A_pool.get(fake_A)
+ db_loss = d_B.train([data_A, fake_pa])[0]
+
+ t = time.time() - start
+ if i % 20 == 0:
+ print("epoch: {} | step: {:3d} | g_loss: {:.4f} | " \
+ "da_loss: {:.4f} | db_loss: {:.4f} | s/step {:.4f}".
+ format(epoch, i, g_loss[0], da_loss[0], db_loss[0], t))
+ g.save('{}/{}'.format(FLAGS.checkpoint_path, epoch))
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser("CycleGAN Training on Cityscapes")
+ parser.add_argument(
+ "-d", "--dynamic", action='store_false', help="Enable dygraph mode")
+ parser.add_argument(
+ "-p",
+ "--device",
+ type=str,
+ default='gpu',
+ help="device to use, gpu or cpu")
+ parser.add_argument(
+ "-e", "--epoch", default=200, type=int, help="Epoch number")
+ parser.add_argument(
+ "-b", "--batch_size", default=1, type=int, help="batch size")
+ parser.add_argument(
+ "-o",
+ "--checkpoint_path",
+ type=str,
+ default='checkpoint',
+ help="path to save checkpoint")
+ parser.add_argument(
+ "-r",
+ "--resume",
+ default=None,
+ type=str,
+ help="checkpoint path to resume")
+ FLAGS = parser.parse_args()
+ print(FLAGS)
+ check_gpu(str.lower(FLAGS.device) == 'gpu')
+ check_version()
+ main()
diff --git a/datasets/folder.py b/datasets/folder.py
index 2b724b4cb8355..e853e7e106cf7 100644
--- a/datasets/folder.py
+++ b/datasets/folder.py
@@ -1,3 +1,17 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
import os
import sys
import cv2
@@ -6,11 +20,11 @@
def has_valid_extension(filename, extensions):
- """Checks if a file is an allowed extension.
+ """Checks if a file is a vilid extension.
Args:
- filename (string): path to a file
- extensions (tuple of strings): extensions to consider (lowercase)
+ filename (str): path to a file
+ extensions (tuple of str): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
diff --git a/image_classification/README.MD b/image_classification/README.MD
index 2f450d5a58f17..9be3362090e97 100644
--- a/image_classification/README.MD
+++ b/image_classification/README.MD
@@ -30,6 +30,7 @@
```bash
python -u main.py --arch resnet50 /path/to/imagenet -d
```
+-d 是使用动态模式训练,默认为静态图模式。
### 多卡训练
执行如下命令进行训练
@@ -64,11 +65,28 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch main.py --arch
* **output-dir**: 模型文件保存的文件夹,默认值:'output'
* **num-workers**: dataloader的进程数,默认值:4
* **resume**: 恢复训练的模型路径,默认值:None
-* **eval-only**: 仅仅进行预测,默认值:False
+* **eval-only**: 是否仅仅进行预测
+* **lr-scheduler**: 学习率衰减策略,默认值:piecewise
+* **milestones**: piecewise学习率衰减策略的边界,默认值:[30, 60, 80]
+* **weight-decay**: 模型权重正则化系数,默认值:1e-4
+* **momentum**: SGD优化器的动量,默认值:0.9
## 模型
| 模型 | top1 acc | top5 acc |
| --- | --- | --- |
-| ResNet50 | 76.28 | 93.04 |
+| [ResNet50](https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams) | 76.28 | 93.04 |
+| [vgg16](https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams) | 71.84 | 90.71 |
+| [mobilenet_v1](https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams) | 71.25 | 89.92 |
+| [mobilenet_v2](https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams) | 72.27 | 90.66 |
+
+上述模型的复现参数请参考scripts下的脚本。
+
+
+## 参考文献
+- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
+- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
+- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
+- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
+
diff --git a/image_classification/imagenet_dataset.py b/image_classification/imagenet_dataset.py
index 6fcd8840fb500..948ac5b8bb4c3 100644
--- a/image_classification/imagenet_dataset.py
+++ b/image_classification/imagenet_dataset.py
@@ -1,3 +1,17 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
import os
import cv2
import math
diff --git a/image_classification/main.py b/image_classification/main.py
index 8f8a44e67cdfb..781824fa60f9d 100644
--- a/image_classification/main.py
+++ b/image_classification/main.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -37,23 +37,36 @@
def make_optimizer(step_per_epoch, parameter_list=None):
base_lr = FLAGS.lr
- momentum = 0.9
- weight_decay = 1e-4
+ lr_scheduler = FLAGS.lr_scheduler
+ momentum = FLAGS.momentum
+ weight_decay = FLAGS.weight_decay
+
+ if lr_scheduler == 'piecewise':
+ milestones = FLAGS.milestones
+ boundaries = [step_per_epoch * e for e in milestones]
+ values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
+ learning_rate = fluid.layers.piecewise_decay(
+ boundaries=boundaries, values=values)
+ elif lr_scheduler == 'cosine':
+ learning_rate = fluid.layers.cosine_decay(base_lr, step_per_epoch,
+ FLAGS.epoch)
+ else:
+ raise ValueError(
+ "Expected lr_scheduler in ['piecewise', 'cosine'], but got {}".
