From d7e808236f5e83aa122d00dcf8dfa90b75fc9f4c Mon Sep 17 00:00:00 2001 From: Michael Hucka Date: Mon, 16 Dec 2024 10:50:32 -0800 Subject: [PATCH 1/3] Enhance Getting Started notebook There are no code or functional changes in this commit. These changes were motivated by wanting to provide a version of the notebook in Google Colab, so that the Stim landing page on quantumai.google could link to it. Because the notebook in Colab will be outside the context of the GitHub repository, I felt it would be helpful to provide more contextual information at the beginning. While at it, I saw a few minor typos to fix ... and then one thing led to another, and more editing ensued all over. --- doc/getting_started.ipynb | 41790 ++++++++++++++++++------------------ 1 file changed, 20912 insertions(+), 20878 deletions(-) diff --git a/doc/getting_started.ipynb b/doc/getting_started.ipynb index bab6b62f..6c423f93 100644 --- a/doc/getting_started.ipynb +++ b/doc/getting_started.ipynb @@ -1,20963 +1,20997 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "7vg1S92NEAXs" - }, - "source": [ - "## Index\n", - "\n", - "1. [What is stim?](#what-is-stim)\n", - "2. [Install the `stim` python package.](#install-stim)\n", - "3. [Create a simple circuit, and sample from it.](#make-circuit)\n", - "4. [Add detector annotations to a circuit, and sample them.](#sample-detectors)\n", - "5. [Generate example error correction circuits.](#make-qec-circuits)\n", - "6. [Use `pymatching` to correct errors in a circuit.](#use-pymatching)\n", - "7. [Estimate the threshold of a repetition code using Monte Carlo sampling.](#rep-code)\n", - "8. [Use `sinter` to streamline the Monte Carlo sampling process.](#use-sinter)\n", - "9. [Estimate the threshold and footprint of a surface code.](#surface-code)\n", - "10. [Additional resources](additional-resources)\n", - "\n", - "## Prereqs\n", - "\n", - "This tutorial assumes you can read and write Python code, and that you have a working Python 3.7+ environment (perhaps you are reading this notebook in such an environment).\n", - "\n", - "This tutorial assumes you understand what a quantum circuit is. For example, it assumes you know what a qubit is, what a Hadamard gate is, and what a CNOT gate is.\n", - "\n", - "This tutorial assumes you are a *little* familiar with stabilizer circuits. For example, it assumes you've heard that they can be simulated cheaply and that they can represent protocols such as quantum error correction.\n", - "\n", - "This tutorial assumes you are a *little* familiar with quantum error correcting codes. For example, it assumes you've heard the term \"surface code\" and \"threshold\"." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ulLKqhVxmfxr", - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "\n", - "# 1. What is Stim?\n", - "\n", - "Stim is an [open source tool](https://github.com/quantumlib/Stim) for high performance analysis and simulation of quantum stabilizer circuits, with a focus on quantum error correction circuits.\n", - "\n", - "Here is a plot from the [paper introducing Stim](https://doi.org/10.22331/q-2021-07-06-497), showing that Stim is thousands of times faster than other tools at sampling stabilizer circuits:\n", - "\n", - "![image.png]()\n", - "\n", - "In addition to fast simulation, Stim provides general utilities for editing, inspecting, and transforming stabilizer circuits. In particular, Stim can automatically derive a matching graph from a stabilizer circuit annotated with detectors and noise channels." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fh8rot1PYyDh" - }, - "source": [ - "\n", - "# 2. Install the Stim python package.\n", - "\n", - "The first thing to do is to install and import stim.\n", - "Thanks to the python ecosystem, this is easy!\n", - "Stim is available as a pypi package, and can be installed using `pip install stim` and then imported with `import stim`.\n", - "Just like any other python package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "7vg1S92NEAXs" + }, + "source": [ + "\n", + "

Welcome to the Stim tutorial!

\n", + "\n", + "This Jupyter notebook is a tutorial for [Stim](https://github.com/quantumlib/stim), a tool for high-performance simulation and analysis of quantum stabilizer circuits. You can run this notebook in your browser using [Google Colab](https://colab.google/), or download it to your computer and run it using [Jupyter](https://docs.jupyter.org/en/latest/running.html).\n" + ] }, - "id": "fMf_vlB7D6fR", - "outputId": "d100e5e2-53a3-4205-931e-916fa67940dc" - }, - "outputs": [], - "source": [ - "!pip install stim~=1.14\n", - "!pip install numpy~=1.0 # 1.0 instead of 2.0 for pymatching compatibility later\n", - "!pip install scipy" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "P0lD6ilJD8Pi" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.14.0\n" - ] - } - ], - "source": [ - "import stim\n", - "print(stim.__version__)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vah6-5YpGdaG" - }, - "source": [ - "\n", - "# 3. Create a simple circuit, and sample from it.\n", - "\n", - "In Stim, circuits are instances of the `stim.Circuit` class. You create a new empty circuit with `stim.Circuit()`, and add operations to it by calling `circuit.append(name_of_gate, list_of_targets)`.\n", - "\n", - "You can find the name of the gate you want from the [stim gates reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md). Most of them are straightforward, like \"H\" for the Hadamard gate. Targets are just a number indicating a qubit. There's a qubit `0`, a qubit `1`, etc.\n", - "\n", - "The first circuit you'll make is a circuit that prepares a Bell pair and then measures it:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "source": [ + "# Table of contents\n", + "\n", + "0. [Prerequisites]((#prerequisites)\n", + "1. [What is Stim?](#what-is-stim)\n", + "2. [Copy and use this Jupyter/Colab notebook](#using-this-notebook)\n", + "3. [Install the `stim` Python package](#install-stim)\n", + "4. [Create a simple circuit, and sample from it](#make-circuit)\n", + "5. [Add detector annotations to a circuit, and sample them](#sample-detectors)\n", + "6. [Generate example error correction circuits](#make-qec-circuits)\n", + "7. [Use `pymatching` to correct errors in a circuit](#use-pymatching)\n", + "8. [Estimate the threshold of a repetition code using Monte Carlo sampling](#rep-code)\n", + "9. [Use `sinter` to streamline the Monte Carlo sampling process](#use-sinter)\n", + "10. [Estimate the threshold and footprint of a surface code](#surface-code)\n", + "11. [Conclusion](#end-of-tutorial)\n", + "12. [Additional resources](additional-resources)" + ], + "metadata": { + "id": "0V2LXIBKKqA9" + } }, - "id": "UP84FdeWGodO", - "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f" - }, - "outputs": [], - "source": [ - "circuit = stim.Circuit()\n", - "\n", - "# First, the circuit will initialize a Bell pair.\n", - "circuit.append(\"H\", [0])\n", - "circuit.append(\"CNOT\", [0, 1])\n", - "\n", - "# Then, the circuit will measure both qubits of the Bell pair in the Z basis.\n", - "circuit.append(\"M\", [0, 1])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vah6-5YpGdaG" - }, - "source": [ - "Stim has a few ways to look at the circuits you've made. The circuit's `repr` is an expression that recreates the circuit using [stim's circuit file syntax](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md):" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "source": [ + "\n", + "# 0. Prerequisites\n", + "\n", + "To get the most out of this tutorial, it's helpful to have the following background:\n", + "\n", + "- Familiarity with basic Python syntax, and having a working Python 3.7+ environment. (Perhaps you are reading this notebook in such an environment.)\n", + "\n", + "- Familiarity with the basic concepts of *quantum circuits*, such as qubits and common quantum gates like Hadamard and CNOT.\n", + "\n", + "- A basic understanding of stabilizer circuits. For example, this tutorial assumes you've heard that they can be simulated cheaply and that they can represent protocols such as quantum error correction.\n", + "\n", + "- *Some* familiarity with quantum error-correcting codes. For example, this tutorial assumes that you've heard the terms \"surface code\" and \"threshold\".\n", + "\n", + "If you don't have these prerequisites yet, take a look at the [additional resources](additional-resources) at the end of this tutorial for suggestions about how to learn more." + ], + "metadata": { + "id": "43rMSrBhKtyX" + } }, - "id": "UP84FdeWGodO", - "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f" - }, - "outputs": [ { - "data": { - "text/plain": [ - "stim.Circuit('''\n", - " H 0\n", - " CX 0 1\n", - " M 0 1\n", - "''')" + "cell_type": "markdown", + "metadata": { + "id": "ulLKqhVxmfxr", + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "\n", + "# 1. What is Stim?\n", + "\n", + "Stim is an [open-source tool](https://github.com/quantumlib/Stim) for high-performance analysis and simulation of quantum stabilizer circuits, with a focus on quantum error correction circuits.\n", + "\n", + "Here is a plot from the [paper introducing Stim](https://doi.org/10.22331/q-2021-07-06-497), showing that Stim is thousands of times faster than other tools at sampling stabilizer circuits:\n", + "\n", + "![image.png]()\n", + "\n", + "In addition to fast simulation, Stim provides general utilities for editing, inspecting, and transforming stabilizer circuits. In particular, Stim can automatically derive a matching graph from a stabilizer circuit annotated with detectors and noise channels." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fh8rot1PYyDh" + }, + "source": [ + "\n", + "# 2. Install the Stim python package\n", + "\n", + "The first thing to do is to install and import Stim.\n", + "Thanks to the Python ecosystem, this is easy to do!\n", + "Stim is available as a [PyPI](https://pypi.org/project/stim/) package, and can be installed using `pip install stim` and then imported with `import stim` (just like any other python package)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fMf_vlB7D6fR" + }, + "outputs": [], + "source": [ + "!pip install stim~=1.14\n", + "!pip install numpy~=1.0 # 1.0 instead of 2.0 for pymatching compatibility later\n", + "!pip install scipy" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuit" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vah6-5YpGdaG" - }, - "source": [ - "You can also use the `circuit.diagram` method to get an annotated text diagram of the circuit:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "UP84FdeWGodO", - "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f" - }, - "outputs": [ { - "data": { - "text/html": [ - "
q0: -H-@-M:rec[0]-\n",
-       "       |\n",
-       "q1: ---X-M:rec[1]-
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P0lD6ilJD8Pi", + "outputId": "79a7cd42-9677-46f7-df1e-1cd4a518f601" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.14.0\n" + ] + } ], - "text/plain": [ - "q0: -H-@-M:rec[0]-\n", - " |\n", - "q1: ---X-M:rec[1]-" + "source": [ + "import stim\n", + "print(stim.__version__)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vah6-5YpGdaG" + }, + "source": [ + "\n", + "# 3. Create a simple circuit, and sample from it\n", + "\n", + "In Stim, circuits are instances of the `stim.Circuit` class. You create a new empty circuit with `stim.Circuit()`, and add operations to it by calling `circuit.append(name_of_gate, list_of_targets)`.\n", + "\n", + "You can find the name of the gate you want from the [Stim gates reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md). Most of them are straightforward, like \"H\" for the Hadamard gate. Targets are just a number indicating a qubit. There's a qubit `0`, a qubit `1`, etc.\n", + "\n", + "The first circuit you'll make is a circuit that prepares a [Bell pair](https://en.wikipedia.org/wiki/Bell_state) and then measures it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UP84FdeWGodO" + }, + "outputs": [], + "source": [ + "circuit = stim.Circuit()\n", + "\n", + "# First, the circuit will initialize a Bell pair.\n", + "circuit.append(\"H\", [0])\n", + "circuit.append(\"CNOT\", [0, 1])\n", + "\n", + "# Then, the circuit will measure both qubits of the Bell pair in the Z basis.\n", + "circuit.append(\"M\", [0, 1])" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuit.diagram()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vah6-5YpGdaG" - }, - "source": [ - "There's also other types diagrams. For example, specifying `timeline-svg` will return a Scalable Vector Graphics picture of the circuit instead of a text diagram:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "UP84FdeWGodO", - "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f" - }, - "outputs": [ { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "q0\n", - "\n", - "q1\n", - "\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "M\n", - "rec[0]\n", - "\n", - "M\n", - "rec[1]\n", - "" + "cell_type": "markdown", + "metadata": { + "id": "ySG_dqfQ-qOQ" + }, + "source": [ + "Stim has a few ways to look at the circuits you've made. The circuit's `repr` is an expression that recreates the circuit using [Stim's circuit file syntax](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f", + "id": "L51yrzUW-qOQ" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "stim.Circuit('''\n", + " H 0\n", + " CX 0 1\n", + " M 0 1\n", + "''')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "q0\n", - "\n", - "q1\n", - "\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "M\n", - "rec[0]\n", - "\n", - "M\n", - "rec[1]\n", - "" + "source": [ + "circuit" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuit.diagram('timeline-svg')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5dRl_-WZHDP2" - }, - "source": [ - "Anyways, let's stop looking at your circuit and start using it. You can sample from the circuit by using the `circuit.compile_sampler()` method to get a sampler object, and then calling `sample` on that object.\n", - "\n", - "Try taking 10 shots from the circuit:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "sJVtzniUHL1X", - "outputId": "2b54c59c-0d0a-492f-fae7-87f4751f8415" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[False False]\n", - " [ True True]\n", - " [False False]\n", - " [False False]\n", - " [ True True]\n", - " [False False]\n", - " [ True True]\n", - " [False False]\n", - " [False False]\n", - " [ True True]]\n" - ] - } - ], - "source": [ - "sampler = circuit.compile_sampler()\n", - "print(sampler.sample(shots=10))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "D5KUSysIJB5g" - }, - "source": [ - "Notice how there are ten rows (because you took ten shots) with two results per row (because there were two measurements in the circuit).\n", - "Also notice how the results are random from row to row, but always agree within each row.\n", - "That makes sense; that's what's supposed to happen when you repeatedly prepare and measure the |00> + |11> state." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zX7ZyHVAHfF_" - }, - "source": [ - "\n", - "# 4. Add detector annotations to a circuit, and sample them.\n", - "\n", - "Stim circuits can include error correction annotations.\n", - "In particular, you can annotate that certain sets of measurements can be used to detect errors.\n", - "For example, in the circuit you created above, the two measurement results should always be equal.\n", - "You can tell Stim you care about that by adding a `DETECTOR` annotation to the circuit.\n", - "\n", - "The `DETECTOR` annotation will take two targets: the two measurements whose parity you are asserting should be consistent from run to run. You point at the measurements by using the `stim.target_rec` method (short for \"target measurement record\"). The most recent measurement is `stim.target_rec(-1)` (also known as `rec[-1]` in stim's circuit language), and the second most recent measurement is `stim.target_rec(-2)`:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "D-RpRUTw-qOQ" + }, + "source": [ + "You can also use the `circuit.diagram` method to get an annotated text diagram of the circuit:" + ] }, - "id": "GxViFukZIVI4", - "outputId": "218d0843-da8c-482a-d736-242b918aabc0" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "stim.Circuit('''\n", - " H 0\n", - " CX 0 1\n", - " M 0 1\n", - " DETECTOR rec[-1] rec[-2]\n", - "''')\n" - ] - } - ], - "source": [ - "# Indicate the two previous measurements are supposed to consistently agree.\n", - "circuit.append(\"DETECTOR\", [stim.target_rec(-1), stim.target_rec(-2)])\n", - "print(repr(circuit))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tEz4G3OjI164" - }, - "source": [ - "A slightly subtle point about detectors is that they only assert that the parity of the measurements is *always the same under noiseless execution*.\n", - "A detector doesn't say whether the parity should be even or should be odd, only that it should always be the same.\n", - "You annotate that a pair of measurements is always different in the same way that you annotate that a pair of measurements is always the same; it's the *consistency* that's key.\n", - "\n", - "Anyways, now that you've annotated the circuit with a detector, you can sample from the circuit's detectors instead of sampling from its measurements.\n", - "You do that by creating a detector sampler, using the `compile_detector_sampler` method, and then calling `sample` on it." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f", + "id": "_75gRftr-qOQ" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
q0: -H-@-M:rec[0]-\n",
+              "       |\n",
+              "q1: ---X-M:rec[1]-
" + ], + "text/plain": [ + "q0: -H-@-M:rec[0]-\n", + " |\n", + "q1: ---X-M:rec[1]-" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "circuit.diagram()" + ] }, - "id": "PkSoSb65JWsx", - "outputId": "bf9101c0-db23-42bf-a978-72e29fa83dcb" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[False]\n", - " [False]\n", - " [False]\n", - " [False]\n", - " [False]]\n" - ] - } - ], - "source": [ - "sampler = circuit.compile_detector_sampler()\n", - "print(sampler.sample(shots=5))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kCby-NA4Jevl" - }, - "source": [ - "There are 5 rows in the results, because you took 5 shots.\n", - "There's one entry per row, because you put one detector in the circuit.\n", - "\n", - "Notice how the results are always `False`.\n", - "The detector is never producing a detection event.\n", - "That's because there's no noise in the circuit; nothing to disturb the peace and quiet of a perfectly working machine.\n", - "Well... time to fix that!\n", - "\n", - "Stim has a variety of error channels to pick from, like single qubit depolarization (`DEPOLARIZE1`) and phase damping (`Z_ERROR`), but in this context a good error to try is `X_ERROR`.\n", - "The `X_ERROR` noise channel probabilistically applies a bit flip (a Pauli X error) to each of its targets.\n", - "Note that each target is operated on independently.\n", - "They don't all flip together with the given probability, each one flips individually with the given probability.\n", - "\n", - "You can recreate the circuit, with the noise inserted, by using Stim's domain specific language for circuits. While you're at it, throw in some `TICK` instructions to indicate the progression of time:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "HniubUFXJ9jh" - }, - "outputs": [], - "source": [ - "circuit = stim.Circuit(\"\"\"\n", - " H 0\n", - " TICK\n", - "\n", - " CX 0 1\n", - " X_ERROR(0.2) 0 1\n", - " TICK\n", - "\n", - " M 0 1\n", - " DETECTOR rec[-1] rec[-2]\n", - "\"\"\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "U7_2QfyiKSBL" - }, - "source": [ - "Thanks to adding the `TICK` instructions, you get access to a new type of diagram: `timeslice-svg`.\n", - "This diagram shows the operations from each tick in a separate frame:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "XKnYuBEB-qOQ" + }, + "source": [ + "There are also other types of diagrams. For example, specifying `timeline-svg` will return a Scalable Vector Graphics picture of the circuit instead of a text diagram:" + ] + }, { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.2\n", - "\n", - "ERRX\n", - "0.2\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "\n", - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "9b6d4b2f-1cb9-4941-d533-db148aaaf86f", + "id": "NXlSD_sy-qOQ" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "q0\n", + "\n", + "q1\n", + "\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "M\n", + "rec[0]\n", + "\n", + "M\n", + "rec[1]\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "q0\n", + "\n", + "q1\n", + "\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "M\n", + "rec[0]\n", + "\n", + "M\n", + "rec[1]\n", + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.2\n", - "\n", - "ERRX\n", - "0.2\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "\n", - "" + "source": [ + "circuit.diagram('timeline-svg')" ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuit.diagram('timeslice-svg')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "U7_2QfyiKSBL" - }, - "source": [ - "Now that you've added some noise, try sampling some more detector shots and see what happens:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "nfbwr9d-KWL4", - "outputId": "f5477d97-473c-4552-d73a-11190a296c05" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[False]\n", - " [False]\n", - " [ True]\n", - " [ True]\n", - " [False]\n", - " [False]\n", - " [ True]\n", - " [ True]\n", - " [ True]\n", - " [False]]\n" - ] - } - ], - "source": [ - "sampler = circuit.compile_detector_sampler()\n", - "print(sampler.sample(shots=10))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AreMncCeKb1x" - }, - "source": [ - "It's no longer all `False`s (unless you got very lucky).\n", - "There are `True`s appearing amongst the `False`s.\n", - "\n", - "The *detection fraction* of the circuit is how often detectors fire on average.\n", - "Given that an X error is being applied to each qubit with 20% probability, and the detector will fire when one of the qubits is hit (but not both), the detection fraction of the detectors in this circuit is $0.8 \\cdot 0.2 \\cdot 2 = 0.32$.\n", - "\n", - "You can estimate the detection fraction by just taking a lot of shots, and dividing by the number of shots and the number of detectors:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "5dRl_-WZHDP2" + }, + "source": [ + "Anyways, let's stop looking at your circuit and start using it. You can sample from the circuit by using the `circuit.compile_sampler()` method to get a sampler object, and then calling `sample` on that object.\n", + "\n", + "Try taking 10 shots from the circuit:" + ] }, - "id": "6NqbK11eKlP1", - "outputId": "28cb1ee1-551b-4039-c537-ec3495e957cf" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.320135\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "print(np.sum(sampler.sample(shots=10**6)) / 10**6)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RKM6PLk8Tl13" - }, - "source": [ - "As you can see, the sampled estimate ends up close to the expected value $0.32$." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fG2jQsH2LZQP" - }, - "source": [ - "\n", - "# 5. Generate example error correction circuits.\n", - "\n", - "Now it's time for you to work with a *real* error correcting circuit.\n", - "Well... a classical error correcting circuit.\n", - "The repetition code.\n", - "\n", - "You could generate a repetition code circuit for yourself, but for the purposes of this tutorial it's easiest to use the example one included with Stim.\n", - "You can do this by calling `stim.Circuit.generated` with an argument of `\"repetition_code:memory\"`.\n", - "(You can find other valid arguments in the method's doc string, or just by passing in a bad one and looking at the exception message that comes out.)\n", - "\n", - "Stim takes a few different parameters when generating circuits.\n", - "You have to decide how many times the stabilizers of the code are measured by specifying `rounds`, you have to decide on the size of the code by specifying `distance`, and you can specify what kind of noise to include using a few optional parameters.\n", - "\n", - "To start with, just set `before_round_data_depolarization=0.04` and `before_measure_flip_probability=0.01`. This will insert a `DEPOLARIZE1(0.04)` operation at the start of each round targeting every data qubit, and an `X_ERROR(0.01)` just before each measurement operation.\n", - "This is a \"phenomenological noise model\"." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sJVtzniUHL1X", + "outputId": "2b54c59c-0d0a-492f-fae7-87f4751f8415" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[False False]\n", + " [ True True]\n", + " [False False]\n", + " [False False]\n", + " [ True True]\n", + " [False False]\n", + " [ True True]\n", + " [False False]\n", + " [False False]\n", + " [ True True]]\n" + ] + } + ], + "source": [ + "sampler = circuit.compile_sampler()\n", + "print(sampler.sample(shots=10))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D5KUSysIJB5g" + }, + "source": [ + "Notice how there are ten rows (because you took ten shots), with two results per row (because there were two measurements in the circuit).\n", + "Also notice how the results are random from row to row, but always agree within each row.\n", + "That makes sense; that's what's supposed to happen when you repeatedly prepare and measure the |00⟩ + |11⟩ state." + ] }, - "id": "ku1-_JnuLzVR", - "outputId": "e9b813a7-f4bc-42f0-e4ac-e73f90204ee4" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "stim.Circuit('''\n", - " R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\n", - " TICK\n", - " DEPOLARIZE1(0.04) 0 2 4 6 8 10 12 14 16\n", - " CX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n", - " TICK\n", - " CX 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15\n", - " TICK\n", - " X_ERROR(0.01) 1 3 5 7 9 11 13 15\n", - " MR 1 3 5 7 9 11 13 15\n", - " DETECTOR(1, 0) rec[-8]\n", - " DETECTOR(3, 0) rec[-7]\n", - " DETECTOR(5, 0) rec[-6]\n", - " DETECTOR(7, 0) rec[-5]\n", - " DETECTOR(9, 0) rec[-4]\n", - " DETECTOR(11, 0) rec[-3]\n", - " DETECTOR(13, 0) rec[-2]\n", - " DETECTOR(15, 0) rec[-1]\n", - " REPEAT 24 {\n", - " TICK\n", - " DEPOLARIZE1(0.04) 0 2 4 6 8 10 12 14 16\n", - " CX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n", - " TICK\n", - " CX 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15\n", - " TICK\n", - " X_ERROR(0.01) 1 3 5 7 9 11 13 15\n", - " MR 1 3 5 7 9 11 13 15\n", - " SHIFT_COORDS(0, 1)\n", - " DETECTOR(1, 0) rec[-8] rec[-16]\n", - " DETECTOR(3, 0) rec[-7] rec[-15]\n", - " DETECTOR(5, 0) rec[-6] rec[-14]\n", - " DETECTOR(7, 0) rec[-5] rec[-13]\n", - " DETECTOR(9, 0) rec[-4] rec[-12]\n", - " DETECTOR(11, 0) rec[-3] rec[-11]\n", - " DETECTOR(13, 0) rec[-2] rec[-10]\n", - " DETECTOR(15, 0) rec[-1] rec[-9]\n", - " }\n", - " X_ERROR(0.01) 0 2 4 6 8 10 12 14 16\n", - " M 0 2 4 6 8 10 12 14 16\n", - " DETECTOR(1, 1) rec[-8] rec[-9] rec[-17]\n", - " DETECTOR(3, 1) rec[-7] rec[-8] rec[-16]\n", - " DETECTOR(5, 1) rec[-6] rec[-7] rec[-15]\n", - " DETECTOR(7, 1) rec[-5] rec[-6] rec[-14]\n", - " DETECTOR(9, 1) rec[-4] rec[-5] rec[-13]\n", - " DETECTOR(11, 1) rec[-3] rec[-4] rec[-12]\n", - " DETECTOR(13, 1) rec[-2] rec[-3] rec[-11]\n", - " DETECTOR(15, 1) rec[-1] rec[-2] rec[-10]\n", - " OBSERVABLE_INCLUDE(0) rec[-1]\n", - "''')\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "zX7ZyHVAHfF_" + }, + "source": [ + "\n", + "# 4. Add detector annotations to a circuit, and sample them\n", + "\n", + "Stim circuits can include error-correction annotations.\n", + "In particular, you can annotate that certain sets of measurements can be used to detect errors.\n", + "For example, in the circuit you created above, the two measurement results should always be equal.\n", + "You can tell Stim you care about that by adding a `DETECTOR` annotation to the circuit.\n", + "\n", + "The `DETECTOR` annotation will take two targets: the two measurements whose parity you are asserting should be consistent from run to run. You point at the measurements by using the `stim.target_rec` method (short for \"target measurement record\"). The most recent measurement is `stim.target_rec(-1)` (also known as `rec[-1]` in stim's circuit language), and the second most recent measurement is `stim.target_rec(-2)`:" + ] }, { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "q0\n", - "\n", - "q1\n", - "\n", - "q2\n", - "\n", - "q3\n", - "\n", - "q4\n", - "\n", - "q5\n", - "\n", - "q6\n", - "\n", - "q7\n", - "\n", - "q8\n", - "\n", - "q9\n", - "\n", - "q10\n", - "\n", - "q11\n", - "\n", - "q12\n", - "\n", - "q13\n", - "\n", - "q14\n", - "\n", - "q15\n", - "\n", - "q16\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "MR\n", - "rec[0]\n", - "\n", - "MR\n", - "rec[1]\n", - "\n", - "MR\n", - "rec[2]\n", - "\n", - "MR\n", - "rec[3]\n", - "\n", - "MR\n", - "rec[4]\n", - "\n", - "MR\n", - "rec[5]\n", - "\n", - "MR\n", - "rec[6]\n", - "\n", - "MR\n", - "rec[7]\n", - "\n", - "DETECTOR\n", - "coords=(1,0)\n", - "D0 = rec[0]\n", - "\n", - "DETECTOR\n", - "coords=(3,0)\n", - "D1 = rec[1]\n", - "\n", - "DETECTOR\n", - "coords=(5,0)\n", - "D2 = rec[2]\n", - "\n", - "DETECTOR\n", - "coords=(7,0)\n", - "D3 = rec[3]\n", - "\n", - "DETECTOR\n", - "coords=(9,0)\n", - "D4 = rec[4]\n", - "\n", - "DETECTOR\n", - "coords=(11,0)\n", - "D5 = rec[5]\n", - "\n", - "DETECTOR\n", - "coords=(13,0)\n", - "D6 = rec[6]\n", - "\n", - "DETECTOR\n", - "coords=(15,0)\n", - "D7 = rec[7]\n", - "\n", - "\n", - "\n", - "REP24\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "MR\n", - "rec[8+iter*8]\n", - "\n", - "MR\n", - "rec[9+iter*8]\n", - "\n", - "MR\n", - "rec[10+iter*8]\n", - "\n", - "MR\n", - "rec[11+iter*8]\n", - "\n", - "MR\n", - "rec[12+iter*8]\n", - "\n", - "MR\n", - "rec[13+iter*8]\n", - "\n", - "MR\n", - "rec[14+iter*8]\n", - "\n", - "MR\n", - "rec[15+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(1,1+iter)\n", - "D[8+iter*8] = rec[8+iter*8]*rec[0+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(3,1+iter)\n", - "D[9+iter*8] = rec[9+iter*8]*rec[1+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(5,1+iter)\n", - "D[10+iter*8] = rec[10+iter*8]*rec[2+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(7,1+iter)\n", - "D[11+iter*8] = rec[11+iter*8]*rec[3+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(9,1+iter)\n", - "D[12+iter*8] = rec[12+iter*8]*rec[4+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(11,1+iter)\n", - "D[13+iter*8] = rec[13+iter*8]*rec[5+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(13,1+iter)\n", - "D[14+iter*8] = rec[14+iter*8]*rec[6+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(15,1+iter)\n", - "D[15+iter*8] = rec[15+iter*8]*rec[7+iter*8]\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "M\n", - "rec[200]\n", - "\n", - "M\n", - "rec[201]\n", - "\n", - "M\n", - "rec[202]\n", - "\n", - "M\n", - "rec[203]\n", - "\n", - "M\n", - "rec[204]\n", - "\n", - "M\n", - "rec[205]\n", - "\n", - "M\n", - "rec[206]\n", - "\n", - "M\n", - "rec[207]\n", - "\n", - "M\n", - "rec[208]\n", - "\n", - "DETECTOR\n", - "coords=(1,25)\n", - "D200 = rec[201]*rec[200]*rec[192]\n", - "\n", - "DETECTOR\n", - "coords=(3,25)\n", - "D201 = rec[202]*rec[201]*rec[193]\n", - "\n", - "DETECTOR\n", - "coords=(5,25)\n", - "D202 = rec[203]*rec[202]*rec[194]\n", - "\n", - "DETECTOR\n", - "coords=(7,25)\n", - "D203 = rec[204]*rec[203]*rec[195]\n", - "\n", - "DETECTOR\n", - "coords=(9,25)\n", - "D204 = rec[205]*rec[204]*rec[196]\n", - "\n", - "DETECTOR\n", - "coords=(11,25)\n", - "D205 = rec[206]*rec[205]*rec[197]\n", - "\n", - "DETECTOR\n", - "coords=(13,25)\n", - "D206 = rec[207]*rec[206]*rec[198]\n", - "\n", - "DETECTOR\n", - "coords=(15,25)\n", - "D207 = rec[208]*rec[207]*rec[199]\n", - "\n", - "OBS_INCLUDE(0)\n", - "L0 *= rec[208]\n", - "\n", - "\n", - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GxViFukZIVI4", + "outputId": "218d0843-da8c-482a-d736-242b918aabc0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stim.Circuit('''\n", + " H 0\n", + " CX 0 1\n", + " M 0 1\n", + " DETECTOR rec[-1] rec[-2]\n", + "''')\n" + ] + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "q0\n", - "\n", - "q1\n", - "\n", - "q2\n", - "\n", - "q3\n", - "\n", - "q4\n", - "\n", - "q5\n", - "\n", - "q6\n", - "\n", - "q7\n", - "\n", - "q8\n", - "\n", - "q9\n", - "\n", - "q10\n", - "\n", - "q11\n", - "\n", - "q12\n", - "\n", - "q13\n", - "\n", - "q14\n", - "\n", - "q15\n", - "\n", - "q16\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "MR\n", - "rec[0]\n", - "\n", - "MR\n", - "rec[1]\n", - "\n", - "MR\n", - "rec[2]\n", - "\n", - "MR\n", - "rec[3]\n", - "\n", - "MR\n", - "rec[4]\n", - "\n", - "MR\n", - "rec[5]\n", - "\n", - "MR\n", - "rec[6]\n", - "\n", - "MR\n", - "rec[7]\n", - "\n", - "DETECTOR\n", - "coords=(1,0)\n", - "D0 = rec[0]\n", - "\n", - "DETECTOR\n", - "coords=(3,0)\n", - "D1 = rec[1]\n", - "\n", - "DETECTOR\n", - "coords=(5,0)\n", - "D2 = rec[2]\n", - "\n", - "DETECTOR\n", - "coords=(7,0)\n", - "D3 = rec[3]\n", - "\n", - "DETECTOR\n", - "coords=(9,0)\n", - "D4 = rec[4]\n", - "\n", - "DETECTOR\n", - "coords=(11,0)\n", - "D5 = rec[5]\n", - "\n", - "DETECTOR\n", - "coords=(13,0)\n", - "D6 = rec[6]\n", - "\n", - "DETECTOR\n", - "coords=(15,0)\n", - "D7 = rec[7]\n", - "\n", - "\n", - "\n", - "REP24\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "DEP1\n", - "0.04\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "MR\n", - "rec[8+iter*8]\n", - "\n", - "MR\n", - "rec[9+iter*8]\n", - "\n", - "MR\n", - "rec[10+iter*8]\n", - "\n", - "MR\n", - "rec[11+iter*8]\n", - "\n", - "MR\n", - "rec[12+iter*8]\n", - "\n", - "MR\n", - "rec[13+iter*8]\n", - "\n", - "MR\n", - "rec[14+iter*8]\n", - "\n", - "MR\n", - "rec[15+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(1,1+iter)\n", - "D[8+iter*8] = rec[8+iter*8]*rec[0+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(3,1+iter)\n", - "D[9+iter*8] = rec[9+iter*8]*rec[1+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(5,1+iter)\n", - "D[10+iter*8] = rec[10+iter*8]*rec[2+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(7,1+iter)\n", - "D[11+iter*8] = rec[11+iter*8]*rec[3+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(9,1+iter)\n", - "D[12+iter*8] = rec[12+iter*8]*rec[4+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(11,1+iter)\n", - "D[13+iter*8] = rec[13+iter*8]*rec[5+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(13,1+iter)\n", - "D[14+iter*8] = rec[14+iter*8]*rec[6+iter*8]\n", - "\n", - "DETECTOR\n", - "coords=(15,1+iter)\n", - "D[15+iter*8] = rec[15+iter*8]*rec[7+iter*8]\n", - "\n", - "\n", - "\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "ERRX\n", - "0.01\n", - "\n", - "M\n", - "rec[200]\n", - "\n", - "M\n", - "rec[201]\n", - "\n", - "M\n", - "rec[202]\n", - "\n", - "M\n", - "rec[203]\n", - "\n", - "M\n", - "rec[204]\n", - "\n", - "M\n", - "rec[205]\n", - "\n", - "M\n", - "rec[206]\n", - "\n", - "M\n", - "rec[207]\n", - "\n", - "M\n", - "rec[208]\n", - "\n", - "DETECTOR\n", - "coords=(1,25)\n", - "D200 = rec[201]*rec[200]*rec[192]\n", - "\n", - "DETECTOR\n", - "coords=(3,25)\n", - "D201 = rec[202]*rec[201]*rec[193]\n", - "\n", - "DETECTOR\n", - "coords=(5,25)\n", - "D202 = rec[203]*rec[202]*rec[194]\n", - "\n", - "DETECTOR\n", - "coords=(7,25)\n", - "D203 = rec[204]*rec[203]*rec[195]\n", - "\n", - "DETECTOR\n", - "coords=(9,25)\n", - "D204 = rec[205]*rec[204]*rec[196]\n", - "\n", - "DETECTOR\n", - "coords=(11,25)\n", - "D205 = rec[206]*rec[205]*rec[197]\n", - "\n", - "DETECTOR\n", - "coords=(13,25)\n", - "D206 = rec[207]*rec[206]*rec[198]\n", - "\n", - "DETECTOR\n", - "coords=(15,25)\n", - "D207 = rec[208]*rec[207]*rec[199]\n", - "\n", - "OBS_INCLUDE(0)\n", - "L0 *= rec[208]\n", - "\n", - "\n", - "" + "source": [ + "# Indicate the two previous measurements are supposed to consistently agree.\n", + "circuit.append(\"DETECTOR\", [stim.target_rec(-1), stim.target_rec(-2)])\n", + "print(repr(circuit))" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuit = stim.Circuit.generated(\n", - " \"repetition_code:memory\",\n", - " rounds=25,\n", - " distance=9,\n", - " before_round_data_depolarization=0.04,\n", - " before_measure_flip_probability=0.01)\n", - "\n", - "print(repr(circuit))\n", - "circuit.diagram('timeline-svg')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DEE3Vqq_ZzXP" - }, - "source": [ - "You can see that this circuit is more complicated than the example you started with. Notice the little \"REP24\" at the bottom of the diagram. This circuit is using a `REPEAT` block to repeatedly measure the stabilizers of the code." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lTu556AOMTv6" - }, - "source": [ - "With a circuit in hand, you can try sampling from it.\n", - "Try sampling the measurements once, and printing out the results split up just right so that time advances from line to line:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "hQyBEti8Ng_S", - "outputId": "1c988414-9080-4f0f-facf-70c27b935730" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "_______1\n", - "________\n", - "________\n", - "________\n", - "_______1\n", - "_______1\n", - "________\n", - "________\n", - "11_____1\n", - "11___1_1\n", - "11_____1\n", - "11_____1\n", - "11_____1\n", - "11_11__1\n", - "11_11__1\n", - "11_11__1\n", - "11_11__1\n", - "1__11__1\n", - "11_11__1\n", - "1_111__1\n", - "_11_1___\n", - "1\n" - ] - } - ], - "source": [ - "sampler = circuit.compile_sampler()\n", - "one_sample = sampler.sample(shots=1)[0]\n", - "for k in range(0, len(one_sample), 8):\n", - " timeslice = one_sample[k:k+8]\n", - " print(\"\".join(\"1\" if e else \"_\" for e in timeslice))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I5J3W6bWOIhJ" - }, - "source": [ - "See how the 1s seem to come in pairs of streaks?\n", - "That's because once a data qubit is flipped it stays flipped, and the measurements to its left and right permanently change parity.\n", - "\n", - "If you sample the circuit's detectors, instead of its measurements, the streaks are replaced by spackle.\n", - "You get much sparser data:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "tEz4G3OjI164" + }, + "source": [ + "A slightly subtle point about detectors is that they only assert that the parity of the measurements is *always the same under noiseless execution*.\n", + "A detector doesn't say whether the parity should be even or should be odd, only that it should always be the same.\n", + "You annotate that a pair of measurements is always different in the same way that you annotate that a pair of measurements is always the same; it's the *consistency* that's key.\n", + "\n", + "Anyways, now that you've annotated the circuit with a detector, you can sample from the circuit's detectors instead of sampling from its measurements.\n", + "You do that by creating a detector sampler, using the `compile_detector_sampler` method, and then calling `sample` on it." + ] }, - "id": "jJCydGZnOeez", - "outputId": "9149cd22-5b65-4b5b-ef39-549704f23f81" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "_____!!_\n", - "____!!__\n", - "_____!!_\n", - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "________\n", - "___!_!__\n", - "_____!!_\n", - "!!______\n", - "!_______\n", - "!_______\n", - "________\n", - "________\n", - "___!!___\n", - "________\n", - "________\n" - ] - } - ], - "source": [ - "detector_sampler = circuit.compile_detector_sampler()\n", - "one_sample = detector_sampler.sample(shots=1)[0]\n", - "for k in range(0, len(one_sample), 8):\n", - " timeslice = one_sample[k:k+8]\n", - " print(\"\".join(\"!\" if e else \"_\" for e in timeslice))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fFNsm0_GOh4H" - }, - "source": [ - "Notice how the `!`s tend to come in pairs, except near the sides.\n", - "This \"comes in pairs\" property is extremely important, because it allows you to perform error correction.\n", - "Every `!` must be paired with another `!`, with the left boundary, or with the right boundary.\n", - "In the circuit generated by Stim, the logical observable is annotated to be a measurement of the leftmost data qubit.\n", - "That data qubit was flipped once for each `!` that's paired with the left boundary.\n", - "If the data qubit was flipped an even number of times, the observable that was measured is correct.\n", - "If it was flipped an odd number of times, the observable that was measured needs to be flipped to be correct.\n", - "If you just had a syndrome decoder, you could use it to solve the matching problem and figure out if the leftmost data qubit (and therefore the protected logical observable) ended up flipped or not...\n", - "\n", - "\n", - "# 6. Use `pymatching` to correct errors in a circuit\n", - "\n", - "Stim has a key feature that makes it easier to use a decoder: converting a circuit into a detector error model.\n", - "A detector error model is just a list of all the independent error mechanisms in a circuit, as well as their symptoms (which detectors they set off) and frame changes (which logical observables they flip).\n", - "\n", - "You can get the detector error mode for a circuit by calling `circuit.detector_error_model()`:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PkSoSb65JWsx", + "outputId": "bf9101c0-db23-42bf-a978-72e29fa83dcb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[False]\n", + " [False]\n", + " [False]\n", + " [False]\n", + " [False]]\n" + ] + } + ], + "source": [ + "sampler = circuit.compile_detector_sampler()\n", + "print(sampler.sample(shots=5))" + ] }, - "id": "qqUSe1BvO0V9", - "outputId": "fabb01fe-1608-42fb-c07a-9be9f6eb13c8" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "stim.DetectorErrorModel('''\n", - " error(0.0266667) D0\n", - " error(0.0266667) D0 D1\n", - " error(0.01) D0 D8\n", - " error(0.0266667) D1 D2\n", - " error(0.01) D1 D9\n", - " error(0.0266667) D2 D3\n", - " error(0.01) D2 D10\n", - " error(0.0266667) D3 D4\n", - " error(0.01) D3 D11\n", - " error(0.0266667) D4 D5\n", - " error(0.01) D4 D12\n", - " error(0.0266667) D5 D6\n", - " error(0.01) D5 D13\n", - " error(0.0266667) D6 D7\n", - " error(0.01) D6 D14\n", - " error(0.01) D7 D15\n", - " error(0.0266667) D7 L0\n", - " detector(1, 0) D0\n", - " detector(3, 0) D1\n", - " detector(5, 0) D2\n", - " detector(7, 0) D3\n", - " detector(9, 0) D4\n", - " detector(11, 0) D5\n", - " detector(13, 0) D6\n", - " detector(15, 0) D7\n", - " repeat 23 {\n", - " error(0.0266667) D8\n", - " error(0.0266667) D8 D9\n", - " error(0.01) D8 D16\n", - " error(0.0266667) D9 D10\n", - " error(0.01) D9 D17\n", - " error(0.0266667) D10 D11\n", - " error(0.01) D10 D18\n", - " error(0.0266667) D11 D12\n", - " error(0.01) D11 D19\n", - " error(0.0266667) D12 D13\n", - " error(0.01) D12 D20\n", - " error(0.0266667) D13 D14\n", - " error(0.01) D13 D21\n", - " error(0.0266667) D14 D15\n", - " error(0.01) D14 D22\n", - " error(0.01) D15 D23\n", - " error(0.0266667) D15 L0\n", - " shift_detectors(0, 1) 0\n", - " detector(1, 0) D8\n", - " detector(3, 0) D9\n", - " detector(5, 0) D10\n", - " detector(7, 0) D11\n", - " detector(9, 0) D12\n", - " detector(11, 0) D13\n", - " detector(13, 0) D14\n", - " detector(15, 0) D15\n", - " shift_detectors 8\n", - " }\n", - " error(0.0266667) D8\n", - " error(0.0266667) D8 D9\n", - " error(0.01) D8 D16\n", - " error(0.0266667) D9 D10\n", - " error(0.01) D9 D17\n", - " error(0.0266667) D10 D11\n", - " error(0.01) D10 D18\n", - " error(0.0266667) D11 D12\n", - " error(0.01) D11 D19\n", - " error(0.0266667) D12 D13\n", - " error(0.01) D12 D20\n", - " error(0.0266667) D13 D14\n", - " error(0.01) D13 D21\n", - " error(0.0266667) D14 D15\n", - " error(0.01) D14 D22\n", - " error(0.01) D15 D23\n", - " error(0.0266667) D15 L0\n", - " error(0.01) D16\n", - " error(0.01) D16 D17\n", - " error(0.01) D17 D18\n", - " error(0.01) D18 D19\n", - " error(0.01) D19 D20\n", - " error(0.01) D20 D21\n", - " error(0.01) D21 D22\n", - " error(0.01) D22 D23\n", - " error(0.01) D23 L0\n", - " shift_detectors(0, 1) 0\n", - " detector(1, 0) D8\n", - " detector(3, 0) D9\n", - " detector(5, 0) D10\n", - " detector(7, 0) D11\n", - " detector(9, 0) D12\n", - " detector(11, 0) D13\n", - " detector(13, 0) D14\n", - " detector(15, 0) D15\n", - " detector(1, 1) D16\n", - " detector(3, 1) D17\n", - " detector(5, 1) D18\n", - " detector(7, 1) D19\n", - " detector(9, 1) D20\n", - " detector(11, 1) D21\n", - " detector(13, 1) D22\n", - " detector(15, 1) D23\n", - "''')\n" - ] - } - ], - "source": [ - "dem = circuit.detector_error_model()\n", - "print(repr(dem))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can view the detector error model as a graph by using the `matchgraph-svg` diagram. Note that this diagram looking good is relying heavily on the circuit specifying coordinate data for its detectors. Fortunately, the circuit you generated includes good coordinate data:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "kCby-NA4Jevl" + }, + "source": [ + "There are 5 rows in the results, because you took 5 shots.\n", + "There's one entry per row, because you put one detector in the circuit.\n", + "\n", + "Notice how the results are always `False`.\n", + "The detector is never producing a detection event.\n", + "That's because there's no noise in the circuit; nothing to disturb the peace and quiet of a perfectly working machine.\n", + "Well... time to fix that!\n", + "\n", + "Stim has a variety of error channels to pick from, like single qubit depolarization (`DEPOLARIZE1`) and phase damping (`Z_ERROR`), but in this context a good error to try is `X_ERROR`.\n", + "The `X_ERROR` noise channel probabilistically applies a bit flip (a Pauli X error) to each of its targets.\n", + "Note that each target is operated on independently.\n", + "They don't all flip together with the given probability, each one flips individually with the given probability.\n", + "\n", + "You can recreate the circuit, with the noise inserted, by using Stim's domain specific language for circuits. While you're at it, throw in some `TICK` instructions to indicate the progression of time:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HniubUFXJ9jh" + }, + "outputs": [], + "source": [ + "circuit = stim.Circuit(\"\"\"\n", + " H 0\n", + " TICK\n", + "\n", + " CX 0 1\n", + " X_ERROR(0.2) 0 1\n", + " TICK\n", + "\n", + " M 0 1\n", + " DETECTOR rec[-1] rec[-2]\n", + "\"\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U7_2QfyiKSBL" + }, + "source": [ + "Thanks to adding the `TICK` instructions, you get access to a new type of diagram: `timeslice-svg`.\n", + "This diagram shows the operations from each tick in a separate frame:" + ] + }, { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1jOOCijd-qOR", + "outputId": "44ff0bba-086b-4846-faa9-1dc4549c6b78" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.2\n", + "\n", + "ERRX\n", + "0.2\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.2\n", + "\n", + "ERRX\n", + "0.2\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" + "source": [ + "circuit.diagram('timeslice-svg')" ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dem.diagram(\"matchgraph-svg\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fLY3a5w9PT1L" - }, - "source": [ - "In the above diagram, each node is a detector and each edge is an error mechanism. The matcher is going to decode errors by trying to match each excited node to another nearby excited node, or to the side boundaries, which minimizing the number of edges that were used.\n", - "\n", - "The detector error model format is easier for decoders to consume than a raw circuit, because everything is explained in terms of observable symptoms and hidden symptoms, which is how decoders usually conceptualize of the problem space.\n", - "For example, some decoders can be configured using a weighted graph, and `stim.DetectorErrorModel` is effectively just a weighted graph.\n", - "It might be a pain to write the glue code that converts the `stim.DetectorErrorModel` into exactly the right kind of graph expected by the decoder, but it's much easier than starting from the circuit or generating the graph from scratch and you only have to write that code once instead of once per circuit.\n", - "\n", - "For this tutorial you'll use existing packages instead of writing your own glue code.\n", - "Specifically, you'll use [`pymatching`](https://github.com/oscarhiggott/PyMatching) as your decoder.\n", - "PyMatching is an open source minimum weight perfect matching decoder written by Oscar Higgott.\n", - "You can install it using `pip install pymatching`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "xlH-hxBRPjNy", - "outputId": "7f49c9d4-5efa-4e49-c4b1-9a2a0f485618" - }, - "outputs": [], - "source": [ - "!pip install pymatching~=2.0" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "id": "cx7UkBiYQeOz" - }, - "outputs": [], - "source": [ - "import pymatching" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ewrxiwXMQ-Yz" - }, - "source": [ - "Now you're going to write a method for sampling a circuit using stim, then decoding it using pymatching, and counting how often it gets the answer right.\n", - "\n", - "First, you sample detection events and observable flips from the circuit.\n", - "You do this by creating a sampler with `circuit.compile_detector_sampler()` and then calling `sampler.sample(shots, separate_observables=True)`.\n", - "The `separate_observables=True` argument is saying that you want the result of the method to be a tuple where the first entry is detection event data to give to the decoder and the second entry is the observable flip data the decoder is supposed to predict.\n", - "\n", - "Second, you extract decoder information by using `stim.Circuit.detector_error_model(...)