+ format(lr_scheduler))
- boundaries = [step_per_epoch * e for e in [30, 60, 80]]
- values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
- learning_rate = fluid.layers.piecewise_decay(
- boundaries=boundaries, values=values)
learning_rate = fluid.layers.linear_lr_warmup(
learning_rate=learning_rate,
warmup_steps=5 * step_per_epoch,
start_lr=0.,
end_lr=base_lr)
+
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=momentum,
regularization=fluid.regularizer.L2Decay(weight_decay),
parameter_list=parameter_list)
+
return optimizer
@@ -138,6 +151,20 @@ def main():
help="checkpoint path to resume")
parser.add_argument(
"--eval-only", action='store_true', help="enable dygraph mode")
+ parser.add_argument(
+ "--lr-scheduler",
+ default='piecewise',
+ type=str,
+ help="learning rate scheduler")
+ parser.add_argument(
+ "--milestones",
+ nargs='+',
+ type=int,
+ default=[30, 60, 80],
+ help="piecewise decay milestones")
+ parser.add_argument(
+ "--weight-decay", default=1e-4, type=float, help="weight decay")
+ parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
FLAGS = parser.parse_args()
assert FLAGS.data, "error: must provide data path"
main()
diff --git a/model.py b/model.py
index da5cebd669b83..6fecbf1d29fa3 100644
--- a/model.py
+++ b/model.py
@@ -42,6 +42,14 @@
def set_device(device):
+ """
+ Args:
+ device (str): specify device type, 'cpu' or 'gpu'.
+
+ Returns:
+ fluid.CUDAPlace or fluid.CPUPlace: Created GPU or CPU place.
+ """
+
assert isinstance(device, six.string_types) and device.lower() in ['cpu', 'gpu'], \
"Expected device in ['cpu', 'gpu'], but got {}".format(device)
@@ -114,9 +122,9 @@ def __init__(self, average=True):
def forward(self, outputs, labels):
raise NotImplementedError()
- def __call__(self, outputs, labels):
+ def __call__(self, outputs, labels=None):
labels = to_list(labels)
- if in_dygraph_mode():
+ if in_dygraph_mode() and labels:
labels = [to_variable(l) for l in labels]
losses = to_list(self.forward(to_list(outputs), labels))
if self.average:
@@ -853,8 +861,6 @@ def prepare(self,
if not isinstance(inputs, (list, dict, Input)):
raise TypeError(
"'inputs' must be list or dict in static graph mode")
- if loss_function and not isinstance(labels, (list, Input)):
- raise TypeError("'labels' must be list in static graph mode")
metrics = metrics or []
for metric in to_list(metrics):
@@ -1084,7 +1090,11 @@ def evaluate(
return eval_result
- def predict(self, test_data, batch_size=1, num_workers=0, stack_outputs=True):
+ def predict(self,
+ test_data,
+ batch_size=1,
+ num_workers=0,
+ stack_outputs=True):
"""
FIXME: add more comments and usage
Args:
diff --git a/models/__init__.py b/models/__init__.py
index 85cbd8cac3816..02071502d382d 100644
--- a/models/__init__.py
+++ b/models/__init__.py
@@ -13,13 +13,22 @@
#limitations under the License.
from . import resnet
+from . import vgg
+from . import mobilenetv1
+from . import mobilenetv2
from . import darknet
from . import yolov3
from .resnet import *
+from .mobilenetv1 import *
+from .mobilenetv2 import *
+from .vgg import *
from .darknet import *
from .yolov3 import *
__all__ = resnet.__all__ \
+ + vgg.__all__ \
+ + mobilenetv1.__all__ \
+ + mobilenetv2.__all__ \
+ darknet.__all__ \
+ yolov3.__all__
diff --git a/models/mobilenetv1.py b/models/mobilenetv1.py
new file mode 100644
index 0000000000000..c2e7959b1b9bf
--- /dev/null
+++ b/models/mobilenetv1.py
@@ -0,0 +1,266 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import paddle
+import paddle.fluid as fluid
+from paddle.fluid.initializer import MSRA
+from paddle.fluid.param_attr import ParamAttr
+from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
+
+from model import Model
+from .download import get_weights_path
+
+__all__ = ['MobileNetV1', 'mobilenet_v1']
+
+model_urls = {
+ 'mobilenetv1_1.0':
+ ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams',
+ 'bf0d25cb0bed1114d9dac9384ce2b4a6')
+}
+
+
+class ConvBNLayer(fluid.dygraph.Layer):
+ def __init__(self,
+ num_channels,
+ filter_size,
+ num_filters,
+ stride,
+ padding,
+ channels=None,
+ num_groups=1,
+ act='relu',
+ use_cudnn=True,
+ name=None):
+ super(ConvBNLayer, self).__init__()
+
+ self._conv = Conv2D(
+ num_channels=num_channels,
+ num_filters=num_filters,
+ filter_size=filter_size,
+ stride=stride,
+ padding=padding,
+ groups=num_groups,
+ act=None,
+ use_cudnn=use_cudnn,
+ param_attr=ParamAttr(
+ initializer=MSRA(), name=self.full_name() + "_weights"),
+ bias_attr=False)
+
+ self._batch_norm = BatchNorm(
+ num_filters,
+ act=act,
+ param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
+ bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
+ moving_mean_name=self.full_name() + "_bn" + '_mean',
+ moving_variance_name=self.full_name() + "_bn" + '_variance')
+
+ def forward(self, inputs):
+ y = self._conv(inputs)
+ y = self._batch_norm(y)
+ return y
+
+
+class DepthwiseSeparable(fluid.dygraph.Layer):
+ def __init__(self,
+ num_channels,
+ num_filters1,
+ num_filters2,
+ num_groups,
+ stride,
+ scale,
+ name=None):
+ super(DepthwiseSeparable, self).__init__()
+
+ self._depthwise_conv = ConvBNLayer(
+ num_channels=num_channels,
+ num_filters=int(num_filters1 * scale),
+ filter_size=3,
+ stride=stride,
+ padding=1,
+ num_groups=int(num_groups * scale),
+ use_cudnn=False)
+
+ self._pointwise_conv = ConvBNLayer(
+ num_channels=int(num_filters1 * scale),
+ filter_size=1,
+ num_filters=int(num_filters2 * scale),
+ stride=1,
+ padding=0)
+
+ def forward(self, inputs):
+ y = self._depthwise_conv(inputs)
+ y = self._pointwise_conv(y)
+ return y
+
+
+class MobileNetV1(Model):
+ """MobileNetV1 model from
+ `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_.
+
+ Args:
+ scale (float): scale of channels in each layer. Default: 1.0.
+ class_dim (int): output dim of last fc layer. Default: 1000.