` and create a decoder from this information using `pymatching.Matching.from_detector_error_model`.\n", - "\n", - "Third, you run `matching.predict` to get the predicted observable flips.\n", - "\n", - "Fourth, you compare the predictions made by pymatching to the actual observable flip data that was sampled.\n", - "Anytime the prediction differs, that's a logical error." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "id": "32hBrUAQRbSc" - }, - "outputs": [], - "source": [ - "def count_logical_errors(circuit: stim.Circuit, num_shots: int) -> int:\n", - " # Sample the circuit.\n", - " sampler = circuit.compile_detector_sampler()\n", - " detection_events, observable_flips = sampler.sample(num_shots, separate_observables=True)\n", - "\n", - " # Configure a decoder using the circuit.\n", - " detector_error_model = circuit.detector_error_model(decompose_errors=True)\n", - " matcher = pymatching.Matching.from_detector_error_model(detector_error_model)\n", - "\n", - " # Run the decoder.\n", - " predictions = matcher.decode_batch(detection_events)\n", - "\n", - " # Count the mistakes.\n", - " num_errors = 0\n", - " for shot in range(num_shots):\n", - " actual_for_shot = observable_flips[shot]\n", - " predicted_for_shot = predictions[shot]\n", - " if not np.array_equal(actual_for_shot, predicted_for_shot):\n", - " num_errors += 1\n", - " return num_errors" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gVvL0sbLSi4R" - }, - "source": [ - "You can try this method on the repetition code circuit:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "7lBUrusk-qOR" + }, + "source": [ + "Now that you've added some noise, try sampling some more detector shots and see what happens:" + ] }, - "id": "D93VJhBVS1Cn", - "outputId": "abeb4610-b2ac-47fc-ae4d-eba90403e095" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "there were 5 wrong predictions (logical errors) out of 100000 shots\n" - ] - } - ], - "source": [ - "circuit = stim.Circuit.generated(\"repetition_code:memory\", rounds=100, distance=9, before_round_data_depolarization=0.03)\n", - "num_shots = 100_000\n", - "num_logical_errors = count_logical_errors(circuit, num_shots)\n", - "print(\"there were\", num_logical_errors, \"wrong predictions (logical errors) out of\", num_shots, \"shots\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jRbSSRC2TcBA" - }, - "source": [ - "You can check that increasing the physical noise strength increases the logical error rate. \n", - "Try increasing the between-round depolarization strength to 13%:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nfbwr9d-KWL4", + "outputId": "f5477d97-473c-4552-d73a-11190a296c05" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[False]\n", + " [False]\n", + " [ True]\n", + " [ True]\n", + " [False]\n", + " [False]\n", + " [ True]\n", + " [ True]\n", + " [ True]\n", + " [False]]\n" + ] + } + ], + "source": [ + "sampler = circuit.compile_detector_sampler()\n", + "print(sampler.sample(shots=10))" + ] }, - "id": "MLHl2S91Tnpi", - "outputId": "801e1e00-4ca7-4783-b556-cef8f180a110" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "there were 1234 wrong predictions (logical errors) out of 10000 shots\n" - ] - } - ], - "source": [ - "circuit = stim.Circuit.generated(\n", - " \"repetition_code:memory\",\n", - " rounds=100,\n", - " distance=9,\n", - " before_round_data_depolarization=0.13,\n", - " before_measure_flip_probability=0.01)\n", - "num_shots = 10_000\n", - "num_logical_errors = count_logical_errors(circuit, num_shots)\n", - "print(\"there were\", num_logical_errors, \"wrong predictions (logical errors) out of\", num_shots, \"shots\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "j2WD8EIIYSsO" - }, - "source": [ - "As you can see, you get a lot more wrong predictions with this higher noise strength." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pJt8euOoT1kQ" - }, - "source": [ - "\n", - "# 7. Estimate the threshold of a repetition code using Monte Carlo sampling.\n", - "\n", - "Estimating the threshold of an error correcting code really just comes down to trying a bunch of physical error rates and code distances.\n", - "You plot out the logical error rate vs physical error rate curve for each distance, and see where the curves cross.\n", - "That's where the physical error rate gets bad enough that increasing the distance starts to make the logical error rate worse, instead of better.\n", - "That's the threshold physical error rate.\n", - "\n", - "You can estimate the threshold of the repetition code, for the specific type of noise you're using, by plotting the logical error rate at various code distances and physical error rates:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 283 + "cell_type": "markdown", + "metadata": { + "id": "AreMncCeKb1x" + }, + "source": [ + "It's no longer all `False`s (unless you got very lucky).\n", + "There are `True`s appearing amongst the `False`s.\n", + "\n", + "The *detection fraction* of the circuit is how often detectors fire on average.\n", + "Given that an X error is being applied to each qubit with 20% probability, and the detector will fire when one of the qubits is hit (but not both), the detection fraction of the detectors in this circuit is $0.8 \\cdot 0.2 \\cdot 2 = 0.32$.\n", + "\n", + "You can estimate the detection fraction by just taking a lot of shots, and dividing by the number of shots and the number of detectors:" + ] }, - "id": "qkWlL6pwT5xc", - "outputId": "cfd36225-8a66-4ce1-9c9c-79861041fb91" - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxCElEQVR4nO3dd3hUZeL28e+kJ5AEAilAgAABDF16r3EVfyp231UUkdUFQgdFREVRRARpElBXxIKuYNe1QmhSRZogvSMlIZSEhLSZOe8fg5FIwAyZcDKZ+3NdXOacafckkrk55zzPYzEMw0BERETEA3mZHUBERETELCpCIiIi4rFUhERERMRjqQiJiIiIx1IREhEREY+lIiQiIiIeS0VIREREPJaKkIiIiHgsH7MDlGZ2u51jx44RHByMxWIxO46IiIgUgWEYnDt3jqpVq+LldeVjPipCV3Ds2DGqV69udgwRERG5CkeOHCE6OvqK91ERKkRiYiKJiYlYrVbA8Y0MCQkxOZWIiIgURXp6OtWrVyc4OPhv72vRWmOXl56eTmhoKGlpaSpCIiIibsKZz29dLC0iIiIeS0VIREREPJauEXIBm81GXl6e2THchq+vL97e3mbHEBERUREqDsMwOHHiBGfPnjU7itupUKECUVFRmpZARERMpSJUDH+UoIiICIKCgvShXgSGYXD+/HlSUlIAqFKlismJRETEk6kIXSWbzZZfgipVqmR2HLcSGBgIQEpKChERETpNJiIiptHF0lfpj2uCgoKCTE7inv74vunaKhERMZOKUDHpdNjV0fdNRERKAxUhERER8VgqQiIiIuKxVIQkX9euXRk2bJjZMURERK4ZFSEptlOnTnHTTTdRtWpV/P39qV69OoMGDSI9Pd3saCIiIlek4fNSbF5eXvTq1YsXX3yR8PBw9u7dS0JCAqdPn+bDDz80O56IiEcwDAO7Ycdm2LDarVgNKza7LX/bZtiw2W2O/TYrNrsVm2HFasvL/zrPZsVmz8NmOG632m2O2+x5WI0LX//xfHbH8//5Wn95DbvN8fwXMjj2X5Tnwravlw+v9Zxn2vdNRciFDMMgK89mymsH+no7NRIrMzOTAQMG8NlnnxEcHMyoUaOu+rUrVqzIgAED8rdr1qzJwIEDmTx58lU/p4hImWW3wam95B3fzK+HV7Dq1Fa2550hD7ACNgxsFrBd2LZiYANslj9u/+NrS/7XNsDqpqNxA+yGqa+vIlSIxMREEhMTsdmcKzVZeTYaPPtDCaW6su3jbyTIr+g/zscff5zly5fz5ZdfEhERwVNPPcXGjRtp1qwZAP3792f+/PlXfI6MjIxC9x87dozPPvuMLl26FDmPiEiZlHMOkn+DE1vhxFaOnNjM6szDrPL35ufAADK9Llyh4nvxg/5aaIpfcHwMAx/DwPvC1xf/19sw8DHAGwNvg0tvK2Tb+6Jtb8Nxnc2fjwWvC1//cdul2xa8MfAyLBiGuVVERagQCQkJJCQkkJ6eTmhoqNlxXC4jI4O5c+cyf/58evToAcC7775LdHR0/n3Gjx/v9FGif/7zn3z55ZdkZWVx66238tZbb7k0t4hIqWUYkH4sv/Bw4lfsJ7aRdfYAPwcGsCowgDWBARz29wX/4PyHBdq8CcsMx5ZZC7s9APACwxvD8Lrw9YXtC18bF30NF7YNL8Abw/DGbnhhwRvD7rjNjrfjflgwABsW8rDkbxtYsGOBi/dZvPD19sLXxxs/by98vH3w8fHC19sbX58Lf7y98fP1xt/HCz8fL/y8HY/x8/nzj5e3F14X337hv34+Xhc9zht/X3MvV1YRcqFAX2+2j7/RtNcuqn379pGbm0ubNm3y94WFhVG/fv387YiICCIiIpzKMG3aNMaNG8fu3bsZM2YMI0aMYPbs2U49h4hIaWfNzeHs4W1kHt6McWIr/qm/USF9J4HWdOzADj9f1gQGsiowgM01owucsrIYFryzqnI+oyF5mfU4l12VFLwI9vfB/y/F4o9C4ettwe9CKSnsdsd9Ltx28f4ifu3vU7DE+HhZPGrSWxUhF7JYLE6dnirNrubUWFRUFFFRUVx33XWEhYXRqVMnnnnmGS2sKiJuwTAMzp7P40R6Nsnp2aSk53DmVAreJ7dR7sxOwjN3Uz1nHzHGESpbrFS+8LiT3l4sCgxkZUBlVgUFku5dsER4WSsTSiOqBTSjfkhToiuEERkScOGPP5EhAQQ48Y9Zca2y8aktTqlTpw6+vr6sW7eOGjVqAHDmzBl2796df13P1Zwau5jdbgcgJyen+IFFRIrpfK6VE2nZJKfnkHIuO//r5AulJzk9C79zR4i1H6SB1yEaWA7R3usQ0ZbUS54r1wJL/UP4vlw4G4O8OeGbXeD2AO8gGldqQefojnSv2ZEaITWu1duUq6Ai5IHKly9Pv379ePzxx6lUqRIRERGMHTsWL68/z9M6c2rs22+/JTk5mVatWlG+fHl+++03Hn/8cTp06EBMTEwJvQsREciz2Uk5l3PhCM6FgnMuh+S0bJLPXSg7admcy7HmP8afXOpafqeB1yFaWQ4R53WYOMshQnyyCn2Ns/5V2F6hNutDQ9nkm8227MPk2HOBPCAPCxbiKsXRoWoH2ldtT9OIpvh6+Rb6XFL6qAh5qMmTJ5ORkcGtt95KcHAwI0eOJC0t7aqeKzAwkP/85z8MHz6cnJwcqlevzp133smTTz7p4tQi4insdoPT53PzT1GdyD9yU/BIzqnMXIwrjL4OI52mXoeI8z5EE5/DNPI+TA3773hjv+S+hpcfRsR1eEU1IS28Luv8vFiddZzVKRs4nnkE8o44ug8QHhhOu6rt6FC1A22rtiUsIKyEvhNS0iyGcaX/hTzbH6PG0tLSCAkJKXBbdnY2Bw4coFatWgQEBJiU0H3p+yfiuTJyHKepUtKzLxSci09R/Xn6Ks9WtI8nX28LUeV9aVruNE19f+c6DlIjbx8R5/cQmJ1S+IMCwyCqcf4fW2RDtpHL6hM/s+rYKrambsVu/FmW/Lz8aB7ZnA5VO9CuajvqVaznURcUu5srfX7/lY4IiYiIS+RYbaTkX4Nzabn54+vM3KLP0Va5vB8RwQFEhf55YXHVIDt17Ieokr2Hiud2EZC6A0vKb3D6fOFPElYHohpdKD1NILIRhFTlxPlkVh1dxapjq1i7fSbncs8VeFjt0Nq0r9qe9lXb0zKqJYE+gcX59kgppSIkIiJOMwyD7cfTWbw9haW7Ujh8+jynM3OL/Phgfx8i/yg3wQGOr4P9iQoNIOLCiKrwcn74ZaVcmJdnHSRvgx1b4dQ+oJCjRT6BENngzyM9kY0d2xfm7cmyZvHLiV9YvWs+q46t4kDagQIPD/ELoW2Vtvnlp0p5jXj1BCpCIiJSJDlWG2v3n2bx9mSSdiRzLC37kvv4eXsRGXqh3Fw0RDwqNICI4D+P6pTz/8vHjy0PUvfAiZ9h59Y/JyY8f6rwMOUjLyo8jRxHeirVAa8/h6EbhsHuM7tZvWc1q4+tZmPyRnLtf5Y1L4sXjSs3dlzkXK09jSo1wttLw9g9jYqQiIhc1pnMXJbuSmHxjmSW7zpZ4LRWgK8XneqGc0NcJI2jQ4kKCaBCkO/fXzuTnQaHfsufgZkT2yBlB9gKmW7D4gWV610oO39e00P5wke1ns4+zZpja1h9bDVrjq3hZNbJArdXKVeF9lXb06FaB9pUaUOI35WvH5GyT0VIREQK2H8yg8U7klm8PYVfDp3m4jUxI4L96REXSXxcBB1iK195IkDDgLQjFy07ceHP2UOF398vGCIbXlR4GkFEA/C9/LU5ebY8Np/czJpja1h1bBU7Tu3AuOi0WaBPIC0jW9KhmmNoe0xIjC5ylgJUhEREPJzNbrDx8BkWb09m0Y5k9p/MLHD7dVHB3NAgkvi4SBpXC8XLq5AiYc2BkzsvlJ1tjv8mb3Uc/SlMSHTBwhPVGCrEgNffrzt1JP0Iq445LnL++fjPnLcWvEi6fsX6tK/muM6neURz/Lz9ivqtEA+kIiQi4oEycqz8tPski3Yks3RnCmfO5+Xf5uttoW3tSsTHRdIjLoLoikGFP4ndBtu/hDWJcHwz2K2X3sfLB8LjChaeyEYQVPR5dzLzMll3fB2rjzmu9Tly7kiB28MCwmhXtV3+Rc6VAytf5plELqUiJCLiIY6nZbF4RwqLtyezZt8pcm1/zpMTEuBD9+siiG8QSed64YQEXGFmZJsVtn0KP02B1N1/7g+oUPA6nshGEF4ffPydymk37Ow4tYNVx1ax+thqtqRswWr8WbJ8vHy4PuL6/OJzXdh1eFnMXcFc3JeKkOTr2rUrzZo1Y/r06WZHEREXMAyD346lO6732ZHMtqPpBW6vWSmI+DjHKa+WMRXx9f6bMmHLgy0fwU+vwpkLQ88DQqHtQGh2P4RWh6u8/iblfEr+dT5rj63lTM6ZArfXCK6Rf5Fzq6hWlPMtd1WvI/JXKkLiEoVdfPjf//6X//f//p8JaUQ8V47Vxpp9p1i8I5mkHSkcv2iIu8UCzWtUJD4ukhsaRFAnvHzRLhy25sCm+bByOqQdduwLqgTtEqDVoxDg/MirHFsOG5M3svrYalYdW8WeM3sK3F7OtxxtotrQoZpjJufqwdWdfg2RolAREpeZN28eN910U/52hQoVzAsj4kFOZ+ayZGcKSTuSWbG74BD3QF9vOterTI+4SLpfF0Hl8k6cpsrLgg3vwqoZcO6YY1+5COgwBFo+An5FPypjGAYH0g7kX+S84cQGsm0XlTQsNKzUkPbV2tOhagcahzfWwqVyTagIeajMzEwGDBjAZ599RnBwMKNGjSr2c1aoUIGoqCgXpBORv7PvZAaLtztOeW04dKbAEPfIEMcQ9xviImlXp9KVh7gXJicDfnkbVr8GmRfW6gquCh2HQfOHrjic/WJpOWmsPb42/yLnE5knCtweERiRP7qrbZW2VAyo6FxOERdQESpEYmIiiYmJ2GxFXw8HcMyZkXeZtW5Kmm+QU+fmH3/8cZYvX86XX35JREQETz31FBs3bqRZs2YA9O/fn/nz51/xOTIyMgpsJyQk8K9//YvatWvTv39/+vbtq/k6RFzEarOz4dCZ/FNe+1MLDnFvUCWE+DjHxc6Nql5miPvfyU6Hn990jALLOu3YF1oDOg2HZg/87UXPVruVbanb8i9y3pa67ZKFS1tGtcy/yDm2Qqx+R4jpVIQKkZCQQEJCQv7qtUWWdx5eqlpywa7kqWNFPkydkZHB3LlzmT9/Pj169ADg3XffJTo6Ov8+48ePd+oo0fjx4+nevTtBQUH8+OOPDBw4kIyMDIYMGeLc+xCRfBk5VlbsPsni7cks2ZXC2UKGuN/QwHHK67JD3Isi6wysewPWzv5z3p+w2tBpJDS5D7wvf4rKbtj5Zv83LD2ylLXH116ycGlshVjaVW1Hh6odaBHZggCfgKvPKVICVIQ80L59+8jNzaVNmzb5+8LCwqhfv37+dkREBBERhU9hX5hnnnkm/+vrr7+ezMxMJk+erCIk4qRjZ7NI2pHMoh0prP3LEPcKQb50qx9BfFwknetVJvhKQ9yLIvMUrE2En/8DORdGlFWuD51HQcM7wfvKHxHncs/x1E9Psez3Zfn7QvxC8otPu6rtiCqn0+VSuqkIuZJvkOPIjFmv7UJXc2rsYm3atOGFF14gJycHf3/n5hAR8SSGYbDtaDqLdiSzeHsy248XHOIeUykof1bnFjUr4vN3Q9yLIiMFVs+E9W9D3oVTbBENHQWoQa8CC5dezt4zexm2bBiH0g/h5+XHw40epkt0FxpWaqiFS8WtqAi5ksXi1CgKs9SpUwdfX1/WrVtHjRo1ADhz5gy7d++mS5cugPOnxv5q8+bNVKxYUSVIpBDZeQWHuJ9ILzjEvUWNisRfKD91wsu57jqa9GOOEWAb3gHrhdes0hQ6PwH1by7S8hYAPxz8gWdWPUOWNYsq5aowrds0GlZq6JqMIteYipAHKl++PP369ePxxx+nUqVKREREMHbsWLwu+iXozKmxr7/+muTkZNq2bUtAQACLFi3ipZdecslINJGy4lRGDkt2OlZx/2lPKucvGuIe5OdN57rhxDeIpFv9cCo5M8S9KM4edswBtOl9sOU69kW3chSgujcUeaCF1W5l5saZzPttHgBtqrThlc6vEBZQ9OUyREobFSEPNXnyZDIyMrj11lsJDg5m5MiRpKVdZnHEv+Hr60tiYiLDhw/HMAxiY2OZOnUqjz76qItTi7gPwzDYdzLzwiruyWw4fAbjL0Pc4+MiiW8QSbvaVzHEvShO74efpsKW//65DljNDtD5cajd1amRpqezT/PE8idYd2IdAH0b9WXI9UPw8dLHiLg3i2Fc/FdTLvbHqLG0tDRCQgrOnJqdnc2BAweoVasWAQEaBeEsff+kLLLa7Pxy6Ez+/D4HTxWcTqNh1ZALszpH0rBqSMkNHT+527EMxtaPwbhw5KlWF+jyBMR0dPrpfkv9jeHLhnM88ziBPoG80OEFboy50cWhRVznSp/ff6UqLyJSDOey81ixO5XFO5JZsjOFtKw/h7j7eXvRtk4lboiLoEdcJFUrFG0iwquWvB1WTIbfPgcu/Bs39gZHAare+qqe8vM9n/Pi2hfJtedSM6Qm07tOJ7ZirOsyi5hMRUhExEm/nzlP0g7H9T5r958iz/bngfUKQb50vy6CG+Ii6VQvnPL+1+DX7PEtsPwV2Pm/P/fV/z/HKLBqza/qKfNsebz888ss3L0QgK7Vu/JSx5cI9gt2RWKRUkNFSETkb9jtBtuOpbF4u2N+nx1/GeJeu3K5/FFezWtUcM0Q96L4fQOseAV2f39hh8Ux/L3z4xDV6KqfNjkzmRHLR/DryV+xYCGhWQKPNnkUL8s1el8i15CKkIhIIbLzbKzel8qi7Sks2ZlMcnpO/m1eFmhZM4z4Bo5TXnXCy1/bcIfWOArQviWObYsXNLrbMRN0xHXFeuoNyRsYuWwkp7JPEewXzMudXqZzdGcXhBYpnVSEREQuSP1jiPt2xxD3rLw/h7iX8/Omc71w4uMi6XZdBGHl/K5tOMOAAysc1wAd/Mmxz+INTf8JnUZApTrFfHqDD3d+yJT1U7AaVupWrMuMrjOoHlLdBeFFSi8VIRHxWIZhsDclI39W501HzhYY4l4lNCB/iHvb2mH4+5gwY7JhwN4kxxGgI46h63j5wvUPQMfhUDGm2C+RZc1i/Jrx/G+/4xqjnrV68ly75why8Yz1IqWRipCIeJQ8m51fDjpWcV+8I5lDfxni3qiaY4h7fFwJD3H/O4YBu75zHAE6ttGxz9sfWvSBDkMhNPrKjy+iI+eOMHzpcHad2YW3xZuRLUfSO663VoUXj6EiJCJlXnp2Hst3nWTxjmSW7kwhPduaf5uftxftYysRHxdJj7gIqoSW8BD3v2O3w46vYMUUSN7q2OcbBC0fgfaDIdh1i5iuPLqS0StGk56bTlhAGFO6TKFVVCuXPb+IO1AREpEy6cjp8yTtSGbxjhTW7j+F1f7nOa+KQb50vy6SGxpE0LHuNRri/nfsNsf8PyumwMkdjn1+5aH1o9BuEJSr7LqXMuzM3TqX1za9hoFBk8pNeLXrq1opXjxSKfjbL6VF165dadasGdOnTzc7iojT7HaDX4+m5c/qvPPEuQK31wl3DHG/IS6S62tUxNurlJz6sVlh60LHTNCn9jr2+YdC2/7Qpj8EuXYdr4zcDMauHMuSI44RZ3fXu5sxrcfg532NL/4WKSVUhKTY3nnnHfr27VvobcnJyUVevFXEWdl5NlbtTb1wvU8KJ8/9ZYh7TBg3XDjlVftaD3H/O9Zc2PKhYy2ws4cc+wIrQtsEaPMYBIS6/CX3n93P0KVDOZh+EF8vX8a2Gctd9e5y+euIuBMVISm2++67j5tuuqnAvocffpjs7GyVIHG5k+dyWLIzmUXbU1i59yTZefb828r5edO1fgQ94iLoVj+Citd6iHtR5GU7VoFfOR3Sf3fsKxfuOP3Vqh/4l8zMzYsPLWbsyrGct54nMiiSaV2n0Ti8cYm8log7URHyUJmZmQwYMIDPPvuM4OBgRo0addXPFRgYSGDgnxeYnjx5kiVLljB37lxXRBUPZxgGe1IyWHThlNfmvwxxrxoakD+rcxuzhrgXRe552PAOrJoBGScc+8pHOUaAtXgY/EpmqLrNbuO1Ta8xd5vj72OrqFZM7jyZSoGVSuT1RNyNipALGYZBljXLlNcO9Al0arjr448/zvLly/nyyy+JiIjgqaeeYuPGjTRr1gyA/v37M3/+/Cs+R0ZGRqH733vvPYKCgrj77ruLnEfkYnk2O+sPnGbxhfW8Dp8uOMS9SXRo/iivBlVMHOJeFDnnYP1cWDMLMk869oVEQ8dhcP2D4BtQYi99NvssT6x4gjXH1wDQp0EfhrUYho+XfvWL/EF/G1woy5pFmw/bmPLa6+5fV+TJzzIyMpg7dy7z58+nR48eALz77rtER/85L8n48eOv+ijR3Llzuf/++wscJRL5O2lZeSzffZLF25NZuiuFcxcPcffxokOdSsQ3iKTHdZFEhZZceXCZ7DRY9yasTYSsM459FWo6lsFo+k/wKdnTdttPbWf40uEcyzxGoE8gz7d/np61epboa4q4IxUhD7Rv3z5yc3Np0+bP0hYWFkb9+vXztyMiIq7q+p41a9awY8cO3n//fZdklbIt5Vw23/x6nMU7klm3/3SBIe6VyvnR/TrHWl6d6lamXGkY4l4U50/D2jmw7g3ISXPsqxTrKECN7wFv3xKP8NW+rxi/Zjw5thyqB1dnerfp1KtYr8RfV8QduclvFvcQ6BPIuvvXmfbarnS1p8beeustmjVrRosWLVyaR8qWlPRs5izfx4frDpNj/fNi59iI8sTHOeb3aVa9FA1xL4rMVMfpr5//A7kX/m6EX+dYCb7hHeBV8tcu5dnyeGX9K3y06yMAOkd3ZmKniYT4hZT4a4u4KxWhQiQmJpKYmIjNZvv7O1/EYrG4xdo8derUwdfXl3Xr1lGjRg0Azpw5w+7du+nSpQtwdafGMjIyWLhwIRMnTnR5ZikbCitATatX4NYmVegRF0mtyuVMTngVzp2A1a/BL29D3oVrmSIbQ5fH4bpbwcvrmsQ4ef4kI5ePZFPKJgAGNB1A/6b98bJcm9cXcVcqQoVISEggISGB9PR0QkNdP5eH2cqXL0+/fv14/PHHqVSpEhEREYwdOxavi35hX82psQULFmC1Wundu7erI4ubK6wAtahZkeHx9egQW6l0X+x8OWm/O0aAbXgXbBfmL6raHLo8AfVugmv4njalbGLEshGkZqUS7BvMxE4T6VK9yzV7fRF3piLkoSZPnkxGRga33norwcHBjBw5krS0tGI959y5c7nzzjupUKGCa0KK2yuTBejMQVg5DTZ9APY8x77qbR1HgOr0uKYFyDAMPtr1Ea/8/ApWw0pshVimd5tOzZCa1yyDiLuzGMbFM3LIxf44IpSWlkZISMFz7NnZ2Rw4cIBatWoREOAGI1hKGX3/yrYyWYBO7XMsg7HlIzAunDaP6eQ4AhTT6ZoWIIBsazYvrH2Br/Z9BcCNMTcyvv14tzg9L1LSrvT5/Vc6IiQiLpOSns3ry/fzwbpDZacApeyEn6bAtk/BuHBhd53u0PkJqNnOlEhHM44yfOlwdpzegZfFixEtRvBQg4fc8/srYjIVIREptjJZgE5sgxWTYfuXwIUD5/VuchSgaPNGRa4+tprRK0ZzNucsFf0rMrnLZNpUMWf+MpGyQEVIRK7a5QrQsPi6dIyt7J4F6NgmWD4Zdn3z5764Wx3D4Ks0NS2WYRi8ve1tZm6aid2w07BSQ6Z1nUaV8lVMyyRSFqgIiYjTymQBOvIzLH8F9i66sMMCje6ETqMgsoGp0TLzMnlm1TMsOuTIdkfsHYxtOxZ/b39Tc4mUBSpCIlJkZbIAHVzpKEAHlju2Ld6OGaA7jYRw82djPpB2gGFLh7E/bT8+Xj481eYp7q57t3t+r0VKIRWhYrLb7X9/J7mEvm/upcwVIMOA/csc1wAdWuXY5+XjWAOs0wgIq21qvD8kHU5i7MqxZOZlEhEYwdRuU2kabt7pOZGySEXoKvn5+eHl5cWxY8cIDw/Hz8/P/T4MTGAYBrm5uZw8eRIvLy/8/Ep24UkpnsIKUPMaFRh+Qz33LUB7FsGKV+D39Y593n6OVeA7DoMKNUyN9web3Ubi5kT+s/U/ALSIbMGULlOoHFjZ5GQiZY+K0FXy8vKiVq1aHD9+nGPHjpkdx+0EBQVRo0aNArNZS+lR5gqQ3Q67vnUcATq+2bHPJwBa9IUOQyCkqqnxLpaWk8bon0az6qjjSFXvuN6MaDkCX6+SX6xVxBOpCBWDn58fNWrUwGq1Or0umSfz9vbGx8fH/T5MPUDZK0A2x/D3FVMg5TfHPt9y0KoftB8M5Z1bRqak7Tq9i6FLh3I04ygB3gGMaz+OW2rfYnYskTJNRaiYLBYLvr6++PrqX2vivspcAbJZHRMg/jQFUnc79vmHQOvHoO1AKFfJ3HyF+N/+//H86ufJtmVTrXw1ZnSbQf2w+mbHEinzVIREPFjZK0B5jiUwVk6F0/sd+wJCHeWnzb8hsKK5+QqRZ89j6i9Tmb9jPgAdqnVgUqdJhPqXvQWfRUojFSERD5RyLps3lu9n/toyUoCsObD5A8diqGcPO/YFVYJ2CdDqUQi48lpDZknNSmXkspFsTNkIwGNNHmNg04F4e3mbnEzEc6gIiXiQMleA8rJg43uwagakH3XsKxfhuAC65SPgV87cfFewOWUzI5eNJCUrhXK+5Xip40t0r9Hd7FgiHkdFSMQDXK4ADYuvR6e6bliAcjPhl7dh9WuQkezYF1zVMQS++UPgG2hqvCsxDIOPd3/MxJ8nYrVbqR1am+ndplMrtJbZ0UQ8koqQSBlW5gpQdjqs/w+sSYTzpxz7Qms4CtD1vcGndC85kWPLYcLaCXy+93MAbqh5Ay90eIFyvqX3yJVIWaciJFIGlbkClHUG1r0Ba+dA9lnHvoq1HMtgNP1/4F36R20ezzjO8GXD+e3Ub3hZvBjafCh9G/Z1v5+FSBmjIiRShpS5ApR5CtbOhp/fhJx0x77K9RwLoTa6C7zd41fYuuPreHz545zJOUMF/wq80vkV2lVtZ3YsEUFFSKRMKKwAXV+jAsPdtQBlpDiu/1k/F/IyHfsiGkLnUdCgF7jJqCrDMHj3t3eZtnEadsNOXFgc07pNo1r5amZHE5ELVIRE3FiZK0Dpx2DVTNjwDlizHPuqNIXOT0D9m8GNlmQ5n3eeZ1c/yw8HfwDgtjq38UzbZwjwCTA5mYhcTEVIxA2VuQJ09ohjDqBN74Mt17EvupWjANW9Adzs/RxKP8SwpcPYe3YvPhYfRrcezX3173O/n4uIB1AREnEjZa8AHXYshLr5v2DPc+yr2QE6Pw61u7pdAQJYdmQZY34aQ0ZeBuGB4UztOpVmEc3MjiUil6EiJOIGUs5l8+by/cxfd4jsvDJQgAB2fQef/Rty0hzbtbpAlycgpqO5ua6S3bAzZ8scXt/yOgDXR1zPq11eJTwo3ORkInIlKkIipViZLEB2Gyyb6DgSBI5TYDe+BNVbm5urGNJy0hjz0xh+OvoTAP+87p883vJxfN1gWL+Ip1MREimFLleAhsXXo7O7FiCA86fh03/BviTHdut/wz9eBB8/c3MVw+4zuxm2dBhHzh3B39ufZ9s9y211bjM7logUkYqQSClSZgsQwLHNsPBBx3VBPoFw6wxoep/ZqYrluwPfMW71OLKsWVQrX41pXacRVynO7Fgi4gQVIZFSoEwXIIBNH8A3I8Ca7ZgR+r75ENXI7FRXzWq3Mm3DNN7b/h4A7au2Z1KnSVQIqGBuMBFxmoqQiInKfAGy5sD3TzoWSAWoeyPc+QYEVjQ3VzGcyjrF4yseZ/2J9QD8q/G/GNRsEN5uMsmjiBSkIiRigsIKULPqFRh+QxkpQABpR2HhQ3D0F8ACXcc4hsW70aSIf7X15FaGLxtO8vlkgnyCmNBxAvE1482OJSLFoCIkcg15RAECOLACPu4L51MhIBTumuuYGNGNfbr7Uyasm0CePY+YkBhmdJtB7Qq1zY4lIsWkIiRyDXhMATIMxxphi58DwwZRjeHe9yGsltnJrlquLZeX1r3Ep3s+BaB79e5M6DiB8n7lTU4mIq6gIiRSgk6ey+GN5fvKfgECyDkHXw6C7V84tpv+E/5vKvgFmRqrOE5knmDEshFsTd2KBQtDmg/hkUaP4GVx39N7IlKQ00Vo/PjxjBo1iqCggr/csrKymDx5Ms8++6zLwom4q5PncnhzxT7eX+sBBQjg5G5Y0BtSd4GXL/R8GVr2c8slMv6w/sR6Ri0fxens04T4hfBK51foUK2D2bFExMUshmEYzjzA29ub48ePExERUWD/qVOniIiIwGazuTSgmdLT0wkNDSUtLY2QkBCz44gb8LgCBLD9K/hiIOSeg+AqcO97bj1LtGEYvL/9faZumIrNsHFd2HVM6zqN6OBos6OJSBE58/nt9BEhwzAK/WW+ZcsWwsLCnH26UikxMZHExMQyVeqkZF2uAA2Lr0uXeuFlswDZrLDkBVg13bFdsyPcMw/KR1zxYaXZ+bzzPLfmOb478B0At9S+hWfbPUugT6DJyUSkpBT5iFDFihWxWCz57eriX+w2m42MjAz69+9PYmJiiYW91nRESP6ORxYggMxU+KSvY3QYQLtBEP8cuPHaWkfSjzB02VD2nNmDj8WHUa1Gcf9195fdn6FIGVYiR4SmT5+OYRg88sgjPP/884SGhubf5ufnR0xMDO3atbv61CJuxGMLEMDRDbDgIUj/HXzLQa/XoNFdZqcqlhW/r+DJn57kXO45KgVU4tWur9IisoXZsUTkGihyEerTpw8AtWrVon379vj6uu+//ESulkcXIIAN78C3j4MtFyrFOpbKiHDftbXshp03f32T2ZtnY2DQNLwpU7tOJSLIfU/viYhznL5GqEuXLthsNj799FN27NgBQMOGDbntttvw9tYU81I2eXwBysuGb0fBpvcd29fdArfPdkyW6KbO5Z7jqZ+eYtnvywC4r/59jG41Gl83Pr0nIs5zugjt3buXm2++maNHj1K/fn0AJk6cSPXq1fnmm2+oU6eOy0OKmMXjCxA4Votf8CAc3wwWL+j+DHQY5tZLZew9s5dhy4ZxKP0Qfl5+PN32ae6oe4fZsUTEBE4Pn7/55psxDIMPPvggf5TYqVOn6N27N15eXnzzzTclEtQMuljac6kAXbBvCXzSD7JOQ2AY3P021Olmdqpi+eHgDzyz6hmyrFlUKVeFad2m0bBSQ7NjiYgLlejw+eXLl7N27doCQ+UrVarEyy+/TIcOmmxM3JsK0AV2O6yaBkteBMMOVZrBfe9DhRpmJ7tqVruVmRtnMu+3eQC0qdKGVzq/QlhA2Zj2Q0SujtNFyN/fn3Pnzl2yPyMjAz8/P5eEErnWVIAukp0Gnw+AXReO7l7/INw8BXwDzM1VDKezT/PE8idYd2IdAH0b9WXI9UPw8dIqQyKezunfArfccguPPfYYc+fOpXVrx+yx69ato3///tx2220uDyhSklIzcnhzxX7eW3MwvwA1rV6B4Z5YgABSdjiWyji1F7z94ObJ0OJhs1MVy2+pvzF82XCOZx4n0CeQFzq8wI0xN5odS0RKCaeL0MyZM+nTpw/t2rXLH0JvtVq57bbbmDFjhssDipSEyxWgYfF16eqJBQhg26fw5WDIy4SQaLjvPajm3nPpfL7nc15c+yK59lxqhtRketfpxFaMNTuWiJQiThehChUq8OWXX7Jnzx527twJQFxcHLGx+uUipZ8KUCFsebBoHKy9MCt8rS6Oi6LLVTY3VzHk2fJ4+eeXWbh7IQBdq3flpY4vEewXbHIyESltrvoEed26dalbt64rs4iUGBWgy8hIgY/7wqGVju2Ow6Hb0+DtvtfOJGcmM2L5CH49+SsWLCQ0S+DRJo/iZXHf4f4iUnKc/m1ns9l45513SEpKIiUlBbvdXuD2JUuWuCycSHGpAF3BkZ9h4UNw7jj4BcMdcyDuVrNTFcuG5A2MXDaSU9mnCPYL5uVOL9M5urPZsUSkFHO6CA0dOpR33nmH//u//6NRo0ae/UEipdYfBej9NYfIyrMBKkD5DAPWvwXfjwF7HlSu71gqI7ye2cmummEYfLjzQ6asn4LVsFK3Yl1mdJ1B9ZDqZkcTkVLO6SL00UcfsXDhQm6++eaSyCNSLCpAfyP3PPxvOPz6kWO7we3Qaxb4u++1M1nWLMavGc//9v8PgJ61evJcu+cI8g0yOZmIuAOni5Cfn58ujJZSRwWoCE4fcCyVkbwVLN5ww/PQbhC48ffmyLkjDF86nF1nduFt8WZky5H0juutn7eIFJnTRWjkyJHMmDGDWbNm6ZeNmE4FqIj2LIJP/wXZZyGoMtwzD2q597UzK4+uZPSK0aTnphMWEMaULlNoFdXK7Fgi4maKVITuvPPOAttLlizhu+++o2HDhvlzCf3hs88+c106kctQASoiux1WvALLXgYMqNYS7n0PQquZneyq2Q07c7fO5bVNr2Fg0KRyE17t+ipR5aLMjiYibqhIRSg0NLTA9h13aJVmMUdqRg7/WbGf91SA/l7WGfjs37DnB8d2y35w00Tw8Tc3VzFk5GYwduVYlhxxjE69u97djGk9Bj9vLe8jIlenSEVo3rx5JZ1D5IoKLUDRoQy7oZ4KUGFObIMFD8CZg+ATALdMg2b3m52qWPaf3c/QpUM5mH4QXy9fxrYZy1317jI7loi4OaevEcrKysIwDIKCHCMyDh06xOeff06DBg34xz/+4fKA4tkuW4Di69G1vgpQobYsgK+HgjXLsVr8ffOhSlOzUxXL4kOLGbtyLOet54kMimRa12k0Dm9sdiwRKQOcLkK9evXizjvvpH///pw9e5bWrVvj5+dHamoqU6dOZcCAASWRUzyMCtBVsObCj2Ph5zcd23V6wF1vQVCYubmKwWa38dqm15i7bS4AraJaMbnzZCoFVjI5mYiUFU4XoY0bNzJt2jQAPvnkE6Kioti0aROffvopzz77rIqQFIsK0FVKPw4f94Ej6xzbnZ+Ark+Cl7e5uYrhbPZZnljxBGuOrwGgT4M+DGsxDB8v913+Q0RKH6d/o5w/f57gYMfkaz/++CN33nknXl5etG3blkOHDrk8oHgGFaBiOLQaPn4YMpLBPxTufAPq9zQ7VbFsP7Wd4UuHcyzzGIE+gTzf/nl61nLv9yQipZPTRSg2NpYvvviCO+64gx9++IHhw4cDkJKSQkhIiMsDStmmAlQMhgFr58CPT4Nhg4gGjuuBKtUxO1mxfLXvK8avGU+OLYfqwdWZ3m069Sq67/IfIlK6OV2Enn32We6//36GDx9Ojx49aNeuHeA4OnT99de7PKCUTSpAxZSbCV8NgW2fOLYb3wO3zgC/cubmKoY8Wx6vrH+Fj3Y5lv/oHN2ZiZ0mEuKnf2CJSMmxGIZhOPugEydOcPz4cZo2bYqXlxcAP//8MyEhIVx33XUuD2mW9PR0QkNDSUtL09EuF1EBcoFT+2BBb0jZDl4+8I8J0Obfbr1UxsnzJxm5fCSbUjYBMKDpAPo37Y+XxcvkZCLijpz5/L6qqw6joqKIiio4i2vr1q2v5qnEQ6gAuciu7+CzxyAnHcpHwj3vQs12Zqcqlk0pmxixbASpWakE+wYzsdNEulTvYnYsEfEQGn4hJepURg5v/rSf91arABWL3QbLJsKKyY7tGu3gnncg2L2Xlfh8z+eMXzMeq2EltkIs07tNp2ZITbNjiYgHURGSElFYAWoSHcpwFSDnnT/tWDB1X5Jju01/+MeL4O175ceVckmHkhi3ehwGBjfG3Mj49uMJ8g0yO5aIeBgVIXGpyxWgYfF16VY/QgXIWcc2w8IH4exh8AmE22ZCk3vNTlVsv578ldE/jcbA4J569/BM22f0/4aImMKpIpSXl8e///1vnnnmGWrVqlVSmcQNqQCVgE3z4X8jwJYDFWs5hsZHNTI7VbEdST/C4CWDybHl0KlaJ55q85T+/xAR0zg9aiw0NJTNmzd7RBHSqLG/pwJUAqw58N1o2HBhseN6N8Edb0BgBVNjucLZ7LM8+N2DHEw/SFxYHO/c9I5Oh4mIy5XoqLHbb7+dL774In8iRfFMKkAlJO13WPgQHN0AWKDbU9BpFHi5/zDyHFtO/urxUeWimNVjlkqQiJjO6SJUt25dxo8fz6pVq2jRogXlyhWcwG3IkCEuCyeljwpQCTqwAj7uC+dTIaAC3DUX6sabncol7Iadp1c+zcaUjZT3Lc/sHrOJCIowO5aIiPOnxq50SsxisbB///5ihyotdGrsTypAJcgwYPVMWPwcGHaIauy4HqhijNnJXGbahmm8ve1tfCw+zLlhDm2rtDU7koiUYSV6auzAgQNXHUzcjwpQCcs5B18mwPYvHdtN74dbpoJvoLm5XGjhroW8ve1tAJ5r/5xKkIiUKlc9fD43N5cDBw5Qp04dfHw0Cr+sUQG6Bk7uhgUPQOpu8PKFni9Dy35uvVTGX634fQUT1k0AYGDTgfSK7WVyIhGRgpxuMOfPn2fw4MG8++67AOzevZvatWszePBgqlWrxpNPPunykHLtnMrI4T8/HeC9NQc5n6sCVGK2fwlfDITcDAiuCve+B9VbmZ3Kpbaf2s6o5aOwG3Z61elF/6b9zY4kInIJp4eijBkzhi1btrBs2TICAgLy98fHx7NgwQKXhpNr51RGDi9/t5NOryzl9eX7OJ9ro0l0KG8/3JIvEzrQ/bpIlSBXsFlh0bOOkWG5GRDTCf69vMyVoOMZx0lISiDLmkWbKm0Y126c/v8RkVLJ6SNCX3zxBQsWLKBt27YFfrE1bNiQffv2uTSclLzCjgA1ruY4AtT9Oh0BcqnMVPikr2N0GEC7QRD/PHiXrVPL6bnpDEwaSGpWKrEVYpnWdRq+br4ciIiUXU7/Bj558iQREZcOe83MzNSHphtRAbrGft/gWCoj/Sj4loPbE6HhHWancrk8Wx4jlo5g79m9hAeGMyd+DsF+wWbHEhG5LKeLUMuWLfnmm28YPHgwQP4H5ltvvUW7du1cm05cTgXoGjMM2PAOfPcE2HKhUizc9wFEXGd2MpczDIPn1jzHuhPrCPIJIrFHIlHlosyOJSJyRU4XoZdeeomePXuyfft2rFYrM2bMYPv27axevZrly5eXREZxARUgE+Rlw7cjHWuGAVx3C9w+BwLK5pxUr295na/2fYW3xZspXaYQVynO7EgiIn/L6SLUsWNHNm/ezMsvv0zjxo358ccfad68OWvWrKFx48YlkVGKQQXIJGcOOS6IPr4ZLF7Q41noMKxMDY2/2Jd7v2T2ltkAjG07lk7RnUxOJCJSNE7PLO1J3HlmaRUgE+1Ngk/7QdYZCAyDu9+GOt3MTlVi1h5fy4BFA7AaVvo16sewFsPMjiQiHq5EZ5YGsNlsfP755+zYsQOABg0a0KtXL02sWAqoAJnIboeVU2HJi4ABVa+He9+HCtXNTlZi9pzZw/Clw7EaVnrG9GRIc601KCLuxenm8ttvv3Hbbbdx4sQJ6tevD8CkSZMIDw/n66+/plGjRi4PKX9PBchk2Wnw+QDY9Y1ju/lD0HMy+AZc+XFuLOV8CgOTBpKRl0HziOa82PFFvCxOT00mImIqp4vQv/71Lxo2bMgvv/xCxYoVAThz5gwPP/wwjz32GKtXr3Z5SLm805m5vLlivwqQmZK3w4LecHofePvDzZOhRR+zU5Wo83nnGZQ0iBOZJ4gJiWFm95n4efuZHUtExGlOF6HNmzcXKEEAFStWZMKECbRqVbZmxy3NTmfm8p+f9vPuahUgU237FL4cBHnnIbS6Y6mMas3NTlWirHYro5aPYsfpHYQFhDE7fjah/qFmxxIRuSpOF6F69eqRnJxMw4YNC+xPSUkhNjbWZcGkcCpApYQtDxaNg7WJju3aXeGut6FcJVNjlTTDMHhp3Uv8dPQnArwDmNV9FtWDy+41UCJS9jldhCZOnMiQIUN47rnnaNu2LQBr165l/PjxTJo0ifT09Pz7uttIq9KssALUqFoIw3rUo0ecCtA1dS7ZsVTGoVWO7Y4joPvT4OVtbq5r4O1tb/Px7o+xYGFS50k0DteUGSLi3pwePu/l9efFkH98+P7xFBdvWywWbDabq3KaojQMn1cBKmUOr4OP+8C54+AXDHfMgbhbzU51TXx34DueWPEEAE+2fpIH4h4wOZGISOFKdPj80qVLrzqYFJ0KUCljGLD+Lfh+DNjzIPw6uG8+VK5rdrJrYkPyBsauHAtA77jeKkEiUmY4XYS6dOlSEjnkAhWgUij3PPxvGPy6wLHd4HbolQj+5c1Mdc0cSDvAkCVDyLPn0aNGD0a1HGV2JBERl/GIGRDvuOMOli1bRo8ePfjkk0/MjlMoFaBS6vQBWPAgJG8FizfcMB7aJZTZpTL+6lTWKQYsHkB6bjpNKjdhYqeJeHvAtVAi4jk8oggNHTqURx55hHfffdfsKJdQASrFdv8In/3LMVliuXC4ex7U8pw1tLKsWQxeMpijGUeJLh/NzO4zCfQJNDuWiIhLeUQR6tq1K8uWLTM7RgEqQKWY3Q4rXoFlLwMGRLeCe96F0GpmJ7tmbHYbT654kq2pWwn1D2VO/BwqBZbtqQFExDOZPh/+ihUruPXWW6latSoWi4UvvvjikvskJiYSExNDQEAAbdq04eeff772QV1o+7F0Ok5awpxl+zifa6NRtRDeeqglXw/qSHyDSJUgM2Wdgf/eB8smAga0+hc8/I1HlSCAKb9MYcmRJfh5+TGz20xiQmPMjiQiUiKu6oiQ1Wpl2bJl7Nu3j/vvv5/g4GCOHTtGSEgI5cs7dwFpZmYmTZs25ZFHHuHOO++85PYFCxYwYsQIXn/9ddq0acP06dO58cYb2bVrFxEREQA0a9YMq9V6yWN//PFHqlatWuQsOTk55OTk5G9fPCeSK9WPCiYqJIAgf28dASpNTmx1LJVx5iD4BMAt06HZP81Odc3N3z6f+TvmAzCh4wSaR5btmbJFxLM5XYQOHTrETTfdxOHDh8nJyeGGG24gODiYSZMmkZOTw+uvv+7U8/Xs2ZOePXte9vapU6fy6KOP0rdvXwBef/11vvnmG95++22efPJJwLHshytMnDiR559/3iXPdSXeXhb++1hbIoL9VYBKiy0L4OuhYM2CCjXhvvehSlOzU11zSYeSeGX9KwAMaz6Mm2rdZHIiEZGS5fSpsaFDh9KyZUvOnDlDYOCfF07ecccdJCUluTRcbm4uGzZsID4+Pn+fl5cX8fHxrFmzxqWvBTBmzBjS0tLy/xw5csTlr/GHyJAAlaDSwJoL34yCzx9zlKDYeHhsmUeWoF9P/sron0ZjYHBPvXt4pNEjZkcSESlxTh8R+umnn1i9ejV+fgVXmo6JieHo0aMuCwaQmpqKzWYjMjKywP7IyEh27txZ5OeJj49ny5YtZGZmEh0dzccff0y7du0uuZ+/vz/+/v7Fzi1uIv24Y5boI+sc211GO/544PDwI+lHGLxkMDm2HDpV68RTbZ5SURcRj+B0EbLb7YUunfH7778THBzsklCutnjxYrMjSGlzcBV8/DBkpoB/KNz5JtT3zNNAZ7PPMjBpIKezTxMXFseULlPw8fKIAaUiIs6fGvvHP/7B9OnT87ctFgsZGRmMGzeOm2++2ZXZqFy5Mt7e3iQnJxfYn5ycTFRUlEtfSzyEYcCa2fDurY4SFNEQHlvqsSUox5bD0KVDOZh+kKhyUczqMYsg3yCzY4mIXDNOF6FXX32VVatW0aBBA7Kzs7n//vvzT4tNmjTJpeH8/Pxo0aJFgWuP7HY7SUlJhZ7aErminAz4tB/8MAYMGzS+B/61CCrVMTuZKeyGnadXPs3GlI2U9y3P7B6ziQiKMDuWiMg15fTx7+joaLZs2cKCBQvYsmULGRkZ9OvXjwceeKDAxdNFlZGRwd69e/O3Dxw4wObNmwkLC6NGjRqMGDGCPn360LJlS1q3bs306dPJzMzMH0UmUiSn9sFHD8DJHeDlAze+BK0f85ilMgozY+MMvj/4PT4WH6Z1m0bdip6xgKyIyMUshmEYzjxgxYoVtG/fHh+fgh3KarWyevVqOnfu7FSAZcuW0a1bt0v29+nTh3feeQeAWbNmMXnyZE6cOEGzZs2YOXMmbdq0cep1rkZ6ejqhoaGkpaUREhJS4q8nJWTnN/B5f8hJh/KRjlmia3r2EcWFuxbywtoXAHixw4v0iu1lciIREddx5vPb6SLk7e3N8ePH8ycz/MOpU6eIiIgo9EJqd6Ui5ObsNlg6AX561bFdox3c8w4Ee/b1ZSt+X8HgJYOxG3YGNh3IgGYDzI4kIuJSznx+O31qzDCMQofVnjp1inLlyjn7dCIl4/xpx/VA+5Y4ttsMgH+8AN6+5uYy2fZT2xm1fBR2w06vOr3o37S/2ZFERExV5CL0x/IXFouFhx9+uMB8OzabjV9//ZX27du7PqEJEhMTSUxMLFNHtzzKsU2w4CFIOwy+QXDba9D4brNTme54xnESkhLIsmbRpkobxrUbp7mCRMTjFbkIhYaGAo4jQsHBwQUujPbz86Nt27Y8+uijrk9ogoSEBBISEvIPrYkb2fg+fDMSbDkQVhvumw+RDc1OZbr03HQGJg0kNSuV2AqxTOs6DV8PPzomIgJOFKF58+YBjhmkR40apdNgUrpYc+C7J2DDO47tej3hjtchsIKZqUqFPFseI5aOYO/ZvYQHhjMnfg7BfqVz8lMRkWvN6WuExo0bVxI5RK5e2u+w8CE4ugGwQLex0GkkeDk9TVaZYxgGz615jnUn1hHkE0Rij0Siynn2xeIiIhe7qnn0P/nkExYuXMjhw4fJzc0tcNvGjRtdEkykSPYvh08egfOpEFAB7poLdeP/9mGeYs6WOXy17yu8Ld5M6TKFuEpxZkcSESlVnP4n88yZM+nbty+RkZFs2rSJ1q1bU6lSJfbv30/Pnj1LIqPIpQwDVs2A9293lKCoJvDv5SpBF/li7xfM2TIHgLFtx9IpupPJiURESh+ni9Ds2bN58803ee211/Dz8+OJJ55g0aJFDBkyhLS0tJLIKFJQzjnHqbBFz4Jhh2YPQL8foWKM2clKjTXH1vD86ucB6NeoH/fUu8fkRCIipZPTRejw4cP5w+QDAwM5d+4cAA8++CD//e9/XZtO5K9O7oL/dIcdX4GXL/zfVOiVCL7OL+9SVu0+s5sRy0ZgNaz0jOnJkOZDzI4kIlJqOV2EoqKiOH36NAA1atRg7dq1gGONMCcnqRZxzvYvHSUodTcEV4VHvodW/Tx6vbC/SjmfQkJSAhl5GTSPaM6LHV/Ey6KLxkVELsfp35Ddu3fnq6++AqBv374MHz6cG264gfvuu4877rjD5QFFsFnhx2ccp8NyMyCmE/x7BUS3NDtZqZKZl0lCUgInMk8QExLDzO4z8fP2MzuWiEip5vRaY3a7Hbvdnr/o6kcffcTq1aupW7cu//73v/Hzc/9fvBfPLL17926tNWamjJPwSV84+JNju/1g6PEceF/VgMcyy2q3MmjJIFYdXUVYQBjzb55P9eDqZscSETFFiS26arVaeemll3jkkUeIjo4udtDSTouumuz3DbDwQUg/Cn7lHdcCNbzd7FSljmEYjF87nk92f0KAdwBv3/g2jcMbmx1LRMQ0znx+O3VqzMfHh1deeQWr1VqsgCJXZBjwyzyYd5OjBFWqC48uUQm6jLe3vc0nuz/BgoVJnSepBImIOMHpa4R69OjB8uXLSyKLCORlwZeD4H/DwJYLcbc6SlB4fbOTlUrfHfiO6RunAzC69Wi61+hubiARETfj9IUWPXv25Mknn2Tr1q20aNHikjXHbrvtNpeFEw9z5pDjVNjxLWDxgh7PQodhGhV2GRuSNzB25VgAesf15oG4B0xOJCLifpy+WNrrCus3WSwWbDZbsUOVFrpG6BramwSf9oOsMxBUCe5+G2p3NTtVqXUg7QC9v+1Nem46PWr04NUur+Lt5W12LBGRUsGZz2+njwjZ7farDiZyCbsdVr4KSyYABlRtDve+BxU04ulyTmWdYsDiAaTnptOkchMmdpqoEiQicpU0BlnMk50Gn/eHXd86tpv3gZ6vgG+AublKsSxrFoOXDOZoxlGiy0czs/tMAn00q7aIyNVSERJzJG+HBb3h9D7w9of/mwLNHzI7Valms9t4csWTbE3dSqh/KHPi51ApsJLZsURE3JqKkFx7Wz+BrwZD3nkIre44FVatudmpSr0pv0xhyZEl+Hn5MbPbTGJCY8yOJCLi9lSE5Nqx5TlWjF8727FduxvcNRfK6ajG35m/fT7zd8wHYELHCTSPVHEUEXEFp+YRslqtvPfeeyQnJ5dUHimrziXDu7f9WYI6jYTen6oEFUHSoSReWf8KAMNbDOemWjeZnEhEpOxwembp/v37k52dXVJ5SoXExEQaNGhAq1atzI5SNhxeB290hsOrwT8E7vvAMUeQRjr9rV9P/sron0ZjYHBvvXvp27Cv2ZFERMoUp2eWbt26NZs3by6BKKVHQkIC27dvZ/369WZHcW+GAevehHduhowTEH4dPLoU4m4xO5lbOJJ+hMFLBpNjy6FTtU6MaTMGiyaXFBFxKaevERo4cCAjRozgyJEjhc4s3aRJE5eFEzeWe96xTMavCxzbDe+A22aBf3lTY7mLs9lnGZg0kNPZp4kLi2NKlyn4eOmSPhERV3PJzNIWiwXDMDSztDic3g8LHoTkbWDxhn+8AG0HaqmMIsqx5fDYj4+xMWUjUeWi+ODmD4gIijA7loiI2yjRmaUPHDhw1cHEA+z+AT571DFZYrlwuOcdiOlodiq3YTfsPL3yaTambKS8b3lm95itEiQiUoKcLkI1a9YsiRzi7ux2WD4Jlr/s2I5uDfe+CyFVzc3lZmZsnMH3B7/Hx+LDtG7TqFuxrtmRRETKtKu66GDfvn1Mnz6dHTt2ANCgQQOGDh1KnTp1XBpO3MT50/D5v2HPj47tVo/CjS+Bj5+5udzMwl0LeXvb2wA81/452lZpa3IiEZGyz+lRYz/88AMNGjTg559/pkmTJjRp0oR169bRsGFDFi1aVBIZpTQ7/iu82dVRgnwC4PbXHctlqAQ5ZcXvK5iwbgIAA5sOpFdsL5MTiYh4Bqcvlr7++uu58cYbefnllwvsf/LJJ/nxxx/ZuHGjSwOaSRdL/40tH8HXQ8GaDRVqwn3zoYpGDTpr+6ntPPz9w2RZs+hVpxcvdHhBw+RFRIrBmc9vp4tQQEAAW7dupW7dgtcu7N69myZNmpSpyRZVhC7Dmgs/jIH1bzm2Y2+AO9+EoDBzc7mh4xnHuf/b+0nNSqVNlTbM6TEHX29fs2OJiLg1Zz6/nT41Fh4eXuiEips3byYiQqNbyrz0Y/DO//1Zgro8CfcvVAm6Cum56QxMGkhqViqxFWKZ1nWaSpCIyDXm9MXSjz76KI899hj79++nffv2AKxatYpJkyYxYsQIlweUUuTgSvi4L2SmQEAo3PkfqHej2ancUp4tjxFLR7D37F7CA8OZEz+HYL9gs2OJiHgcp4vQM888Q3BwMK+++ipjxowBoGrVqjz33HMMGTLE5QGlFDAMx2KpPz4Dhg0iG8F970NYbbOTuSXDMHhuzXOsO7GOIJ8gEnskElUuyuxYIiIeyakiZLVa+fDDD7n//vsZPnw4586dAyA4WP+SLbNyMuCrwfDbZ47tJvfBLdPBL8jUWO5szpY5fLXvK7wt3kzpMoW4SnFmRxIR8VjFWn0+ODi4TJYgrT5/QepeeCveUYK8fKDnZLjjDZWgYvhi7xfM2TIHgLFtx9IpupPJiUREPNtVrT6/adOmkshSamj1eWDnN/CfbnByB5SPgoe/gTaPab2wYlhzbA3Pr34egH6N+nFPvXtMTiQiIle1+vzIkSP5/ffftfp8WWS3wZIXYeVUx3aN9o71woIjTY3l7naf2c2IZSOwGlZ6xvRkSHNdTyciUhpo9fkr8Lh5hDJPwaf9YP9Sx3bbgXDDeNCQ7mJJOZ/CA98+wInMEzSPaM5//vEf/Lw187aISEnR6vPivGObYMFDkHYYfIPgtteg8d1mp3J7mXmZJCQlcCLzBDEhMczsPlMlSESkFHGqCOXl5dG9e3f+97//ERenkS5lxsb34ZuRYMtxDIm/bz5ENjQ7lduz2q2MXD6Snad3EhYQxuz42YT6h5odS0RELuJUEfL19S1TS2h4PGsOfPcEbHjHsV3/ZrjjdcdkiVIshmEwYd0EVh1dRYB3ALO6z6J6cHWzY4mIyF84PWosISGBSZMmYbVaSyKPXCtpv8PbN10oQRbo/jTc94FKkIvM3TaXT3Z/ggULkzpPonF4Y7MjiYhIIZy+Rmj9+vUkJSXx448/0rhx40tGjX322WcuCyclZP8y+OQROH8KAivCXW9BbLzZqcqMb/d/y4yNMwAY3Xo03Wt0NzmRiIhcjtNFqEKFCtx1110lkUVKmmHAqumQNB4MO1RpCve+DxVrmp2szPjlxC88veppAHrH9eaBuAdMTiQiIlfidBGaN29eSeSQkpadDl8OhB1fO7ab9Yb/mwK+gebmKkP2p+1n6NKh5Nnz6FGjB6NajjI7koiI/A2nrxECx5pjixcv5o033shfb+zYsWNkZGS4NJy4yMld8FYPRwny8oVbpkGvWSpBLpSalcrAxQNJz02nSeUmTOw0EW8vb7NjiYjI33D6iNChQ4e46aabOHz4MDk5Odxwww0EBwczadIkcnJyeP3110sip1yt376ALxMgNwNCqsG970F0S7NTlSlZ1iyGLBnC0YyjRJePZmb3mQT6qGSKiLgDp48IDR06lJYtW3LmzBkCA//8ZX/HHXeQlJTk0nBSDDYr/PgMfNzHUYJiOsFjy1WCXMxmtzF6xWi2pm4l1D+UOfFzqBRYyexYIiJSRE4fEfrpp59YvXo1fn4FZ8eNiYnh6NGjLgsmxZBxEj7pCwd/cmx3GArdnwVvp3/c8jcm/zKZpUeW4uflx8xuM4kJjTE7koiIOMHpT0a73V7oemK///47wcHBLgklxfD7L7DwIUg/Cn7l4fbZ0KCX2anKpPe3v88HOz4AYELHCTSPbG5yIhERcZbTp8b+8Y9/MH369Pxti8VCRkYG48aN4+abb3ZlNtMkJibSoEEDWrVqZXaUojMM+OVtmNfTUYIq14NHl6gElZDFhxYzef1kAIa3GM5NtW4yOZGIiFwNp1ef//3337nxxhsxDIM9e/bQsmVL9uzZQ+XKlVmxYgUREREllfWac5vV5/OyHGuFbXYcnSDuNseRIH8doSsJW05uod8P/cix5XBvvXt5uu3TWCwWs2OJiMgFznx+O12EwDF8fsGCBWzZsoWMjAyaN2/OAw88UODi6bLALYrQmUOw8EE4vgUsXtBjnOOaIH0wl4gj6Ufo/V1vTmefpnN0Z2Z0m4GPl669EhEpTUq8CHmKUl+E9i6GT/8FWWcgqBLcPQ9qdzE7VZl1NvssD373IAfTDxIXFsc7N71DkG+Q2bFEROQvnPn81j9l3ZHdDj+9CksnAAZUa+GYHyg02uxkZVaOLYehS4dyMP0gUeWimNVjlkqQiEgZoCLkbrLOwuf9Yfd3ju0WfaHnJPDxNzVWWWY37Dy98mk2pmykvG95ZveYTURQ2bkWTkTEk6kIuZPk7bDgATi9H7z94ZapcH1vs1OVeTM2zuD7g9/jY/FhWrdp1K1Y1+xIIiLiIipC7mLrJ/DVYMg7D6E14L73oOr1Zqcq8xbuWsjb294G4Ln2z9G2SluTE4mIiCupCJV2tjzHUhnr5ji2a3eDu9+GoDBzc3mAFb+vYMK6CQAMbDqQXrGak0lEpKwpUhGqWLFikedJOX36dLECyUXOJcPHD8Ph1Y7tTiOh21jQquYlbvup7YxaPgq7YadXnV70b9rf7EgiIlICilSELp5JWq6Rw2thYR/IOAH+IXDH63Dd/5mdyiMczzhOQlICWdYs2lRpw7h24zRhoohIGVWkItSnT5+SziF/MAz4+U344SmwWyE8Du6bD5VjzU7mEdJz0xmYNJDUrFRiK8Qyres0fL19zY4lIiIlpFjXCGVnZ5Obm1tgX6mceNBd5J6Hr4fC1oWO7YZ3wm2vgX95c3N5iDxbHiOWjmDv2b2EB4YzJ34OwX5apkREpCxzughlZmYyevRoFi5cyKlTpy65vbCV6aUITu+HBQ9C8jaweMM/XoS2A7RUxjViGAbPrXmOdSfWEeQTRGKPRKLKRZkdS0RESpjTq88/8cQTLFmyhDlz5uDv789bb73F888/T9WqVXnvvfdKImPZt+t7eKOrowSVi4A+X0O7gSpB19CcLXP4at9XeFu8mdJlCnGV4syOJCIi14DTR4S+/vpr3nvvPbp27Urfvn3p1KkTsbGx1KxZkw8++IAHHnigJHKWTXY7LH8Zlk9ybEe3diyVEVLF3Fwe5ou9XzBni2N6grFtx9IpupPJiURE5Fpx+ojQ6dOnqV27NuC4HuiP4fIdO3ZkxYoVrk1Xlp0/DR/e+2cJavUoPPyNStA1tubYGp5f/TwA/Rr1455695icSEREriWni1Dt2rU5cOAAANdddx0LFzou7P3666+pUKGCS8OVWSd3w5tdYe8i8AmEO96A/5sCPn5mJ/Mou8/sZsSyEVgNKz1jejKk+RCzI4mIyDXmdBHq27cvW7ZsAeDJJ58kMTGRgIAAhg8fzuOPP+7ygGVS+XDH9T8VY+Bfi6Dp/zM7kcdJOZ9CQlICGXkZNI9ozosdX8TL4vRfBxERcXMWwzCM4jzBoUOH2LBhA7GxsTRp0sRVuUqF9PR0QkNDSUtLc/20AKl7oFxlCKzo2ueVv5WZl8nD3z/MztM7iQmJYf7N8wn1DzU7loiIuIgzn9/FXmusZs2a1KxZs7hPU6okJiaSmJhYslMBVNYK5maw2q2MXD6Snad3EhYQxuz42SpBIiIezOlzAUOGDGHmzJmX7J81axbDhg1zRSbTJSQksH37dtavX292FHEhwzCYsG4Cq46uIsA7gFndZ1E9uLrZsURExEROF6FPP/2UDh06XLK/ffv2fPLJJy4JJVIS5m6byye7P8GChUmdJ9E4vLHZkURExGROF6FTp04RGnrpqYSQkBBSU1NdEkrE1b7d/y0zNs4AYHTr0XSv0d3kRCIiUho4XYRiY2P5/vvvL9n/3Xff5c8vJFKa/HLiF55e9TQAveN680CcJv0UEREHpy+WHjFiBIMGDeLkyZN07+74V3VSUhKvvvoq06dPd3U+kWLZn7afoUuHkmfPo0eNHoxqOcrsSCIiUoo4XYQeeeQRcnJymDBhAi+88AIAMTExzJkzh4ceesjlAUWuVmpWKgMXDyQ9N50mlZswsdNEvL28zY4lIiKlSLHmETp58iSBgYGUL1/elZlKjRKdR0hKVJY1i34/9GNr6laiy0cz/+b5VAqsZHYsERG5Bq7ZPELh4eHFebhIibDZbYxeMZqtqVsJ9Q9lTvwclSARESlUkYpQ8+bNSUpKomLFilx//fVYLJbL3nfjxo0uCydyNSb/MpmlR5bi5+XHzG4ziQmNMTuSiIiUUkUqQr169cLf3x+A22+/vSTziBTL+9vf54MdHwAwoeMEmkc2NzmRiIiUZsVea6ws0zVC7mXxocWMWDYCA4PhLYbzSKNHzI4kIiImcObzW8ttS5mw5eQWnvzpSQwM7q13L30b9jU7koiIuAGnL5auWLFiodcIWSwWAgICiI2N5eGHH6ZvX30QybVxJP0Ig5MGk2PLoXN0Z8a0GXPF69hERET+4HQRevbZZ5kwYQI9e/akdevWAPz88898//33JCQkcODAAQYMGIDVauXRRx91eWCRi53NPsuApAGcyTlDXFgckztPxserWIMhRUTEgzj9ibFy5UpefPFF+vfvX2D/G2+8wY8//sinn35KkyZNmDlzpoqQlKgcWw5Dlg7hUPohqpSrQmKPRIJ8g8yOJSIibsTpa4R++OEH4uPjL9nfo0cPfvjhBwBuvvlm9u/fX/x0IpdhN+yMXTmWTSmbCPYNZnaP2YQHaV4rERFxjtNFKCwsjK+//vqS/V9//TVhYWEAZGZmEhwcXPx0IpcxfeN0fjj4Az4WH6Z1m0ZsxVizI4mIiBty+tTYM888w4ABA1i6dGn+NULr16/n22+/5fXXXwdg0aJFdOnSxbVJRS5YuGsh87bNA+C59s/RpkobkxOJiIi7uqp5hFatWsWsWbPYtWsXAPXr12fw4MG0b9/e5QHNpHmESp8Vv69g8JLB2A07A5sOZECzAWZHEhGRUqbE1xrr0KEDHTp0uKpwIlfrt1O/MWr5KOyGnV51etG/af+/f5CIiMgVXFURstlsfPHFF+zYsQOAhg0bctttt+Ht7e3ScCJ/OJZxjEFJg8iyZtGmShvGtRunuYJERKTYnC5Ce/fu5eabb+bo0aPUr18fgIkTJ1K9enW++eYb6tSp4/KQ4tnSc9MZuHggqVmpxFaIZVrXafh6+5odS0REygCnR40NGTKEOnXqcOTIETZu3MjGjRs5fPgwtWrVYsiQISWRUTxYni2PEUtHsC9tH+GB4cyJn0Own0YkioiIazh9RGj58uWsXbs2f6g8QKVKlXj55Zd13ZC4lGEYPLfmOdadWEeQTxCJPRKJKhdldiwRESlDnD4i5O/vz7lz5y7Zn5GRgZ+fn0tCiQDM2TKHr/Z9hbfFmyldphBXKc7sSCIiUsY4XYRuueUWHnvsMdatW4dhGBiGwdq1a+nfvz+33XZbSWS85hITE2nQoAGtWrUyO4rH+mLvF8zZMgeAsW3H0im6k8mJRESkLHJ6HqGzZ8/Sp08fvv76a3x9HResWq1WbrvtNt555x1CQ0NLJKgZNI+QOdYcW8PAxQOxGlb6NerHsBbDzI4kIiJupETnEapQoQJffvkle/bsYefOnQDExcURG6slDqT4dp/ZzYhlI7AaVnrG9GRIc12ALyIiJeeq5hECqFu3LnXr1nVlFvFwKedTSEhKICMvg+YRzXmx44t4WZw+eysiIlJkRSpCI0aMKPITTp069arDiOfKzMskISmBE5kniAmJYWb3mfh56+J7EREpWUUqQps2bSrSk2mmX7kaVruVkctHsvP0TsICwpgdP5tQ/7JzrZmIiJReRSpCS5cuLekc4qEMw2DCugmsOrqKAO8AZnWfRfXg6mbHEhERD6ELMMRUc7fN5ZPdn2DBwqTOk2gc3tjsSCIi4kFUhMQ03+7/lhkbZwAwuvVoutfobnIiERHxNCpCYopfTvzC06ueBqB3XG8eiHvA5EQiIuKJVITkmtuftp+hS4eSZ8+jR40ejGo5yuxIIiLioVSE5JpKzUpl4OKBpOem06RyEyZ2moi3l7fZsURExEOpCMk1k2XNYsiSIRzNOEp0+Whmdp9JoE+g2bFERMSDqQjJNWGz2xi9YjRbU7cS6h/KnPg5VAqsZHYsERHxcCpCck1M/mUyS48sxc/Lj5ndZhITGmN2JBERERUhKXnvb3+fD3Z8AMCEjhNoHtnc5EQiIiIOKkJSohYfWszk9ZMBGN5iODfVusnkRCIiIn9SEZISs+XkFp786UkMDO6tdy99G/Y1O5KIiEgBKkJSIo6kH2Fw0mBybDl0ju7MmDZjtCiviIiUOipC4nJns88yIGkAZ3LOEBcWx+TOk/HxKtL6viIiIteUipC4VI4thyFLh3Ao/RBVylUhsUciQb5BZscSEREplIqQuIzdsDN25Vg2pWwi2DeY2T1mEx4UbnYsERGRy1IREpeZvnE6Pxz8AR8vH6Z1m0ZsxVizI4mIiFyRipC4xMJdC5m3bR4Az7d/njZV2picSERE5O+pCEmxrfh9BRPWTQBgYLOB3FbnNpMTiYiIFI2KkBTLb6d+Y9TyUdgNO73q9KJ/k/5mRxIRESkyFSG5ascyjjEoaRBZ1izaVGnDuHbjNFeQiIi4FRUhuSrpuekMXDyQ1KxUYivEMq3rNHy9fc2OJSIi4hQVIXFani2P4UuHsy9tH+GB4cyJn0OwX7DZsURERJymIiROMQyDcavH8fOJnwnyCSKxRyJR5aLMjiUiInJVVITEKbO3zObr/V/jbfFmSpcpxFWKMzuSiIjIVVMRkiL7fM/nvL7ldQDGth1Lp+hOJicSEREpHhUhKZI1x9Ywfs14APo16sc99e4xOZGIiEjxqQjJ39p9Zjcjlo3AaljpGdOTIc2HmB1JRETEJVSE5IqSM5MZuHggGXkZNI9ozosdX8TLov9tRESkbNAnmlxWZl4mCUkJJJ9PJiYkhpndZ+Ln7Wd2LBEREZdRESpEYmIiDRo0oFWrVmZHMU2ePY+Ry0ey68wuwgLCmB0/m1D/ULNjiYiIuJTFMAzD7BClVXp6OqGhoaSlpRESEmJ2nGvGMAyeX/M8n+75lADvAN6+8W0ahzc2O5aIiEiROPP5rSNCcom52+by6Z5PsWBhUudJKkEiIlJmqQhJAd/u/5YZG2cAMLr1aLrX6G5yIhERkZKjIiT5fjnxC0+vehqA3nG9eSDuAZMTiYiIlCwVIQFgf9p+hi4dSp49jx41ejCq5SizI4mIiJQ4FSEhNSuVgYsHkp6bTpPKTZjYaSLeXt5mxxIRESlxKkIeLsuaxZAlQziacZTo8tHM7D6TQJ9As2OJiIhcEypCHsxmtzF6xWi2pm4l1D+UOfFzqBRYyexYIiIi14yKkAeb/Mtklh5Zip+XHzO7zSQmNMbsSCIiIteUipCHen/7+3yw4wMAJnScQPPI5iYnEhERufZUhDzQ4kOLmbx+MgDDWwznplo3mZxIRETEHCpCHmbLyS08+dOTGBjcW+9e+jbsa3YkERER06gIeZAj6UcYnDSYHFsOnaM7M6bNGCwWi9mxRERETKMi5CHOZp9lQNIAzuScIS4sjsmdJ+Pj5WN2LBEREVOpCHmAHFsOQ5YO4VD6IaqUq0Jij0SCfIPMjiUiImI6FaEyzm7YGbtyLJtSNhHsG8zsHrMJDwo3O5aIiEipoCJUxk3fOJ0fDv6Aj5cP07pNI7ZirNmRRERESg0VoTJs4a6FzNs2D4Dn2z9PmyptTE4kIiJSuqgIlVErfl/BhHUTABjYbCC31bnN5EQiIiKlj4pQGfTbqd8YtXwUdsNOrzq96N+kv9mRRERESiUVoTLmWMYxBiUNIsuaRdsqbRnXfpzmChIREbkMFaEyJD03nYGLB5KalUpshVimdp2Kr5ev2bFERERKLRWhMiLPlsfwpcPZl7aP8MBw5sTPIdgv2OxYIiIipZqKUBlgGAbjVo/j5xM/E+QTRGKPRKLKRZkdS0REpNRTESoDZm+Zzdf7v8bb4s2ULlOIqxRndiQRERG3oCLk5j7f8zmvb3kdgLFtx9IpupPJiURERNyHipAbW3NsDePXjAegX6N+3FPvHpMTiYiIuBcVITe1+8xuRiwbgdWw0jOmJ0OaDzE7koiIiNtREXJDyZnJDFw8kIy8DJpHNOfFji/iZdGPUkRExFn69HQzmXmZJCQlkHw+mZiQGGZ2n4mft5/ZsURERNySipAbybPnMXL5SHad2UVYQBiz42cT6h9qdiwRERG3pSLkJgzDYMLaCaw6uooA7wBmdZ9F9eDqZscSERFxaypCbmLutrl8uudTLFiY1HkSjcMbmx1JRETE7akIuYFv9n/DjI0zABjdejTda3Q3OZGIiEjZoCJUyv1y4heeWfUMAL3jevNA3AMmJxIRESk7VIRKsf1p+xm6dCh59jx61OjBqJajzI4kIiJSpqgIlVKpWakMXDyQ9Nx0mlRuwsROE/H28jY7loiISJmiIlQKnc87z+CkwRzNOEp0+Whmdp9JoE+g2bFERETKHBWhUsZmtzH6p9FsO7WNUP9Q5sTPoVJgJbNjiYiIlEkqQqWIYRi8sv4Vlh1Zhp+XHzO7zSQmNMbsWCIiImWWilAp8v729/lw54cATOg4geaRzU1OJCIiUrapCJUSiw4tYsovUwAY3mI4N9W6yeREIiIiZZ+KUCmwOWUzY34ag4HBvfXupW/DvmZHEhER8QgqQiY7nH6YIUuGkGPLoXN0Z8a0GYPFYjE7loiIiEdQETLR2eyzDEwayJmcM8SFxTG582R8vHzMjiUiIuIxVIRMkmPLYcjSIRxKP0SVclVI7JFIkG+Q2bFEREQ8ioqQCeyGnbErx7IpZRPBvsHM7jGb8KBws2OJiIh4HBUhE2xL3cbiQ4vx8fJhWrdpxFaMNTuSiIiIR9IFKSZoEt6EWT1mcTbnLG2qtDE7joiIiMdSETJJx2odzY4gIiLi8XRqTERERDyWipCIiIh4LBUhERER8VgqQiIiIuKxVIRERETEY5X5InTkyBG6du1KgwYNaNKkCR9//LHZkURERKSUKPPD5318fJg+fTrNmjXjxIkTtGjRgptvvply5cqZHU1ERERMVuaLUJUqVahSpQoAUVFRVK5cmdOnT6sIiYiIiPmnxlasWMGtt95K1apVsVgsfPHFF5fcJzExkZiYGAICAmjTpg0///zzVb3Whg0bsNlsVK9evZipRUREpCwwvQhlZmbStGlTEhMTC719wYIFjBgxgnHjxrFx40aaNm3KjTfeSEpKSv59mjVrRqNGjS75c+zYsfz7nD59moceeog333yzxN+TiIiIuAeLYRiG2SH+YLFY+Pzzz7n99tvz97Vp04ZWrVoxa9YsAOx2O9WrV2fw4ME8+eSTRXrenJwcbrjhBh599FEefPDBK94vJycnfzs9PZ3q1auTlpZGSEjI1b0pERERuabS09MJDQ0t0ue36UeEriQ3N5cNGzYQHx+fv8/Ly4v4+HjWrFlTpOcwDIOHH36Y7t27X7EEAUycOJHQ0ND8PzqFJiIiUraV6iKUmpqKzWYjMjKywP7IyEhOnDhRpOdYtWoVCxYs4IsvvqBZs2Y0a9aMrVu3FnrfMWPGkJaWlv/nyJEjxX4PIiIiUnqV+VFjHTt2xG63F+m+/v7++Pv752//cdYwPT29RLKJiIiI6/3xuV2Uq39KdRGqXLky3t7eJCcnF9ifnJxMVFRUib/+uXPnAHSKTERExA2dO3eO0NDQK96nVBchPz8/WrRoQVJSUv4F1Ha7naSkJAYNGlTir1+1alWOHDlCcHAwFovFpc/9x4XYR44c0YXY4tFatWrF+vXrzY4hxaSfY/F48vevJN67YRicO3eOqlWr/u19TS9CGRkZ7N27N3/7wIEDbN68mbCwMGrUqMGIESPo06cPLVu2pHXr1kyfPp3MzEz69u1b4tm8vLyIjo4u0dcICQlRERKP5u3trb8DZYB+jsXjyd+/knrvf3ck6A+mF6FffvmFbt265W+PGDECgD59+vDOO+9w3333cfLkSZ599llOnDhBs2bN+P777y+5gFpE3FNCQoLZEcQF9HMsHk/+/pn93kvVPEKexJk5DkRERKRklOrh82WZv78/48aNKzBKTURERK4tHRESERERj6UjQiIiIuKxVIRERETEY6kIiYiIiMdSERKRMu2OO+6gYsWK3H333WZHkaukn2Hx6Xt4eSpCIlKmDR06lPfee8/sGFIM+hkWn76Hl6ci5AbU5EWuXteuXQkODjY7hhSDfobFp+/h5akIuQE1ebnWJk6cSKtWrQgODiYiIoLbb7+dXbt2ufQ1VqxYwa233krVqlWxWCx88cUXhd4vMTGRmJgYAgICaNOmDT///LNLc5RVc+bMoUmTJvnL+LRr147vvvvOpa/hST/Dl19+GYvFwrBhw1z6vJ70PSytVITcgJq8XGvLly8nISGBtWvXsmjRIvLy8vjHP/5BZmZmofdftWoVeXl5l+zfvn07ycnJhT4mMzOTpk2bkpiYeNkcCxYsYMSIEYwbN46NGzfStGlTbrzxRlJSUvLv06xZMxo1anTJn2PHjjn5rsuW6OhoXn75ZTZs2MAvv/xC9+7d6dWrF7/99luh99fP8PLWr1/PG2+8QZMmTa54P30P3ZQhxbJ8+XLjlltuMapUqWIAxueff37JfWbNmmXUrFnT8Pf3N1q3bm2sW7fO6ddZunSpcdddd7kgsYjzUlJSDMBYvnz5JbfZbDajadOmxt13321Yrdb8/Tt37jQiIyONSZMm/e3zX+7vTuvWrY2EhIQCr1W1alVj4sSJTuXX3x+HihUrGm+99dYl+/UzvLxz584ZdevWNRYtWmR06dLFGDp0aKH30/fQfemIUDH9XZtXk5eyIC0tDYCwsLBLbvPy8uLbb79l06ZNPPTQQ9jtdvbt20f37t25/fbbeeKJJ67qNXNzc9mwYQPx8fEFXis+Pp41a9Zc3RvxUDabjY8++ojMzEzatWt3ye36GV5eQkIC//d//1fgPRRG30P3Zfrq8+6uZ8+e9OzZ87K3T506lUcffZS+ffsC8Prrr/PNN9/w9ttv8+STTwKwefPmaxFV5KrY7XaGDRtGhw4daNSoUaH3qVq1KkuWLKFTp07cf//9rFmzhvj4eObMmXPVr5uamorNZiMyMrLA/sjISHbu3Fnk54mPj2fLli1kZmYSHR3Nxx9/XGgZKIu2bt1Ku3btyM7Opnz58nz++ec0aNCg0PvqZ3ipjz76iI0bN7J+/foi3V/fQ/ekIlSC/mjyY8aMyd+nJi/uJiEhgW3btrFy5cor3q9GjRq8//77dOnShdq1azN37lwsFss1Snl5ixcvNjuCaerXr8/mzZtJS0vjk08+oU+fPixfvvyyZUg/wz8dOXKEoUOHsmjRIgICAor8OH0P3Y9OjZWgKzX5EydOFPl54uPjueeee/j222+Jjo5WiZJrZtCgQfzvf/9j6dKlREdHX/G+ycnJPPbYY9x6662cP3+e4cOHF+u1K1eujLe39yUXmSYnJxMVFVWs5/YUfn5+xMbG0qJFCyZOnEjTpk2ZMWPGZe+vn+GfNmzYQEpKCs2bN8fHxwcfHx+WL1/OzJkz8fHxwWazFfo4fQ/dj4qQG1i8eDEnT57k/Pnz/P777zqcKSXOMAwGDRrE559/zpIlS6hVq9YV75+amkqPHj2Ii4vjs88+IykpiQULFjBq1KirzuDn50eLFi1ISkrK32e320lKStLfgatkt9vJyckp9Db9DAvq0aMHW7duZfPmzfl/WrZsyQMPPMDmzZvx9va+5DH6HronnRorQWry4q4SEhL48MMP+fLLLwkODs4/ghkaGkpgYGCB+9rtdnr27EnNmjVZsGABPj4+NGjQgEWLFtG9e3eqVatW6L+KMzIy2Lt3b/72gQMH2Lx5M2FhYdSoUQOAESNG0KdPH1q2bEnr1q2ZPn06mZmZ+dfcyeWNGTOGnj17UqNGDc6dO8eHH37IsmXL+OGHHy65r36GlwoODr7kmrhy5cpRqVKlQq+V0/fQjZk9bK0soZChj61btzYGDRqUv22z2Yxq1ao5PexR5FoCCv0zb968Qu//448/GllZWZfs37hxo3HkyJFCH7N06dJCX6NPnz4F7vfaa68ZNWrUMPz8/IzWrVsba9euLe7b8wiPPPKIUbNmTcPPz88IDw83evToYfz444+Xvb9+hn/vSsPnDUPfQ3dlMQzDuJbFq6y5uM1ff/31TJ06lW7duuW3+QULFtCnTx/eeOON/Ca/cOFCdu7cecm1QyIiInJtqQgV07Jly+jWrdsl+/v06cM777wDwKxZs5g8eTInTpygWbNmzJw5kzZt2lzjpCIiIvJXKkIiIiLisTRqTERERDyWipCIiIh4LBUhERER8VgqQiIiIuKxVIRERETEY6kIiYiIiMdSERIRERGPpSIkIiIiHktFSESKJCYmhunTp5fY83ft2pVhw4a57Pkefvhhbr/9dpc9n4iUTVp9XkRKhc8++wxfX1+zY7i1mJgYhg0b5tJCKVLWqQiJSKkQFhZmdoS/lZubi5+fX4F9NpsNi8WCl5dzB9iL+jjDMLDZbPj46Ne1SEnQqTERoWvXrgwaNIhBgwYRGhpK5cqVeeaZZ/jrUoTnz5/nkUceITg4mBo1avDmm2/m39a9e3cGDRpU4P4nT57Ez8+PpKQkAGbPnk3dunUJCAggMjKSu+++u0CGi49k5OTkMHr0aKpXr46/vz+xsbHMnTsXcJSIfv36UatWLQIDA6lfvz4zZsxw+n2vXLmSTp06ERgYSPXq1RkyZAiZmZn5t8fExPDCCy/w0EMPERISwmOPPcY777xDhQoV+Oqrr2jQoAH+/v4cPnyYM2fO8NBDD1GxYkWCgoLo2bMne/bsyX+uyz3ur5YtW4bFYuG7776jRYsW+Pv7s3LlSvbt20evXr2IjIykfPnytGrVisWLFxf4/h06dIjhw4djsViwWCxFfp8iHs0QEY/XpUsXo3z58sbQoUONnTt3GvPnzzeCgoKMN998M/8+NWvWNMLCwozExERjz549xsSJEw0vLy9j586dhmEYxgcffGBUrFjRyM7Ozn/M1KlTjZiYGMNutxvr1683vL29jQ8//NA4ePCgsXHjRmPGjBkFMgwdOjR/+9577zWqV69ufPbZZ8a+ffuMxYsXGx999JFhGIaRm5trPPvss8b69euN/fv35+ddsGBB/uP79Olj9OrV67Lvee/evUa5cuWMadOmGbt37zZWrVplXH/99cbDDz9c4D2HhIQYU6ZMMfbu3Wvs3bvXmDdvnuHr62u0b9/eWLVqlbFz504jMzPTuO2224y4uDhjxYoVxubNm40bb7zRiI2NNXJzcw3DMC77uL9aunSpARhNmjQxfvzxR2Pv3r3GqVOnjM2bNxuvv/66sXXrVmP37t3G008/bQQEBBiHDh0yDMMwTp06ZURHRxvjx483jh8/bhw/frzI71PEk6kIiYjRpUsXIy4uzrDb7fn7Ro8ebcTFxeVv16xZ0+jdu3f+tt1uNyIiIow5c+YYhmEYWVlZRsWKFQuUkSZNmhjPPfecYRiG8emnnxohISFGenr6ZTP8UYR27dplAMaiRYuK/B4SEhKMu+66K3/774pQv379jMcee6zAvp9++snw8vIysrKy8t/z7bffXuA+8+bNMwBj8+bN+ft2795tAMaqVavy96WmphqBgYHGwoULL/u4wvxRhL744osrv2HDMBo2bGi89tpr+ds1a9Y0pk2b5vT7FPFkOjUmIgC0bdu2wOmUdu3asWfPHmw2W/6+Jk2a5H9tsViIiooiJSUFgICAAB588EHefvttADZu3Mi2bdt4+OGHAbjhhhuoWbMmtWvX5sEHH+SDDz7g/PnzhWbZvHkz3t7edOnS5bJ5ExMTadGiBeHh4ZQvX54333yz0FNNl7Nlyxbeeecdypcvn//nxhtvxG63c+DAgfz7tWzZ8pLH+vn5Ffhe7NixAx8fH9q0aZO/r1KlStSvX58dO3Zc9nFX8tfXzcjIYNSoUcTFxVGhQgXKly/Pjh07/vY9F/V9ingqXX0nIkX211FdFosFu92ev/2vf/2LZs2a8fvvvzNv3jy6d+9OzZo1AQgODmbjxo0sW7aMH3/8kWeffZbnnnuO9evXU6FChQLPGxgYeMUcH330EaNGjeLVV1+lXbt2BAcHM3nyZNatW1fk95KRkcG///1vhgwZcsltNWrUyP+6XLlyl9weGBhYoDQWlTOP++vrjho1ikWLFjFlyhRiY2MJDAzk7rvvJjc394rPU9T3KeKpVIREBOCSErF27Vrq1q2Lt7d3kZ+jcePGtGzZkv/85z98+OGHzJo1q8DtPj4+xMfHEx8fz7hx46hQoQJLlizhzjvvvOR57HY7y5cvJz4+/pLXWbVqFe3bt2fgwIH5+/bt21fknADNmzdn+/btxMbGOvW4wsTFxWG1Wlm3bh3t27cH4NSpU+zatYsGDRoU+/nB8Z4ffvhh7rjjDsBRcA4ePFjgPn5+fgWO4IFr36dIWaRTYyICwOHDhxkxYgS7du3iv//9L6+99hpDhw51+nn+9a9/8fLLL2MYRv6HNsD//vc/Zs6cyebNmzl06BDvvfcedrud+vXrX/IcMTEx9OnTh0ceeYQvvviCAwcOsGzZMhYuXAhA3bp1+eWXX/jhhx/YvXs3zzzzDOvXr3cq5+jRo1m9ejWDBg1i8+bN7Nmzhy+//PKSkW9FUbduXXr16sWjjz7KypUr2bJlC71796ZatWr06tXL6ee73Gt89tlnbN68mS1btnD//fcXOBoHju/bihUrOHr0KKmpqS5/nyJlkYqQiADw0EMPkZWVRevWrUlISGDo0KE89thjTj/PP//5T3x8fPjnP/9JQEBA/v4KFSrw2Wef0b17d+Li4nj99df573//S8OGDQt9njlz5nD33XczcOBArrvuOh599NH8Id///ve/ufPOO7nvvvto06YNp06dKnB0qCiaNGnC8uXL2b17N506deL666/n2WefpWrVqk6/Z4B58+bRokULbrnlFtq1a4dhGHz77bcumyRy6tSpVKxYkfbt23Prrbdy44030rx58wL3GT9+PAcPHqROnTqEh4cDrn+fImWNxTD+MlGIiHicrl270qxZM5csofHHB/H69esv+aAWESltdI2QiLhEXl4ep06d4umnn6Zt27YqQSLiFnRqTERcYtWqVVSpUoX169fz+uuvmx1HRKRIdGpMREREPJaOCImIiIjHUhESERERj6UiJCIiIh5LRUhEREQ8loqQiIiIeCwVIREREfFYKkIiIiLisVSERERExGOpCImIiIjH+v/f03tmGHPlWwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6NqbK11eKlP1", + "outputId": "28cb1ee1-551b-4039-c537-ec3495e957cf" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.320135\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print(np.sum(sampler.sample(shots=10**6)) / 10**6)" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "num_shots = 10_000\n", - "for d in [3, 5, 7]:\n", - " xs = []\n", - " ys = []\n", - " for noise in [0.1, 0.2, 0.3, 0.4, 0.5]:\n", - " circuit = stim.Circuit.generated(\n", - " \"repetition_code:memory\",\n", - " rounds=d * 3,\n", - " distance=d,\n", - " before_round_data_depolarization=noise)\n", - " num_errors_sampled = count_logical_errors(circuit, num_shots)\n", - " xs.append(noise)\n", - " ys.append(num_errors_sampled / num_shots)\n", - " plt.plot(xs, ys, label=\"d=\" + str(d))\n", - "plt.loglog()\n", - "plt.xlabel(\"physical error rate\")\n", - "plt.ylabel(\"logical error rate per shot\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "J5TZ-AlJVGmk" - }, - "source": [ - "From the results here you can see that the repetition code has amazingly good performance! Well... it's not *quite* so amazing when you remember that you're using a phenomenological noise model (instead of a circuit level noise model) and also that you're inserting depolarizing errors instead of bit flip errors (the repetition code is immune to Z errors, and when a depolarizing error occurs it's a Z error one third of the time).\n", - "\n", - "Still, you can see that it's not so hard to run a few different cases and plot them out. A bit tedious, maybe." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "c88KJx_mVhZU" - }, - "source": [ - "\n", - "# 8. Use `sinter` to streamline the Monte Carlo sampling process\n", - "\n", - "Now that you understand the basic workflow of sampling from a circuit, making a decoder predict the observable flips, and plotting out the result, you probably never want to do that by hand ever again. And that's without even getting into dividing work into batches, or across multiple CPU cores!\n", - "\n", - "Fortunately, you can use `sinter` to do almost the entire thing for you. Install sinter using `pip install sinter`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ogUrK7LhZyV-" - }, - "outputs": [], - "source": [ - "!pip install sinter~=1.14" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "id": "ogUrK7LhZyV-" - }, - "outputs": [], - "source": [ - "import sinter\n", - "from typing import List" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "c88KJx_mVhZU" - }, - "source": [ - "Wrap your circuits into `sinter.Task` instances, and give those tasks to `sinter.collect`.\n", - "Sinter will spin up multiple worker processes to sample from and decode these circuits.\n", - "`sinter.collect` takes a variety of useful options, such as the maximum number of shots or errors to take from each task, as well as the number of workers to use:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "id": "ogUrK7LhZyV-" - }, - "outputs": [], - "source": [ - "tasks = [\n", - " sinter.Task(\n", - " circuit=stim.Circuit.generated(\n", - " \"repetition_code:memory\",\n", - " rounds=d * 3,\n", - " distance=d,\n", - " before_round_data_depolarization=noise,\n", - " ),\n", - " json_metadata={'d': d, 'p': noise},\n", - " )\n", - " for d in [3, 5, 7, 9]\n", - " for noise in [0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5]\n", - "]\n", - "\n", - "collected_stats: List[sinter.TaskStats] = sinter.collect(\n", - " num_workers=4,\n", - " tasks=tasks,\n", - " decoders=['pymatching'],\n", - " max_shots=100_000,\n", - " max_errors=500,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mVDInHcUbAc0" - }, - "source": [ - "Sinter also has a `sinter.plot_error_rate` method which can be used to plot the logical error rates. This method automatically adds highlighted regions quantifying uncertainty in the estimates." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 484 }, - "id": "ZOsb01E0bFhw", - "outputId": "ceb5a5c3-bb97-4da1-c186-024ad0f5bc92" - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIkCAYAAAAEbwOaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOydd5xcZb3/36dML9t7NtkUEkIIoYXea4RQBASli1IuKhd/16siegmWe+WCosIFQaSIKCBSBEWkhF4SCAQIBEJ62c32Mv2U5/fHmZnd2ZndnU3ZbMLzzmte2TnnOc/znDJnvvM93+/nqwghBBKJRCKRSCQSyS6AuqMnIJFIJBKJRCKRbCukcSuRSCQSiUQi2WWQxq1EIpFIJBKJZJdBGrcSiUQikUgkkl0GadxKJBKJRCKRSHYZpHErkUgkEolEItllkMatRCKRSCQSiWSXQRq3EolEIpFIJJJdBmncSiQSiUQikUh2GaRxK5FIJBKJRCLZZZDGrUQikUgkEolkl0Eat5KdjqOOOgpFUUa1zb333ouiKNx7773bZ1I7MYqicNRRR+3oaUh2Ujo6OigvL+fKK6/cqn4uvvhiFEVhzZo122Ziku3GggULUBSFF198cczHHuv71Zo1a1AUhYsvvnjMxhwNY3k8hBDMmTOHww8/fEzG2xqkcbsLoShKzkvTNMrLyznqqKO49957EULs6CkWxZZ8yb344osoisKCBQu227y2F7Zt88gjj3DmmWfS2NiI1+slEAgwc+ZMLrvsMl577bUdPcWtInM+h3uN1y+Okch88Q186bpOdXU18+bN44knntgm4+xIY2IkrrvuOuLxOD/84Q9zlmfmPPDl8/mYPn063/jGN9iwYcMOmrFEsv0YeE848MADh2ynKAoTJkwYw5ltPYqi8OMf/5hXX32VRx55ZEdPZ1j0HT0BybbnuuuuA8AwDD777DMee+wxXnrpJd5++21uvfXWHTy7recPf/gDsVhsVNt88Ytf5KCDDqKurm47zWrLaGlp4ayzzuK1114jFApx/PHHM3XqVIQQrFixgj//+c/87ne/45ZbbuGb3/zmjp7uVnHaaaex9957F1w31PKdhZKSEq6++moAkskky5Yt46mnnuKZZ57hxhtv5Dvf+c6OneB2Yt26ddxxxx189atfpb6+vmCbI488MutZam9v51//+he33XYbDz/8MG+++SZTp04dwxlLdnY+/vhj/H7/jp5GUSxatIgHH3yQL3/5y9ttjLE+HqeddhozZ87k2muv5cwzzxz1U9SxQhq3uyCDvZevvfYaRxxxBLfddhv/8R//weTJk3fMxLYREydOHPU2JSUllJSUbIfZbDmxWIx58+axdOlSvvzlL3PbbbdRVlaW06a3t5ebbrqJnp6eHTTLbcfpp5++03poR6K0tDTvc/fggw/yla98heuuu44rr7xyp/lCHg133HEHpmkOe16POuqonGNjGAZf+MIXeP755/npT3/KPffcs/0nKtll2H333Xf0FIpi4sSJNDc384Mf/IAzzjgDt9u9XcbZEcfjoosu4vvf/z7PP/88xx133JiPXwwyLOFzwKGHHsruu++OEIJ33nknb/1bb73FWWedRW1tLW63m8bGRi6//HI2bdqU1zYT75pMJvnhD3/I5MmT8Xg8TJ06leuvv55UKlVwDsuXL+fiiy+msbERt9tNTU0N5557Lp988klOO0VRuO+++wCYPHly9vFOU1NT3hwyXHzxxRx99NEAXH/99TmPQTOPcYeLuX3nnXc488wzqa6uxuPxMGnSJK688kqam5vz2g4MmbjjjjuYPXs2Xq+XmpoaLrvsslEZoTfffDNLly7l0EMP5YEHHsgzbAHC4TA//vGP8zx/PT09XHPNNcyYMQOv10tZWRknnngizz33XMGxUqkUP/nJT5g6dSoej4fJkyfzwx/+kGQyOeT8TNPktttu46CDDiIcDuP3+9lnn3249dZbsW276P0cLQNj3D799FPOOeccqqurUVWVF198ccT14IR6/Pa3v2Xu3LkEg0ECgQBz587l9ttvLzj3TNxaS0sLX//612loaEDTtK2K0T7nnHMIBALEYjE++uijnHULFy7ksssuY4899iAcDuPz+dhzzz25/vrrSSQSOW2bmpq4/vrrATj66KNzru+BxGIx/ud//oe9996bQCBAMBjk4IMP5s9//nPe3IQQ3HfffRxyyCFUVVXh9XppbGzkxBNP5KGHHipq/4QQ3HPPPTQ2NnLIIYcUfVxcLheXXXYZ4Hi2CjGaz9aGDRv45je/yZQpU/B4PFRUVHDqqaeyePHivLYDwzseeeQRDjjgAPx+P+Xl5Xz5y19m48aNBcdYsWIFF154IQ0NDbjdburr67nwwgtZsWLFsGP8+c9/Zr/99sPv91NfX8//+3//L/uZe+GFFzjqqKMIh8OUlZVxwQUX0NHRsVPs43A8//zzzJs3j/LycjweD9OnT+f73//+kOdv8eLFnHDCCYRCIcLhMMcddxxvvPHGkKE4Q8WYWpbFb3/7Ww499FBKSkrw+XxMmzaNr3/96zn7sGnTJn784x9z6KGHZr/z6uvrOffcc/M+p1tDY2MjV155JatXr+aWW24perstvXcNpK+vj5/85CfsueeehMNhQqEQU6dO5ZxzztlqGwDIeqJ///vfF71fY4303H7OcLlcOe/vvvtuLrvsMjweD6eeeiqNjY2sWLGCu+66iyeffJI333yzoKf07LPPZvHixZx11lm4XC6eeOIJFixYwNtvv83f/va3nC/ef/7zn5xxxhkYhsEpp5zCtGnT2LBhA48++ih///vfWbhwIfvuuy/ghFQ8/vjjLF26lH//93+ntLQUIPt/IU4//XQA7rvvvpxHoECOUVyIp556ijPPPBMhBGeddRaTJk3inXfe4fbbb+eJJ57g1VdfLejp/u53v8szzzzDKaecwgknnMDChQv53e9+x2effcYLL7ww7JgZ7rzzTgB+9KMfoarD/870eDzZv7u7uzn00EP56KOPmDt3LldffTXt7e08/PDDnHDCCdx+++1cfvnl2fZCCM4++2yeeOIJpk6dyje/+U1SqRR33303H3zwQcHxMufqmWeeYcaMGZx77rl4vV4WLlzIt771Ld566y3uv//+ovZzS1m5ciUHHngg06dP57zzziMejxMOh4taf8EFF/CnP/2JxsZGvv71r6MoCo899hhXXnklr776Kg888EDeeJ2dnRx00EEEg0HOOOMMVFWlpqZmm+zL4M/dDTfcwPLlyznkkEM4+eSTSSQSvPbaayxYsIAXX3yR5557Dk3TALj66qt5/PHHeemll7jooosKXtPd3d0cc8wxvPvuu+y7775ccskl2LbNM888w7nnnsuyZcv46U9/mm1/7bXX8j//8z9MnjyZs88+m5KSEpqbm1m8eDF/+ctfOOecc0bcp2XLltHc3LxFj1wz8f+FHmmO5rO1ZMkSTjjhBDo7OznxxBM544wzaG9v5/HHH+ewww7jscce46STTsob47bbbuNvf/sbp556KkceeSRvvfUWDz30EEuXLuW9997L+bwtXryY4447jr6+Pk499VT22GMPli9fzh//+EeeeOIJnnvuOebOnZs3xi233MLTTz/N6aefzlFHHcW//vUvbr75Zjo7OznttNP48pe/zMknn8xll13G66+/zh//+Efa29t5+umnd5p9HMwdd9zBv/3bvxEIBPjSl75EdXU1L774IjfccANPPvkkr732Ws69/OWXX+aEE07AsizOOOMMpk6dygcffMDRRx/NMcccM+J4GVKpFPPnz+fZZ5+lsbGRc889l3A4zJo1a3jsscc47LDD2G233bJj/vznP+foo4/mzDPPJBgMsmLFCh555BH+9re/8dprrzFnzpyixx6O//qv/+K+++7jZz/7GV/96lcpLy8fcZstuXcNRAjBvHnzeP311zn44IP5+te/jq7rbNiwgYULF3L44Yez3377ZdtviQ0wadIkGhoaeO655xBCjM/QBCHZZQBEoVP60ksvCVVVhdvtFps2bcou/+STT4TL5RJTp04VGzZsyNnmueeeE6qqitNPPz1n+ZFHHikAsdtuu4nOzs7s8ng8Lg466CABiD/84Q/Z5Z2dnaK0tFRUVFSIZcuW5fT1wQcfiEAgIPbZZ5+c5RdddJEAxOrVqwvuZ2YOA1m4cKEAxHXXXVdwm3vuuUcA4p577sku6+vrE+Xl5UJVVfHyyy/ntP/5z38uAHH88ccXnFtjY6NYu3ZtdrlhGOLwww8XgHjrrbcKzmEg69atE4DQdV3E4/ER2w/ksssuE4C47LLLhG3b2eWffvqpCIfDwu125xy7Bx54QADioIMOyhmro6NDTJkyRQDiyCOPzBnjuuuuE4D45je/KUzTzC43TVNccsklAhCPP/54UfPNHLPTTjtNXHfddQVfH3/8cbb96tWrs9fyNddck9ffSOv/9Kc/CUDss88+oq+vL7s8EomI/fbbTwDigQceyNkm098FF1wgDMMoar8GzmXSpEl56+6//34BiKqqqrxzvHLlypxzl+GHP/yhAMSDDz6YszxzPhYuXFhwHpljfMMNN+Qsj8fj4sQTTxSKooh33303u7y8vFw0NDSIaDSa11dbW9sQe5vL7bffLgBx0003FVyfmfPgz6RhGOKYY44RgLjkkkvy9qHYz5ZhGGLq1KnC4/GIF198MWeMjRs3ivr6elFbWysSiUTenEKhkHj//fdztvnKV74iAPHQQw9ll9m2LXbffXcBiD/+8Y857R988EEBiBkzZgjLsvLGCIfD4qOPPsouTyQSYo899hCqqory8vKcOVuWJY477jgB5Jyn8b6PA6/HNWvWCLfbLUKhUM7nWQgh/u3f/k0A4tJLL83Z52nTpglA/OMf/8hpn7m2Cl3zhe5X11xzjQDEKaecknMshHCOe2tra/b95s2bRW9vrxjMe++9JwKBgJg3b17O8sxn/KKLLsrbphCZ9oceeqgQQogbb7xRAOLb3/523n40NDTkLNvSe9fA4/H+++8LIO+7WwjnmA/83t4SGyDD6aefLoC87/XxgjRudyEyN4OMwfCDH/xAnH322cLlcglFUcRvfvObnPZXX321AMRTTz1VsL/TTz9daJqWcyPIGJYDDdgMGQPzqKOOyi771a9+JQBx6623FhwjM4eBH5CxMm7/+Mc/CkB85StfyWtvGIZoamoSQM4XbWZuv/vd7/K2ufvuuwUgbrnlloJzGMhbb70lAFFTUzNi24Ekk0nh9/tFMBgUHR0deeszxtH111+fXZb50nzhhRfy2meOy8Cbo2VZory8XNTW1hY09Lq6uoSiKOJLX/pSUXPOHLPhXo899li2febLoaamJu+Lqpj1mf195pln8tY999xzAhBHH310znJAuN1usXnz5qL2afBcSkpKsp+773//+2L+/PlCURThdrvFo48+WnR/HR0dAhBf/epXc5YPZ9y2t7cLTdPE/vvvX7DP9957TwDiP//zP7PLysvLRVNTU8HjVywZg2Lwl+3gOR955JHZY/PNb35T7LbbbgIQlZWVYuXKldn2o/1sPf744wIQ3/nOdwqOn7n3/P3vf8+b07XXXpvX/oUXXhCA+I//+I/ssldffVUA4uCDDy44xmGHHSYA8dJLL+WN8cMf/jCv/fXXX5/9ETWYe++9VwDi3nvv3Wn2ceD1+NOf/nTIH5ydnZ0iFAoJr9ebveZeeeWVgp9FIZx70PTp04sybk3TFCUlJcLn84mNGzcW3IdiOeWUU4TH4xGpVCq7bGuN20QiIZqamoTb7c653gsZt1t67ypk3Bb6XhvMltgAGa644goBiKeffnrEcXYEMixhFyQTn5dBURR+//vf89WvfjVn+RtvvAHASy+9VDB2q7W1Fcuy+PTTT3MeY4CTAT2Yww47DE3TePfdd/PGWLp0aUGZrk8//RRwMj732GOPIvZu27FkyRKAgo+/dF3niCOOYM2aNbz77rt5j2X233//vG0aGxsB6Orq2g6zdfjkk0+IxWIceuihBR9xHXPMMfz0pz/NOQdLlixBVVUOO+ywvPaFYtc+/fRTOjs72W233XIeZQ/E5/Px8ccfj2ru99xzz6gSyubMmZPz6LTY9Zn9LbRvRx55ZN41mqGpqYnq6uqi5zeQnp6evM+dx+PhiSee4MQTT8xrH41G+fWvf81jjz3Gp59+Sl9fX45U31BxkYVYvHgxlmUNKYVnGAZAzvk677zzuOWWW9hjjz04++yzOfLIIzn44INHlXSZiQ8tFCs+kJdeeomXXnoJIBvPd8UVV/CDH/wg+5kZSLGfrcy9Ze3atQX3OxNn+fHHH+c9ti92jOHuEZnlr776Ku+++y5HHHHEiGNkFCUG308BGhoaAHIk0sb7Pg5kuH7KysrYZ599ePnll1m+fDlz5szJfgYL3ZdUVeWQQw7Jfj8Mx/Lly+np6eHAAw8cUrFjMH//+9/57W9/y9tvv017ezumaeasb29v32bKOh6Ph//+7//m3HPP5fvf/z4PP/zwkG239N41kD322IO9996bP//5z6xdu5bTTjuNww47jP333z8vqW1rbIDM9097e/uw89lRSON2FyTzJRmNRnnjjTf42te+xhVXXMGkSZNybjyZL6cbb7xx2P4ikUjeskKxiLquU1lZSWtra94Yv/vd70Y9xvYmk+Aw1E0ss7y7uztvXaEYYF13Pk6WZY04dqbvjo4OEokEXq+3mClv0Zx7enooLy/Pi/sEqK2tzVuWOWcrVqzIM9gGsr3PWaG5FbM+s7+FspMLXaPFjjcckyZNyuoy9/b28uyzz/L1r3+ds88+mzfeeCPnh5thGBxzzDEsWrSIPffck3POOYeqqqrs+bn++uuHTfQbTOZ8LV68uOAXVIaB5+vmm29mypQp3HPPPfz85z/n5z//Obquc9JJJ/GLX/yCadOmjTiuz+cDyEuAG8x11103Kv3pYj9bmf3+y1/+Mmx/ha7TYsfYmntEoR8KmTGGW5f5MQLjfx8HMtp+Mu2HimsvNt4901/mx8FI/PrXv+bqq6+mrKyM448/nokTJ+L3+1EUJZvvMZrPXzF8+ctf5uabb+Yvf/kLb775JgcddFDBdlt67xqIpmm88MIL/PjHP+aRRx7he9/7HgChUIiLLrqI//mf/yEYDAJbZwPE43Gg/z4w3pDG7S5MIBDguOOO48knn2Tffffloosu4pNPPslKEmVusD09PTmJOsWwefPmPG+maZq0t7fn9JUZY+nSpey1115bszvbnMzcWlpaCq7PqCVsDwmxxsZGJk6cyLp167JJFcWwJXMuKSmhs7MTwzDyDNxC/WS2/eIXv8ijjz5a1Ly2ByMlKQy1frj9LXSNFjtesYTDYc4880y8Xi/z58/nwgsvZPHixdn+n3jiCRYtWsTFF1+cJ4PV3Nw87A+KQmTO17e//W1++ctfFrWNpmlcffXVXH311bS2tvLqq6/y4IMP8pe//IVly5axbNmyYb3mQNbLPVSG//Yms99PPPEEp5566nYdY0fcIwb2uzPs48B+Zs2aNWI/mc/g5s2bC/Y31PLBZIz4Yp52mKbJggULqK2tZcmSJXmGeMaTua1RFIWbbrqJI488ku985zu8+uqrBdtt6b1rMGVlZdx8883cfPPNfPbZZ7z00kvccccd3HrrrXR3d2eTgbfGBsh87rf0adf2RkqBfQ7Ya6+9uPTSS9mwYQM333xzdnnm1+Mrr7wy6j4zjxkH8uqrr2JZFvvss89WjZHJEi/GA7o122TmWajqk2ma2TlnlBy2NRk5pJ/+9KcjSmtlPAkzZszA7/ezdOnSgp6UhQsXArlz3nfffbFtu+ANtdC+77777pSWlvLmm2/meJF2FvbZZx9s2+bll1/OW/fyyy9jWdZ2O6cDOfnkk5k3bx7vvPMOf/rTn7LLP/vsMwDOOOOMvG0Kfa5g+Ov7gAMOQFXVLfocg/PldMYZZ/Dwww9zzDHHsHLlSj788MMRt8v8WF2+fPkWjbu1bM39q1iGu0dA4c/btmRn2sfh+unu7ua9997D6/Uyc+bMnPaF7ku2bfP6668XNf/M/er9998fUroqQ3t7O93d3RxyyCF5hm0kEsmGVmwPjjjiCE477TRee+01/vrXvxZssz3uXdOmTeNrX/saL730EsFgMKdq4tZcX8uXL0dVVWbPnj3qbccCadx+TvjhD3+Ix+PhpptuysZbffOb38TlcvHtb3+7YGxTKpUa8qL/yU9+khO3lUgkuOaaawByYnu/+tWvUlpayvXXX19Q09K27bybYUVFBeBUPyqWLdnm9NNPp7y8nD//+c+8+eabOet+9atfsXr1ao477rgtKhpRDN/+9reZM2cOr7zyChdeeGFBYzUSiXD99ddz0003AU7M4nnnnUdfXx8/+tGPctquXLmS3/zmN7hcLi644ILs8sz5uPbaa3MeIXd2dhaMqdV1nW9961s0Nzdz1VVXZR8/DaS5uXmbakJuSy655BIArrnmmpxKdrFYjO9///sAfO1rXxuTufzkJz8BnEfzmbi+jJTX4Ot+1apV2UeIgxnu+q6urua8887j7bff5ic/+UlBA3jlypWsXr0acH4oFSrpbBgGnZ2dAEUVnDj88MPRNC3vszNWnHbaaUydOpX/+7//4x//+EfBNm+88caoqxkO5NBDD2XGjBkFy40+8sgjvPLKK0yfPr1g3Oi2YGfax/PPPx+Xy8Utt9yS/QGX4Uc/+hG9vb2cf/752ScChx56KFOnTmXhwoV58md33nlnUfG24Pzwu/LKK4nH41xxxRV5IQWpVIq2tjbA+az4/X7eeeednEfthmHw7//+79s9fvSGG25A1/XsfWgw2+LetXr1alatWpW3vKuri2QymRNGsKU2QDKZ5L333mOfffYZVqZzRyLDEj4nNDQ0cMUVV/DrX/+a//3f/+V//ud/2H333bn77ru55JJLmDVrFvPmzWP69OkYhsG6det45ZVXqKqqKuiZmTlzJrNmzcrRuV25ciUnn3xyjmFVUVHBI488ki1/e+yxxzJr1iwURWH9+vW88cYb2bjTDMceeyw33ngjl156KWeeeSahUIjS0tJhy8/OmDGDhoYGHnzwQVwuF5MmTUJRFC644AImTZpUcJtgMMjdd9/Nl770JY488ki+9KUvMXHiRN555x3+9a9/UVtbyx133LEVR314/H4///znPznrrLN44IEHePLJJ3PK73722Wc8//zz9Pb25pRN/vnPf84rr7zCrbfeyuLFizn66KOzOrd9fX3ceuutOdq8X/nKV3jooYf429/+xp577slpp52GYRg88sgjzJ07l5UrV+bN7Uc/+hFLly7lt7/9LU8++STHHHMMDQ0NtLa2smLFCl577TV+9rOfjSoJ8PHHH8/GpQ6mqalpm1UvO/fcc3niiSd4+OGHmTVrFqeffno2nm716tWcc845nHfeedtkrJHYf//9Oe2003jiiSf4/e9/z+WXX57Vev7lL3/JBx98wD777MO6det46qmnOPnkkwsasEcffTSqqnLNNdfw4YcfZpO4fvjDHwJw6623smLFCv7rv/6L+++/n8MOO4yamho2bdrExx9/zOLFi/nzn//M5MmTicfjHHbYYUybNo399tuPSZMmkUgkePbZZ/n444859dRTs9614SgpKeHYY4/lxRdfpKura8TEsm2Ny+Xi0Ucf5cQTT+Tkk0/mkEMOYe+998bv97N+/XoWL17MqlWraG5u3uLqcJmiMscffzznnHMOp512GrvvvjuffPIJjz/+OKFQiD/84Q8j6lRvKTvTPjY1NfGrX/2Kb3zjG+y7776cffbZVFVV8dJLL/HGG2+w++67c8MNN2Tbq6rKXXfdxbx58zj11FM588wzmTp1Ku+//z7PPvssX/jCF3j66aeLOrbXXXcdb731Fk8++STTp09n/vz5hEIh1q9fz7/+9S9uvPFGLr74YlRV5aqrruLnP/85s2fP5rTTTiOVSrFw4UI6Ozs5+uijs57q7cGMGTO47LLLuO222wqu3xb3rqVLl3LGGWcwd+5cZs6cSX19PW1tbTzxxBMYhpHzA3pLbYAXX3yRVCrFmWeeufUHZXuxg9UaJNsQKKxzm6GlpUX4/X7h9/tFS0tLdvn7778vLrroIjFx4kThdrtFWVmZmDVrlrjsssvE888/n9NHRoYrkUiIa6+9NitxMnnyZLFgwYIhpYVWr14tvvGNb4hp06YJj8cjQqGQmDFjhjj//PNzZKAy/OIXvxC77767cLvdgkE6ooWkwIQQYtGiReKYY44R4XBYKIqSIyNTSAps4Hann366qKysFC6XSzQ2NoorrriioKzMcDJlI8mRDYVlWeLhhx8WX/ziF0VDQ4PweDzC5/OJGTNmiK997Wvitddey9umq6tLfPe73xXTpk0TbrdblJSUiOOOO66ghIwQjoTY9ddfLyZPnizcbreYNGmS+MEPfiASiUSelEwG27bFH/7wB3HMMceIsrIy4XK5RH19vTj00EPFz372M7Fu3bqi9q8YKbCB448kvVOMNI9lWeL//u//xH777Sd8Pp/w+Xxi3333FbfeemuOXmeGoY7BSAync5vhvffeE4qiiIaGhqze7bp168S5554r6uvrhdfrFXvssYe44YYbhGEYQ87l/vvvF3PmzBFer7fgZz2ZTIpbbrlFHHzwwVm948bGRnHMMceIm2++WbS3twshhEilUuKGG24Q8+bNE42NjcLj8YjKykpx4IEHittvv10kk8mi9z8jVXXbbbflrRtK53YotvSztXnzZvG9731PzJo1S/h8PhEIBMS0adPEmWeeKe6///4cObvhJNWGu66WL18uzj//fFFbWyt0XRe1tbXivPPOE8uXLx9yvwuNMdx9aFfZx2eeeUYcf/zxorS0VLjdbjF16lTxn//5n6KrqyuvrRBCvPnmm+K4444TwWBQBINBceyxx4rXX39dfOMb3xCQq/srxNCfVcMwxC233CLmzp0rAoGA8Pv9Ytq0aeLSSy8VK1asyGn3i1/8QsycOVN4vV5RU1Mjzj//fLFmzZqC1+DWSoENprW1VYTD4YJSYEJs/b1r/fr14pprrhGHHHKIqKmpEW63WzQ0NIh58+bl6QlnGI0NIISjl7wl0oljiSLEAP0ZiWQEjjrqKF566SXkZSORSCzLYvbs2bjdbt59993xWalIslNy6KGH8tZbb9HT00MgENjR05GkaW1tpampiXPPPZe77rprR09nSGTMbQHa2to4+eSTCQQCzJgxg+eff35HT0kikUjGHZqmcdNNN7F06dIdqqwh2TmJxWIFcw3uvfdeXn/9dU444QRp2I4z/vu//xtN07L5BOMVGXNbgG984xvU1tbS1tbGc889x9lnn82KFSuKqgstkUgknydOOukkfv3rX4+odyuRDGbdunXss88+HH/88UybNg3TNHn33Xd59dVXKS0t5Re/+MWOnqJkAEII6urquP/++7dZkYvthQxLGEQkEqG8vJxVq1YxYcIEwHkUf9FFF+VV+Po8IsMSJBKJRLIt6Orq4j//8z956aWXaGlpIZlMUltby3HHHce1117L1KlTd/QUJTspO31YQiQS4brrrmPevHmUl5ejKAr33ntvwbbJZJLvfe971NfX4/P5OPDAA3n22Wdz2qxYsYJgMJg1bAFmz57NsmXLtudu7DS8+OKL0rCVSCQSyVZTVlbGXXfdxYoVK+jr6yOVSrFu3TruvvtuadhKtoqd3rhtb2/nxz/+MR9//DFz5swZtu3FF1/ML3/5S8477zx+/etfo2kaJ510Uo6IdCQSyavUEQ6Hd0h5WIlEIpFIJBLJ6NjpY27r6upobm6mtraWt99+m7lz5xZst2jRIh588EFuvPFGvvOd7wBw4YUXsueee/Ld7343Ww0lGAzS29ubs21vb2+2FrNEIpFIJBKJZPyy03tuPR4PtbW1I7Z75JFH0DQtW/IUwOv18rWvfY033niD9evXA7DbbrsRiURy6lR/+OGHBWtlSyQSiUQikUjGFzu957ZY3n33XaZPn54XcnDAAQcA8N5779HY2EgwGOS0007juuuu45ZbbuH555/n/fff57TTThu2/9bW1myJvwy9vb18+umnzJ49O1tyUCKRSCQSiURSHMlkkvXr13PkkUcWXe73c2PcNjc3F5SuyCzbtGlTdtltt93GRRddREVFBRMmTOChhx4aUQbstttu4/rrr9+2k5ZIJBKJRCKR8Pjjj4/oaMzwuTFu4/F4Qe+p1+vNrs9QVVXFP/7xj1H1f+WVV/KlL30pZ9lHH33E2Wefzd13380ee+yxBbPeccTjcT744ANmz56Nz+fb0dPJYzzNb0fNZSzHHU/HWyLZGuS1PP6R56h4Pg/H6qOPPuKSSy6hsbGx6G0+N8atz+cjmUzmLc8Ij2/tRVFdXU11dXXBdXvssQcHHnjgVvU/1vT29tLT08O+++6bF8oxHhhP89tRcxnLccfT8ZZItgZ5LY9/5Dkqns/TsRpNeOdOn1BWLBlVhcFkltXX14/1lCQSiUQikUgk25jPjed27733ZuHChfT29ub8unnrrbey67cX8Xg8T15svBONRnP+H2+Mp/ntqLmM5bjj6XhLJFuDvJbHP/IcFc/n4VgNDBstls+NcXvWWWdx0003ceedd2Z1bpPJJPfccw8HHnjgqGI5RmLBggU5yWUffPABPT0926z/sWTRokU7egrDMp7mt6PmMpbjjqfjLZFsDfJaHv/Ic1Q8u/KxWrdu3ai32SWM21tvvZXu7u6s4sGTTz7Jhg0bAPjWt75FSUkJBx54IF/60pe45ppraG1tZdq0adx3332sWbOG3//+99t0PgsWLGDBggUsW7aMPffck9mzZ7Pvvvtu0zG2N9FolEWLFnHAAQcQCAR29HTyGE/z21FzGctxx9Pxlki2Bnktj3/kOSqez8OxWrJkyai32SWM25tuuom1a9dm3z/66KM8+uijAJx//vmUlJQA8Ic//IEf/ehH3H///XR1dbHXXnvx1FNPccQRR2zX+fl8viEDvYUQRKNRent7SSaTCCG261yKxTAMysvL6e3t3aJHAluKoigEg0HKysrQ9ZEvz0AgMG6C6HfUXMZy3PF0vCWSrUFey+MfeY6KZ1c+VluS8L9LGLdr1qwpqp3X6+XGG2/kxhtv3L4TKhIhBK2trXR2dgLgcrlQ1fGR46frOlVVVUUZmNsSwzBob28nFosxceJEFEUZ0/ElEolEIpHs3OwSxu3OSjQapbOzE7/fT11dHW63e0dPKYtlWfT19REKhdA0bczGFULQ3NxMT08PfX19u+wvUYlEIpFIJNsHadyOAUOpJXR0dCCEoKamBk3TsCxrB8yuMJm57Ig5VVRU0N3dTXt7+5BtxlOGqFRLkEh2HuS1PP6R56h4Pg/HaktCIxUxXoI8dyEGqyX85je/YeLEiXntysvLqaiokBq7Bdi4cSMdHR10dXXt6KlIJBKJRCLZQaxbt46rrrqKDz/8kFmzZhW1jTRutyMZtYSFCxcWVEtobm5G13WamprGfnIjYFkWsVgMv98/pmEJGVavXo1lWdTV1RVcP54yRKVagkSy8yCv5fGPPEfF83k4VkuWLOHoo48elXErwxLGgKHUEjKP3XeE8VgsmqbtkPmpqoqqqiPG3I6nDFGpliCR7DzIa3n8I89R8ezKx2pL1BLGR2q+RCKRSCQSiUSyDZDGrUQikUgkEolkl0GGJYwBQ6klGIaBruvjSiUhw45USwBHEsw0zYLHDcZXhqhUS5BIdh7ktTz+keeoeD4Px0qqJYwTRqOWUFVVRW1t7Tafg2HZvLehj96ESdirs/eEEC5tbB31H3/8MTfccAPvvfcera2t+Hw+ZsyYwbe+9S2+8IUvDLttS0sLbW1t2QIXEolEIpFIPn9ItYRxxo5QSzAsm9++tIo/vrWO9kgqu7wq6Oa8AydyxZFTijJyt4Vawj/+8Q9uvfVWDjroIOrr64nFYjz66KO8+uqr3H777Vx66aVDbrtmzRpM05RqCeNk3PF0vCWSrUFey+MfeY6K5/NwrKRawjhlrNQSDMvm3x54l4WftDG4aG17JMWvnv+M9zf2cscF+xXtxd0atYRTTjmFU045JWfZVVddxX777cevfvUrrrjiiiG3VRQFl8sl1RLG2bjj6XhLJFuDvJbHP/IcFc+ufKykWsLnnNtfXMnCT9oAGOyOz7x/YXkrv31x5ZjOayCaptHY2Eh3d/cOm4NEIpFIJJJdF2nc7iIYls0f3liT57EdjAL84Y21GJY9FtMCnMcm7e3trFy5kptvvpmnn36aY489dszGl0gkEolE8vlBhiWMU65/chkfbSqsFFCI3riRE2M7FAJoiyQ59ZZXCftcw7Y0TQtd19ijvoTrTikuzqUQ//Ef/8Edd9wBOMUZzjjjDG699dYt7k8ikUgkEolkKKRxO075aFMvb63efkoBH7f0jaL1SP7g4bn66qs566yz2LRpEw8//DCWZZFKjWyISyQSiUQikYwWadyOAVuiczuzLkR+5OzQ9MYNPm6JFN1+Zm1wWM+tEI5igqZpzKwLbZXe7W677cZuu+0GwHnnnce8efOYP38+b7zxBopS2HCWOrfja9zxdLwlkq1BXsvjH3mOiufzcKykzu04YUfo3BqWzYn/9zZdMWNYk1gBygMu/nnl/mOue5vh3nvv5dvf/jaLFi3KGr2DkTq3EolEIpFItkTnVnputwMLFixgwYIFWZ3b2bNnD6tzGwqFtsm4Fx48iV89/9mwbQRw4cFNlJeWDNtuW+jcDjmH9O8p0zSH3PeOjg6qq6uZM2dOwfXjSdtP6txKJDsP8loe/8hzVDy72rHSNi3B++x/Zt8LIViyrvin0hmkcTsGjJXO7TeO2Y33N/bywvJWFHKDGjLvj9m9miuPnoY2Bjq3ra2tVFdX5ywzDIM//vGP+Hw+Zs+ePWTfUud2fI47no63RLI1yGt5/CPPUS7rLz6X1KdLcxcK2EPYxBSF2IAwP/f0vWj8/f1Og+wD+kJ/p9+P9PfAh/xF9mfbNrYQWMJGCJEOd3SWIWwsW2ALgbBtbAG2EITfvgut49OcXQzERh8WKY3bXQiXpnLHBfvx2xdX8oc31tIWSWbXVQY9XHjwJK44auqYhSNcfvnl9Pb2csQRR9DQ0EBLSwsPPPAAy5cv5xe/+AXBYHBM5iGRSCQSyU6JbYGVAssgteoTUp1DyXgOMCwBVnxEavHfAXBsXtHfTKHfKFXAtm0snGVCpA3OtLGJcAxPgeIYoQinp7RhaiNAgG07f9vp5VZ2W8VpL+z0/856508bG8DG+R9B10MbcW+uytmzdfEUMLqYYmnc7mK4NJVvHbsbVxw1lbfXdNETT1Hic7N/U9mYx9iec845/P73v+f222+no6ODUCjEfvvtxw033MCpp546pnORSCQSiWRcYRnpVwpsM2vEZpcZMTBTIEyEZYDmAWJFdW3aOhvfeReBgk2u49W0BbYCtu089heArShZ56uddgALAUJxjFM7bVMLBQQCIZRsnwJAVQAFRcnoK6nO/yooqoKCsx4UVFU4yeRKfztFVVAUBbszQao3N9ndSI5el18at7soLk3l4KkVO3QOX/7yl/nyl7+8Q+cgkUgkEslYYdvO43jLSiFMA9tMIawUlmGAlcS2TISRQKRiCMvAtk2wDIRpIGzHiBW2jVAUDEtgJWyMWAIjmkRJiaIrb8VUnXfd/eEAA1FIe3MFZMxOlHTfirNOEWnbM23oZmxRhQHioIXEjnIGE3l/DnAY96/ILLQFjcLCU+Q+Doc0biUSiUQikXxucB690x/zmX4EbwmBsPv/zllnp/+2LWzLwDZSYKWwTedlGSls00CxEggjjmKbYJkI2wTbMVwV20DYAhsVoWhYqoaNhqXo2OiYwoWZFFiJGFY8ioj1QTKOmYwiTIuJtlm04ecSKaYZK1GwUbBRhePDVUTu3woCVdjp9wPaMHjZwHaZPm1AoKRjakmHIgz8XyH9/4A+1fTfGpn/LVRhoymClWYVKYYrMFUc0rgdA7ZE53ZHk5nTjpqb1LkdX+OOp+MtkWwN8loe/2TOTV8k4jxCF05cp5WO63TsqH6DU0A2IcnOGKFkjFPnvWGJtDHbn7yUtccy723LCQ/IGKOWY6AiDLANFCuFYibTxp2JYtuotoWK6Rh/GZeoqoOqIxQNRdNA8YBLQ1F1FFXBEjaWMLGwMI0kdiKGmYxgxmKIeByMFEoqjltE8KhxAp4oAVcEo8iQBACtO075fW8N8LwOcJkqA72yYtD7tFd3QPtMnpqdXpbNWyvQd+66QX0rjqcYRcWJV8htryBIJbdNgr3Uud0O7Aid210NqXMrkUgknz8sG1b1KcRM8OswJSTYQZLs2xXdjOJPdeAzOvCn2vGl2vGnMn934DV7sm2FgESXixUvV+BK7IIHYwRWJJOctmb1qHRupXG7Hcno3C5cuHBYndumpqaxn9wIbE+d22JYs2YNpmlSV1dXcP140vaTOrcSyc6DvJZ3DEIIDEuQNC1SliBpWKRMm1jKxLAEccPiqQ/bWLiik75k/xPDsFfjmN3KOWlWNS7NiRBVM3GhCjg+QMvxoAoTFdN5fG4bKLaJYjmhAoqwUCwTBctRILAtFGE6j9QVx5soFA2h6qBoCFUb8H5og9IWAlOYmMLAEBaGbRI3k6SinajRdtyxDryxdvzxTsKpLkrMbkqtLnwkh+wTwEyoRFs89DV7iLR4EcnRGbUxN3zYpDixs5kXDPleTZuCqhjUZkA7NW0tqmlhBrVQvwPbDtUmb+z+fl1mfijvlhi3MixhDBgrndvtwdbo3G4NUud2fI47no63RLI1yGt5+2DbgqRpkzCs7P8JwyKStDBMQdJy/k9ZFgJway5UBW57bSXvre/O6683YfH4B21s7E7wX8fW4cIJG1BtA8wUqhlPG7IWijAco9U2nZjXdBaTUHXnpetpY9WTXqYhUElZEDcFMcP5P24I538TYoYgblpEDZuoYRExbRKpFIFkB6FUG2VWOxVWO1V2BzWigwmigzqlA49ijuq4tQkXH3ZX0NfiIbxJUNVmFp08VoiOMNx05vi1LYbiF78zaWzf+n6kcSuRSCQSiWRUWLbjhU0YNknTImk4XthYyvHIpkyblGVjWI6Mk1vTcGkKHl0j6FFwaR5URcHXuoTQM1fzv3ED3MMMuBleefFrHDVrAomUQcRSiVoqcVsnZmlELc3523QTt1RilkLMVEiYIm2gZgxYQcK0iZlJ4qYgYTrxugMJEKdBac95zRzwdzXdqIrIn2OOlEAuvcLHOlHJB3oZH7sCrHa5SCYNJm3qYdb6CHuuNalNQi1GznZxN3zQpPDeFIVT3rKp6yru/NhGGaekjmKSLwlZIa4cka5+pYTMemXQ+0HbDWyvDmqX32/m78HjKIOW9S9VgFoeB7qL28lhkMatRCKRSCSSgpiWneOJTZo2saRJzDBJmYKUaZEyBYZto6Dg1lXcmopH1wh5XU4ogTKExQeULbufiuQaaopwU76z4RWOXXPpCK1sMiUBCiOooLffcFXb8wzZUmX0yYZdhOmklB6llE16iNUeLxu9OptdFh16gm6tj5jZzfQNnez9cQfnrxJMHMJDuboGPpnipXlKCcnGKqr0MmYSpuztV4GewhsNQhUujvIG0MWA0Js8ma50gljmfY693i/RlV0/cDunksOA9f3b2OmEv8yYIl3cgbSmbv+WpNtm2gtHXWIbII1biUQikUg+5xiDjVjDIpayiKVMUla/EWvaNuoAI9br0inxqejq8EYsOAZMe2+UjW1drG/vYX1nFKN1P+7ir0XN8X7r+BHbaFjUKZ3U006T3s5EtZ1GtZ162qilnWrRgWeQd3QkbEUl7ikj6S4loYdJKEFitp/1isY6xWaDy6bFnWSzFqGVXqIZz6MQ1HbB3qsEe68SzFor8BSw3WI+jc1TSuibWosydTKlwSrmKBpz0n04JbxMKAvSaWpElBiKlgCh4jYdcbCUngTFRlhehFkCIS+BtvZscYUcu3VgDLGiDDBbnUIOdloD1xnZOae20yBdrSxTzCFduQxAqAgVHP+tcy2oaloRAQ1UJT2s6sRLp68XDVBVDVVV0BQFVd02Zqk0biUSiUQi+ZyQMu3ccALTJpowiZsWhmmTtGwM08a0Baqi4NFUXLqK36VT6lOLqnRpC0FrX5L1nTHWd0RZ39HH+s4o67pTxM3Bj/ObeMa1Pydqbw/b5z+tuXwkmjh+gsXcUCdVdhsVdjulRhshs5VQqg1/sg1fsnOwKcfgt4MxNTdxbwUJXzlxbzlxXzkJTzlxNUiHrbPRiNGW7KDN7GYzvbSq7bSrsaw01kC8ScF+6wR7rxTMWS2o7c4fTyiQaKjEmDqR1LQJGLWleBWB17adxDcj4vxv2yAUhOYku/WcfghmwuaW9kY+DS7D6DwEYYUAULQIrvJXMToPZ5Zf4dKJraTSRqqdfjkGq3BK4gqBUJzJCOivEiZAVTJGKWm5LicMIVNVTEVFUUFXFFRFQVPTbRTFSUxTnUplqnD6VLP9O2a2qgyoVzbo95BSXYmtadhCEBFxgooXO5qANcOfw8FI41YikUgkkl0IIQSpgZ5Yw/k7kjRIGHbWS2tYNpYl0NR+T2zQreP2qehFGLGWLdjcm2BdZ4z1nTHWdTn/b+iKkzRHLpkackOFV+U3fWfkGLdLPU7w7ZxkKrtsirKRdzyXU9HeB6NMOEq6go7B6i3PMWCzBq3mpsPooS3eSluslbZUJ63R9bSJXmJKeg4KFKwtIASTWmHuapV9VylMXp9CK7DrVshPckodySm1pCZVITwaWBYCG5K92ChOYQc0hOrCxoeluyFpQdKGpIWpu0i6XZw2yeTl3kN4Rw0QSwtLCCuI3nsC+0wz2H+axUq1ClVVBhiSjlGJItCVjJdUQVVBQ8muU3G8saqqZiuVaZl+FBwDloyhqjhhCNlDoeBMR/RH1OZEQmTCHJRCpcocad2fXpHdTlGgE+hctgbO/mbxJxxp3EokEolEslMihMjGwSazMbEWkYRJIpPUlU7ssoVAV1THiNVVQh4dj66hqcOHEoATd9vckzZi0wbsus4YG7vjGNbIaqJlHsHEsMrEEp1JJRqTwiqTSlRKPQqWgAuemMgiawYHaJ/Qo6pcVFcDwEvrNlCSzvaarm4q2LetqMTd4bSxWk7SV0HCV0Eia8CWY2tuhBD0WVHHcDU6aEt10Nb7KW3tHXRavYhC7t1Bh0ZDpZIQjfEA+6yB3VYlqVvVjSeSBHILHglNJVFfTmxSJbGJ1SQrwwjFKewgFA0sFVsLgupKvzSn+IMp0kUcnPK9pkfFDLsxAx6UQAgtHCQcCHKm28uX0NnQLGhf3UnttBrmNIVxuVTHcFUUNFXNGqV62kBV1YGpXJndHGhhDrEccsJOBq7L+XuY0JTh2g23zugYfUFeadxKJBKJRDKOyRqxhk0irUyQMEwiKZOk4chqZeS1bBtcmmPAujSVsNeFW1eLMmINy2ZjV5z1XbEB3tg4m7rjWIMlBQpQ6bGZFLSYFFaYWOJiYrmHiSU6JZ58L7Ca7CGw/h0Cm9/mZW0JfiUCwAt+H1bauHnB7+eLkSjr7UpWizqUcAnlNSFSvkqSvkoSvnKSnlKE2i95Zdgm7UYnralO2pIraetbnDZoO0naw2vLZggKL5WEqRAhKkWYSitIU7NJ7Zouwqub8baso5BYglEaIDm5lviUepJNdQivH0Vzo+tudF134kk1x5C1FQWh2limiUhGIRZHSaRQXRpqOIgeqEAvK8MdDuEvqcAXLMGjeXBrblyqK/t3pD7Cwt6FHL33zF1W2i7kDo16G2ncjgGf1/K7L774Iscdd1zBda+++ioHHXTQkNvK8rvja9zxdLwlkq1hPF/LQghHgcCySGaVCNKFDtKKBKblhBwIHG+cW1PRVRW/rhB2Z4zYAYoBFlhWrl8xadps7E6woTvB+vT/G7oTtPQm82SxClHlV5gYFEwKWEz0p5gYFEwodeP3+RDq4Gf3NomUDULg7V1FqO0dwq3v4Ov+FAXBGl3n6rpKIAhAm6ZlH1nfVF7K/4Wr2UQFXk3wbw0nUu0ux7Jteu0IbYlO2vvW0G500GF10m520WMVpyagC5VKO0SlUkKVWkq1UkqVEqaaEH6hoUdiBFatx7NyE+41S1Hjqbw+hEvHmDoBa8YUzJlTEdVVKLqOX9XwqzpCAUtYmMLEsi0sYWHZFlgp9ISFO2WhCxXFF8BVU40rVII7WII7GMYdDOHWPbhUlxMDS+5pTaX/jefreVsRj8dHvY00brcDg8vvfvDBB/T05H/gMuV3+/r6tnpMrXkJ/me/W1Tb2PE3YtXtU1zbWPG1rAeTuSAvv/xy9tknd7za2tph99swDNra2li+fPmwYyxatGiL57et2VFzGctxx9Pxlki2hl3hWk6lX0ORsGBzHDbHFFriCi1xaIkpdCbTmfHDoCAo90CtX1Drg1qfoMYvqPGBN6c2gGPMNvcCvXGg3xDRrThVfR9S07OUmt738ZrdeeO8GAiz0l1Y4LZX0+jVLDRaMYBH2v4OCrRb7aSG3fN+QkqISq2SKrWKSq2SStV5laql/UYjgGniW7uWwCefEvj0EzzNLQX7S9bWEp0xnej06SSamhD6ADPKSL9y0Cgo4KsBvgHv40A8Dq1xoPDYw7ErXM9DsW7dulFvI43b7cCCBQtYsGBBtvzu7Nmzhy2/GwqN3uU+GOXFv6J2riiqbeDTvyKmHzFsm21Rftfncz65xxxzDGeeeeaotu3o6KC6upo5c+YUXD+eSmjK8rsSyc7DWF7LthAkDSfmNWU58a+Zil0pU2CmixwYtkBVQFccZQKXqqDrCi5VHVFeCyCaNNnQnUx7YeOOR7YrQXt0ZMkrVYHasIcJpV4mlLhpDCk0BW0meOL4RRTVTKLYKVA0bN2LrfucKl+FEAJ3dBPh1rcJtb2Nv/NjVJGvfdXnb2Bj6e6sDE8j4q9mt9irrEiuHHGum+zCcbduRadWL6NOK6PWClJnB6hNeam1fPh0b1YOy9GqssHuALpRuiKoKzagrdiA+tl6lGT+8RJ+L9bu0zBmTSOx+2TMcABLWCjCwid60FUdTdFQFRWX6kJTNDy6G90E1bDQUxaaUNB9flz+IFowhBrwo/r9KH5/Ued3OD4P9+YlS5aMehtp3I4BY1J+98DL4L0/FtVUPeAyKHLMrSm/m9lOVVVisRg+nw9dL+6Sk+V3x+e44+l4SyRbw7a8lk3LJjEgqSthWMRTFjHDJGkKjAGFDlQUXLobt0vF73MUCkYqdJChN27kxMOu74qzrjNGZ3RkL6amKtSX+phY5qOx3M/Ecj+NZT4mBMFrR9FSfaiJLjQzhmJEUUyB7fJh+4PYuhcUlULfBIqVwtf+AYHNb+Pf/DbuaHNeG0t101m6B83le7C2bDIdXj8WBmWeALPcQWarX+KWNX/mk+jaYfehwl1CvbeCelcZdUqQestHfcJFeVxB7U1CygCXC/xuCPjA7QZFB00HzeMka61uRvloDXy8EqW1M28MoYA1qZ7kzCYSM5tITaxG013oio6WDjdwq/50zKsHl6bjUl3oaOhJCzWRREQSKC4XStCPGgigl5SghkLOawgv9dayK9+bM46y0SCN212Fujmw+3xY/tTw7XafD3V7jc2c0nz1q18lEomgaRqHH344N954I/vvv/+YzkEikUi2FsPKrdSVMCxiSZO4YWVVCVKmwLBsR15Lc4xX3ygLHXTHDcd4TSd0Zf7ujo/sidVVhQllPsd4LffTWOYYsnUlXkfeyzbQUhHUVC9asgWtow/FdDy0tu7G1n3YgRong3+oMWJt+Frexr95MYH2pWhWfqJW0ldNX9X+dFbPpq2yiYiSIi7iaIrCNE+QEpcPodq81fkRTzW/zqpoYa8swA8nnc40UYI3bkIsCRHDkccyHU1VfF6orgRfIJuwheYCNNjcCR99hvLhp/DpahQz35Nshfyk9piMucdUxB7TUENhXKpOpe7FrbpxaW50VcetuXCpzgsU7GQSEY9jx6JgWSh+H2owiFbfgBYOoQaDqIEAilpE+TXJNkUat7sSR353ZOP2yO+NzVwAt9vNmWeeyUknnURlZSUfffQRN910E4cffjivv/56XhyuRCKRjAdSZr8qQabgQTRpkjD7jVjDtDEskU3qcukqAXfxhQ6EEHRGU1l5rXWd/UZsX3LkEqRuXaUx44Ut82e9sTVhb64yghCoRhQ10YqW7EFL9Tjvzbgj6K/7sTxhTL83X1EfsG0nB8Ld+TGhzW8Tbn+bQCQ/BlIoGsnKWaTqD8CYsD99wUr67Ai9VoQ+sxev5qbaVY5bdRG3kvyz7U3+0fwmlzzQwTe6h89iK1P+gQ8XlIQQZx0L/jIo9UMgALrbkdBKz92OxhAffgoffIL20QrUrvzcDqGq2FMbsfecjmuvWXgnTaLE5UVXXY4nVnHh0lw4iq4DtrMs7HgCM9aDSMRRXG4Uvw9XTTVaaaljzG5H76ykeKRxO155+vvQ8sHot/OVQzz/UYuzrgL+eU1R3agIgqaFqmtQuxd84eejnsohhxzCIYcckn1/6qmnctZZZ7HXXntxzTXX8M9//nPUfUokEsm2wJHXGlCpyyigEZuOiTUtG5eq4dKVURc6sIWgvS+ZLXCwvjOeNWhjqZHVaHwujcZyX9YD25h+VYc8jvB+ARQriZqKoBl9qMlutFQExYih2klszYPtCmB6Sh0PZxrLEhi2hWk5nmfiPYTbl1DRtYSyjqXoZiR/37ylWA0HwqQD0RsPQNHdRFO9tKd66EptJG4lCOg+6n0VaIpGZ6qXZ1pe5LnWt4laCQBqugWNIxZlcBKbhe6B3fZw1HTSCgSGGYe1G9GWrcD90RpcazahFJJ8qChDn7Mnnjl74dlzTzzBUFqJYPiwOzuZxI7FEPH4IO9sveOdDYWc+FnpnR1XSON2vNLyAax9ddv2Ge8ouk+FgRfH1gW8D2TatGmcdtppPProo1iWtW3ijSUSiaQIeuIpXviknQ86FDre3cT0CZVYtkhrxDqFDlyqmtWJDXuK14i1bEFrXyJd4CCerdi1oStGwhi5WlfAreUYrxlvbGXQPXI8rrBRjXTcbKoPLdmNakZRjThCUbBdfixvKabuxbQEpm1jpASmmcKwbSwbdFUQjq2hpuNdStv6pbryqNodJh4EjQehVk1HVVT6jBidqV7aY930GFFMYVPi8lPurkJRFNbHWnmq+TVe7fgAS/Qb9LWuEsr0BFCcjJUlLNqim1H74vg+WY/n49V4l69G7Sug6uNy4Z61B/695xDYZz/0+vqi4pod72wcEY8j4jEUtwfF70OX3tmdCmncjldqZ2/5tq0f5XtvfRVQPbPoLgQCy7TQdA1la+ZSgMbGRlIpR59vVw2Al0gkOx7TsokkTbqiKe56dTVPvd9MT9wANPh0FSW+dRw3s5az9m2g0u0p2oht7onnxcNu6IqTsoooOevVmZhN6Or3xpb5XaPKnFfMhGPMGhG0RFc61CCGYqWwdR8pzUfKE8awVSeEImkjSKCpCi5NQddUgnqS0s4PCLe9g69lMVqhp36uADTOdQzaCQeAvxwAW9h0GxE6kj10pnrpNaJoqkaJK4BX8yCEYFnvap5qfo33ej7L6XJGoIFT6g5j39r90e67kWKNWy0Sp+4XD8PaDQXXuyZMwLf33vj23hvPzJmonuIqW2W9s7EYCBvFl/bONtSjhaR3dmdEGrfjlS0IA8jSvBTuGCT1deHjo0oksy2LSF8foVBom3tXV61ahdfrJRgMbtN+JRKJJJ6y6EsY9KWN2p5Eipv/tYIPN+UXhOmJm/x1yQbWdkS59qSZDHxKZVg2m7rjrE8bsBmFgo3dccwiKh2U+V05HthMTGyJb+hErWGxLceQTfU5yWCpHtRUDDsVxRAaSdVHQgmRQgcTdFtB18ClQdCl4dXdeHQVf3wTvubFuJsXo25+H8UuEN9b1gSNBzkGbe2eTkxr5rjYJh2pXtqT3XSnIkSsOAHdS7W3DF3VMW2LV9uW8lTza6yJb85upwBzy2cxf+LxTK/a0zGabRuKKN+b7SMSg0i/l1bx+/HNnp01aPWqqqL6yfHOZmJnA3702hrHOxtKJ4NJ7+xOizRud0UGKyfsAIUEgLa2NqoG3WyWLl3K3/72N77whS+gyl/BEolkK7FsQSRh0psw6I0b9MZNooZJwrBwayrPLNtc0LAdyNtru7jp2U+ZUOrLxsNu6o4XVa2rMuimcUBCV2NaYivk3UIjdgCKGUdL9aEke7FjnYhkBCMZwbZMEooXS/ehuGucJChNIaSpeF0qHpeOW1dwaxpuYeBu/wBtzVuw7g3oLaBKoLmhfl/HmJ14IITq8prEzAQdqV7akt30mhGSlknY5afBXYmqqMRTEZ7ZvJin296m3eiPz3WrLo6qPZiTppxMbekkZ6EQ0N0LLW2IVGpUgW/uKVP6vbPTp6MUKS8pvbOfL6Rxu6syUDlhDBUSBnLOOefg8/k45JBDqK6u5qOPPuLOO+/E7/fz859vhWdaIpF8rkkYFr0Jg76ESXcsRSRpEk9Z2MJJwAp5dKqDHixb8PzHm0fuEHjts+GzmqpDnqzx2u+N9eF3b7uvUdsysOK92PFeRLwbkt2IVBTNSqLqbhRPAC1Qi8vtJuzW8Lo0Jz44HSPs1lRUFYi0wro3Yf1bsPEdMBP5gwVrYOLBjkFbvw/o+Y/whRD0GBHHU5vqodeIoioKYT1AldsDVpLOvo083fo2z3d9RMzu19sNu0KcOOkEjp9yImH3gPCzeAJa2ki1bCbW3UpYERRrTur19dT/7/8W1TbjnbVjMUgmpHf2c4Y0bndV6ubAOQ+k/x57ry3A6aefzgMPPMAvf/lLent7qaqq4owzzuC6665j2rRpO2ROEolk58OyBZGkSV/CoCdm0Jswiab6vbN+t051yJUnwfVxc09R2rADqSvxZuNhM97YCWU+vK5tF55l2Y4iQdKwsJMR7EQvItmHx+jCayfwigQuBVSPH3dJFW5vELdLyxqxLjVtxGawTWj90DFo170FnQWqfSmak8sxMR1uUDqpoPQXgGlbdBl9tKfjafvMGD7NTaU7jNsyIRlhXWQFT3V/yGs9n2KJ/ljj+kA9J085mcMnHI5bG2A4mha0d5LcuJHY5k3g8+CfMAmX5i6UtlaQkbyqed5Zvx8tFEKb0IAWDvfrzm5lVTDJ+Ecat7syM+fv0OGvuuoqrrrqqh06B4lEsnOSMCz6Eo5B2xVLEU1axFImli3wu/Wsd3awoWILwaq2KIvXdPLC8tZRjfmdE6Zz5PTqbbYPli0GFHdwXpaVxG1G8dtRfFYfPiuKmzh+xcQV8qJ7S9G9QdxuN25NHcr+hEQ3rF/kGLQbFkMyX88VXxk0HphOBtsf3MPnOcStpKN6kOym24iQsFIEVTcNqgfVSCLiMT5ItfFUx7ss7V2ds+3u5bszf8p89q3ZF1UZYISmQxDiG9YRa9mIZikE6hspD1UTiiu0dg8fMjIcw3pny8qcsINgEEV6Zz93SON2DIjH4/T25n+ADcNA13Usa2Stw7EmM6cdNTchBKZpFjxu4NTTHvj/jmRHzWUsxx1Px1uyayKEIJqyiKUTwqJJk5jh6M/qqoLPpVPmymjLmmCZGOnbU8KweH9TH++s6+WdDT10xUYuglCIkG6Tio/+GjctG8N2ijoYaW1c23ZkZF2KgpckATtOuR3DL2J4RALdTqFrCrrfj+6pRdE92Xw2ASQNk+RAp7MQqF0r0Te8hb5xEVr78oJSXVbFDIyGAzAbDsCu2A0yhqYFxPPL9AoBMTNOjxGly+ijz4wjrCQBoVJlA6pFXHOxKLKJpzveYl28P2ZXQWH/qv35QuMXmFoyFQAjNmDSiSTxzZtItG3GE7fwl9UTLq0hqPsxX3qF1j8/6HhZi8QWgt5IBDseh0QChA0+H6rXi1ZViRoIoPoDWD5v/4+eRMJ57aJ8Hu7N8Xh81NsoQojiUxUlRbFgwQKuv/767Pvf/OY3TJw4Ma9deXk5VVVV1NbWjuX0dgpaWlpoa2ujs3OIghQSieRzTWcSlnUpLOtSWNGjYIp8F2edT9CRhJQNw+t1C0IuuH5fiyLqMowZuhWnqm8ZNb1LqelZitfszmtjqD5aw7PZHJ5Da3gvkq6SbTZ+QiR4O/k2rydfp1f0OxpcuNjPvR+HeA6hXCsfVZ/u5hZqHn0U37r8KmcjkayuZu1//L9RbyfZuVm3bh1XXXUVH374IbNmzSpqG2ncbkeWLVvGnnvuycKFC9l3333z1jc3N6PrOk1NTWM/uRGwLItYLIbf798hhRbWrFmDaZrU1eVn7YLzK3XRokUccMABBAKBMZ7d+JjLWI47no63ZOdFCEHMsIgmnUpgkaRB3HCqhOmqgtel4XdpBSt/WbZgRVuUt9f18s76HtZ15XvjXJrC7LoQ+00Ms19jCVVBN395t4UHlzSPOLev7FvHWfvUIoRwwgksO1uty7BsbEBTFdyagq5puDTwuXS8LhW3puC2E3hEHJcZRTf6wEiAEXc8py6f89JHeDwuBGrvBvSNixzvbOsHBaW6rJJJmA0HYE44EKtqjxyprpEwbNPx0ia66U12kUj24UUj6A2jufzgDtJpp/hX2+u82PIKcavfa1biLuG4huM4puEYgq78EAeBINqxmcTmFvwRAz8eSqobCAbKUJIpYo89RvwfT0P6iaBaUYFSUgLJZE4/thAkTBOvojg/SVQVRVHQ6uoo+8mPUf0BlIHe2c8xn4d785IlSzj66KNHZdzKsIQxwOfzFSxW0N7uZOeO5ypdmqbtkPkpioLL5RqxyEMgEBg3hSB21FzGctzxdLwlOwdJMxM7m1E2sIglLQxL4HN7CAV1qt1awVKykaTJu+u6WLSmk3fWdtGXyDf0ygNu5jaVc0BTGXtNKM1L/DrnwMl81pHg7bVdQ85xzoQSjphZR0vcCQlwqRoeXcXtUQnqCn6Xjt+j49FVPLqK16XhEUl0M+rEukY7IBUFIwKWAW4/BP3gqswpcVsQM+lok68vXqpLC9WhAcWVKHCImnE6Ym20RVvoSXRi2jZhXzmVoQmovjJwB1ib6OCptU/z+qbXcyqJ1QfrmT9lPoc1HJabJJbZBdukt6eN5KaNhLpTVCVVSqqbKK2oR0El9s47dNx1F1Zbm7OBqhI++WRKzz4b1efL6cuOx+lta+UTw+CQhgZKqqtRQyG0QEDGzg7Drnxv9g26RopBGrcSiUQi2WbYtiCacozZ3rhBd9wglnKkujRFxe/RqAx6cOv53lkhBBu74yxe08niNV0s29RTUGt2ek2QuU3lzG0qZ0rl8NnvuqZy7Ukz+euSDTz1fnOOekLYq3PczBpO36cev1vH79bwu3U8LhWPrjmasbrmVC6zLUj2OsZsX4+T0JWKOt5ZTQd3AAJVBSW18oi0po3ZN4uU6tobdO/I/Q7Cti164u10RFroiLfTIww0l5+SkiZ8gSpwBxCuAEs7P+Sp5ffxQfsHOdvPLJ/J/Knz2ad6n9wksTSGZdAT7yLV0kJJl0F1TFASqic8aQKKpmN2dNB5zz3E3nwzu4172jQqLr8cz+TJOX0Jy8Lq7ESkUmiVldDcjHu33XCXbLswC8nnB2ncSiQSiWSrSJm2UxVsgO5sNGlhWDY+l4bfo1PuL1ze1rBsPtrUy6I1nSxe00lzT76h53Np7N1YygFN5ezXVEaZvzgPnhCCeDoM4qApFRwyrZJ1m7toXfcZM2bO5NAZDQQ8uuOJ1VXUwfNLxSCaNmhjnZCKOMts0/HOeoIQrOpP2hoK23TKoq9LG7QFpbrUtFTXwSNKdY00lpHopTPWQnu8k25s+hSBL1hNdagWl7cMXH5MYfL6ptd5auVTrOvrj39VUDio/iDmT5nP1NKpBYdIWSm6k93YXT2Eu5LU9ymE1DChSRNRPR6EZdH7j3/Q9ec/I9LJQIrfT9m55xI6/niUQU8DrWgUu7MDtbQUd9MkRDgMzc0y7ECyxUjjViKRSCSjIqNs0JeuCtYdN4glTWIZ76xboyLoxqMXfiTfHUvxztouFq/pZMm6buJGvipLbdjL3KYy5jaVs2dDSZ6G7VBYtiCWcozrpGXhdWkEPTp1JV5KAy72rfPyVnQFR8+qIRz2D9rYTHtneyHeA8keSEbBjDvxsq4AhGpAK6L6WFaq6y3YsGgYqa4DHIO2YT/whIraxzzMJKQixOJddBoR2jHpETYJX4iQv5qGYA2qy/H8xowYz696kqdXP01noj9h16N5OLrxaE6achLV/sJyaAkzQXeyGxFPUNpjUdZjE0y4CVTWoYWcuSdXraLjjjtIrew34P2HHEL5V7+KXlaW058wTcyODhQhcE2YgGvCBPSyMpJDqORIJMUijVuJRCKRjEjKtLOFFLqysbMmKcvGpzuP88uG8M4KIVjTEWXRmi4Wr+7k0819eSJWqgIz68Ic0FTO3MnlTCj1Fe25MyybaNpbbAsbv1unNKBT5g8Q9umEva5sLG5v7wCpKiGc0IJkn2PQxjrBiDoGLcLxznrD4KoZ2YsqBHR85sTNrn8LNn/k9DGYqt3T2rMHQ9X0kb2+Q41lxCEVQaSi9AqTDmw6sOjxuBGuMkoDtVR4gtlj2B5v5+nVT/PCuheIm/1JYqWeUuZNnsdxE48jOIQObsyI0Z3sRrWgLCoo61YJ9lp4AxVo1WUomoYdj9P14IP0Pf002E5RB726morLLsO39955fVq9vVg93ehl5bga6nHV1qK4tr5ksUQC0riVSCQSSQEy3tlIwqQ3nkp7Zy2iKRNVUQi4dcr87iErdyVNi/c39KTjZztpj+RrrAY9OvtNcryz+04sJeQt3rhJGFZWC1dVIODRqSnxUOZ3E/a5CHn1wt7ejEBQz0boizuGbSrqxL3qXsegLakvToEgFXNiZjMGbawjv40rAI1zHYO28UDwj046K4ttOuOlImAmMXU33Qp0uNx0KBq9CLzeUiq8JTlJX6t7VvP3VX/njU1v5CSJNQQbsklirgKeaCEEUSNKT7IHl+qiKuWlrNsi3Gugmhp6bY0TgiAE0TffpPPuu7Ey0o2aRsmpp1Jy1lmontwYZGEYmG1tKC4d96RJuCdMQNtFE6EkOw5p3EokEokEcDygfQmTSMJMe2dNYkmLhGnic+kE3DqlfndB7yxAeySZNWaXbughZdp5bRrL/RyQDjfYvTY8ZF+DsYUgnnKM67hh4dE0Ah6NypCHEp/LMWg9en7cbLYDC6Lt0L7eed/2CXhxqnb5Sh3DthhPcfd6J252/RvQ/L5jdA6mrAkaHWUDamePSqorBzPpGN6pqFOwwB0g6Q7R4S+h3TboViziwiLgKqXeHUZLKzMIIXi/7X2eXPUkH7Z/mNPlrIpZzJ8ynznVcwomiQkh6DP66E324tW81OrlVPTYBLuS0BdHKy3LhiCYbW10/P73xN9+O7u9Z/fdqbj8ctyNjXn92j09WH196JWVuOvr0Gtr8+JvJZJtgTRuJRKJ5HOKECJdEaw/3CCWcsrcgpI2Zl14XYUz9W0hWLE5kjVoV7XnV0nSVYXZDSWOusHkcmrDxWf9W7Zwwg1S6fAHt0bAozOhzEeJz03I6ygcDBm+sH4xPPENxwC1TRAWAdvmaEMhsEoDdYBxd+R3oXqP/D7MJLS87xi0696E3o35bQZJdREqrM89IkI48b3JdOKapoMrCOF6+lweOoVNu52gx4hiKiYl7hLKXf1qEaZt8trG13hq1VOs71uf7VZVVA6qc5LEppROKTi0LWx6U71EUhH8up8GXy0VMY1gRxzR0YXi9qDVN6BoGsI06f373+l++GFEWqNWDQYpu+ACgkcfjaLmGs12MonZ3obq8+GZMhlXwwS04K6pySoZH0jjViKRSD5HGJZNZIDubF/SkelKGBYel0bArVFa4h/SoxpLmby7rpvFae3ZgdJaGUr9LuZOKmduUxlzGkvxu0dRZMCy02oLJgKB361THnBTFnAT9jrhBkOFQuSQisIb/wftn+Qs1oAwwGBRhuV/7zdux0iqC3A8ykbMMWjNBOg+8AQgVIftDTuhB1aSzmQ3valeNFWjxFuCd8B4USPKc2uf45+r/0lXsl/P16N5OGbiMXxh8heGTBKzbIveVC/RVJSgO8jE0EQqDA+Bthh2ezt2MoVeWZUNL0h8+ikdd9yBsXZtto/AkUdSfuGFaINku4RtY3V1IRJxXFVVuBoa0Kuq8oxfiWRbI41biUQi2YXJyGEN9M5GkxaxlBN/6XdplPhcVIc8Q3pAm3v6tWc/3NiDWUB8dmpVIKs9O606WLAow1DzSxi2o3CQMtFUlaBHo67Em2PQFqpaVqAzSPRAtA0iLdCwL3z0WFHzoGZPWPS77S/VBWCl+sMNbNMJjfCWQqACPGEMl58OO057vJ3uZDeRVISAK0B1oBp9QIhDW6wtmySWsPoN8DJPGfMmz+PYiccOmSRm2iY9yR5iZoywK0xTSROVaphAZxxz82bM7m60klLclVXOlKNRuh94gL5nn83GLev19VRceim+2bPz+rfjcaz2dtRQCNfUqbgnTED1buEPAIlklEjjdhdmadtSAOZUzdkh41988cXcd999Q67fsGEDDQ0NYzgjieTzgWlllA3S3tmEI9MVN6xsidu6sGtIg9G0bD5u6cuGG2zoiue18egqezeWMrepnP0nlVERLL5elp0Oh4glTWJGfzxvVchDid+Jnw26h4mfzevQhngn9LU4hm2i2/GkNh4ATYfBmleH317V4aUb8pdvK6kuIRyvbEYnV9Gcog/BWifBzFsCnjAxYdIR76CtdyW9qV6SVpKwO0xDqCEnPnZ1z2qeXPkkbza/iS3645onhCYwf8p8Dq0/tGCSGDiFF7qT3STNJKWeUupL6qn0lOPvSWK2tJBqbUNxu3FlQhCEIPraa3Teey92d7fTia5TesYZlHzxi3kKB5liDJgGen0d7oYGtIoKqVkrGVOkcbuL0pPs4aKnLwLgpXNeosQz9lVeLr/8co477ricZUIIrrjiCpqamqRhK5FsQ+IZ3dm0QevEqlogwO/WCHuH9872xg2WrHO0Z99Z10U0ma89WxXypL2zZcxuKBlSx7YQpmUTTTkKB6Yt8LlVgj6dxnIfYZ+bsE8fVfgC4JS6jbZB32aItTvKB54QlEzoT+La96KRjduBSWHbQqoLnASwVNQxaI2MEkMAymqcBLa0QSsUhZ5kDx1962lPtNOb6kVVVMLuMFX+qv7uhOC9tvd4auVTLOtYljPUnpV7OkliVXOGPL9JK0l3ohtTmJR6SpkUnkSlrxJ/3Ca1ZiPJ1jbsZAK9ojLrYTVaWuj43e9ILF2a7ce7555UXHYZrvr6vDGsSAS7uwu1pAR3XRN6fT2qLJkr2QFI43YX5YV1L2RlX15Y9wJf3O2LYz6Hgw8+mIMPPjhn2auvvkosFuO8884b8/lIJLsSA72zPXGDvrjzWD9hOkoCfvfw3lkhBOs6Yyxe4xi0y1t680rdqgrMqA0zNy3XNanCPyoPXMp09GcjKcd4DLg1KkPuHLmu0RjIWYy4ExfbtxniHY5X1FsKZZPyjdHK3Rxjdf1bhftSNMe7O/GgrZPqAsfYzhi0lukYs54SKJvsGLPeEmcZYNgG3YkO2uPtdCY66TP68Ok+Kn2VOVJehmXw2iYnSWxD34bsclVRObjuYOZPnc/kksl5U8mQMBN0JZw43DJvGZW+Sqp8VXhtDWPjJuItLVjd3WjhElxpD6swDHr+9jd6/vpXRMqRcFPDYcovvpjA4YfnXQPCNDHb21EUcDU0ZIsxSCQ7Cmnc7iKs6VnD1Quvzr5vi7dl/77p7Zu4b1l/eMCvj/k1k8KTxnJ6Wf70pz+hKArnnnvuDhlfItmZiacs+pJOmduuaIpoygk3EMKJnQ17XVS7hvbOpkybDzc62rOL1nTS2pfMaxNwa+yb1Z4to8RXvPZsJr43lpbscqkqAa9OQ6kvbdDqBD1Fxs8WItGb9tS2OGEIwnZCB0K1hdv3boT3/wIblwzd5+n/53hrtxQzkVY3iDqGtTsAgZps/CzeMOj9IRtxM05nopP2mBNPmzATBD1BGoK5oQeRVITn1z2flyTm1bwcO+lYvjD5C1T6KoecVqbwgoZGmbeMan81lb5KvKoHs62NxKZNmINCEAASH31Ex513YmzoN6SDxx1H2XnnZSXABmL19GD19qJXlOOqr8dVUyOLMUh2ONK43UV4ZeMrrOwpkAQB9KZ66U31lzN8ZcMrTNpj7I1bwzB4+OGHOeSQQ2hqahrz8SWSnQ3LFo6yQdKgJ2bQGzeJGo66gUdX8bt1akKuYUvTdkZTvL3WiZ19b303CSNfe7ah1JctdbtHXXhUxqdl9+vPJtIxvQGPTk3YQ4nfTdjrGLRbHHMpBMS7ILLZ8dbGu5zyt/4KcPkKb7N5Gbz/EKx+hYJVwjI0HT56w1bY/eoGRtwxXN1BKK0Cf2k23AC13yOd0Y7tjHfSHm+nJ9mDjU3YHabClxuP2hprzSaJJa3+Hx9lnjK+MPkLHDvpWAKuwjJaAwsvuDU31b5qqvxVWW+w1dNDYtMazNZW7ERuCILV10fXH/5AZOHCbH+uxkYqLrsM78yZeWPZqRRWWxuKx427KV2MoYDxK5HsCKRxO065YdENLO9cXnR7W9iUecpyfuEXosxTxrNrn+X5dc8P204IgWVZaJrGzIqZfO+A7xU9l6F45pln6OjokCEJEskwJAyL3oSRTQaLpKW6LNuRxQp5dKqDQ3tnbSFY1RbNemc/a43ktdFUhT3rw+zfVM7cSeU0lA1hJA7BwPhZw7YJuDXCPp1JFX7CPhdhrwufeyvF+TNFFyKbnf8T3Y5XNFzvGLeDETasfd0xals+yF3XeCBMOhRe/WXu8n0vLHIuZjoZLApmKh1uEHIUEwaGGww6J5Zt0ZXsoiPeQWeik95kL27dTZmvDI+Wm4C3snslT616ijc3vYkYYJBPDE1k/tT5HFJ/SI5SQs70hE0kFaE32YvP5aMuUEeVv4oKXwUu1YWdTJJavwajpQWzq8sJQahPhyAIQfSll+j8wx+wex0niOJ2U/KlL1Eyf35+wpgQWN3diEgEvarSkfeqrpbFGCTjCmncjlOWdy7n7c1vj9xwlHQlu+hqHd4AHsy2ynL905/+hMvl4uyzz94m/UkkuwKWLdKxswa9cYOeTOysYTmP9T061SN4ZxOGxXvrHe3Zt9d00RnLL3Ub9urs31TOAU3l7N1YSsAzutt/0rSIJh2DVlGdJLXKkJvygIewVyfkdeHWt4F+qZnsDz2IdTpGpbcESifmeENz2n/6DHzwF+jpL1yAqsO042Cvs6E8Xbhgw6JscpnReCiuyt2Gn0cq4ryE4mjP+qscj7E37MxJL6wQkbJSdCY6aYu10Z3sJmbE8Lv91AZrcwxUW9i81/oeT616io86PsrpY3blbOZPnc9elXsN80PGpjfZS8RwpMImhCZQ7a+mzFuGruoI28bY3IrRvAmztRV0F666ehTdmUNq40Y677yTxLL+BDXfPvtQ/vWv46qpyR8vkXCKMfgDuKdOwd3QgBqQxRgk4w9p3I4B8Xic3t7evOWGYaDrOpaVn5U8vWw6QgzzOG0IDNvg/fb3C67bq3IvXGrxsVAZz+30sukF5zgaIpEITzzxBCeccAKlpaUj9ieEwDTNgscNIBqN5vy/I9lRcxnLccfT8d4VyCRaRVMmvXGDuGETN0xsGzy6hs+tUuLVUBUbSCFSMNhcbe1L8c76Ht5Z38OHzREMK/9+Mancy36NJezfWMK0qgGFGewkqXh+vO1AhBAkTIt4ynYMbU3B69ap9mqOVJdHx+/RUBULbItELJlXF2FUGHHHmI22Q7LHScjyhsHbAAqQtID++4aS6MH16ZO4lz+Bmuzpn7crQGr6fFK7n47wVzgL4+mkqFnnEkwbt927n4MnPuCoCpzqYEbMUTfQXKD7wVPnhBl4gk74gaqBDcSSQO4xjBkxelI9dCW66Ev1YQmLoCtIpasSxVKw4hYWFoZt8HrL6/xz/T/ZFNuU3V5TNA6sPpB5jfOYFHJCx1IFfqjYwqbP6CNuxAm4AtS4ayh3l1PiKkExFWKRGHY0itHaitnRgUgk0ErLUL0ekraFiMSJPfE34k8+CaaT7KeUlhK88ELcBx5AUlFIpvr3TdgCq7cXkgm08nL06hrs8jJSlgVD3KO3Bnm/KZ7Pw7GKx/OlCEdCEVtiQUmGZcGCBVx//fXZ97/5zW+YOHFiXrvy8nKqqqqorR0iGWIL+Pvav/Pz935ecN01+1zDSRNP2mZjjYaHHnqIK664grvuuoszzzxzxPYtLS20tbXR2dk5BrOTSMY/toA1fbCsS2VZl0JzPN+bpyuC6SWCWWWCPcoE5cVLz+40BJKbmdr6Txo7XkEX/YZfzFXByuoTWVdxJKY2dJhFbfc7ALSU7rfd5zqYmB1jUWoRbybfJCL6w0U8eJjrmctBnoMoVUu36xz8K1ZQ/djjuDs6ABwpsoMOov3EE7F9ssiCZPyxbt06rrrqKj788ENmzZpV1DbSuN2OLFu2jD333JOFCxey77775q1vbm5G1/Vtmlz1vVe+xzNrn6HEXcK1B16LQPDfb/03PakeTpx0IjccXkCovACWZRGLxfD7/WjbIJbq5JNP5rXXXmPTpk34/f4R269ZswbTNKmrK1yjPRqNsmjRIg444AACO/ix2I6ay1iOO56O985CysxU3bLojaeIpWzihhM769U1fC4Vj0sbtpJXNGny3sY+3l7Xw7sbeukroD1b7nexX2OY/SaWMLsuWFxp2gGYlk3McMrvWrbA59LweVTCXjdBj5MMtk3CDQYiBMS7IdbhqB4k+0B3O7JZeuGnS1rbx7g/+gv6utdQBsSkWuXTSO7xJcxJRxQOWxhENJZi0apODqiFgEs4SWkuv5MM5go6sbT6yNqspjDpSfTQlXS8tFEjik/3EXAF8mJj2+JtPLP+GV5qfomU3W+Ql3nKOGHCCRxVfxR+fej7omEb9KX6MG2ToCtImaeMMm8ZAVcgG7IghMDq7MJsa8Xq6gJFRSstRUlLrdk9PUT/+ADJ117rP6aTJhH82tdwTZuaN6awbKzubrAt9PJy9Joa1JKSMSnGIO83xfN5OFZLlizh6KOPHpVxK8MSxgCfz0c4HM5b3t7eDrBNjMcM1x50LRPDEzlv5nlU+JxHcgfWHcgDHz/ABXtcMOqxNE3b6vm1tbXx/PPP85WvfIVQkdm0iqLgcrkKHreBBAKBEduMFTtqLmM57ng63uMN2xZEUiaRhElPzKAn4UhixVIWLtWF36NRExreUBRCsLG7v9Ttsk09edqzANNrgtlSt1MqA6M2OBKGEzsbMyxURcPv8VBTolHu9xDy6oR9w8f4bjGZoguRYYouDETYsPY1WPoQbP4wd13jgTDny2h1e+MvZv9t01FaMCKARqC8mnBFjaOP6wmDVtzXYcyIOVJeiXZ6Uj0krAQhf4hGd2OOlBc4SWJPrnySt5rfykkSmxSexPwp8zm4/uAhk8TA0ajtTnZjKzal4VKqfI7yweCSulZfH0ZzM8bmzWixmKOC4HO818K2iTz/PN1//CN2+tG14vVSes45hE86qWAimNXXh9XdhV5WhquuDlddHcoOKMYg7zfFsysfK59vdAmvII3bXY4ybxlX7XtVzrIKX0XesrHkoYcewjRNqZIg2eVImhZ9Cceg7cpUBUtaGJaNz60RcOtUBDzDemcNy+ajTb0sSpe6be7Jj1z1uTT2bizlgKZy9msqo8w/OkMjoz8bSZrEjXSRB49GY9BNaaaggmcU5W5Hy+CiC0bc0actVHQBBiSJPQw9/XqrTpLY8bDXl/qTxEbCTDpGrZkAb5lTUGH9OqjeA0qKq9wohKA31UtHooOOeAc9yR4EglJPKZX+XK1ZW9i82/ouT618io87P85Zt1fVXsyfMp/ZlbOH/UGS0ahVUSn19hu1fleud9dOpTCbmx0VhM4utFAIV8OEbN+ptWvpuPNOkp98kt3Gf8ABlF9yCXplvkauMAynGIOm4m6ciHtCA1ppaVHHSCIZT0jjVrLdeeCBB6iurs4rxSuR7GwIIbJVwfoSBl0xg3i6kIKmqPg9GpVBz4iP8btjKd5Z61QGW7Kum7iRH25QG/ZmtWf3bCgZtSfVsoXjnU1ZJEwLv8fRn20o9VHid+S6/G5t+z5mHm3RhUQ3LHsClj3m/J3BHYA9ToNZZ0Bg6MIFORgxx6i102NWTINAFRgqsC5PtqsQpm3Snex2qojFnSpiHs1Dha8ip4oYOAoJr258ladWPcWmSG6S2KENh3LylJNHLJ4TNaJ0J7vRFT1bSazSV4lXz42FFbaN2d6O0dyM1dqKUDXHu5pWQbCTSbr/8hd6n3wS0sm7WmUlFZdcgv+AA/LGFUJg9/Y6xRgqK3DV1eOqrcn2J5HsbMgrV7LdeeONN3b0FCSSLSZl2vQN0p2NpSxSpo3PpeH36JT5Pf1KBAUQQrCmI8qiNV0sXt3Jp5v78koLqArMrAtzQFM5cyeXM6HUN2rD00iX5I0lLWxhO3MLuCgLBJxwA69r1DG5o2Zw0YVEt+NxHa7oQs8GR8rrk3/CgMIFBGtg9lkw42RwjxyrjxCOdFe80xnTWw7hWghUO2oHAMbI2f0JM+GEHsSdKmJxM07QFaQuUIc2KK63L9XHs2uf5ZnVz9CT6ldt8Ok+jpt4HPMmz8uGiBWesiBiROhJ9uDVvNT4aqj2Vxc0oCEdgrBpE8bmVuxoFL2yPwQBILZkCZ133eVIfwGoKuGTT6b07LNz2mWwk0nM9nZUjwf35CanGEMwmNdOItmZkMatRCKRDEAIQTRlZXVnu+MGsXQhBVVR8bs1ygNuPPrwRmLStHh/Q086fraT9ki+pFPQo7NfttRtKSHv6MuWZuJnoykTTVUJeDRqSzyUBdyEvC7C3q0odzsaLNNJEItsdry1iR7H4xqqK1x0AZxKYksfgjWDKolVToe9zoEpRxaOxR2MsCHZC7Eux4AO1vcbta7iFQD6Un1Zo7Yn0YOJSYm7hHJved4PjZZoC/9Y9Q9eXP9iTpJYhbeCk6acxNGNR+eFEQzEFjZ9qT76kn34XD4agg1U+aoo95UXlGwUqRRGSwtGc3N/CMKE/hAEs7OTzrvvJvbmm9lt3NOmUXH55XgmT87vTwisri5ELIqrsgrXhHQxBnUMrhWJZDsjjVuJRPK5J2Xa2UIKXbEUkaRFLGmSsmx8uobfPbJ3FqA9kswas0s39JAy80vdNpb7OSAdbrB7bXjEPgdji3S526RJ3LTw6hp+t0ZVKOCEG/hcBN3bMX52MDlFFzogFXP0aYcqumBbsO71IZLEDoI550Dd3kWFDWCbjhGd6HUS08qanJCHQNXQBvXgLoRNV8KpItaV6KIn1YOu6pR4S/LCAQBWdK3gqVVPsah5UU6SWFO4iflT53NQ3UHDJonZwqYn2UM0FSXoDjIhNIGaQA1lnrI8rzCkjdD2dlKbNmG1tSEUFVdtbbZymLAs+v71L7r+9CdEWg9U8fspO/dcQscfXzBhzI7HHW9tMIB76lSnGEMRKjYSyc6CNG4lEsnnDiEEsZSTDNYbT6W9sxbRlImqKGlj1j3iI3xbCFZsjmQN2lXt+ULquqowu6HEUTeYXE5tePRaopn42WjKMbj9bo2gT2eCz0eJz03Yp+N3j/HtPBmBaCZJrNNRQvCVOYZlIcPUTMKn/0xXEiuUJHY2lOd7GAtiGU7oQyrqJIlV7OYYtf7youTAwJHXaom2ZEMPIimnyldNoCbPOLWFzZLNS3hy1ZN80vlJzro5VXOYP3U+e1bsOWwYiWmb9CR7iBkxQu4QTSVNVPoqKfOW5aksZHczEsHYuBFjcysiFkUrr8gxQpOrVtFxxx2kVq7MLvMfcgjlX/0qellZXn/CsrA6OxGpFK66WtwNDWiVlWMi7yWRjCXSuJVIJJ8LDMsmknCSwboysbNJi4Rp4nPpBNw6pX73iJ7UWMrk3XVOqdt31nbRHTfy2pT6XcydVM7cpjLmNJZukeE5sIqZQBBw65QH3JRnwg18+oihEdscIZwY2khazive5RiyvvKhY2Lj3fDR4+kksf6YVNzBdJLYF4tPEjMTTuiBbTgSXqUTnbhcX1lxnl4cfVqAz7o+I6bFSNkpwp4wDaGGPCMzZaV4ecPL/H3V32mONmeXa4rGYQ2HcfKUk5kYzi/QMxDDMhzJMCNBiaeEutI6qnxVlHiG1owVqRTG5s1OCEJHJ2owiD5ABcGOx+l+8EF6n37aSZgD9Opqyi+9FP8++xTs045Gsbo6UcNh3JMm4WqoR/XsglU+JBKkcSuRSHZRMt7ZTLhBZzSV1p01ASVtzLrwFhGT2dzTrz374cYezALis1OrAlnt2WnVwWHlv4aab8KwiaZMYikTPR0/W1fqzerPhsYqfnYwtp0bTxvvdmJZg9WgD2EgZZPEngZrQLxxsAZmfwlmnFRckhg4Htp4l/O3r8yJ4w1UOeEPo6An2cNz656j1WzFl/RRVlpWMC62N9XLs2ue5Zk1z9Cb6k9A8+t+jpt0HPOa5lHuKx9+ylaK7mQ3hmVQ4imhMdRIpa+SsHvoOWdCEIxNmzDb2hGQE4IAEF20iM7f/x4rXWEMTaPk1FMpOeusgsaqME3Mjg4UYeOqr8c1YQJ6+fBzl0h2dqRxK5FIdhlMy3Z0Z5MmXdEUfelEsIRh4XFpBNwapSX+Eb2zpmXzcUtfNtxgQ1d+bXOPrrJ3Yylzm8rZf1IZFcHRe8HstAEeTZokDAuvy9HGrQ55KA24CXsdj/KYxc8OJlN0IRNPmym6UDpE0QWAlg/h/YdgzatsXZKYcMaLd4HmdozZUDpJrFijOI1hGTRHm1nRvYKfLfkZALe6bs0zbIdKEqv0VXLS5JM4euLR+PThBeUzhReEcHRwq0ocOa+Aa/jqUVYkirFpI8bmzYhIFK0iNwTBbGuj4/e/J/7229llnt13p+Lyy3E3NhbuM1uMoRxXfboYg2v0SYsSyc6GNG4lEslOS6Y4QV823CBJNOlUBUOA361R4nNRHfKMGFfYGzdYss7Rnn1nXRfRAqVuq0KetHe2jNkNJVsUFmBaNtG0QWvYNgG3RtinM7HcR4nfTdjrwuce43CDweQVXUiAr3Toogu2BWtfd4zarU0SE7YTvhDvdtQWSib0G7VFlMUdTFeii42RjWyObuatlrewcR7jv9P+DseXHg/Ap12f8tTKp1jcsjgnSWxyyWTmT3GSxAolew1kcOGFan81lb7KEY1hYRiOCkJLC2Z7RzoEoSGrWiAsi96//53uhx9GJJwCH2owSNkFFxA8+uiC6gb9xRg03JMmObG1RRaskEh2BaRxK5FIdipMy84WUuiOpehLOLqzcaNfOaAu7Brx8b0QgnWdMRavcQza5S29eaVuVQVm1IaZm5brmlTh36Lkm6RpEU0nrAEEPBqVITflAU9Wf3akwg9jQl7RBQH+YYouDJkk5oLdjnfCD4pNEsuUx01GwFsC5VMhVAP+yqJL4w4kZaVY3LKY69+4HlvYaIqWo0P74GcP8viax+lL9eV4aQH2qd6H+VPms0fFHsOebyEEUSNKT7IHl+qiyldFld/x1Hq04T35Qgisjg6MjRuHDEFIfvop7XfeibFmTXZZ4IgjKL/oooLGqhACu6cHq68PvbISd30dem1tQcUEiWRXRhq3Eolk3BPP6M6mDVon0cpCwSlNG/YW551NmTYfbnS0Zxet6aS1L5nXJuDW2DerPVtGiW/0j3EzHuVo0iJmmLhUlYDXqQ7mJITphLyuUcuAbRcKFl1wOUleBaSwAMeruuwxJ1GsUJLYnmc4RRuKYXB53Krd+5PEtlBztSPewcbIRv65+p85iWADiZpRoma/uoWCwpGNR3LylJNpDBV+zJ9BCEGf0Udvohev7qU2UOsUXvBW4CpCgiwTgmC2tmL3RdDKy1ED/WELVjRK95/+RN+//uWcH0Cvr6fi0kvxzZ5dsE+nGEMbqteLZ8pkXA0T0ILDh0JIJLsq0riVSCTjDssWRBImvQmDnrhBX9xRDUiYFh5Nw1ekdxagM5ri7bVO7Ox767tJGPnasw2lvmyp2z3qwluUtGXZjv5sJOXEz/rcTvxsbYmHUr+bsM9FYHuXux0NlgmxdsegLbboQs8GeP9hx1s7MEksVJtOEvsCDFO4IIfB5XHLpzoJar7SLd6lpJVkU2QTzZFm+lJ9nDz1ZFpiLbzZ/Oaw29UH6/nBAT+g0j+8aoMtbHpTvURSEfy6n4ZQA9X+asq95cNq22YQhpFVQbDaO1AGhyAIQez11+m85x6s7m5nI12n9IwzCJ9+Oqo7PyxD2LZTjCERx1VVhauhAb2qShZjkHyukcatRCIZF8RTFn3J/DK3QoDfpRHy6lS7RvbO2kKwqi2a9c5+1hrJa6OpCnvWh9m/qZy5k8ppKBs+LnIoDMvOJoSZtk3ArVPi05lc6SfsdQoqbPdyt6PFTDoGbWRzuuhC1AkDGKroAgyfJDbnyzD5iOKSxKA/SUzVCpfH3QKEEHQkOtjYt5HWeCtuzU19qB5VUfnmPt/EEhaLWxYX3HZu7Vz+fd9/H9Y4tWyLnpRTeCHkDjExNJEqf9WQhRcKzc/q7EyHILQhbOGECwwIQTA2b6bjd78j8d572WXePfek4rLLcNXXF+zXjsex2ttRQ0FcmWIMBUrsSiSfN6RxK5FIdggZ72xf0qAn5oQcRFOOuoFHV/G7dWpCLlxFeFEThsV76x3t2bfXdNEZyy91G/bq7N9UzgFN5ezdWErAs2W3v0y527hhgQIBt05V2E2Z30M4HW4wLuJnBzPaogvZJLEHnTK5A5l4kKN8MJoksWQvxLrTEmJ1W1QetxAJM8HGvo20xFqIGlEqfBU5lcVWdK1gTc+aIbe/dPalQxq2pm3SnewmbsYpcZcwuWQy1f5qSjwlQxZeGIwdjZLatAlz82bsvj7U8gr0ASEIwjDo+dvf6PnrXxEp57pVw2HKL7qIwBFHFPwxly3GYKTQ6+uchLGKivHzVEAi2cFI43YXYf2/XUlq/bqi2robJ9J4+23beUYO77zzDtdeey2vv/46QggOPvhg/vd//5e99957TMaXjC8ShkVvwiCSLqTgKBuYWLbA79YJeXSqgyN7ZwE29yZ4e00ni9Z08cHGbgwrX3u2qcLP3LRBu1tNaItiXDPxs5G0rJhbVwl4dCqCbifcwOsi6NXHR/zsYLak6IKZgE+fccIPejf2L88kie11tlPmthjyyuNOGnV53KF3TdAWb2NTZBNtsTa8upe6YF3W6EyYCf68/M88s+aZYftZ0rqEoxqPylmWslL0JHtImklKPaU0lDRQ5a8i7A4XbUA6IQit6RCEdpRAwCnEMCBcIPHRR3TceSfGhv5kvOCxx1J2/vlooVDBfq1oFLuzA7W0FHfTJFwNDQXDFSSSzzPSuN1FSK1fR+qzlSM3HEOWLFnCYYcdRmNjI9dddx22bXPbbbdx5JFHsmjRImbMmLGjpyjZzti2oC9dRKE3btATN4kZjpHoUh0jsTrkLco7a9mCTzb3sXi1Ez+7tjOW18atqew1wSl1u39TGdWhLfMKWrYgljKJJi2SVjp+1uMkhJX4XYS84yx+djBbUnRh2CSx02HPLxafJFawPG6Ns32R5XGHI2bE2BTZREushZgRo9Kfq07wYfuH3Pn+nbTGWgFQUbGxCbqCXDT9ItpXt/P31N+JmBGWti3NGrdJK0l3ohtTmJR6SpkUnkSlr5KQu7ChWYhsCMKmTU4IgmXnhSBYfX10/fGPRJ5/PrvM1dhIxWWX4Z05s3C/punIeyngmjDBKcZQoMSuRCKRxq1kO/KjH/0In8/HG2+8QUWF86V4/vnnM336dH7wgx/w17/+dQfPULI9SGR1Z40B3lkL07bxu3SCHp3KgKeoCl6RpMm767pYlC5125cw89pUBNzZymB7TSjZ4hhXw0qXu01a2MLG79EpDeiU+QOEfY5c17iLnx3MlhRd6F4PHzzseGu3NkksUx7XSjkhD1tQHnc4bGHTGmtlY2QjHfEO/C4/9cH67I+MuBnngY8f4Lm1z2W32b18d86feT7vbH6HeZPn4TW9rN+4nsP2OYznNz/PSVNOIm7G6U50o6BQ6i2lyufIeRWqXjbs/LIhCK3YkT7UsvLcEAQhiL70Ep1/+AN2r1P5THG7KTnrLEpOOWXIAgtWby9WTzd6eblTZWyQsSyRSHKRxq1ku/HKK68wb968rGELUFdXx5FHHslTTz1FJBIhGNzyJBLJ+MC2BZGUozvbE0tlY2cTKRtdVfC7NapDnqK8s0IINnb3l7pdtqknT3sWYHpNMGvQTqkMbLEHNRM/GzMsVAUCnlx1g5BXL2reO5xs0YUWiHU6Rqa/dOiiC5BOEnsQ1rzGVieJbaPyuMMRM2Ks71vP5thmklaSKn8Vbq3/cfz7be9z5/t30h5vB8CjefjK7l/hhKYTUBWVaWXTAEiajvxb2B3mlKmn0J3sRld0yr3l2cIL3qEk0IZAmCZGS1oFoaMdxedHr2/ICUEwNm50EsY+7C9y4dt7b8ovvRRXTU3Bfu1UyglpcOlOMYYJE9DC2+6YSiS7KtK4lWw3kskkvgKZu36/n1QqxYcffshBBx20A2Ym2VqSZn5VsGjS8c760iVkKwNaUd5Zw7L5aFMvi9Klbpt7EnltfC6NvRtLOaCpnP2ayijzb1mMoS0cua5o0iSelhVzCip4KE2HG4Q8O7Dc7WjJFl1odozLTNEF9xBFF2wL1r6WriQ2OEns4HSS2Jwik8S2XXnc4bBsi9ZYK5uim2iPtxN0B6nz1mV/0MSMGH/86I+8sP6F7DazKmZx2V6XURMobDQCtMZa8Speanw12cILA43lYhBCYHV19asgWDZadU1ODKydStHz2GP0PPYYmM6TB620lPJLLsF/8MGFE8aEwOruRkQi6FWVuOrr0WtqZDEGiaRIpHE7Tmn57/8m+fHyotsbGzaO3GhA27UXXDhsG4HAMi26dQ3vzJnU/uAHRfefYcaMGbz55ptYloWWvimnUineeustADZuLH7Okh2LSAvJt/Ul2RjppSdhEEs5Ul0uVcXv1qgKeopWCeiOpXhnrVMZbMm6bkd5YBC1YW9We3bPhpIt9qBatkgXfTBJWbYTP+vVmeD3UeJzCir4x3P87GCEcLyz0VbHW5s1LocpurAtk8S2cXnc4YikImyMbKQl2kLKTlHjr8kpkvBu67v87v3f0ZnoBMCreTlvj/M4duKxBdUMTNvMenarfFU0lDdQ4avApY7+Eb8di/WrIPT2OiEIg55Exd9/n47f/Q6zOV1IQlEInXgiZV/5Sk7Rhpx+k0nMtlZUvx/3lCm4JzQM2VYikRRGGrfjlOTHy4ktLqzLuLWIRGJUfSts2Zf+lVdeyb/927/xta99je9+97vYts1Pf/pTmtM3+ng8vkX9SsYGIQTRlEVP3KClzdGK/XRzH5ZmZAsUVBQZOyuEYE1HlEVruli8upNPN/cxONpAVWBmXZgDmsqZO7mcCaW+LTY4U6ZNNGUSTZoIBAG3TnnATVnAUTcIefXxHz87mKGKLoTrh1YeiHfBssedRLFkb/9yTwhmnja6JLGc8rhhKJviyHltYXnc4bBsi82xzWyKbKI90U6JuySnwEIkFeH+j+7npQ0vZZfNrpzNZXtdRpW/qmCfkVSE7kQ3QVeQOHGmlE6hLDD6hCxhmpjpQgxmezoEYZAKgtXTQ+d99xF9+eXsMndTExWXX45nt90K9zuwGENNDa76BvSqSlmMQSLZAqRxOwS33347v/vd7/jggw+49tprWbBgwZiO75m5+6jaxz/4AJHIf5xbCMXrHbKEY4aM51bTtVHPJcMVV1zB+vXrufHGG7nvvvsA2H///fnud7/Lz372MxlvO06JpUy6YwZd0RTdcYPumMGnGzvo61BoCCfZd0pZURW8kqbF+xt60vGznbRH8rVngx6d/bKlbksJebcsSUYIQcKwHYWDlImmqgQ9GnUl3hyDdksqj+1wtqTowrBJYmfDjHmjSBIbVB63croTU7sV5XGHozfV6xRjiLVi2AZ1gbocHdp3Nr/DXe/fRVfSifH16T4u2OMCjm48uuCPIcu2aIu3oaAwITSBMspopx1NGd2Pm0yogLFxE2ZrK8I080IQhG0Tef55uh54ADvi/CBUvF5KzzmH8EknDRlWYMdiWB0dqKEQrmnTnGIM3q3T/5VIPs9I43YI6urqWLBgAX/60592yPijDQNYOX9+0VJgrgkNTLr/D8O2sSyLvr4+QqFQNqRgS/jZz37Gd77zHZYtW0ZJSQmzZ8/mB+l9mz59+hb3K9m2xFMW3fGUY9DGDEfT1bB48ZM2XljeSk/cADT4dBVl/vWcNLuOs/adkGcstkeSWWN26YYeUmZ+qdvGcj8HpMMNdq8Nb7E+rC1EtjpY3DDxuXSnoELIQ4nfqQ4WdO9E8bODGW3RBSFgc6aS2KAksaoZsNeXYfLhxSeJZcrjWhb4y/vL43pLtonywWBM26Ql2sKm6CY6452UekupdOd6a+9ddi+vbnw1u2xO1Rwu3etSKn2Fy+ZmvLWl3lLqg/XUBeqIRfIl5EbCjsedEISWFicEobQMfZAObWrdOjruvJPk8v5wMt/cuVRccgl6VWFvsrAszI4OFMt0ijFMmIBWXr7zhMhIJOMUadwOwemnnw7AP/7xjx07kV2AsrIyDjvssOz75557jgkTJrD77lvmEZZsGxKGE3LQFU3RFXMKKyRNi4DHKaZw58ureHttV952XTGDB95axyctfVzzhd1Z3R7LGrSr2qN57XVVYXaDoz07d3I5teEt90iZlk00W+5W4HOrhHw6E8t9lPgz8bM78W1tS4ou2JZTFvf9h6D1o9x1o00Sg+1SHnckepI9bOjbQGusFRubumCut3Zxy2Lu+uAuepKO/q5f93PhrAs5csKRQ3prM7G1E0ITmBCaQImnZNTzEqaJ2dqKsakZs6MdxetzVBAG/OC3k0l6HnmEnr/9zfkhAGgVFVR87Wv4DzhgyL6tSASrqxOttBR3XR2u+noUWYxBItkmjOtvgUgkwo033shbb73FokWL6Orq4p577uHiiy/Oa5tMJvmv//ov7r//frq6uthrr7346U9/yvHHHz/2E5cMyUMPPcTixYu56aabUGUs2ZiTNC16YgbdsRSdaYM2YVr4XTolPhc+t2N4Prh4XUHDdiBvr+3ivLveIlHAO1vqdzF3Ujlzm8qY01i6VQZn0rSIJS0iKSfT3FE3cFM2QK7Lo+9k8bODsS0nSayvxYmrjXeD2zd80QUzAZ/80wk/6N3UvzybJHaOIwVWDNuxPO5wGLZBS8Tx1mY8rEF3vxHdm+rl3g/v5fVNr2eX7VO9D5fOvpRyX3nBPgt5a4cqrzscZldXfwiCYaBVVqF6cs9FbMkSOu+6C7PVKRaBqhI+6SRKzzkHtYBSDDiVy8z2dhRNxd04EfeEBrTS0lHPTyKRDM24Nm7b29v58Y9/zMSJE5kzZw4vvvjikG0vvvhiHnnkEa6++mp222037r33Xk466SQWLlyY4zXcVXE3TtwubbeGl19+mR//+MeccMIJVFRU8Oabb3LPPfcwb948/v3f/31M5iBxkqt64gY98RQd0RR9CZNEyqm6FfLqVLtyy92als3f328uqu+Bhu3UqkBWe3ZadbCoRLNCZMrdxlIW0ZTpVDLzOtXBHINWJ+R1jc9yt6PFTDnG7MCiC97w8EUXhksS2+M0mDWaJDHL8RRvh/K4I9GV6GJjZCOt0VYUVaEuWIc2IIb4zU1vcveHd9ObcvYx4Apw0ayLOLzh8O3qrbXjcYz/z96Zx8dVl/v/PfueTPZM9rQFWrqxWbaCgoiIIig7FwFB2bziAvITfenFe73KBdy4CojsyKICiqiI4kWkbAUKhba0tDRt9kwmmcw+c9bfH99kkmlm0kmTtlnOm1deJd858z3fOWdy5pnnPM/n09OD3NuLFomIEoTq6pxtlMFBBu+7j+Qrr2TH7IsWUXH55TgWLCg4txqJoEajWCvGmDFYZ/THsIHBrGRG/1UFAgF6enqora3ljTfe4EMf+lDe7dauXctjjz3GLbfcwnXXXQfARRddxLJly7j++ut5+eXRb/2rV6/mpZdeyjvPt7/9bb7//e9P/wvZBzTecfv+XsI46uvrsVgs3HLLLcRiMVpbW/n+97/P17/+dazGBX2vIqsjAa3MQDxDPCNku5zW4YDW6yhY1/deT5ShlFz0vs44pI4zDqmnwlsgw1gEqib0Z+OSQlpWhVauw0pNiYNSt50Sp3A2mzO1iFJytJ62WNOFoXZ453ew9a+i/naEbJPYJ8CWP1s4jhx7XP+02+NOhKzKdCe66Y33MiQNUeYsw2MblbqKZCLct+E+Xu15NTt2RM0RXLb8Msqc+dUNcrK1njpqvbWTlvfSVVWoIHQPqyA4neNKEHRVJfa3vxF+9FH0pKjdNbndlJ1/Pr6TTy7cMCZJqP39mBwO7C3DZgy+4i19DQwMJseMjjAcDge1tQXEyMfw+OOPY7FYuPzyy7NjTqeTyy67jG9961t0dHTQ2NgIwJo1awpNYzDNLFy4kGeffXZ/L2PeoKga0bQiSg4SErG0TEJScVgteB3FyXYlJYVXtg9Mar9LAiV7FNjKqpZtCFM0DbfdQqnLSmule1jdwIbLPsvLDXYlHRmup+0tznRB16HvXVj/G9j5MrlNYouFk1jL6uKbxJSMCKb3kj3u7hhMD2aVECxmC3Xeuqwera7rvNLzCvdtuI+YFAPAZ/NxybJLOKbumImztfrUsrXZEoT+ILokY6kaX4KQ2b6dgbvuQtq2LTvmPuYYyi+5BGt5/hKJXDOGKmz1w2YMRkmWgcFeZUYHt8Xy1ltvceCBB1Kyiy3hquFi/rfffjsb3BaLoigoioKqqiiKQjqdxmazFVQOCAaD9Pf354xtG74IplIpotHouOfIsozVakVVxwvY729G1rS/1qbrOoqi5D1uAIlEIuff/cn+WsvI/voGhugeSjGUlEhI6rCxggmP3UqN04LZpIKmohRQipNVjbc7Y7z4wSCvt0eQ1Dx+txPgNClIqeJee0ZRScsaKUkBM6LW12am1G3HYxfZWptFByTktIRcnLrdzEbXRVCbHBABbToqbvk7/cL0QAVSu8ikaSrWjpexb3oca+i9nIfkhqOQDj4LtXq5CEgzGjBeZi33SSmxXx1wlYCvSWRp7R5QgFhs+l5vvt1rMsFkkFAqRFyKU+ooxWlyIidFBnooM8SD7z/Im6E3s885ouoILjrwIkrtpUjJ8a8vpaSIZqL47D5hm2urxJQxEc3kv2aMMPbvVZck5GA/ykBIqCCUlGIpHQ6OJWHTq6fTJH73OOm//lWcS8BcVYX385dgP+QQ0mO2HYuWkVDDg5hcLmwN9eg1NShOJwxLhBkUZiZd32c68+FY7Ykm/pwIbnt6eggEAuPGR8a6u7vHPbY7vv/97/O9730v+/t///d/F2xmA7j99ttzth/Lu+++SyQSGTdeXl5OVVUVsb38wTIVksnJy+ZMB7Is09/fz+Yxsjr5WLt27T5a0e7ZX2vZ9M5b48Yywz+F0HT4IGrizZCJ9QMmkuquWbGRAHeibJ6Ozwa+gc10Ttx7VpDo8E/fnj19lmJCRJSD4x6xaBkaB15kYfCvuKVgdlw1WekoP5YPqk8h7qyHfqB/T49aZPinOOnAvUE/IhGg6zrr5fX8OfVnUrr4AHOb3Hza9WmWycuIbowSZeJgdWD4v8mS9+91cED8DOPZuJHqp/6Ibfj6rZvNhI8/noGPnohut0NHx+53JMsQjcL27ZNe43xnJl3fZzpz+Vi1t7dP+jlTCm4vvfRSrrjiCo488si8j69du5Y777yTe++9dyq72S2pVAqHY/xtUeewCPaeRP033njjpIwbrr76as4+++ycsW3btnHGGWewfPlyDjvssHHP6enpwWq14puBtVeqqpJMJnG73VPSud1TBgYGqK6uZuXKlXkfTyQSrF27llWrVuHZz9aU+2ItI25hsZRCJCURlxSSiQRq3za8DYvxeb27bbDSdZ22gRQvfhBmzfYwg8nculqn1cyHmks5bkEZW0NJfvdW725WZeJTywM0L8u9pa5qOmlZJSWpSJqGwyrseb0OoWzgcVhx2cxzp352V1RJ3PpPDohmLTkFdq9o2CpwO9qUCmPf8kds7z+NeUzmUbf7kA78FNLi0yl3lZP/5vcu6LpoTMvERA2u0y+seV1lwqZ3HyGpEsFkkP5UP0k5SZmzDPuY/YczYe7fcj9vR97Ojh1ZfSQXHnAhJfaSPDMOZ2ulKD7bcLbWXYnVNLmPsfjQEK+/9RbLXC5cqoalrAyzPbc+Vw2FSDzwANKb67Jj1gMPxHvZpVRNcBdQS6bQIkOYvF6sVdXYqqsMea89YCZd32c68+FYrVu3bvcb7cKUgtv777+fk046qWBw29bWxgMPPLDXg1uXy0UmMz5PlR527HIVkGSZTqqrq6nepaN2BJfLNa5kAoQaBLBfgsdisVgs+2V9JpMJm82W97iNxePx7HabfcV0r0XXdWIZhUhSZjAhEU2rxNIqJix4HQ6qbFZ6+8Bf4sPuKnxR6x5K8cL7/bzwfj9dQ7lf9CxmE4c1+fnIgdWsai3PWtJ+aJFG22BmQjmwI5rLOOfIVqwWM7KqkcgoJDIqmq7htjsp91ooczsocVkpcdpmn93tZMlnuuApA0dN4XrWgk1iAVh+NqaDPoHD5qKoimZNERJiWcWFvWePOxG6rhNKhehKdxFUgjidThr8DTm1tf/q/BcPbnqQhCxupZbaS7ls+WWsCuTXhVU1lYH0ALpFp7GykUZfY1G1tR1XXY3UMSbro2qokkSzLKNYLCTHXNustbVUf+MbRP/8Z4Z++9us46PZ66XswgvxnnhiwVpZXVVFE5quYW1sxNbQULAO16B4ZtL1faYzl4/VnsRwe/WK193dvU8Cy0AgQFdX17jxnh4hZ1RXV7fX12Awvei6PnczexMwkqEdSgq3sEhKuIVpGnidVmpLnNiGXcGkCRQNBhMSL24VAe3W4Pgav6V1JXz4wCqOXVhJiWt8V7nVYubbpy7hiXWd/PndHsJjsrxlbhufXB7gk8sDRFIySVnFbAKPw0p1qZ1ytyOrP2ubjXa3k2FX04XkIFgsIktayN42p0lsF+WWPW0SS4VBToPLP2yPWyuMH/Zx41JKSdEV66Iv2UdCTlDhqsBpHdXJHUgN8Kt3fsXb/W9nx1bXr+bipRfjs+e/g5WQE4TTYfwOPwFPgIA3ULQSgtTRnte50QFowz8j6JJEz//7f0g7dmTHPMcfT/nFF4/W4eZBjcVQh8JYy8qwBQLYAgEjW2tgsJ+ZdHD71FNP8dRTT2V/v+uuu3juuefGbTc0NMRzzz1XUL5rOjnkkEN4/vnniUajOd9cXnvttezj+5NCDWWKomAymYyGsgn2P18aylKSSjyjEEnJxNIKCUlB13VcNitldsuwza2MLsnZ1iE5ncr5N5FReHVnhBc/GGRjTxxtl76w1goXxy0s49jWMiq9Ix++EtKuzUxj+MyyCk47uJwNHQN0te+gqq6R5upSVE0nGo3hsluodQmZLq/TgsduwWRSQVVJJWDyBUGzBF2DVAQSoWFJrRjYHGCvAKtNlNQq+ZrEXhpuEsutJd+zJrEMZCKgasNNYg3CJtfuBdW0TxuXdF1nMD1IMBUknA7jsDqEdW5GGOzous6/ev7Fo9seJaWKd4Xf7ufigy7msMrDQIaMnHv3TdM1hjJDaJpGlbuKGlsNPnyk4ilSRb6zNHW8wUghskYMgLm2Fu+ln8e+bJnYU56GMV1WUIeGwGzGWlODXluL6vWKO4bpudAJuf+YSdf3mc58OFb7pKFs06ZN/O53vwPErePXXnuNN998M2cbk8mEx+Ph+OOP58c//vGkFzVZzjrrLG699VbuuuuurM5tJpPhvvvu48gjj5y0UsJUufHGG3Oaywo1lJWUlFBWVkY4HJ6xuq/7o6FMVVVSqRThcJj33ntvwm1nUhH93lhLbPinEJIKz76+kTdDJjaGTah6bra70qFzeKXOYZUatW4xW7q9nc5JrqMSqKwAMu3Iwz006eGfPewlm2OILx/kaWyyqBmaBvM1idnGNInVTbFJbKQ1b2Y0LWXIZBvBhrQh/pD8A9uUUQmtQ22HcqrzVFwdLjqKaMrqGP5vsjQnEsWVdAyjWSyET/gIgx/5CLrNVlzDGEAyUfy2BkUzk67vM525fKz2pKHMpOv65HR/xmA2m/n1r3/NBRdcsKdT7Jaf//znDA0N0d3dzR133MFnP/tZDj30UAC+/OUvUzp8u+icc87h97//PV/72tdYtGgRDzzwAGvXruUf//gHxx9//F5b30Rs3LiRZcuW8fzzz+dtKEulUoRCIdxuN4FAAJtt7zoCTYb91VCm6zp9fX0MDQ1RXl5esEB+JhXRT2YtkqIRyyhEkzLRtEwyoyKpQuPVZbcUZSOrajrvdsd4YWs/r+2MkNlF6cDvsnLsgjKOW1jGokr3HpV3SKpKIqOSklUcFjN2JCLtmzlo2aFUlpVgt87xcoNdkdOijjYRErJeqgROn8iSFji+2SaxLX/ELI1+RdHsPuSDTkM66HR0V35TgnHoOkhxSMeEfJjDD95KcFWI3/cDuq4zkB4gmBTZWrfNnVNaoOs6/+z+J4998BhpVWQyyxxlfP6gz7OyIn+jqI5OOB1G0zQq3ZXUuGsKlivsdn2SRN9556N2FvlVzuHA/9/fxzpBGZsmyajhMCaHHVtlJdbqaszuAuUnBnvMTLq+z3Tmw7Fat24dJ5xwAhs2bGDp0qVFPWdK6UJNK/6Wz55y6623snPnzuzvTz75JE8++SQAF154YTa4ffDBB/nOd77DQw89RDgcZsWKFfzpT3/ab4HtWAo1lI2oJAwODtLW1obNZsNkMs2IWlNd15FlObumfbVPVVVRVRWv10ttbe1u9z2TiugLrSWjqESSsjBXSKrE0yppRcdtc1JeZi2q0UrXdbb0xXjh/X7WbA2NcRATx8dtt3DMwgo+fGA1y+tL98iaVlFF4B3PKFhMNnweF3VuGxVeBxYlzUvtm6mr8s+Y471PyGe6UFomgtpCDO0cbhJ7Nm+TmHlSTWK72OOW7jt73IlIyAk6Y530yX1kzBlqK2pzlBCCySC/fOeXbBzYmB07ofEEPnfw53AXqEVOykkG04P4vX4C3snV1u6KGo8jdXdjUpSin2OrqsLf0pr3MV3ThBlDMiHMGBrqsVZXG2YMe5mZdH2f6czlY7XfGsra2tp45plnskFoc3Mzn/jEJ2htzX+hmAw7xhT3T4TT6eSWW27hlltumfI+9xUmk4nq6mo8Hg/RaDRbmzYTUBSF/v5+qqur91lGeUQhoaysjLKyshkR5O8pkjJifysxkJCIpRXSkorLPmx/aytsfzuW9sHksNJBkL5obt2fzWLi4FKVkw9dyFEHBPYom6pqOomMQiytoKHjc1pp8Lso99opc9vxOMQlIhrdTf3nXELTRCAb74NEv/h/i13IaY1pjspB16H3XXgnX5PYElh5LrQcV7y17X60x51wWZpKX7KPnkQPoVQIn91HubM8+17WdI2/7/w7j7z3CBlVvF8rnBVcvuJyVlbnz9ZqukYoFULTNOq99TR4G/A7/Xu8RmVgAKltB3J/sKAd7mTQUimUUAiz14N94ULsDQ2Y90GjtIGBwZ4z5eD22muv5Wc/+9m4LK7ZbOarX/0qt95661R3MacxmUx4vV683gkyQfuBaDTK5s2bWbly5Zz9NjjdKJpOKJ4hkpIZiGeIZxSSkorTOhzQeosLaIOxNC9uDfHC+/20hXKbBMwmWNHg58MHVnF4nYvwtnU0tPgnFdjquk5SUollFCRFw+OwUFVip9LrwO+2U+K0zuovFnuMqkAyJKS8ksPlB3YPlNQVzpJqKux4UQS1wV3qw5uPhRXnQu3y4q1t97M97kTEpBidsU6CySCSJlHjrsE25rj0Jnr55fpf8t7g6HE4qekkLlhywe6ztXY/taW11HnqcuacDLquo/T0ILV3oIbDWGtqp3TMdFVFHRxElyRsgQD2+joslZXz82/DwGCWMaXg9kc/+hE/+clPOOuss7j22mtZsmQJAO+99x4/+clP+MlPfkJ9fT1f+9rXpmWxs5VCagkzmZnegTlT1qdqOsFB0Sy4cWcfGWykZA27RRgXZO1vVRV5AuGJaFrhlbYhXvxgkPf6xr+mA6rcHLewjGNayyhziw//XdUSdkdGEXW0aVnFYTfjsVuoK7VT4rTgdViwmFWQU8TyKIzNlOO9V1AkUU871nTB4QNHQEhpScIOOAc5he2Dv+F470nM8Z7ssG62IS84CengM9FKm8RgurBk2+h8aRFM7yd73IlQdZVQMkR/qp+IFMFr81Jhq0BLa2TIoOkaz3U+x++2/w5JE8ep0lnJpQddytLypSBBZhe1AR2dofQQqqZS5aqi2l5NCSWkEsUrIeTMp2kovb1IPT2QkUQQio42iTthmq4TH16nmkyhR4Yw+XxYmxrRq6tRbLb9eh7mE3P6ejPNzIdjtSdqCVNqKFu8eDGLFy/mD3/4Q97HzzjjDDZv3rxbC9W5xq5qCbfddhtNTU37cUUGM5GMCu8OCgvczRET2i5KBzUuncMrNQ6v1KkscDfcYN/ikCO09v+d1tA/sKujHyaSxUNb5Udpq/oYGdvuzQXmCiE1xJPJJ2lXR7uZj7Qfycmuk3GYJqNTsHdouel/sIeL0/PIVFez89qv7+UVGRgYTJb29nauueaafddQtmPHDr7yla8UfPzjH/84f/3rX6eyi1nJiHXviFpCIfvdmcxM78Dc1+vTdJ1YWjRbRZISCUnYywJ0hKL0d3dQ39TCssYKrBM0c8mqxvquGC9+EOb19ggZJbecp8JjY/Ww0kFLuWvCW6ByOkXf9g3ULFiGzTlaA6hqouwgIclgAo/dRonTSqnLRonThsM2+drcmf5+KBpdh0xU3PpPDUIqChYzOErAVvgbhDnSjn3TE9i2P4dJG83Eat4AmYPPRF7wMQI2F4Gi17D/7XEnQtEVQskQwWSQmBTDZ/fllBZousazHc/yRNsTyMPHo8pZxWWLL2NJ2ZK8c47N1la6Kqn2VBe02S0WLZlC7upECQYxuT1YfKPlXZlXXyVWZGAL4LJY+JDViqW0FGt1NdbKSkwzVKJxrjNnrjf7gPlwrPa5/W51dTXr168v+Pj69eupqqqayi7mBIXUEmYDM70Dc2+uT9V0oilZ1NAmMsTS4ra+1WzD6XDw0rY+nnm3Z1i5wALvd1Dm7uXU5QHOOqxh2HhBBMYbu6O88H4/L28LEcvkdnD7HFaOXVTJhw+s4uC6EsyTrOmzOV1YnW6SGZVYRkZWNbxOJ/WlPiq8DvxuG17H9NTRzvT3Q0E0VZQdxPqG5byGwO6CyhqwFsgwjjSJrX8M2l/OfWy4Sczcchwus4Wi2otmiD3u7hhKD9Ed7yYoBcEGdSV1WMe4pXXFurhz/Z1sHdoKgAkTp7SewrkHnZvjRjaWkdraUm8pAW9gSrW1IyjhMFJPN6ZgP+7yCszDH+y6rhN58klijz6a3dbi92Me7mvQdJ2kLOO22cTfmq6jqyrWykrKWluxNzRgmY3v8TnIrL3e7Afm8rHa52oJZ599Nj/72c9oaWnhy1/+cvZbQyKR4Oc//zl33303X/3qV6eyCwODfcquAW08rZDIKFjMZrwOK/V+N7qu899/eY83do7PCoWTMg+/1s6W3hjnr2pizbYQL27tJxTPrdl0WM0c2VrBhw+s4tAm/5RsagfiGaSUkAMr99hFQOuyUeKy7ZEk2JxCkYTiQbxPBLfZwLKhsL3tSJPY+t9Af54msZXnQs0kmsRUaVj5ILXf7XEnQlZlehI99MR7GJKGKHOW4bGNZoJUTeVP2//E4+8/ns3W1npquXLllSwuX5x3Tk3XGEgNoGoqdZ46GnwNlDmL1PYtgK7rKH19SDt3og6GhdasQ3xB0WWZ0C9/SeKf/wTA5HZT/fWv4xrjUhmXMrzX0cHRDY24kkm0eBxrZSX2ugDW2tppUVgwMDDYv0wpuP2v//ov3n77bb71rW/x3e9+l7ph8evu7m4UReGEE07gP//zP6dloQYGewtV04mlx2RoU6MBrcdhpc7vzgkSH3u9I29gO5Y3dobHbWMxmzi0USgdHNlagcu+Zx+ikqIRS8vEYqLI3u2w0Frhw++243fbphQozxmkJCSCw8oHg6Ckwe2HsmYwFTg+cgq2PAPv/g5io01iWGxwwCmw4myhXlAsckqUPqiqsMUtWwDeKlGGMMM67gfTg3THuulL9mE2mwl4AljGSI51RDu4c/2dfBD5ABDZ2lMXnMo5B52Dw5I/8z2SrS2xlxAoCVDvrZ9ytlZXVeTOTqSODrREEmtdXTYYVWMxgjffTGbY1dBaXU31DTdgL+BQqQT7wOPBsaAVW30DFu/cvKVrYDAfmVJw63a7+cc//sFTTz2Vo3N7yimncOqpp3LaaacZsikYagl7g6muT9d1EhmV6HBQm5AUUpKKCRNuu5VKhwWLWQMk1IzEiNCBoun86Z3uSe1rSY2H4xaWc3SrnxLn8J+cmkaaRAOoomokZZWkpAh7a7uVajf0Ak0+C36XDnqGVCKzB73mu2emvx+ySHERzCZDwvhA14X6gKtcKBGkx4v6m1Jh7Jv/gP39P2Ea5yT2aaSDPj3qJJYqQu9XSop9m0wikPVVDCsfuIVDrzxzOu5lTaY/2U9/qp+4HKfUXorT5ERJKSgoKJrCX9r/wh92/AFVF38FAXeALyz+AotKF0FaWO2ORUcnkomgqIqorbVXU2oq3WMlhOy8sozc3Y3cKyyKLZWVmFQFVAWlu5voLbei9YnHrIsWUXLt15FKS5F2UWqIDV+LJZ8Pub4erbwcSVNhll2j5zKz5nozA5gPx2qfqyUY5MdQS5i7bI2Y+Pmm4jOuFx+gclil8Sc2E/Gmu1gY/CuNgy9j0UebxBL2aj6oPoX28uNQC2Ql5wO9ai9PJJ+gRxVZbBMmVjtWc6LzRGymmWMV7vrgA+oe+jWW4Q/A6IoV9J1zNvoMsjM3MDDYc/ZELcEIbvciI2oJzz//vKGWMM0Uuz5d10lIKrGUQiQlVA6Sksjeeew2XDZztvFrd8TSCo++2c2zmweKXuc3PtrKUS3+orfXdZ30sB6tpGq4bRY8DsuwuYINj8OSvRuyL8/RjHw/aKqoZR1pEJPiYHMLjdpCDVq6jiX4LvZNj2PrfDXnIaVyMdLBZ6M0HlO8C5imiTpeKQ42j6ipHVE+KFTTu5+RNIlgMkh/sp+knMTv9OeUFiiawtM7n+bpnU9ns7V17jq+sOQLLCxZmHfOsdnaClcF1Z5qSu3TI4mmRqPI3d0o/SHMpaVY3KPNJel/vkD8nntE6Qfg+sxncJ/52XG2uLoOaljYJ8vlZbzV2Tmz3ssGOczI680MZT4cq3Xr1nHCCSfsOykwXde56667uOeee9i+fTvhPLIrJpMJZRL+3nMRQy1h75FvfZqmE8soRIedwqJplXhGxYQFr8NBXYm16IA2nlZ4tW2AF7eGWN85hKpN7rtgmc+D3bX7C05aVomlFZKygtPmwO+3UuFxUOa2UeqyTbjefXmOZsT7QU6PNoklQiAnRVDpbyoclGoK7FgjlA/6x+pum6D5GFh5Ltaa5ViLbhKbmfa4E6HrOgPpAbpiXfTJfTidThr8DZjH1CC3Rdq44+07aI8J3VqzyczpC0/nswd8tmC9bEpJMZAcoMRTQsAToM5bh32aJM3kvj6knh4sg4NYamtHG8c0jfAjjxAf0Vi3Wqm8+mq8xx8//nWrqpAKczhwNDWS8vuhs3NmvJcNJsQ4R8Uzl4/VPldLuP766/nxj3/MIYccwoUXXkhZ2dS6YA0M9hRdFwFtJCkzmJCIpmXiGQVdF1JbtSXOohutEhmF19oGeXFrP293DKHsEtCaEOWbu6PMbWNJoPDFRlY14mmFWEbGZjHjc9io8zsp99gpddtwWGdmkLTfyMQgPtwklh4UAaurHLzVhRu0prtJbAbb405ESknRHeumN9lLXI5T6arMke2SVZkntz3JU9ueQtOF9nKTr4krV17JAv+CvHNqusZgehBZlQl4RcNYhatiWtara1q2cUyNJ7DVBrKas1omQ+i220i+9hoAZp+P6uuvx7lkvL6uLsvIfb1YSktxNDVhrasjbbiMGRjMeaYU3D7wwAOceeaZ/Pa3v52u9RgYTIqEpBAZTI4LaL0OKzW+4gPapKSwtm2QNdtCvLkzPC6gLXXZOGZhBcctquTd7iiPrm0vMNMon1weGJdxVTWdeEYhlpbRgRKnlaZyd1aP1m2fmbey9xu6LjKk8aBQP0iGwWIRweQYU4FxJAdg4+9h01MiKB7BUQJLPwNLzxBzFIuUFMoHOuAuA2+tCKqdMztTous6/al+uuJdhJIhnDYn9d76nEbfD4Y+4I71d9AZ6wTAYrJwxqIz+MwBn8nRtx3LSLbWZ/fR5G+i3ls/bdlaXZLItLcjd3aiqxq2QCBbZqCEwwRvugnpA6HaYK2ro+Zb38JWWztuHi2TQQ32Ya2swtHSjNXQXDcwmDdM6ZM0lUpx0kknTddaDAx2i66L4LA3kgZgS0+MtCmDpoHXObmANi2rvL5jkBe3ioBWUnPdwnxOK8csqOC4A6pYVl+alQNbEihha19sQjmwI5rLOPOwhuyaE5JKPK2QUVWRSS51UuFx4PfY8E2TwcKcopDpQkntxC5e4Z3w7m/h/b/BGCcxSupg+Tlw0ClQwGhgHCNOYqmwyPS6K4U+rbdGKB/McJJykq54F33JPpJykkp3ZU5traRKPPH+Ezy9/elstralpIUrV15JS2lL3jlHsrWSKk17thZASybJ7NiB3NmJyeXGVjn6BUTasYO+m25CDYUAcC5bRtV112HxesfNoyYSqIOD2AIBHK2tWErnjyWygYHBFIPbj370o7z++utcfvnl07UeA4NxjAS0kZRMOCERSclEh28t6jpUT6LkIC2rvLkzzIvbQry+YxBpF/tbj8PCMQsqWb2okhUNpXlrXa0WM98+dQlPrOvkz+/2EE6OBlFlbhufXB7gzMMakFWdwWSapKSKpjCPlQqPhzK33TBYKMSemC7oOvSsh3d+A+2v5D5WvQRWnActq4uvhdU1SEeEm5jdA6UNIqj1VBV2M5tBaLpGMBnMZms9dg913rqcL1Bbw1u5c/2ddMW7AJGtPfPAM/n0wk8XzNamlTShZGivZGsB1EiEzI4dKD09mP1lOUFr8s036f/JT9DT4kut96MfpeKLX8xrj6tGImjxGPbGRhwLWjG7Z/4XEQMDg+llSsHt7bffzsc//nF+8IMfcMUVV1BRMX3f4OcShs7t5NF1nZQszAqiKZlYRqgc6LqO22alxKIxALhMCrqUYiL1UUnReKszykttYd5sj5LeJaB12y2sai7lmFY/K+p82UBZ2828n1lWwWkHl7OhY4Cu9h3UN7VwUF0ZGVmls38Qu9mMx2mh2mfD57Lgc1qxWTRQ0yTi6Skfo315jvb6vuS0uO2fCInAUpXA6QNnnahlzQjN4Rw0FWv7GhybHscysCU7rGNCaTgKaek5qFUHDz9fhaxacQE0FdIxkBNg94KzYVT5wGSBZAZ20XSdaaSUFH2JPgbSA2TUDGXOMmyqDSkpjp2kSjzZ9iR/7fgr+nDleIuvhS8s/gKN3kbUlIq6y3EaUUKQVVkoIdir8Zv8pBNp0kz9fQygDA4id/egDYUxl5VjtttAygj1kGefJfHQr8WXGJMJ9/nn4/jkqSQ0FaTRteo6qENDoCrYAnXogVpkRRmnX7u/r20Gu8c4R8UzH47VXte59fl8426fKopCJiMu+E6nE8su1oUmk4lIJDLphc1mDJ3b/Y+iweYhE28NmHg3bCKj5r5vHWadZeU6h1XoLPbrWA1Tr1mDRU3TNPgvFgafxSP1Z8dVk4328tVsrz6FuDOwH1c4M9mp7OT3yd8T0sRtfQsWTnSeyGrHaiymGdi8qKpUP/00/leEZJtms9F73rnEly3bzwszMDDYl+yJzu2kMrdnnnmmURtYBDfeeCM33nhjVud2+fLlhs5tAXRdJy1rWemuWFohKSmomo7bbsVtt+QtOZDTKfq2b6BmwTJsTiETIqsa73THeLltiLU7IySl3AyU02rm8KYSjm0t45CGEhxTiGhVTSc5rJmrySnUvm1Uth5MVVkpJS6hn7u3/1Zmrc6trovsbHJAKA9kYmC1iWYva+Hb3KbUIPbNT413EnOUCCexA0+jwlVG0feP5AxkIqBqwsXMXSmaxey+Ga18sCtJOZnN1sqaTJmzLKe0IKNmeHz74/y98+/ZbO3CkoVctvgy6j31eeccl611C93a6XxP64qC3NMjHMdUBUt5BabhUh0tmST2v/+LvP4dAMx+P/7rrqN6QWueeVSUgRBmrxdbbQBrddWE65wPuqCzHeMcFc98OFbr1q2b9HMmFdzef//9k96BgaFzm49ETg2tSiytomjgsTup8lqLlsEy2Z1s6JdYszXEK9sHiGdyNZXtVjMfainnuEWVHN5chtO25xmqEaWDREZB1TQ8Die1pVbceNjSt41lzdWU7ofGlVmjc6sqo/W0qWF7XIcXSusnNjwI7xT1tFv/nrdJzHzQKTisToquhh2x6DWZobRC6NN6a8RaZhGKptCX7KNH7mFAG6DEW0KNoyZnm/cG3uPO9XfSlxS2tDazjXMOOodPLvhkjr7tWEZqa71uL63eVuq8dTmNaNOBlk6T6erC3NODw2bHWjO6bjkYJPjDHyJ3dABgb2mh+oYbsOYpe9MyGdTBASyVldibm7FVVxe9hrmsCzpXMM5R8czlY7XPdW4NDCZDUlIYSo42hcUzCpKq4bVbqfDaiw5oVU3nne4Yf//AzLvr3iWWyc3Q2i1mDm8u47gDKjmiuRyXfWoBbSKjEM8oKJqG12Gl0menwuOg1GWjxGUjEY+xBYy7GoWQ00LGKzbcJFaM6cKETWIHw8rzoPnYSTSJ6SJLmxwSagnewHBQWw22yV849zdRKSrMGJJ9KJpCrac2J1ubVtI8uvlRnt3xbHbswLIDuXLlldR56/LOqeka4XSYjJqh1lsrlBCcFdP+vlajUaS2NuSeHsylfiw+3+i633+f4P/8D9pwKZvriCOo+spXMOf5cNOSSZSBAWy1NUIRwe+f1nUaGBjMXiYd3Pb29vL+++9z2GGH4R3TzSrLMv/1X//Fww8/TE9PD4sXL+bGG2/k05/+9LQu2GB2kZTGZGiTwrBgJKAtc9uLzqSqms6m7ggvbgvxygcDDKVkwMxIk5DVbOLw5jJWL6pkVWv5lPRiRcmBMhp8Dwe05R4H/uGA1lA6KII9MV3QFGh7UQS1uzqJtRwLK86F2uXFr0FThYxYOipsecuaR5UPCjhuzWQUTaEn0UNPoofB1CB+px+f3ZezzYbQBu565y6CySAAdrOd8xafxymtp0yYrR1IDeCxeVjoX0i9t37as7UASn8/0s6dyP39WCurcoLWxEsv0f/zn4MssvMln/oUZZ/7HCbL+GuEGo2ixaLYG+qxty7A4p2bt2MNDAz2jElHADfddBOPPvooHcO3jEa49tpr+cUvfkFpaSlLly5l06ZNnHnmmfzjH//g+DyWiAZzl5SkMpSSsgFtPKOQUVQ8jskFtJqu815PlDVbQ7z0QShHcgvAYtI5pKGU4w+q4cjWCjyOPQ9oNV0nmVGJZWRkVcdjt1DusVPhHc7QOou37J3X7Knpgpwc4yTWOzpuscOBHxcatf7G4tcxzh53kQhqZ7A97u6IZCJ0xjrpS/ahoxPwBnKytSklxcPvPcxzO5/Lji0uX8yVK6+k1jPe5ABGs7VpNU2Nu4Z6397J1uq6jtzVjdTRjhqJCMcxmy37WOTJJxl69FGxsdlM+WWXUfLxj+edSxkYAFnC3tKCvaUla8lrYGBgMMKko4EXXniB0047Dbt9tPGjv7+f22+/nSVLlrBmzRr8fj87d+7k6KOP5kc/+pER3M4DUpKazdAOpWRhWDAc0PrdNpy24oTzNV3n/d4YL24LsWZbiMFErvyTxWxiZYOfo5t9NKS3c+CKhdhde5a10XTRFDZiruCxWyjz2LIlB6UumxHQFss404WwMDrYnelCcgA2/B7emyYnMSUjJMWU2WWPOxGyJtMTF9naofQQfqcfrz23Pvid/ne46527CKWEEoLD4uD8xedzcsvJRWVrF5Uuot63d7K1uqIgtXcgdXagZyRsgbpsNlaXZUJ33knihRcAMLndVF97La6VK8fPo2ko/f2YLBbsCxZgb2rKq3NrYGBgMOkrQ0dHBxdddFHO2J/+9Cc0TeO6667DP1z31NzczOc//3nuueeeaVnobGau6txKyrDKQVImmpZJSSppRcNls+BxWCh3WwAFFAVJKTgNuq6zLZTk5e1DvNwWJpTIzdCaTbAs4OPYBX6ObPbjc1qH1RKEasJkEPq5KklJJaNouOxmPA4LdV47PocFr9OK1ayBliGZKE7TdH/pDM4InduRDGlyQJgejGjEOmpFhlSCcfq0gHloJ/ZNj2Nr+z9MY5rENF8dmSVnIi/82KiTWGoiteFh5LRQYNABlw98TeAuF2tRgFhsdzPMSKJSlGAySCgZwmw2U+GowCybycjivZlUkjy27TFe6Hkh+5wl/iVcuvhSql3VyLvc7QChhBDNRMmoGSqcFdTYayg1lZJJZMhMs46vLknI3d3Ivb1gsWIpL8ekKqAqaNEY0Z/+BGWz0Cg2V1VR8o3rUBsaiEu569BVDSUUwux2YQsE0CoqyCSTe7Sm+aALOtsxzlHxzIdjtSc6t5MObtPpdE6tLcCLL76IyWTiox/9aM74woULCYcLW5TOVXbVuX333Xdnrdbv2rVrJ/2c5PDPROg6dCbgrQEzbw2YGMzkZtVM6Cwq0TmkQmdlhY7PFgY1TGQ7jD2Sfds3THp9+dbav7sNi2BPjtV0sC/3u/t9WYDU8M8u6DoV8c0sCv6F2uj6nIcG3QvZVnMqPaWHg2yGzUNTWGV0+OeDKcwxM0kw+gH2vvw+f0j+gaguvjjbsXOK6xSO0I8gszlDBx2FpsnSPfzfPiMuvmTY+vupv+9+7AMDAKSamui++CJUXYeOCdYtZWBoCN57b8pL2V9/rwbFY5yj4pnLx6q9vX3Sz5l0cNva2srbb7+dM/b888/T3NxMY2NuTVw8Hqe8vHzSi5rtzDWdW5vDRXxYhzaalklmVDKqhsNqxmO3Fl1Dq+s6OwdTvNQ2xMvbw/TGcjNyJmBJrZdjWv0c1eKnzF244Sefzu2u+0orKsmMyCY77Wbcdgt+lw2fw4bXacNmmZ7b1PtLZ3C/6NweugwPKUj2QyomTpqzZGLFAU3F2v7isJPY+9lhHRNK49FIB5+NtXopi4HFxSxG10UJQyYONqeoqXVXiEztNNrB7i+GMkP0J/sZSA1gMVvwO/2YGH2vJuQEj2x7hDVDa7JjS8uWcuniS6l0Vuadc1y21lMz7bq1Y1GHhpC7ulEGB7CUlWN2jpY7SBs3Erv9DvThzKvjmKOpuPxyGu3jz52WzqCGB7FWVmKrr8cyDVJH80EXdLZjnKPimQ/Haq/r3AJ89rOfzdbRHnPMMTz44IPs3LmT66+/fty2r776KgsWLJj0ouYas1HnVhq2qA2lIJFSiadVUrKG2+6gtNSKy2Yp+oNx50BC1NBuDdE1ND6jt6TWx+oDqjh2YQUV3snV/NmcrmzN7UjJQTytkJJVnHYHJaVWWj12St2ihrZYubE9YX/pDO71/Y6YLgCe2A5KiILVARXV4t9CTNgkdgqm5Wdj8zdStGaBpojSh0xMBNT+VlHT664Ey+yvvcyoGbrj3fRIPcS0GBVlFbisuV8a3ux7k7vfuZtwRtwRc1ldXLjkQk5sOrHg32NaSRNKCd3aJncT9b56nNbiauAni67rKD09SN09WCJDWOvqs41jALF//IPoXXeBKlROSs8+G/855+RduxqLoUUj2BobsS9YgMU7vTrEc1kXdK5gnKPimcvHap/o3F5//fU8/fTTnH/++ZhMJnRd56CDDuLb3/52znYDAwP88Y9/5Bvf+MakF2Wwf8gooilsKCERHBS3OncMJHF7zPicVqp9jqID2o7BJGu2hXhxW4iOwfFFCgfV+Fi9qJJjF1VS5dvzJhZdH5XtSkoKLpsVr9NKY7kLv9tOics2JeOGeU8qDNEeCA3futZkKGuY2HQhOQAbnoRNTwnDhBH2tElMlYaVD1JCH7fyQKF84CoH8+xv+NN1nYH0AF2xLoKpIHaLnTpfXU4jWFyKc//G+1nTNZqtXVm1ki+u+CKVrgLZWl0nnA6TUlLUuGto8DXsFSWE7P5UFam9HamjEz2dxjq2cUzTCD/8MNGnnhIbW61UXn013gLNxsrgIGTS2JqbcbS2YnbunWDcwMBgbjLp4Nbj8bB27Vp+//vfs337dpqbmznjjDNw7nLx6erq4nvf+x5nnXXWtC3WYPoZCWgjSZnBpEQsrZCSVByayKwESp043MV9sHSFU6zZ1s+abSF2DIwPaBdVezluOKCtKZnah1VaFuvriaZxuUVA21AmAtpSI6CdGh2vwx+uEplSTQFdxaObOUHW8Wy3ig6/ET58vTBVAAjvgHd+m8dJrB5WnCMkvSaTMZRTIqhVFWGLW7YAvFWiDGGWKh/sSlpJ0xXrojfZS0JOUOGqGJdVfb33de5+924iGZE9d1vdXLT0Ij7c8OHdZ2ttXhaWLtyr2VoATZKQ2nYgd3aA2YI1EMiuTctkCN12G8nXXgPAXFJC9Te+gXPJknHz6LqOEgxiMpuwtbbiaG7OyfwaGBgYFMMe3cuzWq2cffbZE26zYsUKVqxYsUeLMti7SIomAtqUxEBCElnPjIrLZhEZWq8DOQ2d7N51qyeSYs1WIdu1PTS+W3NBlYfViypZvaiSQOnUnKDSspq1v7VrQn6hscxNoKrUCGini3QEXr4NBrbmDFuAEoD0Ltu/92chv7X+N9Dxau5jNUthxXnQfMzktGXH2uO6ykWW1lstTBjmCLqu05/qpzveTTAZxGV1EfAGcrK1USnK/Rvu5+Xul7Njh1YfyheXf5FyV/5ehpFsbVoZ1q311lPpqtyr7nlqPIHUth25uxuz14dljAW1Eg4TvOkmpA9Ec5+tvp7qG27AVjted1dXVZTeXsweN/amJmwNDZjmQGbewMBg3zP7C9UMimI0oJUZTGSIZUSG1mm14HVYqfIUX3LQF03z0rYQL24Nsa0/Pu7xlgo3qw+oYvXCSurLpi+gdQyvtabEgRM777aL4LlkillgA4SDV6wXYj1Qdzi898fintf3Lmz585gBE7SsHnYSW1b8/ueYPe5EJOUk3fFuepO9JOUkle7Kcfqyr3a/yr0b7iUqifIgj83DxUsv5rj64wr+nWbUDKFkCI/Nw4LSBXs9WwsieJXa2pD7glgrKjC7R406pB076PvhD1GHFRGcy5dTdd11WPI0veiyjNLXi8Vfhr25CWttrWFnbWBgsMcYwe0cRlI0ommZoaQIaEVdqorDasE3yYC2P5bhpWFjhS194zVDG8tcHHdAFasXVdJYPoETVRFkFNEUFpcU7BbzcEDrocwjSg7cduus0w2esWRiIqiNdgvzA5sbWo8VAeqONbt//tCwRMtwkxgrzoHShuL3n88e1zsc1M5Ce9yJ0HSNYDJIV7yLgdQAbpubOm9dzt9gJBPh3g338lrPa9mxI2qO4LLll1HmzF+nrOs64UyYtJym2l29T7K1uq6j9PYitbejDoax1tRgHqN2kHzjDfp/+lP0tEj1e086iYovfCGv6YKWSqGE+rFVVWNvbcFaUbHX1m1gYDA/MILbOYas7pKhTY8GtF6HlQqPA3ORH3oRCd7eEOTVnVHe6x0f0Nb7Xaw+oJLjFlXSXDE1CZKRgDYhKVjNooGt1ScCWr9bBLQG08hIUBvrESUANqeojR0JKA+7uLjg1lkqmsQOPkM0exXLHLTHnYiknKQj1kFfso+MmqHKXYV9jGyZruu80v0K9224j5gs/tZ8Nh+XLLuEY+qOmVHZWl1VkTs7kTo60BJJrHVjGsd0ndhf/sLgAw+ApoHJRNnnPkfJaaflV0SIx9HCYWx1dTgWLMDimzulJwYGBvsPI2KYA8iqRjQlMzQc0IogUcVhEY5bkwlowwmJlz8I8cKWPjb3WdDpynk8UOpk9aJKjjugkpYKz5SyQ5KiiZIDScFiMuF1WmnxefB77PhdNjwO4+057WTiY4LaASHlVVI3PktaecDE2VurE466avJNYnPQHncids3WeuweAs5Azt/NUHqIe969h9f7Xs+OrapdxaXLL8Xv8Oedd39ka2G4cWznTuSOTnQQge3wPnVVZfDee4k9+ywAJoeDyq98Bc+qVXnnUsJh9FQSW3OTUETYA7kfAwMDg3zscfSg6zqxWAy73T5OKcEgl71hv6tqOrG0TDyjEEnJJDIKKVnDbhZmBTVOC2aTCpqKsmsT0C5EUjKv7ojwUluYTT1x9Owj4kOr2mvnmFY/xy4oo7XClf0wk9OTt79UVI2kpJKUFUwmE267lRqnhVK3Ha/DgssGJpOMmpGJTuAEOpMsB2eF/a6cgkQIkkFIRsBqA2elCGolnV0tck2ZKA6zm0KWCPGP3YpWeSDIgDx/7XEnIiknhXVuKoSsyfidfmyKDUkRx0vXdV7ue5mHtz5MQhHn0GfzcdGBF7GqehUokFHG/xHImkw4HRZNaM4ANbYaHIqD2F4+hnoqhdTVhdIXxORyYSnxkRk+91oySey2/0V+5x0AzGVllFx3LXpr63grXR3UcBh0HVsggF5TgyzLII+3Ct4bzKRrh0F+jHNUPPPhWO2J/a5J13V995uNJ5PJ4PF4+MEPfpDXwGE+s6v97m233UZTU9N+XNF4EjKsHzTx1oCJrRETOrkZH79d59AKnUMrNZo8czKpZpAHq5JgYf+zLAz+FZuW/1tRd+nhvL7gK/t4ZXOLqBblqeRTbFG2ZMeW25bzKden8Jhnl8uQdXCQ+vsfwNHXB0C6ro7uSy5GGaOaYGBgYLCntLe3c80117BhwwaWLl1a1HP2OHPrcDiora3F4dhzAf65ynTa76qaTjwjTAoiSYlERiUpq9jMIuvptFmwmIuLPOMZhbU7I7y0Pcw73TG0Xb7WlLttHNPq55jWMlpKTPS3bSxob7s7FFUjKaskJQVM4LFZ8TislLps+FxW3JNwOMvHTLIcnJH2u0oGEv3iJzUk6lidfpGxzYecxP7e73FseQLTGOMFxd+KdagtZ9OS1V/ghPLxUk5ZxtrjWh2i5GAO2eNOREJO0JfoYzA9iKIplLnKsJhGa4h1XWdN7xoe2fYISUXc+SixlXDxQRdzRNURBecdydY6rU4qnZXUeGrGKSzsLZSBAeTubrRIBHN5BWb76HtI3rqV6B13og/fmbIffhgVX/oSDXnu5umygjIQwuzzYQ8EsFRV7RdFhJl07TDIj3GOimc+HKt9Yr87lksuuYQHH3yQq666CnseX3ADwWTtd1VNz6mhjaVVEhkVq9mGz+Oiwm4tOqBNZBReaxvgxa0h3u4YQtkloi1z2zh2YSWrD6hkSaAkW5srpcQtjrH2trtDUbVsIK5jwed00OC3UT5sf+tzWKf9w2wmWQ7OCPtdOTWsfjBcU2s2QUVNYZtcOQUb/wDrH4XMmNKZqoPg8EuxNq6Cv38nW3srNx6Lt368+D6Q3x7XVwOeqjlhjzsRiqbQm+ilW+5mUB2k1FdKiT33vRBKhbj7nbt5u//t7Njq+tVcvPRifPb8jVS6rjOUGSKpJakpF7q1Va59ExTqmiYax7q7scQT2Orqc9QOEi+9ROTnP8+WE5ScdhplF16YbS4bi5bJoA4OYKmqxtHSjLWqaq+vf3fMpGuHQX6Mc1Q8c/lY7RP73bEsX76cP/zhDyxdupRLLrmElpaWvIv47Gc/O5XdzAtGAtpISmZguCksnhHKAV6HlXq/u+iANikprG0bZM22EG/uDI8LaEtdNo5ZWMFxB1RxcKCk6HnzoagaCUkllpbRAa/DSqDUSYXXQYlLBLTmKcxvUCRyGuK9EOkeDWq9lYWbvZSM0LJ9+xGhWjBC+UI44vPQfOxoLcoY5YTMigsZl/ud4/a4uyOSidAZ6ySYDKKhEfAGsI6xJ9Z1nec7nuehTQ+RUkTtWJmjjMuWX8YRtYWztZIq0Z/sx21zZ5UQXNZ903SlSxKZ9nbkzk50VcMWCGQNFXRdJ/LEEww99pjY2Gym4gtfwHfyyXnnUhMJ1MFBbIEAjtbWHJMHAwMDg73BlILb888/P/v/3/nOd/JuYzKZUFV1KruZs4w0hQ0lRwPaREbBsgcBbUpSeX2HCGjf2DmIrOYGtD6nlWMWCtmuZfWlUwpos6USaQUNDY/DSm2pkwqPQ5QdOI2Adp8S7YZwGJIh8bunorDxgSrB5j/DWw+Pbg9Q1gKHXwKtxwtnsLFUHkDyw//Bu+1DLClfODo+D+xxJ0LWZHrjvXQnuhlKD+F3+vHavTnb9Cf7ueudu3g39G527PiG47no4IvGbTtCNlsrJ6lyV+3TbC2I5rDMjh3InZ2YXG5slaP6urosE7rjDhL/+hcAJreb6muvxbVyZd651EgELR7D3tiIY0FrjsmDgYGBwd5iSsHt888/P13rmDeMBLQjGdpYWiGRFgGtx2GlbhIBbVpWeXNnmBe39vP6zjCSouU87nVYOXphBasXVbKivhSrZc+zaCMBbSKjoGoioK0utWcD2hKnzQho9yVKRgS1AKH3wWESda2FglpNgS3PwLqHIBEcHS9tEEHtghMm1JdVmo6lN9rLEpgX9ri7Yyg9RGe8k2AiiMlsIuANYBlz/DRd4x/t/+DhTQ+TVkVjXrmznC8u/yKH1hxacN79ma0FEYxm2nag9PZg9pdh8Y4G4Go0SvDmm8ls3gyAtbqa6htuwN7YOG4eXdeFM5mqYG9pxd7akmPyYGBgYLA3mVJw++EPf3i61jGn0XWdSHI0oI2mhXSXGTNe5+QC2oyism5nmBe3hVjbNkhml4DWY7dw5IIKjjugkpUNfmxTCGgB4mmFdCaFoml4HVYqfSKg9btt+Jy2KWWADfYARRLlB9EeCA8Hqc5SKFRrpSmw9e+w7kGhbTuCLwCHXwyLTgJzEZeBkRsBkW5wO8FbOxrUzjF73ImQVZnuRDe98V6GpCHKnGV4bLk16cFkkF+u/yUbBzZmx05oPIHPHfw53Lb8mcux2dpKVyX13nqq3dX7tOFKDgaRdrajhvqxVFVjHtMUJnV1EfzhD1F6ewFwHHgg1f/v/+UtMdA1DaWvD5PDjr15AfbGxrzOZAYGBgZ7i2m54mQyGdatW0cwGOTYY4+lsrJyOqadM+wIJZA6h4hn5GxAGyhxFZ1JlVWNde1h1mwN8VrbICk5t8zDZbNw5IJyjltUyaFNZVMKaFVNJykpRGMi26ToGpUldso9DvwuGyUuI6DdLygSxPtEtjYZEkGrww8MCXexXdFU2P48vPkARDpGxz3VcNhFcNApRQa1w8oH0UHALAwfqhpEk5h1fmXiBtODdMW6CCaDmM1m6rx1mMeUcGi6xt92/I1HNz9KRhXarhXOCi5fcTkrq/PftofRbK3L6qK1tJV6b33BIHhvoGsacne3sNKNxbDVBjDZRiurU+++S/+tt6IN62h6Vq+m4uqr82ZidUVB7uvFUlKCvbEJW33dflFEMDAwmN9MObi97bbbuPHGG4lEIgD8/e9/58QTTyQUCrF48WJuvvlmLr300ikvdDYzkJCoh0kHtG93DLFma4hX2wZISrkBrdNmZlVLBasPqOTwpjLs1j0PaDVdJ5lRiWVkJFXDa7dS6rYRBA6s8RGo9E+ppMFgCqiyCGojI0GtBO5KsHsglcc8Qdeg7V/w5v0Q3jE67q6EQy+ExacWL8eViUFiQGRmS+qAXqGiUOqf+uuaRUiqRFe8i95EL1EpSrmzfFzw2Zvo5Zfrf8l7g+9lx05qOokLllwwYbY2kokQl+JUuitp8DZQ5a7KCZj3Nrosi8axjk50RcEWqMs2jgHE/vEPBu66C4b7JvznnEPp2WfnDVi1TAa1P4i1ogJ7czO26up99joMDAwMxjKl4Pa+++7jq1/9Kueddx4nn3xyThBbWVnJiSeeyGOPPTbvg9vemMQxDutuA0RF1XinM8KL2/p5ZfsAiUxuQGu3mvlQi8jQHt5chtNWuEZyd4wEtPGMQkZV8dgtlHvsQrbLZcOspAluEcoKRmC7H1AVEdTGeiAeFI1gngrh6JUPXYedL8Gb98HAB6PjrjI45AJY8unCcmC7komJmlqrA/yNIrDVXEDv+GazOYyu6wykB+iOd9OX7MNusefN1v617a88tvkxJE182ahyVXH5ystZXrm84NySKhFKhXBanCzwL9jn2VoALZUis2MHSlcX2OzYake1i3VNI/zww0SfekoMWK1UXn013uOPzz9XMokyMICttkYoIvj9++AVGBgYGORnSsHtj370I04//XQeeeQRBgYGxj1++OGHc9ttt01lF3OCe17p4k/dr3Pq8gBnHdaQEyyqms67XRHWbO3n5e0DxNJKznPtFjOHN5dx3AGVfKilfOoBrTQc0CoioPV7rJR7PJS6bJS6bNmShuhE3rcGew9VEQ1f0W6I94OaEeYHhZq1dB1r11p450HRWDaCo0QEtQefXnxNrJQQ2WGzQzSa+QLgrREatdNsHz3TSStpuuPd9CR6splV5y6yat3xbu5cfyfvh0eP+8nNJ3PBkgvGbTvCTMjWgmgOy7S1ofT0YC71Y/GNvr+0dJrQbbeRXLsWAHNJCdXXX49z8eL8c40oIjTUY29dgMU7N4XkDQwMZg9TCm63bdvGNddcU/Dx8vLyvEHvfCSclHn4tXa29Mb45imL2dIXY822EC9/MEAkleupbjWbOLy5jNWLKlnVWo7bvuenSR8T0KYVFbfdQqlLBLR+d25Aa7AfURXhJhbtEv8qI0FtAScwXcfSs47j3v8V7uSYTK3dCyvOhWVngr3ITKCUHA5qreCtg9K64aC2gJvZHEbXdUKpEF3xLoKpIE6Lkzrf+Gztn7f/md9u+S2yJv52q93VXLHiCpZWFraGHJutbfW30uBt2OfZWgClvx9p507k/n6slVWYx2iTK4ODBG+6CWn7dgBs9fVUf+tb2Gpq8s81MACyjL2lBXtLC2bDsdLAwGAGMKXg1u/3EwqFCj6+adMmamsnsOmch7yxM8yF975GWs5VObCaTRza5Gf1oiqObC3H45haQJuSVWJphZSs4nZY8LmstIzJ0E6lRtdgGtFUUXYwUn4gp0T5gW+Cv5vut+HN+/D0rCebI7O5YfnZsPys4iW55KSoqTWbhfpBSUD8O88axUZIKSm6Yl30JftIyAkqXBXjMrBdsS7uWH8H24a2AWDCxCmtp3DuQedOnK2VIsQzIls7ooSwr7O1uq4jd3UjdbSjRiLjGsekHTvo++EPhYQX4Fyxgqprr8WSx9JT1zSU/n5MFgv2Ba3Ym5oMRQQDA4MZw5SuRqeeeip33XUXV1999bjHNm7cyK9+9at5X2+bj5HA1mKCFfU+jmktY1VzKd6RgFbLIKUmVxag6zppRSWZUckoGg6bGbfDQk2JDZ/TgtdpwW7RQM+QTmZI72a+xHBn9Mi/M42ZtL49WouuibrWRD+kBoXDmLMUnGWgkbdZzNK/CcfbD2DtfSs7ppgdpA88HW3FOaIUocBzc1CkUVcyZ5kwXvBUgtkOyTTkeXfMpOM93ei6zmB6kGAqSDgdxmF1UGmvhIxQggFQNZVnOp7hDzv+kM3W1rhq+MLiL3Cg/8Ccbccia7KY0+KgzlVHja0Gp+okHovv29eoqsg9vch9vSDJWCoqkXQNJLHmzJvriP385zD8GpwnnojnkotJWa3ZbUbn0lBCIcxuF7ZAAK2igkwyuU9fz1SYy+/luYJxjopnPhyrVCo16eeYdF3Xd79Zfrq7uznyyCPRdZ3TTjuNu+66iwsvvBBVVXniiScIBAKsXbt23kmD3XjjjXzve9/L/h649BfYq5pztjkhoPKxeh3P/LvzazBJ/MntLO55kproO9kx1WSjreoktlZ/Esk2N/3EZwp9ah9PJp+kS+0CRLb2GMcxfNT5UeymWZ7l1nX8a16i6s9/xqTr6CYT/aeeytBxq+eFy5yBgcHMp729nWuuuYYNGzawdGnh0q+xTCm4BQgGg3zrW9/iySefZGhoCACfz8eZZ57JTTfdRPU8loPZuHEjy5YtyxvcfuOjrRzV4t+jedOySlJSSSsqDovI0JY4hQat12GdlpKDRCLB2rVrWbVqFZ48tyX3NzNpfUWtRddFtjQeFP/KCXCWgN0HBWII8+AHONY/iK3zldFpzDakA05FWnYecXMJa7cNsGpRBR7nBN+SFBnSQ6IEwuUXGrWequLVE4p9jbOIESWEYFJka902Nz57bjmHoin8uf3PPLXjKVRdKJcE3AG+sPgLLCpdVHDusdnaCmcFtZ7agiULexstmUTu7BQlBB5vTrOXrqokHniQ9HPPiQGHA9+XrsZxxBH550pnUMODWCsrsdXXYylkHDLDmWvv5bmIcY6KZz4cq3Xr1nHCCSdMKridcpFUdXU1d999N3fffTf9/f1omkZVVRVms1HTORFlPg92V/FvxLSsZu1vnTY7Xp+VRreNsmHprqmoKEyEx+OhZAZ/iM2k9eVdi6ZBcmC4prYPMnFw+8FZVTgzNtgmdGrbXhgdM1vhoFMxHXohDm81DkAfLj/wOG2UuPJkEFVJ7FuRobRCqB/4AsU3mhX7GmcZCTlBZ6yTPrmPtDlNbUUt9l20f3dGd3LH23ewI7oDENna0xaexlkHnjVu2xGytbVSnKqyqv1WWzuCMjCA1NmFqb8f9y6NY1oiQfDHPya9fj0AlvJyqr/5TRwLFuSdS43F0KIRbI2N2BcsyLHlna3MhffyXMc4R8Uzl4+VyzV5F8xp6wDQdR1d1zGZTIYjzW4oc9tYEtj9m3BsQOuwWvA6rNSWOLMBrcu+dwJag2lA10VgGe0eDmpjImta1lRYK3aoXdjkbvsHWb9bkxkOPAUO+5wITItBlYeD2gy4K6CyTjSo2efmt/piUTWVvmQfPYkeQqkQPruPOmeug5aiKfx+6+/5w7Y/ZLO1Dd4Grlx5JYvKCmdrR5QQHBYHLSUtNPoa94sSAohrsdLTIxzHhobGNY7JfX0Ef/hD5M5OAOytrVR/85tYKyryzqcMDkImja25GUdra44tr4GBgcFMZMrB7aZNm/jud7/Ls88+S3K4qcDtdvPxj3+cG2+8kWXLlk15kXONTy4PFDRGSMsqiYxCXFKwW8z4HDZqShyUeez4XXYjoJ3p6LpoFIt2Q6IP0tHhoLa5cFAb7RJB7da/i0YzENsuOklY5ZY2FLdvTRFBrZwSQW3FIhHUFqueMIeJSbGsEoKkSdS4a7DtInXWFmnjjrfvoD3WDoDZZOb0hafz2QM+O27bsUQyEWJSjErX/lNCGEFXVaT2dqSOTvRMBmugDpNl9JqR3rKF4P/8D9qwbrHriCOo+spXcrK62bl0HSUYxGQ2YWttxdHcnBMkGxgYGMxUphTcvvjii3ziE59A0zROP/10DjzwQAC2bNnCH//4R5555hn++te/ctxxx03LYucCRzSXceZhucFKRlGJpxUSkoLNYsbrsNLq84iA1m2bks6twT4kNQSJncKEIR0R6gcTBbWxXnjrIdjyV9BH3OhMsOAjcMQl4G/O/7xdGZETk5JCG7dsgQhqnXPzFtVkUDSFvmQf3fFuBtODlDhKhBLCGGRV5smtT/LUB0+hDX+5aPI1ceXKK1ngz3+bfuR5/an+GZGtBdAkCaltB3JnB5gtWGtrc7LS8TVrCP3iFyALtYeS006j7MILc4LfEXRVRentxexxY29qwtbQkGPLa2BgYDCTmVLU9LWvfY3q6mpeeOEFGhsbcx7r6Ojg+OOP5+tf/zqvv/76lBY5Fyhz2/jk8gBnDjuUSYpGPKMQz8hYzWa8TistwwFtqcs2JZ1bg31MOiL+7d8CxERQOVFQm+iHtx6GzX8S2dYRWo4XQW154YAqB204II71Qmk5VDcLrVpn6Z6+kjlFJBOhM9ZJMBlEQ6PWU4vVnPt39cHQB9yx/g46Y+IWvcVk4YxFZ/CZAz4zbttd554p2VoANZ5AatuO3N2N2evDUjr6HtB1ncjjjzP0m9+IAbOZii9+Ed/HPpZ3Ll2WUfp6sfjLsDc3jQuSDQwMDGY6U4qgNm7cyH/913+NC2wBGhsbueqqq7jxxhunsos5wWVH1/PZj30IHYgOZ2jNJhNep5XmijEBrd1ifIjMJjIxiHRBf+fwgA7+JjAXKB1JDsDbj8J7T4m62BGajoYjLoXKA4rbr6YKxYVYDLCIYLimGVxlU3k1cwZZk+lN9NId72YoPYTf6cdrz22AklSJx99/nKc/eBp9uL65paSFK1deSUtpS+G5d8nWNvga8Nj2by2zEg4jtbUh9wWxVlRgdo9mj3VZJnTHHST+9S8ATG431dddh2vFirxzaakUSqgfW1U19taWgnW4BgYGBjOZKQW3zc3NeYXLR5AkKW/gO9+oK3HQG01jMoHXaaOxzJUNaL0OqxHQziY6XoenvgSaLLKumoJHN3OCrOPZbgXzmHP54euh+mAhw/X2Y7Dx96CO+Xtp+BAc8XmxTTHomghq01FhvuBvgY4OKGsFl5GtBRhKD9EVF7W1ALXe8dnareGt3LH+Drrj3YDI1p554Jl8euGnZ1W2Vtd1lN5e0Tg2GMZaU4PZPqrkoEajBG++mczmzQBYq6up/ta3sDfkr+FW43G0cBhbXR2OBQuw+IxabQMDg9nJlILb7373u3zta1/jk5/8JIccckjOY2+99Rb/+7//y09/+tOp7GJO4LRZqPO7KB+uoTUC2lmKqsBrd0BoS86wBSiB8cZeG/8AO1+GDU+IJq8R6g4T5Qe1+bNn49A1Uc87UsdbcQCU1oNsAToMsX1ERrUn0UNPvIchaQi/I3+29jdbfsNftv8lm61dULqAK1deSVNJ04Rz96f6sZvtMyZbq6sqcmcnUkcHWiKJtS63cUzq6iL4gx+g9Ikg37F4MdXf+EZOucJYlHAYPZXE1twkFBH2QHrHwMDAYKYwpeD21VdfpaamhsMPP5xjjjmGRYuEVM7WrVt55ZVXWLZsGa+88gqvvDIqQm8ymfjZz342tVXPMlqrPKxoKDUC2tmKpok62WgX1B8hgtViaPsXKGMi3trlovyg7tDinq/rIuubGhJ1vBUHiJpad4UIaIc73uc74XQ4q4RgNpsJeAJYdikN2TK4hTvX30lPogcAq9nK2QeezacWfGrctmOJZqJEpSiVrkrqPHXUeGr2a7YWhhvHduxA7uxCBxHYjrm2pN55h/4f/Qht2I7Ts3o1FVdfnZPVHUHXddRQCHQd+4giQp7tDAwMDGYTUwpuf/7zn2f//6WXXuKll17Kefzdd9/l3XffzRmbj8Gty2bU0s5akoOirjbeC1IcapdBy2rYsWb3zx0JbKuWwIcuFYFxMe8DXYdMBJJhIeNVsUho3LorwOhYzyKpEt3xbnoSPUSlKOXO8nFqBWklzW+2/Ia/tv01m61d5F/ElSuvpMFXWGJtJmZrQZgvZNp2IHd1YfZ4sPr9OY/HnnuOgV/9ClTRbOg/91xKzzor7/VHV1Uh9eV04GhsxNbYmFc5wcDAwGC2MaXgVtO06VqHgcHMIhMXmdpoD6QGRTmAv1kEp4ddXFxwW3GAqKltOnoSQW1U1NXaPELSq7QO3JVGUDsGXdcZTA/SFe8imAxis9io89aNy6huGtjEL9f/Mlt/azPbOOegc/jkgk9OmH2NZqJEpAhVrirqPHVUu6snzO7uK5RwWGRse/uwlJdjGWO1qWsa4YcfJvrUU2LAaqXyS1/CW0CGUZdl5L5eLKWlOJqaxmV/DQwMDGYzht6UgcFYlMxwUNsNiRDYXOBvFPa3I1QeMHH21uaGj9wgtik2YEhHRZbY7hZBdEkdeKoKKy/MUzJqhq54Fz3xHuJSnAp3BS5rbn1oWknzyHuP8Ledf8uOHVh2IFeuvJI6b13BuRVNIZgMYjfbaS1pnTHZWhCuYtLOnaiDg1irqzE7HNnHtHSa0G23kVy7FgBzSQnV11+Pc/HivHNpmQxqsA9rZRWOlmasVVX75DUYGBgY7CuM4NbAAESzWLxXlCAkgkKjtiQAljz1h7ou6mYLBben/RQqDyxuv5mYCGqtDhFEl9SDt9oIandB13UG0gOitjbVh8PioM43Plu7IbSBX67/Jf2pfgDsZjvnLT6PU1pPKSpbW+kcVUKYCdlaXdNE41h7B2oiIax0raOXbWVwkOBNNyFt3w6AraGB6htuwFZTk3c+NZFAHRzEFgjgaG0t2GBmYGBgMJsxgluD+Y2mQTIEkU6I9wmpLk+VyL7mI7RVKCZ0rcv/eMtxxQW2UhwSA2BxCHvdkjrwVIPF+JPclZSSojvWTW+yl7gcp9JVidPqzNkmKSd55L1HeK79uezY4vLFXLnySmo9tQXnVjSF/mQ/NrONFp+ord1VZWF/oUsSmfZ25I4OdE3HFgjkuIRl2toI/vCHqIODADhXrKDq2mtzyhXGokYiaPEY9sZGHAtac/RwDQwMDOYSxiepwfxlbLNYJiYatnwFAqFEP7x+D7z/LAw3JmF15qohABx20cT7lJKQ7AezHXx1oqbWWwMW25RfzlxD13X6U/10xbsIJUM4rc68tbXr+9fzq3d+RSgVAsBhcXD+4vM5ueXkibO1UpRoJkqFs4I6bx017poZka0F0JJJMjt2IHd2YnK5sZXlGnQk33iD/p/+FD0t3n/ej32Missuy8nqjqDrOurAAKgK9pZW7K0teZUTDAwMDOYKRnBrMP/IxEVNbbR7tFmskF2unIT1j8H634waMJgscPCn4fCL4V+3ZssT5MZjsRVyGZOTIlNrNoM3IDK13hqwGkFGPpJyMmvGkJSTVLorcVgc47Z5aNNDPN/xfHZsacVSLl9xOTWe/LflITdb2+xrnlHZWhAZ1kzbDuSeHixlZVi8o2vTdZ3on/5E+MEHRXmMyUTZRRdR8qlP5VdE0DSUvj5MDjv25gXYGxvzBsAGBgYGcwnjKrcPSKVSRGeZJmliWCNz5N+Zxh6tT5Ug3g+JPkgOgc0BzloRrKaV3G01FdsHz+J4+wHM6XB2WG44msxhX0ArbQQdzEsvwDsc3A4tPhdHSsqdR84IrVoAVzl4q4bVD2yQTDPe+aF49uU52lf7GqmtDSaDhNNhXDYXlfZKSEOGUXe39QPruX/L/Qxmhm/JW5ycu/BcPlL3EcyYySTyOycm5ARxOY7f7qfaUU2FtQItrRFNz4y/T2VgELmnBy08iLmiErPdBpJ4LbqikHjgQdL/+IfY2OHA9+9fwnL44SRkadxcuqKiDIQwe73YagNo5eVkksl9+XJmJDP92mZgnKPJMB+OVSqV2v1Gu2DSdV2f6o4zmQzr1q0jGAxy7LHHUllZOdUpZzU33ngj3/ve97K/33bbbTQ1FXZAMphZVEXfYVnXY5SkO7NjQ64WNtSfz4Bvybjta4feBKDXf/g+W+N8JaWl+EvqL7wlv5UdW2hdyBmuMyizlE3wzNmNOZUm8PDDeLZuBUAuKaH7kovJ1Nfv55UZGBgY7F3a29u55ppr2LBhA0uXLi3qOVMObm+77TZuvPFGIpEIAH//+9858cQTCYVCLF68mJtvvplLL710KruYtWzcuJFly5bx/PPPc9hhh+3v5UyKRCLB2rVrWbVqFZ4CDSr7k6LWp+tCMzbeJ5rGVAVcfrA5825uDrfhXPcrrN1vZMc0dxWZQz+P3Hpi/rIFIJGWWbttgFWLKvBYEZlaTQVXmWhO81QKNYRpZl+eo725L03XGEgN0J/qJ5wJ47a58dl847Z7K/QW92+5nyFpCBDZ2vMXnc+HAx+eUKM1ISeISTH8Dj/V7moqXZX73WVsLLqiIPf0IPf2gapgKa/AZB59PWowSPSWW1G7ugCwtLRQct21WMrL886npdKoQ0NYKyuwNzRg9o0/lvOZmX5tMzDO0WSYD8dq3bp1nHDCCZMKbqdUlnDffffx1a9+lfPOO4+TTz45J4itrKzkxBNP5LHHHpu3we0ILpeLkpKS/b2MPcLj8czotRdcXyo82iyWjoK3QljY5iM5AG/cC1ueAX3YmMTmhkP+DfPys3BZHbjyPzN3LUqEEhQorRiuqa0VurV7mX15jqZ7X3EpTnesmz65D8ksESgPYNuluS4mxXhg4wOs6RqVXltZtZIvrvgila7Cd4lGamutdiutfqFb67PPrEBPS6XIdHVh7u7GYXdg3UXCK715M4M334w2XNbkXrWKymuuwezM/wVtRBHB1tSIvXUBFu/c/LCbDmb6tc3AOEeTYS4fK5ermE/gXKYU3P7oRz/i9NNP55FHHmFgYGDc44cffji33XbbVHZhYDA5xjWLlUzQLJaCd34L6x8dVT0wmWHJaXD4JSLzujs0RZg9ADjcUNUkFBfsRlAxEaqm0pvspSfeQygdotReSqV7fKC6tmct92y4h0hG3BlyW91ctPQiPtwwcbY2JsUYSg9R4RJKCLXu2hmjhDCCGo2SaWtD6e7B7Pdj2SXDGl+zhtAvfgGyDEDJ6adT9m//liMHNhZlYABkGXtLC/aWlhyjBwMDA4P5xJSC223btnHNNdcUfLy8vDxv0GtgMO0omeGgtquws9gImgpb/yakvZKh0fGmo+HIK6CsZff70zWRHU5HweoHYlC5BCoKa6oaCKJSVJgxJPtQNIWAJ4B1l/MUzUS5b+N9vNL9Snbs0OpD+eLyL1Luyn87HkS2NpQKYTFZaC5pnpHZWgClvx9p507k/n6slVWYx2QmdF0n8vjjDP3mN2LAYqHiC1/A97GP5Z1L1zSU/n5MFgv2Ba3Ym5oMRQQDA4N5zZSugH6/n1AoVPDxTZs2UVtrfNgb7EU0VZQfRDqHncVMInNaqMa18w1hwjDwwehYxSI46iqoL6IhTNchM2yV6yyFqsVgLoWtb+yTEoTZjKIp9CR66En0MJgaxO/05w08X+1+lXs33EtUErfiPTYPFy+9mOPqj5v12Vpd15G7upE62lEjEeE4Zhstw9AkiYE77iDx4osAmNxuqq+7DteKFfnnU1Xk3l4sXg/2piZs9fUFM7sGBgYG84UpBbennnoqd911F1dfffW4xzZu3MivfvWreV9va7CXGOmDDL0P6qDI3HqqCgeY4R3w6p3Q8eromKcSPvQFWPSx4uxupaQwc7A6oWwBlNaLOWKxKb+cuU4kE6Ez1klfsg8dnYB3fLY2kolw74Z7ea3ntezYETVHcNnyyyhzFi4RmS3ZWl1RkNo7kDra0SUZW6AOk2X0fadGIgRvuYXM5s0AWGtqqL7hBuwNDXnn0yQJta8Pa0U59ubmgpa7BgYGBvONKQW33//+9znyyCNZtmwZp512GiaTiQceeIB7772XJ554gkAgwHe/+93pWquBgSAVhoE28f/RLvBP4CyWHIQ374PNfx5tFrM64ZALYMU54v93h5IRQS0IVzF/gzBgmGFZwZmIrMn0xnvpTnQzlB7C7/SPM0zQdZ2Xu1/m/g33E5PFFwWfzcclyy7hmLpjis7WBjwBaj2144LmmYCWTpPZsQOlswtsNqy1tTmvS+rqIviDH6D09QHgWLyY6m98A0tpaf75UimUUD+2mhrsra1Yy+auDJqBgYHBZJnSp0BdXR1vvvkm3/rWt/jNb36Drus89NBD+Hw+zj//fG666aZ5r3lrMI1IidFmsaEBwCJUCZx5ShCUDLz7O3j7YdE4BqJZ7KBT4YjPC6vd3aEpQklByQjjhdJ6EdwarmJFEU6HhctYog+z2UzAGxhXJjCUHuKed+/h9b7Xs2Oraldx6fJL8Tv8BeceydaaMdNc0ky9r54S+8zsFFZjMaS2NuTubswlpVh26WhOvfMOwVtvRR82WPAcdxyVV1+dU66w63xaZAh7fT32BQtyHMwMDAwMDKbBoay6upq7776bu+++m/7+fjRNo6qqCrNR92UwXWSbxbpFA5jVMZyp7Rc1tmPRNdj6HLz+q9FsK0DjKjjySihfsPv9jTSLZWLCVax8oQiiDQWEopBVme5ENz3xHiJShHJnOW5bbrmIruu82PUiD2x8gIQsnHV8dh+XLbuMo+qOmnD+uBQnnA5T7iqnzlM3Y7O1IBQMpLYdyKF+rBWVOY1jALG//52Bu+8GVQXAf+65lJ51VsFstTI4CJk0tuZmHK2tBSXBDAwMDOYzU/pEuPTSS7niiis48sgjAaiqqsp5fO3atdx5553ce++9U9mNwXxFUyHWKxrGEuJ2Ld4aEdzuanML0P0WvHqHqMMdoXyBaBZr+FBx+0xHRbbWWQIVB4hsbTGSYAYADKQG6I53E0wGsZgt1HnrxhkmDKYGufvdu1kXXJcdO7ruaD6/9POUOApnX8dmaxt9jTSWNM7YbK2u6yjd3UgdHahDQ9hqanMysbqqEn74YaJ//KMYsNmo/NKX8K5eXXi+YBCT2YSttRVHc3PBzK6BgYHBfGdKwe3999/PSSedlA1ud6WtrS1bg2tgUDS6LuS8RkwYlPTEzWJDO+G1u2DnS6NjrnL40GVw4CnF1cbKSYj3i8C5rAVKG8Q+J6j3NBglo2bojotsbUyKUe7Kn619ofMFHtz4IElF3IIvtZdy2fLLWBVYNeH8cSnOUHqIMlfZjM/W6oqC1NGB1NGJnslg3aVxTEun6f/Zz0i9LkoxzCUlVF9/Pc7Fi/PPp6oovb2YPW6hiNDQYCgiGBgYGEzAXv106O7u3iNnCYN5TGpIyHrFeyEdA3cZ+PJ3gdvlKM61j8P7f8ptFltxLqw8V7iM7Q4lI0oddB18ARHUemvAMjMDp5mGrusMpAfoincRTAaxW+zU+cZna0OpEL9651es71+fHVtdv5qLl148obLB2Gxtg69hRmdrAbRMBmnHDuTOTjBbxjWOKQMDBP/nf5C2bwfA1tBA9Q03FFQ60GUZpa8Xi78Me3PTuPkMDAwMDMYz6U/wp556iqeeeir7+1133cVzzz03bruhoSGee+45PvShIm8HG8xvxjaLjZQFlDXldxZTMtg3/JaTNj2CTRtuFsMksrQfulRkXHeHpgglBTkl5LxK6kVdbSF9XINxpJU0XbEuepO9xKU4le5KnLuoT+i6zv+1/x+/fu/XpBRxrsocZVy2/DKOqD1iwvnHZmsDnkBes4eZhBpPILVtR+7pwezxjlM6yGzfTvCmm1AHBwFwrlhB9bXXYi7gB59VRKiqxt7agrWiiCZIAwMDA4PJB7ebNm3id7/7HQAmk4nXXnuNN998M2cbk8mEx+Ph+OOP58c//vH0rNRgbqJIEOserqvtB5uzsLOYrsEH/wdrf4Uz3jc6Xn+4qKutWLT7/en6sLNYRJQulLWKoNZhdJwXi67rhFKhbLbWZXXlzdb2J/u56527eDf0bnbs+Ibjuejgi8bJgY1F1VT6U/2YMNHga6DB10CpI78k1kxBGRwUGdu+PtE45s69a5B8/XX6f/Yz9LSwefZ+7GNUXHZZQScxNR5HC4ex1dXhWLBgnDWvgYGBgUFhJh3c3nDDDdxwww0AmM1m7rnnHi644IJpX5jBHCdfs9hEzmI978Crt0P/5uxQ1FmP9ZircC88trja2ExMZIXt3tFmMXdhK1eD8WTUDMGhIL3JXpJykgpXxbhsraZrPLfzOR557xHSqgjmyp3lfHH5Fzm05tAJ5x/J1vqdfuq8dTM+W6vrOkpvL1J7O+pgGGtNLWa7Pefx6J/+RPjBB8UXK5OJsosuouRTnyqsiBAOo6eS2JqbhCKCUdplYGBgMCmm9Kmhadp0rcNgvjDZZrFIJ7z2S9jx4uiYq4zUis/xz8yhfKS+fveBrZwS1rxmB/ibRQmCpwqMppyi0Ycd4bYPbSdiiuC2uanz1o0L0PoSfdz1zl1sHNiYHTuh8QQ+d/DnxjWYjUXVVEIpYeU9W7K1uqoid3YidXSgJZJY63Ibx3RFYeCee4j//e8AmJxOqr76VdxH5C/H0HUdNSTqv+0jigh2Q1PZwMDAYLLM3JSIwdwj2yzWJ8oC3OUFm8VIR2Ddg7DxD6ALDVAsduEqtvICZNWKvqF34v2pkgikNQ28tSKo9QWMZrFJIqkSnbFOAMKZMDXlNdgtuUGXpmv8bcffeHTzo2TUDAAVzgouX3E5K6tXTjj/bMvWgrC+FY1jXWAyicB2TKCvJhL0/+hHpN95BwBLeTnVN9yAo7U173y6qgqpL6cDR2MjtsbGnEDZwMDAwKB4pvwJ8swzz/DjH/+YdevWEYlEshmesajDAuUG85S8zWLN+ZvFVAk2/h7WPQRSfHT8gI8LaS9vtfg9n87tCJoq9iMnR5vFfHWintdgUkQyETqiHXTFuwCodlePC2x7E738cv0veW/wvezYSU0nccGSC+ZcthZASyTItO1A7urC7PFg8ftzHpf7+gj+8IdCMQGwL1hA9Te/ibU8fwmMLsvIfb1Y/X7sjY3jAmUDAwMDg8kxpeD2iSee4JxzzmHp0qWcd9553HHHHVxwwQXous5TTz3FAQccwBlnnDFNSzWYdezaLGZ1TNAspsP2f8LauyDWMzoeOASOvhoqD9z9/nQd0kMiQ+wqEyUIpfXgMJpxJouma/QmeumMdxJOh+lP9zOkDNFIY842z7Q9w282/wZJE182qlxVXL7ycpZXLp9w/pxsraeOWm8tNvPMNyVQwmGRse3tw1pePk7pIL15M8Gbb0aLRgFwr1pF5TXXFHQS0zIZ1GAf1soqHK0tWA27cgMDA4MpM6Xg9oc//CGrVq1izZo1hMNh7rjjDi699FJOPPFEduzYwVFHHUVrgdtwBnMYTRWlB0OdkAwOa8hO0CzWtxFe+QUEN42OlTYKBYSmo/egWWyR0Ks1msX2iLSSpiPWQU+iB0mV8Nq8XP/O9aDDSnklDhx0x7u5c/2dvB8edYM7uflkLlhywbgGs7GomspAegBd02dVthZERlbauRN1cBBrdTVmR+77Ob5mDaFf/AJkGYCS00+n7N/+raDhgppIoA4OYgvU4WhtGScdZmBgYGCwZ0wpuN20aRM//OEPsVgsWIclbeThC3tLSwtXX301//M//8NFF1009ZUazHx0XQSYQ51jmsUqwZ5fx5Not8jUbv/n6JizFA7/PCz5VP4M764oEgz1gtkmAuLSBvBUG81ie0g4HaY91k4wEcRtcxPwBni+/Xm0YZOMN/rfIDOQ4bdbfousib/1anc1V6y4gqWVSyecOyEnCKfCsy5bq2uaaBxr70BNJLDVBnIkvHRdJ/K73zH029+KAYuFii9+Ed9JJxWcU41E0OIx7I2NOBa0jpMOMzAwMDDYc6YU3LrdbuzD3bx+vx+Hw0FPz+gt5ZqaGtra2qa2QoPZQWpIBKuxntFmMW91/qxrJgZvPQQbfg/DARIWGyw7Cw79N5F93R2qIv5NDkJ5tSg/8AXEPAaTRtVUuhPddMe62RreykObH8KM+IIQzoSz292/5X40RlVSjm84nkuXXVp0trbeV0+jr3HWZGt1SSKzcydyZye6pmMLBHIysZokMXDHHSReFGoeJreb6uuuw7ViRf75dB11YABUBXtLK/bWlhzpMAMDAwODqTOl4Paggw5i06bRW8mHHHIIDz30EBdeeCGKovDII4/Q1NQ05UUazGCk5HCzWFcRzWIybHpKqCBkoqPji06CD31BlC7sDk2F1CDEE4BZlCAEFoDN0ALdU5JyMluGoOka3cluuuPdebcdG9gCtJS0TBjYJuQE4XQYv2N2ZWsBtGSSTFsbclcXJpcbW1lZzuNqJELw5pvJbNkCgLWmhupvfQt7fX3e+XRNQ+nrw+SwY29egL2xsaCJg4GBgYHBnjOlK+tnPvMZbrvtNm699VYcDgff/va3Of300/H7/ZhMJhKJBPfee+90rdVgJpFtFusebhazT9wstuNFoVcb7Rodr10BR10N1Yt3vz9dFxnhVBicZVDeCh07xT6NwHaPCaVCdMQ6CCaClDhKKHGU8PGWj7M1vJVXe16d8LlHBY7i5JaT8z6Wk631zq5sLYA6NERmxw7knl4sZWVYvLl3E6TOToI/+AFKMAiAY/Fiqq+/HktJSd75dEVB7uvFUlKCvbEJW72hiGBgYGCwt5hScHvddddx3XXXZX//1Kc+xT//+U+efPJJLBYLn/zkJznhhBOmvEiDGcRIs1i0W9TV6rrQqi3ULBZ8TziL9Y5asFJSD0deCS2ri2sWk+IQD4na3YpF4vmKFdg5LS9pPqJoCl3xLrpiXcTkGNWeUYkvq9nKvx/670QykRx5r7EcFTiKfz/03/Pq0WaztXY/gdIAAW9g1mRrAeS+IFL7TtRQCGt1zbjGsdQ77xC89Vb0ZBIAz/HHU3nVVZhs+V+jlsmg9gexVlRgb27GVl2911+DgYGBwXxm2u+JHXfccRx33HHZ32OxGL5Z5oueyWS46qqreO655xgaGuLggw/mJz/5CUcfffT+Xtr+Y2yzWKJPuH5N1CwW64G1d8MH/xgdc5TA4RfDkk8XVxurpCHeD2aLyNCW1IO3RjSLRaO7f75BXhJygvZoOz3xHsxmM3XeOsxjykhUTeXx9x8vGNgCXLrs0nGBraZrhFIhNE2j3ltPg7cBv9O/t17GtKNrGnJXF1JHB2oshi1QN65sIPb3vzPwq18JYxDAf+65lJ51VsEsrJZMogwMYKutwdHaOk4T18DAwMBg+tlrBV/BYJCf/vSn3HHHHYTD4d0/YQahKAotLS2sWbOGhoYGfvvb33LaaaexY8cOvN4imp3mGumI0KqN9QodWXeZsK/N94EuxeGth2HD46LGFoSSwbLPwqEXFqc5qymi1EGRRVNaSZ34MZrFpoSu6/Sn+umIddCf6qfMUYZ3l+a9UCrEbetuy5H4yse64Do+0viR7O9JOclgenDWZmt1WSbT3o7c0YmuqiKwHdM4pqsq4V//mujTT4sBm43KL30J7+rVBefMKiI01GNvXYDFW+CLoIGBgYHBtLJHwW0wGOTBBx/kgw8+oKysjDPPPJPDDz8cgK6uLv77v/+b+++/n3Q6zUc+8pHpXO8+wePx8N3vfjf7+3nnncfXv/51tmzZkn2d84ahdlAGRNbW4SvcLKYpsOmPsO4BEQyPsOAEWPVFEZzuDl0T6geZOHgqoGI4qLUbMklTRVZlOuOddMe7ScgJat212Hb5svB67+vcuf5OEnICALfVTVJJ4rV5ufjAiwm1hfiz9GfiSpz1/ev5SONHZn22FkBLpci0taF0dYHDiW0XIwUtnab/Zz8j9frrAJhLSqj+f/8P50EHFZxTGRgAWcbe0oK9pWVcaYOBgYGBwd5j0sHt5s2bOf744xkYGMha7d588838+te/xmQy8YUvfIF0Os2ZZ57JN77xjSkFg/F4nFtuuYXXXnuNtWvXEg6Hue+++7jkkkvGbZvJZPjud7/LQw89RDgcZsWKFXz/+9/nYx/72B7vf4StW7cyODjIokWLpjzXrECRRE0tQOgD8OymWWzny/DanRDpGB2vWSqaxWom1j7NzpGJQDIMTj9UHSSkvZyzpwFpJhOVorRH2+lL9GG1WKnz5jYzSarEw+89zLM7ns2Ofaz5Y5yx6Aye2/kcp7SeglNx0tHVwepDV/OPvn9w6oJTZ322FkCNRkVg292D2e/HsksJlTIwQPCmm5CGJQ1tDQ1U33ADtpqavPPpmobS34/JYsG+oBV7U5OhiGBgYGCwj5n0Vfc73/kO8Xic22+/neOOO462tja+9rWv8dWvfpVIJMJpp53GTTfdxIIFC6a8uFAoxH/+53/S1NTEypUr+ec//1lw20suuYTHH3+cr371qxxwwAHcf//9nHrqqTz//POsnuDW4e5IpVJceOGF3HDDDZTOdQchTYV4UCgaDAzrFXsqwFfgdmr/Fnj1Duh5e3TMVwdHXg6tHy6yWSwBiZBQPChbAP4GcFcU91yDCdF0jWAySGesk4HUAOWucty23Cx4d7yb29bdxo7oDkBkay9fcTlH1R0FwLmLzwUgo2QAKLGXcM5B58z6bC2A0t+PtHMncn8/1qrqcRa5me3bCd50E+rgIADOlSup/vrXx1nujqCrKnJvLxavB3tTE7b6+oLuZAYGBgYGe49JB7f/+te/uOqqq7jiiisAOPjgg7FarXziE5/g4osv5r777pu2xQUCAXp6eqitreWNN97gQx/6UN7t1q5dy2OPPcYtt9ySVW+46KKLWLZsGddffz0vv/xydtvVq1fz0ksv5Z3n29/+Nt///vezv8uyzNlnn82iRYtyyhTmHPmaxRx+IALWPJm4eBDW/gq2/X10zO6Fwy6CpWeApQhReiUj6mpNJuEqVlI33CxmmaYXNb/JqBk6o510J7pJq2lqvbXjGsD+1fkv7nn3HjKqCFwX+RdxzWHXUO0u3M2fVtL0x/sptZcSKA1Q56kbV94w09F1HbmrG6mjHTUSEY5juygdJF9/nf6f/hQ9I46N7+Mfp/zSSzFZ8r8/NUlC7evDWlEuFBEKZHYNDAwMDPY+kw5uBwYGWLGL+87KlSsBoXs7nTgcDmprdy/s//jjj2OxWLj88suzY06nk8suu4xvfetbdHR00NjYCMCaNWuK2remaXzuc5/DZDLxwAMPzF1NykLNYmkZiORuKyXg7Ufh3d+CKokxsxUOPkMEts78Gp85aIrI1CoZYZNbWieyvVbDpWm6GEoPCVOGZA8uq4uAJ5Dz/k0rae7dcC//6vxXduzTCz/NOQedk1faC0BHlCDFpTj1FfXU++opc5bl3XYmoysKUnsHUkc7uiSLxrExAauu60SffprwQw+JL30mE+WXXILv1FMLKyKkUiihfmw1NdhbW7GWzb7jYmBgYDCXmHRwq2katl2yHCO/7y8lgbfeeosDDzyQkl0E1FetWgXA22+/nQ1ui+WKK66gp6eHZ599FmsRNXPBYJD+/v6csW3btgGitCE606Sr5DQkgiJ7mhoCmxtcdaCbIC2TSAulg0RaBk3Ftu0ZHOsfxJweGp2iaTXpQy9DL6kHHUhJhfen65COCjUFpx98DSK4tbggmQbSk1p+IpHI+Xd/sr/Wsut+R9QQehO9xOQYfocfh+pASo6el52xndy+8XZ6U70A+Gw+rlhyBcsrlqOmVFTUcfuRNZmByAAANbYa6mx1WCQLUWmGvad3gy5JSF1dKH19YLVhKS/HpCpZK2ddUUjc/wDp//s/8QSHA9+//zvmww8jIed/b6uJJHosirW6Gr2uDsViMWTqZjgz6dphkB/jHBXPfDhWqVRq0s/Zo06HN954A+eY+rRYLIbJZGLNmjUMDQ2N2/6zn/3snuymaHp6eggEAuPGR8a6u/NbiRZi586d3H333TidTirHdE4/88wzORq+Y7n99tv53ve+l/exd999l0gkkvexmYEZEVzuEmDqOjvf/AdLux/DlR49hmH3AjbUn8+g9yBoB+idxL4sQGz4Z/sU1y1KUmYK+2sthfYbJJj9f13XeU16jWdSz2QD2AXWBZztOhtfu4+O9o68c+zKjg072MGOKa95/5OC2GgQak6lCPz6YTzDX0jl0lK6L7mYTHUVdBRxbLq6xI/BrGEmXTsM8mOco+KZy8eqvb190s/Zo+D2pz/9KT/96U/Hjd94443jxkwmE6o6Phs0naRSKRx5pHZGAvDJRv3Nzc1ZJYhiufrqqzn77LNzxrZt28YZZ5zB8uXLOeywwyY137Sja6KuNh4U/2oquMsLlgNkejfDK3dSFd+UHdM8NaQPvRRLy0dYWUyZhpwWCghWO7grRU2tyz8tzWKJRIK1a9eyatUqPAUafPYV+2stI/tdcugSIlqEgfQALpsLny234z8ux7ln8z2si6wDwGwy85mWz/Cp5k/lmDeMRUdnIDWAxWShylVFCSWsX7d+RhzvyaIODSF3daOEB7H4yzA7c68Val+Q6G23oXaJL3DW1lbKrruWQIHyAl0HdWAAzCZstbXY6sabPRjMXGbStcMgP8Y5Kp75cKzWrVs36edM+or8/PPPT3onexuXy0VmuPFjLOl0Ovv43qa6uprqAraaLpdrXMnEPkPXhXZsdLiuVkpAaaVoAMtHoh9evwf9/WcxDddZYvfAoZ/DvPQzuAvZ7I5lpFkMoLJOyHr5avdKs5jH49l/x3YX9vVaVF18aQzKQRLmBFVlVTituR3/Wwa38L9v/S+hVAiACmcFXz7syywuX1xw3rSSJpQK4S/xU+eto85TRyIubnnNpOO9O3RdR+nuRuruxhIZwhqoG9c4lt68mcGbb0YbLiVwr1pF5TXXjFNOyM6pqii9vZg9bqGI0NBgKCLMUmbTe3m+Ypyj4pnLx2pPYrhJB7cf/vCHJ72TvU0gEKArzy3Bnh4hZ1VXV4SBwFwkHRF6tdGeMc1izfkzp3IS1j8G638DagYToGFBOehT2I/8vKiT3R2aIrLCSkZkakecxYoJiA0mRVJO0h4Rt2rSapq60lwLXU3XeGrbU/zu/d+h6cIq9oiaI7hy5ZXjXMnGMpQeIiknCXgCNPoaZ2XTGAw3jnV0IHV0omcyIrDdRekg/uKLhH7xC1BEzW3J6adT9m//VjBY1WUZpa8Xi78Me3MT1traudtoamBgYDCLmRP30g455BCef/55otFozjeX1157Lfv4/mSfN5QpGVF+kAiONos5A6Cbh1UQxqCp2D74G471D2BODWaH03VH8VLpZzh42TI8um1yzWKeemGba3VBMgOMz6pPlZlURL8v16LrOhEpQk+ih1BEZGN9ug85OXpehzJD3PXeXWwMbwTAarJy3qLzOKn+JEyyiYw8/nyouko4FcZmsRFwBai11uY0jc2k4707dElC7u5G7u0Fs2V845iuk3rySZJPPCmeYLHgvfRS7Cd8hIQi551TS2dQw4NYyyuw1QVQPR6IxfbRKzKYTmbTe3m+Ypyj4pkPx2pPGspM+mSLS/cTIzq3+RzKXnvtNY466qgcndtMJsOyZcuoqKjg1Vdf3adrvfHGG3Oay2677Taampr26RqKoSr6Dsu6HqMk3ZkdG3K1sKH+AgZ8hW9bG8xctspbeTz5OAldXOgqzBWc6z6XOus8vXuxCyZZpubxJyh5+20AVJeT7gsvJDVf3AcNDAwMZhnt7e1cc801bNiwgaVLi3A9ZRZkbn/+858zNDSUVTx4+umn6ewUwdiXv/xlSktLOfLIIzn7ptiP9gAAfCZJREFU7LO54YYbCAaDLFq0iAceeIAdO3Zwzz337PM133jjjdx4441s3LiRZcuW7f2GMl2HZKjoZjFzuA3nul9h7X4jO6a5q8gc+nnMrSeywmQmkZZZu22AVYsq8DjziPTLaUiFwWIb0yxWts+cxWZSEf2+WEtSTtKd6CaUDGG1WCl1lKKkFHo391K7uBaTw8STbU/y5/Y/Z59zTM0xXHTgRbisheuVIpkIkipR5aqi1lNbsGRhJh3vQqiRCHJ3N0ooJBrHXLl1s1o0SvTHP0Z5fysA5poa/N+4jpoJypaUSBQyaaw1NdgbGjDlaVw1mF3MhvfyfMc4R8UzH47VPmko29fceuut7Ny5M/v7k08+yZNPituJF154YdYS98EHH+Q73/kODz30EOFwmBUrVvCnP/2J448/fr+seyx7raFsss1iyQF4417Y8oxQTwBRsnDIv2FefhYuq4NdwyCP00aJa0yQrEqiWUzXoSIgmsW8tWDZP2+lmVREvzfWous6wWSQrlQX/Wo/ZaVl2QA0M1zuMcQQv1z/S7YOiaDNYXFw6bJL+XBj4fp4RVMIJoO43C6a3E00ljRiL8JZbiYd7xF0XUfp7RWNY4NhLIE6zPbc1yJ1dBD84Q9RgkIezbFkCdXf+AaWAq9F13XUUAh0HdvChTiamzHZDaORucRMfC8b5GKco+KZy8dqnzSU7Wt27NhR1HZOp5NbbrmFW265Ze8uaKaQjoqgNtoL6bDImpYVahZLwTu/hfWPgjKsZWsyw5LT4PBLxHN3h6aIQFpOgWe4WcxXB7b8XeUGU0dSJTrjnXTHu0kpKWo9teOsbjdKG3nqjadIKkkAmkua+cphX6HOWzgbmZATDKYGqXJXUe+tp8ZdM2sbo3RVRe7oINPRgZ5KY60b3ziWeucdgrfeip4Ux8hz/PFUXnXVOOWEsXMqwSAmpwNHYyO2xsaCtrsGBgYGBjOPPQ5uk8kkxx13HF/84he58sorp3NNBhMhp4YVELogMQAOD/ib8stsaSps/Ru8fo8oWxih6Wg48koRDO8OHRHUpiPgKgd/M5Q2gGP/uNHNFyKZCB2xDnoTvTgsjnEWupIq8cCWB/i/5P9lx05uPpkLD76wYAZW0zUG04MoqkKjr5GmkiZ8dl/ebWcDmiQh7diB3NkJJjPWQGBckB77298YuPtu0MSdCv9551F65pkFg3ldlpH7erH6/dgbG0WwPEsDfwMDA4P5yh4Ht263m7a2NuPCXwTTopagKaIcIBaE1KAoA3BWg9kKGRV2sU219LyF881fYgmPuoCpZQtJH345auDQ4YUVVkDI2u8OdIPbDe5m8FWDsxQyGmT2r8XoTOoQnc616LpOKBWiL9lHJBOh1FGK0+TMsdDtTnRz+8bb6UgI5yy3xc1lSy7jiKoj0NN6tlxhLLImE06HcVld1LvrqbZVo6d1ounizuNMOt4Aeio1bKUbxORyYSnxwRiLXF3TSDzyCOm/PCMGbDZ8V16B9eijC1rpapKMNhDCXFaOva4O1eczFBHmIDPtvWwwHuMcFc98OFb7XC3hggsuIJ1OZ2tgDQT7Uy3Bl+ri4O7HqI2uz46lbGW8FziLjvJjRTmCwaxE13Xekt7i6dTTyIgvH42WRs7xnEOZeXbq0e4NTJkMgccew7vpPQAUr5fuiy4i3TzzFEsMDAwMDCZmT9QSphTcvvfee5x99tkceuihXHHFFbS2tuYt/C0vL9/TXcxqRtQSnn/++cmrJei6KAWIB0VJgZwCt180gOXBlArjeOchbFv/gmm4WUy3OsksPRfp4DPBWkRtrCoLXVxNI2EpYW1bhFVHHI7HN/OK1GdSh+h0rCUqRelN9DKQGsBhdVBizz3mKSXFA+8/wCt9rwBgwsQn6j7BkYkjqV9Sj801vn5URyecDqPrOlWuKgLewITKCRMxE463ruuoAwPIPT1okQjm8grM9tzXrQ4MEL31R6jDTaiWhgZKvnEdlqqqgvOqsTh6MjGqiFDAncxgbjAT3ssGE2Oco+KZD8dq3bp1nHDCCftOCmxkJ5s2beKRRx4puJ2qqgUfmw9MWi0hHRV1tbHhZjF3mShByFcComTg3d/B248IlzEQ2dmDPonpiEtwuivY7Ue1pgolBTkp1BZ8dWAqhbaX8PhKZnQH5kzqEN2TtaiaSk+ihy65iyF9iMqyynEWum2RNn725s/oTfYCUGov5UuHfomD3AfR8VYHNpcNhydXoiqjZhhIDuDz+qj31lPnrcNqnnr/6P463rqmIXd2InX3YEkksNXVY7Lmvp7M9u2Eb7oJdVCYkThXrqT661/HXOCCPxIsoyrYFizE3toyTmXBYO4yk64dBvkxzlHxzOVjtc/VEr773e8aNbfTSbZZrFtka+0TNIvpGmx9Dl7/lajFHaFxlWgWK1+w+/3purDlTQ0JxQR/s5D2cvhgXzqqzVNSSor2aDu9iV4UXSHgCWAZc651XeevO/7Kw+89jKIJd63llcv50iFfwu/0k0nkd36LZqJEM1FqPDU0+BqodFXuk9ezt9AliczOncidneiaji0QGGeRm1y7lv6f/Qw9I46J7+Mfp/zSSwuqHOiahtLXh8lhx968AHtTk6GIYGBgYDBHmFJwe+ONN07TMuY5qgyxHoh0iUDVbIWSemGQkI/ut+DVOyD0/uhY+QI46ipo+FBx+8zEhtUWvFCxSCgg7EMThvlOKBWiM9ZJX6IPn8NHpSM3AI1JMe5cfydv9r0JgNlk5tyDzuW0hadhLlA3rekawWQQi8lCS2kLjb5G3AXKWGYLWjJJpq0NuasLk8uNrSy3tljXdaJPP034oYfElzWzmfKLL8Z36qmFFREUBbmvF0tJCfbGJmz1hiKCgYGBwVxiWnVuRzra9iSFPJcpqJag66IcIN4n5LY0ZdRZTNKB3K5uc6QDx7q7sXW+kh3TXOVkVl6MvPBkkeGdQAEBAEUS+zJbwV0rnMXcFaCYcjrDZ3oH5kxa32TWouoqwWSQYDJIXIpT7irHptjIKKNZ2C1DW7hz050MZsTt9QpHBVctvYoDSg9ATsrZ7eSUnP1XUiXCmTA+m49qdzXVlmqUlEI0NT0Z+P1xvLVYTCgi9Icwl5ZgcbtBGj1OuqIQv+9+Ms8/LwYcDkq+/O+YDztsYkWEwQHMfj+2QACtxEfaUESYV8yka4dBfoxzVDzz4Vjtc7UEEF1s//Ef/8Ff/vIXQiGhpVpZWcknP/lJ/uM//oPm5iK0VOcY062WYJejHNT7B1pC/4cZ0SymmO1sqz6VbdWnolqMBpi5gKZrvJB5gf9L/x864s/yYNvBfMb1GVxm4wvjWMypFIFfP4xn2zYA5NJSui65GGkCK10DAwMDg9nHPldL2Lx5M6tXr2ZoaIiPfexjLFmyJDv+t7/9jbKyMtasWcNBBx20p7uY1eRVS5ASQgEh3g9SVNS3Okog311RVcL+3u9xbHgU03CzmI4JeeHJZA65BN1dsftFaJpQXZBT4PKDpxq81WB1TPi0md6BOZPWt7u16LpOOBOmN9HLYGaQElvJuHKBcCbMLzf9kveGhHyVzWzj/EXnc2LdiQVvmaeTafq39ONZ4KG2rJZaT21RFrp7wr463rquo/T1Iff2oiUSWCsqMVlza2HVvj6it9yK2t0NgHXBAkqu/TrmssJyaFlFhOpqbPUNmN3Gl4X5yky6dhjkxzhHxTMfjtU+V0v45je/idls5q233mL58uU5j23YsIGPfvSjfPOb3+T3v//9VHYz63G5XJS47MJVLDbcLDaRs5iuwQfPw9q7RMnCCPWHYzrqKuwVi9htCDMiJZYZtuataRZ1vM7JdVPO9A7MmbS+fGuRVVlY6MrdJEwJAuWBcQHo28G3uf3t24lKooSgzlPHVw7/Cs0lhe96JOUkkWQEgNaqVlprWgvW4k4ne/N467JMZudOzN3d2FQNa33DuMax9ObNDN58M9pwmY/7yCOpvOYazI7CX9aUgQGQZWwLFmBvaZlwW4P5w0y6dhjkxzhHxTOXj9U+V0t44YUXuPbaa8cFtgDLli3j3//93/nxj388lV3MDRIh0QSWCIlgdqJmsd534JXboX/z6FhZCxx5lVBCKKbxRYpDfFhtoWKR2J+73GgW28fEpFhWDcFqsRLwBnICUEVT+M3m3/D09qezYx/+/+3dd5xU9dX48c/0nZ3tve9SRAIoYMESuyYaUR8LFtQoGsVoxEeNXWnWGI0KwS5RolFjjSXFaISfD4mKiagBEUWB7bOzdXb6vXfu749hVxZ2l5ltMzt73r72hXvnljP3DsOZO+d7vmVHctG0i3ZrB9ZF1yO9awNagEJ7ITXUkJ+aPyKJ7XAK+/0Et25FrasDWwqWvN370no++IDmRx4BNdI5IuPUU8k+99zdEuAuejiM6nJhMJmwjh8X6YhgHtJhBkIIIRLQoN7pFUXpN6NOTU1FUZQ+Hx8z2raDVwVHPlj6OF8dtfDxE7Dtg++X2bPhgIth759EBoDtiRqMdFswGCGrPJLUphX0fndYDBtd13H6nNR56nD5XOTYc3BYen5d5PQ6Wb5+Od+2fwuAzWTjkn0u4fCyw/vcrxpWafI1YTfbmZA5gUwyqaFmWJ/LSNDc7khiW9+AMSsLU3p6j8d1Xaf9pZfoePnlyAKTidz580k/9tg+96lrGkpjI6Y0B9aKCiylpX0mwUIIIZLLoJLbmTNn8tRTT3HJJZeQmZnZ4zG3283KlStjn5krGRmNkRKE3gQ64NPfw8Y/gb5jsguTFfY9C6afC9YoWjmF1chdYTUUSaAzSyG9ONJ1QYyokBaixl1DvbeegBagOK14t8kTPqr/iMe/eBy/GhkBWpVRxVX7XUVJWt+DobyKl1Z/K/mp+ZSmlVKYWkhnEozyV10uQtu3o7hcmPMLMO4yO1g4FKLlkUfwrl0LgDEtjfzrrsM+bVqf+wyHQmhOJ+bcHKyVlVgKC4f1OQghhEgsg0puly5dygknnMDkyZO56KKLmDRpEgCbN29m1apVtLS08PDDDw9JoKOZ7V/3oW37/s5d4JBr0XImYN38Jrb/Po8h5AF2DBYbfyzBGRehO/JBo//WXroemc0s5Inc5U0vjwwYM6WALwAEBhxzorcXSaT4umJwtbtob2un2d+M1Wwl15qL5tfQiHxoCWkhnt/yPKvrV3dv+6OyH3H2hLOxGCy9Tsqgo9MR7EDVVApSCyg2F5OqpdLZ2Tmi52Coj6XrOmqTC6WxgXBnJ+bcPEJGQ49WX+GODtwPPIj6zTcAGAsLybj+OrSSEjyh3iewCAeCaG2tmPPysJSUoNnt+GVCErGTRHrvEL2TaxS9sXCu4tIK7L333uP666/n888/77F8xowZ3HfffRzbz1eHyWrXVmAbLncwteD70gBX2hRSQy4cIddOy37AxtK5dKRWjWSoYoQ0aU380ftHnOHIAEG7wc7pqafzA8sP4hxZYrI6nZQ+/QyWtjYAfOOqqP/pTwkn6WhgIYQQvRvRVmCKorBp0yZycnIoKyujsbGR7du3A1BZWUlRUdFAdptUulqB7Zrc7kzLKCO436WoZQdHN+BL8YOvHSw2sOdCehGkZA75YLFEby+SKPH5FB+1LbXUbarDVmUjNysXk6HnFLofNHzAc988RygcuQu/V+ZeXD7lcnJT+m7l5lN8dCqdZNuyKXYUk2XL2q0l2Eieg6E6lh4KRSZmcDrBbMGUmbnbSzf03//S+dAy9B2f1m2HH07aJT/DYOljECagdnRAKIS5sBBrWRkGq5TkiN4lynuH6Jtco+iNhXM1oq3AjEYj+++/P7/5zW+46qqrKCoqkoQ2FimZsP9FmH5wEqkxDRYzQF4JZJVFZhcb5sFiid5eJF7xKWGFRm8jjUojrnDkDnxBdgE2x/dtpnyKj6f++xT/qv8XAAYMnLrXqczZaw6mPq5bWA/T7G9Gt+hUZVVRkVGx22C0XY3kORjMsbQdM44ZGhqwZ2Ri6mU/7nfewb1yZaQ/M5A1dy6Zp5/e91S6uo7a1ESK0YBlwgRslZX9JsFCdEn09zYh1ygWyXyuRrQVmMlkorKykmCw99o30QejOTJYbMa5YE3b8/phNTJFrxqE1Lwdg8VKZLBYnOi6TmuglXpPPS6fC92g4w65aVabKae8e71v279l+afLcfoiZQhZtix+MfMX7JO3e9u8LkEtSLOvmXRrOqVppZSklew2GG20UpubCW3bjtLswpybh3GXNytd02h79lncb78NgMFqJe/KK3Ecemif+9Q1DbWxEaPDgbWiHEvZ7n1xhRBCjD2D+pdzwYIFrFixgp/97Gfk5OQMVUzJy5EPp/w2UkqwJ3oY/G0Q7AR7DuRMgIySSO9aERc+xUeDp4FGXyOekIccew5hPcy1n10LOkxXpmPVrfxl6194ftPzaDu6X0zPn84VM64g05bZ577dQTfuoJtCRyFl6WXk2fNG6mkNK13XUevrCdXUoLa1Yykq2u3Oatjvx7VsGf5//xsAY2YmhTfeiG3HANVe96soqM5GTFnZWCsrMBcV9Xl3VwghxNgyqORW0zRsNhsTJkxgzpw5VFVV7Xb72GAwcM011wwqyKRx/N3RJbYBN/haI7OJ5e4FmWWRqXNFXGhhjSZfE/Xeelr8LdjNdkrSSzAajKyuXk1Yj3yF/s/Gf/Ll11+yvmk9ACaDiXMmn8Ps8bP7nGQhrIdp8jVhMpioyoyUIdjNyTE1rK6qhGpqCNXUogeDWEpKMJh6lmOoLS003XMPoW3bALCUl1Nw881YCgr63G/Y70dtdmHJL8A6rgpzbhTTUAshhBgzBpXcXnfddd3/v3Llyl7XkeR2h6rDIW+v/tcJ+SJ1teYUyK6EzHJw5MnMYnHUHminzlNHs7+ZUDiEqqvc/fHd3Y+3Bdu6///5Lc+jExmfaTKYWDBzAQeXHNznvgNqgGZ/M1m2LErTSil2FPdZizvahINBQtu2odTWgsnc653V4Lff0nTvvWitrQDYZ8wg/9prMab23dtZ83gIt7VhKSnBNn78bhM+CCGEEINKbrdu3TpUcSS//S7o+zE1CL7mSN/a9JJIXW1aIZiSo95yNApqwUgJgreRjmAHmSmZ5Fnz+Mt3f6HWU9vrNl2JLYCma7QGWvvcf3ugHZ/io9hRTHl6Odkp2UP+HOJF83gIbd2KUl+PMS0dU+bu5RjedetoXrYMfUfNfvoJJ5Bz0UW73dndmdrWhu73YamswDZu3G51u0IIIQQMIrn1+/0sW7aMo48+mpNPPnkoY0o6wbx9cDsqd5+QIaxFZihTgpCaFUlo0/LBYAWvLy6xdkn0xtDDFV/XgDGX30VboA2LyUKuNRejYiSoBDky/0g25W/iE9cn/e7nwPwDOTL/yN0mZtB0jTZ/ZL/F9mKKzEWYQibcodgnGkjESRy0jg6U+nrU5mZMWdkY7Sk9JmbQdR3/n/+C74UXIh/mDAYcF/wU2/HH49VU0NTd9qnroLW1ga5jKS5GLyyMTOstU3uLAUj09zYh1ygWY+FcjfgkDg6Hg2XLlnHJJZcMdBdJaddJHFb++iZyJ/X99bQYXdSwypPeJ6nT6np9fJplGmemntmj360ANI3C1/9E5ieRDwZhq5WGc8/F+4PJcQ5MCCFEohrIJA6D+t57//33Z8OGDYPZRVJasmQJS5Ys6Z7EYXxVFftN2zGQLOSLdEGwpkUmYcgoBFvi9aZL9MbQQxmfGlZp9jfj8rvoCHWQZkkjzdJ7m7bOUCfPfP0Mde7eE1uAy2ZdRoa15zXtCHYQ0kLk2/MpchSRFk0buD1IlEkc9HAYtbGRUEMDBEOYcnMxmHoOoAt7vHQuW4aycSMAxtxcsq6/joKKij6PqSsqakszpowMLEVFmPLzpSOCGLREf28Tco1iMRbO1aeffhrzNoNKbh966CFOPPFEpk2bxrx58zCbpUa0N3arkQyzGhksZrJBYVWkA0JqHiR4X85Ebww9mPh0Xacl0EKDp4GmUBMGs4HS9NI+e8t+1vQZj33+GO3B9n73u9GzkaPKjwIiiXOTrwl7qp1KRyVl6WVYTUPboziekziEQyFC27ZhrK/HajBiKi3dLQFVGhtpuucelLrIBwLrxIkU3Hgj5uy+64zDwSBaWyvmggKsVVWY85KjNZpIHIn+3ibkGsUimc/ViE7iADBv3jyMRiOXXXYZV111FaWlpb22Avv8888Hc5jRL+SNtPZKK94xWKxIBovFmU/xUe+px+lzdvesTbX0Pko/qAX5w5d/4O/b/969LCclh9ZAK2mWNC6cdCHNW5v5c+jPeFQPn7s+56jyo/AqXlr9reSn5lOaVkphamFS3XkMe70Et25DqavF6EjDlJW12zqBTZto+vWvCXd2ApB68MHkLViA0Wbbbd0umteL1tqKpbgY27iqXgekCSGEEH0ZVIaVk5NDbm4ue++991DFk5xSMqBwaqQTgiUl3tGMaV13Uhu8DZGetZbve9b25rv271jx2QrqPfUApJhSmDdtHjMLZvK3rX/jhHEnkKKmUFNXw2EzD+Mfzn9wwrgTaPY3o2oq5enlVGRUkG5NrpZValtbpNVXoxNzTg7GXr4O83zwAc2PPAJqZJBY5mmnkTV3br+ziGkdHYQ9Hqzl5djGj+u3LZgQQgjRm0Elt2vWrBmiMJJc9njIGR/vKMa8rp61Lr8LJayQn5rfZ4mAFtZ489s3eeXrV7pnGts7e2+umHEFhY5CAM6efDYAQTXSDSDDmsHpe52Oy+fCYXFQmVVJaXopFqOl12OMRrquozQ2EqquRmtpwVxQuNtdWF3XaX/pJTpefjmywGQi97LLSD/mmH73q7W0gKZirarCOq4Ko1WmmBZCCBE7+W58JFikH2c8BdQADd4GnF4nHcEOslKyyLfm97m+0+vk4c8e5uu2r4HIhAxzJs3hfyb+T593eCFS6uANe8mz51GRXkGePS+pyhAA1MZGgq5mNK8XS0npbn1pw6EQLQ8/jPef/wTAmJZG/nXXYZ82rc996uEwqtOJwWbFWjkea0VFv/1uhRBCiP7EPJrpiiuu4N875oAHUBSFl156CZfLtdu67733Hsf0c7dGiOEU1sM4vU6+av2KLe1bCIaDlKSX9NmpQNd1Vlev5sYPbuxObEvSSrjjh3dw2l6n9ZnYdk3e4Ff9VKRXMDlnMvmpyTWyX9/RUzZUU0M4GMRSXLxbAqp1dOBcsqQ7sTUXFVF89939J7aqitJQjzHNgW38BKxVVZLYCiGEGJSY79w+9thjHHbYYRxwwAEAuN1u5s6dy7vvvrtbIut0Ovl//+//DU2kQsTAHXLT4GnA6XMSUAPk2nNJMfdd7+wOunnyiyf5xPn95Aw/rvwx5005D5up78FPIS1Ek68JgIqMCiZkT+iz28JopbndhLZti/xiMmPJ3/2ud6imhqZ77kFtipwL25QpFFx/fb/T44aDQTRXE+bcXKyVlVgKCoYjfCGEEGPMkPwrPIh5IIQYUoqm0OhtpN5bT3uwnXRrOiVpJf3eRV3vXM9jXzxGR7ADgCxbFj+f/nNmFMzo91g+xUeLv4VsWzZOnBQ7ipMqsdV1HdXpJFRTg7IjaTVn7t5qxv/ZZzQ98AC6LzKrnuOoo8i77DIMlr5rjcM+H2pLC5aiQmzjxvXaaUEIIYQYiOT5lziB+f1+3O7Yp1eNp0Sf0m/X+HRdpyPUQZOviVZ/KwaDgZyUHEyqiZAa6nUfQS3Ii1te5P3697uXHZB/APMmzSPdmr7b1Lk7c4fcBNUgBakFZJGFE+eIn6vhvEa6qqI0OlGcjeiBIKHMLGhpxrfLlLf+997D+8wqCIcBSD37LFJOOQWvHu4x7e7OtE4Pus+LuaAASkpQjUYYZX8/xOiV6O9tQq5RLMbCuRrI9LuS3A6DXaff/e9//0tHR0ccIxq4devWxTuEfvUXnw9fn4/VqrW84nuF5nAzADZszE6dzczQTNo3ttNOe1THr9nx355iGU5DfdySZ1ZhaWnZbXkl0LbjB8Ds6cTki7zphM1mGs8+C8+++0JtbXQHqq2Nfl0hhliiv7cJuUaxSOZzVV1dHfM2ktwOg12n391nn33Yb7/94h1WTBJ9Sr+u+CbsMwGPwUNboA27xU66NR0DfZcgaGGNt6vf5o1tb3S3+JqUOYn5P5hPvr3vDgoQ6ZHbEmgh3ZJOQWpB96QM8TpXw3Fcra0NV8dytB1lCNEwZGaS/ctrKZg4sc919LCO1toKJhOW4mIsxUUycEzERaK/twm5RrEYC+dqxKbf/f3vf89HH30EQCAQwGAwsGLFCv70pz/1WO/rr78eyO6Tjt1uH7XT4iXqlH7uUORr7EalEVKgOLcYi6n/frKN3kYe/uJhvmn7Boi0+Dpr77M4ecLJ/bb4gkh9bau/lYLsAiozKsmz7z4dbLzO1VAcV9c0lNpaQnV1GMJa9BtaLJT+6leYexlk1r1vVUVxOTGlObBWVGApLe13IgchRkKivreJ78k1il4yn6sRm37373//O3//+997LNs1se2STO2QRPwF1AD13nrqOuoASDGnkJ2W3e82uq6zumY1qzauIqhF6kBL00q5cuaVjMsct8djtgfa8ak+ytLLqMqo6rOV2GgV9vsJbt+OWl+PjgGDOfpJJywFBf0mtuFQCM3Z+H1HhMLCoQhZCCGE6FPMyW14x8ARIUZSWA93T5vr8rswhyMv3VRL/9OzuoNunvjiCf7t/L438wlVJ3DuD87tc3aynY/p8rkwGUyMyxhHRUbFHrcZbdTWVkLV1agNjRgzMzHH+sm/nw+vYb8ftdmFpbAQ67hxmLP7/xAihBBCDAWpuRUJzx1yU99ZT5O/iaAWjJQEGKCTzn63+9T5KY9//jgdochgvmxbNj+f8XOm50/f4zEVTaHJ10SGNYPS9FJK00r3WLowmujhMEp9A0ptDVpbG6ZeptEdDK2zk3BHO9bSUqzjx2NKS6673UIIIRKXJLciYYW0EI3eRhq8DbQF2si0ZZKTkoPBYCBI3226AmqA5758jveq3+tedlDxQVyyzyWkW/ueVKBLV//a/NT8PutrR7NwMEiouhqlrg5dUTH3Mo3uYKitrRAMYKmsxDZuHMaUvifPEEIIIYaaJLci4ei6TkughXpPPS6fC6PRSHFadBMkbGnbworPVtDobQTAbrZz0bSLOLz08Kjqv9sD7XhVb9LW12odHYS2bUNpbMSQ6sCS13+HiFjouo7a1ITBaMAybhy2ysp+J3IQQgghhoMktyKheBUv9Z56mnxNeBUvOfYc7OY9j5TUwhqvb3md1755jbAeqQufnDOZK2ZcQUHqnqd13bm+dnzG+KSrr9V1HbWxkVBtLWpzM+a8fIx9jEDVB1BXr2saamMjRocDa0U5lrIy6YgghBAiLiS5FQlBDas4fU4aPA20BFpwWBx7nDa3S4OngYc/e5gt7VuA2Fp8wff1tenWdMrSy5KvvjYUIlRbS6i2Dt3vx1JcgsHc+199pa4O1emMbf+KgupsxJSVjbWyAnNRkXRJEUIIETeS3Iq4aw20dpcghAlTmFq4x561sKPFV/1qXtjyQneLr7K0Mn4x8xdRtfiC5K+v1TweQtu2ozbUg9WGuaTvDwyBL7+k6de/Bi2GPre6jtLYgCW/AOu4Ksy5uUMUuRBCCDEwktyKuPGrfhq8DTR6GulUOsmyZUVd4+oOufmD9w98tfmr7mU/GfcT5k6eG3U5QXuwHa8Sqa+tzKiMarDZaKI0NaFU16C4XJhycjD1M3uN95//xPXb34KqAmDMyMC0U1uwsK7jUxRSLRaMO5JjPRzGlJWFpaQE2/jxmNKT6/wJIYQYnWJKbi+++OKYD2AwGFi5cmXM24nkpYU1XH4X9Z56mv3NpJhTKEkriboU4D/O//DYZ4/RqUZageWk5HD59MvZJ3+fqLYP62Ga/c0YMTIuYxyVGZXJVV+rqt2zjWmdnViKivoc2KXrOu4//Ym2P/whssBkIu/yy0k76qge63lCQTbV1HBoeTlpVhtqWxu634elrCzSEWEAM8gIIYQQwyGm5Pb999+PuZZOau/A7/fjdrvjHUZMvF5vjz+HiifkocnXRGuglVA4RHZKNpawBcWn7HHbgBrghW9fYE39mu5lB+QcwEVTLiLNkkbQ23d7sC5qWKU10IrD4qAwtZB8Yz4Bb4AAgQE/p+E6VwM5rh4IEKqvR21qAqMJU14+IT0Mod3Pja5peJ95hsA/3gfAYLeTfs3VMG0anl3W9ymR6+MNKaitbaDrWIqL0QsLURQFlD1fPyESQbz+voroyTWK3lg4V36/P+ZtDLqu68MQy5i2ZMkSli5d2v378uXLqaioiGNEo1+NWsMrvldoCbcAYMPGyaknM90yXT5ADYAhGKT4+edJ+2ozAEpmJnUXX0SoqCjOkQkhhBDfq66u5qqrrmLDhg1MnTo1qm0kuR1GGzduZNq0aaxevZr99tsv3uHExOv1sm7dOmbNmoWjn1rNPdF1nfZgO02+JtoCbRiNRrJsWVGXIKhhlbe2v8Wb29/8vsVX1mQuGncRylaFoslFWOx7HnzWqXTiV/wU2AsoTivGYRn4c9rVUJ2rgR73wAMPxOb1ojQ2ors7MebmYrT2fU60tjbc992Ptm0bAKaqKjKuvw5TP9Pjev0BPm92sW9mJpllZZjy8+VDhRiV4vX3VURPrlH0xsK5+vTTTzn66KNjSm5lQNkIsNvtZOw0OGc0cTgcA47dq3ip89TRpDThxUtudm5UPWu7NHgaWPH5Cr5t/xaItPg6Z/I5zB4/G8WnUEMNFrsFm6PvaWO76msNVgMTciZQkVGBzTR008zubDDnajCsLS1Ym5uxaGHMZWX9zjYWqq7GeffdaM3NANhnziT/2mv7rZnVVRWlvR2ArHHjyK6sHNL4hYiHeP19FdGTaxS9ZD5X9gGM6Rh0cvvXv/6VBx54gE8//ZSOjg56uxGsxdJaSIx6SljB6XXS6G2kJdBCmiWN0rTSqO/06brOP6r/wbNfPvt9i6/0MhbMXEBlRvSJlRpWcXqdpFnSKE8vpyStBJNx6KaZjbdwZ2RAnVJbS0p6Bub8rH7X93/xBU3334/u8wGQ9qMfkXvJJf0mw7qqojY2YMrOAper37u7QgghRCIYVHL76quvctZZZzF16lTOOeccHn30Uc4991x0XeeNN95gr7324tRTTx2iUEWi03WdtmBb9wxjOnrUPWu7tAfbefzzx1nftL572YnjTuScyefE1NHAr/pp8bWQl5pHRXoF+alDN81svOm6jtrQQHBHWYExM6tH267eeNasofnRR7t72Gafdx4Zp57a7weO7sQ2NxdrYSG4XEP2HIQQQojhMqjk9p577mHWrFmsXbuWtrY2Hn30US6++GKOOeYYtm3bxsEHH8y4cdE10xejm1/1U99Zj9PnpFPpJDslO+a61n83/pvHv3icztBOLb5mXM4+edG1+OrSEezAG/JSmlZKRWYFGdbk+apGD4UI1tSg1NUR9kVGkBpT+i6z0HWdjldeof2Pf4wsMJvJu/JK0g47rP/j7JTY2saPR+ujlZgQQgiRaAaV3H755Zfcc889mEwmzDum81R2tASqqqriiiuu4N577+WCCy4YfKQiIWlhjSZfE/Xeelr9rdjMtph61kKkxdeqjatYXbO6e9mhJYdy8bSLo57UAXaqr8VAZWYllRmVw1ZfGw9aZyeh7dtR6usx2FIw5edDbU2f6+uKQssTT+BZHTmvxrQ0Cm64gZQpU/o9jq6qqA0NmPIiia05NxdGWSs7IYQQY9egktvU1FSs1shXxVlZWdhsNhoaGrofLywsZOvWrYOLUCSsjmBHdwlCKBwiLzUv5skQvm77mofXP4zT5wQg1ZzKxftczGGl/d9Z3NXO9bVl6WWUppUmTX2truuoTS6UmmoUlwtzTi5GhwNDL71ru4S9Xpp+8xsCX3wBgLmggIJbb8VaWtr/sboT2zxsE8ZjzskZ0ucihBBCDLdBJbd77703X375ZffvM2bM4Nlnn+X8889HVVWef/556e+ahIJakEZvI42eRtqD7WSkZJBnzYtpH2pY5bVvXuP1b15HJzIIcWruVC6fcTl59tj2tXN9bXl6OQWpBTFtn8h0VSVUU4NSV4/m9WApKu5ztrEuanMzzrvvRqmuBsA6cSKFN92EKSur/2MpCmpjoyS2QgghRrVBJbennXYay