+ """
+
+ def __init__(self, scale=1.0, class_dim=1000):
+ super(MobileNetV1, self).__init__()
+ self.scale = scale
+ self.dwsl = []
+
+ self.conv1 = ConvBNLayer(
+ num_channels=3,
+ filter_size=3,
+ channels=3,
+ num_filters=int(32 * scale),
+ stride=2,
+ padding=1)
+
+ dws21 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(32 * scale),
+ num_filters1=32,
+ num_filters2=64,
+ num_groups=32,
+ stride=1,
+ scale=scale),
+ name="conv2_1")
+ self.dwsl.append(dws21)
+
+ dws22 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(64 * scale),
+ num_filters1=64,
+ num_filters2=128,
+ num_groups=64,
+ stride=2,
+ scale=scale),
+ name="conv2_2")
+ self.dwsl.append(dws22)
+
+ dws31 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(128 * scale),
+ num_filters1=128,
+ num_filters2=128,
+ num_groups=128,
+ stride=1,
+ scale=scale),
+ name="conv3_1")
+ self.dwsl.append(dws31)
+
+ dws32 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(128 * scale),
+ num_filters1=128,
+ num_filters2=256,
+ num_groups=128,
+ stride=2,
+ scale=scale),
+ name="conv3_2")
+ self.dwsl.append(dws32)
+
+ dws41 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(256 * scale),
+ num_filters1=256,
+ num_filters2=256,
+ num_groups=256,
+ stride=1,
+ scale=scale),
+ name="conv4_1")
+ self.dwsl.append(dws41)
+
+ dws42 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(256 * scale),
+ num_filters1=256,
+ num_filters2=512,
+ num_groups=256,
+ stride=2,
+ scale=scale),
+ name="conv4_2")
+ self.dwsl.append(dws42)
+
+ for i in range(5):
+ tmp = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(512 * scale),
+ num_filters1=512,
+ num_filters2=512,
+ num_groups=512,
+ stride=1,
+ scale=scale),
+ name="conv5_" + str(i + 1))
+ self.dwsl.append(tmp)
+
+ dws56 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(512 * scale),
+ num_filters1=512,
+ num_filters2=1024,
+ num_groups=512,
+ stride=2,
+ scale=scale),
+ name="conv5_6")
+ self.dwsl.append(dws56)
+
+ dws6 = self.add_sublayer(
+ sublayer=DepthwiseSeparable(
+ num_channels=int(1024 * scale),
+ num_filters1=1024,
+ num_filters2=1024,
+ num_groups=1024,
+ stride=1,
+ scale=scale),
+ name="conv6")
+ self.dwsl.append(dws6)
+
+ self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
+
+ self.out = Linear(
+ int(1024 * scale),
+ class_dim,
+ act='softmax',
+ param_attr=ParamAttr(
+ initializer=MSRA(), name=self.full_name() + "fc7_weights"),
+ bias_attr=ParamAttr(name="fc7_offset"))
+
+ def forward(self, inputs):
+ y = self.conv1(inputs)
+ for dws in self.dwsl:
+ y = dws(y)
+ y = self.pool2d_avg(y)
+ y = fluid.layers.reshape(y, shape=[-1, 1024])
+ y = self.out(y)
+ return y
+
+
+def _mobilenet(arch, pretrained=False, **kwargs):
+ model = MobileNetV1(**kwargs)
+ if pretrained:
+ assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
+ arch)
+ weight_path = get_weights_path(model_urls[arch][0],
+ model_urls[arch][1])
+ assert weight_path.endswith(
+ '.pdparams'), "suffix of weight must be .pdparams"
+ model.load(weight_path[:-9])
+
+ return model
+
+
+def mobilenet_v1(pretrained=False, scale=1.0):
+ model = _mobilenet('mobilenetv1_' + str(scale), pretrained, scale=scale)
+ return model
diff --git a/models/mobilenetv2.py b/models/mobilenetv2.py
new file mode 100644
index 0000000000000..0079ee79d932a
--- /dev/null
+++ b/models/mobilenetv2.py
@@ -0,0 +1,252 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import paddle
+import paddle.fluid as fluid
+from paddle.fluid.param_attr import ParamAttr
+from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
+
+from model import Model
+from .download import get_weights_path
+
+__all__ = ['MobileNetV2', 'mobilenet_v2']
+
+model_urls = {
+ 'mobilenetv2_1.0':
+ ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
+ '8ff74f291f72533f2a7956a4efff9d88')
+}
+
+
+class ConvBNLayer(fluid.dygraph.Layer):
+ def __init__(self,
+ num_channels,
+ filter_size,
+ num_filters,
+ stride,
+ padding,
+ channels=None,
+ num_groups=1,
+ use_cudnn=True):
+ super(ConvBNLayer, self).__init__()
+
+ tmp_param = ParamAttr(name=self.full_name() + "_weights")
+ self._conv = Conv2D(
+ num_channels=num_channels,
+ num_filters=num_filters,
+ filter_size=filter_size,
+ stride=stride,
+ padding=padding,
+ groups=num_groups,
+ act=None,
+ use_cudnn=use_cudnn,
+ param_attr=tmp_param,
+ bias_attr=False)
+
+ self._batch_norm = BatchNorm(
+ num_filters,
+ param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
+ bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
+ moving_mean_name=self.full_name() + "_bn" + '_mean',
+ moving_variance_name=self.full_name() + "_bn" + '_variance')
+
+ def forward(self, inputs, if_act=True):
+ y = self._conv(inputs)
+ y = self._batch_norm(y)
+ if if_act:
+ y = fluid.layers.relu6(y)
+ return y
+
+
+class InvertedResidualUnit(fluid.dygraph.Layer):
+ def __init__(
+ self,
+ num_channels,
+ num_in_filter,
+ num_filters,
+ stride,
+ filter_size,
+ padding,
+ expansion_factor, ):
+ super(InvertedResidualUnit, self).__init__()
+ num_expfilter = int(round(num_in_filter * expansion_factor))
+ self._expand_conv = ConvBNLayer(
+ num_channels=num_channels,
+ num_filters=num_expfilter,
+ filter_size=1,
+ stride=1,
+ padding=0,
+ num_groups=1)
+
+ self._bottleneck_conv = ConvBNLayer(
+ num_channels=num_expfilter,
+ num_filters=num_expfilter,
+ filter_size=filter_size,
+ stride=stride,
+ padding=padding,
+ num_groups=num_expfilter,
+ use_cudnn=False)
+
+ self._linear_conv = ConvBNLayer(
+ num_channels=num_expfilter,
+ num_filters=num_filters,
+ filter_size=1,
+ stride=1,
+ padding=0,
+ num_groups=1)
+
+ def forward(self, inputs, ifshortcut):
+ y = self._expand_conv(inputs, if_act=True)
+ y = self._bottleneck_conv(y, if_act=True)
+ y = self._linear_conv(y, if_act=False)
+ if ifshortcut:
+ y = fluid.layers.elementwise_add(inputs, y)
+ return y
+
+
+class InvresiBlocks(fluid.dygraph.Layer):
+ def __init__(self, in_c, t, c, n, s):
+ super(InvresiBlocks, self).__init__()
+
+ self._first_block = InvertedResidualUnit(
+ num_channels=in_c,
+ num_in_filter=in_c,
+ num_filters=c,
+ stride=s,
+ filter_size=3,
+ padding=1,
+ expansion_factor=t)
+
+ self._inv_blocks = []
+ for i in range(1, n):
+ tmp = self.add_sublayer(
+ sublayer=InvertedResidualUnit(
+ num_channels=c,
+ num_in_filter=c,
+ num_filters=c,
+ stride=1,
+ filter_size=3,
+ padding=1,
+ expansion_factor=t),
+ name=self.full_name() + "_" + str(i + 1))
+ self._inv_blocks.append(tmp)
+
+ def forward(self, inputs):
+ y = self._first_block(inputs, ifshortcut=False)
+ for inv_block in self._inv_blocks:
+ y = inv_block(y, ifshortcut=True)
+ return y
+
+
+class MobileNetV2(Model):
+ """MobileNetV2 model from
+ `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_.
+
+ Args:
+ scale (float): scale of channels in each layer. Default: 1.0.
+ class_dim (int): output dim of last fc layer. Default: 1000.