5cv5/7778dms3HrrbfyP//zP2RlZWEwGPB6vfzud78bqlhFnHV97d/gacDld2E2milOK475Dmm9p56H1z/Mtx2RFl9mo5lz9j6HE8efGFM5A4BH8RAMBylJK6EyszKp6mvDXi/B7dtR6xvAZMJSXILB2P/5CW7dStM996C1tgJgP/BA8q++GqOt//IMSWyFEEIki0Elt9dddx3XXXdd9+8nnXQSa9as4bXXXsNkMjF79myOPvroQQcp4s8T8kR61vqa8Kt+cu25pJhTYtqHruu8u/1dnvvyOULhEAAV6RX8YuYvYmrxBXTf7Q2pISpzkq++Vm1uJlRdjeJswpSVhSk9fY/b+Navx/Wb36AHIlMJp594IjkXXthvqy+QxFYIIURyGfJJHA4//HAOP/zwod6tiBNVV6nprKHR20hroJU0axolaSUxz07VHmjn8S++b/FlwMCJ40/k7L3PjrlOVw2ruHyRtlTlGeVMyJyQPPW1moZSX0+otpZwRwfmgoI93nUF6Hz3XVqefBLCYTAYyL7wQjJPOmnPx9s5sZ04AbP0sRVCCDHKDSq53bp1Kxs2bODkk0/u9fG33nqLffbZh6qqqsEcRsRB12Qc29q30U47ukGnyFGE2Rj7S+aTxk944osnult85abkcsWMK5iaF900ejsLqAGafc1k2bJw4qTYEXtZRKIKBwKRbgh19ei6jrm4ZI93XQmH8b74R/xvvgmAwWol76qrcBx88B6PJ4mtEEKIZDTosgS3291ncvvwww+TlZXFiy++OJjDiBHmU3zUdtYC4PQ5ycvOI9WSGvN+/KqfVRtXsaZmTfeyH5b8kIv3uTjmHrjwff/akrQS8ox5OHHGvI9Epba1EaquRm1owJiegTkzc4/b6IpC0R//iP+zzwEwZmRQcNNNpEyaFNW2amMj5vw8rBMksRVCCJE8BpXcfvjhh1x99dV9Pn7sscfy0EMPDeYQYgTt3LPW5Yl87V/gKCDFElttLcDm1s08/NnDNPmaAHBYHPxs2s84tPTQmPfVNZANHSoyKqjMqCTkC8W8n0Skh8OoDQ2EamvR2tow5eVjTNnz+dY6O+m4914yvvoKAHNxMYW33oqlqGjPx1QU1MYGzPn5ktgKIYRIOoNKbtva2kjvZ6BLWloaLS0tgzmEGCEdwQ5qO2tp9jcTCofITsmmkUYMxFZbq4ZVXv36Vf605U+DbvHVtb8mXxOp5lTK08u7+9eGGP3JbTgUigwaq6tDDynRlSEAitNJ0913o9bVAWCeNInim2+OatCZJLZCCCGS3aCS24qKCv75z39y+eWX9/r4//3f/1FWVjaYQ4hhFtSCNHgacHqdtAfbyUzJJM+aR9Db9wQBfanz1PHw+of5ruM7ACxGC+dMPoefjPtJzC2+4Pv62lx7bnf/2lgHsiUqrbOT0LZtKPUNGOx2zEVFUT234JYtOO+5h3BHBwCd++xD1S+vxZQWZWLrbJTEVgghRFIbVHI7d+5c7rjjDmbNmsWVV16JcUcPTk3TWLFiBX/84x+59dZbhyRQMbS6vuqv99Tj8ruwGC0D6lkLkcFnf9/+d/7w5R96tPhaMHMB5RnlA4rPHXTTGeqkOK2YyoxKMm17rkEdDSKzjTURqq5BbWmOzDaWGl09s2/dOlwPPYQeipxj+0mz+fqHP2Scdc/dJroT2zypsRVCCJHcBpXc3nzzzaxdu5arr76au+66i7333huAzZs343K5OOqooyS5Bfx+P263O95hdPMqXlw+Fy2BFoJakCxbFlaDFdWvoqICoPiVHn/2pT3YzlNfPcV/W/8LRFp8/aT8J5w+/nQsRsuA7gC3BdoI62GKUosoMZdgCBpwB3ueP6/X2+PPeIo2Fl1VUZxOVKeTsD+AOSeHkNkE/Uyj28X/zt/x/v73oOtgMOCYNw/9qCOhsRGf0v810hUVraUZU3Y2lqIiVJMJYnw9JtL5FmIw5LWc+OQaRW8snCu/3x/zNga9q+fTAIXDYVatWsVrr73Gt99GZpyaMGECZ5xxBhdccEH33dyxZMmSJSxdurT79+XLlyflNMQbQxt5w/8GPt0HQKYhkzmOOYwzj4tzZEkkHCbvL38h5//WRn61Wmk491y8P5gc58CEEEKI4VddXc1VV13Fhg0bmDo1uhaig05uRd82btzItGnTWL16Nfvtt1/c4tB1nY5QBy6fi1Z/KxggKyULk6HvEgTFr9D4VSNFk4uw2C09HvOrfp775jnWNq7tXnZo4aH8dNJPSTXH3jIMIKSFaAu2kWXNoshRRE5KTr81qF6vl3Xr1jFr1iwcjtjbig2lPcWitbWhNDaiNrdgzMjA5IjuHOmhEJ2PPEJo3ScAGLKyyLzuOszjIx8efIrCZ42NzCgqItVi2X377ju2OVgryjFGMeBsoM9RiNFCXsuJT65R9MbCufr00085+uijY0puh3yGMrE7u91ORkZGXI7tU3zUe+pxhpx4wh5ysnJi6llrsVuwOb6fIeur1q94eP3DuPyRVmEOi4NL9rmEQ0oOGXCM7qCbznAnpbmlMdfXOhyOuJ3bXe0ai65pKHV1hOrqMHa4cRQXY4yiPhZA6+ig6d57CX39NQCWsjIKb70Vc37+buumWiykWXvOYqYrCmpbK+aCQmwTJ2DKyhr4E9tJIp1vIQZDXsuJT65R9JL5XNnt9pi3iSm5PfroozEajbzzzjuYzWaOOeaYPW5jMBj4xz/+EXNgYnC6Wmg1eBto8bdgt9gpSS8ZUNeCrv29/PXLvLnlze4WX/vk7cPl0y8nx54zoH3quk6zv5mwHqYyo5LKjEpSzLH31E1EYb9/R5uvyGxjltJSDFGW6CgNDTjvugu1sRGAlGnTyL/+ekxRfir/vt1XwZAmtkIIIcRoEFNyq+s64XC4+/dwOLzH9kVS9TDy2gPt1HnqcPldKGGF/NR8rKbo7hj2pq6zjhWfrWBrx1Yg0uJr7uS5nDDuhEEly06fE4fZQVl6GaVppQOa2jcRqW1thLZvR21sjHq2sS6Br76i6d57CXdGpip2HHEEeZdfjqGXsoPeSGIrhBBirIspm1izZk2/v4v4CqgBGryRnrUdwQ6yUrLIt+7+NXa0dF3n3dp3+eO3f0QJR0bkV2VU8YuZv6A8fWAtvrribPY3k5uSS1l6GYWphUnRv1bXdUK1dSi1tWjt0c821sX7r3/h+u1vYUf3g8w5c8g6++yoz004FEJzNmIuKMA2QRJbIYQQY1Ny3Cob48J6GJfPRYO3AZffhdVkHVQJAkBbsI1V3lVs+WYLEGnxdfKEkzlz0plYTNHdReyNO+SmM9hJsSO5+tcCKNXVGFta0ZXoZxuDSFLsfvNN2p59NrLAZCJ3/nzSjz026mN3J7aFhZHENoa7xUIIIUQyGVRyW11d3e/jBoOBlJQU8vLykuLOXCJyh9yRGcZ8TgJqgFx77qDrVj+q/4gnv3gSrxrpm5dnz+MXM37BD3J/MOB96rpOS6AFLawlX33tjv6CSm0ttrR0LHnRTzOsaxqtv/sdne+8A4DBbqfgl7/EPmNG9MdXFLTWVklshRBCCAaZ3FZVVUWVtKakpHD44YezcOFCfvjDHw7mkGIHRVNo9DbS4GugLdBGujWdkrSSQX2I8Ck+ntn4DB/UftC97NDCQ7lkxiUxdVjYVdfgtlRzKpWZlZSllyVFfa2u66iNjQS3RmqRjRmZMdXXhgMBXA8+iP8//wHAlJND4S23YK2qiimOcHMz5uJiSWyFEEIIBpncrly5kuXLl1NTU8N5553HxIkTAfjmm294/vnnqays5KKLLmLLli0899xzHHPMMfztb3/j6KOPHpLgx6KuO6D1nnpcPhcGg4EiR9Ggk8VNLZt4+LOHafY3A+AwOzjZejI/mfITbBbbHrbuW1d9bU5KDuXp5clTXxsKEaqtJVRb133n1miP/k602tZG069+RWjHxCeWykoKb7kFc25u1PsI76jNNeXlSWIrhBBC7DCojKi+vp5QKMSWLVvI2mXwypIlSzjssMPw+/089NBDLFy4kP3335+lS5dKcjtA3T1rfU48IQ859th61vZGDau8tPkl3vr2re4WX/vm78tFe12E98vBTefnDrlxB9wUpyVXfa3W2UloezVKfR0GWwqmggKorYl6+1BtLc677kJzRXoFp0yfTsEvf4kxNfprGQ6FCLe0AGAtL5fEVgghhNhhUHPjPvbYY1xyySW7JbYAOTk5XHLJJaxYsQKA3NxcLr74Yv6z4ytYET01rFLnqWNT6ya+bf+WMGFK0ksGndjWdNZw29rbePPbSO9ai9HCvKnzuGnWTeTYBta7Fr7vX+sP+anMqGSv7L2SIrHVdR3F2URw82ZCNdUYM7Mw5+YSy41o/4YNNN56a3dim3bssRTefHPMia3W5MS04y6vMS0tpuchhBBCJLNB3bltaWnB5/P1+bjX68W14x9xgKKiIul7G6O2QFukBMHvQg2rFDgKBtWzFiLdFf629W+88NULPVp8XTnzSsrSywa17x71tVlJVF+rKIRqa1Hq6tC8XixFxVH3nu3i+eADmh95BFQVgKy5c8k8/fSYyjTCwSBqkxNLURHWoiLYMdGDEEIIISIGlXUceOCBLFu2jFNOOYV99tmnx2NffPEFv/3tb5k1a1b3sk2bNlFWNrjkaazo6lnb6G3EHXKTZcsizTr4O3St/lYe/fxR/tv8XyDS4uuUiadw5qQzB52EJmt9rebxEqrejlpfDyYzlpLSmJ6Xrut0vPYa7S+8EFlgNpN3xRWkHXFETHHsnNjaJkxAjWlrIYQQYmwYVDbz29/+lqOPPpqZM2dyyCGHdA8o27JlCx9++CEZGRksX74cgEAgwJo1a5gzZ87go05iYT3cPW2uy+/CZrJRkja4nrVdPqz/kKf++xReJVJLm2/P5xczf8HknMmD3ndnqJOOQAdFaUVUZVQlRRkCgOpyReprXS5M2dmYYiwB0FWVliefxLNjCmqjw0H+9ddjnzYtpv3smtiaMjLA7Y5pH0IIIcRYMKjkdt999+W///0vv/rVr3jnnXf45JNPAKisrOSKK67ghhtu6L5Tm5KSwvr16wcfcRJzh9zUd9bT5G8ioAbIS83DZhp4p4IuPsXH7zb8jrV1a7uXHVl2JBdOvXDQdbvd/Wu1Hf1rMyuxm+2DDTnudFVFqasjVFuL1tmJubAQozW2cpCwz0fTAw8Q+OwzAEz5+ZFWX+Wxze7Wa2IrhBBCiF4NuhiypKSk++6sGJiQFor0rPVGetZm2jLJScsZkq/0d23xlWZJ49J9L+Wg4oMGvW8trOH0OZOuvjbs8xHcHilD0A3GSBmCMbY752pLC86770bZvh0A6/jxFNx8M+bs7Nhi2TmxnTgRU3p6TNsLIYQQY82QZSIej4eamkg7pPLyctJkBPce7dqz1mg0UpxWPCQJoqIpvPT1S7z97dvdLb6m50/nsumXkZMy8E4IXYJaEJfPRXZKNhXpFUlTX6u2tBCqrkZ1OiPdEHZJJp2/+hXqLoO4wrpOpaLQZrHQYTCgKwpqczNoGgD2Aw4g/+qrMabENiObJLZCCCFE7AadRX3yySfccMMNrF27lnA4DIDRaOTwww/n17/+NQcccMCgg0xGXsVLvaeeJl8TXsVLdkr2oEsEutR01rBi/Qq2uyN3DS1GC+f94DyOrzp+SBLQ7vpaRxGVGZVkpWQNep/xpmtapAyhro5wRwem/AKMtt1LQtTGRpTa2t2W2wBtx8/O0o8/npyLL8ZgMsUUjyS2QgghxMAMKrn9+OOPOeqoo7BarVxyySX84Ac/ACJdEV544QWOOOII1qxZ06NjwlinhlWcPieN3kaafc04rI5BT5vbpbcWX+Myx3HljCspTS8d9P677jSrmppU9bVhv59QdTVKXT26rmMuLok5Ge2NMTOTnEsuifnahoNBVFcTlq4pdSWxFUIIIaI2qOT21ltvpbS0lLVr11JUVNTjsSVLlvDDH/6QW2+9lXfffXdQQSaL1kBrdwmCpmsUOgqxmGLrldqXFn8Lj37+KBuaNwCRFl//M/F/mDNpzpCUOXTV19rNdiqyKihLL8NiHJrY40ltayO0fTtqYyPG9AzMQzjTlyk9feCJbdfgMUlshRBCiJgM+s7tokWLdktsAQoLC5k/fz533HHHYA6RFEJaiO86vsPpdQ5pz9ou/6r/Fyv/u7K7xVdBagG/mPEL9s7Ze0j2n4z1tXo4jFLfgFJbg9bWFilDiLEmdqh1lyIUF0dKEaRuXQghhIjZoJJbo9GIqvbdSl7TNIwxjjJPRrWdtfjb/NjMQ9ezFiJ1u7/77+/4Z/0/u5cdVX4UF0y5YMjqd32KD2/YS1Fq8tTXhoNBQtu3o9TXoysq5pLSISlDGGxMktgKIYQQgzeo5PbQQw/l4Ycf5txzz6WysrLHY9XV1TzyyCP88Ic/HFSAycAdcrN36t5D0rO2y8bmjTzy2SO0BFoASLekc+m+lzKreGjrm32Kj4qsCiozKocsYY4nrb090uarsRFDqgNLXn68Q9opsS3BNnGCJLZCCCHEIAwqub377rs54ogjmDx5MqeddhqTJk0CYPPmzbzxxhuYzWbuueeeIQl0NEsxpwxZYqtoCn/c/Ef+/N2fu1t8zcifwWXTLyM7JbYeqn3RwhounwuA8oxyJmZPHPX1tXo4jNrYSKimBq21FVNePkZ7/AfDSWIrhBBCDK1BJbczZ87k448/5tZbb+XNN9/E5/MBkJqaygknnMCdd97JlClThiRQAdXualasX0F1ZzUAVqOV86ecz48qfzRkNbBBLYjL6yLNmkaAACWOklGf2IZDoR3dEOrQg6GEKEMASWyFEEKI4TDoYfRTpkzh9ddfJxwO43JF7vbl5+djNBrxer3U19dTUlIy6EBH2vz583nrrbfwer1UVlZy9913c/LJJ8cllrAe5q9b/8oLX72AGo7UOI/PHM+VM6+kJG3ozq0n5KE92E6ho5A8Yx7NNI/6gWOa272jvrYBg92Oubh4wM9J13W09vYhiSscCES6IpSUYJswEVOaY0j2K4QQQox1QzZDmdFopLCwsMeyhx56iEWLFqFpu7a2T3zXXnstv/3tb7HZbHzyySccd9xxfPfdd+Tm5o5oHM3+Zh797FE2tmwEIi2+Tt3rVM7Y64whm+pW13VaA60omkJFeqS+VvX3PVBwNNB1HdXpJFRTg9rcjDk3D2Pq4GqG2198kbDHM+jYIomtSxJbIYQQYhgMWXKbbCZPntz9/waDgVAoRF1d3Ygmt/+s+ye/2/C7YWvxBZH62iZfEzaTjfFZ47v717r97iE7xkjTQyFCtbWEauvQ/X4sRcUYLIMrrWh/9VU6Xn018ovJhLmgoLu0Iazr+BSFVIsF4053hc29tMj7PrEtlsRWCCGEGAYJndx6PB7uu+8+Pv74Y9atW0dbWxtPP/008+bN223dYDDIokWLePbZZ2lra2Pfffflzjvv5Ec/+tGAj3/FFVfw9NNPEwgEOPHEE9lnn30G8Wyi5wl5+N2G3/Gv+n91Lzu6/GgumHrBkM4IFtJCNHmbyErJoiK9giJH0egvQ/B4CG3bjtpQD1Yb5pLBz/7W8fbbtL/wAgCm7GyKbr8dS3Fx9+OeUJBNNTUcWl5OmrXvgYOS2AohhBDDL6Gb0DY3N3P77bezadMmpk+f3u+68+bN44EHHuC8885j2bJlmEwmTjzxRNauXTvg4z/yyCN4PB7ee+89fvzjH49I4reheQM3fHBDd2Kbbk3nlwf8ksumXzakia0n5KHJ10Sho5BJ2ZMoTht4LWoi0HUdxdlE8KuvCNVUY8jIxJybO+jn1Pnuu7Q98wwAxowMChct6pHYRksSWyGEEGJkJHRyW1xcTENDA9u3b+e+++7rc71169bx4osvcs8993Dfffcxf/583n//fSorK7nhhht6rHvYYYdhMBh6/bntttt227fJZOLYY4/lvffe4y9/+cuQP8cuIS3Es18+y50f3UlroBWAmQUzue+I+ziw6MAhO46u67T6W/GEPFSkVzApe9KQtRCLF11RCG3bRvCbr1FaWrAUFWNyDD559HzwAS1PPAGA0eGgcOFCrOXlMe9HElshhBBi5MRclvDpp59GvW59fX2su+/BZrP1OrXvrl555RVMJhPz58/vXpaSksLPfvYzbrnlFmpqaijfkZQM9E6uqqps2bJlQNvuyXb3dh5e/3CPFl8/nfpTjqs4bkjvpu5cXzsuaxzl6eWjv82Xz0+gtha1vh5MZiwlpUNyzrwffUTzihWg6xhSUii89VZs48bFHp/fj9rcjKWkmJSJEzEOQdIthBBCiL7FnNwecMABUScPuq6PyFfd69evZ9KkSWRkZPRYPmtWZLauzz77rDu5jUZHRwd//vOfOeWUU0hJSeH1119n9erV/U5I0dTU1N0KrUtXMqyFNILe4G7bhPUwf6v5G69+9yqqHulOMC59HD+f8nOKUosI+UJRx7wnSlih1d9KujWdYlsxueTi9/jx4+91fa/X2+PPRNMVV/s332B1uzFmZGBypIIy+HMWWr8e94MPQjgMVisZ11+HUlWJEtr9GgL4FKXHn13CgSBaWxuWgnwoKkLVNHAP3UC9kbxGif56ECJa8lpOfHKNojcWzpXf33ue0p+Yk9unn3465oMMt4aGBop7qYPsWhbrHWSDwcCTTz7JFVdcga7rTJw4keeff54ZM2b0uc0jjzzC0qVLe33MW+2lhpoey9rD7bzqe5Wt6lYAjBg50nYkRxmPQtms7Lb+UGnZ8V+01q1bNyxxDJXPW3c8l9aWyM8g2bdsofTpZzBqGmGTifqf/pSv09KgZs/X47PGxt4fqK+P/AyTkbxGif56ECJa8lpOfHKNopfM56q6ujrmbWJObi+88MKYDzLc/H4/Ntvuo9RTUlK6H49FRkYGq1evjmmbK664gjPPPLPHsi1btnDqqafiqHBQPjNy51jXdT50fsiz3zyLT43M6FZgL+CyH1zGxMyJMR0zGh3BDhRNIT81n9K0UlLMKVFt5/V6WbduHbNmzcKRQF+l64EAofp63I2NbAgGmV5QiMNmHZJ9K5s30/H7Z0FVwWQi8+qrKdh/vz1u51MUPmtsZEZREakWS487ttaKCgzDNM3vSF6jRH09CBEreS0nPrlG0RsL5yqWctguCd0KLFp2u51gcPevjAOBQPfjw62goICCgoJeH1NMCjaHDU/Iw8oNK/mw/sPux46pOIYLplwQddIZrbAexul1YrVbqUyrpDxjYPW1Dodjt3KPeFFbWgjV1WFwOnGkOiAYxGGz9tt+K1rBLVto+fV9EAyC0Uj+//4vjkMOiWkfqRYLqVoYtaMDa3kZtgkTRqTGdiSvUSK9HoQYDHktJz65RtFL5nM1kBwuKZLb4uJi6urqdlve0NAAEPfpfze3byazOZNHP3u0uxNChjWD+fvO54CiA4b8eDv3ry1PL6fYMcrbfGkaSn09odpawu0dmAoKMBmAttYh2X9o2zacd96JvuMOf94VV+A49NCY9xMOBCOJbWkJtokTBz0jmhBCCCFilxTJ7YwZM1i9ejVut7vHJ5ePP/64+/F4+kv1X3hXe7f79x9k/YDLp15OpjWz14Fmg+FTfLgVN7kpuZRYSkgLp9HZ2RnzfhKlSF0PBlEaGlCcTaDrmPLyMBj6HsQVK7Wuno477kDfMa2u46KL4NBD8PQxeKw3XTF4WlsxFhVCURGKqg7p4LHeyIAyIWInr+XEJ9coemPhXI3IgLJENGfOHO6//36eeOIJrrvuOiAyY9nTTz/NQQcdFFOnhKGwZMmSHoPLNDQsfF8SMC4wDvdGN26GL/lp3PHfYCVckbrf1+PXPgdxRcHS0kLZY49j2ZGENs2eTfvkvaMaPNabDZoKdXWRnxEkA8qEiJ28lhOfXKPoJfO5GpEBZSNtxYoVtLe3d3c8eOutt6itrQVgwYIFZGZmctBBB3HmmWdy880309TUxMSJE1m1ahXbtm1j5cqVIx7zkiVLWLJkCRs3bmTatGk9Hjsw/0DOmHIGZuPQnXodnRZ/CxajhcLUQoocRYPefzyL1HVdR21yoTobCbvdGLNzMO4yaGzXQVyx0lpa6Lj/N4R3JLapc+Yw5fTTYo9VC9PpbGSDpnHg9Omk5eTEvI+BkgFlQsROXsuJT65R9MbCuUrKAWX3338/27dv7/79tdde47XXXgPg/PPPJzMzE4Df//73LFy4kGeffZa2tjb23Xdf3n77bY444oi4xN2bg4sP5sqZVw5pYhvSQri8LrIysihLL6PYUYzRMHQTz410kXo4GCRUXY2xrg6LomIuLcNgMvW5fqrFEvOAMrWtjcZ7fkV4R1/izNNOI+vsswdUl6w4nehZWdDSQlpOTlwK+mVAmRCxk9dy4pNrFL1kPldJOaBs27ZtUa2XkpLCfffd1+80vfF28bSLhzSx9SpeWgOtFDoKqUivINeeO2T7jgetvZ3Q9u0ojY0YUh1Y8vKH/hidnTjvuCMyoxmQfuKJZJ177oASW83rxaDrmPPyoGXwPXaFEEIIMXgJn9wmk3U16zi8+PAh2VdHqANFVShILaDEXIJFseBWRufsV7quozU3ozQ2Em5vj5QhpNign0FdAxlQFvZ66bjrbrQd9Tu2o4/Ceu5cvAOY1UzXwmjNLsxFRSg7vgoa6YJ+GVAmROzktZz45BpFbyycq4EMKDPouq4PQyxj2q4DyqbdNQ1KYR/LPpztODuOkY1dhmCQsqdWYt+R2LpnzKDx7LPAOHQlHEIIIYQYWtXV1Vx11VVs2LCBqVOnRrWNJLfDqGtA2W9f+S31ufUcX3Y86db0Ae9PCSu0BdpIs6RR5Cgi354/bP1rR6JIPez1otTXoza5IMWGKSOTaJ9OLAPK9FAI96/vQ/nySwCsBx5I+lUL+q3l7Tduf4CwpxNrZSWWkpK4FfTLgDIhYiev5cQn1yh6Y+Fcffrppxx99NExJbdSljAC0lPTOW+f8wa1D6/ipT3QTmHOyNbXDkeRuq7rqE4nodpaDM3NpObmDXjCgz0NKNMVhaZly7sTW/vMmRRcey2GAXRYgMiEEmqnG0txMSnjx2Owft/FIV4F/TKgTIjYyWs58ck1il4yn6ukHFAmoDXQSlANUpZWRlVmFQ7L6P10podChGprCdXWofv9WIqKB5xo7vFYmobrwQfxr18PQMq0aeRfd92gjqe1tmLMyMBSXt4jsRVCCCFEYpDkNoGF9TBNviYsRgvjMsZRkVGBxTQ8ieBI0DweQtu2ozbUg9WGuaRk2MoqdE2j+be/xbejsbVt770puPFGjLbY2obtLOz3oyshrFWVmEewn60QQgghoifJbYIKaSGafE1kWbMoTS+lJK1kSPvXjqSuSRmUmmoUlwtTTi6mYawN0sNhWp54Au/atQBYx4+n8JZbMA7gq42d96k1N2MuKcZSWjpUoQohhBBiiElyOwK0kEbQ23dbq10F1AAdoQ5ybDkUW4rJ0DPwdHqGMcLdDVV7EV1VUZxOVGcTYb8Pc04uBou53zZf0eirFZiu63h//3sC//gHAKbyMtJuvAHfII+ptrVjSLVjy85GDQQgEOh+LF6tWKQVmBCxk9dy4pNrFL2xcK6kFViC2LUV2PLly6moqIhjRGOErpP3t3fIWbMGgFBeHjU/vwwtfeAdKoQQQggRP9IKLMF0tQJb+aeVzJg5o991dXRa/C2YDWYKUwspTise0tnMYjXY9iJaWxtKQwNqS2QAlskxsG4IfemtFZjv9dfxvfwKAMb8fDIXLcSUO7iuEnpYR2tyYsrLxzZ+XK+DyKQVmBCjh7yWE59co+iNhXMlrcASlMlqwuboeyBTSAvh8rnITM+kLL0soeprY20voqsqSl0dobo6jG43juJijMPYVaCrFVjHW291J7amnByKlizBUlg46P2rLS0YMjJJGT8uMs1uP6QVmBCjh7yWE59co+gl87mSVmCjkE/x0eJvIT81n8qMSvLs/SdQiSzs8xGsrkatr0fHgKWkFMMIzADmfucd2latAsCYmUnh4sVDktiGAwH0gB/LxImDvgMshBBCiJEhyW0ctQXa8Kt+ytPLqcyoJM2aFu+QBkxtaSFUXY3qdGLMyMQ8Qp8gAx98gOfJJwEwpqVRtHAh1iHoZqDrOqrLhaWoEGtp6bC1LBNCCCHE0JLkNg66+teaDebu/rVW0+icEEDXNJT6ekK1tYTbOzAVFAyql2ws0j7/As8LLwBgSE2l8LbbsFZVDcm+tbY2jGkOLKWlGFNShmSfQgghhBh+ktyOgJ1bgalhlZZAC+mWdApSC8g35hPwBggQ2MNeRlY07UX0UAilvh7F2QS6jikvD4OBQbf5ioZ73TqKX3wRdB1sNjKuvw6lohxlCI4dDimEvR4s5eWEbTYMbne/60srMCFGD3ktJz65RtEbC+dKWoElCGkFNrxSv/6GkmeewahphM1m6i6ah3/ixHiHJYQQQoghJq3AEszOrcAmTJ1AQA2Qn5pPiaOEVMvQtsYaan21F+mabUx1NhJ2uzFm52C0jVxJhbJpEx33/hpCIXSTiZSrFpB+4IFDtn+1ww3o2KrGYc6NbopdaQUmxOghr+XEJ9coemPhXEkrsAQVMATABhNyJ4y6+tqd24uEg0FC1dUY6+qwKCrm0jIMJtOIxRL8+mta7rsfQiEwGGiYew77HnggadahqfENB4NowQDWCROwVVXGPIhMWoEJMXrIaznxyTWKXjKfK2kFlqDSLemMzxpPaVppwvSvjZXW3k5o+3aUxkYMqQ4sefkjevzg1q0477oLPRAAg4G0y3+Op7JyyPav6zpqczOWvHzpjiCEEEKMYpLcjoDitGLK08vjHcaA6Lre3Q1Ba2nBlJePcQCfogYjVFOD8447CO8omM+dPx/DYYdBTc2QHUNrb8doT8FSXoYxNbFLRoQQQgjRN0luR0C6NT3eIQyYUlNDoLUVPRDEXFyCwTyyLxmloQHn7bcT3tGxIOeii0j/0Y/wDGFHhnAohO7xYB0/HnP+yN6RFkIIIcTQGp3fkYth13WXVKmpBQyYi4tHPLFVXS4aly5Fa2sDIOvcc8mYPXtIj6HrOprLhTk/D2vZyMyoJoQQQojhI3duRQ+6rqM6nQS3bgXAmJGBOTNzxONQ29oiiW1zMwCZZ5xB1umnD/lxwm43BpstMllDko40FUIIIcYSSW5HgN/vx72HiQASga4oKM4mFGcjPl+kaXLAbMI4ApMy7CzsdtNxx51ojY0ApPzkJ5hPP61HKYJPUXr8ORC6oqK2t2MtLyOcmrrHyRr6IpM4CDF6yGs58ck1it5YOFcyiUOCkEkcBs7o81H25JOk1DcA0H7QQTSddipI9wIhhBBizJFJHBJM1yQOq1evZr/99ot3OL3SdR2ttQ21sQG1tRVjZhamVDs+ReGzxkZmFBWRarGMSCxhvx/3PfegbvkWANthh5H288t6rYMdbHxapwddVbBVVQ16EJlM4iDE6CGv5cQn1yh6Y+FcySQOCcputydkc2VdUQjV1qLU1WPyekgrKcWwS6KYarEM2SQJ/QkHgzh/80B3Ypt6yCHkL1iwx0kiBhKfrigoPh/WqkpSqqqGbCIKmcRBiNFDXsuJT65R9JL5XMkkDiJqYa+X4PbtqPUNYDJhKS6JW6cAXVFo+vWvCX75JQD2/fcn/6qrhm32M7W5GXNeLtby8hGdYU0IIYQQw0+S2zFIdbkI1dSgOJswZWVhSo9fH15dVWl64AECn38OQMq++5L/y1/udgd5qGhuNwaTCWtJCaa0tGE5hhBCCCHiR5LbMURXVZS6OkJ1dWgdbsyFhRit1vjFo2m4li/H/8knANgmT6bghhuGLSZdVdE62rFWVmIuKhqWYwghhBAiviS5HSPCPh/B6mrU+np0DFhK4zthgR4O0/LYY/j+9S8ArBMnUnjLLRhTUobtmKrLhTlXyhGEEEKIZCbJ7RigtrQQqq5GbXRizMzEHOeic13XaV25Es/q1QBYKispvPVWjKmpw3ZMrbMTg8mIpaQkrmUYQgghhBhektwmMV3TUOrrCdXWEm7vwFRQgNE2/J0P+o1J12l79lk633kHAEtpKUWLFg1rwtldjlBWjkXKEYQQQoikJsltkgoHAoS2b0epr0cP65hLShLiq/j2l17C/eabAJgLCylctAjTME/vq7a0YM7KxlpehsEsL3khhBAimcm/9CNgpKff1dxulIYGNJcLgyMNU2YaQU0FTY16H0Mxve1u+3zrLXwvvwyAMTeX9FtuJpCeBgOY3jfa+DSfD11TseZkoxkMMAzXQabfFWL0kNdy4pNrFL2xcK5k+t0EIdPv7i7rX/+i4I3IHVs1PZ2an1+GkpcX56iEEEIIkchk+t0EM5LT7+qhEEpDA0qTC1QVU04OBtPAuyEM5fS7gTVr8DzxJACGtDQyFy3EXFY2qH1GE5/a3IIx1Y5t3DiMw1jTK9PvCjF6yGs58ck1it5YOFcy/W6CGu7pd7WODkJ1dRgaG7GlOjAXFg7Zvgc7/a5n7Vo8Tz4FgCE1laJFi7CNHz9U4fUZn+b1ohuN2MrLsZaWDtnx+iPT7woxeshrOfHJNYpeMp8rmX53jNF1HbWhgVBtLVprK6bcPIwDeBEMF+/HH9O8fDnoOoaUFApvvXVIE9u+6JpGuLUFS1kZlpKSYT+eEEIIIRKHJLejVDgUIlRdHemGEAhiLipOqE4AvvXrcT34IITDGKxWCm66iZS99x6RY6stLRizsrCUlQ3bNL5CCCGESEyJkw2JqGlu9442Xw0Y7HbMxcUYDIZ4h9XNv2EDrvvuA1UFs5n866/HPm3aiBw77PNh0FSsxcWYs7NH5JhCCCGESByS3I4iuq6jOp2EampRm12Yc3IxJlgBeWDzZpp+9Sv0UAiMRvKvvZbUmTNH5Ni6pqG1tmApKZFyBCGEEGKMkuR2lNAVhVBNLaG6WsI+P5ai4oT7yj343Xc477oLPRAAg4G8q67CMWvWiB1fa23FmJERKUewWkfsuEIIIYRIHJLcjgKax0No23bUhnqw2rCUlCRUGQJAqLoa5x13oPt8AOT+/OekHXbYiB0/7PejKyGsVZWYc3JG7LhCCCGESCyS3CYwXddRm1woNdUormZMOTmYEqwMAUCpr6fx9tsJd3YCkPOzn5F+7LEjdnw9HEZrbsZcUoxlhNp+CSGEECIxSXKboHRVRamtJVRbh+b1YCkqSrgyBAClqYnGpUsJt7cDkH3++WT85CcjGkOkHCEda1kZRilHEEIIIcY0SW4TUNjrJbh9O2p9A5hMWIpLMBgHPtvYcFFbWnAuXYrW0gJA5plnknnqqSMaQzgQRA8GsVZUYM7NHdFjCyGEECLxSHKbYFSXi1BNDYqzCVNWFqZhnDZ2MLSODpy3347qdAKQccopZJ111ojHEW5vw1xSiqVUuiMIIYQQQpLbEeH3+3G73f2uo2saqtOJ0tREuNODKS8Xo8UCoeAIRdmTT1F6/LmzsMdDx513odXVAZDyo+OwnH0WXiU04vH5bSmk5GSjBoMQjM+58nq9Pf5MxuPG6zkKMdTktZz45BpFbyycK7/fH/M2Bl3X9WGIZUxbsmQJS5cu7f59+fLlVFRUxDGioWMMBCh78ilSamsB6Nh/f5xzzoAELJsQQgghxOhWXV3NVVddxYYNG5g6dWpU20hyO4w2btzItGnTWL16Nfvtt1+v62gdHSj19WjNLRjS0zGlJUY3BJ+i8FljIzOKikjdMZBNDwTouPfXqJs3A2A9+GDSr/zFiNcD6zp0NjSwQVM5cOZM0rKyRvT4u/J6vaxbt45Zs2bhGMFuFiN53Hg9RyGGmryWE59co+iNhXP16aefcvTRR8eU3EpZwgiw2+1kZGT0WKZrGkp9PaHaWkztHZiKijDabHGKsG+pFgtpVhvhUIimh5Z1J7b2Aw+k4OqrMZhH/iWktraiOVLB7SYtK2u3cxsvDocjLrGM5HHj9RyFGGryWk58co2il8znym63x7yNJLdxEA4ECG2vRqmvQ9fCmEtKMJhM8Q6rT7qi4PrNbwh88QUAKdOnU3DttXFJbMPBILrfF+lnu4c6ZiGEEEKMPVIoOcLUtjYCmzcT2vodBqst0r82kRNbTcO1fDn+//wHANuUKRTccENceu7quo7qasJcUIClsHDEjy+EEEKIxCd3bkeIHg6j1Deg1NaitbdhysvHmJIS77D6Fw7jefwJgh9+CIB1r70ovPnmuJVPaO3tGFMdWEpKUROwhEMIIYQQ8SfJ7QjQFYXgt9+i1NWjKwrm4sQuQ4DIXdKCP71B8OOPAbBWVVF4220YB1D7MhTCwSC614N1wgTMBfmwY6pfIYQQQoidSXI7ApTaWkJeL4ZUB5a8vHiHs0e6ruN97g9k7UhsLWVlFC5ciClOIzF1XUdtdmHJy8daWorBYIhLHEIIIYRIfFJzOwK0tjZMObmYs7PjHUpU2l98kcBf/wqAsbCQwsWLMWVmxi0erb0do92OpbwMY2pq3OIQQgghROKT5HYEGOypcfs6P1btr71Gx6uvAqBkZZF56y1xTcrDoRC6x4OlsAhzfn7c4hBCCCHE6CDJrejm/vOfaX/+eQCMWVnUzr8UUxzLKCLdEVyY8/OwlpWO+GQRQgghhBh9pOZWAND57ru0Pv00AMaMDDJuvQUlHI5rTGG3G6PNhqW0FGOSzrwihBBCiKElt8IEng8+oOWJJwAwOhwULVqEubQ0rjHpioLmdmMpLsIsPW2FEEIIESVJbsc470cf0bxiBeg6Brudwttuw1pVFe+wIuUIeXlYSsukHEEIIYQQUZOsYQzz/ec/uB56CMJhDFYrhTffjG2vveIdFlpHBwarBWtpCaY0KUcQQgghRPQkuR2j/F98QdP994OqgtlMwY03kjJlSrzD6i5HMBcWSjmCEEIIIWImye0YFPjqK5ruvRcUBUwmCq67Dvv06fEOCwC1uRlzXi7W8vKEn8VNCCGEEIlHktsxJrhlC86770YPBsFoJP9//5fUAw6Id1gAaG43BrMJa0kJprS0eIcjhBBCiFFIWoGNAH9YwxMKxjsM1OpqOu68C93nAyBt/qXoB+zfa2w+Renx53DTVQ21rRVLSQlhhwOD293v+l6vt8ef8RSvWEbyuIl0voUYDHktJz65RtEbC+fK7/fHvI1B13V9GGIZ05YsWcLSpUu7f1++fDkVFRVxjAgsLhfljz2O2eMBwHnaqXQcfHBcYxJCCCGE6E91dTVXXXUVGzZsYOrUqVFtI8ntMNq4cSPTpk3jrytXsv+MGXGLQ2tqouP22wm3tgHgOO887LNP7Hcbn6LwWWMjM4qKSLVYhjc+rw894MdaVYUlykFkXq+XdevWMWvWLBxxnuAhXrGM5HET6XwLMRjyWk58co2iNxbO1aeffsrRRx8dU3IrZQkjwG40kWa1xeXYaksLjXff053YZp19NlmnnRb19qkWy7DGrqsqiteDtayclHHjMJhje0k6HA4yMjKGKbrYxCuWkTxuIp1vIQZDXsuJT65R9JL5XNnt9pi3kQFlSUxrb6dx6VLUpiYAMk87jcw5c+IcVU9qSwvmrGys5WUxJ7ZCCCGEELuS5DZJaZ2dNN5+O2p9PQDpJ55I1rnnYjAY4hzZ9zSPBwM6ltISTJmZ8Q5HCCGEEElAktskFPZ6cd5xB0p1NQBpxx5Lzrx5CZXY6pqG1taKubAIS1FRvMMRQgghRJKQ5DbJhP1+nHffTei77wBwHHYYufPnYzAm1qVWm5sxZ2djLSvFMMwD1oQQQggxdiRWxiMGJRwM0nTvvQQ3bwYg9aCDyFuwIOFm+tK8Xgy6jqWkBFNWVrzDEUIIIUQSkeQ2SeiKguv++wls2ACAfeZM8q++OuESW13TCLe2YC4swFJcHO9whBBCCJFkJLlNArqm4XroIfzr1wOQMm0a+dddl5Bf96stLRizsrCUlSVkfEIIIYQY3SS5HeV0TaP5t7/F9/HHANj23puCG2/EaItPX93+hH0+DJqKtbgYc3Z2vMMRQgghRBKS5HYU03WdlieewLt2LQDW8eMpvOUWjANoeDzcdE1Da23BXFiIpaQk3uEIIYQQIklJcjtK6bpO69NP4/nHPwCwVFRQuHAhxgSdfk9rbcWYkREpR7Ba4x2OEEIIIZKUJLejkK7rtD//PJ1/+QsA5pISChcuxJSeHufIehf2+9GVEJbiYsw5OfEORwghhBBJTJLbUajj1VfpeP11AMwFBRQtXpywNax6OIzW3BwpRygtjXc4QgghhEhyktyOMh1vvUX7iy8CYMrJoXDxYsy5uXGOqm+RcoR0rGVlGKUcQQghhBDDTJLbUcT9zju0rVoFgDEzk6LFi7EUFsY5qr6F/X70YBBLcUlCJ+BCCCGESB6S3I4SnjVraH3ySQCMaWkULVyY0F/z9yxHkO4IQgghhBgZktyOAt5//YvmRx4BwJCaSuFtt2GtqopvUHugtbVhTE/HWlaakD13hRBCCJGcJLlNcL5//xvXsmUQDmOw2Si85RZsEyfGO6x+hQMB9IAfc3ERJilHEEIIIcQIkuQ2gfk//5ym++8HTQOLhYIbbyRl8uR4h9UvXddRXS7MhYVYS0sxGAzxDkkIIYQQY4gktwkq8OWXNN17L6gqmM0UXH899n33jXdYe6S1tWFMc2ApKcGYkhLvcIQQQggxxkhym4CC33yD8+670UMhMBrJv/pqUvfbL95h7VE4GET3+yKTNeTnxzscIYQQQoxBktwmmODWrTjvvBM9EACDgbwrr8Rx8MHxDmuPIuUITZgLCqQcQQghhBBxI8ltAgnV1uK84w7CXi8AufPnk3bEEXGOKjpaezvGVAeWklKMdnu8wxFCCCHEGCXJbYJQGhpwLl1K2O0GIOeii0j/0Y/iHFV0wsEguteDpbgIc4GUIwghhBAifiS53YMPP/wQo9HInXfeOWzHUF0uGpcuRWtrAyDr3HPJmD172I43lHRdR212Yc7Pl3IEIYQQQsSdJLf9CIfDXHPNNRx44IHDdgy1rS2S2DY3A5B5xhlknX76sB1vqGnt7RjtdixlZRhTU+MdjhBCCCHGOHO8A0hkTzzxBAcddBAdHR3Dsn+towPn0qWojY0AZJx0ElnnnDMsxxoO4VAI3ePBOn68dEcQQgghREJI6Du3Ho+HxYsXc8IJJ5CTk4PBYOCZZ57pdd1gMMiNN95ISUkJdrudgw46iHfffXfAx25paeGhhx5i6dKlA95HfzSPB+cdd6DU1gKQ/uMfk33hhaPma/3uyRry87CWlWIwJvRLSQghhBBjREJnJM3Nzdx+++1s2rSJ6dOn97vuvHnzeOCBBzjvvPNYtmwZJpOJE088kbVr1w7o2LfeeitXX301WVlZA9q+P2G/H+dddxHatg0Ax5FHknPJJaMmsQUIu90YbTYspaUYHY54hyOEEEIIASR4cltcXExDQwPbt2/nvvvu63O9devW8eKLL3LPPfdw3333MX/+fN5//30qKyu54YYbeqx72GGHYTAYev257bbbAFi/fj2ffPIJl1566ZA/p3AwiPOeewh98w0AqYccQt4VV4yqO5+6oqC53ZHuCIWF8Q5HCCGEEKJbQtfc2mw2ioqK9rjeK6+8gslkYv78+d3LUlJS+NnPfsYtt9xCTU0N5eXlAFHdyf1//+//sXnzZkpLSwHo6OjAbDbz7bff8vTTTw/w2USSwqZf/5rgl18CYN9/f/KvugqDyTTgfcaD6nJhzsvDUlo2qpJyIYQQQiS/hE5uo7V+/XomTZpERkZGj+WzZs0C4LPPPutObqMxf/58ztlpYNf//u//Mm7cOG666aY+t2lqasLlcvVY9uWOJHbDb+7Hk5pKuKMDPRgCwLLXRByzT6RmyzdRxzWSAqpKdXMzqT4fKebvXyZhrw9dU7FqKqaNWtzi8/v9VFdX8+mnn2KP86QR8YplJI+bSOdbiMGQ13Lik2sUvbFwrrpyqWAwGPU2SZHcNjQ0UFxcvNvyrmX19fUx7S81NZXUndpa2e120tLS+q2/feSRR/ocfHblhg27L9y2FQYx4E0IIYQQYqyoqalhv/32i2rdpEhu/X4/Npttt+UpKSndjw9GXx0adnbFFVdw5pln9ljmdrs59NBD+c9//tNrfIlu2rRpbOgtMU8QiRRfvGIZqeNu2bKFU089lT/96U9MnDhx2I8nxHBKpPcO0Tu5RtFL9nMVDAbZf//9OfLII6PeJimSW7vd3uvt6kAg0P34cCsoKKCgoKDXx6L9pJGIpk6dGu8Q+pVI8cUrlpE87sSJExPqnAsxUPI6TnxyjaI3Fs5VLN2rkmI0UFdXhV11LSspKRnpkLotXrw4bscerESPPZHii1csiXQOhBgt5O9N4pNrFL2xcK5ifY4GXdf1YYplSP373//mwAMP5Omnn2bevHk9Hrv++ut58MEHaW1t7TGo7O677+bWW2+luro6pgFlQoieNm7c2P3V11i4QyCEEGL0Soo7t3PmzEHTNJ544onuZcFgkKeffpqDDjpIElshhBBCiDEi4WtuV6xYQXt7e3fHg7feeovaHVPWLliwgMzMTA466CDOPPNMbr75Zpqampg4cSKrVq1i27ZtrFy5Mp7hC5EU8vPzWbx4Mfn5+fEORQghhOhXwpclVFVVsX379l4f27p1K1VVVUBk8NjChQt57rnnaGtrY9999+WOO+7g+OOPH8FohRBCCCFEPCV8ciuEEEIIIUS0kqLmViSHYDDIxRdfTEVFBRkZGRx88MF8+OGH8Q5LCCEG7dFHH2W//fbDYrGwZMmSeIcjeiHXKDqj4TxJcisShqqqVFVVsXbtWtrb27n66qs5+eST8Xg88Q5NCCEGpbi4mCVLlnDGGWfEOxTRB7lG0RkN50mSW5EwHA4HixYtoqKiAqPRyDnnnIPVamXz5s3xDk0Mwmj4lC/EcDv11FM55ZRTYmpEL0aWXKPojIbzJMltgvv000855ZRTyMnJITU1lWnTprF8+fJhO57H42Hx4sWccMIJ5OTkYDAY+p1+OBgMcuONN1JSUoLdbueggw7i3XffHZJYvvnmG1pbW2W611FuNHzKFyPnk08+4corr2Tq1Kk4HA4qKio466yz+Prrr4f1uIn03pboNm7cyJlnnsn48eNJTU0lLy+PI444grfeemtYjzvar9Fdd92FwWBg2rRpw3qc0X6eRoIktwns73//O4cccghNTU0sXLiQZcuWcdJJJ3W3QhsOzc3N3H777WzatInp06fvcf158+bxwAMPcN5557Fs2TJMJhMnnngia9euHVQcfr+f888/n5tvvpnMzMxB7UvE12j4lC9Gzr333surr77Ksccey7Jly5g/fz4ffPAB++23Hxs2bBi24ybKe9tosH37djo7O7nwwgtZtmwZCxcuBOCUU07p0U9+qI3ma1RbW8vdd9+Nw+EY9mON5vM0YnSRkDo6OvTCwkL9tNNO0zVNi3q71tZW/dVXX+3z8eeff173eDx9Ph4IBPSGhgZd13X9k08+0QH96aef7nXdjz/+WAf0++67r3uZ3+/XJ0yYoB9yyCE91v3hD3+oA73+3HrrrT3WDYVC+uzZs/Vzzz1XD4fDe3rKIgqdnZ36okWL9OOPP17Pzs7u97oGAgH9hhtu0IuLi/WUlBR91qxZ+t///vdBx3DZZZfpixcvHvR+xOj2z3/+Uw8Ggz2Wff3117rNZtPPO++8PrdLhvc2XR+9fw9UVdWnT5+u77333n2uM5av0dlnn60fc8wx+pFHHqlPnTq133XH8nkaKXLnNkE9//zzOJ1O7rrrLoxGI16vl3A4vMftHnnkEc466yxef/313R5buXIl5557LqtWrepze5vNRlFRUVQxvvLKK5hMJubPn9+9LCUlhZ/97Gd8+OGH1NTUdC9fu3Ytuq73+nPnnXd2rxcOh/npT3+KwWBg1apVGAyGqGIR/Yvlk/6Y/JQvRsyhhx6K1WrtsWyvvfZi6tSpbNq0qc/tRvt722hnMpkoLy+nvb29z3XG6jX64IMPeOWVV3jooYeiWn+snqeRJMltgnrvvffIyMigrq6Ovffem7S0NDIyMrj88ssJBAJ9bnfjjTcye/Zs5s6dyz/+8Y/u5a+99hqXXXYZ559/PpdffvmQxLh+/XomTZpERkZGj+WzZs0C4LPPPot5n5dddhkNDQ28/PLLmM0JP4HeqFFcXExDQwPbt2/nvvvu63O9devW8eKLL3LPPfdw3333MX/+fN5//30qKyu54YYbeqx72GGHYTAYev257bbbhvspiSSi6zpOp5O8vLw+1xnt722qqhIIBNA0rcf/JzKv10tzczPffvstDz74IH/961859thj+1x/LF4jTdNYsGABl1xyCfvss09UxxmL52nEjdg9YhGTfffdV09NTdVTU1P1BQsW6K+++qq+YMECHdDPOeecfrf1+/36kUceqaelpekfffSR/t577+k2m00/6aSTdEVRoo5hT193TJ06VT/mmGN2W75x40Yd0B977LGoj6Xrur5t2zYd0FNSUnSHw9H988EHH8S0H9G//q7r9ddfr5tMJr2jo6PH8rvvvlsH9Orq6gEfN5G/whLx9eyzz+qAvnLlyn7XG63vbbqu64sXL97tq96+jp8oLrvssu5YjUajPmfOHL21tbXfbcbaNVqxYoWemZmpNzU16bquR1WWoOtj7zyNNLk1lqA8Hg8+n4+f//zn3d0RTj/9dEKhEI8//ji33347e+21V6/bpqSk8Oabb3L00Udz4oknEgqFOOigg3jppZeG9G6o3+/HZrP1evyux2NRWVmJLhPmxVU0n/LLy8tj2qeqqqiq2uNTvsViwWQyDVncYvT66quv+MUvfsEhhxzChRde2O+6o/W9DWDJkiWjrhXe1VdfzZw5c6ivr+ell15C0zRCoVC/24yla9TS0sKiRYtYuHAh+fn5MR1rLJ2neJCyhARlt9sBmDt3bo/l5557LsAeZ+7KyMjg/vvvp7W1FY/Hw0MPPdS9z6GMMRgM7ra8q2xiqI8nhl9DQwPFxcW7Le9aVl9fH/M+77zzTux2O0899RR33XUXdrudZ599dtCxitGvsbGR2bNnk5mZ2V0buCfy3jZyJk+ezHHHHccFF1zA22+/jcfj4eSTT97jTYixco1uu+02cnJyWLBgwYC2HyvnKR4kuU1QJSUlABQWFvZYXlBQAEBbW1u/23/33Xecd955TJ48mcrKSs444wwaGhqGNMauOs5ddS3reg5i9BiuT/n6LoMT5s2bN9hQxSjX0dHBT37yE9rb2/nb3/4W9fuFvLfFz5w5c/jkk0/22JN4LFyjb775hieeeIKrrrqK+vp6tm3bxrZt2wgEAiiKwrZt22htbe13H2PhPMWLJLcJav/99wegrq6ux/KuO2f9fQXS0NDAj370IywWC++++y7vvvsuXq+XH//4x3v8yxaLGTNm8PXXX+N2u3ss//jjj7sfF6PLWP2UL0ZWIBDg5JNP5uuvv+btt99mypQpUW0n723x1fXhtqOjo891xso1qqurIxwOc9VVVzFu3Ljun48//pivv/6acePGcfvtt/e5/Vg5T/EiyW2COuuss4BIW5CdPfXUU5jNZo466qhet2tra+P444/H4/Hw3nvvUVZWxl577cU777xDTU0Ns2fPxuv1DkmMc+bMQdO0Hk29g8EgTz/9NAcddFDMtZki/sbqp3wxcjRN4+yzz+bDDz/k5Zdf5pBDDolqO3lvGzlNTU27LVMUhd///vfY7fY+P4yMpWs0bdo0Xn/99d1+pk6dSkVFBa+//jo/+9nPet12LJ2neJEBZQlq5syZXHzxxfzud79DVVWOPPJI1qxZw8svv8zNN9/cZ5LxyCOPUFNTw5o1a3oMOJsxYwZvv/02P/7xj1m1ahVXXHFFn8desWIF7e3t3XeJ33rrre5Z0RYsWNA9Y9hBBx3EmWeeyc0330xTUxMTJ05k1apVbNu2bbekXIwOM2bMYPXq1bjd7h6DypL9U74YOb/85S958803Ofnkk2ltbeW5557r8fj555/f63by3jZyLrvsMtxuN0cccQSlpaU0Njbyhz/8ga+++orf/OY3pKWl9brdWLpGeXl5nHrqqbst7+p129tjXcbSeYqbeLZqEP0LhUL6kiVL9MrKSt1isegTJ07UH3zwwX63URRF37BhQ5+Pf/7553uc9auysrLPWUq2bt3aY12/369fd911elFRkW6z2fQDDzxQ/9vf/hbtUxRx0F/rmI8++mi32WwCgYA+ceJE/aCDDhrBKEWyOvLII/t8f+nvnyR5bxs5L7zwgn7cccfphYWFutls1rOzs/XjjjtOf+ONN/rdTq5RdK3A5DwNP4OuS+8lIcaCnT/pP/roo5x++unMnDkT6PlJv2vmnGuuuab7U/66dev4xz/+wRFHHBHPpyCEEELskSS3QowRVVVVbN++vdfHtm7dSlVVFRAZ7LNw4UKee+452tra2Hfffbnjjjs4/vjjRzBaIYQQYmAkuRVCCCGEEElDuiUIIYQQQoikIcmtEEIIIYRIGpLcCiGEEEKIpCHJrRBCCCGESBqS3AohhBBCiKQhya0QQgghhEgaktwKIYQQQoikIcmtEEIIIYRIGpLcCiGEEEKIpCHJrRBCCCGESBqS3AohhBBCiKQhya0QQgDPPPMMBoOBf//730O2z6qqKubNmzdk+9uVwWBgyZIlw7Z/IYQYjSS5FUIkta6ktesnJSWFSZMmceWVV+J0OuMd3rDbtm1bj+e/68+vfvWreIfYq12vm9lsprS0lHnz5lFXVzegffp8PpYsWcKaNWuGNlghREIxxzsAIYQYCbfffjvjxo0jEAiwdu1aHn30Uf7yl7+wYcMGUlNTh+WYmzdvxmhMjHsIc+fO5cQTT9xt+cyZM+MQTfR2vm4fffQRzzzzDGvXrmXDhg2kpKTEtC+fz8fSpUsBOOqoo4YhWiFEIpDkVggxJvzkJz/hgAMOAOCSSy4hNzeXBx54gDfeeIO5c+cOyzFtNtuw7Hcg9ttvP84///yYttF1nUAggN1u3+2xQCCA1WodVPLu9XpxOBz9rrPrdcvLy+Pee+/lzTff5KyzzhrwsYUQySsxbikIIcQIO+aYYwDYunVrj+XBYJBrr72W/Px8HA4Hp512Gi6Xq/vxCy+8kLy8PBRF2W2fP/7xj9l77727f++t5ra9vZ1rrrmGqqoqbDYbZWVlXHDBBTQ3NwMQCoVYtGgR+++/P5mZmTgcDg4//HBWr149VE+9T1VVVZx00km88847HHDAAdjtdh5//HHWrFmDwWDgxRdf5LbbbqO0tJTU1FTcbjcAL7/8Mvvvvz92u528vDzOP//83UoH5s2bR1paGt9++y0nnngi6enpnHfeeTHHePjhhwPw7bffdi+L5pxt27aN/Px8AJYuXdpd7rBzzfJXX33FnDlzyMnJISUlhQMOOIA333wz5hiFEPEld26FEGNSV3KUm5vbY/mCBQvIzs5m8eLFbNu2jYceeogrr7ySP/7xjwD89Kc/5fe//z3vvPMOJ510Uvd2jY2NvP/++yxevLjPY3o8Hg4//HA2bdrExRdfzH777UdzczNvvvkmtbW15OXl4Xa7eeqpp5g7dy6XXnopnZ2drFy5kuOPP55169YxY8aMAT1fn8/XnUDvLCsrC7P5+38KNm/ezNy5c7nsssu49NJLeyTrd9xxB1arleuuu45gMIjVauWZZ57hoosu4sADD+See+7B6XSybNky/vnPf7J+/XqysrK6t1dVleOPP57DDjuM+++/f0DlINu2bQMgOzu7e1k05yw/P59HH32Uyy+/nNNOO43TTz8dgH333ReAjRs38sMf/pDS0lJuuukmHA4HL730Eqeeeiqvvvoqp512WsyxCiHiRBdCiCT29NNP64D+3nvv6S6XS6+pqdFffPFFPTc3V7fb7XptbW2P9Y477jg9HA53b3/NNdfoJpNJb29v13Vd1zVN08vKyvSzzz67x3EeeOAB3WAw6N999133ssrKSv3CCy/s/n3RokU6oL/22mu7xdl1TFVV9WAw2OOxtrY2vbCwUL/44ot7LAf0xYsX9/v8t27dqgN9/nz44Yc94gX0v/3tbz32sXr1ah3Qx48fr/t8vu7loVBILygo0KdNm6b7/f7u5W+//bYO6IsWLepeduGFF+qAftNNN/Ubb5fertsrr7yi5+fn6zabTa+pqeleN9pz5nK5+jxnxx57rL7PPvvogUCge1k4HNYPPfRQfa+99ooqZiFEYpA7t0KIMeG4447r8XtlZSV/+MMfKC0t7bF8/vz5GAyG7t8PP/xwHnzwQbZv386+++6L0WjkvPPOY/ny5XR2dpKeng7AH/7wBw499FDGjRvXZwyvvvoq06dP7/UuYNcxTSYTJpMJgHA4THt7O+FwmAMOOIBPP/10YE9+x/M688wzd1s+ZcqUHr+PGzeO448/vtd9XHjhhT3qb//973/T1NTEkiVLegzumj17NpMnT+bPf/5z9wCuLpdffnlMce963aqqqnjuuecoKyvrXjbYc9ba2sr777/P7bffTmdnJ52dnd2PHX/88SxevJi6urrdXitCiMQkya0QYkx4+OGHmTRpEmazmcLCQvbee+9eB0NVVFT0+L3r6++2trbuZRdccAH33nsvr7/+OhdccAGbN2/mP//5D4899li/MXz77becccYZe4x11apV/OY3v+Grr77qUdvbX+K8J3vttdduiWJv+jvGro9t374doEfpQpfJkyezdu3aHsvMZnOPpDQaXdeto6OD3/3ud3zwwQe9DtQbzDnbsmULuq6zcOFCFi5c2Os6TU1NktwKMUpIciuEGBNmzZrVPeq+P113AHel63r3/0+ZMoX999+f5557jgsuuIDnnnsOq9U6JKP3n3vuOebNm8epp57K9ddfT0FBASaTiXvuuafHIKrh0ltnhGgei4bNZou5u8LO1+3UU0/lsMMO49xzz2Xz5s2kpaUBgz9n4XAYgOuuu67Pu9YTJ06MKW4hRPxIciuEEANwwQUXcO2119LQ0MDzzz/P7Nmzewxy6s2ECRPYsGFDv+u88sorjB8/ntdee61HeUR/A9XipbKyEogMQuvqPtFl8+bN3Y8Pla6E9eijj2bFihXcdNNNQPTnbOfHdjZ+/HgALBZLVHe3hRCJTVqBCSHEAMydOxeDwcD//u//8t1330XVQ/aMM87g888/5/XXX9/tsa47w113jne+U/zxxx/z4YcfDlHkQ+eAAw6goKCAxx57jGAw2L38r3/9K5s2bWL27NlDfsyjjjqKWbNm8dBDDxEIBIDoz1lXd4b29vYeywsKCjjqqKN4/PHHaWho2O2YO7eCE0IkPrlzK4QQA5Cfn88JJ5zAyy+/TFZWVlSJ3PXXX88rr7zCmWeeycUXX8z+++9Pa2srb775Jo899hjTp0/npJNO4rXXXuO0005j9uzZbN26lccee4wpU6bg8XgGHO+nn37Kc889t9vyCRMmcMghhwxonxaLhXvvvZeLLrqII488krlz53a3AquqquKaa64ZcLz9uf766znzzDN55pln+PnPfx71ObPb7UyZMoU//vGPTJo0iZycHKZNm8a0adN4+OGHOeyww9hnn3249NJLGT9+PE6nkw8//JDa2lo+//zzYXkuQoihJ8mtEEIM0AUXXMDbb7/NWWedFdVsZGlpafzf//0fixcv5vXXX2fVqlUUFBRw7LHHdg+0mjdvHo2NjTz++OO88847TJkyheeee46XX36ZNWvWDDjWF154gRdeeGG35RdeeOGAk9uueFNTU/nVr37FjTfe2D3xxb333tujx+1QOv3005kwYQL3338/l156aUzn7KmnnmLBggVcc801hEIhFi9ezLRp05gyZQr//ve/Wbp0Kc888wwtLS0UFBQwc+ZMFi1aNCzPQwgxPAz6zt/jCCGEiNobb7zBqaeeygcffNA9c5YQQoj4kuRWCCEG6KSTTmLTpk1s2bKlz8FKQgghRpaUJQghRIxefPFFvvjiC/785z+zbNkySWyFECKByJ1bIYSIkcFgIC0tjbPPPpvHHnsMs1nuEwghRKKQd2QhhIiR3BMQQojEJX1uhRBCCCFE0pDkVgghhBBCJA1JboUQQgghRNKQ5FYIIYQQQiQNSW6FEEIIIUTSkORWCCGEEEIkDUluhRBCCCFE0pDkVgghhBBCJA1JboUQQgghRNKQ5FYIIYQQQiSN/w8D0+XutxTMJAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "RKM6PLk8Tl13" + }, + "source": [ + "As you can see, the sampled estimate ends up close to the expected value $0.32$." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "sinter.plot_error_rate(\n", - " ax=ax,\n", - " stats=collected_stats,\n", - " x_func=lambda stats: stats.json_metadata['p'],\n", - " group_func=lambda stats: stats.json_metadata['d'],\n", - ")\n", - "ax.set_ylim(1e-4, 1e-0)\n", - "ax.set_xlim(5e-2, 5e-1)\n", - "ax.loglog()\n", - "ax.set_title(\"Repetition Code Error Rates (Phenomenological Noise)\")\n", - "ax.set_xlabel(\"Phyical Error Rate\")\n", - "ax.set_ylabel(\"Logical Error Rate per Shot\")\n", - "ax.grid(which='major')\n", - "ax.grid(which='minor')\n", - "ax.legend()\n", - "fig.set_dpi(120) # Show it bigger" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gU4GZ66sZllH" - }, - "source": [ - "`sinter`'s goal is to make getting these kinds of results fast and easy." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gU4GZ66sZllH" - }, - "source": [ - "\n", - "# 9. Estimate the threshold and footprint of a surface code.\n", - "\n", - "Estimating the threshold of a repetition code under phenomenelogical noise is one thing.\n", - "Estimating the threshold of a true quantum code, such as a surface code, under circuit noise, is...\n", - "well, historically, it would be a whole other thing.\n", - "But when using stim, and pymatching, and sinter, the workflow is exactly identical.\n", - "The only thing that changes are the circuits input into the process.\n", - "\n", - "The hard part is making the circuits in the first place.\n", - "So, for this tutorial, you'll continue to lean on Stim's example circuits.\n", - "You can make simple surface code circuits using `stim.Circuit.generated`." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "id": "gAtDhdGuV--e" - }, - "outputs": [], - "source": [ - "surface_code_circuit = stim.Circuit.generated(\n", - " \"surface_code:rotated_memory_z\",\n", - " rounds=9,\n", - " distance=3,\n", - " after_clifford_depolarization=0.001,\n", - " after_reset_flip_probability=0.001,\n", - " before_measure_flip_probability=0.001,\n", - " before_round_data_depolarization=0.001)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "huyjsuMBfSP9" - }, - "source": [ - "Surface code circuits have a much more complex structure than repetition codes, because they are laid out in a 2d grid instead of a 1d line. A time slice diagram of the circuit without noise will be much clearer than a timeline diagram:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 404 }, - "id": "-1O4qysufdXj", - "outputId": "42a217ab-1a92-4850-b634-932f3a8f603e" - }, - "outputs": [ { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "Tick 3\n", - "\n", - "Tick 4\n", - "\n", - "Tick 5\n", - "\n", - "Tick 6\n", - "\n", - "Tick 7\n", - "\n", - "Tick 8\n", - "\n", - "Tick 9\n", - "\n", - "Tick 10\n", - "\n", - "Tick 11\n", - "\n", - "Tick 12\n", - "\n", - "Tick 13\n", - "\n", - "Tick 14\n", - "\n", - "Tick 15\n", - "\n", - "Tick 16\n", - "\n", - "Tick 17\n", - "\n", - "Tick 18\n", - "\n", - "Tick 19\n", - "\n", - "Tick 20\n", - "\n", - "Tick 21\n", - "\n", - "Tick 22\n", - "\n", - "Tick 23\n", - "\n", - "Tick 24\n", - "\n", - "Tick 25\n", - "\n", - "Tick 26\n", - "\n", - "Tick 27\n", - "\n", - "Tick 28\n", - "\n", - "Tick 29\n", - "\n", - "Tick 30\n", - "\n", - "Tick 31\n", - "\n", - "Tick 32\n", - "\n", - "Tick 33\n", - "\n", - "Tick 34\n", - "\n", - "Tick 35\n", - "\n", - "Tick 36\n", - "\n", - "Tick 37\n", - "\n", - "Tick 38\n", - "\n", - "Tick 39\n", - "\n", - "Tick 40\n", - "\n", - "Tick 41\n", - "\n", - "Tick 42\n", - "\n", - "Tick 43\n", - "\n", - "Tick 44\n", - "\n", - "Tick 45\n", - "\n", - "Tick 46\n", - "\n", - "Tick 47\n", - "\n", - "Tick 48\n", - "\n", - "Tick 49\n", - "\n", - "Tick 50\n", - "\n", - "Tick 51\n", - "\n", - "Tick 52\n", - "\n", - "Tick 53\n", - "\n", - "Tick 54\n", - "\n", - "Tick 55\n", - "\n", - "Tick 56\n", - "\n", - "Tick 57\n", - "\n", - "Tick 58\n", - "\n", - "Tick 59\n", - "\n", - "Tick 60\n", - "\n", - "Tick 61\n", - "\n", - "Tick 62\n", - "\n", - "Tick 63\n", - "\n", - "\n", - "" + "cell_type": "markdown", + "metadata": { + "id": "fG2jQsH2LZQP" + }, + "source": [ + "\n", + "# 5. Generate example error correction circuits\n", + "\n", + "Now it's time for you to work with a *real* error-correcting circuit.\n", + "Well... a classical error-correcting circuit:\n", + "the *repetition* code.\n", + "\n", + "You could generate a repetition code circuit for yourself, but for the purposes of this tutorial it's easiest to use the example one included with Stim.\n", + "You can do this by calling `stim.Circuit.generated` with an argument of `\"repetition_code:memory\"`.\n", + "(You can find other valid arguments in the method's doc string, or just by passing in a bad one and looking at the exception message that comes out.)\n", + "\n", + "Stim takes a few different parameters when generating circuits.\n", + "You have to decide how many times the stabilizers of the code are measured by specifying `rounds`, you have to decide on the size of the code by specifying `distance`, and you can specify what kind of noise to include using a few optional parameters.\n", + "\n", + "To start with, just set `before_round_data_depolarization=0.04` and `before_measure_flip_probability=0.01`. This will insert a `DEPOLARIZE1(0.04)` operation at the start of each round targeting every data qubit, and an `X_ERROR(0.01)` just before each measurement operation.\n", + "This is a \"phenomenological noise model\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ku1-_JnuLzVR", + "outputId": "e9b813a7-f4bc-42f0-e4ac-e73f90204ee4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stim.Circuit('''\n", + " R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\n", + " TICK\n", + " DEPOLARIZE1(0.04) 0 2 4 6 8 10 12 14 16\n", + " CX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n", + " TICK\n", + " CX 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15\n", + " TICK\n", + " X_ERROR(0.01) 1 3 5 7 9 11 13 15\n", + " MR 1 3 5 7 9 11 13 15\n", + " DETECTOR(1, 0) rec[-8]\n", + " DETECTOR(3, 0) rec[-7]\n", + " DETECTOR(5, 0) rec[-6]\n", + " DETECTOR(7, 0) rec[-5]\n", + " DETECTOR(9, 0) rec[-4]\n", + " DETECTOR(11, 0) rec[-3]\n", + " DETECTOR(13, 0) rec[-2]\n", + " DETECTOR(15, 0) rec[-1]\n", + " REPEAT 24 {\n", + " TICK\n", + " DEPOLARIZE1(0.04) 0 2 4 6 8 10 12 14 16\n", + " CX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n", + " TICK\n", + " CX 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15\n", + " TICK\n", + " X_ERROR(0.01) 1 3 5 7 9 11 13 15\n", + " MR 1 3 5 7 9 11 13 15\n", + " SHIFT_COORDS(0, 1)\n", + " DETECTOR(1, 0) rec[-8] rec[-16]\n", + " DETECTOR(3, 0) rec[-7] rec[-15]\n", + " DETECTOR(5, 0) rec[-6] rec[-14]\n", + " DETECTOR(7, 0) rec[-5] rec[-13]\n", + " DETECTOR(9, 0) rec[-4] rec[-12]\n", + " DETECTOR(11, 0) rec[-3] rec[-11]\n", + " DETECTOR(13, 0) rec[-2] rec[-10]\n", + " DETECTOR(15, 0) rec[-1] rec[-9]\n", + " }\n", + " X_ERROR(0.01) 0 2 4 6 8 10 12 14 16\n", + " M 0 2 4 6 8 10 12 14 16\n", + " DETECTOR(1, 1) rec[-8] rec[-9] rec[-17]\n", + " DETECTOR(3, 1) rec[-7] rec[-8] rec[-16]\n", + " DETECTOR(5, 1) rec[-6] rec[-7] rec[-15]\n", + " DETECTOR(7, 1) rec[-5] rec[-6] rec[-14]\n", + " DETECTOR(9, 1) rec[-4] rec[-5] rec[-13]\n", + " DETECTOR(11, 1) rec[-3] rec[-4] rec[-12]\n", + " DETECTOR(13, 1) rec[-2] rec[-3] rec[-11]\n", + " DETECTOR(15, 1) rec[-1] rec[-2] rec[-10]\n", + " OBSERVABLE_INCLUDE(0) rec[-1]\n", + "''')\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "q0\n", + "\n", + "q1\n", + "\n", + "q2\n", + "\n", + "q3\n", + "\n", + "q4\n", + "\n", + "q5\n", + "\n", + "q6\n", + "\n", + "q7\n", + "\n", + "q8\n", + "\n", + "q9\n", + "\n", + "q10\n", + "\n", + "q11\n", + "\n", + "q12\n", + "\n", + "q13\n", + "\n", + "q14\n", + "\n", + "q15\n", + "\n", + "q16\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "MR\n", + "rec[0]\n", + "\n", + "MR\n", + "rec[1]\n", + "\n", + "MR\n", + "rec[2]\n", + "\n", + "MR\n", + "rec[3]\n", + "\n", + "MR\n", + "rec[4]\n", + "\n", + "MR\n", + "rec[5]\n", + "\n", + "MR\n", + "rec[6]\n", + "\n", + "MR\n", + "rec[7]\n", + "\n", + "DETECTOR\n", + "coords=(1,0)\n", + "D0 = rec[0]\n", + "\n", + "DETECTOR\n", + "coords=(3,0)\n", + "D1 = rec[1]\n", + "\n", + "DETECTOR\n", + "coords=(5,0)\n", + "D2 = rec[2]\n", + "\n", + "DETECTOR\n", + "coords=(7,0)\n", + "D3 = rec[3]\n", + "\n", + "DETECTOR\n", + "coords=(9,0)\n", + "D4 = rec[4]\n", + "\n", + "DETECTOR\n", + "coords=(11,0)\n", + "D5 = rec[5]\n", + "\n", + "DETECTOR\n", + "coords=(13,0)\n", + "D6 = rec[6]\n", + "\n", + "DETECTOR\n", + "coords=(15,0)\n", + "D7 = rec[7]\n", + "\n", + "\n", + "\n", + "REP24\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "MR\n", + "rec[8+iter*8]\n", + "\n", + "MR\n", + "rec[9+iter*8]\n", + "\n", + "MR\n", + "rec[10+iter*8]\n", + "\n", + "MR\n", + "rec[11+iter*8]\n", + "\n", + "MR\n", + "rec[12+iter*8]\n", + "\n", + "MR\n", + "rec[13+iter*8]\n", + "\n", + "MR\n", + "rec[14+iter*8]\n", + "\n", + "MR\n", + "rec[15+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(1,1+iter)\n", + "D[8+iter*8] = rec[8+iter*8]*rec[0+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(3,1+iter)\n", + "D[9+iter*8] = rec[9+iter*8]*rec[1+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(5,1+iter)\n", + "D[10+iter*8] = rec[10+iter*8]*rec[2+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(7,1+iter)\n", + "D[11+iter*8] = rec[11+iter*8]*rec[3+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(9,1+iter)\n", + "D[12+iter*8] = rec[12+iter*8]*rec[4+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(11,1+iter)\n", + "D[13+iter*8] = rec[13+iter*8]*rec[5+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(13,1+iter)\n", + "D[14+iter*8] = rec[14+iter*8]*rec[6+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(15,1+iter)\n", + "D[15+iter*8] = rec[15+iter*8]*rec[7+iter*8]\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "M\n", + "rec[200]\n", + "\n", + "M\n", + "rec[201]\n", + "\n", + "M\n", + "rec[202]\n", + "\n", + "M\n", + "rec[203]\n", + "\n", + "M\n", + "rec[204]\n", + "\n", + "M\n", + "rec[205]\n", + "\n", + "M\n", + "rec[206]\n", + "\n", + "M\n", + "rec[207]\n", + "\n", + "M\n", + "rec[208]\n", + "\n", + "DETECTOR\n", + "coords=(1,25)\n", + "D200 = rec[201]*rec[200]*rec[192]\n", + "\n", + "DETECTOR\n", + "coords=(3,25)\n", + "D201 = rec[202]*rec[201]*rec[193]\n", + "\n", + "DETECTOR\n", + "coords=(5,25)\n", + "D202 = rec[203]*rec[202]*rec[194]\n", + "\n", + "DETECTOR\n", + "coords=(7,25)\n", + "D203 = rec[204]*rec[203]*rec[195]\n", + "\n", + "DETECTOR\n", + "coords=(9,25)\n", + "D204 = rec[205]*rec[204]*rec[196]\n", + "\n", + "DETECTOR\n", + "coords=(11,25)\n", + "D205 = rec[206]*rec[205]*rec[197]\n", + "\n", + "DETECTOR\n", + "coords=(13,25)\n", + "D206 = rec[207]*rec[206]*rec[198]\n", + "\n", + "DETECTOR\n", + "coords=(15,25)\n", + "D207 = rec[208]*rec[207]*rec[199]\n", + "\n", + "OBS_INCLUDE(0)\n", + "L0 *= rec[208]\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "q0\n", + "\n", + "q1\n", + "\n", + "q2\n", + "\n", + "q3\n", + "\n", + "q4\n", + "\n", + "q5\n", + "\n", + "q6\n", + "\n", + "q7\n", + "\n", + "q8\n", + "\n", + "q9\n", + "\n", + "q10\n", + "\n", + "q11\n", + "\n", + "q12\n", + "\n", + "q13\n", + "\n", + "q14\n", + "\n", + "q15\n", + "\n", + "q16\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "MR\n", + "rec[0]\n", + "\n", + "MR\n", + "rec[1]\n", + "\n", + "MR\n", + "rec[2]\n", + "\n", + "MR\n", + "rec[3]\n", + "\n", + "MR\n", + "rec[4]\n", + "\n", + "MR\n", + "rec[5]\n", + "\n", + "MR\n", + "rec[6]\n", + "\n", + "MR\n", + "rec[7]\n", + "\n", + "DETECTOR\n", + "coords=(1,0)\n", + "D0 = rec[0]\n", + "\n", + "DETECTOR\n", + "coords=(3,0)\n", + "D1 = rec[1]\n", + "\n", + "DETECTOR\n", + "coords=(5,0)\n", + "D2 = rec[2]\n", + "\n", + "DETECTOR\n", + "coords=(7,0)\n", + "D3 = rec[3]\n", + "\n", + "DETECTOR\n", + "coords=(9,0)\n", + "D4 = rec[4]\n", + "\n", + "DETECTOR\n", + "coords=(11,0)\n", + "D5 = rec[5]\n", + "\n", + "DETECTOR\n", + "coords=(13,0)\n", + "D6 = rec[6]\n", + "\n", + "DETECTOR\n", + "coords=(15,0)\n", + "D7 = rec[7]\n", + "\n", + "\n", + "\n", + "REP24\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "DEP1\n", + "0.04\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "MR\n", + "rec[8+iter*8]\n", + "\n", + "MR\n", + "rec[9+iter*8]\n", + "\n", + "MR\n", + "rec[10+iter*8]\n", + "\n", + "MR\n", + "rec[11+iter*8]\n", + "\n", + "MR\n", + "rec[12+iter*8]\n", + "\n", + "MR\n", + "rec[13+iter*8]\n", + "\n", + "MR\n", + "rec[14+iter*8]\n", + "\n", + "MR\n", + "rec[15+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(1,1+iter)\n", + "D[8+iter*8] = rec[8+iter*8]*rec[0+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(3,1+iter)\n", + "D[9+iter*8] = rec[9+iter*8]*rec[1+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(5,1+iter)\n", + "D[10+iter*8] = rec[10+iter*8]*rec[2+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(7,1+iter)\n", + "D[11+iter*8] = rec[11+iter*8]*rec[3+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(9,1+iter)\n", + "D[12+iter*8] = rec[12+iter*8]*rec[4+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(11,1+iter)\n", + "D[13+iter*8] = rec[13+iter*8]*rec[5+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(13,1+iter)\n", + "D[14+iter*8] = rec[14+iter*8]*rec[6+iter*8]\n", + "\n", + "DETECTOR\n", + "coords=(15,1+iter)\n", + "D[15+iter*8] = rec[15+iter*8]*rec[7+iter*8]\n", + "\n", + "\n", + "\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "ERRX\n", + "0.01\n", + "\n", + "M\n", + "rec[200]\n", + "\n", + "M\n", + "rec[201]\n", + "\n", + "M\n", + "rec[202]\n", + "\n", + "M\n", + "rec[203]\n", + "\n", + "M\n", + "rec[204]\n", + "\n", + "M\n", + "rec[205]\n", + "\n", + "M\n", + "rec[206]\n", + "\n", + "M\n", + "rec[207]\n", + "\n", + "M\n", + "rec[208]\n", + "\n", + "DETECTOR\n", + "coords=(1,25)\n", + "D200 = rec[201]*rec[200]*rec[192]\n", + "\n", + "DETECTOR\n", + "coords=(3,25)\n", + "D201 = rec[202]*rec[201]*rec[193]\n", + "\n", + "DETECTOR\n", + "coords=(5,25)\n", + "D202 = rec[203]*rec[202]*rec[194]\n", + "\n", + "DETECTOR\n", + "coords=(7,25)\n", + "D203 = rec[204]*rec[203]*rec[195]\n", + "\n", + "DETECTOR\n", + "coords=(9,25)\n", + "D204 = rec[205]*rec[204]*rec[196]\n", + "\n", + "DETECTOR\n", + "coords=(11,25)\n", + "D205 = rec[206]*rec[205]*rec[197]\n", + "\n", + "DETECTOR\n", + "coords=(13,25)\n", + "D206 = rec[207]*rec[206]*rec[198]\n", + "\n", + "DETECTOR\n", + "coords=(15,25)\n", + "D207 = rec[208]*rec[207]*rec[199]\n", + "\n", + "OBS_INCLUDE(0)\n", + "L0 *= rec[208]\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "M\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "Tick 3\n", - "\n", - "Tick 4\n", - "\n", - "Tick 5\n", - "\n", - "Tick 6\n", - "\n", - "Tick 7\n", - "\n", - "Tick 8\n", - "\n", - "Tick 9\n", - "\n", - "Tick 10\n", - "\n", - "Tick 11\n", - "\n", - "Tick 12\n", - "\n", - "Tick 13\n", - "\n", - "Tick 14\n", - "\n", - "Tick 15\n", - "\n", - "Tick 16\n", - "\n", - "Tick 17\n", - "\n", - "Tick 18\n", - "\n", - "Tick 19\n", - "\n", - "Tick 20\n", - "\n", - "Tick 21\n", - "\n", - "Tick 22\n", - "\n", - "Tick 23\n", - "\n", - "Tick 24\n", - "\n", - "Tick 25\n", - "\n", - "Tick 26\n", - "\n", - "Tick 27\n", - "\n", - "Tick 28\n", - "\n", - "Tick 29\n", - "\n", - "Tick 30\n", - "\n", - "Tick 31\n", - "\n", - "Tick 32\n", - "\n", - "Tick 33\n", - "\n", - "Tick 34\n", - "\n", - "Tick 35\n", - "\n", - "Tick 36\n", - "\n", - "Tick 37\n", - "\n", - "Tick 38\n", - "\n", - "Tick 39\n", - "\n", - "Tick 40\n", - "\n", - "Tick 41\n", - "\n", - "Tick 42\n", - "\n", - "Tick 43\n", - "\n", - "Tick 44\n", - "\n", - "Tick 45\n", - "\n", - "Tick 46\n", - "\n", - "Tick 47\n", - "\n", - "Tick 48\n", - "\n", - "Tick 49\n", - "\n", - "Tick 50\n", - "\n", - "Tick 51\n", - "\n", - "Tick 52\n", - "\n", - "Tick 53\n", - "\n", - "Tick 54\n", - "\n", - "Tick 55\n", - "\n", - "Tick 56\n", - "\n", - "Tick 57\n", - "\n", - "Tick 58\n", - "\n", - "Tick 59\n", - "\n", - "Tick 60\n", - "\n", - "Tick 61\n", - "\n", - "Tick 62\n", - "\n", - "Tick 63\n", - "\n", - "\n", - "" + "source": [ + "circuit = stim.Circuit.generated(\n", + " \"repetition_code:memory\",\n", + " rounds=25,\n", + " distance=9,\n", + " before_round_data_depolarization=0.04,\n", + " before_measure_flip_probability=0.01)\n", + "\n", + "print(repr(circuit))\n", + "circuit.diagram('timeline-svg')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DEE3Vqq_ZzXP" + }, + "source": [ + "You can see that this circuit is more complicated than the example you started with. Notice the little \"REP24\" at the bottom of the diagram. This circuit is using a `REPEAT` block to repeatedly measure the stabilizers of the code." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lTu556AOMTv6" + }, + "source": [ + "With a circuit in hand, you can try sampling from it.\n", + "Try sampling the measurements once, and printing out the results split up just right so that time advances from line to line:" ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "surface_code_circuit.without_noise().diagram(\"timeslice-svg\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "huyjsuMBfSP9" - }, - "source": [ - "You can also make 3d diagrams of the circuit, using `timeline-3d`." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 404 }, - "id": "-1O4qysufdXj", - "outputId": "42a217ab-1a92-4850-b634-932f3a8f603e" - }, - "outputs": [ { - "data": { - "text/html": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hQyBEti8Ng_S", + "outputId": "1c988414-9080-4f0f-facf-70c27b935730" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "_______1\n", + "________\n", + "________\n", + "________\n", + "_______1\n", + "_______1\n", + "________\n", + "________\n", + "11_____1\n", + "11___1_1\n", + "11_____1\n", + "11_____1\n", + "11_____1\n", + "11_11__1\n", + "11_11__1\n", + "11_11__1\n", + "11_11__1\n", + "1__11__1\n", + "11_11__1\n", + "1_111__1\n", + "_11_1___\n", + "1\n" + ] + } ], - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":4,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"control_x_line_cross\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.4375,0.5625],\"min\":[0.375,0.5],\"name\":\"tex_coords_gate_MR\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":130,\"max\":[1,-32,-32],\"min\":[-17,-40.4852828979492,-40.4852828979492],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-15.25,-41.4852828979492,-41.4852828979492],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":3,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":4,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":5,\"byteLength\":48,\"byteOffset\":0,\"name\":\"control_x_line_cross\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MR\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":1560,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":48,\"name\":\"control_x_line_cross\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MR\",\"uri\":\"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":1560,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAwE9QC8IAAADCAAAAwHf4EMIoqAXCAAAAwE9QC8KeoBbCAAAAwHf4EMLGSBzCAAAAwJ6gFsJPUAvCAAAAwMZIHMJ3+BDCAAAAwCioBcLGSBzCAAAAwAAAAMKeoBbCAAAAwHf4EMJ3+BDCAAAAwE9QC8JPUAvCAAAAwMZIHMLGSBzCAAAAwJ6gFsKeoBbCAABAwE9QC8IAAADCAABAwCioBcIoqAXCAABAwE9QC8KeoBbCAABAwCioBcLGSBzCAABAwJ6gFsJPUAvCAABAwHf4EMJ3+BDCAABAwCioBcJ3+BDCAABAwAAAAMKeoBbCAABAwHf4EMIoqAXCAABAwE9QC8JPUAvCAABAwMZIHMJ3+BDCAABAwJ6gFsKeoBbCAACAwE9QC8KeoBbCAACAwHf4EMJ3+BDCAACAwJ6gFsJPUAvCAACAwMZIHMIoqAXCAACAwJ6gFsLu8CHCAACAwMZIHMLGSBzCAACAwCioBcJ3+BDCAACAwE9QC8JPUAvCAACAwHf4EMLGSBzCAACAwJ6gFsKeoBbCAACAwMZIHMJ3+BDCAACAwO7wIcJPUAvCAACgwE9QC8KeoBbCAACgwCioBcJ3+BDCAACgwJ6gFsJPUAvCAACgwHf4EMIoqAXCAACgwJ6gFsLu8CHCAACgwHf4EMLGSBzCAACgwCioBcIoqAXCAACgwE9QC8JPUAvCAACgwHf4EMJ3+BDCAACgwJ6gFsKeoBbCAACgwMZIHMIoqAXCAACgwO7wIcJPUAvCAAAgwU9QC8IAAADCAAAgwXf4EMIoqAXCAAAgwU9QC8KeoBbCAAAgwXf4EMLGSBzCAAAgwZ6gFsJPUAvCAAAgwcZIHMJ3+BDCAAAgwSioBcLGSBzCAAAgwQAAAMKeoBbCAAAgwXf4EMJ3+BDCAAAgwU9QC8JPUAvCAAAgwcZIHMLGSBzCAAAgwZ6gFsKeoBbCAAAwwU9QC8IAAADCAAAwwSioBcIoqAXCAAAwwU9QC8KeoBbCAAAwwSioBcLGSBzCAAAwwZ6gFsJPUAvCAAAwwXf4EMJ3+BDCAAAwwSioBcJ3+BDCAAAwwQAAAMKeoBbCAAAwwXf4EMIoqAXCAAAwwU9QC8JPUAvCAAAwwcZIHMJ3+BDCAAAwwZ6gFsKeoBbCAABAwU9QC8KeoBbCAABAwXf4EMJ3+BDCAABAwZ6gFsJPUAvCAABAwcZIHMIoqAXCAABAwZ6gFsLu8CHCAABAwcZIHMLGSBzCAABAwSioBcJ3+BDCAABAwU9QC8JPUAvCAABAwXf4EMLGSBzCAABAwZ6gFsKeoBbCAABAwcZIHMJ3+BDCAABAwe7wIcJPUAvCAABQwU9QC8KeoBbCAABQwSioBcJ3+BDCAABQwZ6gFsJPUAvCAABQwXf4EMIoqAXCAABQwZ6gFsLu8CHCAABQwXf4EMLGSBzCAABQwSioBcIoqAXCAABQwU9QC8JPUAvCAABQwXf4EMJ3+BDCAABQwZ6gFsKeoBbCAABQwcZIHMIoqAXCAABQwe7wIcJPUAvCAACAPyioBcIoqAXCAACIwSioBcIoqAXCAACAP09QC8IAAADCAACIwU9QC8IAAADCAACAP3f4EMIoqAXCAACIwXf4EMIoqAXCAACAP8ZIHMIoqAXCAACIwcZIHMIoqAXCAACAPyioBcJ3+BDCAACIwSioBcJ3+BDCAACAP09QC8JPUAvCAACIwU9QC8JPUAvCAACAP3f4EMJ3+BDCAACIwXf4EMJ3+BDCAACAP56gFsJPUAvCAACIwZ6gFsJPUAvCAACAP8ZIHMJ3+BDCAACIwcZIHMJ3+BDCAACAP+7wIcJPUAvCAACIwe7wIcJPUAvCAACAPwAAAMKeoBbCAACIwQAAAMKeoBbCAACAPyioBcLGSBzCAACIwSioBcLGSBzCAACAP09QC8KeoBbCAACIwU9QC8KeoBbCAACAP3f4EMLGSBzCAACIwXf4EMLGSBzCAACAP56gFsKeoBbCAACIwZ6gFsKeoBbCAACAP8ZIHMLGSBzCAACIwcZIHMLGSBzCAACAP56gFsLu8CHCAACIwZ6gFsLu8CHC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MF3+BDCAABAwAAA8MF3+BDCAAAgwAAA9MF3+BDCAABAwAAA8MF3+BDCAAAgwAAA7MF3+BDCAABAwAAA8MF3+BDCAAD4wAAA+MEAAPjBAAD4wAAA+MHu8CXCAAD4wAAA+MEAAPjBAAD4wO7wJcIAAPjBAAD4wAAA+MEAAPjBAAB0wQAA+MEAAPjBAAD4wAAA+MHu8CXCAAD4wO7wJcLu8CXCAAD4wAAA+MHu8CXCAAB0wQAA+MHu8CXCAAD4wO7wJcIAAPjBAAD4wO7wJcLu8CXCAAD4wO7wJcIAAPjBAAB0we7wJcIAAPjBAAD4wO7wJcLu8CXCAAB0we7wJcLu8CXCAAB0wQAA+MEAAPjBAAB0wQAA+MHu8CXCAAB0wQAA+MEAAPjBAAB0we7wJcIAAPjBAAB0wQAA+MHu8CXCAAB0we7wJcLu8CXCAAB0we7wJcIAAPjBAAB0we7wJcLu8CXC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":3},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":4},\"material\":2,\"mode\":6},{\"attributes\":{\"POSITION\":4},\"material\":3,\"mode\":3},{\"attributes\":{\"POSITION\":5},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":4,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":5,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-33.4142,-33.4142]},{\"mesh\":0,\"translation\":[-0,-36.2426,-33.4142]},{\"mesh\":0,\"translation\":[-0,-39.0711,-33.4142]},{\"mesh\":0,\"translation\":[-0,-33.4142,-36.2426]},{\"mesh\":0,\"translation\":[-0,-36.2426,-36.2426]},{\"mesh\":0,\"translation\":[-0,-39.0711,-36.2426]},{\"mesh\":0,\"translation\":[-0,-33.4142,-39.0711]},{\"mesh\":0,\"translation\":[-0,-36.2426,-39.0711]},{\"mesh\":0,\"translation\":[-0,-39.0711,-39.0711]},{\"mesh\":0,\"translation\":[-0,-34.8284,-32]},{\"mesh\":0,\"translation\":[-0,-34.8284,-34.8284]},{\"mesh\":0,\"translation\":[-0,-37.6569,-34.8284]},{\"mesh\":0,\"translation\":[-0,-40.4853,-34.8284]},{\"mesh\":0,\"translation\":[-0,-32,-37.6569]},{\"mesh\":0,\"translation\":[-0,-34.8284,-37.6569]},{\"mesh\":0,\"translation\":[-0,-37.6569,-37.6569]},{\"mesh\":0,\"translation\":[-0,-37.6569,-40.4853]},{\"mesh\":1,\"translation\":[-1,-34.8284,-32]},{\"mesh\":1,\"translation\":[-1,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-1,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-1,-37.6569,-40.4853]},{\"mesh\":2,\"translation\":[-2,-34.8284,-32]},{\"mesh\":3,\"translation\":[-2,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-2,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-2,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-2,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-2,-39.0711,-36.2426]},{\"mesh\":2,\"translation\":[-2,-33.4142,-39.0711]},{\"mesh\":3,\"translation\":[-2,-32,-37.6569]},{\"mesh\":2,\"translation\":[-2,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-2,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-2,-39.0711,-39.0711]},{\"mesh\":3,\"translation\":[-2,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-3,-34.8284,-32]},{\"mesh\":3,\"translation\":[-3,-33.4142,-33.4142]},{\"mesh\":2,\"translation\":[-3,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-3,-33.4142,-39.0711]},{\"mesh\":2,\"translation\":[-3,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-3,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-3,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-3,-32,-37.6569]},{\"mesh\":2,\"translation\":[-3,-36.2426,-33.4142]},{\"mesh\":3,\"translation\":[-3,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-3,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-3,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-4,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-4,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-4,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-4,-39.0711,-33.4142]},{\"mesh\":2,\"translation\":[-4,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-4,-39.0711,-39.0711]},{\"mesh\":2,\"translation\":[-4,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-4,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-4,-36.2426,-39.0711]},{\"mesh\":3,\"translation\":[-4,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-4,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-4,-40.4853,-34.8284]},{\"mesh\":2,\"translation\":[-5,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-5,-33.4142,-36.2426]},{\"mesh\":2,\"translation\":[-5,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-5,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-5,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-5,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-5,-33.4142,-33.4142]},{\"mesh\":3,\"translation\":[-5,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-5,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-5,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-5,-39.0711,-33.4142]},{\"mesh\":3,\"translation\":[-5,-40.4853,-34.8284]},{\"mesh\":1,\"translation\":[-6,-34.8284,-32]},{\"mesh\":1,\"translation\":[-6,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-6,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-6,-37.6569,-40.4853]},{\"mesh\":4,\"translation\":[-7,-34.8284,-32]},{\"mesh\":4,\"translation\":[-7,-34.8284,-34.8284]},{\"mesh\":4,\"translation\":[-7,-37.6569,-34.8284]},{\"mesh\":4,\"translation\":[-7,-40.4853,-34.8284]},{\"mesh\":4,\"translation\":[-7,-32,-37.6569]},{\"mesh\":4,\"translation\":[-7,-34.8284,-37.6569]},{\"mesh\":4,\"translation\":[-7,-37.6569,-37.6569]},{\"mesh\":4,\"translation\":[-7,-37.6569,-40.4853]},{\"mesh\":1,\"translation\":[-9,-34.8284,-32]},{\"mesh\":1,\"translation\":[-9,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-9,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-9,-37.6569,-40.4853]},{\"mesh\":2,\"translation\":[-10,-34.8284,-32]},{\"mesh\":3,\"translation\":[-10,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-10,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-10,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-10,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-10,-39.0711,-36.2426]},{\"mesh\":2,\"translation\":[-10,-33.4142,-39.0711]},{\"mesh\":3,\"translation\":[-10,-32,-37.6569]},{\"mesh\":2,\"translation\":[-10,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-10,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-10,-39.0711,-39.0711]},{\"mesh\":3,\"translation\":[-10,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-11,-34.8284,-32]},{\"mesh\":3,\"translation\":[-11,-33.4142,-33.4142]},{\"mesh\":2,\"translation\":[-11,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-11,-33.4142,-39.0711]},{\"mesh\":2,\"translation\":[-11,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-11,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-11,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-11,-32,-37.6569]},{\"mesh\":2,\"translation\":[-11,-36.2426,-33.4142]},{\"mesh\":3,\"translation\":[-11,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-11,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-11,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-12,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-12,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-12,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-12,-39.0711,-33.4142]},{\"mesh\":2,\"translation\":[-12,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-12,-39.0711,-39.0711]},{\"mesh\":2,\"translation\":[-12,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-12,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-12,-36.2426,-39.0711]},{\"mesh\":3,\"translation\":[-12,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-12,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-12,-40.4853,-34.8284]},{\"mesh\":2,\"translation\":[-13,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-13,-33.4142,-36.2426]},{\"mesh\":2,\"translation\":[-13,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-13,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-13,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-13,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-13,-33.4142,-33.4142]},{\"mesh\":3,\"translation\":[-13,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-13,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-13,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-13,-39.0711,-33.4142]},{\"mesh\":3,\"translation\":[-13,-40.4853,-34.8284]},{\"mesh\":1,\"translation\":[-14,-34.8284,-32]},{\"mesh\":1,\"translation\":[-14,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-14,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-14,-37.6569,-40.4853]},{\"mesh\":4,\"translation\":[-15,-34.8284,-32]},{\"mesh\":4,\"translation\":[-15,-34.8284,-34.8284]},{\"mesh\":4,\"translation\":[-15,-37.6569,-34.8284]},{\"mesh\":4,\"translation\":[-15,-40.4853,-34.8284]},{\"mesh\":4,\"translation\":[-15,-32,-37.6569]},{\"mesh\":4,\"translation\":[-15,-34.8284,-37.6569]},{\"mesh\":4,\"translation\":[-15,-37.6569,-37.6569]},{\"mesh\":4,\"translation\":[-15,-37.6569,-40.4853]},{\"mesh\":5,\"translation\":[-16,-33.4142,-33.4142]},{\"mesh\":5,\"translation\":[-16,-36.2426,-33.4142]},{\"mesh\":5,\"translation\":[-16,-39.0711,-33.4142]},{\"mesh\":5,\"translation\":[-16,-33.4142,-36.2426]},{\"mesh\":5,\"translation\":[-16,-36.2426,-36.2426]},{\"mesh\":5,\"translation\":[-16,-39.0711,-36.2426]},{\"mesh\":5,\"translation\":[-16,-33.4142,-39.0711]},{\"mesh\":5,\"translation\":[-16,-36.2426,-39.0711]},{\"mesh\":5,\"translation\":[-16,-39.0711,-39.0711]},{\"mesh\":6,\"translation\":[0,0,0]},{\"mesh\":7,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + "source": [ + "sampler = circuit.compile_sampler()\n", + "one_sample = sampler.sample(shots=1)[0]\n", + "for k in range(0, len(one_sample), 8):\n", + " timeslice = one_sample[k:k+8]\n", + " print(\"\".join(\"1\" if e else \"_\" for e in timeslice))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I5J3W6bWOIhJ" + }, + "source": [ + "See how the 1s seem to come in pairs of streaks?\n", + "That's because once a data qubit is flipped it stays flipped, and the measurements to its left and right permanently change parity.\n", + "\n", + "If you sample the circuit's detectors, instead of its measurements, the streaks are replaced by spackle.\n", + "You get much sparser data:" ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "surface_code_circuit.without_noise().diagram(\"timeline-3d\")\n", - "\n", - "# Note: if you are viewing this notebook on GitHub, the 3d model viewer is likely blocked.\n", - "# To view the 3d model, run this notebook locally or upload it to https://colab.google.com/\n", - "# GLTF files can be viewed directly in online viewers such as https://gltf-viewer.donmccurdy.com/\n", - "\n", - "# The 3d viewer is interactive, try clicking and dragging!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Hgh1I4Fefztj" - }, - "source": [ - "Yet another useful type of diagram, for understanding the structure of this circuit, is a \"detector slice diagram\".\n", - "A detslice diagram shows how the stabilizers checked by the circuit's detectors are changing over time.\n", - "If you look carefully you can see the stabilizers establspot that, halfway through the measurement cycle of the surface code, its state is actually temporarily an even larger surface code!\n", - "You can also see the stabilizers establish themselves at the beginning of the circuit, and drain away at the end." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 373 }, - "id": "BUFs-tWlfx_U", - "outputId": "cd940223-754c-4841-f168-fff8be898166" - }, - "outputs": [ { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jJCydGZnOeez", + "outputId": "9149cd22-5b65-4b5b-ef39-549704f23f81" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "_____!!_\n", + "____!!__\n", + "_____!!_\n", + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "________\n", + "___!_!__\n", + "_____!!_\n", + "!!______\n", + "!_______\n", + "!_______\n", + "________\n", + "________\n", + "___!!___\n", + "________\n", + "________\n" + ] + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" + "source": [ + "detector_sampler = circuit.compile_detector_sampler()\n", + "one_sample = detector_sampler.sample(shots=1)[0]\n", + "for k in range(0, len(one_sample), 8):\n", + " timeslice = one_sample[k:k+8]\n", + " print(\"\".join(\"!\" if e else \"_\" for e in timeslice))" ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "surface_code_circuit.diagram(\"detslice-svg\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is also the diagram type `detslice-with-ops-svg`, which is a overlays the time slice and detslice diagrams. For example, `detslice-with-ops-svg` shows how the first round gradually projects the system into the surface code state." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fFNsm0_GOh4H" + }, + "source": [ + "Notice how the `!`s tend to come in pairs, except near the sides.\n", + "This \"comes in pairs\" property is extremely important, because it allows you to perform error correction.\n", + "Every `!` must be paired with another `!`, with the left boundary, or with the right boundary.\n", + "In the circuit generated by Stim, the logical observable is annotated to be a measurement of the leftmost data qubit.\n", + "That data qubit was flipped once for each `!` that's paired with the left boundary.\n", + "If the data qubit was flipped an even number of times, the observable that was measured is correct.\n", + "If it was flipped an odd number of times, the observable that was measured needs to be flipped to be correct.\n", + "If you just had a syndrome decoder, you could use it to solve the matching problem and figure out if the leftmost data qubit (and therefore the protected logical observable) ended up flipped or not...\n", + "\n", + "\n", + "# 6. Use `pymatching` to correct errors in a circuit\n", + "\n", + "Stim has a key feature that makes it easier to use a decoder: converting a circuit into a detector error model.\n", + "A detector error model is just a list of all the independent error mechanisms in a circuit, as well as their symptoms (which detectors they set off) and frame changes (which logical observables they flip).\n", + "\n", + "You can get the detector error mode for a circuit by calling `circuit.detector_error_model()`:" + ] + }, { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "Tick 3\n", - "\n", - "Tick 4\n", - "\n", - "Tick 5\n", - "\n", - "Tick 6\n", - "\n", - "Tick 7\n", - "\n", - "Tick 8\n", - "\n", - "\n", - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qqUSe1BvO0V9", + "outputId": "fabb01fe-1608-42fb-c07a-9be9f6eb13c8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stim.DetectorErrorModel('''\n", + " error(0.0266667) D0\n", + " error(0.0266667) D0 D1\n", + " error(0.01) D0 D8\n", + " error(0.0266667) D1 D2\n", + " error(0.01) D1 D9\n", + " error(0.0266667) D2 D3\n", + " error(0.01) D2 D10\n", + " error(0.0266667) D3 D4\n", + " error(0.01) D3 D11\n", + " error(0.0266667) D4 D5\n", + " error(0.01) D4 D12\n", + " error(0.0266667) D5 D6\n", + " error(0.01) D5 D13\n", + " error(0.0266667) D6 D7\n", + " error(0.01) D6 D14\n", + " error(0.01) D7 D15\n", + " error(0.0266667) D7 L0\n", + " detector(1, 0) D0\n", + " detector(3, 0) D1\n", + " detector(5, 0) D2\n", + " detector(7, 0) D3\n", + " detector(9, 0) D4\n", + " detector(11, 0) D5\n", + " detector(13, 0) D6\n", + " detector(15, 0) D7\n", + " repeat 23 {\n", + " error(0.0266667) D8\n", + " error(0.0266667) D8 D9\n", + " error(0.01) D8 D16\n", + " error(0.0266667) D9 D10\n", + " error(0.01) D9 D17\n", + " error(0.0266667) D10 D11\n", + " error(0.01) D10 D18\n", + " error(0.0266667) D11 D12\n", + " error(0.01) D11 D19\n", + " error(0.0266667) D12 D13\n", + " error(0.01) D12 D20\n", + " error(0.0266667) D13 D14\n", + " error(0.01) D13 D21\n", + " error(0.0266667) D14 D15\n", + " error(0.01) D14 D22\n", + " error(0.01) D15 D23\n", + " error(0.0266667) D15 L0\n", + " shift_detectors(0, 1) 0\n", + " detector(1, 0) D8\n", + " detector(3, 0) D9\n", + " detector(5, 0) D10\n", + " detector(7, 0) D11\n", + " detector(9, 0) D12\n", + " detector(11, 0) D13\n", + " detector(13, 0) D14\n", + " detector(15, 0) D15\n", + " shift_detectors 8\n", + " }\n", + " error(0.0266667) D8\n", + " error(0.0266667) D8 D9\n", + " error(0.01) D8 D16\n", + " error(0.0266667) D9 D10\n", + " error(0.01) D9 D17\n", + " error(0.0266667) D10 D11\n", + " error(0.01) D10 D18\n", + " error(0.0266667) D11 D12\n", + " error(0.01) D11 D19\n", + " error(0.0266667) D12 D13\n", + " error(0.01) D12 D20\n", + " error(0.0266667) D13 D14\n", + " error(0.01) D13 D21\n", + " error(0.0266667) D14 D15\n", + " error(0.01) D14 D22\n", + " error(0.01) D15 D23\n", + " error(0.0266667) D15 L0\n", + " error(0.01) D16\n", + " error(0.01) D16 D17\n", + " error(0.01) D17 D18\n", + " error(0.01) D18 D19\n", + " error(0.01) D19 D20\n", + " error(0.01) D20 D21\n", + " error(0.01) D21 D22\n", + " error(0.01) D22 D23\n", + " error(0.01) D23 L0\n", + " shift_detectors(0, 1) 0\n", + " detector(1, 0) D8\n", + " detector(3, 0) D9\n", + " detector(5, 0) D10\n", + " detector(7, 0) D11\n", + " detector(9, 0) D12\n", + " detector(11, 0) D13\n", + " detector(13, 0) D14\n", + " detector(15, 0) D15\n", + " detector(1, 1) D16\n", + " detector(3, 1) D17\n", + " detector(5, 1) D18\n", + " detector(7, 1) D19\n", + " detector(9, 1) D20\n", + " detector(11, 1) D21\n", + " detector(13, 1) D22\n", + " detector(15, 1) D23\n", + "''')\n" + ] + } ], - "text/plain": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "R\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "MR\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "H\n", - "\n", - "Tick 0\n", - "\n", - "Tick 1\n", - "\n", - "Tick 2\n", - "\n", - "Tick 3\n", - "\n", - "Tick 4\n", - "\n", - "Tick 5\n", - "\n", - "Tick 6\n", - "\n", - "Tick 7\n", - "\n", - "Tick 8\n", - "\n", - "\n", - "" + "source": [ + "dem = circuit.detector_error_model()\n", + "print(repr(dem))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2NpcBtBM-qOS" + }, + "source": [ + "You can view the detector error model as a graph by using the `matchgraph-svg` diagram. Note that this diagram looking good is relying heavily on the circuit specifying coordinate data for its detectors. Fortunately, the circuit you generated includes good coordinate data:" ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "surface_code_circuit.without_noise().diagram(\n", - " \"detslice-with-ops-svg\", \n", - " tick=range(0, 9),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K75kGz3IWYAW" - }, - "source": [ - "Notice that when you created this surface code circuit, you specified a lot more error parameters.\n", - "These parameters are adding full circuit noise, instead of just phenomenological noise.\n", - "Because the noise is richer, and because this is a quantum code instead of a classical code, the decoding problem is much harder and threshold is going to be noticeably lower.\n", - "Looking at the match graph, you can see `pymatching` has a much more complicated problem to solve than before!" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 404 }, - "id": "VWqbGm3ygkkp", - "outputId": "d95d3bed-f7bf-4925-a0dc-2fecc2fb8e91" - }, - "outputs": [ { - "data": { - "text/html": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DrUUoFMu-qOV", + "outputId": "1ee89575-a83e-47ad-de32-f636edd8726d" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0,0.400000005960464],\"min\":[-0.400000005960464,0,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0.400000005960464,0],\"min\":[-0.400000005960464,-0.400000005960464,0],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0,0.400000005960464],\"min\":[-0.400000005960464,0,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0.400000005960464,0],\"min\":[-0.400000005960464,-0.400000005960464,0],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":4102,\"max\":[18.6666679382324,27.3704261779785,36.539981842041],\"min\":[-9.3704252243042,-9.3704252243042,-9.5399808883667],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":718,\"max\":[27.3704261779785,6,36.539981842041],\"min\":[-0.666666984558105,-0.666666984558105,-9.5399808883667],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":1,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":2,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":3,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":4,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":5,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":49224,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":7,\"byteLength\":8616,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA\"},{\"byteLength\":49224,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAQEEAAAAAo4uuwEYXXUG66ALBAAAAAAAAQEEAAAAAAADAQAAAwEAAAAAAAAAAAAAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAwEAAAAAAAABAQQAAQEEAAAAAAADAQAAAwEAAAAAAAADAQAAAwEAAAEBAAADAQAAAwEAAAAAAAADAQAAAwEAAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAAAAAAAAAAAAQEEAAEBAAADAQAAAwEAAAAAAAAAAAAAAQEEAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAAAAAACQQQAAwEAAAAAAAABAQQAAQEEAAAAAAACQQQAAwEAAAAAAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAAAAAADAQAAAwEAAAEBAAACQQQAAwEAAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAAAAAACQQQAAwEAAAEBAAACQQQAAwEAAAAAAAACQQQAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAAAAAABAQQAAQEEAAEBAAACQQQAAwEAAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAAAAo4uuwEYXXUG66ALBAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAAABAQQAAkEEAAEBAAADAQAAAQEEAAEBAAABAQQAAkEEAAEBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAAMBAAADAQAAAAAAAABBBAADAQAAAAAAAAMBAAADAQAAAAAAAABBBAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAMBAAABAQQAAQEEAAMBAAADAQAAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAADAQAAAwEAAABBBAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAACQQQAAwEAAABBBAACQQQAAwEAAAMBAAACQQQAAwEAAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAMBAAAAAAAAAQEEAABBBAAAAAAAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAMBAAABAQQAAkEEAAMBAAADAQAAAQEEAAMBAAABAQQAAkEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAABAQQAAkEEAABBBAABAQQAAkEEAAMBAAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAACQQQAAwEAAAEBBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBBAABAQQAAkEEAABBBAADAQAAAQEEAABBBAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAACQQQAAwEAAAEBBAACQQQAAwEAAABBBAACQQQAAwEAAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBBAABAQQAAkEEAABBBAADAQAAAQEEAABBBAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAEBBAADAQAAAAAAAAHBBAADAQAAAAAAAAEBBAADAQAAAAAAAAHBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAAEBBAABAQQAAQEEAAEBBAADAQAAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAACQQQAAwEAAAHBBAACQQQAAwEAAAEBBAACQQQAAwEAAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAAEBBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAAEBBAABAQQAAkEEAAEBBAADAQAAAQEEAAEBBAABAQQAAkEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAABAQQAAkEEAAHBBAABAQQAAkEEAAEBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAJBBAADAQAAAAAAAAKhBAADAQAAAAAAAAJBBAADAQAAAAAAAAKhBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAJBBAABAQQAAQEEAAJBBAADAQAAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAACQQQAAwEAAAKhBAACQQQAAwEAAAJBBAACQQQAAwEAAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAJBBAABAQQAAkEEAAJBBAADAQAAAQEEAAJBBAABAQQAAkEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAABAQQAAkEEAAKhBAABAQQAAkEEAAJBBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBBAABAQQAAwEAAAMBBAADAQAAAAAAAAMBBAABAQQAAwEAAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAMBBAABAQQAAQEEAAMBBAADAQAAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAANhBAADAQAAAwEAAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAANhBAACQQQAAwEAAAMBBAABAQQAAQEEAANhBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAACQQQAAwEAAAMBBAACQQQAAwEAAANhBAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAMBBAAAAAAAAQEEAANhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBAABAQQAAkEEAAMBBAADAQAAAQEEAAMBBAABAQQAAkEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAMBBAAAAAAAAQEEAANhBAABAQQAAQEEAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAABAQQAAQEEAANhBAABAQQAAQEEAAMBBAABAQQAAQEEAANhBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAANhBAADAQAAAwEAAANhBAAAAAAAAQEEAANhBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAwEAAANhBAABAQQAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAANhBAACQQQAAwEAAANhBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVC\"},{\"byteLength\":8616,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAANhB6aK7QXTRhUAuugxCAACQQQAAwEAAANhB6aK7QXTRhUAuugxCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtB\"}],\"materials\":[{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0.5,0.5,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0},\"material\":0,\"mode\":6},{\"attributes\":{\"POSITION\":1},\"material\":0,\"mode\":6},{\"attributes\":{\"POSITION\":2},\"material\":0,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":3},\"material\":1,\"mode\":6},{\"attributes\":{\"POSITION\":4},\"material\":1,\"mode\":6},{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":7},\"material\":3,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[0,12,0]},{\"mesh\":1,\"translation\":[6,6,0]},{\"mesh\":0,\"translation\":[12,12,0]},{\"mesh\":1,\"translation\":[18,6,0]},{\"mesh\":0,\"translation\":[6,0,3]},{\"mesh\":1,\"translation\":[6,6,3]},{\"mesh\":0,\"translation\":[12,6,3]},{\"mesh\":1,\"translation\":[18,6,3]},{\"mesh\":0,\"translation\":[0,12,3]},{\"mesh\":0,\"translation\":[6,12,3]},{\"mesh\":0,\"translation\":[12,12,3]},{\"mesh\":0,\"translation\":[12,18,3]},{\"mesh\":0,\"translation\":[6,0,6]},{\"mesh\":1,\"translation\":[6,6,6]},{\"mesh\":0,\"translation\":[12,6,6]},{\"mesh\":1,\"translation\":[18,6,6]},{\"mesh\":0,\"translation\":[0,12,6]},{\"mesh\":0,\"translation\":[6,12,6]},{\"mesh\":0,\"translation\":[12,12,6]},{\"mesh\":0,\"translation\":[12,18,6]},{\"mesh\":0,\"translation\":[6,0,9]},{\"mesh\":1,\"translation\":[6,6,9]},{\"mesh\":0,\"translation\":[12,6,9]},{\"mesh\":1,\"translation\":[18,6,9]},{\"mesh\":0,\"translation\":[0,12,9]},{\"mesh\":0,\"translation\":[6,12,9]},{\"mesh\":0,\"translation\":[12,12,9]},{\"mesh\":0,\"translation\":[12,18,9]},{\"mesh\":0,\"translation\":[6,0,12]},{\"mesh\":1,\"translation\":[6,6,12]},{\"mesh\":0,\"translation\":[12,6,12]},{\"mesh\":1,\"translation\":[18,6,12]},{\"mesh\":0,\"translation\":[0,12,12]},{\"mesh\":0,\"translation\":[6,12,12]},{\"mesh\":0,\"translation\":[12,12,12]},{\"mesh\":0,\"translation\":[12,18,12]},{\"mesh\":0,\"translation\":[6,0,15]},{\"mesh\":1,\"translation\":[6,6,15]},{\"mesh\":0,\"translation\":[12,6,15]},{\"mesh\":1,\"translation\":[18,6,15]},{\"mesh\":0,\"translation\":[0,12,15]},{\"mesh\":0,\"translation\":[6,12,15]},{\"mesh\":0,\"translation\":[12,12,15]},{\"mesh\":0,\"translation\":[12,18,15]},{\"mesh\":0,\"translation\":[6,0,18]},{\"mesh\":1,\"translation\":[6,6,18]},{\"mesh\":0,\"translation\":[12,6,18]},{\"mesh\":1,\"translation\":[18,6,18]},{\"mesh\":0,\"translation\":[0,12,18]},{\"mesh\":0,\"translation\":[6,12,18]},{\"mesh\":0,\"translation\":[12,12,18]},{\"mesh\":0,\"translation\":[12,18,18]},{\"mesh\":0,\"translation\":[6,0,21]},{\"mesh\":1,\"translation\":[6,6,21]},{\"mesh\":0,\"translation\":[12,6,21]},{\"mesh\":1,\"translation\":[18,6,21]},{\"mesh\":0,\"translation\":[0,12,21]},{\"mesh\":0,\"translation\":[6,12,21]},{\"mesh\":0,\"translation\":[12,12,21]},{\"mesh\":0,\"translation\":[12,18,21]},{\"mesh\":0,\"translation\":[6,0,24]},{\"mesh\":1,\"translation\":[6,6,24]},{\"mesh\":0,\"translation\":[12,6,24]},{\"mesh\":1,\"translation\":[18,6,24]},{\"mesh\":0,\"translation\":[0,12,24]},{\"mesh\":0,\"translation\":[6,12,24]},{\"mesh\":0,\"translation\":[12,12,24]},{\"mesh\":0,\"translation\":[12,18,24]},{\"mesh\":0,\"translation\":[0,12,27]},{\"mesh\":1,\"translation\":[6,6,27]},{\"mesh\":0,\"translation\":[12,12,27]},{\"mesh\":1,\"translation\":[18,6,27]},{\"mesh\":2,\"translation\":[0,0,0]},{\"mesh\":3,\"translation\":[0,0,0]}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]}]}" + "source": [ + "dem.diagram(\"matchgraph-svg\")" ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "surface_code_circuit.diagram(\"matchgraph-3d\")\n", - "\n", - "# Note: if you are viewing this notebook on GitHub, the 3d model viewer is likely blocked.\n", - "# To view the 3d model, run this notebook locally or upload it to https://colab.google.com/\n", - "# GLTF files can be viewed directly in online viewers such as https://gltf-viewer.donmccurdy.com/" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_aw3w686hJCa" - }, - "source": [ - "Okay, enough looking at the circuits, time to collect.\n", - "\n", - "Collecting data using `sinter.collect` will take a bit longer this time.\n", - "You can specify `print_progress=True` to get progress updates while the collection runs.\n", - "Another useful argument (not used here) is `save_resume_filepath`, which allows you to cancel and restart collection without losing the work that was done." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "p4hgivJmeG0G", - "outputId": "7ed759b7-4b33-4aeb-dc77-8e328fbc1030", - "scrolled": true - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "surface_code_tasks = [\n", - " sinter.Task(\n", - " circuit = stim.Circuit.generated(\n", - " \"surface_code:rotated_memory_z\",\n", - " rounds=d * 3,\n", - " distance=d,\n", - " after_clifford_depolarization=noise,\n", - " after_reset_flip_probability=noise,\n", - " before_measure_flip_probability=noise,\n", - " before_round_data_depolarization=noise,\n", - " ),\n", - " json_metadata={'d': d, 'r': d * 3, 'p': noise},\n", - " )\n", - " for d in [3, 5, 7]\n", - " for noise in [0.008, 0.009, 0.01, 0.011, 0.012]\n", - "]\n", - "\n", - "collected_surface_code_stats: List[sinter.TaskStats] = sinter.collect(\n", - " num_workers=os.cpu_count(),\n", - " tasks=surface_code_tasks,\n", - " decoders=['pymatching'],\n", - " max_shots=1_000_000,\n", - " max_errors=5_000,\n", - " print_progress=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "w3JgGXrSe5r-" - }, - "source": [ - "You can now plot the collected data.\n", - "Try using the `failure_units_per_shot_func` argument to plot per round error rates instead of per shot error rates, by retrieving the `'r'` entry (short for rounds) that you put in the metadata:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 484 + { + "cell_type": "markdown", + "metadata": { + "id": "fLY3a5w9PT1L" + }, + "source": [ + "In the above diagram, each node is a detector and each edge is an error mechanism. The matcher is going to decode errors by trying to match each excited node to another nearby excited node, or to the side boundaries, which minimizing the number of edges that were used.\n", + "\n", + "The detector error model format is easier for decoders to consume than a raw circuit, because everything is explained in terms of observable symptoms and hidden symptoms, which is how decoders usually conceptualize of the problem space.\n", + "For example, some decoders can be configured using a weighted graph, and `stim.DetectorErrorModel` is effectively just a weighted graph.\n", + "It might be a pain to write the glue code that converts the `stim.DetectorErrorModel` into exactly the right kind of graph expected by the decoder, but it's much easier than starting from the circuit or generating the graph from scratch and you only have to write that code once instead of once per circuit.\n", + "\n", + "For this tutorial you'll use existing packages instead of writing your own glue code.\n", + "Specifically, you'll use [`pymatching`](https://github.com/oscarhiggott/PyMatching) as your decoder.\n", + "PyMatching is an open-source minimum weight perfect matching decoder written by Oscar Higgott.\n", + "You can install it using `pip install pymatching`:" + ] }, - "id": "kJSbrfBDe8tQ", - "outputId": "abc40cb7-b334-4458-f69e-5016890c5635" - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAIkCAYAAADcY6eQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd5iU1dn48e/0ujPbgaUqVaRJFURAUTSoiIoVC2mWFGMSX33VGNGYqNFoLDGv+WkIGmtsscQCBlEQKSKISIelLmyfmZ3+PM/5/TG7yw47u2yjKPfnuvbSecp5zhRm7jlzn/uYlFIKIYQQQgghRKuZj3QHhBBCCCGE+LaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBafCskk0nuuusu+vbti8PhwGQy8eabbx7pbn3rzJ49G5PJxMcff3ykuyKEaKXi4mJMJhOzZs060l1psW/ze06vXr3o1avXke5GmkmTJmEymY50N9rk29z3g5FgWjRL13X+3//7f0ycOJHc3FxsNhuFhYUMGTKEH/3oR7z11luHpR9/+tOfuOeeeygqKuLmm2/mrrvuYsCAAYfl2h1t586d/O///i8jRowgJyen/jE944wzePTRRwkEAke6i21W92F/sL/i4uIj3dU2mTVrVqP74na7GThwIL/+9a8pKyvrkOuYTCYmTZrUIW0dKw58XiwWC7m5uUyaNIl//OMfKKWOdBfFEVZRUcHvfvc7xo0bR35+Pjabjby8PE499VT+8Ic/sG/fviPdxTb5+OOPMZlMzJ49u9Xn9urVC5PJRFZWVpP3vy4I3rx5czt7+t1lPdIdEEcvXdc599xzef/998nOzuacc86hW7duJBIJ1q5dywsvvMD69euZNm3aIe/LO++8g9frZd68edjt9kN+vUPl6aef5mc/+xnxeJyhQ4dy+eWXk5OTQ0VFBYsWLeKmm27id7/7HeXl5Ue6q+3i9/u56aabmtyfnZ192PpyKJx//vkMGzYMgH379vGf//yHhx9+mNdee40vvviCvLy8I9vBY9hdd90FpH7N2rx5M2+88QYLFy5kxYoVPPHEE0e4d+JIeeedd7jyyisJBAL06dOHCy64gMLCQgKBAEuXLuU3v/kNf/jDH9i8eTOdO3cG4KOPPjrCvW7s2WefJRKJdHi7NTU13HXXXfzf//1fh7dd51D1/WggwbRo0osvvsj777/P0KFDWbhwIX6/P21/JBJh6dKlh6Uve/bsIS8v71sdSD///PP8+Mc/Jicnh9dee41zzjmn0TGLFy/mpz/96RHoXcfKzs5u0yjJt8X06dPTfmqPxWKcfPLJrF69mieeeKI+oBOH34Gvu8WLFzNhwgSefPJJfv3rX3PccccdmY6JI2bhwoVccMEFWK1W5syZwzXXXNMo3WDNmjX84he/IBaL1W/r3bv34e7qQfXo0eOQtNunTx+efvppfvGLX3DCCScckmscqr4fDSTNQzTps88+A1I/bR8YSAO43W5OO+20tG3N5cc1le9X99P51q1befzxxxkyZAgul4tJkybV79u2bRvbt2+v/wm3YR7bP/7xDy666CKOP/54XC4XPp+PU045hX/+859N3rfKykruuOMOBg0ahNvtxu/3M3ToUP73f/+XcDjc6NjbbruNE044AZfLhd/vZ/LkyXz44YcHeQT3C4VC3HjjjQC89NJLGQNpgFNOOSXjF5SPPvqIs88+m9zcXBwOB/369eN///d/m0wJ+eKLLzj77LPJysrC5/NxxhlnsGTJkmb7uH79embNmkX37t2x2+106tSJK664gg0bNrT4frZFc89/S/YDbNq0iauvvpquXbtit9spKiri6quvZtOmTY2u1/A1+sILLzBmzBi8Xm+7ciOdTiczZ84EYPny5Wn7AoEADz74IKeffjrdunXDbrdTUFDAtGnTGj0n//jHP+o/5BcuXJiWtnBgkLh06VJmzJhB586dsdvtdO/eneuuu449e/Y06t/WrVu59tpr6dOnDy6Xi9zcXAYPHsz1119PRUVFi+5jXerJnj17uOqqqygsLMTlcjFixAheeOGFJs/74IMPmDp1Kvn5+TgcDnr37s3//M//UF1d3ejYuhzVYDDIr371K3r16oXNZmvXF7NTTjmFAQMGoJTiiy++aLT/lVdeYcKECfj9flwuF4MHD+a+++4jHo83+RhkUvc6bZjC1PA9r7i4mMsuu4z8/HycTicjR47knXfeydhWKBTiV7/6Fd26dcPpdDJgwAAefvhhDMNo1X2vez394x//yLg/0/1p+O/j1VdfZfTo0bjdbnJzc7nsssvYvXt3xrYO9XtOS94HMjEMg+uuuw5N03j00Ufr2znQ4MGDmT9/Pl27dq3flilnuuFj+v777zNp0iT8fn9am7qu83//93+ccsop9a+rPn368KMf/SjtPSnTa6ZOU6kbB+Ydz5o1q/5z+O677057z2hNnvp9992HruvccsstLT4HWvfZlClnWinF3LlzGTduHAUFBTidTrp3785ZZ53Fyy+/3KiNXbt28bOf/Yzjjz8eh8NBXl4e06ZNa/S+e7jJyLRoUt1P1Rs3bjws1/vFL37Bp59+yjnnnMPUqVOxWCyMGjWKXr168ec//xmgPnWgYZrADTfcwIknnsiECRPo0qULFRUV/Oc//+Gqq65iw4YN/O53v0u7zrZt2zjttNPYvn07I0aM4IYbbsAwDDZu3MgjjzzC9ddfj8fjAWD79u1MmjSJ4uJiTj31VM4++2zC4TDvvPMOZ599Nk899RQ//vGPD3rfXn31VSorKzn55JOZMmVKs8c6HI6020899RQ33HADHo+Hiy++mMLCQj7++GMeeOAB3n77bRYvXpz2eHz22WecccYZJBIJLrzwQvr06cOqVauYNGkSp59+esZrvv/++1x44YUkk0nOO+88+vTpw65du3j99dd59913WbBgAcOHDz/o/WyPTM9/S/YvX76cM844g1AoxLRp0xg4cCDr16/nn//8J//+97+ZP38+o0aNanS9P/3pT8ybN4/zzjuP0047rcNy1W02W9rtdevWcccddzBhwgTOOecccnJy2LFjB2+99Rbvvfceb7/9NmeffTYAw4YN46677uLuu++mZ8+eaV88GwYNf//737n22mtxOBxMmzaN7t27s2nTJp5++mnefvttPv/88/pRoJKSEkaNGkUwGGTq1KlcdNFFxGIxtm3bxnPPPcfPfvazFqelVFVVMW7cOLKzs/n+979PdXU1r7zyCjNnzmT37t38z//8T9rxd999N7NnzyY3N5dzzz2XwsJCvvrqKx566CH+85//sGTJEnw+X9o5iUSC008/ncrKSqZMmYLP5+uw0eQDn5vbb7+d++67j/z8fK644gq8Xi/vvfcet99+Ox988AEffvhhh/watn37dkaPHs3xxx/PVVddRWVlJS+//DLnn38+8+fPTxuUiMfjTJ48meXLlzN06FBmzpxJdXU1v/vd71i4cGG7+9JSTz75JG+99RbTpk1j4sSJLF26lJdffpnVq1ezatWqtPepw/mec7D3iQMtXLiQDRs20LVrV374wx82e6zZbMZsbtkY46uvvsr777/P9773Pa6//nq2b98OpF6/5557LvPmzaN79+5cccUV+Hw+iouLeeONNxg/fjx9+/Zt0TVaYvr06QDMnTuXiRMnpr1PtGaAYPr06UyYMIF33nmHBQsWNBooy6S1n02Z3HHHHdx3330cd9xxXHLJJfj9fkpKSli+fDn/+te/uPTSS+uPXblyJVOmTKGyspKzzjqLCy+8kPLyct58803Gjx/PG2+8wdSpU1t8nzuUEqIJK1euVDabTZlMJnXllVeq1157TRUXFzd7zl133aUAtWDBgkb7tm3bpgB1zTXXpG2/5pprFKCKiorU1q1bM7bbs2dP1bNnz4z7Nm/e3GhbPB5Xp59+urJarWrXrl1p+8aOHasA9Yc//KHReWVlZSoajdbfnjhxojKZTOrFF19MO66qqkoNHTpUOZ1OtXfv3oz9augHP/iBAtQdd9xx0GMbKi4uVna7XWVlZal169al7bvhhhsUoH784x/XbzMMQ/Xv318B6s0330w7/s9//rMCGj0/lZWVKjs7W+Xl5am1a9emnbNmzRrl8XjUSSed1KL+1j3Hfr9f3XXXXRn//vrXv6adc7Dnv7n9hmGoAQMGKED985//TNv30ksvKUD1799f6bpev73uNep2u9XKlStbdL8O7MucOXPStkciETV48GAFqIceeihtX3V1tSorK2vU1s6dO1WXLl3UgAEDGu0D1MSJEzP2YcOGDcpms6nevXs3em3Pnz9fmc1mNX369Pptjz32mALUn//850Zt1dTUqEgk0tTdbdQnQF188cVpj+fWrVtVTk6OstlsasuWLfXb//vf/ypAjR07VlVVVaW1NWfOHAWom266KW17z549FaAmT56sampqWtSvA/t3oIULFyqz2azsdrvas2dP/fbPPvtMAap79+6qpKSkfnsymVTnnnuuAtTvf//7Rtdo6nmpe21s27atflvdvwdAzZ49O+34999/XwHqe9/7Xtr23//+9wpQF154YcbHOdN7aFPqHucDX6/N3Z+6fx9ZWVnqq6++Stt3+eWXK0C9/PLL9dsO13tOSz4nMrnnnnsUoGbOnNnic+pk+type0xNJpN67733Gp1z2223KUCdd955KhaLpe2LxWKqtLS0/nam10ydBQsWKEDdddddadsnTpzY6HXe1LEtUfdvLplMqmXLlimTyaRGjBihDMNodM1NmzbVb2vtZ1NTfc/NzVVdu3ZV4XC4Ud8avm8mk0nVu3dv5XA41Mcff5x23O7du1VRUZHq3Llzo8f8cJFgWjTr5ZdfVp07d65/QwRUbm6umj59unrrrbcaHd+eYDrTh32d5oLpprz22msKUHPnzq3ftmLFCgWoYcOGpX1QZbJq1SoFqBkzZmTc/+abbypA/eUvfzloX773ve8poFEgeTD33nuvAtRtt93WaF9lZaXKyspSTqez/g1k0aJFClATJkxodLymaap3796Nnp+6D7wnnngiYx9uuukmBTT60MukYfDQ1N/QoUPTzjnY89/c/rr7O3bs2Iznjh8/XgFq4cKF9dvqXqMHBnItUdeX888/v/7LwQ033KC6d+9e/7hn+lBoys9//nMFqO3bt6dtby5oq3s+3nnnnYz7p0+friwWiwoGg0qp/cH0U0891eJ+ZQIoi8WSMZCpe0wbBozTp09XgPr6668ztjds2DBVUFCQtq3ug33VqlVt6l9dQHHXXXep22+/XV1yySX1AwKPPfZY2vE/+tGPmnxcNmzYoMxmszruuOMaXaMtwXTPnj2VpmmNzunRo4fKy8tL29anTx9lNpszDhLUPc6HI5jO9MW/7gvSr3/96/pth+s9pyWfE5nUBXa33nprq85TqvlguuEX1jqapim/369cLpfavXv3Qds/2oJppZS67LLLFKCee+65RtdsGEy39rOpqb7n5uaqXr16HTQIrvu8vfnmmzPur3tNvfvuuwe/04eApHmIZl1yySVccMEFLFiwgEWLFvHll1+yaNEi3nzzTd58802uvvrqtDzP9hg9enSbztuxYwcPPPAAH330ETt27CAajabtb5jj9/nnnwNw1llnHfTnvLp8v0AgkDFns64M2rp169rU75ZYuXIlQMafSnNycjjppJP45JNPWL9+PUOHDq0/fuLEiY2Ot1gsjB8/ni1btqRtr7ufq1evzng/69J81q1bx8CBA1vU7549e7a6/N3Bnv9M+5t7fOq2171uJ0yY0KrrNeff//43//73v9O2nXnmmbz77ruNUgkgNQnu0UcfZcmSJZSWlpJIJNL27969u8WTc+qer4ULF2bMEywtLUXXdTZu3MiIESOYNm0at99+Oz/96U/54IMPOOusszjllFMYOHBgq//d9ujRI2PKxaRJk7j77rv58ssv0/pps9n417/+xb/+9a9G5yQSCcrKyqioqEhLM3E6nQwZMqRV/Wro7rvvTrttMpl45pln+P73v5+2vbnXTr9+/ejWrRvbtm0jEAhknDPSGsOGDcuYjtC9e/e0vOJQKMTmzZvp3r17xslvdY/z4TBy5MhG27p37w6k0n3qHO73nPb8u+1Imfqxfv16AoEAY8aMoaio6Aj0qv3uu+8+3njjDe644w5mzJiB0+nMeFxrP5uaMnPmTB5//HEGDhzIJZdcwsSJExk7dmyjf3N1r5nt27dnfM3U5aKvW7fuiKR6SDAtDspmszFlypT6XF9d13nttdf4wQ9+wLPPPssFF1xQn7fVHnXliFpj69atjB49mqqqKk499VSmTJmC3+/HYrFQXFzM3Llz0yYS1U16ajjJpCl1E7PmzZvHvHnzmjyupqbmoG116dIFoMnJO02py+OtO7+pduvuV93xnTp1ynh8pse47n7+v//3/5rtS0vuZ3sc7PnPtL+1j09rrtecOXPmMGvWLHRdZ+vWrdx55528/PLL3HDDDTz99NNpx77xxhv1H0pnnnkmvXv3xuPxYDab+fjjj1m4cGHGyW5NqXu+HnzwwWaPq3u+evbsybJly5g9ezbvv/8+r7/+OpAKjG6++eb6ibEtcbDXVcO884qKCjRNO2jwV1NTkxZMFxYWtuvLuaqtJx0Oh1myZAk//OEPuf766+nZs2faB39LXjs7duygurq63cF0U3mjVqs1bVJhW/79HiqZ+my1pkIGXdfrtx3u95zWPgZtfe89mEz9aM3ny9GqV69e/PznP+ehhx7i0Ucf5dZbb814XHveext65JFHOP7445kzZw73338/999/P1arlalTp/KnP/2JPn36APtfM5m+mDd0qD+nmiLVPESrWSwWLrnkEn75y18C8N///rd+X91or6Zpjc472D+qtnyAPvzww1RUVPDMM8/w8ccf89hjj/G73/2O2bNnc9ZZZzU6vu4DoiVvrHUfoI8++igqlRKV8W/OnDkHbWv8+PFA6+uW1vVh7969GfeXlJSkHVf336aK72dqp+6c1atXN3s/r7nmmlb1vbUO9vxn2t/ax6c112sJi8VC375966uCPPPMM40WMrrzzjux2+2sWLGCN998s34BotmzZ9O/f/9WX7PuvgQCgWafr4YjhSeccAIvv/wyFRUVrFixgvvvvx/DMPjFL37BM8880+JrH+x11fBx9vv95OTkNNtHpRQ9e/ZMa6ujVkjzeDycccYZvP322+i6zjXXXJNW47Ytrx2TyZTxvQ0O/v7WEm3599uc9rwft9Thfs9p7euj7r33448/TvsS0F6Z+tGazxc4PM9PW9xxxx3k5uZy3333NbnmQXveexuyWCzcdNNNrF69mn379vHaa69xwQUX8NZbb3H22WfXDzTUtfPvf/+72dfMkSpLKsG0aLOsrCxg/0gQpH7egdQqfwdasWJFh/ehbkWmiy66qNG+TDPfTz75ZCBVrutgZabqjv3000/b201mzJhBbm4uS5YsYf78+c0e23CU8qSTTgLIWOKourqaVatW4XQ66+uC1s1+z3TfdV1n0aJFjbZ35P083Jp7fAAWLFgAcMgrkZjNZh599FEAbr311rQP7c2bNzNw4MBGtVsNw8j4fNS119QHf3ueL6vVyogRI7j11lt58cUXAXjzzTdbfP6OHTuaLOMF+5+Pun5WVVWxdu3aVvezIw0ZMoQf//jH7Nq1i0ceeaR+e3Ovnc2bN7Nr1y6OO+64tBHanJycjO9tuq6zatWqdvc1KyuLPn36sHv37kapEU31tTmH4/34aH/PmThxIv3792fXrl0HHfgwDINkMtnmaw0YMIDs7Gy++uqrjCUqD9RRz09dClFHfVnIzs7mzjvvJBAINPnLUms/m1qisLCQCy+8kFdeeYXTTz+dLVu28PXXXwNH/+eUBNOiSS+++CLz5s3LGHTu3bu3/ie6hrmodXlkc+bMSfu2vXPnTu65554O72Nd6Z8D/0F/8MEHjX5uBxgxYgTjxo1j1apVPPDAA432V1RU1BftHzlyJKeeeiqvv/46f//73zNef82aNZSWlh60n1lZWTz22GMAXHrppXzwwQcZj/v8888ZO3Zs/e0rr7wSm83G448/3mgp1zvvvJNgMMiVV15ZX6Zq3Lhx9O/fn08++aRRTu8TTzyR8QP6+9//PtnZ2dx9990sW7as0X7DMFr9IX64nHLKKfTv359Fixbx6quvpu179dVX+fTTT+nXr1/96NShNGbMGM4991zWr1/Ps88+W7+9V69ebNq0Ke3DVSnF7Nmz+eabbzK2lZeXl/EDFuBnP/sZNpuNX/7ylxnLViYSibQPnC+++CJj2b+6kUS3292yO0jqw/rWW29Ne0/Ytm0bjz32GFarlSuvvLJ+e90vVz/+8Y8zBhbhcLh+DsOh9pvf/AaHw8FDDz1Un+/7gx/8AIB77703bRl4Xde5+eabMQyjUSm10aNHs2PHjkY15u+999760mjt9f3vfx/DMJp8nFtj5MiRmM1mXnjhhbRR+crKylbXE27K0f6eYzabeeqpp7Bardx4443885//zLi0/DfffMOUKVPalQ5isVj4yU9+QjQa5frrr2+UvlU3T6BO3eflgekua9asqf9y3hJ1aVI7duxoa9cb+clPfkLv3r156qmnMn6Bbu1nUybxeJzFixc32p5MJqmsrAT2vz+df/759O7dm7/85S/85z//ydjekiVLjtgKi5IzLZq0dOlSHn30UTp37sz48ePrJx5t27aNd999l2g0yvnnn8+MGTPqzxkzZgwTJkzgk08+YfTo0Zx++uns27ePt99+m7POOqvJAKGtfvKTnzBnzhwuvvhiZsyYQVFREV9//TXvv/8+l1xyScai7//85z+ZNGkSt99+O6+99hqTJk1CKcWmTZv48MMPWb9+fX2Q/sILL3D66afzwx/+kMcee4wxY8aQnZ3Nrl27+Oqrr/j6669ZsmQJhYWFB+3rzJkziUaj/OxnP+Pss89m2LBhjBs3rn458SVLlrB69Wry8/Prz6mrsf3Tn/6U4cOHc8kll1BQUMDChQtZsmQJAwYMSPtSUDfZ6swzz+Siiy5Kq/laV1z//fffT+tXXl4er776KhdccAEnn3wykydP5sQTT8RkMrFz506WLFmS9iWjJaqrq5tdaGPWrFntWiSljslkYu7cuZx55plceumlnH/++QwYMIANGzbw5ptvkpWVxbPPPtvi2rHtdc899/Duu+9y9913M3PmTOx2O7/85S+5/vrrOemkk7jooouw2WwsXryYb775hvPOO4+33367UTuTJ0/mpZde4rzzzmP48OHYbDYmTJjAhAkTGDBgAH//+9/5wQ9+wIknnsjZZ59Nv379SCaT7Nixg08//ZSCggLWr18PwHPPPcdTTz3F+PHj6d27Nzk5OWzZsoW3334bh8PR7LLvBxoyZAhLly5lxIgRTJkypb7OdHV1NX/84x/TJs1NnjyZ+++/n9tuu42+ffsydepUjjvuOGpqati+fTsLFy5k/PjxjV6Ph0LXrl25/vrrefTRR/njH//Ifffdx7hx47jlllv44x//yKBBg5gxYwYej4f33nuPr7/+mvHjxzeqm33zzTfzwQcfcP7553PppZeSm5vLZ599xrZt25g0aVKHBIC//vWvefPNN3nttdcYPnw4Z511Vv3jPGHChEZpRM3p0qULM2fO5LnnnmPYsGGcc845BINB/vOf/zBhwoS0CaNtdbS85zRn4sSJvP7661x11VVcddVV/O53v2PSpEkUFBQQCARYsWIFS5cuxePx4HK52nWtu+66i6VLl/L222/Tr18/zj33XLKysti5cycffvghDz74YH39+PPPP5++ffvy4osvsmvXLsaMGcOOHTv497//zfnnn88rr7zSomv279+frl278tJLL2Gz2ejZsycmk4mrrrqqURpVS9ntdu677z4uueSSjF8UW/vZlEk0GmX8+PH06dOHESNG0LNnT2KxGPPmzWPdunVMmzatfmTbZrPx+uuvc9ZZZ3HOOecwbtw4hg0bhtvtZufOnSxfvpytW7dSUlLSqgGCDtPxBULEd8WOHTvUE088oaZPn6769eunsrKylM1mU507d1bf+9731HPPPZexvFxVVZX60Y9+pAoKCpTdblcnnniieuqppw5aGi9TeaA6zZXGW7x4sTrttNNUdna28nq96pRTTlFvvPFGs+WCysvL1S233KL69eunHA6H8vv9aujQoer2229vVNosGAyq3//+92r48OHK4/Eop9OpevXqpaZOnaqeeuqpVtfD3bFjh7rlllvUSSedpPx+v7JarSo/P19NmjRJPfLIIyoQCDQ654MPPlBnnnmmys7OVna7XfXu3Vv9z//8T6P6vXVWrFihzjrrLOX1epXX61WTJ09Wn3322UFLF/70pz9Vffr0UQ6HQ2VlZan+/furK6+8Ur3xxhstum8tKY134PUP9vy35PWxfv16deWVV6rOnTsrq9WqOnfurGbOnKnWr1/f6NjmHoODaarOdEMXXnihAtJKsc2ZM0cNHTpUud1ulZeXp6ZPn66++uqrJvuyb98+dfnll6vCwkJlNpszvo6/+uordc0116gePXoou92ucnJy1IknnqiuvfZa9dFHH9Uf9/nnn6vrr79eDRkyROXk5Cin06l69+6tZs2apdasWdPi+05tGbXdu3ermTNnqoKCAuVwONRJJ52knn/++SbP+/TTT9XFF1+sunTpomw2m8rPz1dDhw5Vv/zlL9Xy5cvTjm1LCcyG/WvuI23v3r3K7XYrt9udVhv+xRdfVKeccoryer3K4XCogQMHqnvvvTet3nxD//73v9WIESOUw+FQubm56tJLL1XFxcXNlsZrqpRdplJhSikVCATUL3/5S1VUVKQcDofq37+/euihh9SWLVtaVRpPqVRt45tvvll17dq1vj75H/7wB5VMJpstjdea8qZKHfr3nJa8DxxMeXm5uueee9TYsWNVbm6uslqtKicnR40dO1b97ne/U/v27Us7vrnSeM29BySTSfX444+rUaNGKY/Ho9xut+rTp4/68Y9/nFZeTqnU58Ell1xS/29z5MiR6rXXXmtVaTyllFq2bJk6/fTTlc/nUyaTqcXvcQeWxjtQ3boMHFAar05rPpsO7HsikVAPPPCAOvvss1X37t2Vw+FQ+fn5asyYMeqvf/2risfjjdrYt2+fuvXWW9WJJ56oXC6X8ng8qk+fPuqiiy5Szz33XJP341AzKZXh9w4hhBCiAZPJxMSJE4/alB8hhDhSJGdaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmoeQgghDkqm1wghRGYyMi2EEEIIIUQbSTAthBBCCCFEG0kwLYQQQgghRBtJzvR3SHV1NQsXLqR79+7NLuEphBBCCCEai8fj7Ny5k4kTJ5Kdnd2icySY/g6YPXs2d99995HuhhBCCCHEd8Kbb77J+eef36JjZQXE75CVK1cyYsQI/v73vzNw4MAj3R0hDioajbJmzRoGDx6My+U60t0R32HyWhNCtMTWrVu54oor+OKLLxg+fHiLzpGR6e+QutSOgQMHMmbMmCPcGyEOLhgMEggEGD58OD6f70h3R3yHyWtNCNESXq8XoFXpsjIBUQghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSCYjHIE3TqKqqoqamhmO9mIvJZMLr9ZKTk4PVKv8chBBCCNE6MjJ9jFFKsWvXLsrLy0kmk0e6O0dcMpmkvLyc3bt3H/NfLIQQQgjRejIUd4wJhUJEo1H8fj9dunTBZDId6S4dUUopSkpKCAQChEIhKZklhBBCiFaRkeljTDAYBKCwsPCYD6QhleZRWFgI7H9shBBCCCFaSoLpY0wymcRqtUp+cAN1j4ekvQghhBCitSSYPsYopTCb5Wk/kNlslpxpIYQQQrSaRFXHIEnvaEweEyGEEEK0hQTTQgghhBBCtJEE00IIIYQQQrSRBNNCCCGEEEK0kQTTokMkdYMlWyp4/+sSlmypIKkbh70Pa9eu5eKLL+b444/H7XaTn5/PhAkTePvttw97X4QQQghxbJD6aKJdkrrBXz/ewrNLiimvSdRvL/A6uGpsT26Y1Bub5fB8Z9u+fTuhUIhrrrmGoqIiIpEIr732GtOmTeOpp57i2muvPSz9EEIIIcSxQ4Jp0WZJ3eDaZ1ewYEMZB9bCKK+J8/C8jazaWc1TV404LAH11KlTmTp1atq2n/3sZ4wYMYKHH35YgmkhhBBCdDhJ8xBt9tePt7BgQxkAB1Zorrv93/Wl/N/HWw5rvxqyWCx0796d6urqI9YHIYQQQnx3STAt2iSpGzy7pLjRiPSBTMCzS7Yf1hzqcDhMeXk5W7Zs4ZFHHuG9995j8uTJh+36QgghhDh2SJqHAODut9fyzZ5gi48PRpNpOdJNUUBZTZxpjy/C57K1uP2BRT7uOu/EFh/f0K9//WueeuopILWy4YUXXsgTTzzRpraEEEIIIZojwbQA4Js9QZZuqzxk7a/bGzpkbR/opptuYsaMGezZs4dXXnkFXddJJA4e+AshhBBCtJYE0wJIjQS3RjCabFWAfELnrFaPTLfVgAEDGDBgAABXX301U6ZM4bzzzmPp0qWybLgQQgghOpQE0wKg1SkVSd1g7H0fUVGTaDT5sCETkO918NbPxx+2EnkHmjFjBtdddx0bN26kf//+R6QPQgghhPhukgmIok1sFjNXj+3VbCANqZzpq8f2PGKBNEA0GgUgEAgcsT4IIYQQ4rtJgmnRZjdM6s3pAwoBGlX1qLt9+oBCrp/U+7D0p7S0tNG2ZDLJs88+i8vlYuDAgYelH0IIIYQ4dkiah2gzm8XMU1eN4P8+3sKzS7ZTVhOv35fvdXD12J5cfxhXQLzuuusIBoNMmDCBrl27snfvXp5//nnWr1/Pn/70J7xe72HphxBCCCGOHRJMi3axWcz8fHJfrp/UmxXFVQSiCfwuOyN75Rz21I5LL72UZ555hr/+9a9UVFSQlZXFiBEjeOCBB5g2bdph7YsQQgghjg0STIsOYbOYGds774j24bLLLuOyyy47on0QQgghxLFFcqaFEEIIIYRoIwmmhRBCCCGEaCMJpoUQQgghhGgjCaaFEEIIIYRoIwmmjzLxeJwf/OAH9OjRA5/Px8knn8ySJUuOdLeEEEIIIUQGEkwfZTRNo1evXixatIjq6mpuuukmzjvvPGpqao5014QQQgghxAEkmD7KeDwefvvb39KjRw/MZjOXXXYZdrudDRs2HOmuCSGEEEKIA3yrgunf//73mEwmBg0adEivU1NTw1133cXZZ59Nbm4uJpOJf/zjH00eH4/HufXWWykqKsLlcjFmzBjmzZvXIX3ZtGkTlZWV9OnTp0PaE0IIIYQQHedbE0zv2rWLP/zhD3g8nkN+rfLycu655x7WrVvH0KFDD3r8rFmzePjhh5k5cyaPPvooFouFqVOnsmjRonb1IxqNcuWVV3Lbbbfh9/vb1ZYQQgghhOh435pg+uabb+bkk09m5MiRBz22qqqK119/vcn9L774IuFwuMn9Xbp0oaSkhO3bt/Pggw82e61ly5bx0ksvcd999/Hggw9y7bXX8t///peePXtyyy23pB07fvx4TCZTxr/f/OY3accmk0kuvvhi+vTpw29/+9uD3mchhBBCCHH4fSuC6U8++YRXX32VP//5zy06/sknn+SSSy7hjTfeaLTvmWee4YorrmDu3LlNnu9wOOjcuXOLrvXqq69isVi49tpr67c5nU5++MMfsmTJEnbu3Fm/fdGiRSilMv7de++99ccZhsFVV12FyWRi7ty5mEymFvVFCCGEEEIcXtYj3YGD0XWdn//85/zoRz9i8ODBLTrn1ltvZdmyZVx++eW8++67TJ48GYDXX3+d6667jiuvvJIbbrihQ/r35Zdf0q9fP3w+X9r20aNHA7Bq1Sq6d+/eqjavu+46SkpK+OCDD7BaW/8URaNRgsFgxn3JZBKr1Yqu661u97tMKYWmaU0+buLQqPuFqLlfioToCPJaE0K0RFuqpx31wfT//d//sX37dubPn9/ic6xWKy+//DJnn30206dPZ/78+dTU1HDFFVfwve99jzlz5nTYaG9JSQldunRptL1u2549e1rV3vbt23n66adxOp3k5+fXb3/vvfc49dRTM54ze/Zs7r777vrba9asIRAIZDw2NzeXgoICQqFQq/r1bbBo0SLOO++8jPs+/PBDRo0a1eS5yWSSsrIy1q9ff6i6J5qxbNmyI90FcYyQ15oQojk7duxo9TlHdTBdUVHBb3/7W+68804KCgpada7T6eStt97itNNOY+rUqSQSCcaMGcMrr7zSptHepkSjURwOR8br1+1vjZ49e6KUatU5s2fPZvbs2axdu5ZBgwYxePBghg8fnvHYkpISrFYrWVlZrbpGI7uWY377xhYdakx7HLoePNe9vVwuFwA///nPG+XWDxkypNn7XFFRQWFhYYsmnIqOEw6HWbZsGaNHjz4sk4vFsUtea0KIlli3bl2rzzmqg+nf/OY35Obm8vOf/7xN5/t8Ph566CFOP/10AP785z/XB1wdxeVyEY/HG22PxWL1+w83l8vVKO2kTnl5OQAWi6V9F1n1TyhvWe1ry6p/Qo8x7bteS65Te58mTJjAjBkzWnWuyWTCZrM1+biJQ8vj8chjLw4Lea0JIZrj9Xpbfc5ROwFx06ZN/O1vf+PGG29kz549FBcXU1xcTCwWI5lMUlxcTGVlZbNtbN26lZkzZzJgwAB69uzJRRddRElJSYf2s67yx4HqthUVFXXo9Y4ao3/c8mNHteLYDhIKhdA07bBfVwghhBDHlqM2mN69ezeGYXDjjTdy3HHH1f8tXbqUjRs3ctxxx3HPPfc0eX5JSQlnnnkmNpuNefPmMW/ePMLhMFOmTDloEN4aw4YNY+PGjY0mri1durR+/3dSl6Ew4NyDHzfgXOgy5ND3p4Hvf//7+Hw+nE4np512GitWrDis1xdCCCHEseOoTfMYNGhQxtJ2v/nNbwiFQjz66KP07t0747lVVVWcddZZ1NTUsGjRIrp16wbABx98wKRJkzjnnHOYP39+h+TNzZgxg4ceeoi//e1v3HzzzUBqRcQ5c+YwZsyYVlfy+FaZeAusf+cgx9x6ePoC2O12LrroIqZOnUp+fj7ffPMNDz30EKeeeiqfffYZJ5100mHrixBCCCGODUdtMJ2fn8/06dMbba+rNZ1pX50nn3ySnTt38vHHH9O3b9/67cOGDeOdd95hypQpzJ07l5/85CdNtvHEE09QXV1dX43j7bffZteuXUBqglvdioRjxozh4osv5rbbbqO0tJQ+ffowd+5ciouLeeaZZ1p5r4+g9/4X9q5p/XmuXIg2MdLvyoP3b2tbfzoPhu/d36pTxo0bx7hx4+pvT5s2jRkzZjBkyBBuu+023n///bb1RQghhBCiCUdtMN0et956K9OnT+fEE09stG/8+PF8/vnnB61Z/dBDD7F9+/b626+//nr9qopXXnll2vLezz77LHfeeSfPPfccVVVVDBkyhHfeeYcJEyZ00D06DPauge3tW/68kWhFx7fZSn369OH888/n9ddfR9f19k+8FEIIIYRo4FsXTH/88ccHPcZqtWYMpOsMGXLwHN7i4uIW98npdPLggw8edOnxo1rnli2Ik1HpN41Hp115UHjCkenPAbp3704ikSAcDsssfiGEEEJ0qG9dMC0OkVamVKQpWQ1PHTAKf/Wbh33iYVO2bt2K0+lsU7kbIYQQQojmHLXVPMS3yIGVPY5ABQ+AsrKyRttWr17NW2+9xZQpUzCb5eUuhBBCiI4lI9OiYzSs7HEYK3g0dOmll+JyuRg3bhyFhYV88803/O1vf8PtdnP//e0YeRdCCCGEaIIE06JjdBkKlz5f+/9HJr1j+vTpPP/88zz88MMEg0EKCgq48MILueuuu+jTp88R6ZMQQgghvtskmBYd54QWLOJyCN14443ceOONR7QPQgghhDi2SBKpEEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtOgwq8tWs7ps9RG7/qxZszCZTE3+7d69+4j1TQghhBDfTdYj3QHx3RCIB7jmvWsAWHjpQvwO/2Hvw3XXXccZZ5yRtk0pxfXXX0+vXr3o2rXrYe+TEEIIIY5+SimCiSC7Qrtafa4E06JD/HfHf9GVXv//F/S94LD3YezYsYwdOzZt26JFi4hEIsycOfOw90cIIYQQRzfN0KiKVVERraAyVklxoLjVbUgwLdqkOFDMTQtuqr9dFi2r//+HVjzE3LVz628/evqj9PT1PJzdq/fCCy9gMpm44oorjsj1hRBCCHH0iWpRKmOVlEfKCSQCRLUoHpuHfHd+q9uSYFq0yae7P2VLYEvGfcFEkGAiuP/YXZ/Sc+DhD6aTySSvvPIK48aNo1evXof9+kIIIYQ4etSlclTEKqiIVhCMBzEw8Nl95DpzMZlMVJgrWt2uBNMCgAeWPcD6yvUtPt5QBjmOHKriVc0el+PIYd72eXy046NW9WdA7gBuHX1rq8450AcffEBFRYWkeAghhBDHsKSRTEvlqEnW4LA4yHHl4LA42t2+BNMCgPWV61mxb0WHt1sVr6KqtPmA+1B54YUXsNlsXHLJJUfk+kIIIYQ4ciLJSP0odCAeIKbF8Dq8dPF0wWK2dNh1JJgWQGokuC2SRrLJcnhDC4ZiM9sOa3/q1NTU8O9//5uzzjqLvLy8drUlhBBCiG8HQxkE4gEqo5WUx8oJJUIA+Bw+8lx5mEymDr+mBNMCoM0pFW9seqPJYHpGvxlM7zO9Hb1quzfffFOqeAghhBDHiKSeTE0ojJZTHa8mlAzhsrrIc+Vht9gP6bUlmBbt8tmezwDwO/zcefKdKBT3fn4vgXiAxbsXH7Fg+vnnn8fr9TJt2rQjcn0hhBBCHHrhZJjKaCVl0TKCiSAxLYbP4aOrtytm0+FZm1CCadEut4+5ne5Z3Zl5wkzyXKl0ilGdRvH8uue5auBVR6RPZWVlzJ8/n8svvxy3231E+iCEEEKIQ8NQBtXx6voJhYFEAIvJgs/uo8Bd0K62t1dva/U5EkyLdslx5nDj8BvTtuW58hptO5xefvllNE2TFA8hhBDiOyShJ9JSOWoSNbhtbgpdhdgsbZujtb/xCDWhPfxl9V9bfaoE0+I75/nnn6ewsLDR0uJCCCGE+PYJJUJUxapSqRzxIEkjSZY9i65Z7Uzl0DSIByBaDbEAy/ctx8BodTMSTIvvnCVLlhzpLgghhBCiHXRDpzpenRqFjlWnUjnMFvwOPy6rq+0NKyAegliAPVWbeXjzK6AUmExUaZE2NSnBtBBCCCGEOCrEtBhVsar6VI5IMoLb5qaTpxNWczvCVi0BsQBEqiAehEQNq6q+Zle8st19lmBaCCGEEEIcMUopQskQldFKKmIVBGIBNKXhc/gocha1PZXDMOpHoYlWQiIMWhIcbvAWMsV7OhsTVXxeubZd/ZdgWgghhBBCHHaaoaVV5QglQtgsNvxOP06rs+0NJ6K1AXQVJEIQD4PVDg4vePa3a1GKMwpHsblmF+WJQJsvJ8G0EEIIIYQ4bKJaNC2VI6pF25/KoWupUehoNcSqIVEDSge7F7I6g3n/6HZYi/Jp+Wrml65gV7Ss3fdHguljkFLqSHfhqKOUOiRLjAohhBAi9TkbTATrS9sF40F0dPx2P7nO3LZ9BitSQXPdKHS8BpJRsLnAlQMNyuUppdgS3s380hV8VvE1CSNZv8+sFEY7YgAJpo8xZrOZRCIhwWMDSil0XcduP7TLjQohhBDHmqSRpDqWqspRFasimAjisDrIceXgsDja1qiWTAXQserUf+M1qZFnuxdc2dAgvonqcRZXrGH+vhUUR0rSminCyqWVZaxyOFjgcePXdX5WXsX1reyOBNNHmXg8zg033MD8+fOprq5m4MCBPPLII4wdO7ZD2nc4HESjUUpLSyksLDzmA2qlFKWlpei6jsPRxn/UQgghhEgTSUaojFVSEa2gOl5NTIvhtXsp8hZhMVta36ChUvnPsSBEKlMj0locHB7w5IMlPaTdHt7LvNLlLCr/ipiRqN9uxsyInP6cUTiSUYaVvh/eTZU5TJ9kkpmBEHtjyQOvfFASTB9lNE2jV69eLFq0iG7duvHKK69w3nnnUVxcjNfrbXf7nTp1Ih6PU1lZSSAQwGKxHLMBdd2ItK7ruFwuOnXqdKS7JIQQQnxrGcogGA9SEa2gIl5BMB5EofA7/OS58toWbyRjDdI4QqmKHBZrahTak5d2aMJIsqRiLfNLl7OpZlfavly7j8mFIzitYDi5dl/qeCDYdTg5u1dyY1VqAuLeNtxvCaaPMh6Ph9/+9rf1ty+77DJ+9atfsWHDBkaMGNHu9s1mMz169GDfvn3E43EMo/Ur/XxXmEwm7HY7DoeDTp06YTa3YxUlIYQQ4hiV1JNpy3yHkiFcVhd5rjzsljakUOp6bUm76tSEwmRNaoKhwwveQjhgZHt3tIz5pSv4pGwVYT1Wv92EiWHZfTijcBTDsvtgMTUeES8bNA3f7pWt72MDR3UwvXbtWmbPns0XX3zB3r17cbvdDBw4kP/5n//hvPPOO2TXramp4cEHH2Tp0qUsW7aMqqoq5syZw6xZszIeH4/H+e1vf8tzzz1HVVUVQ4YM4d577+XMM89sd182bdpEZWUlffr0aXdbdcxmM126dOmw9oQQQghx7Aknw2kTCmNaDK/DS1dvG5f5jodTC6pEakvaJSJgc4LTDwcE5UlDY1nlOuaXrmBdqDhtn9/m5fSC4ZxWOJxCR06zl4zl9CRYNBTfntWt72+tozqY3r59O6FQiGuuuYaioiIikQivvfYa06ZN46mnnuLaa689JNctLy/nnnvuoUePHgwdOpSPP/642eNnzZrFq6++yk033UTfvn35xz/+wdSpU1mwYAHjx49vcz+i0ShXXnklt912G36/v83tCCGEEEJ0BEMZBOKBVCpHrIJgIogJE36Hn3x3fusb1DSI16ZxxFIrEwJg94CvS9pkQoC9sUo+Kl3Bx2VfEjpg+e9BvuM5o3AkI3MGYD1YXrZSuMs2kr1tEZ5961rf7waO6mB66tSpTJ06NW3bz372M0aMGMHDDz/cZDBdVVXFggULuPDCCzPuf/HFF5k2bRoejyfj/i5dulBSUkLnzp1ZsWIFo0aNarKPy5Yt46WXXuLBBx/k5ptvBuDqq69m0KBB3HLLLXz22Wf1x44fP57FixdnbOeOO+7g3nvvrb+dTCa5+OKL6dOnT1rahxBCCCHE4ZbQE/Wj0IF4gFAihMvmIt+V3/pUDkWDlQlrS9ppMbC7wJ2bVtIOQDN0VlZvYH7pCr4KbEnbl2V1M7FgGJMLR9LFmZ5DnYmtppzs4sVkb1uMPdz+GtNwlAfTmVgsFrp3787y5cubPObJJ5/krrvu4l//+hcXXHBB2r5nnnmGH/3oR/zlL3/hJz/5ScbzHQ4HnTt3blF/Xn31VSwWS1pg73Q6+eEPf8jtt9/Ozp076d69OwCLFi1qUZuGYXDVVVdhMpmYO3fuMTtBUAghhBBHVk2ihspYJWXRMoLxIAkjgc/uo2tWG1I5tHgqgI5Up9I5EjX7JxO6cxqNQpfHq/lv2UoWlK6kKhlK2zcgqydnFI5kdO4J2M3pwfeBzMkYWbtWkLNtMZ7S9Wn7DLOFmqKhhAv60eXLl1p3f2p9K4LpcDhMNBolEAjw1ltv8d5773HppZc2efytt97KsmXLuPzyy3n33XeZPHkyAK+//jrXXXcdV155JTfccEOH9O3LL7+kX79++Hy+tO2jR48GYNWqVfXBdEtdd911lJSU8MEHH2C1tv4pikajBIPBVp8nxOEWDofT/ivEoSKvNSFazlAGwUSQQDxAIB6gJlmD2WTGa/Pit/pBg6TWwhJySqUqcMRDqQA6GUmldthdYOuUqg9tkCqtUXvtr4KbWVCxgtXBjSj2LzTnNjs5JXcok/JG0s1VmGo+CfGM1zXwVmwkb/tisncvx6KnHxXJ7klFj/FUdhuD7sgCwLV3I5Q2PVjblG9FMP3rX/+ap556CkhNnrvwwgt54oknmjzearXy8ssvc/bZZzN9+nTmz59PTU0NV1xxBd/73veYM2dOh432lpSUZJzMV7dtz549rWpv+/btPP300zidTvLz9+cevffee5x66qkZz5k9ezZ33313/e01a9YQCLR9jXkhDrdly5Yd6S6IY4S81oRouyjRdrbgrv1rLGSE+CLxBcvjywmo9Bimm6Ubo+yjGGwfjF2zo/bBzqauEC+le+UiulcuwpMoT9sXs/rYlTOOnXnjCbp6pDY2WMcl6JtOAd/RYPqmm25ixowZ7Nmzh1deeQVd10kkEs2e43Q6eeuttzjttNOYOnUqiUSCMWPG8Morr7RptLcp0Wg042IfTqezfn9r9OzZs9XLfc+ePZvZs2ezdu1aBg0axODBgxk+fHir2hDiSAiHwyxbtozRo0c3OYdBiI4grzUhMlNKEdEiBBIBqmPVhBIhdKXjsXlw29yYaMXgo6Gn8p8TNamR6GQElA42N1hdqVHohocrg3U12/hv+Qq+DK5HZ3+5XofZzticwZyWN5Je7qIGZ+mNLmvWYmTvXkHejkVklW9Iv4bJQqDLSVT0OIVgp0FgtuIH/Bnage7sCMwE/tby+8y3JJgeMGAAAwYMAFKT+6ZMmcJ5553H0qVLmx1h9vl8PPTQQ5x++ukA/PnPf8blcnVo31wuF/F44x8YYrFY/f7DzeVyNUo7EeJo5vF45DUrDgt5rQmRohs6VfEqKqIVVMVTy3xbLVZys3NxWp0tb0iRCp4bTiZMRsHmAl9Wo8mEAMFkmIXlq/ho3wr2xivT9vVwd+KMwpGMzxuCu7l+KAN36QZyti3Ct3MFZj19kDWa04vq404h0PNkdEdq0buWrHMc6tL6UsTfimD6QDNmzOC6665j48aN9O/fv8njtm7dysyZMxkwYADRaJSLLrqIxYsXd2iN5S5durB79+5G20tKUr8bFBUVNdonhBBCCHEkxLRY2gIrkWQEj91DJ08nrOZWhIVaMhVAx6pTf/Ga1GIqdi+4shtNJlRKsT60g49KV/B55Vo0tX9k2GayMjZvEGcWjqSPt1uzA6W2UOn+ahyRirR9SaePQK9xVPc6hXh2txbfFV3phLQoNckoNVrrU1m+lcF0XepEc3nBJSUlnHnmmdhsNubNm0c0GmX8+PFMmTKFhQsXkpub2yF9GTZsGAsWLCAYDKaNdixdurR+vxBCCCHEkaKUIpgIUhmrpCJaQSAeQEfHb/eT68xt+TwyQ6UWU4kFahdWqUlV6HB4wFOQqsxxgLAW5dPy1cwvXcGuaHopuiJnPmd0GsmE/KF4rZlzqQHMySi+ncvJ3rYYT9nG9C6ZrYS6DqP6uPHUdB7UaHXEpiiliOpxQlqEpKHhtbrp5irA7m7Z+Q0d1cF0aWkphYWFaduSySTPPvssLpeLgQMHZjyvqqqKs846i5qaGhYtWkS3bqlvJx988AGTJk3inHPOYf78+R2SNzdjxgweeugh/va3v9XXmY7H48yZM4cxY8a0upKHEEIIIURH0AyNqlgqlaMyVkkoEcJutZPtzG5dKkcy1iCNI5RaqdBqS41CexrXdlZKsSW8m/mlK/is4msSxv7KHxaThTG5J3BG4ShOyOrZdCCvDDyl68netjhjGkck9ziqjxtPsMfo+jSOltAMjaAWIaLFcFhs+CxevHYvDlyYdQdbQq2vhnZUB9PXXXcdwWCQCRMm0LVrV/bu3cvzzz/P+vXr+dOf/oTXm/nBe/LJJ9m5cycff/wxffv2rd8+bNgw3nnnHaZMmcLcuXObrDMN8MQTT1BdXV1fjePtt99m165dAPz85z+vX5FwzJgxXHzxxdx2222UlpbSp08f5s6dS3FxMc8880xHPRRCCCGEEC0SSUaoildRHiknkAgQ1aJ4bB46ezu3PJVD12sXVqmGaHVqRNrQweGFrMKMI8BRPc7iijXM37eC4khJ2r5CRw5nFI5kYsEw/Lamg197aB/Z2xbjL/4sQxqHP5XGcdwpxP1dW3Y/SAX3YT1GSItgGAYOkxO/KQ+X4cGUtBPVLQSSBgk9SiimtbjdOkd1MH3ppZfyzDPP8Ne//pWKigqysrIYMWIEDzzwANOmTWvyvFtvvZXp06dz4oknNto3fvx4Pv/8cwYPHtzstR966CG2b99ef/v111/n9ddfB+DKK69MW9772Wef5c477+S5556jqqqKIUOG8M477zBhwoTW3mUhhBBCiFarS+WoiFVQEa0gGA9iYOCz+1qXyhEP7x+FTtRAIgI2ZyoPuomVDreH9zKvdDmLyr8iZuwfQTZjZkROf84oHMlg//FNLvJiTkbx7VieWtq7fFPavlQax0m1aRwntjiNAyBhJAklI1QnoliUDTsuHLoLm3KBbidoKKxmcFjB67Rit5gJeVq5miOtDKafffbZVl8AUhU42uKyyy7jsssua/V5Vqs1YyBdZ8iQIQdto7i4uMXXczqdPPjggzz44IMtPkcIIYQQor2SRjItlaMmWYPD4iDXldvyZb41DeK1AXSsdmVCSKVx+Lo0mkwIqUB1ScVa5pcuZ1PNrrR9uXYfkwtHcFrBcHLtTVTPMQw8pevI3rYI366VGdI4jqf6uFNancZhGAZViQgVsRo0XWHS7TiVHxtubMqFzWzFYbPgcJpxWM00qvxnZCqZ17xWBdOzZs1qtK3um86BtZEbfgNqazAthBBCCCEaiyQj9aPQgXiAmBbD6/DSxdMFS0tGbxW1aRwNcqG1eGplQnduxpJ2ALujZcwvXcEnZasI67H67SZMDMvuwxmFoxiW3QeLKXMf7KG9DdI40sviJZ3ZVB+XqsaR8Le8GlpSVwRiUSrjYQKxKBZlx4oTl/KQZfXgt7tx2Mw4rJZM3wtAGZiTESyJILZIWYYDmteqYHrbtm1pt6urq7nmmmvw+/38/Oc/ry9Tt379eh5//HFCoRBz585tdaeEEEIIIUQ6QxkE4gEqo5WUx8oJJUIA+Bw+8lx5LUvl0OK11TiqU8t7J2pSVTjs3lQQnaGNpKGxrHId80tXsC5UnLbPb/NyesFwTiscTqEjJ+MlzYkI/p2pNA53+eb0+2S2Euo2PJXG0Wlgi9I4kroiltSJJDUqojVUx8MYhgkbDrIs+eTZfeQ5vbhstszBcy1TMoIlWYM5GcOwu4nZc/lKM5o+oQmtCqZ79uyZdnv27NkUFBTw4Ycfpj2BgwcP5qKLLmLKlCk88sgjzJkzp9UdE0IIIYQQkNSTabWhQ8kQLquLPFdey1I5DCMVOMeCEK2sLWmnpUraeTNPJgTYG6vko9IVfFz2JSEtkrZvsO94JheOZGTOAKyZzk9L4/gCs55M2x3J651aVKXHaAx789XVkrointSJaQaxhE51IkIgESaqJXGZXWTbcyh0+8l1+HBZm388THoCcyKIJRHGsDow7D6inu68sEHxzrpqSndUNXt+Ju2agPjmm2/y+9//PuM3IbPZzIUXXshvfvOb9lxCCCGEEOKYFE6GqYxWUhYtI5gIEtNi+Bw+unq7NjmZL00i2iCNI5iaTGh1gCMLPJlL42mGzsrqDcwvXcFXgS1p+7KsbiYWDGNy4Ui6OBuXxAOwB0vI3raY7OLPsEXTA9OkK5vqXuOoPm48CV/TC+hpuiKmGcQ1nWhcJ6bpRJNJAskwMSOG2+Ig25FF3yw/fpsXj8XV/ONhaKkR6EQITBYMWxbx7M7ozlziVh/3friNFdtbH0TXaVcwrZRi/fr1Te7/5ptvGuVSCyGEEEKIzAxlUB2vrp9QGEgEsJgs+Ow+CtwFB29A11Ij0PUl7cKAnkrjyOoM5sxBZ3m8mv+WrWRB6UqqkqG0fQOyenJG4UhG556A3dw4l9qciODfsSyVxlGRHoAbFhvBrqk0jnCngRmvr+mKuGYQ03RiCZ1oUiepKWKaRlzFSaoEVqsi1+XFZ8vHb8vCZ/Fgy9CXesrAnAxjSYQwGTqGPYuktxu6Mw/dkY1hT01q/NfyHe0KpKGdwfT06dP561//Sq9evbj++utxu1Or10QiEf7617/y1FNPMXPmzHZ1UAghhBDiuy6hJ9JSOWoSNbhtbgpdhdiamAxYT5Fazrvh0t7JKNhc4M5pcjKhoQxWVW/mo9IVrKzeiGL/AKjb4mRC/lAmF46ku7sww8kGnn1rydm2mKxdX2A20uszp9I4xtemcaSvbqgZikSyNnhO6kRqg+eErqMMMJkNNFMczZLAY3XgsWaTbfWRZfXiNjubWehFYdKiWBIhzFocw+5GcxWgO/PQnNkYdh80GMHWdIN3vyrJ3FYrtCuYfvTRR9m2bRs333wzt912G126pIbsS0pKSCaTnHLKKfz5z39udyeFEEIIIb6LQolQfRAdiAfQDI0sexZds1qQyqEl9o9C1wXRZktqFNqVnXEyIUBVIsTHZSv5qPQLyhOBtH29PV05s9MoxuaeiCNDPnYqjWNRbRpHddq+pCuH6uNOobrXuLQ0Dt1QxJNG7eizRiSxP3g2DLBZzFgtYLVpxFQMkwk8Zjd+ax4+q5csqxdrE9VBAEx6HHMiVJsH7UyNQvuPQ3NkozuyoYmFataVBKmOJjPua412BdN+v5+FCxfy73//m/fee69+kZOzzz6bqVOnct5557W8SLgQQgghxDFAN3Sq49WUR8upilURTASxmC34HX5cVlfzJxsqtRphLACR2smEehLsbvAUpCpzZDzNYG1wG/P2reCL6vXoan/VCofZzvj8wZxROJLjPI1L0pkT4QZpHFvT27XYCHYbkUrjKDwBzOZU8JzQa0efU8FzQlckNANDV1itZuwWEz6nHZ0kYT1C2IjjNrvIs2aTbfORZfHgsjSz5LmhpUagkzW1edC++jxo3ZGNama59JqYxpo9AT5cu7f5x7qFOmQFxPPPP5/zzz+/I5oSQgghhPhOimkxqmJV9akckWQEt81NJ0+ngy/znYztz4OOh1IrFVptqVFoW9OBYzAZZmH5Kj7at4K98fS6zj3cnTizcBSn5A3GfWDwaRh4960le9sisnatbJTGEc7vm1pUpfsoNKubuK4Tj+nEkwkiCZ24bpDUDHRDYbWYsVlM+Jw2LGYTujKI6lHKk1GsZgtui4tO9nx8Ni9eiwdLUyPy9XnQQUyGkZ4H7czBsGWuChKOa6zdE2TN7mq+2h1gW1mYjpzRd1QvJy6EEEII8W2mlCKUDFEZraQiVkEgFkBTGj6HjyJnUfOpHLpeu7BKde1kwlBqhT6HF7I6NTmZUCnF+tAOPipdweeVa9HU/lX9bCYrY/MGcWbhSPp4uzXKIHAEdtcuqrIEW6w6bV/CnUug1ziqep5CyF1ALGkQjxpEEmESukFCN9A0A5vVgs1iIsthw2LZ335Mj1OdjJJUSdxmF4WOPPzWLHxWLw5zEyXtlMKsRTEnQpj1OIbNg+YqRHfloTka50EDRBIa35QEWbMrwFe7A2wtq8HIED1bTIDJhJ5pZyu0u5rH3/72N5555hm2bt1KVVXj2ZAmkwlN0zKcLYQQQgjx3aQZWlpVjlAihM1iw+/042wmBQFFqgJHw5UJk9HU6LMrG5qpKx3Wonxavpr5pSvYFU1fya/Imc8ZnUYyIX8Y3gNSScyJMP7tS8nethh35YFpHHaC3UZQ2mMc5Tl9iWkQTWjEKyIkdUVSM7BaTdgtZrx2K1ZXemCrKZ2IHiWiR7GbbXgtLrJtnciyNF/SzqTHa9M4IhiWVD3opCsPzZGD7vCn5UHHknp98Lxmd4BNpaGMwbPZBH0LsxjSzc/grn5O6OLjzVW7eX7pjiYf05ZoVzB9yy238PDDDzNs2DCuvPJKcnIyr3wjhBBCCHEsiGpRKmOVVEQrqI5XE9WieGyeg6dyaNr+iYSx2pUJ4aCTCZVSbAnvZn7pCj6r+JqEsX9CncVkYUzuCZxROIoTsnqmj0IbOt69X5O9bTFZu79slMYRyuvLvu5j2V1wEjXYiGsGyao4mm5gMZuwWc247RZsrsaVQpRSRI04YT2CgYHH4qKLo/DgJe1q86AtiRqU2ZqqB+3vgu7MScuDjms66/dU1488b9oXQssQPZtN0LvAy5BufgZ19TOwiw+3Pf05mDG8Gxv2ho5cnem5c+dy0UUX8corr7SnGSGEEEKIby2lFMFEsL4qRzAexMDAZ/eR68xtuhhD/WTC4P5RaC2emkzozm2ypB1AVI+zuGIN8/etoDiSXt6t0JHDGYUjmVgwDL/Nm7ZvfxrHZ9hi6ZU84q5cSrqeTHGnUVTZ80hoCi1sYDFr2Cy1wbPZBk3cnaShEdYjxFQMp8lBti3r4CXtlN6gHrSBbs8ikdUd3VVbD9rmIakbrN8bYs2ufXy1O8CGvZmDZxNwXIGHIV39DO6azYlFPjyO5kNdq8XMHVNP4LWVu3h3TQn7mj26iTbacE69aDTKGWec0Z4mhBBCCCG+lZJGkupYelUOh9VBjisHh8XR9IlavLYaR3XtyoQ1qSocdm8qiG6mEtr28F7mlS5nUflXxIxE/XYzZkbm9Gdy4UgG+49PS5+wxGvw71hK9rZFuCqL09rTzTZKOp3Etk6j2ePtjWaAGRN2A1w2C3Zn08EzgKEUUSNGWI9gMoHb7CbPmo3fmtV0Sbv6POggZj1xQB50DnGLl42lNXy9u4Kvdm9lfUmIhG40bgfoledmSLdsBnf1M6jIj9fZ+tDWajFz6ageXDS8G/MWm7j17608v9VXbGDy5MksX76ca6+9tj3NCCGEEEJ8a0SSkbRUjpgWw2v3UuQtwmJuoh6yYaQC57pc6ERNKrXD4QFvYao+dBMSRpIlFWuZX7qcTTW70vbl2n1MLhzBaQXDybX7GlyvLo1jEVm7VzVK4yj392Zr4Wi25QzBsLmwW824LGbsFnOzwfP+PiUI61HiRgKXxUme7eAl7UxaLLWsdzKCYXFi2P0kXPnEbX42BCys2VjDV7t3sq4kSFzLHDz3yHWnRp67+TmxyI8/Q5pJW1ktZvp2ymr9ee256JNPPslZZ53FH/7wB6677jry8jKv0y6EEEII8W1mKINgPEhFtIKKeAXBeBCFwu/wk+fKazqVIxFpkMYRTN22OsDhA08zo9fA7mgZ80tX8EnZKsJ6rH67CRPDsvtyRuFIhmX3wdJg9NdRvYvsbYtS1TjiwbT2wo5cthSMpLhwFAlvJ2xWEz6LpbmB8DR1Je3CeitK2hlJLIkaLIkQymxDt2cRc3ZmQ8TDqt2Kr/aEWVdSSjSpNz4X6JbjYnBXf/1ftrvpCZhHSruC6f79+2MYBnfeeSd33nknTqcTiyX9m5XJZCIQCDTRghBCCCHE0SupJ9OW+Q4lQ7isLvJcedibqqyha/sD6FggVZ0DA+we8HVpNo0jaWgsq1zH/NIVrAsVp+3z27ycXjCc0wtHUODIrt9uidfgLf6c7G2L8FZvTztHM9vZkTeEnV1OpjqvL3arDbsJWhOSxvQ4YaMVJe0a5kErRcLqZX2yG19W2VlVqrF2b4BIorLxeUAXv7N25DmVupHrOfqC5wO1K5i+6KKLZIVDIYQQQnznhJPhtAmFMS2G1+Glq7eJZb4VqeW8Y9W1o9A1oMXA5gJ3TrOTCQH2xir5qHQFH5d9SUiLpO0b7DueyYUjGZkzAGttOoiWTOLc/RW5xYvJ2/cVZpU+slvq78OuLmMo6zICVbuoS/Pj4OlaXdJOKcxaBHMiBFqSLVE3K6tz+bLCylf74oTrqpMcoJPPwZCu2QyuLVeX721NL48O7Qqm//GPf3RQN4QQQgghjixDGQTigVQqR6yCYCKICRN+h598d37mk7REavQ5FkgF0vGaVP6z3ZsKopsZdNQMnZXVG5hfuoKvAlvS9mVZ3UwsGMbkwpF0ceah6Yp40kCr3Epe8Wd03rMMZzKUdk7YmcueopPZU3Qy0ab62wylFDEjTliPoqO3qKSdSYthjofYUR1jZbWbLys9rC6HYFwBydq//fK9jvqc5yFd/RT6mqm5fZjFkjrBWPLgBx5AVkAUQgghxDGtUSpHIoTL5iLflZ85laO+pF0AIpWpyYR6MlXS7iCTCQHK49X8t2wlC0pXUnVAQDwgqydnFI5kePYA0C3ENJ2yfWXk7V5K3z1LyTlgAqJmcbC300nsLjqZqpw+jVYDbNH9P6Cknd/mrS1p58FtdjXKQlB6gj2VYVbvjfNlpZ1VlQ6q43Ujyukl63I99gbBczadfI6jJqshrulEEzrRpE5cM3BaLZjb0LV2BdPPPvtsi467+uqr23MZIYQQQogOF06GqYxWUhYtI5gIEtfjZNmz6JrVRCpHMpYafY5UQyII8QhYbalRaFvzI6yGMlhVvZmPSlewsnojqkHQ6bY4GZ83hFNzhpNvyyemaeytiJJXupZeez+nqPIbLAekcVTk9GN30cns6zQMvbkVFZvsT8tL2iml2B3SWLMnwupSjVUVFiriFsDdqN1st62+zvPgrn6KspuoL30ENAyeE5qRqmBit5DnteN32fE6rPjjh7max6xZs5rc1/CBk2BaCCGEEEeDA1M5AokAFpMFn91Hgbug8Qm6nqrCEa2unUwYAkMHhxeyOoG5+ZHgqkSIj8tW8lHpF5Qn0gsyHOcuYnzOcAZ5+qNrZhIxRWjvJnrtW8px5StxJtPzjCOuPHYXjWVP0RiirrZVUMtU0q5uMmHDknYlNQar92ms3hdnValOecxMqmZeeqqHz2lNVdrols2Qrn665TQeyT5SEppBNJkKoGOahsNqwWW3kOuxk+224XFYU392K5baIekKR+tL7bUrmN62bVujbbquU1xczJNPPsmOHTuYO3duey4hhBBCCNFuTaVyFLoKsR04OVCRqsBRVxM6HoJkNDWZ0JUNTVXxqGUog7XBbczbt4Ivqtejq/01kx1mG8N9JzLCM4R8ayEJzSBcEaR35UqOL11Gds3utLZSaRzDa9M4ercpjaMlJe1KwwafliZYtU/nq9Ik+9LmQO6/ZpbDyqDaMnVDuvnpnuvGfJQGz3ZLKnjO8djIdrszBs8doV3BdM+ePTNuP/744zn99NM555xzeOKJJ/jLX/7SnssIIYQQQrRJi1M56gLoRAhiodRodLwmNYHQ7k0F0QcJGoPJMAvLV/HRvhXsjaeXfutiL2S4dwgnOPpjUTYcSlFU9hXH7VtGYcXXmFX6IiUVuf1TaRyFw9CtbatwETPiRPQocSOJx5Je0i4Us7J8l8bq0jir92mUhBsvzw3gsZsZVORjcLccBnf10yvfc9QEz0ndIFKf86xjM5vrg2e/a3/w7HV0bPB8oEM6AfHcc8/lzjvvlGBaCCGEEIdNi1M5DFUbQNfUpnDUQDKSSu2wu8CTd9CSdkop1od2MH/fCpZWrUVrkNtsNVkZ6OrPUOdgeriKsFvNFET20H3vUopKlmM/II0j7CpgT9EYdheNIdbGNI79Je1i2M1WPBYXXZ2d0JJuNpfZ+arUYFVpgt2hWMbz3VYY1NnNoG45DO5RwHH5nkMaiLZGw+A5ltSxWcy47Gay3Vb8ThdeZ23qht2C1dL6Efy2OqTB9JYtW4jH44fyEkIIIYQQQAtTOQwjFUDHQ/sXVElGQBmpahyuHDZF9oIWoq8ru8lr1SSiLChbxX/LVlASL0/bl2vJZYR3CCOyBuG3u3FrYbrs/ZSuuz/H1yiNw0lJ51QaR3V274OOfmeSqaSdl0J2VXrZVG5jTZliR9AAGsdkTotiUIGFIUU+BvXI5/guhVgOYyDanKRu1E8YjCV1rAcEzx6nDa/disdxeIPnA7UrmP7kk08ybq+uruaTTz7hscceY/r06e25hBBCCCFEsw6ayqHrqRUJ6/6S4dSy3ibA5gZ3HlhSIVGNFuGub/4OwN9G3ILX6kpdRKXqEG8I7eS/ZV+wMvgNSaXV98GMmYHufoz1n0Rfdw/M6BSUfU3XPZ9TUJ6exqEw1aZxjKG0HWkcDUvaaUkXJYFcdlR62FBuZUf9SuLpVUAcZsWgXMXQTjYGd8+hd1EhJqf/oOX8DofGwbMJl82Cz2Wle25q5PloCJ4P1K5getKkSRlnbCqlsFgsXHzxxTz++OPtuYQQQgghRCMHTeWoW9K7blXCZKQ2gDbX1oMuyBhALq9cj0Eq8F1S/g1jsocQiMVYUrmGJYEvKUmUph2fa83mZP8wRvkG47W48YV20nXjv+hSshx7Mpx2bNhdwO6ik9nTZQwxV24b73eqpF15LMb2Kie7qnLZWuFid9CMonFMZjMrTszWGJavGNrFSd/OuVg8ueiObNRBJlIeakndIFY7YTCq6VjNjYNnj92Cx2HFdhQFzwdqVzC9YMGCRttMJhM5OTn07NkTn8/XnuaFEEIIIdI0m8qhTKm853BFqpRdMpKqwmG2pEagMyyosidazsObXgJSKdTVDRZR+eeO93l+xwfEVTxtKRIzJgZ6+jLWfxJ93L1wJkIU7fqcrnuWkFWzJ639VBrHiNo0juPblMYBEIhrfFNusLHCxo7KPPYEbRmDZ6sZTshRDM+NMyzP4IRCNxZ3AZorLxVAW11oGdo/HDR9f7WNuuDZabPgdVnp6nThdaYmCx7twfOB2hVMT5w4saP6IYQQQgjRpEypHD67j66uAsyJCAT3QDSwP4C22sDqBq8vcy1oBXHd4Msdi9kVLct4zbhKpN12mWycmnMyo/1DyDY7KSz7mq4b/kp+xTeN0zjy+rO7aCz7CoditGEEOKbBxgoL68pgY4WNkqADQzUOni0m6J9r5qR8g5Nyogz2x7G7stDtebUBdA5Jm7fNQXx71AfPtWkb5tqRZ6/LSpHDRZYrFTy77Vbs1m9P8HygDpmAGA6HWbhwIdu3bwdSJfMmTpyIx+PpiOaFEEIIcQxqMpXD4qTAMEG4MpXCkYiCFgOrPTUCnamMXW3wHNd04klFJKGR0HSm7ylhnxHmQ2/zMctJ0Ri/tRRRautO103/ocveFRnSOApTaRxFo4k5W5fGkdBgS5WVDeVW1peb2VFtyxg8m03QL9fC0EILw/J0hvrCeFQUw+ZBt2eju/KJOrLRHf421aRuD91QRBM6kaSWFjx7HFa6+J1kOW31I8/f5uD5QO0Oph9//HF+85vfUFNTg1L7fwTJysri97//PT/72c/aewkhhBBCHEMypnJgphAztmQE4ntT+c9aHKyOVA60Oyc9gG4ieI5rCk03MJnAajbxYec+1OzdCko1OXo7pSbM/WUVJJwGfXZ/nt5Xq5O9nUem0jj8x7V4BDipw9ba4HljuZVtVRb0TMEz0DvHzLBOVoYWWhica5ClarAkajCsDgx7FnFHd3RnLpozG8ytX8GvrRoGz3EtNTLvPgaC5wO1K5h+9tln+cUvfsHYsWO58cYbOeGEEwBYt24djz/+OL/4xS/w+/1cddVVHdJZIYQQQnx3paVyxAPE4yF8QFddx5wIp6pwaMnUSoR2D7hz9wevCuJa88Gz3WLBaTOTtCVZHvyKJYEvqdIC4HY12687KqqwAbZYee2lTJTnncCeojEtTuNI6lBcbakPnrdWWdGMxsGzCUVPPwzrZGV4JzuDC6x4rQaWZAhzIgSaGcPmI+E/rj6NQ1mdGa7Y8XRDNVhhMFUlpC547uyz4nPVLdFtwWE98tVBDpd2BdMPP/wwEyZM4KOPPsJi2f+gDRkyhBkzZjB58mT+9Kc/STAthBBCiIzSUjmiFQTCe7FoUXw6FOhJ0CKpyhxWJzh84KktI1c/8qwdNHi2O22AYme8hMXlX/BVzfq0xVUcJitDIiGWuzIH1Z+4XUyvCVPj7sTuriezp8to4s6cZu+XZsD2BsHzliorST3zqHVRlsaJBTCis52RhW78TjMoA3MygiVRhimmY9i9aJ4iNFc+uiMb4zDkQTcMnqNJHZNJ4bJZcDusdPI5jtng+UDtCqY3bNjAQw89lBZI16krjXfzzTe35xJCCCGE+A6qT+UIl1Jds4dQpAyXlqRQKWx6Yv8qhE4/WOz7g+dYMmPwbDaZsFnM9cFzXZyZMJIsD37NZ4GV7I7vS+tDJ3s+p2QN5UzNyuuRdwDw6zp3lleiTCbuzcshYLGw0Oun08CfEPD3ajKA1Q3YEdgfPG+utJJoIngu8CTom59kSKGJkZ1cdPX4sZpSsZQpGcESqcGcjGHY3WjOPHRXProjB93hO6R50LqhUqXqagNoGgTPhT4HPqcNjyM1Eu20HbvB84HaFUz7/X6Ki4ub3F9cXCzl8YQQQghRL5wMUxkpoyywnWDNXuLRCnzKRFdDYUbVr0KI2ZYKnpM68UiCSEIjrukkDhI81ylLVPJ54EuWB9cQNfYvnW3GzBBPb6YaPiZWFFO4+QWsepwTzWZ6+bOYGQiRZ6Tyf0dFYzzvz6LSeT2Vvp5YGlzDULDzgOA5pmUOnvM9SXrmROiXn2RwgYke3ix81hxcllR6hklPYE5UYUmEa/OgfSSzeqA7cg5pHvSBwbNC4bJbcNmsFGRJ8NxS7QqmzznnHB5//HFGjBjBZZddlrbv5Zdf5oknnmDmzJnt6qAQQgghvt0MZRCIVlIR2E5FcCeBmhIsWgyfYaLAak/lQNtcxJUllfMcUUQSkVYFz3XXWRfewmeBlWyMbEvb57d4ONOUx8XVlQwoXohZpVdb9hgWLqs0kWfaX+IuzzDoV96X65NDWRFOcm7/GJsrU8Hzpgor0SaC5wK3znG5MbrnhOidH6eLx4HP4sVnzSbL6sZisoChY4lXp/KgTRYMWxbx7M7oztoFVQ5BHrShVP0iKZGkDkrhrA2e8732+rQNrwTPrdKuYPr+++9nyZIlzJw5k1//+tf07dsXgE2bNrF3714GDBjA/fff3yEdFUIIIcS3SzIRoTK4nfLADqqDuwjFKnEZBoVWDzZHLnGTk6AilbYRThLXYmnBs93afPBcp0aLsCy4miWBL6nWgmn7TjRlcWlNlHNK12NPW3olVYmjLH8Q72mj+NOuURxn2su7jtvTjnlMuxCAr0ttfF2aeYQ412XQPz/JcXkxumUHcTlieCwusqwe/NZ8fFYvDrO9Ng86jCURwmToGPYskt5utQF0Dobd24ZHuWkHBs+qNnh2W63keuz43RI8d4R2BdMFBQWsXLmSp556ivfee6++zvTgwYO59dZbufbaa3E6D88MUyGEEEIcBbQE4VAJlcEdlFVvIxirJJ4I4bN6ybflkTS7qNZNRMJam4NnAKUU22N7+Cywkq9q1qM3mFDowszUqMHVFXs4Ppk+Ah23eSktHMq+wmFU5PVDw8af5/mIYGKt6sUH+kjOsqwA4H19FN+oXo2uneM06Jev0T9fo3deHJcjTESPYTNb8VpctQG0B4/FjdlkTuVBR6swa/FUHrSrAN2ZWpGwI/OgGwbP0aSOcUDwnD7ybMZ0BBZy+S5qd51pp9PJL37xC37xi19k3P/JJ58wYcKE9l5GCCGEEEcrLY4RqSQQ2k1F1TYqIqUE4pUYyobD6sdhL6BKU8TDOgktnhY8u2wWbC0InuskjARfhtbxWeAL9sRL0/YdrxnMrK7m3Jow7gZrX0SduewrHMa+TsOoyj4eTGYMBXuCZhZttxOK7w9mH9MurA+mH9MuaHT9758UZlTXBHEVJ6xH0dExm1x0duSTbfORZfFgN9sw6XHMscraPGhnahTa1wvNmYPuyAZz+9fNOzB41pXCabPgtlnI8djxS/B8WHTICoiZvPXWWzzwwAN8/vnn6Lp+8BOEEEII8e2RjEK0mmSknMrAdspq9lAarqRaT2I2+zCbu6IrC4GoQtPjbQ6e65QlKlkSWMny4BpiRrx+u0UppoQjXBqsYXg8Tl2zIU8X9nUaRmnhUIJZ3TEwsStgYePWVL7zpgoLkWTjEeG1qhfXJn4JkHFUWjNFKdWqcJjs+Gxesq1Z+Kxe3GYXJqVjSYQwJ2tq86B9HZoHrZQiljTqJwxqyqgPnrM9NrJddtwOC16HFZfNIsHzYdKmYHrevHk8+uijbNmyhZycHC6++GJ++cvUC+/NN9/kN7/5DevWrSMvL4+77rqrQzsshBBCiCMkEYZYAKJV1AT3UBLcw96acsq0BEHDhNXsx6IcGElqg2dw2SypOs9tiOt0ZbAuvJnPAivZFClO29dJ07g4VMNFoRry9dSkwWpfL/Z1Gsa+wqGEXJ3YFbSwodTKpnVWNjczYfBAHxqjmtzntUNXRyd81iyyLB5sJnMqDzq6B5NhNMiDzkN35mDYml+mvDkHBs+6UjisZlx2C539DvxuOx4Jno+4VgfT//nPfzjvvPNQSpGfn8/mzZtZunQppaWlRCIRHn/8cXr37s1f/vIXZs2aJTnTQgghxLeVUrUBdDUqUkUkUEppaC+lNeXsSSaoUAZJZcNBNi6LE7vZjM1ixm4xtyl4rhPSwiwLrubz6i+p1kNp+8ZEY1weDDExEsVsMlOV3YdvOg2jJH8oG+P5bCy3snGNlS3NlKrLdhr0y9Pom6/RO0fjkSVeQnETzXda4XfAmV27kGV1YtaimKMVmPU4hs2D5ipEd+ahObMx7G3Lg64LnuvK1SUNA6fVkh4821Ol6tx2CZ6PFq0Opv/4xz9SVFTEvHnzGDBgAIFAgMsuu4xHHnkEk8nEE088wXXXXZdxIRchhBBCHOWUgngIFasmGignHqogVFNJabiCPVqSckMnqHRcZgfZdg8uq73dwXPqsori2G4+r1zK6shm9AaVN7yGwfmhMJeEQvTUoSLvBL7uNYwV9mF8Hchm424rW9ZYiTexSEquy6Bvnka/fI1+eRr5biMtzWRSrzhvb2h+SXEwcUEfCzlaGHO0DMNSWw/alYfmyG5THrRSirhm1Oc81wXPTruFQpcDv8uG12GV4Pko1+pg+ssvv+TWW29lwIABQGrhlnvvvZdRo0Zx991385Of/KTDOymEEEKIQ8gwUPEA0WAVsUApsZoqYjXVBGJh9iqdUj1J1KyjTDrZTg+dbW7M5o6pQBE3EnxduZwl1V+wXUXS9vWLJ7gsFOLsqE4gbxBrug/nSW0oX1d62bq66RUG8906ffM0+ubp9MtPBc/Nmdy7ho2Vig1lbkCR6ZvB2IIkV/YMo8xZxP1d0GsnErYmD7o+eK5N20joBi5bKngucNnJdtnxOqy4HVbcNgtmswTP3watDqZDoRA9e/ZM21Z3e9SopnOMhBBCCHH0UIZOJFhFNFhOLFhGNFSFFg0RSyQpB4Jmg4hFJ0EUh91KZ2sWToujw64fql7PivJFLNTLCTeIy621EwovjOi4nSeyyDWKy41BbNjpImk0vUhKv3wtNfqcp5HrVhmPa8hQiqgRI6xHMJlM/HiUzuKtVhZss1O9f34juXaD83vDJYNy0dyty4M+MHiuH3m2mcnPspPttu8feZbg+VurTRMQD/yZoe623W5vf4+EEEII0eGUUkRiCSLBCqKhSqLV+0hEghjRIEldodlc1NjtRNw6URUlakRxmh3kWHKwdkAZN5TCE9zO9tJP+SixkxX22gi69j+dNY1pYZ3u2kA+SYzlquAJJIzMKaOdPDp9a1M2+uZp5LgOHjzXSRoaYT1C1IjjtjjJs2WTbfPhMzs56QSNnx5fw9flEFBOPG43J3QvAFcumt1HS0qQ1OU7x5I6ca0u51mC5++yNv3rePbZZ/n888/rb8disfp86TfffDPtWJPJxKOPPtquTgohhBCidQxDEU3qhCNRIqFKIoEKkqFy9GgAIx7CYrFicfpIZOUTM8ep0oPUaGESehKvxUOhPQ9zexcTUQY5VZuxl37B4shG3nBZKLVawb6/3eExg16h3nxZNZk/6b3JlGLR2avXTxjsl6fhd7Y8eIbUF4moEaNGj2AygcfsId+eQ7bZhd9Q2OJRTCqCYfeiewo4IS8X3e5Dd/gxDvJFIq7tr/PcMHjO89rxu+qCZwseu1WC5++oNgXTH374IR9++GGj7QcG0iDBtBBCCHE4GIYiktSJxDVqIhFqAuUka6oxasox4kHsehS7zYHdlYXZn0cNcSqTQaq1cmoSYSxY8Frc5Nqy29UPk5Ekv2I9BaWr2FO9jlfdFuZ73GhZ+1NE3Ab0CHRhX+UZLEycyMID2ijK0usnDPbN1fC1MniuoxkaNXqEmIrjNDnItfnJMTnIVia8SR1ljmJYPWieLmjOXAy7H92eBeamiyg0DJ4TmpGqnW23kOtpOPJswW23YpHg+ZjQ6mDaMJpP4hdCCCHEoZcWPMc1AjUhEjXV6OEqVKQchx7FpWLYHA4sfh+GvTNJpQjoNVQl9hDUwkT1VCpHnjW7XakcFi1GQflaOpWuwlP+De+7LPze52VToS/tOH/MS6zqFPYFTmGf2p8a2tWXGnnul6fRJ08jy9G24BnqRqHjhPUICoXH7CLf5CIXM9lJMFvNGDYvCbevdhKhD8PmbbKUXaJBznNM03DUlqpLBc+pFQY9DiseCZ6PWYdsBUQhhBBCdJy64Dkc1wjHNaqjCWKRCFq4CiNSiUsL4lZRXMSw2F0Ydh+GrTOYzIT1GIFEJVVabSqH0f5UDluihsKyr+i0bxV5lesptsCcrCze6ppHuEGlD5NhgtCJ1FSdSijaAxPQ3a/TNy9GvzydPnkaXnvbg+c6mtJrc6FjOE02crCSh5Vsw4LT5k3VgnZkpyYQ2n0YVnfGHOiGwXNc17GZUyPPOR4b2W63BM+iEQmmhRBCiKNQpuA5kjBIREIY0WpcySAeI4SbKHYVRzlcGDYfhrUzmsmEoQxq9AjVySDVWogavf2pHM5YJYWlq+m0bxW5VZvRUCxwu3i5MJdlrvQScSrpJ1E1Fq16BN28LkYXafTLC9M7V8fTAcEz1C5yYsQJ61F0I0kWZgqUhVyTFY8jD7Pdh+7IJubMRrf7M5axq0vbiCUNYpqG3WKpD559ThdeZ2r02euQ4FlkJsG0EEIIcRRoKniOxTWS8RBurQaPESLPCOE0IpiNBIbViW7zkbS66kdZk4ZGUKuhKhnokFQOT3gfnfZ9Sf6+1eSGtgNQZjHzf9lZvJrlTU0obECr6UtOYgwDvcfTv49Bn1wNl62m/Q9QA7rSCetRIloNLqWTY5jIM7vxOvJwOPIwXHkkHX4MexaqQTm/hqXq6qpt1C3PXTfy7LbXjTxbsFo6ppa2+G6TYFoIIYQ4AhoGzzVxjUBd8JzQiSY0XCpKlgqTbQRx6SEsyRpMegLD7kF3+tGs6Sv2RfUYAS3U/lQOpfCFdpK9ZxUF+1ZTEC9JbQaWOx28nOVlvseN3iBFwmQ46axOYqz/JE46zofTCpBo/4N0gJgeJ6wFMZJhshTkWdxkOzvjdhRidheiO3zE7L76lQiVUsSTetoKgw5LerUNj8MiaRuiXSSYFkIIIQ6DA4Pn6kiCaLI2eE7q2M3gJUYBNbiMaqzJEOZkDSZDQ7d50Jw5jdIUOiyVQxnY923Fs2s1vatXkW9U1O8Km0y87fXwrC+Hnfb0YDPP3JkJuScx0j8Qu9nWnoenSbrSiSQCxBLVOAydbKuXbFc3PK7OONxdMBz+2hrQ5lTaR9IgmkwQO2B57nxnqtqGxy6l6kTHanMwrZQiFApht9txOlu+lKYQQghxLDho8Gwx47KayDVHcFtDWBJVWOJBzFoYlJGaMOfKR1kaL4iWNDQCWohqLdjmVI5AWEPfsZku5asYGv2SXEJp+zfbbDyRVcTCLBOaeX8lL6vJwlDvCYzLHk53R5dGC7l1CKWIJ0NEE5VoWhS3NYtOzi743J3xeHpgduamKnJQu0hKOEksaaArVZ+2Uehy4Hftr7Yhi6SIQ6XNwXQikSA3N5c//OEP3HLLLR3ZJyGEEOJbp0XBs82C32Gmiy2CNRnEEqnEkqjBnKxBoTBsXjRXIcqSeZS3PakclVETxaUanpJ1DAitZKqxmixTNO2YmDLxtLsPb+U4KXEESCV3pCYL5lj9jPWfxGj/EDwWd0c8ZOmUjpGMEktUEkmGsdrcuB25+LK74vF0xenqgmFzE6lL2whHMZTCYbPgtlnIdtvwu+147Km0DbfdcmgCfSEO0OZg2uFw0LlzZxwOx8EPFkIIIb5jMgbP9VUh9pdU87tsFHosWJMhLPEAlppKLMkQ5kQYZTZj2DwkPJ3r83wbXaeNqRzlETObyi3sLYtSVLmGcdoXXGReg8OUTB1QG2cmlJWPHAP5d342q5xlhFUYiNcf0t99PGP9wxngOb79KyIeSGmYtBhaIkg4GSZuseBy5JDn70eWuwinqyuayUNNUqcsrIOK4LBbcFut5Hjs+F023A4LXocVl02CZ3FktCtnetasWTz77LPccMMN2O2Nf4YSQgghvitaFTxbHZiNJOZEEEs4gCVWiSVZgzkZRpmtqRxob1GzK+21JpVDqVTwvLHCyqZyK9XlAUYnV3K2eTmjzeuxmgxocKkITta5B/F5px4sdgdYG9mMQXXdIDRus5NRviGc7D+JfHtOhz6OJkPDpEUgGSaix6gxmzDZvLizuuN3FmG1dwaTj2BSEYwqnDYNl81KnseO323DbU+VqXPazBI8i6NCu4LpwYMH8+abb3LiiScya9YsevXqhcvlanTchRde2J7LCCGEEIedYSjCCY1IQk8LnqMJI20xj7rg2WQyYdLjWOIVWMJBLLFKzMkazMkIymJDt3nRnNlgajqAhpalcigFpWEzmyqsbKqwsrHcSk58L2eZV/C/luUMM2+BAzJFasxeduQOpbzrCcy3aSwOraY0sQIi+4/p5ujMuOzhDPOegK0DJxSa9DgmLYpFixFDJ2SCuMWK3d0LuzUfi70LZrMf3WzHbrbgslvp5LPic+4feXbamn/chDhS2hVMX3755fX/f+edd2Y8xmQyoet6ey4jhBBCHHItDZ6z3TYctcEzgEmLYYkGsMSqscSrawPoKIbVnsqBduY2uVR1/bUPksqhFOwLm9lYXhs8V1gJxEycaCrmbMtyfmdeTj/H7kbthuw5lHcaSmmnYaxz+VgcWs3K4AISKll/TN2EwlOyR9Dd2aVjHkylMOlxzFoUsxZDN1uoMZsJWKxolmyw5mG1dsJqzyXP6cftsJHlsJLltNWXqpPgWXxbtCuYXrBgQUf1QwghhDis6oLncFwnnGh58AykRlnjgdq/SsyJGsx6HMPqrK/CkWmp6gM1lcqRa8mmLGJnaXkqcN5UYSUYN2PGYKRpAzdaVnCWYzndTOWN2gx5OlNaOJR9hcOozOrK1+FNfFa9jG0Vu9KOy7VlM9Z/EqN8Q/BYGv+q3GrKwKTFUgG0kcQw24iarJRb3ASxoCzZuO0FFHgKyHPlUuDx1gbPqVJ1DqsEz+LbqV3B9MSJEzuqH6JWPB7nhhtuYP78+VRXVzNw4EAeeeQRxo4de6S7JoQQ33rhhEYkEGt18IxSmJNhLPEA5niDEWi9dhVCexaatbBFATQ0TuWI6UnCET87q3PYVGFjc4WVUCI1mm0nyTjzV5xlXc6Zli/INwUbtRfw9WBf4TD2dRpG2NOZ6mSQpcFVLC1+i5Aerj/OBAxw92Zc9nD6uY/H3N6cY6XXp2+YDI2k2U6NclBlclNpGJjsXnyufHq68yjy5tMpKxe/04HHYcVuldUFxXdDhyzaEo/HWblyJaWlpZxyyink5+d3RLPHJE3T6NWrF4sWLaJbt2688sornHfeeRQXF+P1eo9094QQ4ltDrx951qioSiUGbygJkTQnDx48Q20AXYMlEcQSq60BnQztX4XQ0XgVwuY0TOWoTIbYWp1ke6WHXVWd2VJlJ5zYH1y6iTHVvIqzLCuYbF6J1xRL7xomKnP6UFo4jH2FQ4m5clFKsTm6nc/2vM434U0YdbMJAbfZxWh/akJhXmsWc8lEabXpG1F0zSCOnZjJRcjsJGI2odvMZLmy6e/JpSirkKKsfPLcWRI8i++sdgfTjz32GLNnzyYQCAAwb948Tj/9dMrLyxkwYAB//OMf+cEPftDujh4rPB4Pv/3tb+tvX3bZZfzqV79iw4YNjBgx4gj2TAghjm5J3SAc1wgndMKxJMFYKv85ltSJRVKjswqaDp4BlJEKoOO1OdCJAOZkGJORRLe5M65CeNB+GRpVyRBfV4RZU2awqdzKjupCosn0tIZsQpxhWck51mWcYlqDHS1tv2GyUp43gH2dhlFaMJikPQtIjXJ/Ub2Cz6pXUpasTDunh7OIsf6TGOo9AVsLF3PJxGQkMWkRVDxCUlfETU5iJg/K4SNhtxK3gsdp53h3DkXeAop8eeS7crE0U61EiO+KdgXTc+bM4aabbuKyyy5jypQpaUFzfn4+p59+Oi+99FKbg+nly5czd+5cFixYQHFxMXl5eZx88snce++99OvXrz1db1ZNTQ0PPvggS5cuZdmyZVRVVTFnzhxmzZqV8fh4PM5vf/tbnnvuOaqqqhgyZAj33nsvZ555Zrv7smnTJiorK+nTp0+72xJCiO+SuKan8p3jGjUxjVA8mUrbSBpohoHDasFls5DrsWOyG+zaAz6nDfuBE9uUkSphl0hV4Gi8CmFexlUIm6MbirUVUZbvi7GmTGdLhY2Y5mt0XGcqON+xnHNtyxmobcCCkbZfszgoKxjEvsKhlOWfiN5gJHxPfB+fVX/JytBakmkTCq2clHUC4/wj6Obs3Kp+N2TS4uiJCEY8TAIzCZzgyMXs9YPdjdUJhjlJkTOLAk82nTwF5DpzcdsOwYIuQhzF2hVM/+lPf+L888/nhRdeoKKiotH+ESNG8Nhjj7W5/QceeIDFixdz8cUXM2TIEPbu3csTTzzB8OHD+fzzzxk0aFB7ut+k8vJy7rnnHnr06MHQoUP5+OOPmz1+1qxZvPrqq9x000307duXf/zjH0ydOpUFCxYwfvz4NvcjGo1y5ZVXctttt+H3+9vcjhBCfNsppYgljVTOc1wnFEsSimup1QU1Hd1QuKwWnDYLhVk2bJb0lIJE8oAGDT0VPCdqa0C3YhXCTDRDsalKZ9U+jS9LE6wrV8Q0E6mP2fSP2iHO3VzqXsYEYwXdY9tqG2jQV5uX0sLB7CscRkXuAIwG/dCUzpqaDXxWvZLiWPqEwjxbNmP9wxnlG4y7LRMKlUJPRNHiEYxElKTJisnuxuzpgtXtJ9vjR9nNJIngsJrJdvrJceSQ68ol29HyZcyF+K5p1yt/8+bN3HjjjU3uz83NzRhkt9SvfvUrXnjhhbQFYS699FIGDx7M/fffzz//+c+M51VVVbFgwYIm61u/+OKLTJs2DY/Hk3F/ly5dKCkpoXPnzqxYsYJRo0Y12cdly5bx0ksv8eCDD3LzzTcDcPXVVzNo0CBuueUWPvvss/pjx48fz+LFizO2c8cdd3DvvffW304mk1x88cX06dMnLe1DCCGOBUopIgm9PngORJNE4jpRTSOW1EGZcNpSI89+lw2rpWX5uOZ4AHuitHYRlQNXIewELaytnNQVG6t0virVWV2qsbZcJ5aWlbE/hSTXqTMleytnW5YzLLqS7MietNrOAFFHdip9o3AYVdm9UQekR1QlAywNrGZpcBU1+v6TTcAJnj6M8w+nr/u41k0oVJDQNIxEFD0RRmlxzDYXFocba1YnsrKycXh8WB0OEipCTI/gtrrw2TuT58oj15mLx5b5c1SIY0m7guns7GzKyxuX5anzzTff0Llz239iGjduXKNtffv25cQTT2TdunVNnvfkk09y11138a9//YsLLrggbd8zzzzDj370I/7yl7/wk5/8JOP5dUult8Srr76KxWLh2muvrd/mdDr54Q9/yO23387OnTvp3r07AIsWLWpRm4ZhcNVVV2EymZg7d66s8CSE+M5rWOM5HNdSwXNCJ5pM5TxbTCZcNgtum5VctwOLuWXviyYthooFWF+8jy0VJmJqIyOza7BYLalFVA6yCmGdhK7YUKHzVZnOV6Ua35TrxJpYQiHXpdE/L8kZ7vWM01bSq/JLXNWVjY6rcXdiX6dh7CscRtDXo1ElEEMpNkeK+Sywkm/Cm1ENJhR6LC5G+4Zysn9Ys0uKN6QUJHQdLamhxyOYtAh2s4HF7sbuzcaZlYvD48Ph8eOwO4kaEUKJEFG9Bp/NR2dPL/Jcefgd/g5d0EWIb7t2BdNTp07lb3/7W8agdO3atfy///f/OnzyoVKKffv2ceKJJzZ5zK233sqyZcu4/PLLeffdd5k8eTIAr7/+Otdddx1XXnklN9xwQ4f058svv6Rfv374fOm5cKNHjwZg1apV9cF0S1133XWUlJTwwQcfYLW2/imKRqMEg41LJwlxtAmHw2n/FccO3VBEk6lgOZpI5TzHkgYJzSCmGdgsJhxWC06rCb/TQip21sDQ0OPQ5FJgysCkRbAkwxixEK99E+KdbYrqhIm69bRzHNlMPd7GjP5WrJqCAyb6QW3wXGnwdbnB1+U66ysMEkajwwDIdSU5PifOwNwkE63r6Rv8kk5lq3GUhxodG8jqwd6Ck9hbMIywp8ECKQ3uUFSPsaLmKz4PraT8wAmFjq6M9Y1gsHtA/YRCo3H3Uw+FAs3QSWoKTUtg1uPYSeAwmbDYndh9RdjcfuwuL3anFywWdKVTE6uhLFSGw+LAa/OS48zBZ/fhtrohCdFklCjRpp4BIb7VampqWn1Ou4Lpe++9lzFjxjBo0CDOO++8+pHUv//977z22mt06dKlw1MUnn/+eXbv3s0999zT5DFWq5WXX36Zs88+m+nTpzN//nxqamq44oor+N73vsecOXM6bLS3pKSELl0arxhVt23Pnj2tam/79u08/fTTOJ3OtBKD7733HqeeemrGc2bPns3dd99df3vNmjX11VWE+DZYtmzZke6COMokav/aSjfg6Q1mvqlunP5RFVc8vy7JlyVxftTfwGKGhA7FNSY2B01sDpjYXgOayvw5UehU9PEpevsUA7xR+sa+oiiwgk5bV2Mz0oNMhYkKb39K/CMoyR5B1J7f5B0s0Ur4PPE5XyW+Isn+JG8bNobYhzDGPoYiaxEkgQAcmAbeFBvpK4vrgK5BIgJUGECw9i9dggQhQuxlbwuvJMS3344dO1p9TruC6aKiIr744gtuv/12Xn75ZZRSPPfcc2RlZXH55Zdz//33d2jN6fXr1/PTn/6UsWPHcs011zR7rNPp5K233uK0005j6tSpJBIJxowZwyuvvNKm0d6mRKNRHA5HxuvX7W+Nnj17opQ6+IENzJ49m9mzZ7N27VoGDRrE4MGDGT58eKvaEOJICIfDLFu2jNGjRzc5h0F8OyU0o3bUOZX3HE5oJJIGMU1H18FuNadGnm3mRpMFD0opTHostYhKIpRaPEWLYtKiYDJjWJ08v9nON9V1Q8kHBsWp299Um/n7FiuGgo2VBloTb73dsqBvrk6PnAhF/hDZVHN89Ra6V6ylYM86LEZ6WKubrFTkDmBvwUmU5g8hUVvCDsB2QLK0pjTWhNfzWfALdsTTlwPPs+Yw1jeCEd6GEwr3n68UaLpOUlckdQOUwm7WcRhx7CYNm92Oze7C5vZic2WB3Q1Wd/3DoSudSDJCJBnBbrHjsXnSRqElxVAci5pLI25Ku6PKwsJCnn76aZ5++mnKysowDIOCggLM5o4tzr53717OOecc/H5/fZ7ywfh8Ph566CFOP/10AP785z/jcnXAkqkNuFwu4vF4o+2xWKx+/+HmcrkapZ0IcTTzeDzymv0Wq6u0URPXiCQ0QjGNmngqfSOaNFAKnFYHLreFbJul9cEzgKFjToZqy9cFsCRCmLTaFQgtDgyHB8ObDSYLylD8Z1vLfqr9urxx7kYvv5nBBRb65Wt09degrEGMSAk9yzdw3Mb15FVvwawylLDLP5F9hcMoK0gvYWem8TWqkgE+D6xiaXA14bQJhSYGevow1j+cvu5eDSYUGhgKkppOQlMkjFReiN0MDnOSbHMcp1nD5nBhd2Vhd/vA6Qe7F2yutO8TUS1KMB4kaSTJcmXRK6cXuc5ccp252FpRwUSI76K2LJDXYUO0SimUUphMpg7/NhsIBPje975HdXU1n376KUVFRS06b+vWrcycOZMBAwYQjUa56KKLWLx4cca0jLbq0qULu3fvbrS9pKQEoMV9FUKIbwujNt+5boGUQDRRW2lDJ5bQMWHCZbfgtFnJcVtaPFnwQCYtVjvyHEqtQJiswZQMY1IK3eZGd2SjWRyNJu6VbP2Gl9Vj0ILS0Lckr2Ofuy9jutoYUmDhhHzAUkO1VoERLKbTji/pVbGB/ODORucmbB5KC4dkLGGXiaEUmyLb+CywknXhLQdMKHQzpnZCYY4tVQpVNxQxTSOh1Y48m8BhsWC3KrJJ4jIlcJgMbC43Nkd+Knh2ZIHDC9b0X0x1Qyf0/9m78+i46vPw/++ZuTN39hnti21ZBpvNNpjNhrDagG1MQmi2JoTShOQXGk7aL2nTpJQTIFvTljQlaUraNISQtDRtE9IsLMYmdooTg1kMeGMxXrFlW+vsc/ffH3c0kizJljQjyZjndQ4HNPfeuZ+RB+uZj57FyJDVswS8ARJqgrpgXXknWnahhZi4ioPp7du3c9ddd7F69WryeffTdTgcZsWKFdxzzz0V94IuFou85z3v4fXXX2ft2rWcddZZY7quo6ODa665Br/fz5o1aygUClx66aUsX76c3/72t9TW1la0rn6LFi1i3bp1pNPpITtrzz77bPm4EEK8nfWP5c5rbspGqqCT122KukXRHOi0EQ0o1I2j08Yw5fHdGbxaCp/eh9fI4zULOF7FHaAyQvs6x3E4lHPY2mmytdNi+cEnOM07fJNjJH/oW0dh0UIuaLVIGb1ovTuoO/Q8Z3RuoyZ/ZNj5BTXJkVIHjpFa2I0kbxV5Lv0Kz6Q202X0Djk2OziDSxLnsTB6Oh586KZFumBgWDYeLwR8PlS/l2TQQ9ijozoFAj4HRQ2DPwGhJARiEIiAMjyYL5pF0noazdSIBWLMjM4st7ULjHMQjRBiZBUF008//TTXXnsttm3z3ve+tzyV8LXXXuOXv/wljz/+OE888cSohXPHY1kWf/iHf8jGjRv5xS9+wcUXXzym63p7e1mxYgXZbJYNGzYwc+ZMAFavXs2VV17Jddddx9q1a6uSo/mBD3yAb3zjG3zve98r95nWNI0HH3yQJUuWjLuThxBCTDfDssuBc1436csbbos63UazLPxeLyG/j3jQT6N/lLHcY2Ub+PT+9I1evHoWr5nHY+nY/lB5AiGegdQQ23HYm7LZ0mmxpRRAdxUGdnn3eq7hBnXdmG7/79bVfCL7LKGXfs+czleIFfuGnTPQwu4c0vHZw3bCR/NW8RC/T73IS5ntGM5Ayw2/x895sfksiS+i3lePbjmkchZen+UGzwEvNYof1WcTcjQCFFG8PvCHwZ+EYNzdgQ64HTiGfUsdm4zu7kIrXoWEmqA27qZxxAIxvJ7qpmEK8U5XUTD92c9+lsbGRn77298OCxr379/P5Zdfzp//+Z/z3HPPTej5/+Iv/oJf/vKXvOc976Gnp2fYkJabbrppxOvuv/9+9u/fz/r165k3b1758UWLFvHrX/+a5cuX89BDD43aZxrgO9/5Dn19feVuHL/61a946y132tSf/umflicSLlmyhA9+8IPccccdHDlyhLlz5/LQQw+xZ88eHnjggQm9biGEmEqaaZWD5/4ez/3Bs25ZBBWFoN9LMuxHVSoMngGPkS9NH8zg1XrxGTm8Rg7H4y0Fz7U4voE0BcNyeKPXZEunxdZOi21dJplRWn0EFQjUnsKavgu4xvv8Mdex327gR4G/o+614Z0sUvE2Djeew+HGReSiY08NNGyTV7Kv8vvUi+wrDu3mVO+v5YLoOSwInYXPDuBzPNhAKOAlHPW7BZmYBNBQzDR4FTeADtQM5D8HojDKzn/RLJLRMxStIjF/jNZoK/WhemqCNai+4YXyQojq8DjjbR0xSCgU4itf+Up5R/Zof//3f88999xTTv8YryuvvJLf/va3ox4fbemmafLaa6+N2ov6lVdeYeHChcf8gdDe3s7evXtHPLZ7927a29vLXxeLRb74xS/y7//+7/T29nL22Wfzla98hRUrVoz6/JOhv5vHM888w5IlS6b03kJMRDqdZt26dSxdulQKEKdQsZTvnNfdlIKM5k4VLBoWpu0QLI3lDvl9BJQq7GKWiwcz+Ip9eI0MXiOH1yxiKyq2P4KthMvDU/KGw47ugV3nV7sttFEaSydUDwvqfSxo8LGwQeHUGi+K18PaF3bw6f1/OeYlOnjorTmVw43uDnQxVDeul9hj9PFM6iU2pV8mZw10cfLg4bTgqZwbPptTgrMJ+H0EfB7CAR+qoqAqHgIYKFYBjCIoATeAVmMDu8+ByPCGJCW2Y5PVs2T0DIpHIabG3DQOtZa4GpddaCHGqT+W2rp16zFnmgxW0c707NmzR+xk0U/X9YrSHNavXz+h6xRFOeY34Oyzzz7uc+zZs2fM9wsGg9x7773ce++9Y75GCCGmguP0Fwta5HWTdMEgq1kUDZOCYQEeVMVN20gExz6W+3g8loZPSw8qHszhMXN4bBvLH8JS45jhRvB46C3abD1gsbXTYEunyZt9bueKkTSFPSxoUFjY4AbQbXHviBsjV557Bi93nM055iujrtFAobfudI40LeJIw9noamzUc0diOw6v53fx+9SLvJp7k8FLjnjDLIosZEn8HBrUpFuQqfgI+L2oPvBZGhgpKOqgBCEQgmjzQAGhP3jMe2uW5k4nNAvE/DFaIi3Uh+pJBpOElKnvIiXEO1lFwfRdd93FZz/7Wa677rphhXabN2/mn/7pn7jvvvsquYUQQohxsG2HvGGR10yymhs85/VBnTZKxYJup40KigWP5jjubrORKbWuKxUPGnkcX6l4MNyI41HcYsFDJls6i2zttNifGWW0IG6bugUNPhbWKyxo8NEYOUawbxuEurcTOfw84UObUM3RixB/mXwf6qJLcALjDzzzVoFNqVfYmNpMj9k35FibOoN3Jc7jwpoziQQCqH4vqs+HFwuMPOgF3EbbIVDjkCilb6hRd1f6GGzHJmfkSOtpfPiIqTFmRmZSG6olHojjG0MxpBCi+ioKpp955hmampo4//zzede73sXcuXMBeOONN9i4cSMLFixg48aNbNy4sXyNx+PhW9/6VmWrFkIIAQx02shpJjnNbVNXMAY6bSgeL0G/l2hAoT6iDupbXAW2gU/P4tXT+LS+Uhu73JDiQT1Yw940bOmw2NJpsLWzOKRYcDCfB06r9ZV3nefXK8TVY6/XV+whcvh5IoeeJ9S5GZ95/EFZhxrOIXDu1Ywrx9GBXfkDbEy9yNbcq5iD5n8HPH4uSCxgWf0FnBpvcYNnL2AZYOSgmHcnrATCEKottbAr5T/7jv9jWLd00nqaglEg4o/QEm6hLlRHUk0S9ofH8yqEEJOgomD6O9/5Tvm/f/e73/G73/1uyPEtW7awZcuWIY9JMC2EEBPX32kjq5vkigbpolmeNKiZNgGfl1DARyLkp7EKxYJH85iFgeLBYk+peDCP4wHbH6Gg1vBaSmHLwVKxYGeO7Chzr4MKnFXnK6dtnFHnI6gcZ72ORbD3DcKHnydy6DmCqTeHnWLjoSvRRlf9AvRIE4te+cGQ42+euuq4r9NxQLcsCobOy9lXeSH3Eh3G4SHnNKt1XNVwIcsaziUSKKVlWDpoGTAK4PG5A1MijUMD6DEMNbMdm7yRJ62n8eAhFogxIzKDmmANSTUpu9BCnEAqCqZte/RfzQkhhKicZrr5zjnNJFs0yWgGBd2iYNiYto3q8xEK+KiNBFCVSQiwHBuvXioe1Prw6ulS8aCGrQTIEmZrtpGtXQ5bOi1e7dHRrZFbbYxWLHg8Xj1L+MgLbvrG4RdQ9OHdNzR/mLdq5nKkfj6ZhnOw1YGC1sOHXqDpyMsAHGpYRCY+vJanP3g2TAfdsug1+ni5sIWX8lsp2MWBteDhgpozWd50IfPjc9y6QFODfK8bQCt+d2R3vBaCpQJCf2TUDhxHMyyjvAsd8odoDDWW+0LLLrQQJ6aqTUAUQghRmf6x3P0DUjLFUqeNUs6zZTuESp02GmP+iY3lHgOPpQ0E0P2TB80cHtui2w7zcl+ELT1xtnRapWLBkQvRmyNDiwVnxUYuFhzGcQik97jpG4efI9j9Kp4RRnL3xWawv3Yu+2tPo1hzGiFfeMTn33nKKg6ldgCQbr8OoDya27AcNMsCx23ZvFffw/PZl3ktv2tIGkjSH+WqxvNZ1nA+dYG4Gzjnu8HU3WmD/jBE6kcd4X3sl+uUc6EB4oE4LZGW8i604pUf1UKcyOT/UCGEmCaO45DXrXLwnC4Y5DSLgum2qsPxlFvUJULV67QxwkIGigc1N//Za+bwaHkOagovp8K80ptkS5fDWxkb6P9nqPaEtxQ4uwF0Q3js6/WYRcKdLxM5/Bzhwy/gL3QOO8fyBemsO539tfPYlWzHDtUR8YUJeP0ca8/2cKSe21rdXtGfU2rwZt3gP6B4Cfi8eBSLzbmt/K77Rbr0viHXnhmbzfKmxVyYOA3F0sEsQLHDDZYDUYiPPsL7eEzbJK2lyZt5Qoq7C10bcoerRPyVDxUTQkwNCaaFEGKK2P1juXWrPBwlr1sUDAvNsPCWOm2E/Qq11ey0MeJizFLxYAqflsKnZ3D0HHtTJi+lQrzSG2BLt0p3uVhwaKPniRQLHs2f6yB86Dkih58j1LUFr20OO6cYaaWrYSH7a09lb6yZIhDxhYj6QviO0UPZsh0My0I3HZ7Pbscu7TO/ob3Bu+rPIRTwcVDv4KnuF9jUu23IhMKgN8Bl9eewvOE8ZvljoOfdXWh/CNQEJJPHHOF9LI7jkDfzZPQMlmOR8CdojLupHAk1gd87vucTQkw/CaaFEGKSmJZNTnf7O5c7begWRcOmYFgEfF6Cfh8xVaEhWuVOGyPwmEV8etpN4Sj2YOs53ujUeLnXyyu9Klt7wkcVCw4kOvQXCy4s7TqfPpZiwaPZBqGubUQOP0fk8PMEssNb19leP4X6BXQ3nM1bNfPoUEPkrDwePER9YRLekYsqTctGt2wMy+FIsZtH+n6Jx+PBA2SsXPm81el1rM9uIGsWhgTQADNDDVzTcD6XxU8lbFngeN1vQbj+uCO8j8e0zfKI75ASojZYS33QnU4YDUTH/XxCiBOHBNNCCFElumm7gbNukS0apIsGBd2maFjopk1AcYPnRMhPY6z6nTaGcWy8RrY0tjuFlu3llSMaW7ssXukLsKNXQbdH/jGQUD2lQkE3bWNu0juhnXJfobuU+/w84c6X8I7Qus4I1ZNvuoC+xvM4lJxDDzppM0vBKhK0DWqUBP7BecMOGHYpeDZtLMvBp3jw+7yEA16O6PvpMntGXE/eKpK3BgoKPXhYUnM619TM5yx/HZ7+AsJwZEwjvI+nvyOHZVvEAjHmJOZQG6wlGUzKLrQQJwkJpoUQYoKKhlVO2RhSLGhYmJaDWsp3rouo1RnLPQYeSy8XD6ZT3WzryLGly2RLt5edaR82Iw8GmXCx4NEci2DP66XOG88RTO0aforHS7H2THJNF5BtuoC+SBMpK0ufkSJrdGLaJhFfmMZAPV6PB9txu5oYpoNh2diOg+Lz4lc8xIIKIb+C6vcSULyoipe2uks4ZB7imZ5tx1zqTLWWL8xYSUO4blwjvI/HtE2yepasnkVVVJJqkoZQg7sL7Y9O/ocoIcSUqkowrWkaL774IkeOHOGSSy6hvr6+Gk8rhBAnjMGdNtzg2Z0wWNBNCoaN4zgEFbdNXSw4eZ02RlgYXjOPR0vT2dPLtoMpth7R2dIN+3M+wAtHBdAeBk0WbHAnC46nWPBoXj1D5PALbu/nIy/iG6F1nRmIk286n1zTheQbz8Pwh8iYOXqNFJnCPrJWHsWjEPWFUXx+N0WmaKFbbq62X/ES8HkIq37CAQVV8RBQfKg+L0enTudMnVMjrWzuewPNHrlN3+L4XP7s1D9ACdaOeYT38RTMAmktjWmbRP1R2uJt1IXqqFFr8PtkF1qIk1XFwfS3v/1t7rnnHlKpFABr1qxh2bJldHV1ccYZZ/D3f//33HLLLRUvVAghppJtOxQMd9c5p7udNvKaRd50d589lDptBBRqwr7JLRYctjgLj5Zm35Futh3oY/vhIlu6bLq0/qhyaE6v4oXTanzltI35DQqxQAXrdRwC6d1EDrnpG8GekVvXFROnkmu+kFzThWg1c8HjQ7N1UmaGvnwnGTNH0dFQUQk7MWzLS1az8Xh1Al4fAb+HeEglGPChKl5UxUfA5xl1x3hf/jBPHt7E010vo9mjTIop+eTC/w8l1nLcEd7HY9kWGSNDRsug+lQSaoL6UD1JNUk8EJddaCHeASoKph988EFuv/12PvzhD7N8+fIhQXN9fT3Lli3jJz/5iQTTQogTnmU75ULBnG6SKujk9YGx3L5Sp41oQKFusjttjMDU8rx5sJPtB/rYeijHti6LnDl4DQPbsyEFzqy0WPAoHrNA+MhLpfSN5/EXu4edYykh8o3nkm+6gFzTBVjBWsDd1c9aeTeINtKk9By6bREgiGLH8Pi8eBUvasBDyO9H9ftQFTeA9vuOvW7LsXi+9zVWH3qW7Zk9Q47FfSHS1sjjxV/M7ubKmtkT+2YARbNIWk+jmzrRQJRZsVnl4SoBX2UBuhDi7aWiYPof/uEfeO9738vDDz9Md/fwv1jPP/98vv3tb1dyCyGEmBSmZZcD57xu0pc3KBgWRd1Gsyz8Xi8hv4940E+jfwqKBY+S13Ree6uT7Qd62NaR47VuE33I5u/AepKDigXnV1AseDR/9gCRQ27wHOoeuXWdFptVCp4vpFB3JgwqqjNsk7SZpbPYR4+eIW3k8ToKCX+EuD9AwOclHHAD54DiJeAf20REgJSR5TdHXmDN4efoMTLlxz3AufFTWTHjctZ1vcQznZuJ+qP88Wl/TNfuLh7VHyVrZnm582WunHXluL4ftmOT0TNk9Ax+r5+EmqA27vaFll1oId65Kgqmd+7cyZ/92Z+Nery2tnbEIFsIIaaaZlrkS8Fzf4/n/uBZtyyCikLQ7yUZ9qMqUx889+Z1th/oYcdbPWzryLCr18B2Rj63OeIp5zovbPAxc6LFgkfxWAah7i2ED7mTBwO5jmHn2F4/hYazyZUCaDPSPPS4DX1aji49TVexj6ydB49JPBBmdqyBaCBA0O8WCgZ8PrzjTNXemdnP6kMb2dj7KqYz0Ps64guytHkJ17RdTVOiHRQ/c2ZdTMuux1k5ZyVBM8j+A/u59NxLeerwU6w6ZdWY71nehbZ0ov4oM6IzqA+5be1U3/gGtQghTj4VBdPJZJKurq5Rj2/fvp3m5uZRjwshxGQplvKd87o7ljtddKcKFg0L03aLBYN+H/VR/5R12ujnOA6H0kW2HUyz/a0etnekOZAeOcf36GLBhQ0+6isoFjyaUuhyCwcPlVrXDWob188INZBrvpB80wXk68/GUQYK9UzLQTctCrpJj5Ela2UoeHIYaKgBH6eGksTVIEFFQVW8E+qQYRgFNna9zOrOF3izcGTIsbZIKyvbruaStmWoRxUQxgNx/vCMPwRAM7XyYx8+48PHvaft2GT1LBk9g+JRiKtxdxdarSWuxvEeY2CMEOKdpaJgetWqVXzve9/jtttuG3Zs27Zt/Nu//ZvkSwshJp3j9BcLugNS0gWDrGZRNNxOGwCqMpC2MWWdNkos22FfT45tB9NsO5Bie0eKnvzwlAkAxQOn1XrLbeoqLhY8mm0R7H3NHZxy6HnU9O5hpzgeL4Xas8g3u7vPeqwNSjvfhmmjFU000+3xbHtMNE+evCeL4S/gqAaN/iB1oRoi/gnmDjsOmEW6852s7XyRp/peHZL77PV4Wdx0ASvmXMsZtWdU9bcImqWR0TMUzAIxf4zWaCt1wTpqgjUElcq6fQghTk4VBdNf/epXWbJkCQsWLOA973kPHo+Hhx56iB/84Af87Gc/o6WlhbvuuqtaaxVCCMDttJE3LPKa254u3T+W27TcThulYsGgfxo6bQCGZfPGkSzbDqbYfjDNjo40Od0a8dyQz+Gsei8LG/wsaFQ4o9aHWmGx4NG8WorIkRdLxYMv4DOyw84x1ST5xvPJNV9AvuFc7EAUHNBMG71ouX2eLQe/4iHg86L4DWw1j04WwykQ8Dk0BSJEldDEdm0tE8wCjp5nR3Y/T/Tt4Pn0m+Ux4ACJQIKrZ1/NVW1XURuqreRbMoTt2OSMHGk9jQ8fMTXGzMhMakO1JNSE7EILIY6pomC6tbWVF154gb/+67/mv/7rv3Achx//+MfEYjE+8pGP8Ld/+7fSc1oIUTHLdtxCQc0iq7mdNgrGQKcNxeMl6PcSDSjURyZ/LPfR8rrJjo6MGzx3pHn9cAbDGjnhORmwWVjvYUFjgAWNAU6tUrHgEI6DmtpFuDS2O9jzGh6Gr6eYnOfmPjdfiJaci+140U0LzbTRikVsBwI+tzAwGfYTCnjRPAXypMhbeXJWHsXro9kfJzje3GHHAVMDowBGkSI2G7K7Wd39EvsLnUNOnVczjxXtK7io5SIUb/VmjemWTlpPUzAKRPwRWsIt1IXqSKpJwv5w1e4jhDi5Vfy3UmNjI9///vf5/ve/T2dnJ7Zt09DQgHe8VSVCCFFiWLYbOOsmuVK+c8GwKOhuoBfwuSkbiZCfxukqFjyYZtvBFNs60uzpyo1aLNgaslhQBwsaFRY0hZgZ903Kej1GnnDnS+XR3Upx+DhtSwmTbzyPXNMF5JvOR/cn0U0bzbQppnU8HjcdRvX5iIUUoqqfkN8LXpOcnaPXTNGn58hbBSJKiKZgzfiC29LuM2YRTAMUlUO2xpN9W1jf+eKQMd9+r593tb6LFe0rOCV5SjW+RQA4OGT1LGk9jQcPsUCMGZEZ7i50IIHP6zv+kwghxCAVBdO33HILt956K0uWLAGgoaFhyPFNmzbxL//yL/zgBz+o5DZCiJOcbtn05HR3QIpmki4aFHSLgmFj2jaqz50sWBsJoCpTG+wMKRYsBdAHU8OL9AA8OJwSs1lYa7GwQWF+c5C66CTl2TqO27qutPsc6tqGxxmpdV1bKXi+gEziTIq2B9200TUbr6GhKj6CAS+1ET9hVXEH0fjd4SgZK0e3nqa7kCJt5rEci4Q/Qm2gcWwfCBwHrIHdZzxe8Iew1QQv24d48uAGXurZjjNo17w+VM81s69hadtS4oF41b5dZqmt35HcESKxCI2hRurD9dSoNbILLYSoSEXB9A9/+EOuvvrqcjB9tN27d5dzqIUQol9/p42uPjcofbUjjenVKZgWlu0QKnXaaIxNT7Hg3u5SsWBHmh0H0/TkRx5JrXjg9KTFOTUGC+rhrMYgkXAcJml302PphLq2lAenjNy6LkCh4RxyTRfQV38e2UCDm+9s2vg1m4DfSyToozGgEg74CPkVggEvgdL32bBNevUU3YU0PXqarFVA9fqp8UdRxzKMxLbc4NkslHef8YcgVEfO5+O3XS/z5FvrOZQ/POSyBfULWNG+gvMaz6vq7nDeyJPW0xhFt1vKzNhMWupaSKrJqqaMCCHeuSb1b5KDBw8SCoUm8xZCiLeBouHmOuc1i3TRIFM0KRom+ZxbCFfQbaJRN21DmeLg2bBsXj+ccXedO9K8eqxiQQXm1zqcXaNzTlLn9AYVJRjB8SXL3S6qTcl3uq3rDj9HuPNlvJY2/DWEm8rBc3d8Pprjx3IcAl4vASAR9BMLurvOQb+PYMCH/6g87ZxZoEfP0K2nSBlZipZO1B+mJViLz3OM4La8+1x0g2g8EAiBmoBEAgIR9mu9rH5rPU8feBpt0PpVn8oVM69geftyZsZmVuk7NjBcJa2lCSpBatQaov4oO9jB7Phs4qHq7XgLIcS4g+lf/OIX/OIXvyh//b3vfY+1a9cOO6+vr4+1a9dy4YUXVrZCIcTbiuM4FA27PBylv01dwXD7PON4CAXcThuRaJAOoDYSIBCcml3CcRULBj0srIOzawwWxQvMSYJXjWArSRyfO+lvlFTpibMtgj07yrnPanrPsFMcj49C7Vn0NZxPd+15pNQWwEPA70X1eYn6fURUpfR99hJUFEb6jGI7Nn1Glh4tTbeRJm3k8Hg8JJQIdYHE6Kkc5d3nIpg6KAFQQhCrgWAMAhEsX5Dnuzaz+tXVbO/ePuTy5kgzK9pXcMXMK6qaYlEuKCy1tZsVm0V9qJ7aYC2FXIEd7KjavYQQot+4f3pt376d//mf/wHA4/Hw7LPP8sILLww5x+PxEIlEuPzyy/nmN79ZnZUKIU5Ig3s89wfPOc0ib5pougWlNnVhv0JtWB3SuUK3J79wsDens60jXW5Tt6d79GLBlqiPBfUezqkxOSeRZ1ZIx/EHsZUwtj+J4/Ey8p51ZXxaivDhF9zd5yMv4jNyw84x1SSp+vPpqT2XzuRCbH/ELRZUfDQFfETV/p1nL0HFd8yNcs3S6TUydGkp+vQsWatAyKdSryYIDBoHPnQB2kD6huMBfxDUOCTi4I+AGgUlSEpP8Zt9T7Fm7xp6BhVBevBwbuO5rJizgoX1C6vWbs5xHApmgZSWAiAWGLmtXYHCsZ5GCCEmbNzB9B133MEdd9wBgNfr5YEHHuDGG2+s+sKEECem/uA5q5nkNKsUPJtDejyH/T6iAYW6o4LnqVhbR6pYStlIse1gmo5RiwWhvSbgThWs0VmULNLoS+F4wPa7u8/GZA3pcGzU1C4ih54jfPh5gr2vD2td5+Ahn5hLT935dNUsopA4FdWvEPB7afb7CKuKm+9cGs193Fs6DlmzQI+epktPkTJymLZJzB9mRqB+eHBrW27qhlko7T77QQlDNAlqzA2e/WHwuT9G3ux7k9V7VvP7g78vF/sBRPwRls5ayjWzr6Ep0lTxt668PMcmrafJalmCSpD6UD11oTrqgnVSUCiEmFIV/V7Vtu1qrUMIcYJyHIe87u4653SLVF4nr1vkS6O5faWd5/H2eDYtm60dGfZ2e+jryHD27NC486WPLhbcfjBFb37ksdyK18NpDSEWNPg5u9ZiYTxH3JPGaxaxlQC2P4yutMAkFaV5jTzhI5tLvZ9fQNF6h51jKhH6ahfRXXcumYbz8IVrURUvtaqPUEApDaLx4feN/QOKaVv0GVm69T569SxpI4fi9RH3Rwgd3Rva0kudN/Ju/oo/BIEYxOMQiEIg4j5Wur1hGTzz1tM8secJ3ux7c8hTtcXaWDlnJZfMuAR1vD2oj0G3dFJaiqJVHEjlCNdTE6zBP9quuhBCTCIpZRZCDHH0dMFU/3TBUo9nn8fNeY6pCg3R8Q9IMS2bn774Fo++0kFfwQB88PpOasJ7WbWwhQ+cN3PUoFo3bd44knHb1HW4kwXzoxUL+n2c2RxlQWOAs+vgzGiWkJ3Fa+bx2Ca2L4ylRDHDDZNTPOg4+LNvETlUal3XvQ2PM3ytuUgbPXXnkWk4H73+LFTVT1T1U+d3W9aFRsl3Pp6CpdGrZ+jS+0bvDW3bbt6zkR+0+xyCaLObwhGIuP/4hv6o6C50s3bvWp7a9xRpPV1+3Ovxsrh5MSvaV1R1zLfjOOTNPCkthRcvMTVGW7yNWtVN5ZjqPuNCCDFYxcH0448/zje/+U1efPFFUqkUjjM8GdGyJiPLUAhRDf3Bc64cPOvk9YHpgn6vl6DfRzzoJ+j3VhS4mJbN1x7bwfN7h+/K9uYN/uPZfbx2KMOdq85E8XnJaSY7DvX3d07zxpFjFAuG/JzVGmdBU5CFdR7mRooEjBResxOvkcfRfdj+CGaooVw8WG0eS3Nb15UCaP9R7d8ALG+AVM1C0o0XUGi6EF+imaiq0BzwElJ8qIqPic68chyHtFnqDa2N0hvaMqCYcnegHae0+xyFeGIgePaHy7vPg597R88OVu9ZzXOHnsN2Bn4zmQgkuGr2VVzddnVVx3xbtkVGz5DV3VSOxlAjdaE6aoO1ksohhDhhVBRM/+xnP+NDH/oQ8+fP58Mf/jDf/e53ufHGG3Ech1/84hfMmzePG264oUpLFUJUg10azZ3TLHK6SV9ep6BbFA2bgmFN6nTBn7741oiB9GDP7+3lrx55BcNyjl0smAhyZkuc+c1RFjb4mBUqomgpfHoPHiOHN61h+4JuAB2sgWO1d6uAkj/idt449ByhrldGbF1XDDWRanAHpzjN5xAKh0n4fTT7faiKt+KNcbc3dIZufYTe0B7F3X3Wetwiwv7d50gjBEu7z/4oKCP/OCiaRTYc2MCTe55kX2bfkGPzkvNYMWcFS5qX4K/iBxTN0khpKTRTIx6I0xZvoz5UTzKYlFQOIcQJp6Jg+utf/zqLFy9mw4YN9Pb28t3vfpdbbrmFZcuWsWfPHi666CLmzJlTrbUKISbAKgfPbgCdKrjBc0G30Sx35zkUKAXPsckbzW1aNo++MnzIyEheO5wd8rUHaK+PML8lzlmtceY3qjT6i3j1DL7iAXxGDm8+j4ODrYSxgknMySoetE1CPTsIl3af1aMCTADb4yNbcxb55guxZixGqZ1NKOCnZtBwlGoYtTe0P47P1CDfC44NStANmmMtA4WDgciw3efBDuUO8eSeJ1m/fz15M19+vH/M9/L25ZyaPLVqr8VxHHJGjrSexouXuBqnPd5ObbCWeCAuqRxCiBNWRcH09u3b+frXv47P50Mp7WoYhlv8097ezm233cbf/d3fcfPNN1e+UiHEmFi24w5IKQXQfXmDgjGQ86wqbtpGMuxHrfLO87Fs70iXcqTHpq02zOL2Wua3xjmjOUrcW8SnZ/BqnfjyKbx6Dq9VxPH5sZQwZqR50ooHfcVewkdedLtvHNmMzxzeus5Qa8g1XYA5YwnMPA81HKfe70OpcjeTEXtDAwmPjzrHhyefdnOc/SGINAzqvBFxd6WP89wvd77Mk3ue5KUjLw0Z810XrGN5+3KWzlpKXK3umO+MniFn5AgpofKY79pgLSFFhn4JIU58Ff3kCYfDBALueNlkMomqqnR0DOw8NTU1sXv37spWKIQ4JtOyyfV32xhUMFg0LDTTIqi47dNqIwFUZXJSHUZiOw77e/JsPZBiy8E0m/cdO73jaDdd2MqlM/349DS+9F68en/xoIGthLADUUxlsooHbdS+ne7Y7kPPEep7Y/gpeCjWnIbeugSnbQmBxtOI+/0Tznc+nmG9oY0MIceh3vEQcDzg90EgDNEmd3CKv5T7PIZgPmfk+O3+3/Lknic5lD805Nj8uvmsnLOy6mO+i2aRtJ5GN/XyLnRdqE7GfAsh3nYq+hvr9NNPZ/v2gclWixYt4sc//jE33XQTpmny8MMP09bWVvEihRADDMsmr1lkdZNc0SBVNCjoNgXdwrBtVJ+PUMA3LcHznq4cWw+m2HogzdaDKTJF8/gXjqKusIdQV8EtHvR6sZUwZqgOxxeo4qoHeI0c4SObCXVsInLkBfx6atg5lj+K3nI+9syL8M5eTDBaR2gSN/aH9IbWekkVezH1HDG8zPBH8PrDbsAcHNS67ji7z4PtT+9n9d7VPP3W1Iz5dhyHrJElradRUIircerjbls7SeUQQrxdVRRM/8Ef/AHf/va3+cY3voGqqtx55528973vJZlM4vF4yOVy/OAHP6jWWoV4RzIsu9zjOVs0SBX60zZsDMsm6PcR8vuoj6oExjC8o1os22FXZ7YcPG/rSJHTRu7ckwj5Oaslxkv7UxSM43X3cagNOJwdy2D7IpjB5OQUDzoOgfQ+1EPPud03+l7FO0LrOiM5B2vGEryzLybQOp/QFOyalntDFzrpLXSTLvag2BBXk4RiM9zAWY2VigcjY9p97mfZFs8ffp7Ve6ZuzLdpm6T1NDk9R9gfpjncXB7zHZys3HYhhJgiFf1U+NznPsfnPve58tfvfve7Wb9+PY888gg+n4/rrruOpUuXVrxIId5JdLM/eDbJFk3SRcMtGDQsTMspjYz20Rjz469iMdvxmJbNzs5sedd5+8H0qIFxbTjAghlxFsxIsKA1wcyaEB6Ph588t4//eHZ4wd5QHq4/TYVYkqqPhTKK+A+/TPjwc8Q7XyBY7Bx2iuNTMVvOw9N+MUrbRfijjUxV/4iCWaQ3f4Su3GH6ir3kHZOImqQpPgclXDvQuk4Z/+58Skvxm32/GX3Md/sKFjZUb8w3uKkcKS2FaZvEA3HmJOZIKocQ4qRT9b/NLrvsMi677LLy15lMhlgsVu3bCHHS0EzLTdvQSsGzZpRa1VmYtkNQcXeepzp4Niyb1w9n2HowzdYDKV49lKZojBze1kdVN3huTbBwRoKWRHDYr+w9Rp6PnO5j536FZw+auCP2hu+oLmlV+MOzqjMxz7bBSR8kdOg5Yp3Pk+jdhs/Wh58Xa4W2i/HOvghP89n4lepN7Dsex9RJ5zvpLhyhu9hLGhvLp5JItlEbbsATiLm50BNMxp6OMd9ZI0tGy6B4FRJqgvqQm8oR88cklUMIcdKZtK2BI0eOcN999/Hd736X3t7xFR4JcTLTTMvt8ayZZIoG6aJJ0XB3nu3+4DngDkmZyuBZMy1ePzQ4eM6gWyMHz01xlQWtCXfneUaCplFa6nksDZ/Wh6/Qi0/rwadn+Juzdf49Eed/d/voLQ6cWxP08N55Af7wzMCEO2CYloOuawS6thHrfIHarhcJ598adp7jVaDlHDxtF8Gsi/AmZ03ofhPiOGAUMIopegtddJsFejDJAoF4CzXhJtRwDVQQ0BuWwTMdz0zpmG/TNklrafJGnrA/TEukxU3lCNVW9T5CCHGimVAwfeTIEX70ox/x5ptvUlNTw/vf/37OP/98AA4cOMDXvvY1fvjDH1IsFrnyyiuruV4h3naKpemCed0iXTDIaCZF3SJvWDiOU855TgT9o47Rnqx1vXoow9YDKbYeTPHaoQzmKBNSWhPBcuC8oDVBQ+wYwZFt4NNSKFofvkI3Xj2D1yq4BYTBGhwlyI1J+NBCh80dOjsP55nbFObclvEH0YZpo5k2dq6b2JEXaOx5kUTvKyiD+iKXheuhbQm0XYSn9Xx3t3eq2CboWdBz5LQMPVh0OwYpr4diKEI03EhLpBHfOIoHRzLVY74BCmaBlJbCsi0SgQSNiUZ3wIqarGr3DyGEOFGNO5h+9dVXufzyy+nu7i6PDv/7v/97/v3f/x2Px8MnP/lJisUi73//+/nLv/zLcpAtxDtFf/Cc0yzSRYOsZlLQTQqlFIn+tI1kOICvyj2IjyWvm+zoGAie3ziSxRoleJ5VEyoHzvNb49RFj7Oz6Nj4tDQ+rRdfsQefnsJr5LF9KnYghqk0EOx9jdaNdw+5bI7joJs2gR4vnlcHvheHz/1/aLWnH3UP0Ewb3bTRDINg3xvU925mdveLRNJDd18B8Hih8SxouwhmLYG6uZPTRm8kjgNmAfQc6HlsoM8LPbZJd1Al7Vh4/DUkIo3UKaGKgtvpGPNtOzZZPUtGz+D3+kmqSRpCDW4qR0DS+oQQ7yzjDqa/+MUvks1muf/++7nsssvYvXs3n/3sZ7n99ttJpVK85z3v4W//9m855ZRTJmO9QpxwCrpVnjCYLhhkNYuC4aZu4HjcneeAQk3YN6XBc1Yz2X4wXeq2keLNzuyoo7nb68LltI35rXGS4TEUuDkOXiODT+tDKXTj09N49SyO14cViGEGa92AtiS+98kRpwWO1MshsXc1h5Kno1sWmmGjmRYePUdD38u09G4m0fkiygit61DjMGuxG0DPvBCCieO/jmqxzVLwnCuN7Q6hKX56Q3G6sOhzTLIECKkR6gNxAhW2+JuOMd+GZZDW3VSOaCBKa7S13JWj0tcjhBBvV+MOpv/v//6PT3/609x6660AnHXWWSiKwrXXXssf//Ef8+CDD1Z9kUKcKBzHoWjYZLWB4DmnWRRMk4Ju4cFDKOAj7FeoDatTGjynCwbbOtLlnefdnTlGip09wJyGyEDw3BInHhp7wOUx8ihaL75CDz6tD6+RAcAOxNCjrTDKr/ZTc64jsffJMd1jV8M1ZNMFarS3mNG9mUT3C4R6duBxRsjhrpsLsy5yA+jGM0e9f9U5DpjFgQAaD6gRnGAN2UCIHo9Fl6WRsjVM2yEWSDIjEK24W8ZUj/kGyBt50noay3FTOVoiLeWuHNXs/iGEEG9H4w6mu7u7Ofvss4c8ds455wBu32khTiaO41Aw3E4bec1ypwtqFnnTzXv2eDyE/dMTPPfldbYdHAie93SPkCeM24L41IZoOW3jrNY4UXV8/+t7zKJbSFjsdVM59Awe28AKRDHDTThj2P3UkqeSbbmIaMczxzwvlzydU7p+Q2T7Cyj5I8NPUIIw84KB9I1Iw7heS0VsE/R8afe56K4lEIFkPWYwTp/HodvS6DUypLU0itcdTFLpWOzpGPNtOzYZPUNGz6D6VJJqksZQIzXBGqKBaNXuI4QQb3fjDqZt28bvH/qDs//raFT+ghVvb47jkC+nbVikCrobPBsWmmHh9XgI+X1EAwr1ERXvFLb56snp5cB564EU+3sLI57n83qY1xgt7zyf2RIjHJhArXF/IWGxF1+xv5BQw/YPFBKOh2k6vDXnQ5xxnGA60vca9L029MHELDdwbrsIWs6GqUwpKO8+Z91ufoEIhGogXAtqnILPT6+t0VXspk/rI2/kiQQiNEWaKu6lPB1jvnVLJ62nKRgFYoEYM6MzqQvVUResq2rKiBBCnCwm9Df9888/TzA48IM0k8ng8XjYsGEDfX19w85/3/veN+EFCjGZbNvdec5pJtn+tI3SgJSiYaF4vAT9XmKqQkN0aoPnI5niwM7zgRQHU8URz1O8Hk5vjpWD5zOaYwT9EwyubAufni61s+vCZ2Tw6nlspb+QsHHMRXz9nTY0053UqHg9BOJzSDctIX742WNf7PVD66KB3edE9UZaH5dtgZF3g2ej6LaoC0Qh0eYG0cEETiBK2irQXeymO/MWaS2NhZsCURusrbhbxlSP+QY3lSOlpXBwiAfizIjMoC5UR0JNSCqHEEIcw4SC6fvuu4/77rtv2OP33HPPsMc8Hg+WdbzxwUJMDdt2yJe7bZj0FXTyuk1RtyiabvAcCviIq/4pDZ4dx+FwRmPrgRRbSsHzkYw24rkBn5czmmOltI04pzXHUJUKdib7CwmLvSjFQYWEPj+WP4YZH1pIOJr+4LloWhimjV/xoio+4kGFiOojQoHogd+imj2jP0n75XDaCphxLlRxnPVxDc59tm1Qo6AmocYNnlHjEIhgOCa9xV66U2/SU+xxUyAUlZpQTcW9lC3b4oXDL/DEniembMy37dik9TRZLUtQCVIXqqM+VE9dsK6q9xFCiJPZuIPpdevWTcY6hJgUtu2UUzZyuklfXqdgDATPfq+XkN8dkNLoH3nwyGRwHIeDfcVyysbWg2m6siMHz0G/lzOa4wPBc1OsKsNcvEautAM9UiHhjGMX8jmgW6WdZ8PCsBwCihdV8ZII+okFFYIBH0GvRbhjE76tT8G+Z8A2Rn/O9stg+Zcrfl1jUt59zoFRcMdz+6MQnwnhGlAToMbKY7tzRo6e7Ft0F7pJaSmKZrHczaLSFIu0luapfU9N6ZjvciqHWSDmjzEzNrPclUNSOYQQYnzGHUxfccUVk7EOIarCKgXP/eO5UwWdgm5R0G00ayB4ToT8NCpTGzzv7y2Uc563HUjTkx8+1hog5PdxVmu8lLYRZ25DtGrDXAYKCXtQim4A7bFNrEAUI9LkpleM+AJKwXOpTZ1pO/h9bvCcDPuJqn5CAR/BgJeQz4vv8MuwZQ3s/m2p08Ug4XqYcR68cVRnj/NursprHJWplQan5MGxwB9xd5yTs93d52DcTecovSdsx6av2ENPoYfuYjdpPY0HDwk1QV2oruL3zrHGfF8560qWz15e1THfjuOQN91UDg8e4mqcmRE3HzquxiWVQwghJmjSxokLMRWs8s5zKW0jb7j5zrqbbhDwuWkbybAfdQqDZ9tx2NudHwieD6ZJFUbelY2oPua3uIHzgtYEpzREq9sVxDZQin3lgSpePYPXLGIHIpihWpyR0hNKA1LcISlu8BzweQn4vSQjpeDZ7yMU8BJSFLxeoGcXbFsDO9dCrnPo8/kjMOdymHcNtJzj7nobedizAQBj1iX46+dV7zUDOPZA6oZRAJ/fDZbjreXcZ9R4efe5n27p9BR76Cp0kdJSZPQMIX+I+lB9xb2U+8d8r96zmp19O4ccm6wx35ZtkdEzZHU3laMh1FDehZZUDiGEqJwE0+JtxbRscnr/eO6B4LmgW+4kPcVbmi44tcGzZTvs7sqV0za2H0yT0cwRz40FlfKu84LWBLPrItVvqWdb+PTUQCGhnnUnEvqD7kCV8NBCQscBzXQHpOimjeW4wbPq91ITCRBVFUIBd3JjUPG5wTNA9ghsfwp2rnGD6cG8ils8OO8aaLvYLeQb7Lw/LgfT2tk3UZXkAlMbCKAdy827VmOQbBuU+xxl4AX0v36HrJEdEkSbtkksEGNGbEbFu7bdhW7W7lvLb/b+htSgYTOTOeZbt3RSWgrN0oj6o7TF26gL1VETrME/2m8ghBBCjJsE0+KEZlp2Od85WzRIFQ0Kuu0Gz5ZFUHGDvNpIoLIivHGybIc3O7PlgsEdHWly+siFtsmwv9xpY0FrnFm14ckpbHQcvKVOHEqhG59xVCFhaKCQ0HFAMwamC9oOBBQvQcVLLBggGvQT8rsfTIJ+39AGHlrGTd94Yy10vAxHj4ZpXghzr4ZTrjz2BML6eeSvuJst+/o4s3aCQ0Yce2jus1dxc59jLeXWdQTjwwP5EtM26dP66C5001vsJaNn8Hl9VekN7TgOr/a8yhN7npiyMd+O45AzcqT1NF68xNW4G0QH64gH4lP24VIIId5JJJgWJxTDst2UDd0iWzRIFw3ypZxn07ZRFXd3tD6qElCmLsfTsGx2HsmW0zZ2dGQoGCMHz3WRQHlAyoIZcWYkQ5MaxHiNnDtMpegWEvqMLI7Hg+WPYsZmgMeHbYNuWGimQdG0cBxQ/V6CPh/xkJ+oqrj5zqWd52HLtXTY9yy8sQb2bRxeSJic7e5Az73KDWTHyGy7hEPpQ5w5nhds6QO7z5YJgbDb+zk+c1Duc2zY7vNgBbNAb7GXrkLXkN7QjZHGintDH3fMd/sKlrRUd8y3ZVuk9TQ5I0dICdEYaqQ+7KZyVPqhQAghxLFJMC2mlW7a5HW3x3O2aJIuGm7BoGFjWjaq3w2eG2P+qnSwGCvDsnntUKactvHqoQyaOcIoa6Axpg6kbcxI0BwPTvoO4LEKCfVIEzZ+N22jYKMZBg5uVxDV5xZfRgalbaiKd+TW0Y4Nh7a4AfSu9W7x3mDhOjj1KjeIrps75v7T4+bY7q5zfwDt87u7z5EmiNS5aRxqHPzHHiLjOA5pPV1O5ah2b+hDuUOs2buG9fvXkzMGii4nc8x30SyS1tPopk4sEKMt1kZ9qJ6aYE3FHwqEEEKMzYT/ts3n81x22WX8f//f/8ef/MmfVHNN4iSmm3Z5QEq2aJLWDIqlISmm5RCcpuC5aFi8djhTHpDy2uEMhuWMeG5LIjgk57kxPr5JgBPlsfRBI737Cwk1rEAEXa2laCtu0WDWAizUUp/nmrAbPPd/b0cNnvv17HKLCHc+BdnDQ4/5wzDnMph7DbSee+z2eZWwjIGpg5bh3jcQgVgrhJIDAfQxdp/7Gbbh9oYudFe9N7Tt2LzS+Qqr96yesjHf/akcKT2FD5/bXSReR22wVlI5hBBiGkw4mA6Hw+zevVv+4hbHpJmWm/OsmWSKBhnNLO08W1i2Q0hxc3KnOngu6BY7DqXLPZ7fOJzBtEcOnmckQ+V85wUzEtRHq9dp4bhGLCTMYXiD5LxR8kotmm7jMRyCik0w4KXW7yesKqVuG27wfFzZI/Dmb9xCwu43hx7z+EqFhFfD7HfBOMeIj4mD27Kuv3WdV3GD50ijuwMejLsBtH/sKQt5I+9OKJyE3tB5I8/6/eundMy3aZuk9TR5I09ICdEcbi535QhOxp+JEEKIMano94ArV65k9erV3HrrrdVaj3ibKxoW+VK3jXTBDZ6LukXBtLDtgZ3nRNBftd7JY5HXTbYfTJfSNtLs7MxijRI8t9WGB4Ln1gQ1kcraoY2bY+PV0yhaH76CO5HQ0TJojkKKCHlPI148qF4fIcVLXSRAJKgQ8ituKsdYc8n1LOz6PzeAPvgSwwoJmxa4hYSnXgnBZHVfI5Ra1+Xd/04fgEjI7bQRazlq93nsAant2PRpfZPWG3o6xnz3p3IYlkEsEKM93k5dqI6kmpRUDiGEOAFU9DfxF7/4RT74wQ/yR3/0R9x6663MmTOHUGj4zlFtbfWq1cWJpVgezW0N2nk2KRhufrGqeAn7FRKhqQ2es0WTbR2l6YIH0uzqyjJS7OwB2usj5V3n+a0JEqHpaRvm1bOlNI5uKPRh5lMULcj7IjiBBgL+gNuqzu8jrCqE/W7RYGA831fLgP39hYS/d78eLDGrVEh4tduPudocx81/1lJgFMEp9Tmunwc1jW4AHRh/7+PJ7A3dP+Z79Z7VbOveNuTYZI75zhk50loaxaOQCCaoC9ZRG6ol5o/JbwSFEOIEUlEwPX/+fAC2b9/Oww8/POp5ljVy1wPx9lM03MmCec0iXTTIFE2KhlnqbOEhqPgIBRRqwr7q904+hlTBYNug0dx7unJH77MC4PXAKfXRcrHgWS1xYsHp67nrMQv4tD7IdWHmejAKKQzThEAMb6gJVQ3QHFAIB3yE/G7RoN83zu+rY8PhrQOFhFpm6PFQzUAhYf1pk1NIaGpQTLl50ErITduoPRWsIOx6ye0GEhtfXvFk94ZOa2l+s/83rNmzhu5id/nxyRzzbdomac1N5Qj7w7REWsoFhZLKIYQQJ6aKgum77rpLdkhOYo7jUDRsN3jW3bSNrGZRMNy8Zw8ed4S0X6EmrE5p8Nyb18uB89YDKfb15Ec8z+uBeY2xcrHgmS1xIur0/mrcY+lYuR7MXDd2rhunmCLgGHhDUQKJJpLhMOGAm/McDPjwT/T72rvH7QW9c80IhYQhaL/czYNuPdfNUa42ywAtDVrWTdVQ424BYaTeDeD9QUinx/20k9kbGqZ+zDe4rfrSWhrLttxUjoSbylGj1lQ171oIIUT1VfQT9J577qnSMsSJwHEcCsZAwWC6YJDTLPKmiaZb4PEQ8vsI+xVqpzh47s5qbBkUPB/oK4x4nuL1MK8pVk7bOLM5Tigw/cGIpmuY2R6sfC9O7gghO08IHSUYIdjURCgcc/PJAz6USr6vuS548yk3iO5+Y+gxjxdmLXY7cbRfMjmFhLYFegaKGTelQ427u879AbQanfBTT2Zv6OkY8207NlkjS0bLoHgVEmqiXFAYC8Sqdh8hhBCTq6rbUYWCG+CMlDctTjz9wXO2lPOcKujkNbdYsKhbeEvBczSgUDfFwfORdLFcLLj1YIqOVHHE8/w+D6c3xdyCwRkJTm9yg9Lp5DgOmmlT0A3MfB/ke4mYvUScHCGnQDgSIhBpRI3ECAWUyoJncFMndpcKCQ9sZlghYeNZbgrHKUvdwr5qcxy3mFHLgKm7AXOsZSCADiYmnDoy2b2hp2PMt2EZ5a4c/d1F+lM5qhmsCyGEmBoVB9P79u3j7rvv5rHHHqOrqwuA+vp6rrvuOu6++25mz55d8SJFdTiOU+60kdMtUnmdvG6RNyyKhoVvUPBcH1EnZ+T1KOs6lC6WiwW3HkxxJKONeG5A8XJmc6w8YfC0ptiUTkIcyUDwbFHQTRw9Q8TKELf7CNsZYp4iasRPIJokFG7HV42x55YBbz3n5kHv/Z07FXCwxCy3iHDuVZCobneJMiPvBtB63u0DHaqFSIMbQIeSFfWgnsze0NMx5hvcdnppPY3lWCT8CVqSLdQGa0mqSUnlEEKIt7GKgulXX32VSy+9lL6+Pq655hrOPPPM8uM/+tGP+NWvfsWGDRs4/fTTq7JYMT627ZAvd9swSRX6R3NbaKbtBs8BHzFVoSE6tcHzgb5COXDeeiBFd04f8dyQ38eZLbHSkJQEcxujU9qPeiT9ueRFw+2XrVs2EY9O1MlQb/aR8GYJO3nUgIMaqcUXmlGdnGTHcQsJd66FN9e5+ciDhWrg1GVuGkfD6ZNXSKhl3J1oX8AtJEzOdgPpUA0olXXOmMze0NMx5tt2bLJ6lrSeJuANkFSTNIQaqA3WEg1MPOVFCCHEiaOin/B/9Vd/hdfrZfPmzSxcuHDIsa1bt3LVVVfxV3/1V/z85z+vaJFifPoKBm92Zt20Dd2mqFsUTQu/10vQ7yMe9BP0e6eseNRxHPb15Mv5ztsOpujNGyOeGw74OKslzsJS2sapDdEpTS8Zie04FA2LouHuPpuOTVDxEfaZtCgZapQsETNFyMmjBgy8wRioM0Cp0q/s+/a6O9A7n4JMx9BjShDaL3MLCWecPzmFhLbpBtDFtDvApb8TR7gOwrXjGqQympSe4kjvkSG9oeNqvCq9oY815vvi1otZ0b6i6mO+DcsgpacoGAW3u0h0RjkfutJWfUIIIU4sFf3k/e1vf8tf/MVfDAukARYsWMBnPvMZvvnNb1ZyCzEBe7ty6AfTBHxed0BKyE+jok5Z8Gw7Dnu7c2w5MBA8p4vmiOdGVYX5pWLBBa0J5tRHTpjguTyp0RkYNtMc85H0asTsbsJmH6qZxWsW3Gl9al1VAksA8t2wszSRsOv1occ8Xph5oZsHPfuS6t1zMMd2u3BoabeoUI1Dsm0ggA5EK975NiyDroKbGrarbxcFX6FqvaGnY8w3DKRy2I5NPBBnRmQGdaE6Emqiqi30hBBCnDgqCqYNwzhmsWE4HMYwRt6BFJNrdm14yoJny3bY3ZUrtapLse1gmqw2cvCcCPnd4LmUtjG7Ljxl6SWjsWwHzXSD57xh4TgOwYCPkOIjGfGTCCpEnSwRK0XI6MGjZdydWiUIwRj4m6qTUqHnYc/T7i70wRfdgHawhjPdAPrUpW5KRbU5jpsHXUyDWXQHqEQa3ULCcC2oCfBWHhAWzALdhW66Cl10p9z+zV6Ptyq9oY835ntF+wrObzq/qjnKtmOT0TNktFJet1rjpnKEaon4I1W7jxBCiBNTRcH0ueeey/e//30++clPkkgkhhxLp9M88MADnHfeeRUtUIyf1+OZ1EDatGze7MyV8523d6TJ6yMP5qkJ+8u7zgtmJJhVE5r23uSW7ZTznQuGBeXgWaE2EiAe8hMJ+Ih48oTMFJ5clxtgaumBfsk1s90d4krZJuzf5OZB7/kdWEcVXsZnuIWE866ZvEJCs+i+Pj3n7nIHExCZ6wbQwST4Kk8dcRyHjJEpB9Epze2cEVbCZMkS8UcqCqSPNeb78pmXs7x9ObNisyp+HYPplk5aT1MwC8T8MWbGZpZTOaqZdy2EEOLEVtFPyS996UusXLmSM844g49//OOcdtppALz22ms89NBDdHd388///M9VWaiYPoZl88aRbKnbRoodh9IUDXvEc+ujgXLgvKA1QWsyeEIEz4VS2kbRsMDTn7ahUB8tBc+qQiSgEHQKeIq9kOuBfE9pWmApzSFRxULCI9tLEwnXuZMBBwsm3ULCeVe7u9GT8f2z9FIedAYUf+n1zXTTOEI1Vcv3th273Bu6t9hLSksRUALUheoI+AJouZG7tozpJRxnzPfy2cu5ctaVVR3z7TgOeTNPSkvhwUMsEGNmZCZ1oTrialxSOYQQ4h2ooshg2bJlPPbYY/zlX/4lf/u3fzvk2KJFi/jxj3/M0qVLK1qgmHq6afPa4Uw5bePVQxl0c+TguTGmsmBGgoWlALopPnW52aMxLZuiYZM3TLTSukN+L2FVoTGuEg/6iag+Iqri9qQ2NSj0Qm93KYBOuf2Sg3GINbpdK6qhb5+7A/3GWsgcHHpMCUL7pW4njpmTWUhYyoPG46Zx1J4CkVIAHaheSoJhG/QUeugsdNKn9ZHTc4QDYZqjzRUPWJmOMd+WbZExMmS1LEElSEOogbpQHXXBuqoG60IIId5+JvxTzTAMduzYwRlnnMHmzZs5dOgQe/fuBWD27Nk0NzdXbZFifHZ3FzjfslHG2EKuaFi8dijDllLaxuuHMxiWM+K5LYngoLSNOI2xSZiiN06mZQ/sPJsWXq+HkOIGy81xhXjITzgwKHgGsEwo9EBfL+Q63QDTKBUShqrToQJwg/M3S4WEna8NPebxuh045l3jBtKTEZQ5tpu+oaXd3tRqzE0dKU8kjFd153twPnRKS1G0isQDcVpjrRUHt8cb833N7GtojlT37x3d0klpKTRLI+qPMis2i/qwO2DF75VUDiGEEBUE016vl/PPP59/+Id/4M/+7M9obm6WAPoE8eCzB3js0HOsWtjCB86bOSyozusmOzoy5U4bbxzJYtojB88za0KD0jbi1EWnf0KbYdnllI2CaeHzlobNhBRa1CCxYCltQ/WhDh6QYttucFvodcduF1Nuv2R/0A0qo1UqJDTysGeDm8Zx4IURCgnPcPOgT13qplVMBj1/1AeEOog2DkwkrPKQkIw+NB/axiapJqkP1x/zup2pnRwxjzCLkfOZjzfme0X7Ci6deWlVJwc6jkPOyJHW03jxElfjtMXbqAvWEQ/Ep/03L0IIIU4sEw6mfT4fs2fPRtMmnvMoJk9v3uA/nt3Ha4cy/L+r5/H6oWy5YPDNziyjxM6014WZXwqe57fGqQlPf09cw7LJl4LnomGh+NzgORZSmBEMEQ26+c4RVRk+DdFx3KBycACtZQYKCSN11