+ """
+
+ def __init__(self, scale=1.0, class_dim=1000):
+ super(MobileNetV2, self).__init__()
+ self.scale = scale
+ self.class_dim = class_dim
+
+ bottleneck_params_list = [
+ (1, 16, 1, 1),
+ (6, 24, 2, 2),
+ (6, 32, 3, 2),
+ (6, 64, 4, 2),
+ (6, 96, 3, 1),
+ (6, 160, 3, 2),
+ (6, 320, 1, 1),
+ ]
+
+ #1. conv1
+ self._conv1 = ConvBNLayer(
+ num_channels=3,
+ num_filters=int(32 * scale),
+ filter_size=3,
+ stride=2,
+ padding=1)
+
+ #2. bottleneck sequences
+ self._invl = []
+ i = 1
+ in_c = int(32 * scale)
+ for layer_setting in bottleneck_params_list:
+ t, c, n, s = layer_setting
+ i += 1
+ tmp = self.add_sublayer(
+ sublayer=InvresiBlocks(
+ in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
+ name='conv' + str(i))
+ self._invl.append(tmp)
+ in_c = int(c * scale)
+
+ #3. last_conv
+ self._out_c = int(1280 * scale) if scale > 1.0 else 1280
+ self._conv9 = ConvBNLayer(
+ num_channels=in_c,
+ num_filters=self._out_c,
+ filter_size=1,
+ stride=1,
+ padding=0)
+
+ #4. pool
+ self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
+
+ #5. fc
+ tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
+ self._fc = Linear(
+ self._out_c,
+ class_dim,
+ act='softmax',
+ param_attr=tmp_param,
+ bias_attr=ParamAttr(name="fc10_offset"))
+
+ def forward(self, inputs):
+ y = self._conv1(inputs, if_act=True)
+ for inv in self._invl:
+ y = inv(y)
+ y = self._conv9(y, if_act=True)
+ y = self._pool2d_avg(y)
+ y = fluid.layers.reshape(y, shape=[-1, self._out_c])
+ y = self._fc(y)
+ return y
+
+
+def _mobilenet(arch, pretrained=False, **kwargs):
+ model = MobileNetV2(**kwargs)
+ if pretrained:
+ assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
+ arch)
+ weight_path = get_weights_path(model_urls[arch][0],
+ model_urls[arch][1])
+ assert weight_path.endswith(
+ '.pdparams'), "suffix of weight must be .pdparams"
+ model.load(weight_path[:-9])
+
+ return model
+
+
+def mobilenet_v2(pretrained=False, scale=1.0):
+ """MobileNetV2
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ model = _mobilenet('mobilenetv2_' + str(scale), pretrained, scale=scale)
+ return model
diff --git a/models/resnet.py b/models/resnet.py
index 1865a472f7e5f..f2cf4b603e689 100644
--- a/models/resnet.py
+++ b/models/resnet.py
@@ -1,3 +1,17 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
from __future__ import division
from __future__ import print_function
@@ -11,7 +25,9 @@
from model import Model
from .download import get_weights_path
-__all__ = ['ResNet', 'resnet50', 'resnet101', 'resnet152']
+__all__ = [
+ 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
+]
model_urls = {
'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
@@ -48,7 +64,52 @@ def forward(self, inputs):
return x
+class BasicBlock(fluid.dygraph.Layer):
+
+ expansion = 1
+
+ def __init__(self, num_channels, num_filters, stride, shortcut=True):
+ super(BasicBlock, self).__init__()
+
+ self.conv0 = ConvBNLayer(
+ num_channels=num_channels,
+ num_filters=num_filters,
+ filter_size=3,
+ act='relu')
+ self.conv1 = ConvBNLayer(
+ num_channels=num_filters,
+ num_filters=num_filters,
+ filter_size=3,
+ stride=stride,
+ act='relu')
+
+ if not shortcut:
+ self.short = ConvBNLayer(
+ num_channels=num_channels,
+ num_filters=num_filters,
+ filter_size=1,
+ stride=stride)
+
+ self.shortcut = shortcut
+
+ def forward(self, inputs):
+ y = self.conv0(inputs)
+ conv1 = self.conv1(y)
+
+ if self.shortcut:
+ short = inputs
+ else:
+ short = self.short(inputs)
+
+ y = short + conv1
+
+ return fluid.layers.relu(y)
+
+
class BottleneckBlock(fluid.dygraph.Layer):
+
+ expansion = 4
+
def __init__(self, num_channels, num_filters, stride, shortcut=True):
super(BottleneckBlock, self).__init__()
@@ -65,20 +126,20 @@ def __init__(self, num_channels, num_filters, stride, shortcut=True):
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
- num_filters=num_filters * 4,
+ num_filters=num_filters * self.expansion,
filter_size=1,
act=None)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
- num_filters=num_filters * 4,
+ num_filters=num_filters * self.expansion,
filter_size=1,
stride=stride)
self.shortcut = shortcut
- self._num_channels_out = num_filters * 4
+ self._num_channels_out = num_filters * self.expansion
def forward(self, inputs):
x = self.conv0(inputs)
@@ -92,16 +153,25 @@ def forward(self, inputs):
x = fluid.layers.elementwise_add(x=short, y=conv2)
- layer_helper = LayerHelper(self.full_name(), act='relu')
- return layer_helper.append_activation(x)
- # return fluid.layers.relu(x)
+ return fluid.layers.relu(x)
class ResNet(Model):
+ """ResNet model from
+ `"Deep Residual Learning for Image Recognition" `_
+
+ Args:
+ Block (BasicBlock|BottleneckBlock): block module of model.
+ depth (int): layers of resnet, default: 50.
+ num_classes (int): output dim of last fc layer, default: 1000.
+ """
+
def __init__(self, Block, depth=50, num_classes=1000):
super(ResNet, self).__init__()
layer_config = {
+ 18: [2, 2, 2, 2],
+ 34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
@@ -111,8 +181,9 @@ def __init__(self, Block, depth=50, num_classes=1000):
layer_config.keys(), depth)
layers = layer_config[depth]
- num_in = [64, 256, 512, 1024]
- num_out = [64, 128, 256, 512]
+
+ in_channels = 64
+ out_channels = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3,
@@ -128,9 +199,11 @@ def __init__(self, Block, depth=50, num_classes=1000):
blocks = []
shortcut = False
for b in range(num_blocks):
+ if b == 1:
+ in_channels = out_channels[idx] * Block.expansion
block = Block(
- num_channels=num_in[idx] if b == 0 else num_out[idx] * 4,
- num_filters=num_out[idx],
+ num_channels=in_channels,
+ num_filters=out_channels[idx],
stride=2 if b == 0 and idx != 0 else 1,
shortcut=shortcut)
blocks.append(block)
@@ -142,8 +215,8 @@ def __init__(self, Block, depth=50, num_classes=1000):
self.global_pool = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
- stdv = 1.0 / math.sqrt(2048 * 1.0)
- self.fc_input_dim = num_out[-1] * 4 * 1 * 1
+ stdv = 1.0 / math.sqrt(out_channels[-1] * Block.expansion * 1.0)
+ self.fc_input_dim = out_channels[-1] * Block.expansion * 1 * 1
self.fc = Linear(
self.fc_input_dim,
num_classes,
@@ -175,13 +248,46 @@ def _resnet(arch, Block, depth, pretrained):
return model
+def resnet18(pretrained=False):
+ """ResNet 18-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _resnet('resnet18', BasicBlock, 18, pretrained)
+
+
+def resnet34(pretrained=False):
+ """ResNet 34-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _resnet('resnet34', BasicBlock, 34, pretrained)
+
+
def resnet50(pretrained=False):
+ """ResNet 50-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
return _resnet('resnet50', BottleneckBlock, 50, pretrained)
def resnet101(pretrained=False):
+ """ResNet 101-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
return _resnet('resnet101', BottleneckBlock, 101, pretrained)
def resnet152(pretrained=False):
+ """ResNet 152-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
return _resnet('resnet152', BottleneckBlock, 152, pretrained)
diff --git a/models/vgg.py b/models/vgg.py
new file mode 100644
index 0000000000000..b8ca21f0c370c
--- /dev/null
+++ b/models/vgg.py
@@ -0,0 +1,200 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle
+import paddle.fluid as fluid
+from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
+from paddle.fluid.dygraph.container import Sequential
+
+from model import Model
+from .download import get_weights_path
+
+__all__ = [
+ 'VGG',
+ 'vgg11',
+ 'vgg11_bn',
+ 'vgg13',
+ 'vgg13_bn',
+ 'vgg16',
+ 'vgg16_bn',
+ 'vgg19_bn',
+ 'vgg19',
+]
+
+model_urls = {
+ 'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
+ 'c788f453a3b999063e8da043456281ee')
+}
+
+
+class Classifier(fluid.dygraph.Layer):
+ def __init__(self, num_classes):
+ super(Classifier, self).__init__()
+ self.linear1 = Linear(512 * 7 * 7, 4096)
+ self.linear2 = Linear(4096, 4096)
+ self.linear3 = Linear(4096, num_classes, act='softmax')
+
+ def forward(self, x):
+ x = self.linear1(x)
+ x = fluid.layers.relu(x)
+ x = fluid.layers.dropout(x, 0.5)
+ x = self.linear2(x)
+ x = fluid.layers.relu(x)
+ x = fluid.layers.dropout(x, 0.5)
+ out = self.linear3(x)
+ return out
+
+
+class VGG(Model):
+ """VGG model from
+ `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_
+
+ Args:
+ features (fluid.dygraph.Layer): vgg features create by function make_layers.
+ num_classes (int): output dim of last fc layer. Default: 1000.
+ """
+
+ def __init__(self, features, num_classes=1000):
+ super(VGG, self).__init__()
+ self.features = features
+ classifier = Classifier(num_classes)
+ self.classifier = self.add_sublayer("classifier",
+ Sequential(classifier))
+
+ def forward(self, x):
+ x = self.features(x)
+ x = fluid.layers.flatten(x, 1)
+ x = self.classifier(x)
+ return x
+
+
+def make_layers(cfg, batch_norm=False):
+ layers = []
+ in_channels = 3
+
+ for v in cfg:
+ if v == 'M':
+ layers += [Pool2D(pool_size=2, pool_stride=2)]
+ else:
+ if batch_norm:
+ conv2d = Conv2D(in_channels, v, filter_size=3, padding=1)
+ layers += [conv2d, BatchNorm(v, act='relu')]
+ else:
+ conv2d = Conv2D(
+ in_channels, v, filter_size=3, padding=1, act='relu')
+ layers += [conv2d]
+ in_channels = v
+ return Sequential(*layers)
+
+
+cfgs = {
+ 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
+ 'B':
+ [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
+ 'D': [
+ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M',
+ 512, 512, 512, 'M'
+ ],
+ 'E': [
+ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512,
+ 512, 'M', 512, 512, 512, 512, 'M'
+ ],
+}
+
+
+def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
+ model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
+
+ if pretrained:
+ assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
+ arch)
+ weight_path = get_weights_path(model_urls[arch][0],
+ model_urls[arch][1])
+ assert weight_path.endswith(
+ '.pdparams'), "suffix of weight must be .pdparams"
+ model.load(weight_path[:-9])
+
+ return model
+
+
+def vgg11(pretrained=False, **kwargs):
+ """VGG 11-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg11', 'A', False, pretrained, **kwargs)
+
+
+def vgg11_bn(pretrained=False, **kwargs):
+ """VGG 11-layer model with batch normalization
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg11_bn', 'A', True, pretrained, **kwargs)
+
+
+def vgg13(pretrained=False, **kwargs):
+ """VGG 13-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg13', 'B', False, pretrained, **kwargs)
+
+
+def vgg13_bn(pretrained=False, **kwargs):
+ """VGG 13-layer model with batch normalization
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg13_bn', 'B', True, pretrained, **kwargs)
+
+
+def vgg16(pretrained=False, **kwargs):
+ """VGG 16-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg16', 'D', False, pretrained, **kwargs)
+
+
+def vgg16_bn(pretrained=False, **kwargs):
+ """VGG 16-layer with batch normalization
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg16_bn', 'D', True, pretrained, **kwargs)
+
+
+def vgg19(pretrained=False, **kwargs):
+ """VGG 19-layer model
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg19', 'E', False, pretrained, **kwargs)
+
+
+def vgg19_bn(pretrained=False, **kwargs):
+ """VGG 19-layer model with batch normalization
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ return _vgg('vgg19_bn', 'E', True, pretrained, **kwargs)