SskfOv5UiHhBreob7BYq5sDPfdqt8XcZDA197Vq2VKnkTjUzHELCUM1UOWiONux6dP66C64Q1bSehq/zz/mKYVZPcvXNn8NHDjHOAeVgWumY8y3ZVtk9AxZ3U3laAw1UheqozZYK6kcQgghRlVR8uKf/umf8p3vfIdPfOIT1NZWd/SuqI7n9/Zy8wObGCl29gBz6iPurvOMBPNb4sRD0/+ra920y502ioaF3+clFPASDynMqg0RURWiqhs8jzoNUc+5u9D5HjedQ8sAttverZqFhJ073B3oN9dBsW/ocTVeKiS8BhrPmpxCQtssdRoZ9AGhrqWUB13r7rpXWX8+dFehiz6tj4yeIeKP0BRpGlc+9OBR3i90vcDViat5tedVVu9ZzaZDm6ZszLdmaW4qh6kRD7i70PWhepLBpKRyCCGEOK6KIgrLslBVlVNPPZUPfOADtLe3D+s77fF4+OxnP1vRIkVl+gNprwdObYiWc57PaokTDU5Cods4aebAdEHNcic1hgI+kmGFRDBEJOgnGlAIq75jjxI3iu4OdL67FECnwTTcXtCxpuoVEqbeKk0kXAvpA0OP+VRov8QNoGdeOEmFhJabnlJMuwG9Whrp3R9Aq5MzprpoFukudtOVd4PoolkkrsbH3B/6YPYg33x+YIhTr9Zb/u8fv/5jfvT6jzDsoX3pJ2vMd38qR0pP4cNHQk3QHm+nNlgrqRxCCCHGpaKf9J/73OfK//3AAw+MeI4E0yeGP764nVULmwkHpjd4dhwHzbTLfZ510yaguMFzTcRPMhwmXErZiAR8xy+itAwo9LnBc38/6P6JhOE6N92hGgq97u7zG2vc3ejB+gsJ517tjvYOTEYhoQNGrvT6dDdgjjZDtN4NoIOJydn5ZuR86ISaGPeo75eOvMRb2bdGPKbb+pCvT02cyi0Lb6n6mG/TNsnoGXJGjpASoinURH3Y7Q0dUiZhkqQQQoiTXkWR1e7du6u1DjHJWpPBaQmk+4Pn/m4bumUTVHwEA17qogESoUC5TV0koIxtlLhtubnPhV7IHnFTHPoLCYPx6k0kNApu/vPOtfDWc8MLCetPc1vZzV02eYWERsHdYdfzbrePYA1EG9wAOpSseiFhP9uxSWkpugpd9BR6SOmpceVDj2R5+3Je632NZzuePeZ55zedz2fP/2zFLfQGK5pF0noa3dSJq3Ha4+3UhepIqsmq3kcIIcQ7z4R/ihQKBb71rW+xdOlS3vOe91RzTWISxNSpCRgcx6FoDOw8G3YpePZ7qY+5wXO01GkjPNbg2X1iN6jM97hpHMU+N4j2+atfSHjgBbcX9J6nRygkbHYD6HlXu6kVk8HUBj4g+AKlgSptgwaqTF5RqGEb9BZ76cx3VpQPfTTTNnm241k6c53HPO+ilov4zLmfqUqA6zgOWSNLWkujeBQSwQR18TpqQ7XE/DFJ5RBCCFEVE/6JFQqF+Nd//VfOOuusaq5HTIKasJ8zW+KT8ty246AZAzvPptO/8+yjITQQPIcDPiIBBe9Yg+d+WrbUiaMbir2lQkJnYGJf1QoJX3N7Qb/5G/d+g6lxt43d3Gugaf7kFRJqmdJAFV9poMqpAwH0ZKSODDJSPnRMjY05H3o0WT3LU/ueYvWe1fQUe457/i0Lbqk4kDZtk7SeJq/nCflDtERayl05gtVK+xFCCCFKKvqpdf7557N169ZqrUVMkusWtox5gMvx2I7j7jrrbtFgf/AcCvhoTqjEQ343eFYVwn7f+INnKBUS9rgBdH8hoWWWCgmbq9fiLX3A3YHeucYtKhzMF4DZgwoJq9xWDnDTRvonEtpWaaDKTIg0lAaqxCYtD7pfVs+6QXShi75i34TzoY92IHuAx3c/zv/t/78h+dDxQJx5yXm8cOSFEa978ciLXDnrygnds2gWSWkpTNskHojTnnBTOWrUGnyTlA4jhBBCVBRM33fffaxatYoFCxbwsY99DEWR3MMTzQWza3j/eTMnfP3g4LlgWNiOg+r3Efb7SIb9JMKlnOeAu/s84QDMMkqdOHog3wXFzEAhYaS+ioWEfbCrVEh4ZPtRBz0w4zy3kHDO5VUdr13mOO5QFy3tfmhQYxBpHJhIGEyCt3pjsEdydD50Wk/j8/pIBpMV7dw6jsOWri08tusxXup8acixtlgbq05Zxbta38V3X/4uAFF/lD8+7Y/p2t3Fo/qjZM0sL3e+PK5g2nZsskaWjJZB8Sok1AT1IbegMOqPSiqHEEKISVdR9Puxj30Mr9fLrbfeyp/92Z8xY8aMEVvjvfzyyxUtUoxfTdjPdQtbeP8IExCPxbKdcr5zwbDAcVADPsKKQk0kQCI0MF0w5K8geIaBQsJ8z8BIbz3njvKuZiGhWYQ9v3N3oPc/B4419HjdPDcH+tRl7q7wZDCLbieO/tenJqB2rhtAh2rAN/kfRE3bLOdD92q9ZPQMYX+YxkhjRakVuqWz4cAGHtv9GG9lhu7wn9t4LqtOWcWCugXl98rHF3yc5nAzK+esJGgG2X9gP5eeeylPHX6KVaesGvNrSWtp8kaesD9MS6TFDaJDtVWdhiiEEEIcT0U/wWtra6mrq+P000+v1npEFXx8yQw+sOLCMQXRlu2U852LhgUeh6DfR8ivUBcJkAj7CQfcISlBv7fynT7HGejEkesCLXVUIWF99QoJD252d6D3PO12xRgs2jRQSFjTXvn9RmIZ7geEYgaU0uuLz3DzoMO1oExN0KdZGt2F7nJRYbXyoXuLvTy590nW7l1LRs+UH1d9KlfMvIKVc1bSGm0ddl08EOcPz/hDd22mVn7sw2d8+Lj3LJgFUloKy7ZIBBI0JZrKXTkklUMIIcR0qCiYXr9+fZWWIappTl1o1EDasp1yykbRtACHkN9HWFVojKvEg37Cqq8UPFcxONGyg/Kg+9wg0+Nx86ATs6rT4s1xoOs1Nw/6zadGKCSMwSlXunnQTQuqE7QfzbZAz7i70Hjce9bMcbuNhGsnJ3VkFIPzoVPFFCYmiUDl+dC7U7t5fPfj/O7A77AG7fLXBmtZ2b6SZW3LiAaqNzjGdmyyepa0nibgDZBUkzSEGtxUjireRwghhJgISXI+yZnW0NHcHo+HsN9HWPXRFHcLBsMBt89zVYNncHeD+ztx9BcS2pY7cCTeUsVCwoNuL+g31kBq/9BjPr9bSDj3api1ZJIKCR23jZ2Wdnej1djQHWg1PumFhANLccr50N3FblJays0lDiYqyoe2HZsXDr/AY7seY0fP0KE1c5NzWXXKKhY3L65qz2bDMtyuHEaeaCDKjOiMcj50oFrTLIUQQogKjfsn32233cYtt9zCBRdcAIBhGPz85z9n6dKlNDQMzTddu3Ytf/M3f8NvfvOb6qxWjIlh2RxJFymYFj6vh5DfDZZbEkFiwYGcZ1WZhF+Lm7obQBcGFxIW3QA60lC91IZiH7y53g2iDx/dUcYDree6O9BzLoPJ2r008u4OtFEqlAzVQbSxVEiYmLSBKiPpz4fuKnTRU+whY2QIKSEaw40VjeEumAXW71/PE7uf4HD+cPlxr8fL4ubFrDplFafVnFaFVzAgb+RJ62ksx03l6G9tl1STFaWlCCGEEJNh3MH0v/zLv3DppZeWg+l0Os1HPvIR1qxZw7Jly4ace/jwYX77299WZ6VizFTFSzSk0KqGiAaV0pAUhYAySYGIbZVGeveOUEiYgEBLde5jFmHv7900jv3PjlBIeKqbB33qMjeonQym5r4+Let2GAnG3TSOcG2pkHASdr6PQbM0ego9dBbcfOiCUSCquru4lQSeR/JHWL1nNb/Z9xsK5kC+eVgJc1XbVayYs4L6UH01XgIADu6OekbPoPpUatQaN5UjVEvEP3WpMUIIIcR4VeV3so7jVONpRJW010c4d1bN5AXPALbtFg8WeiHbX0iYdafzqTF3F7oaqQ225RYS7lwDu592d4MHizbB3KvcNI7aUyq/34hrMN0daC3j7jarcahrcfOgQzXuh4YpljNyblFhoXNIPnRtsHbC+dCO4/B67+s8uutRnjv0HA4D/1/3d9+4ctaVVR18YtgGAIdyh0jGk8yMziynclSyoy6EEEJMFcmZPglN6i60lhnoxFFIuUG0x+sWEiarWEjY/cZAIWG+e+jxQBROWep24mheOImFhFn39dqW28ou2TbQD1qNVf+exzEsH1pP4fNU3h/atE2e6XiGx3Y9xq7UriHH5tfNZ9Upqzi38dyqplj0p3KYRROA2bHZzKibQUJNSCqHEEKItxUJpsXx6fnSQJVu99+DJ/YlZlRnpDdAusPNgd65Fvr2Dj3m9cPsi900jrYl7oTCanMcMHKD8rxjEGmCaH8AnZj0gSojMW2TPq2Pznzn0HzoUGX50Fk9y9p9a1m9ezW92kDnE8WrcEnrJaw6ZRWz47Or8RKA4V05atQaov4oO9hBW7yNeHByRt4LIYQQk0mCaTGyKSskTMGu9W4AfWjL8OMti0qFhJdP3m6wUXB3oPUc+MPuFMJow8BEwikYqDIS3dLpLrit7Xq1Xgpmgai/8nzoY436vmb2NVzTfg1JNVmFV+AybZOUlhrWlaMuWEchV2AHO47/JEIIIcQJakJRwo9+9COeeeYZAIrFIh6Ph+985zv87//+75DzXn/99YoXKKaQZbpdMgq9kC0VEhp5CIQhlAB/tQoJNdi30W1lt/9ZNyd5sNpT3B3ouVdNXiGhpbsBdDHtfjBQ426/6/5CwikaqDKSnJGjp9DDkcIRUloK0zZJqJXnQ49l1Hc1W84VzeLA+gMJWpLDu3IUKBznWYQQQogT24SC6SeffJInn3xyyGNHB9L9Kp6YJybXsQoJg3E3mK1WIWHHS24e9O7/c9MpBos0uEWEc692u3JMBtt0X5uWAnzuTnfdXLcfdKjG/dAwTRzHIa2n6cp30VXsGsiHVivLhz7WqO/zGs9j1SmrmF83v2r/nzqOQ9bIktbSKB63v3X/LrQMWBFCCHEyGncwbdv2ZKxDTCXHGSgkzA+aSOgtBZhVLSTcWcqDfspNFxksEHEnEs69GlrOmZxCQsd20zeKqYE87/hMN3jvLyScxg98lm3Rq/VWPR96oqO+J8q0TTJ6hpyRI6SEaIm0uF05QrWovunb5RdCCCEmm+RMv5McXUhYTLu9mqtdSJg55AbPO9dA756hx7x+aLvIzYOetWRy0ikcp5QHnQKj6Hb/iDQOdOIIJqelkHAw3dLpKfbQme8ckg/dGmnFV8EHmd2p3Ty26zF+f/D3UzLqW7M0UloK3dSJq3Ha4+3UheqoUWsqeh1CCCHE24UE0yc7UysF0D1uEK2l3XzhQNQtsqtWMKtlBgoJO14efrzlHDcP+pQrJq+Q0Cy6HxD0HCilgTG1c90AOpSc8oEqI8kbeboL3UPyoeNqvKJ86Kke9e04DjkjR1pP48VLQk1QF6+jNlhLPBCX1C4hhBDvKBJMn4xsq9QHeqRCwioOGTE12PeMuwO971koDeAoq2l3d6BPvQpizdW559EsY2AiodfnBtDxGQN50P7qDRiZqP586O6i25kjpaXwetwgNKRM/M+iYBZYt28dT+x5giP5I+XH+0d9X3fKdcyrmVeNlwC4QXtaT5PVsgSVII2hRurD7oCVSl6HEEII8XYmwfTJqPtNOJhzd4uVoDtQpVqFhI7t7jy/sQZ2/9bdBR4sUg+nXu0OVKk9dXLykW0L9Izbrs9x3ELJZPvAREL1xCh068+H7i50013oJmNkCCpB6kP1FXXNOJI/whO7n2Dd/nVTMupbt3TSepqCWSDmj9EWb6M+VE8ymMTvnf7dfiGEEGI6STB9Mir0gK8NamZXr6iv+003gH7zKch1Dj3mj7jpG/2FhJORK+s4AxMJTd39gBBrcYP3cK3b2u4ESS8YKR864o/QEmmZcB6x4zi81vsaj+16bPio70gz1865litmXlHVUd95I09KS+HgEA/EmRmZSV2ojoSakFQOIYQQokSC6ZORorq7tZXKHhmYSNgzdMw0XsUtIJx3DbRdPHl9mY18aaBK3u3+Eap1O3GEa92UjhOoyC1v5OkudtOZ7ySlpTBso+J8aNM2eebgMzy2e2pGfQ+eUqj6VGqDtTSEG6gL1hH2T1/rQCGEEOJEJcG0GErLuOkbb6yBjldg0A4oAM1nuzvQp1xZnYB9JKbmrmNwmkpytpsHHUy6PbBPEKPlQ8cD8YqCz4ye4al9T4046vvSGZdy7Zxrqzrqe/CUwlggNmRKYSUt+oQQQoiT3biC6VtuuWXcN/B4PDzwwAPjvk5MIUt3CwnfWOtOJjy6kDA5292BnnuVm1oxGWzT7cShZUr9ruPuQJX+dnbVKpqsksH50D3FHlJaqir50AcypVHfbw0d9Z0IJLim/Rqunn11VUd9F80ifVoflm2NOqVQCCGEEKMbVzD9m9/8Zty/rpbcyqkX+v29sG9QEd4Vn4fGs4ae5NjuzvPOtW5LOz079Hi4zg2e517jBrWT8efo2AM70LblBtDJtoEAOhA9YfKg+xmWUd6F7i32kjNyRANRWqMT7w/tOA6vdL3CY7se4+XOoW0FJ2PUt+3Ybms7LY3iVUiqSRpCDdQGa2VKoRBCCDFO4wqm9+zZM0nLENXkyx2G3kHTBl99dCCY7tnlpnDsfApyR4Ze6A/DnMvdXeiWRZNXSGjk3E4cZtHtOR1pgmgpgFYT0z5QZST9+dBdhS76in0YtkFMjTEjOGPCO7i6pfP0W0/z+O7HeSs7MOrbg4fzms7j2jnXVnXUt2mbpPU0OT1XLoiUKYVCCCFEZSRn+p1gzhXw8k/cftDdbw495vG5EwnnXg2z3zWJhYSFUiFhzk3ZCCbdoTH9Ewl9J95b0XEcMkaG7sJAPjRAQk1UlA/dW+zlyT2lUd/G8FHf1865lpZo9dJpjp5SOCcxR6YUCiGEEFVy4kUworqCCXj8CwwrJGxa4O5An3KFG8xOBkt3A+hiBhS/u+ucmOV24gjVTF7gXiHLtujT+ugqdNFT7CGtpVEVlbpQXUWpFrtTu3l016NsPLhxyKjvumAdK+esZOmspVVLsxhpSmF93N2Fjvljkn4lhBBCVEnFwfTjjz/ON7/5TV588UVSqRSO4ww7x7KsEa4UU6KYGvjvZJubAz33aohPYiGhlnWnEuJx86BrTykNVKl1pzCeoI7Oh84becKBMM3R5gmP4j7WqO95yXnlUd/V2iG2bIuMniGrZwn5QzKlUAghhJhkFQXTP/vZz/jQhz7E/Pnz+fCHP8x3v/tdbrzxRhzH4Re/+AXz5s3jhhtuqNJSxYSEakuFhFdD/WmTV0io59wA2jLcADo+o1RIWOvmRZ/AO6EFs1BO5ejT+tAsjbgapzXYOuF86LyRZ/3+9SOO+l7SsoRVc1ZVddS3bumktBSapRH1R8tTCmuCNRP+ICCEEEKI46vop+zXv/51Fi9ezIYNG+jt7eW73/0ut9xyC8uWLWPPnj1cdNFFzJkzp1prFeN16WfhjHdPYiFhwQ2gjYLbeSNU544t78+DPgELCfsdKx+6Idww4ecdbdR3xB9hWdsyVrRXd9R3/5RCgLgapy3WRl2ojnggLqkcQgghxBSoKJjevn07X//61/H5fCiK+1SG4fYobm9v57bbbuPv/u7vuPnmmytfqRif9svgrPdW/3lNzU0d0XOghNyBKrWnuDvQoSSc4AM+bMemT+tzR30Xe0lpKQJKoKJ86Kke9W07Nhk9Q1pLl3tb14XqZEqhEEIIMQ0qCqbD4TCBgBuAJJNJVFWlo6OjfLypqYndu3dXtkIxMedV8QOMZbg70Fp2YKBKrHXQQJXqBImTybANego9dBY66dP6yOm5ivOhp3rUt2EZpPV0eUrhrNgst7VdsFamFAohhBDTpKJg+vTTT2f79u3lrxctWsSPf/xjbrrpJkzT5OGHH6atra3iRYrxMRoXQH2F+bi2BXqpE4fjlAaqzB4IoNW3x3CPEfOhA3FaYxPPh87oGdbuXcuTe56cklHfBbNASkthOaUphaX+0Ak1IVMKhRBCiGlWUTD9B3/wB3z729/mG9/4Bqqqcuedd/Le976XZDKJx+Mhl8vxgx/8oFprFWNknHLNxC50HHcSopYBU3cD5ljLQAAdTJzQhYSDZfSh+dA2tjvpr4J86AOZAzy2+zGefuvpSR/1bTs2WSNLRsvIlEIhhBDiBFZRMP25z32Oz33uc+Wv3/3ud7N+/XoeeeQRfD4f1113HUuXLq14kWJ87NiM8V1g5EsDVfLuFMRQLURKA1VCyckpYJwE/fnQ3YVuugvdpPU0fp+fmlDNhCf8OY7DK52v8NjuqRn13T+lMK/nCfvDtERaaAi7QXS17iGEEEKI6ql6z6zLLruMyy67rNpPK6rN1EoBdBZ8AQiW0jhC/QNV3j6Bm2Eb9BZ76cy7+dAZPUPEH6Ep0jThfGjd0vm/t/6PJ3Y/MeKo71VzVnFW3VlV65hRNIuk9TSGZRAPxGlPtFMfqiepJmVKoRBCCHECqyiY3r17N1u3buU973nPiMd/9atfsXDhQtrb2yu5jagW2yxNJEy7Y8SDcag9FcJ17lRC/9trqEfRLLpDVvJuPnTRLBJX48yIzZhwLnFPsYc1e9aMOOr7yllXsrJ9ZdVGffdPKUzpKXz4ZEqhEEII8TZUcZpHOp0eNZj+53/+Z5LJJD/5yU8quY2ohGMPTCS0rVIhYdtAAB2Ivm3yoPuNlA+dUBPUheomHIDu6tvFY7sfGzbquz5Uz4r2FVUd9V2eUmhkCSkhmkJN5VSOarXPE0IIIcTUqCiY3rhxI7fffvuox6+66iruu+++Sm7xjqBpGp/+9KdZu3YtfX19nHXWWfzjP/4jF1988cSfVM+5O9Bm0Z1AGGl0CwnDtaAmTuiBKiOxHZuUlqKr0EVPoYeUnqo4H9p2bJ4/9DyP7X6MV3teHXJsXs08Vs2p7qjvwVMKY/4YbTGZUiiEEEK83VX0E7y3t5dYLDbq8Wg0Snd3dyW3eEcwTZP29nY2bNjAzJkz+e///m/e8573sGfPHqLRCeyG6gU3nSOYgMhcN4AOJsH39gvYJiMfeqpHfeeNPH1aHx487pTCeBt1QZlSKIQQQpwMKoqu2tra+N3vfsenP/3pEY8//fTTzJw5s5JbvCNEIhHuuuuu8tcf/vCH+fM//3Nee+01zj///PE/YXImtJ5bKiSc2K7tdCuaRXqKPeUgumgWiamxivKhj+SP8Pjux1m/f/2kj/run1KY0TIElSANoYbygBWZUiiEEEKcPCoKpj/ykY/wla98hcWLF/OZz3wGbyl1wLIsvvOd7/Bf//Vf3HnnnVVZ6FTIZrPce++9PPvss2zatIne3l4efPBBPvaxjw07V9M07rrrLn784x/T29vL2WefzVe/+lWuuWaCPZ4HeeONN+jp6WHu3LkTe4JkG8SaK17HdMjqWbeosNBFX7Gv4nxox3F4tedVHtv9GM8fen7YqO9Vc1Zx+czLq5arbFgGKT1FwSgQC8SYGZvpBtGhWvxemVIohBBCnGwqCqbvuOMONmzYwO23387XvvY1Tj/9dABee+01Ojs7ufLKK99WwXRXVxdf/vKXaWtr45xzzmH9+vWjnvuxj32Mn/70p9x+++3MmzePH/7wh6xatYp169Zx6aWXTngNhUKBm266iTvuuINEIjHh53k76c+HHtwf2uf1kQwmJxzkmrbJxoMbeXz348NGfS+oX8CqOatY1LioahMEj55SOCMyg7pQnUwpFEIIIU5yFQXTqqry5JNP8tBDD/HII4/w5ptvArB48WLe//73c/PNN5d3q98OWlpa6OjooLm5meeff54LL7xwxPM2bdrET37yE+69997y0Jqbb76ZBQsW8PnPf57f//735XMvvfRSfve73434PHfeeSdf/epXy18bhsEHP/hB5s6dOyTt42Rl2ia9xV6O5I+U86HD/jCNkcYJ50On9TRP7X1q2Khvv9fPJTMuqeqo78FTCv1eP0k1SWOokdpQLRF/pCr3EEIIIcSJreKKNK/Xy8c//nE+/vGPV2M900pVVZqbj58e8dOf/hSfz8enPvWp8mPBYJBPfOIT/PVf/zX79+9n1qxZAGzYsGFM97Ztmz/6oz/C4/Hw0EMPndSFaZql0V3ormo+dP+o7/976/8wbKP8eCKQYHn7cq6efTUJtTo7/aZtktbS5A13SmFrtLWcDy1TCoUQQoh3lrdfe4cTwObNmznttNOIx+NDHl+8eDEAL730UjmYHqtbb72Vjo4OVq9ejaIc/4/lyJEjdHZ2Dnls586dgJsqkk6nx3X/qZA38qT0FL3FXjJaBguLqD9Kg78BTDBM4/hPMojjOGzt2crqt1azpWfLkGOzIrNYMWsFFzVd5OYqm6CZWkXr1y2drJHFtE2i/igtgRaSapK4P47X8lLMFSlSrOge7zS5XG7Iv4WYLPJeE0KMRTabHfc14wqmly5ditfrLQd8y5YtO+41Ho+Hp556atwLO5F1dHTQ0jJ8Cl7/YwcPHhzX8+3du5fvf//7BINB6usHukk8/vjjo45mv//++/nSl7404rEtW7aQSqXGtYbpoqHRzfjaJxqOwUv6S/xe+z2d9sAHCg8eTldO513qu5ijzMFzyMOhQ4eqvWRgYusWo9u0adN0L0G8Q8h7TQhxLPv27Rv3NeMKph3Hwbbt8te2bR83HcFxnGMefzsqFAqo6vCWc8FgsHx8PGbPnj3u79Ntt93GBz/4wSGP7dy5kxtuuIGFCxdy3nnnjev5qs1yLNJamt5iLyk9Rc7MEfQFifqjE86H7tV6eerAU6w7uI6sMfDJUfWpXNZ8GdfMvIbmcHW6mPTnQxfMAkFfkFggRo1aQ0JNSCpHFeVyOTZt2sTixYuJRCTPXEweea8JIcZix44d475mXFHN0d0tjtXt4mQWCoXQtOEpA8VisXx8sjU2NtLY2DjisVAoNCwFZapolkZPoYfOQid9eh8Fq0A0HGVWYNaE86GPN+p7WduyqhX89U8pLFpF4qE4TUF31HdSTcqUwkkUiUSm7T0r3lnkvSaEOJaJDMuT6GACWlpaOHDgwLDHOzo6AGhtbZ3qJU27nJFziwoLnaSKKUxMEoEEtcHaCRVTHm/U93VzruPC5gurMurbcRzyZp6UlsKLV6YUCiGEEGLMKgqmj5dX4vF4ynnAJ1NAsmjRItatW0c6nR6yw/Hss8+Wj78TOI5T7g/dVewipafweSrrD5038qzbv44ndj9BZ2EgH9rr8XJRy0VcO+faqo36th2btJ4mq2VlSqEQQgghJqSiYLq9vX1MQXIwGOSyyy7ji1/8IpdcckkltzwhfOADH+Ab3/gG3/ve98p9pjVN48EHH2TJkiXj7uTxdmPaJn1aH535TnqKPWSMDCElRGOoEb9vYlP+DucO88SeJ0Yc9X1V21Usb19etVHf5SmFZoGY351S2BBuoCZYI1MKhRBCCDEuFQXTDzzwAN/+9rfZv38/H/3oR8vjr9944w0efvhhZs+ezcc//nF27tzJv//7v7Ns2TKeeOIJli5dWpXFT4bvfOc79PX1lTty/OpXv+Ktt94C4E//9E9JJBIsWbKED37wg9xxxx0cOXKEuXPn8tBDD7Fnzx4eeOCB6Vz+pNIt3d2FLnTRq/VSMAtE/VFmRCfWH/pYo75bIi1cO+faqo76zht50noa27GJB+LMiMygPlRPXI3LlEIhhBBCTEhFwfTBgwfRdZ2dO3eSTCaHHLvnnnu49NJLKRQK3HfffXzxi1/k/PPP50tf+tIJHUx/4xvfYO/eveWvH3nkER555BEAbrrppvKI7x/96Ed88Ytf5Mc//jG9vb2cffbZ/PrXv+byyy+flnVPppyRo6fQw5HCEVJaCtM2SagTz4fuH/X92O7H2J3aPeRYtUd9245NVs+S1tMEvAGZUiiEEEKIqqoomP6Xf/kX/vzP/3xYIA1QW1vLJz/5Sb71rW/xl3/5l9TV1XHLLbdw7733VnLLSbdnz54xnRcMBrn33ntP+NczUY7jkNbTdOW7huZDqxPPhz7eqO9Vc1bRFm+ryvoHTymMBCLMiM6QKYVCCCGEqLqKgunu7m7y+fyox3O53JApfc3NzSdl3+mTiWVb9Gq9Vc2HfivzFo/tfoyn33p66KhvNcHy2dUd9V00i6S0FJZtEQ/EaUo0UReqI6kmq9L5QwghhBBisIqC6QsvvJBvfetbXH/99SxcuHDIsVdeeYV/+qd/Ko/YBrcR9syZMyu5pZgkuqXTU+yhM985JB+6NdI6oSDUcRxe7nyZx3Y/xiudrww5Njs+m1VzVvGu1ndNOEA/+l45I0dKS6F4FBLBRHkXOhaIVfz8QgghhBCjqSiY/qd/+ieWLl3Kueeey8UXX1wuQNy5cycbN24kHo/z7W9/G3AHmqxfv54PfOADla9aVE3eyNNd6B6SDx1X4xPOh9YsjaffeprHdz/OgexAL24PHs5rOo9Vc1ZxVt1ZVWmVaNkWaT1NzsgRUkK0RFrcIDpUi+obPqFSCCGEEKLaKgqmzz77bLZs2cLf/u3fsnr1ap577jnAHY9922238fnPf768Ex0MBtm8eXPlKxYV68+H7i5205nvJK2n8Xq8JNQEIWVi0xt7Cj2s3ruap/Y+NWzU99JZS1nRvoKWaEtV1q9ZGikthW7qxNU47fH2ciqHTCkUQgghxFSqOPJobW0t7z6LE1t/PnR3oZvuQjcZI0NQCVIfqp9wUd6bfW/y+O7HRxz1vbJ9JUvbllala8ZIUwrr424qh0wpFEIIIcR0qdo2XjabZf/+/QDMmjVrQrPNxeQYKR864o/QEmmZUD50/6jvR3c/yms9rw05dlrNaayas6pqo76PnlLYGGqkPuwG0RPdRRdCCCGEqJaKg+nnnnuOz3/+82zYsAHbtgHwer1cdtll/P3f/z0XXHBBxYsUE5M38uVUjpSWwrCNivKhjzfqe9WcVcytmVuVteuWTlpPl6cUzorNoj5cL1MKhRBCCHFCqSiYfvbZZ7nyyisJBAJ88pOf5MwzzwTcrh3/+Z//yeWXX8769euHdPQQky9v5NmV2kVXoctNi/B4iQfihP3hCT3f8UZ9r2hfQV2ormprHzylcGZkJnWhOhJqQlI5hBBCCHHCqSiYvvPOO5kxYwYbNmygubl5yLF77rmHSy65hDvvvJM1a9ZUtEgxPvsy+9B6tIryocujvnc9xvOHJ3fU9+AphapPpUatoSHUQF2obsIfAIQQQgghpkLFO9N33XXXsEAaoKmpiU996lN85StfqeQWYgI0U6M1OrH+0KZt8vuDv+fx3Y8PG/W9sH4h1865tmqjvk3bJKWlyBt5ooFoeUphXbCuKv2nhRBCCCEmW0XBtNfrxTTNUY9bloXXW3nQJcbHa3oxCyYmo//ZHC2jZ/jNwd/w1IGnSOmp8uN+r5+Lmy5m+czlzIrOAsDIG6M9zZjolk5Gz2A5FlF/lBnqDJJqkrg/jsfyUMgVKFA4/hOJt71cLjfk30JMFnmvCSHGIpvNHv+ko1QUTL/rXe/in//5n7nxxhuZPXv2kGP79u3j/vvv55JLLqnkFmIM7rnnHr70pS+Vvy68VWC/d/+Yrj1sHWajtpGX9JeGBN9RT5TF6mIWBxYTLUThDdjP2J5zPDQ0uumu+vOKt5dNmzZN9xLEO4S814QQx7Jv375xX+NxHMc5/mkj27x5M5dffjmmafIHf/AHnHbaaQC89tpr/OIXv0BRFJ5++mnOOeecid5CjMO2bdtYsGAB//bIv3He+eeNep7t2Gzt2crq/avZ2rt1yLG2aBsrZq5gSdOSqnTNsByLrJGlaBYJ+oLEA3GSapJEMEHAO7He1uLkkcvl2LRpE4sXLyYSqbwfuRCjkfeaEGIsduzYwUUXXcTWrVuZP3/+mK6paGf63HPP5dlnn+XOO+/kl7/8Jfl8HoBwOMzKlSv56le/yllnnVXJLcQEeFUvamT4OO3+Ud+P7X6Mg9mD5ccnY9R3eUqhpRMPx2kNtlIXqqNGralK/2lxcolEIsTj8elehngHkPeaEOJYJjInpeI+02eddRY///nPsW2bzk6393BDQwNer5dcLsfBgwdpbW2t9DZiHIpmccjXxxv1vXLOSpojw4tIx8txHHJGzh1PjjuevC5eR12ojpg/Jq3thBBCCHHSqdoERK/XS1NT05DH7rvvPu666y4syxrlKjEZXk+9zhVcwZt9b/LYrsd4puOZSR31LVMKhRBCCPFOVbVgWpw4nnzrSZ5+7Gl0Wx/yeLVHfR89pbAt3kZ9qJ5kMClTCoUQQgjxjiDB9EnIcAx89kCw3B5v55MLP1m1Ud95I09KS+HgkFATMqVQCCGEEO9YEkyf5M5tPJe/uOAvULyV/VEfPaWwLlRXHrAiUwqFEEII8U4lwfRJ7KKWi/jMuZ+pKJA2LIO0niZv5IkFYsyMzqQ+5OZDy5RCIYQQQrzTjTvKevHFF8d87sGDB49/kpg0tyy4ZcKBdMEskNJSWLZFQk3QEmmhLlRHUk1WZZS4EEIIIcTJYNyR1gUXXDDmvFjHcSSHdhq9eORFrpx15ZjPtx3bbW2npVG8Ckk1SUOogdpgLdHA+PsuCiGEEEKc7MYdTD/44IOTsQ5RRUFfEICXO18eUzBt2qabyqHnCfvDtERaaAg3UBOsQfUNH/4ihBBCCCFc4w6m//iP/3gy1iGq6NYzbuVw/WFWnbLqmOcVzSJpPY1u6iTUBO2JdplSKIQQQggxDlKAeBIK+8N8+IwPj3hspCmF9fF6akO1MqVQCCGEEGKcJJh+h7Bsi4yeIatnCflD5SmFdcE6gkpwupcnhBBCCPG2JMH0SU63dFJaCs3SiPqj5SmFNcGaintPCyGEEEK800k0dZLqn1IIEFfjtMXbqAvWEQ/EJZVDCCGEEKJKJJg+CRXMAnkj704oDNXJlEIhhBBCiEkiwfRJqDHcyBm1Z8iUQiGEEEKISSbB9EloVnQWTZGm6V6GEEIIIcRJT+ZCn4QkJ1oIIYQQYmpIMC2EEEIIIcQESZrHSahQKJBOp6d7GUIcVy6XG/JvISaLvNeEEGORzWbHfY0E0yeBe+65hy996Uvlr7ds2UIqlZrGFQkxPps2bZruJYh3CHmvCSGOZd++feO+xuM4jjMJaxHTYNu2bSxYsIB169Zx3nnnTfdyhDiuXC7Hpk2bWLx4MZFIZLqXI05i8l4TQozFjh07uOiii9i6dSvz588f0zWyM30SCoVCxOPx6V6GEGMWiUTkPSumhLzXhBDHEo1Gx32NFCAKIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQcp0L0BUX6FQIJ1OT/cyhDiuXC435N9CTBZ5rwkhxiKbzY77GgmmTwL33HMPX/rSl8pfb9myhVQqNY0rEmJ8Nm3aNN1LEO8Q8l4TQhzLvn37xn2Nx3EcZxLWIqbBtm3bWLBgAevWreO8886b7uUIcVy5XI5NmzaxePFiIpHIdC9HnMTkvSaEGIsdO3Zw0UUXsXXrVubPnz+ma2Rn+iQUCoWIx+PTvQwhxiwSich7VkwJea8JIY4lGo2O+xopQBRCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmD4BfepTn6KlpYV4PM7ChQv51a9+Nd1LEkIIIYQQI5Bg+gT053/+5+zZs4d0Os0PfvADbrrpJrq7u6d7WUIIIYQQ4igSTJ+AzjjjDFRVBcDj8aDrOgcOHJjmVQkhhBBCiKO9LYLpF198keuvv57a2lrC4TALFizg29/+9qTdL5vNcvfdd7Ny5Upqa2vxeDz88Ic/HPV8TdP4whe+QGtrK6FQiCVLlrBmzZqK1nDbbbcRCoW48MILWbZsGQsXLqzo+YQQQgghRPWd8MH0k08+ycUXX8yRI0f44he/yLe+9S3e/e5389Zbb03aPbu6uvjyl7/Mjh07OOecc457/sc+9jG++c1v8tGPfpRvfetb+Hw+Vq1axYYNGya8hvvvv59sNsvatWtZvnw5Ho9nws8lhBBCCCEmhzLdCziWdDrNzTffzHXXXcdPf/pTvN6xxf69vb2sW7eO973vfSMe/8///E+uv/56IpHIiMdbWlro6OigubmZ559/ngsvvHDUe23atImf/OQn3HvvvXzuc58D4Oabb2bBggV8/vOf5/e//3353EsvvZTf/e53Iz7PnXfeyVe/+tUhj/l8Pq666iruu+8+5s2bx6pVq475uoUQQgghxNQ6oXemH374YQ4fPszXvvY1vF4vuVwO27aPe93999/Phz70IX7+858PO/bAAw9w44038tBDD416vaqqNDc3j2mNP/3pT/H5fHzqU58qPxYMBvnEJz7Bxo0b2b9/f/nxDRs24DjOiP8cHUgPZpomO3fuHNN6hBBCCCHE1Dmhd6bXrl1LPB7nwIED3HDDDbz++utEIhH+6I/+iH/8x38kGAyOeN0XvvAFNm3axEc+8hEeffRRrrrqKgAeeeQRbr31Vm666SY+/elPV2WNmzdv5rTTTiMejw95fPHixQC89NJLzJo1a8zPl0qlePTRR7n++usJBoP8/Oc/Z926dXz9618f83MUCgXS6fSYzxdiuuRyuSH/FmKyyHtNCDEW2Wx23Nec0MH0G2+8gWmavPe97+UTn/gEX//611m/fj3/9E//RF9fH//5n/854nWKovBf//VfrFy5khtuuIG1a9eSzWa58cYbufbaa3nwwQerloPc0dFBS0vLsMf7Hzt48OC4ns/j8fBv//Zv3HbbbTiOw9y5c3n44YdZtGjRqNfcc889fOlLXyp/vWXLFlKp1LjuK8R02rRp03QvQbxDyHtNCHEs+/btG/c1J3Qwnc1myefz/Mmf/Em5e8f73vc+dF3nX//1X/nyl7/MvHnzRrw2GAzyy1/+kqVLl7Jq1Sp0XWfJkiX893//N4pSvZddKBTKbeyOvn//8fGIx+OsW7duXNfcc8893HPPPWzbto0FCxawcOFCzjvvvHE9hxDTIZfLsWnTJhYvXjxqDYMQ1SDvNSHEWOzYsWPc15zQwXQoFALgIx/5yJDHb7zxRv71X/+VjRs3jhpMgxuYfuMb32DZsmUA3HfffeXnrOYaNU0b9nixWCwfn2qhUGhY2okQJ7JIJCLvWTEl5L0mhDiWaDQ67mtO6ALE1tZWAJqamoY83tjYCLhdO45l165dfPSjH+WMM85g9uzZvP/976ejo6Oqa+zv/HG0/sf6X4MQQgghhDj5nNDB9Pnnnw8wbPpffx5yQ0PDqNd2dHRwzTXX4Pf7WbNmDWvWrCGXy7F8+XJ6enqqtsZFixbx+uuvDyv4e/bZZ8vHhRBCCCHEyemEDqY/9KEPAW47u8G+//3voygKV1555YjX9fb2smLFivLQk5kzZzJv3jxWr17N/v37ue6666pW0f2BD3wAy7L43ve+V35M0zQefPBBlixZMq5OHkIIIYQQ4u3lhM6ZPvfcc7nlllv4wQ9+gGmaXHHFFaxfv57/+Z//4Y477hg1heL+++9n//79rF+/fkhO9aJFi/j1r3/N8uXLeeihh7jttttGvfd3vvMd+vr6yrvgv/rVr8pTF//0T/+URCIBwJIlS/jgBz/IHXfcwZEjR5g7dy4PPfQQe/bsGfYhQAghhBBCnFxO6GAa4F/+5V9oa2vjwQcf5Oc//zmzZ8/mH//xH7n99ttHveYLX/gCN9xwA/Pnzx927NJLL+WZZ55h4cKFx7zvN77xDfbu3Vv++pFHHuGRRx4B4KabbioH0wA/+tGP+OIXv8iPf/xjent7Ofvss/n1r3/N5ZdfPs5XK4QQQggh3k5O+GDa7/dz9913c/fdd4/5GkVRRgyk+5199tnHfY49e/aM+X7BYJB7772Xe++9d8zXCCGEEEKIt78TOmdaCCGEEEKIE5kE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTOib6wAAAFV5JREFUQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQMt0LENWjaRoA27dvn+aVCDE2hUKBffv28eKLLxIKhaZ7OeIkJu81IcRY7Nq1CxiIqcbC4ziOM1kLElPjnnvu4Utf+tJ0L0MIIYQQ4qTwv//7v7z3ve8d07kSTJ9E+vr6qKmp4YUXXkBV1elejhBjsmDBArZu3TrdyxAnuZ07d3LDDTfwv//7v8ydO3e6lyOEOEFpmsb+/fu54oorSCaTY7pGgumTjMfjQf5IxduJvGfFVNi2bVv5g9v8+fOnezlCiJOIFCCeZO6+++7pXoIQ4yLvWSGEEG9nsjMthBDipCc700KIySI700IIIYQQQkyQBNNCCCFOeg0NDdx99900NDRM91KEECcZSfMQQgghhBBigmRnWgghhBBCiAmSYFpU7FOf+hQtLS3E43EWLlzIr371q+lekhDHJO9ZIYQQ1SJpHqJir776KnPmzEFVVZ577jmuvvpqdu3aRV1d3XQvTYgRyXtWCCFEtcjOtKjYGWecUZ646PF40HWdAwcOTPOqhBidvGfFWGiaxi233EJbWxvxeJyLLrqIjRs3TveyhBAnGAmmq+yNN97gwx/+MDNnziQcDnPGGWfw5S9/mXw+P2n3zGaz3H333axcuZLa2lo8Hg8//OEPRz1f0zS+8IUv0NraSigUYsmSJaxZs6aiNdx2222EQiEuvPBCli1bxsKFCyt6PjF1XnjhBVauXEk8HicWi7F8+XJeeumlSb2nvGfF24FpmrS3t7Nhwwb6+vq4/fbbec973kM2m53upQkhTiCS5lFF+/fv5+yzzyaRSPAnf/In1NbWsnHjRn74wx9y/fXX84tf/GJS7rtnzx7mzJlDW1sbp5xyCuvXr+fBBx/kYx/72Ijnf+QjH+GnP/0pt99+O/PmzeOHP/whzz33HOvWrePSSy+d8Dosy2L9+vVs3bqV//f//t+En0dMnRdffJFLLrmEWbNmceutt2LbNvfffz89PT1s2rSJ008/fVLuK+9Z8XbV2trKr371K84///zpXooQ4kThiKr52te+5gDO1q1bhzx+8803O4DT09Mz4nU9PT3Oz372s1Gf9+GHH3ay2eyox4vFotPR0eE4juM899xzDuA8+OCDI5777LPPOoBz7733lh8rFArOqaee6lx88cVDzr3kkkscYMR/7rzzzlHX8+53v9t59NFHRz0uThyrVq1yampqnK6urvJjBw8edKLRqPO+971v1OvkPSumUiaTce666y5nxYoVTk1NzTHfL8Vi0fn85z/vtLS0OMFg0Fm8eLHz5JNPVmUdr7/+uqOqqtPX11eV5xNCnBwkzaOK0uk0AE1NTUMeb2lpwev1EggERrzu/vvv50Mf+hA///nPhx174IEHuPHGG3nooYdGva+qqjQ3N49pjT/96U/x+Xx86lOfKj8WDAb5xCc+wcaNG9m/f3/58Q0bNuA4zoj/fPWrXx31HqZpsnPnzjGtR0yvp59+mquvvnpI4V1LSwtXXHEFv/71r0f9dba8Z8VU6urq4stf/jI7duzgnHPOOea5H/vYx/jmN7/JRz/6Ub71rW/h8/lYtWoVGzZsqGgNhUKBm266iTvuuINEIlHRcwkhTjLTE8OfnB5//HEHcK6//npn8+bNzr59+5yf/OQnTjwed26//fZRrzMMw7n++usdVVWdtWvXlh//2c9+5vh8Puemm25ybNse0xqOt8t39dVXO2eeeeawx9euXesAzi9/+csx3adfX1+f8x//8R9OJpNxDMNw/vu//9tRVdXZvHnzuJ5HTI9AIODcfPPNwx7/4Ac/6ADOxo0bR7xO3rNiKo31NxmT9VsMXded6667zrnxxhvH/L4WQrxzKNMRwJ+sVq5cyVe+8hX+5m/+hl/+8pflx++8885j7oopisJ//dd/sXLlSm644QbWrl1LNpvlxhtv5Nprr+XBBx/E4/FUZY0dHR20tLQMe7z/sYMHD47r+TweD//2b//GbbfdhuM4zJ07l4cffphFixZVY7likp1++uk888wzWJaFz+cDQNd1nn32WYBRO1zIe1ZMpbH+JuNYv8X467/+a/bv38+sWbMAxrxTbds2f/RHf4TH4+Ghhx6q2vtaCHHykGC6ytrb27n88st5//vfT11dHY8++ih/8zd/Q3NzM5/5zGdGvS4YDPLLX/6SpUuXsmrVKnRdZ8mSJfz3f/83ilK9P6ZCoVBuCXb0/fuPj0c8HmfdunVVWZuYerfddhuf/vSn+cQnPsHnP/95bNvmq1/9Kh0dHcCx3w/ynhUnms2bN3PaaacRj8eHPL548WIAXnrppXIwPVa33norHR0drF69uqrvayHEyUP+Zqiin/zkJ3zqU5/i9ddfZ+bMmQC8733vw7ZtvvCFL/CRj3zkmEMh4vE43/jGN1i2bBkA9913H6FQqKprDIVCaJo27PFisVg+Lt45/uRP/oT9+/dz7733lnOcL7jgAj7/+c/zta99jWg0eszr5T0rTiTV/i3G3r17+f73v08wGKS+vr78+OOPP85ll11W2WKFECcNKUCsovvvv59zzz23HEj3u/7668nn82zevPmY1+/atYuPfvSjnHHGGcyePZv3v//95R3CamlpaRnxOfsfa21trer9xInva1/7GocPH+bpp5/mlVde4bnnnsO2bQBOO+20Y14r71lxIqn2bzFmz56N4zgUCgWy2Wz5HwmkhRCDSTBdRYcPH8ayrGGPG4YBuB0DRtPR0cE111yD3+9nzZo1rFmzhlwux/Lly+np6anaGhctWsTrr79e7jzSrz9HVvJG35lqamq49NJLy4NL1q5dy8yZMznjjDNGvUbes+JEI7/FEEJMBwmmq+i0005j8+bNvP7660Me/8///E+8Xi9nn332iNf19vayYsUKstlsOYiZN2/e/9/e3cdUWfZxAP8eeTm8uVDg6AaLw6uMIYKgLIOidKDCH4CiO2mATCobrHCwaAsO4BqymWnTgKYB7ZgQCJMwZSthRAONbDQasoHAwClgQqDIAeV6/ug55+HIS3CCQJ/vZzub93W//e7rPjv+uO7rum5UVVWhu7sbISEhePjw4YLEuHv3bjx58gRffPGFtkytViM/Px9+fn7z7k9Iz5/i4mL8/PPPeP/997FixfQ/EfzO0nLEpxhEtBTYZ3oBJScna/vSxcfHw8rKCpWVlbh8+TIOHjw44w/5559/ju7ubtTU1MDFxUVb7uXlhcrKSgQFBaGwsBDvvvvujOc+deoUBgcHtX0Cv/32W/T09AAAEhIStPOi+vn5ITIyEh9++CH6+vrg7OyMwsJCdHZ24uzZswtVFfSMqK2tRWZmJoKCgmBlZYWGhgbk5+dj+/bts74RkN9ZWo68vLxQXV2NoaEhnUGIfIpBRItqiafme+5cu3ZN7NixQ6xdu1YYGRkJV1dX8fHHH4vx8fEZ9xkfH5/y1sTJmpqa/nZuU3t7+xnnTO3o6NDZ9tGjRyIpKUmsXbtWSKVSsWnTJnHlypV5XSc9H9ra2kRQUJCwtrYWUqlUuLm5iaysLKFWq2fdj99ZWiqzzTPd0NAwZZ7p0dFR4ezsLPz8/P7FKIno/4lECCGWIoknIiKaq8lPMnJychAREQFvb28Auk8yNG/mTExM1D7FuH79On744Qe88sorS3kJRPScYjJNRETLnlwuR1dX17TrOjo6IJfLAfw12DA1NRUqlQoDAwPw9PTEkSNHEBwc/C9GS0T/T5hMExERERHpibN5EBERERHpick0EREREZGemEwTEREREemJyTQRERERkZ6YTBMRERER6YnJNBERERGRnphMExERERHpick0EREREZGemEwTEREREemJyTQRERERkZ6YTBMRERER6YnJNBHREigoKIBEIkFjY+OCHVMulyMmJmbBjvc0iUSC9PT0RTs+EdGziMk0EdEC0iTJmo+JiQlcXV0RHx+P3t7epQ5v0XV2dupc/9Ofo0ePLnWI03r6vhkaGsLW1hYxMTG4ffu2XsccGRlBeno6ampqFjZYIlpWDJc6ACKi51FmZiYcHBwwOjqKuro65OTk4LvvvkNzczPMzMwW5Zytra1YsWJ5tJEoFArs3LlzSrm3t/cSRDN3k+9bQ0MDCgoKUFdXh+bmZpiYmMzrWCMjI8jIyAAABAYGLkK0RLQcMJkmIloEO3bsgK+vLwDg4MGDsLKywvHjx3Hx4kUoFIpFOadUKl2U4+pj48aN2L9//7z2EUJgdHQUpqamU9aNjo7C2Nj4H/2x8PDhQ5ibm8+6zdP3zdraGtnZ2aioqMCePXv0PjcRPb+WRxMGEdFz7vXXXwcAdHR06JSr1WocPnwYNjY2MDc3R3h4OPr7+7Xro6OjYW1tjfHx8SnHDAoKwrp167TL0/WZHhwcRGJiIuRyOaRSKezs7BAVFYV79+4BAMbGxpCWlgYfHx+88MILMDc3R0BAAKqrqxfq0mckl8sRGhqKqqoq+Pr6wtTUFHl5eaipqYFEIkFRURE++ugj2NrawszMDENDQwCAkpIS+Pj4wNTUFNbW1ti/f/+UrhgxMTGwsLBAe3s7du7ciZUrV2Lfvn3zjjEgIAAA0N7eri2bS511dnbCxsYGAJCRkaHtPjK5z/nNmzexe/durF69GiYmJvD19UVFRcW8YySipcWWaSKif4EmGbOystIpT0hIwKpVq6BUKtHZ2YkTJ04gPj4excXFAIA333wTX331FaqqqhAaGqrd7+7du7h69SqUSuWM53zw4AECAgLQ0tKC2NhYbNy4Effu3UNFRQV6enpgbW2NoaEhnDlzBgqFAnFxcRgeHsbZs2cRHByM69evw8vLS6/rHRkZ0Sbsk1laWsLQ8H//9bS2tkKhUODtt99GXFyczh8HR44cgbGxMZKSkqBWq2FsbIyCggIcOHAAmzZtQlZWFnp7e3Hy5En89NNP+PXXX2Fpaand//HjxwgODoa/vz+OHTumV/eazs5OAMCqVau0ZXOpMxsbG+Tk5ODQoUMIDw9HREQEAMDT0xMA8Pvvv+Pll1+Gra0tUlJSYG5ujm+++QZhYWG4cOECwsPD5x0rES0RQURECyY/P18AEN9//73o7+8X3d3doqioSFhZWQlTU1PR09Ojs922bdvExMSEdv/ExERhYGAgBgcHhRBCPHnyRNjZ2Ym9e/fqnOf48eNCIpGIW7duacvs7e1FdHS0djktLU0AEGVlZVPi1Jzz8ePHQq1W66wbGBgQa9asEbGxsTrlAIRSqZz1+js6OgSAGT/19fU68QIQV65c0TlGdXW1ACAcHR3FyMiItnxsbEzIZDLh4eEhHj16pC2vrKwUAERaWpq2LDo6WgAQKSkps8arMd19Ky0tFTY2NkIqlYru7m7ttnOts/7+/hnrbOvWrWL9+vVidHRUWzYxMSG2bNkiXFxc5hQzES0PbJkmIloE27Zt01m2t7fHuXPnYGtrq1P+1ltvQSKRaJcDAgLw6aefoqurC56enlixYgX27duHzz77DMPDw1i5ciUA4Ny5c9iyZQscHBxmjOHChQvYsGHDtK2cmnMaGBjAwMAAADAxMYHBwUFMTEzA19cXN27c0O/i/3tdkZGRU8rd3d11lh0cHBAcHDztMaKjo3X6Tzc2NqKvrw/p6ek6gwFDQkLg5uaGS5cuaQf8aRw6dGhecT993+RyOVQqFezs7LRl/7TO7t+/j6tXryIzMxPDw8MYHh7WrgsODoZSqcTt27enfFeIaHliMk1EtAhOnz4NV1dXGBoaYs2aNVi3bt20g+defPFFnWVNd4KBgQFtWVRUFLKzs1FeXo6oqCi0trbil19+QW5u7qwxtLe3Y9euXX8ba2FhIT755BPcvHlTp2/2bIn633FxcZmSmE5ntnM8va6rqwsAdLqCaLi5uaGurk6nzNDQUCcJngvNffvzzz/x5Zdfora2dtqBnf+kztra2iCEQGpqKlJTU6fdpq+vj8k00TOCyTQR0SLYvHmzdlaI2WhaOJ8mhND+293dHT4+PlCpVIiKioJKpYKxsfGCzC6hUqkQExODsLAwJCcnQyaTwcDAAFlZWTqD7hbLdDN3zGXdXEil0nnP/jH5voWFhcHf3x9vvPEGWltbYWFhAeCf19nExAQAICkpacZWeWdn53nFTURLh8k0EdEzICoqCocPH8adO3fw9ddfIyQkRGdQ3HScnJzQ3Nw86zalpaVwdHREWVmZTneT2QY2LhV7e3sAfw1a1MyOotHa2qpdv1A0CfJrr72GU6dOISUlBcDc62zyuskcHR0BAEZGRnNqvSei5Y1T4xERPQMUCgUkEgnee+893Lp1a05zOO/atQtNTU0oLy+fsk7T8q1pGZ/cEn7t2jXU19cvUOQLx9fXFzKZDLm5uVCr1dryy5cvo6WlBSEhIQt+zsDAQGzevBknTpzA6OgogLnXmWb2kMHBQZ1ymUyGwMBA5OXl4c6dO1POOXlqRCJa/tgyTUT0DLCxscH27dtRUlICS0vLOSWOycnJKC0tRWRkJGJjY+Hj44P79++joqICubm52LBhA0JDQ1FWVobw8HCEhISgo6MDubm5cHd3x4MHD/SO98aNG1CpVFPKnZyc8NJLL+l1TCMjI2RnZ+PAgQN49dVXoVAotFPjyeVyJCYm6h3vbJKTkxEZGYmCggK88847c64zU1NTuLu7o7i4GK6urli9ejU8PDzg4eGB06dPw9/fH+vXr0dcXBwcHR3R29uL+vp69PT0oKmpaVGuhYgWHpNpIqJnRFRUFCorK7Fnz545ve3QwsICP/74I5RKJcrLy1FYWAiZTIatW7dqB+bFxMTg7t27yMvLQ1VVFdzd3aFSqVBSUoKamhq9Yz1//jzOnz8/pTw6OlrvZFoTr5mZGY4ePYoPPvhA+6Kb7OxsnTmmF1JERAScnJxw7NgxxMXFzavOzpw5g4SEBCQmJmJsbAxKpRIeHh5wd3dHY2MjMjIyUFBQgD/++AMymQze3t5IS0tblOsgosUhEZOfUxER0bJ18eJFhIWFoba2VvtmPiIiWlpMpomInhGhoaFoaWlBW1vbjIPbiIjo38VuHkREy1xRURF+++03XLp0CSdPnmQiTUS0jLBlmohomZNIJLCwsMDevXuRm5sLQ0O2gxARLRf8RSYiWubY5kFEtHxxnmkiIiIiIj0xmSYiIiIi0hOTaSIiIiIiPTGZJiIiIiLSE5NpIiIiIiI9MZkmIiIiItITk2kiIiIiIj0xmSYiIiIi0hOTaSIiIiIiPTGZJiIiIiLS038AB0KDbmZS0u4AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xlH-hxBRPjNy" + }, + "outputs": [], + "source": [ + "!pip install pymatching~=2.0" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "sinter.plot_error_rate(\n", - " ax=ax,\n", - " stats=collected_surface_code_stats,\n", - " x_func=lambda stat: stat.json_metadata['p'],\n", - " group_func=lambda stat: stat.json_metadata['d'],\n", - " failure_units_per_shot_func=lambda stat: stat.json_metadata['r'],\n", - ")\n", - "ax.set_ylim(5e-3, 5e-2)\n", - "ax.set_xlim(0.008, 0.012)\n", - "ax.loglog()\n", - "ax.set_title(\"Surface Code Error Rates per Round under Circuit Noise\")\n", - "ax.set_xlabel(\"Phyical Error Rate\")\n", - "ax.set_ylabel(\"Logical Error Rate per Round\")\n", - "ax.grid(which='major')\n", - "ax.grid(which='minor')\n", - "ax.legend()\n", - "fig.set_dpi(120) # Show it bigger" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6bPcsxWhZebc" - }, - "source": [ - "You can see from the plot that the threshold of the surface code is roughly 1%.\n", - "\n", - "There is a problem here, though.\n", - "The problem is that the threshold isn't the only metric you care about.\n", - "The threshold tells you the absolute worse qubit quality that could possibly work, but it doesn't tell you how many of those qubits you would need to hit a target logical error rate.\n", - "What you **really** want to estimate is the quality *and corresponding quantity* of qubits needed to do fault tolerant computation.\n", - "\n", - "Suppose, for the sake of example, that you have qubits with a physical error rate of 0.1% according to the noise model you are using.\n", - "Collect logical error rates from a variety of code distances so you can predict the code distance needed to achieve a target logical error rate." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "OVjDeVXzkEO2", - "outputId": "197229c8-2c57-4634-b72a-4d46c74b5434", - "scrolled": true - }, - "outputs": [], - "source": [ - "noise = 1e-3\n", - "\n", - "surface_code_tasks = [\n", - " sinter.Task(\n", - " circuit = stim.Circuit.generated(\n", - " \"surface_code:rotated_memory_z\",\n", - " rounds=d * 3,\n", - " distance=d,\n", - " after_clifford_depolarization=noise,\n", - " after_reset_flip_probability=noise,\n", - " before_measure_flip_probability=noise,\n", - " before_round_data_depolarization=noise,\n", - " ),\n", - " json_metadata={'d': d, 'r': d * 3, 'p': noise},\n", - " )\n", - " for d in [3, 5, 7, 9]\n", - "]\n", - "\n", - "collected_surface_code_stats: List[sinter.TaskStats] = sinter.collect(\n", - " num_workers=os.cpu_count(),\n", - " tasks=surface_code_tasks,\n", - " decoders=['pymatching'],\n", - " max_shots=5_000_000,\n", - " max_errors=100,\n", - " print_progress=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "41iMwGAQqYz2" - }, - "source": [ - "To a good first approximation, logical error rates decrease exponentially with code distance.\n", - "Use scipy's linear regression to get a line fit of code distance versus log error rate." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cx7UkBiYQeOz" + }, + "outputs": [], + "source": [ + "import pymatching" + ] }, - "id": "w7QmBLpTkzxr", - "outputId": "8db9ac92-e3ec-4043-cdc9-64cde485af8e" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "LinregressResult(slope=-1.1895861614770902, intercept=-4.615053480324744, rvalue=-0.998930299836957, pvalue=0.0010697001630429748, stderr=0.0389381734731575, intercept_stderr=0.24932596232733958)\n" - ] - } - ], - "source": [ - "import scipy.stats\n", - "\n", - "# Compute the line fit.\n", - "xs = []\n", - "ys = []\n", - "log_ys = []\n", - "for stats in collected_surface_code_stats:\n", - " d = stats.json_metadata['d']\n", - " if not stats.errors:\n", - " print(f\"Didn't see any errors for d={d}\")\n", - " continue\n", - " per_shot = stats.errors / stats.shots\n", - " per_round = sinter.shot_error_rate_to_piece_error_rate(per_shot, pieces=stats.json_metadata['r'])\n", - " xs.append(d)\n", - " ys.append(per_round)\n", - " log_ys.append(np.log(per_round))\n", - "fit = scipy.stats.linregress(xs, log_ys)\n", - "print(fit)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bt6fVetwq0os" - }, - "source": [ - "Plot the collected points and the line fit, to get a projection of the distance needed to achieve a per-round error rate below one in a trillion." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 482 + "cell_type": "markdown", + "metadata": { + "id": "ewrxiwXMQ-Yz" + }, + "source": [ + "Now you're going to write a method for sampling a circuit using stim, then decoding it using pymatching, and counting how often it gets the answer right.\n", + "\n", + "First, you sample detection events and observable flips from the circuit.\n", + "You do this by creating a sampler with `circuit.compile_detector_sampler()` and then calling `sampler.sample(shots, separate_observables=True)`.\n", + "The `separate_observables=True` argument is saying that you want the result of the method to be a tuple where the first entry is detection event data to give to the decoder and the second entry is the observable flip data the decoder is supposed to predict.\n", + "\n", + "Second, you extract decoder information by using `stim.Circuit.detector_error_model(...)` and create a decoder from this information using `pymatching.Matching.from_detector_error_model`.\n", + "\n", + "Third, you run `matching.predict` to get the predicted observable flips.\n", + "\n", + "Fourth, you compare the predictions made by pymatching to the actual observable flip data that was sampled.\n", + "Anytime the prediction differs, that's a logical error." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "32hBrUAQRbSc" + }, + "outputs": [], + "source": [ + "def count_logical_errors(circuit: stim.Circuit, num_shots: int) -> int:\n", + " # Sample the circuit.\n", + " sampler = circuit.compile_detector_sampler()\n", + " detection_events, observable_flips = sampler.sample(num_shots, separate_observables=True)\n", + "\n", + " # Configure a decoder using the circuit.\n", + " detector_error_model = circuit.detector_error_model(decompose_errors=True)\n", + " matcher = pymatching.Matching.from_detector_error_model(detector_error_model)\n", + "\n", + " # Run the decoder.\n", + " predictions = matcher.decode_batch(detection_events)\n", + "\n", + " # Count the mistakes.\n", + " num_errors = 0\n", + " for shot in range(num_shots):\n", + " actual_for_shot = observable_flips[shot]\n", + " predicted_for_shot = predictions[shot]\n", + " if not np.array_equal(actual_for_shot, predicted_for_shot):\n", + " num_errors += 1\n", + " return num_errors" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gVvL0sbLSi4R" + }, + "source": [ + "You can try this method on the repetition code circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "D93VJhBVS1Cn", + "outputId": "abeb4610-b2ac-47fc-ae4d-eba90403e095" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "there were 5 wrong predictions (logical errors) out of 100000 shots\n" + ] + } + ], + "source": [ + "circuit = stim.Circuit.generated(\"repetition_code:memory\", rounds=100, distance=9, before_round_data_depolarization=0.03)\n", + "num_shots = 100_000\n", + "num_logical_errors = count_logical_errors(circuit, num_shots)\n", + "print(\"there were\", num_logical_errors, \"wrong predictions (logical errors) out of\", num_shots, \"shots\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jRbSSRC2TcBA" + }, + "source": [ + "You can check that increasing the physical noise strength increases the logical error rate.\n", + "Try increasing the between-round depolarization strength to 13%:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MLHl2S91Tnpi", + "outputId": "801e1e00-4ca7-4783-b556-cef8f180a110" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "there were 1234 wrong predictions (logical errors) out of 10000 shots\n" + ] + } + ], + "source": [ + "circuit = stim.Circuit.generated(\n", + " \"repetition_code:memory\",\n", + " rounds=100,\n", + " distance=9,\n", + " before_round_data_depolarization=0.13,\n", + " before_measure_flip_probability=0.01)\n", + "num_shots = 10_000\n", + "num_logical_errors = count_logical_errors(circuit, num_shots)\n", + "print(\"there were\", num_logical_errors, \"wrong predictions (logical errors) out of\", num_shots, \"shots\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j2WD8EIIYSsO" + }, + "source": [ + "As you can see, you get a lot more wrong predictions with this higher noise strength." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pJt8euOoT1kQ" + }, + "source": [ + "\n", + "# 7. Estimate the threshold of a repetition code using Monte Carlo sampling\n", + "\n", + "Estimating the threshold of an error correcting code really just comes down to trying a bunch of physical error rates and code distances.\n", + "You plot out the logical error rate vs physical error rate curve for each distance, and see where the curves cross.\n", + "That's where the physical error rate gets bad enough that increasing the distance starts to make the logical error rate worse, instead of better.\n", + "That's the threshold physical error rate.\n", + "\n", + "You can estimate the threshold of the repetition code, for the specific type of noise you're using, by plotting the logical error rate at various code distances and physical error rates:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "id": "qkWlL6pwT5xc", + "outputId": "cfd36225-8a66-4ce1-9c9c-79861041fb91" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxCElEQVR4nO3dd3hUZeL28e+kJ5AEAilAgAABDF16r3EVfyp231UUkdUFQgdFREVRRARpElBXxIKuYNe1QmhSRZogvSMlIZSEhLSZOe8fg5FIwAyZcDKZ+3NdXOacafckkrk55zzPYzEMw0BERETEA3mZHUBERETELCpCIiIi4rFUhERERMRjqQiJiIiIx1IREhEREY+lIiQiIiIeS0VIREREPJaKkIiIiHgsH7MDlGZ2u51jx44RHByMxWIxO46IiIgUgWEYnDt3jqpVq+LldeVjPipCV3Ds2DGqV69udgwRERG5CkeOHCE6OvqK91ERKkRiYiKJiYlYrVbA8Y0MCQkxOZWIiIgURXp6OtWrVyc4OPhv72vRWmOXl56eTmhoKGlpaSpCIiIibsKZz29dLC0iIiIeS0VIREREPJauEXIBm81GXl6e2THchq+vL97e3mbHEBERUREqDsMwOHHiBGfPnjU7itupUKECUVFRmpZARERMpSJUDH+UoIiICIKCgvShXgSGYXD+/HlSUlIAqFKlismJRETEk6kIXSWbzZZfgipVqmR2HLcSGBgIQEpKChERETpNJiIiptHF0lfpj2uCgoKCTE7inv74vunaKhERMZOKUDHpdNjV0fdNRERKAxUhERER8VgqQiIiIuKxVIQkX9euXRk2bJjZMURERK4ZFSEptlOnTnHTTTdRtWpV/P39qV69OoMGDSI9Pd3saCIiIlek4fNSbF5eXvTq1YsXX3yR8PBw9u7dS0JCAqdPn+bDDz80O56IiEcwDAO7Ycdm2LDarVgNKza7LX/bZtiw2W2O/TYrNrsVm2HFasvL/zrPZsVmz8NmOG632m2O2+x5WI0LX//xfHbH8//5Wn95DbvN8fwXMjj2X5Tnwravlw+v9Zxn2vdNRciFDMMgK89mymsH+no7NRIrMzOTAQMG8NlnnxEcHMyoUaOu+rUrVqzIgAED8rdr1qzJwIEDmTx58lU/p4hImWW3wam95B3fzK+HV7Dq1Fa2550hD7ACNgxsFrBd2LZiYANslj9u/+NrS/7XNsDqpqNxA+yGqa+vIlSIxMREEhMTsdmcKzVZeTYaPPtDCaW6su3jbyTIr+g/zscff5zly5fz5ZdfEhERwVNPPcXGjRtp1qwZAP3792f+/PlXfI6MjIxC9x87dozPPvuMLl26FDmPiEiZlHMOkn+DE1vhxFaOnNjM6szDrPL35ufAADK9Llyh4nvxg/5aaIpfcHwMAx/DwPvC1xf/19sw8DHAGwNvg0tvK2Tb+6Jtb8Nxnc2fjwWvC1//cdul2xa8MfAyLBiGuVVERagQCQkJJCQkkJ6eTmhoqNlxXC4jI4O5c+cyf/58evToAcC7775LdHR0/n3Gjx/v9FGif/7zn3z55ZdkZWVx66238tZbb7k0t4hIqWUYkH4sv/Bw4lfsJ7aRdfYAPwcGsCowgDWBARz29wX/4PyHBdq8CcsMx5ZZC7s9APACwxvD8Lrw9YXtC18bF30NF7YNL8Abw/DGbnhhwRvD7rjNjrfjflgwABsW8rDkbxtYsGOBi/dZvPD19sLXxxs/by98vH3w8fHC19sbX58Lf7y98fP1xt/HCz8fL/y8HY/x8/nzj5e3F14X337hv34+Xhc9zht/X3MvV1YRcqFAX2+2j7/RtNcuqn379pGbm0ubNm3y94WFhVG/fv387YiICCIiIpzKMG3aNMaNG8fu3bsZM2YMI0aMYPbs2U49h4hIaWfNzeHs4W1kHt6McWIr/qm/USF9J4HWdOzADj9f1gQGsiowgM01owucsrIYFryzqnI+oyF5mfU4l12VFLwI9vfB/y/F4o9C4ettwe9CKSnsdsd9Ltx28f4ifu3vU7DE+HhZPGrSWxUhF7JYLE6dnirNrubUWFRUFFFRUVx33XWEhYXRqVMnnnnmGS2sKiJuwTAMzp7P40R6Nsnp2aSk53DmVAreJ7dR7sxOwjN3Uz1nHzHGESpbrFS+8LiT3l4sCgxkZUBlVgUFku5dsER4WSsTSiOqBTSjfkhToiuEERkScOGPP5EhAQQ48Y9Zca2y8aktTqlTpw6+vr6sW7eOGjVqAHDmzBl2796df13P1Zwau5jdbgcgJyen+IFFRIrpfK6VE2nZJKfnkHIuO//r5AulJzk9C79zR4i1H6SB1yEaWA7R3usQ0ZbUS54r1wJL/UP4vlw4G4O8OeGbXeD2AO8gGldqQefojnSv2ZEaITWu1duUq6Ai5IHKly9Pv379ePzxx6lUqRIRERGMHTsWL68/z9M6c2rs22+/JTk5mVatWlG+fHl+++03Hn/8cTp06EBMTEwJvQsREciz2Uk5l3PhCM6FgnMuh+S0bJLPXSg7admcy7HmP8afXOpafqeB1yFaWQ4R53WYOMshQnyyCn2Ns/5V2F6hNutDQ9nkm8227MPk2HOBPCAPCxbiKsXRoWoH2ldtT9OIpvh6+Rb6XFL6qAh5qMmTJ5ORkcGtt95KcHAwI0eOJC0t7aqeKzAwkP/85z8MHz6cnJwcqlevzp133smTTz7p4tQi4insdoPT53PzT1GdyD9yU/BIzqnMXIwrjL4OI52mXoeI8z5EE5/DNPI+TA3773hjv+S+hpcfRsR1eEU1IS28Luv8vFiddZzVKRs4nnkE8o44ug8QHhhOu6rt6FC1A22rtiUsIKyEvhNS0iyGcaX/hTzbH6PG0tLSCAkJKXBbdnY2Bw4coFatWgQEBJiU0H3p+yfiuTJyHKepUtKzLxSci09R/Xn6Ks9WtI8nX28LUeV9aVruNE19f+c6DlIjbx8R5/cQmJ1S+IMCwyCqcf4fW2RDtpHL6hM/s+rYKrambsVu/FmW/Lz8aB7ZnA5VO9CuajvqVaznURcUu5srfX7/lY4IiYiIS+RYbaTkX4Nzabn54+vM3KLP0Va5vB8RwQFEhf55YXHVIDt17Ieokr2Hiud2EZC6A0vKb3D6fOFPElYHohpdKD1NILIRhFTlxPlkVh1dxapjq1i7fSbncs8VeFjt0Nq0r9qe9lXb0zKqJYE+gcX59kgppSIkIiJOMwyD7cfTWbw9haW7Ujh8+jynM3OL/Phgfx8i/yg3wQGOr4P9iQoNIOLCiKrwcn74ZaVcmJdnHSRvgx1b4dQ+oJCjRT6BENngzyM9kY0d2xfm7cmyZvHLiV9YvWs+q46t4kDagQIPD/ELoW2Vtvnlp0p5jXj1BCpCIiJSJDlWG2v3n2bx9mSSdiRzLC37kvv4eXsRGXqh3Fw0RDwqNICI4D+P6pTz/8vHjy0PUvfAiZ9h59Y/JyY8f6rwMOUjLyo8jRxHeirVAa8/h6EbhsHuM7tZvWc1q4+tZmPyRnLtf5Y1L4sXjSs3dlzkXK09jSo1wttLw9g9jYqQiIhc1pnMXJbuSmHxjmSW7zpZ4LRWgK8XneqGc0NcJI2jQ4kKCaBCkO/fXzuTnQaHfsufgZkT2yBlB9gKmW7D4gWV610oO39e00P5wke1ns4+zZpja1h9bDVrjq3hZNbJArdXKVeF9lXb06FaB9pUaUOI35WvH5GyT0VIREQK2H8yg8U7klm8PYVfDp3m4jUxI4L96REXSXxcBB1iK195IkDDgLQjFy07ceHP2UOF398vGCIbXlR4GkFEA/C9/LU5ebY8Np/czJpja1h1bBU7Tu3AuOi0WaBPIC0jW9KhmmNoe0xIjC5ylgJUhEREPJzNbrDx8BkWb09m0Y5k9p/MLHD7dVHB3NAgkvi4SBpXC8XLq5AiYc2BkzsvlJ1tjv8mb3Uc/SlMSHTBwhPVGCrEgNffrzt1JP0Iq445LnL++fjPnLcWvEi6fsX6tK/muM6neURz/Lz9ivqtEA+kIiQi4oEycqz8tPski3Yks3RnCmfO5+Xf5uttoW3tSsTHRdIjLoLoikGFP4ndBtu/hDWJcHwz2K2X3sfLB8LjChaeyEYQVPR5dzLzMll3fB2rjzmu9Tly7kiB28MCwmhXtV3+Rc6VAytf5plELqUiJCLiIY6nZbF4RwqLtyezZt8pcm1/zpMTEuBD9+siiG8QSed64YQEXGFmZJsVtn0KP02B1N1/7g+oUPA6nshGEF4ffPydymk37Ow4tYNVx1ax+thqtqRswWr8WbJ8vHy4PuL6/OJzXdh1eFnMXcFc3JeKkOTr2rUrzZo1Y/r06WZHEREXMAyD346lO6732ZHMtqPpBW6vWSmI+DjHKa+WMRXx9f6bMmHLgy0fwU+vwpkLQ88DQqHtQGh2P4RWh6u8/iblfEr+dT5rj63lTM6ZArfXCK6Rf5Fzq6hWlPMtd1WvI/JXKkLiEoVdfPjf//6X//f//p8JaUQ8V47Vxpp9p1i8I5mkHSkcv2iIu8UCzWtUJD4ukhsaRFAnvHzRLhy25sCm+bByOqQdduwLqgTtEqDVoxDg/MirHFsOG5M3svrYalYdW8WeM3sK3F7OtxxtotrQoZpjJufqwdWdfg2RolAREpeZN28eN910U/52hQoVzAsj4kFOZ+ayZGcKSTuSWbG74BD3QF9vOterTI+4SLpfF0Hl8k6cpsrLgg3vwqoZcO6YY1+5COgwBFo+An5FPypjGAYH0g7kX+S84cQGsm0XlTQsNKzUkPbV2tOhagcahzfWwqVyTagIeajMzEwGDBjAZ599RnBwMKNGjSr2c1aoUIGoqCgXpBORv7PvZAaLtztOeW04dKbAEPfIEMcQ9xviImlXp9KVh7gXJicDfnkbVr8GmRfW6gquCh2HQfOHrjic/WJpOWmsPb42/yLnE5knCtweERiRP7qrbZW2VAyo6FxOERdQESpEYmIiiYmJ2GxFXw8HcMyZkXeZtW5Kmm+QU+fmH3/8cZYvX86XX35JREQETz31FBs3bqRZs2YA9O/fn/nz51/xOTIyMgpsJyQk8K9//YvatWvTv39/+vbtq/k6RFzEarOz4dCZ/FNe+1MLDnFvUCWE+DjHxc6Nql5miPvfyU6Hn990jALLOu3YF1oDOg2HZg/87UXPVruVbanb8i9y3pa67ZKFS1tGtcy/yDm2Qqx+R4jpVIQKkZCQQEJCQv7qtUWWdx5eqlpywa7kqWNFPkydkZHB3LlzmT9/Pj169ADg3XffJTo6Ov8+48ePd+oo0fjx4+nevTtBQUH8+OOPDBw4kIyMDIYMGeLc+xCRfBk5VlbsPsni7cks2ZXC2UKGuN/QwHHK67JD3Isi6wysewPWzv5z3p+w2tBpJDS5D7wvf4rKbtj5Zv83LD2ylLXH116ycGlshVjaVW1Hh6odaBHZggCfgKvPKVICVIQ80L59+8jNzaVNmzb5+8LCwqhfv37+dkREBBERhU9hX5hnnnkm/+vrr7+ezMxMJk+erCIk4qRjZ7NI2pHMoh0prP3LEPcKQb50qx9BfFwknetVJvhKQ9yLIvMUrE2En/8DORdGlFWuD51HQcM7wfvKHxHncs/x1E9Psez3Zfn7QvxC8otPu6rtiCqn0+VSuqkIuZJvkOPIjFmv7UJXc2rsYm3atOGFF14gJycHf3/n5hAR8SSGYbDtaDqLdiSzeHsy248XHOIeUykof1bnFjUr4vN3Q9yLIiMFVs+E9W9D3oVTbBENHQWoQa8CC5dezt4zexm2bBiH0g/h5+XHw40epkt0FxpWaqiFS8WtqAi5ksXi1CgKs9SpUwdfX1/WrVtHjRo1ADhz5gy7d++mS5cugPOnxv5q8+bNVKxYUSVIpBDZeQWHuJ9ILzjEvUWNisRfKD91wsu57jqa9GOOEWAb3gHrhdes0hQ6PwH1by7S8hYAPxz8gWdWPUOWNYsq5aowrds0GlZq6JqMIteYipAHKl++PP369ePxxx+nUqVKREREMHbsWLwu+iXozKmxr7/+muTkZNq2bUtAQACLFi3ipZdecslINJGy4lRGDkt2OlZx/2lPKucvGuIe5OdN57rhxDeIpFv9cCo5M8S9KM4edswBtOl9sOU69kW3chSgujcUeaCF1W5l5saZzPttHgBtqrThlc6vEBZQ9OUyREobFSEPNXnyZDIyMrj11lsJDg5m5MiRpKVdZnHEv+Hr60tiYiLDhw/HMAxiY2OZOnUqjz76qItTi7gPwzDYdzLzwiruyWw4fAbjL0Pc4+MiiW8QSbvaVzHEvShO74efpsKW//65DljNDtD5cajd1amRpqezT/PE8idYd2IdAH0b9WXI9UPw8dLHiLg3i2Fc/FdTLvbHqLG0tDRCQgrOnJqdnc2BAweoVasWAQEaBeEsff+kLLLa7Pxy6Ez+/D4HTxWcTqNh1ZALszpH0rBqSMkNHT+527EMxtaPwbhw5KlWF+jyBMR0dPrpfkv9jeHLhnM88ziBPoG80OEFboy50cWhRVznSp/ff6UqLyJSDOey81ixO5XFO5JZsjOFtKw/h7j7eXvRtk4lboiLoEdcJFUrFG0iwquWvB1WTIbfPgcu/Bs39gZHAare+qqe8vM9n/Pi2hfJtedSM6Qm07tOJ7ZirOsyi5hMRUhExEm/nzlP0g7H9T5r958iz/bngfUKQb50vy6CG+Ii6VQvnPL+1+DX7PEtsPwV2Pm/P/fV/z/HKLBqza/qKfNsebz888ss3L0QgK7Vu/JSx5cI9gt2RWKRUkNFSETkb9jtBtuOpbF4u2N+nx1/GeJeu3K5/FFezWtUcM0Q96L4fQOseAV2f39hh8Ux/L3z4xDV6KqfNjkzmRHLR/DryV+xYCGhWQKPNnkUL8s1el8i15CKkIhIIbLzbKzel8qi7Sks2ZlMcnpO/m1eFmhZM4z4Bo5TXnXCy1/bcIfWOArQviWObYsXNLrbMRN0xHXFeuoNyRsYuWwkp7JPEewXzMudXqZzdGcXhBYpnVSEREQuSP1jiPt2xxD3rLw/h7iX8/Omc71w4uMi6XZdBGHl/K5tOMOAAysc1wAd/Mmxz+INTf8JnUZApTrFfHqDD3d+yJT1U7AaVupWrMuMrjOoHlLdBeFFSi8VIRHxWIZhsDclI39W501HzhYY4l4lNCB/iHvb2mH4+5gwY7JhwN4kxxGgI46h63j5wvUPQMfhUDGm2C+RZc1i/Jrx/G+/4xqjnrV68ly75why8Yz1IqWRipCIeJQ8m51fDjpWcV+8I5lDfxni3qiaY4h7fFwJD3H/O4YBu75zHAE6ttGxz9sfWvSBDkMhNPrKjy+iI+eOMHzpcHad2YW3xZuRLUfSO663VoUXj6EiJCJlXnp2Hst3nWTxjmSW7kwhPduaf5uftxftYysRHxdJj7gIqoSW8BD3v2O3w46vYMUUSN7q2OcbBC0fgfaDIdh1i5iuPLqS0StGk56bTlhAGFO6TKFVVCuXPb+IO1AREpEy6cjp8yTtSGbxjhTW7j+F1f7nOa+KQb50vy6SGxpE0LHuNRri/nfsNsf8PyumwMkdjn1+5aH1o9BuEJSr7LqXMuzM3TqX1za9hoFBk8pNeLXrq1opXjxSKfjbL6VF165dadasGdOnTzc7iojT7HaDX4+m5c/qvPPEuQK31wl3DHG/IS6S62tUxNurlJz6sVlh60LHTNCn9jr2+YdC2/7Qpj8EuXYdr4zcDMauHMuSI44RZ3fXu5sxrcfg532NL/4WKSVUhKTY3nnnHfr27VvobcnJyUVevFXEWdl5NlbtTb1wvU8KJ8/9ZYh7TBg3XDjlVftaD3H/O9Zc2PKhYy2ws4cc+wIrQtsEaPMYBIS6/CX3n93P0KVDOZh+EF8vX8a2Gctd9e5y+euIuBMVISm2++67j5tuuqnAvocffpjs7GyVIHG5k+dyWLIzmUXbU1i59yTZefb828r5edO1fgQ94iLoVj+Citd6iHtR5GU7VoFfOR3Sf3fsKxfuOP3Vqh/4l8zMzYsPLWbsyrGct54nMiiSaV2n0Ti8cYm8log7URHyUJmZmQwYMIDPPvuM4OBgRo0addXPFRgYSGDgnxeYnjx5kiVLljB37lxXRBUPZxgGe1IyWHThlNfmvwxxrxoakD+rcxuzhrgXRe552PAOrJoBGScc+8pHOUaAtXgY/EpmqLrNbuO1Ta8xd5vj72OrqFZM7jyZSoGVSuT1RNyNipALGYZBljXLlNcO9Al0arjr448/zvLly/nyyy+JiIjgqaeeYuPGjTRr1gyA/v37M3/+/Cs+R0ZGRqH733vvPYKCgrj77ruLnEfkYnk2O+sPnGbxhfW8Dp8uOMS9SXRo/iivBlVMHOJeFDnnYP1cWDMLMk869oVEQ8dhcP2D4BtQYi99NvssT6x4gjXH1wDQp0EfhrUYho+XfvWL/EF/G1woy5pFmw/bmPLa6+5fV+TJzzIyMpg7dy7z58+nR48eALz77rtER/85L8n48eOv+ijR3Llzuf/++wscJRL5O2lZeSzffZLF25NZuiuFcxcPcffxokOdSsQ3iKTHdZFEhZZceXCZ7DRY9yasTYSsM459FWo6lsFo+k/wKdnTdttPbWf40uEcyzxGoE8gz7d/np61epboa4q4IxUhD7Rv3z5yc3Np0+bP0hYWFkb9+vXztyMiIq7q+p41a9awY8cO3n//fZdklbIt5Vw23/x6nMU7klm3/3SBIe6VyvnR/TrHWl6d6lamXGkY4l4U50/D2jmw7g3ISXPsqxTrKECN7wFv3xKP8NW+rxi/Zjw5thyqB1dnerfp1KtYr8RfV8QduclvFvcQ6BPIuvvXmfbarnS1p8beeustmjVrRosWLVyaR8qWlPRs5izfx4frDpNj/fNi59iI8sTHOeb3aVa9FA1xL4rMVMfpr5//A7kX/m6EX+dYCb7hHeBV8tcu5dnyeGX9K3y06yMAOkd3ZmKniYT4hZT4a4u4KxWhQiQmJpKYmIjNZvv7O1/EYrG4xdo8derUwdfXl3Xr1lGjRg0Azpw5w+7du+nSpQtwdafGMjIyWLhwIRMnTnR5ZikbCitATatX4NYmVegRF0mtyuVMTngVzp2A1a/BL29D3oVrmSIbQ5fH4bpbwcvrmsQ4ef4kI5ePZFPKJgAGNB1A/6b98bJcm9cXcVcqQoVISEggISGB9PR0QkNdP5eH2cqXL0+/fv14/PHHqVSpEhEREYwdOxavi35hX82psQULFmC1Wundu7erI4ubK6wAtahZkeHx9egQW6l0X+x8OWm/O0aAbXgXbBfmL6raHLo8AfVugmv4njalbGLEshGkZqUS7BvMxE4T6VK9yzV7fRF3piLkoSZPnkxGRga33norwcHBjBw5krS0tGI959y5c7nzzjupUKGCa0KK2yuTBejMQVg5DTZ9APY8x77qbR1HgOr0uKYFyDAMPtr1Ea/8/ApWw0pshVimd5tOzZCa1yyDiLuzGMbFM3LIxf44IpSWlkZISMFz7NnZ2Rw4cIBatWoREOAGI1hKGX3/yrYyWYBO7XMsg7HlIzAunDaP6eQ4AhTT6ZoWIIBsazYvrH2Br/Z9BcCNMTcyvv14tzg9L1LSrvT5/Vc6IiQiLpOSns3ry/fzwbpDZacApeyEn6bAtk/BuHBhd53u0PkJqNnOlEhHM44yfOlwdpzegZfFixEtRvBQg4fc8/srYjIVIREptjJZgE5sgxWTYfuXwIUD5/VuchSgaPNGRa4+tprRK0ZzNucsFf0rMrnLZNpUMWf+MpGyQEVIRK7a5QrQsPi6dIyt7J4F6NgmWD4Zdn3z5764Wx3D4Ks0NS2WYRi8ve1tZm6aid2w07BSQ6Z1nUaV8lVMyyRSFqgIiYjTymQBOvIzLH8F9i66sMMCje6ETqMgsoGp0TLzMnlm1TMsOuTIdkfsHYxtOxZ/b39Tc4mUBSpCIlJkZbIAHVzpKEAHlju2Ld6OGaA7jYRw82djPpB2gGFLh7E/bT8+Xj481eYp7q57t3t+r0VKIRWhYrLb7X9/J7mEvm/upcwVIMOA/csc1wAdWuXY5+XjWAOs0wgIq21qvD8kHU5i7MqxZOZlEhEYwdRuU2kabt7pOZGySEXoKvn5+eHl5cWxY8cIDw/Hz8/P/T4MTGAYBrm5uZw8eRIvLy/8/Ep24UkpnsIKUPMaFRh+Qz33LUB7FsGKV+D39Y593n6OVeA7DoMKNUyN9web3Ubi5kT+s/U/ALSIbMGULlOoHFjZ5GQiZY+K0FXy8vKiVq1aHD9+nGPHjpkdx+0EBQVRo0aNArNZS+lR5gqQ3Q67vnUcATq+2bHPJwBa9IUOQyCkqqnxLpaWk8bon0az6qjjSFXvuN6MaDkCX6+SX6xVxBOpCBWDn58fNWrUwGq1Or0umSfz9vbGx8fH/T5MPUDZK0A2x/D3FVMg5TfHPt9y0KoftB8M5Z1bRqak7Tq9i6FLh3I04ygB3gGMaz+OW2rfYnYskTJNRaiYLBYLvr6++PrqX2vivspcAbJZHRMg/jQFUnc79vmHQOvHoO1AKFfJ3HyF+N/+//H86ufJtmVTrXw1ZnSbQf2w+mbHEinzVIREPFjZK0B5jiUwVk6F0/sd+wJCHeWnzb8hsKK5+QqRZ89j6i9Tmb9jPgAdqnVgUqdJhPqXvQWfRUojFSERD5RyLps3lu9n/toyUoCsObD5A8diqGcPO/YFVYJ2CdDqUQi48lpDZknNSmXkspFsTNkIwGNNHmNg04F4e3mbnEzEc6gIiXiQMleA8rJg43uwagakH3XsKxfhuAC65SPgV87cfFewOWUzI5eNJCUrhXK+5Xip40t0r9Hd7FgiHkdFSMQDXK4ADYuvR6e6bliAcjPhl7dh9WuQkezYF1zVMQS++UPgG2hqvCsxDIOPd3/MxJ8nYrVbqR1am+ndplMrtJbZ0UQ8koqQSBlW5gpQdjqs/w+sSYTzpxz7Qms4CtD1vcGndC85kWPLYcLaCXy+93MAbqh5Ay90eIFyvqX3yJVIWaciJFIGlbkClHUG1r0Ba+dA9lnHvoq1HMtgNP1/4F36R20ezzjO8GXD+e3Ub3hZvBjafCh9G/Z1v5+FSBmjIiRShpS5ApR5CtbOhp/fhJx0x77K9RwLoTa6C7zd41fYuuPreHz545zJOUMF/wq80vkV2lVtZ3YsEUFFSKRMKKwAXV+jAsPdtQBlpDiu/1k/F/IyHfsiGkLnUdCgF7jJqCrDMHj3t3eZtnEadsNOXFgc07pNo1r5amZHE5ELVIRE3FiZK0Dpx2DVTNjwDlizHPuqNIXOT0D9m8GNlmQ5n3eeZ1c/yw8HfwDgtjq38UzbZwjwCTA5mYhcTEVIxA2VuQJ09ohjDqBN74Mt17EvupWjANW9Adzs/RxKP8SwpcPYe3YvPhYfRrcezX3173O/n4uIB1AREnEjZa8AHXYshLr5v2DPc+yr2QE6Pw61u7pdAQJYdmQZY34aQ0ZeBuGB4UztOpVmEc3MjiUil6EiJOIGUs5l8+by/cxfd4jsvDJQgAB2fQef/Rty0hzbtbpAlycgpqO5ua6S3bAzZ8scXt/yOgDXR1zPq11eJTwo3ORkInIlKkIipViZLEB2Gyyb6DgSBI5TYDe+BNVbm5urGNJy0hjz0xh+OvoTAP+87p883vJxfN1gWL+Ip1MREimFLleAhsXXo7O7FiCA86fh03/BviTHdut/wz9eBB8/c3MVw+4zuxm2dBhHzh3B39ufZ9s9y211bjM7logUkYqQSClSZgsQwLHNsPBBx3VBPoFw6wxoep/ZqYrluwPfMW71OLKsWVQrX41pXacRVynO7Fgi4gQVIZFSoEwXIIBNH8A3I8Ca7ZgR+r75ENXI7FRXzWq3Mm3DNN7b/h4A7au2Z1KnSVQIqGBuMBFxmoqQiInKfAGy5sD3TzoWSAWoeyPc+QYEVjQ3VzGcyjrF4yseZ/2J9QD8q/G/GNRsEN5uMsmjiBSkIiRigsIKULPqFRh+QxkpQABpR2HhQ3D0F8ACXcc4hsW70aSIf7X15FaGLxtO8vlkgnyCmNBxAvE1482OJSLFoCIkcg15RAECOLACPu4L51MhIBTumuuYGNGNfbr7Uyasm0CePY+YkBhmdJtB7Qq1zY4lIsWkIiRyDXhMATIMxxphi58DwwZRjeHe9yGsltnJrlquLZeX1r3Ep3s+BaB79e5M6DiB8n7lTU4mIq6gIiRSgk6ey+GN5fvKfgECyDkHXw6C7V84tpv+E/5vKvgFmRqrOE5knmDEshFsTd2KBQtDmg/hkUaP4GVx39N7IlKQ00Vo/PjxjBo1iqCggr/csrKymDx5Ms8++6zLwom4q5PncnhzxT7eX+sBBQjg5G5Y0BtSd4GXL/R8GVr2c8slMv6w/sR6Ri0fxens04T4hfBK51foUK2D2bFExMUshmEYzjzA29ub48ePExERUWD/qVOniIiIwGazuTSgmdLT0wkNDSUtLY2QkBCz44gb8LgCBLD9K/hiIOSeg+AqcO97bj1LtGEYvL/9faZumIrNsHFd2HVM6zqN6OBos6OJSBE58/nt9BEhwzAK/WW+ZcsWwsLCnH26UikxMZHExMQyVeqkZF2uAA2Lr0uXeuFlswDZrLDkBVg13bFdsyPcMw/KR1zxYaXZ+bzzPLfmOb478B0At9S+hWfbPUugT6DJyUSkpBT5iFDFihWxWCz57eriX+w2m42MjAz69+9PYmJiiYW91nRESP6ORxYggMxU+KSvY3QYQLtBEP8cuPHaWkfSjzB02VD2nNmDj8WHUa1Gcf9195fdn6FIGVYiR4SmT5+OYRg88sgjPP/884SGhubf5ufnR0xMDO3atbv61CJuxGMLEMDRDbDgIUj/HXzLQa/XoNFdZqcqlhW/r+DJn57kXO45KgVU4tWur9IisoXZsUTkGihyEerTpw8AtWrVon379vj6uu+//ESulkcXIIAN78C3j4MtFyrFOpbKiHDftbXshp03f32T2ZtnY2DQNLwpU7tOJSLIfU/viYhznL5GqEuXLthsNj799FN27NgBQMOGDbntttvw9tYU81I2eXwBysuGb0fBpvcd29fdArfPdkyW6KbO5Z7jqZ+eYtnvywC4r/59jG41Gl83Pr0nIs5zugjt3buXm2++maNHj1K/fn0AJk6cSPXq1fnmm2+oU6eOy0OKmMXjCxA4Votf8CAc3wwWL+j+DHQY5tZLZew9s5dhy4ZxKP0Qfl5+PN32ae6oe4fZsUTEBE4Pn7/55psxDIMPPvggf5TYqVOn6N27N15eXnzzzTclEtQMuljac6kAXbBvCXzSD7JOQ2AY3P021Olmdqpi+eHgDzyz6hmyrFlUKVeFad2m0bBSQ7NjiYgLlejw+eXLl7N27doCQ+UrVarEyy+/TIcOmmxM3JsK0AV2O6yaBkteBMMOVZrBfe9DhRpmJ7tqVruVmRtnMu+3eQC0qdKGVzq/QlhA2Zj2Q0SujtNFyN/fn3Pnzl2yPyMjAz8/P5eEErnWVIAukp0Gnw+AXReO7l7/INw8BXwDzM1VDKezT/PE8idYd2IdAH0b9WXI9UPw8dIqQyKezunfArfccguPPfYYc+fOpXVrx+yx69ato3///tx2220uDyhSklIzcnhzxX7eW3MwvwA1rV6B4Z5YgABSdjiWyji1F7z94ObJ0OJhs1MVy2+pvzF82XCOZx4n0CeQFzq8wI0xN5odS0RKCaeL0MyZM+nTpw/t2rXLH0JvtVq57bbbmDFjhssDipSEyxWgYfF16eqJBQhg26fw5WDIy4SQaLjvPajm3nPpfL7nc15c+yK59lxqhtRketfpxFaMNTuWiJQiThehChUq8OWXX7Jnzx527twJQFxcHLGx+uUipZ8KUCFsebBoHKy9MCt8rS6Oi6LLVTY3VzHk2fJ4+eeXWbh7IQBdq3flpY4vEewXbHIyESltrvoEed26dalbt64rs4iUGBWgy8hIgY/7wqGVju2Ow6Hb0+DtvtfOJGcmM2L5CH49+SsWLCQ0S+DRJo/iZXHf4f4iUnKc/m1ns9l45513SEpKIiUlBbvdXuD2JUuWuCycSHGpAF3BkZ9h4UNw7jj4BcMdcyDuVrNTFcuG5A2MXDaSU9mnCPYL5uVOL9M5urPZsUSkFHO6CA0dOpR33nmH//u//6NRo0ae/UEipdYfBej9NYfIyrMBKkD5DAPWvwXfjwF7HlSu71gqI7ye2cmummEYfLjzQ6asn4LVsFK3Yl1mdJ1B9ZDqZkcTkVLO6SL00UcfsXDhQm6++eaSyCNSLCpAfyP3PPxvOPz6kWO7we3Qaxb4u++1M1nWLMavGc//9v8PgJ61evJcu+cI8g0yOZmIuAOni5Cfn58ujJZSRwWoCE4fcCyVkbwVLN5ww/PQbhC48ffmyLkjDF86nF1nduFt8WZky5H0juutn7eIFJnTRWjkyJHMmDGDWbNm6ZeNmE4FqIj2LIJP/wXZZyGoMtwzD2q597UzK4+uZPSK0aTnphMWEMaULlNoFdXK7Fgi4maKVITuvPPOAttLlizhu+++o2HDhvlzCf3hs88+c106kctQASoiux1WvALLXgYMqNYS7n0PQquZneyq2Q07c7fO5bVNr2Fg0KRyE17t+ipR5aLMjiYibqhIRSg0NLTA9h13aJVmMUdqRg7/WbGf91SA/l7WGfjs37DnB8d2y35w00Tw8Tc3VzFk5GYwduVYlhxxjE69u97djGk9Bj9vLe8jIlenSEVo3rx5JZ1D5IoKLUDRoQy7oZ4KUGFObIMFD8CZg+ATALdMg2b3m52qWPaf3c/QpUM5mH4QXy9fxrYZy1317jI7loi4OaevEcrKysIwDIKCHCMyDh06xOeff06DBg34xz/+4fKA4tkuW4Di69G1vgpQobYsgK+HgjXLsVr8ffOhSlOzUxXL4kOLGbtyLOet54kMimRa12k0Dm9sdiwRKQOcLkK9evXizjvvpH///pw9e5bWrVvj5+dHamoqU6dOZcCAASWRUzyMCtBVsObCj2Ph5zcd23V6wF1vQVCYubmKwWa38dqm15i7bS4AraJaMbnzZCoFVjI5mYiUFU4XoY0bNzJt2jQAPvnkE6Kioti0aROffvopzz77rIqQFIsK0FVKPw4f94Ej6xzbnZ+Ark+Cl7e5uYrhbPZZnljxBGuOrwGgT4M+DGsxDB8v913+Q0RKH6d/o5w/f57gYMfkaz/++CN33nknXl5etG3blkOHDrk8oHgGFaBiOLQaPn4YMpLBPxTufAPq9zQ7VbFsP7Wd4UuHcyzzGIE+gTzf/nl61nLv9yQipZPTRSg2NpYvvviCO+64gx9++IHhw4cDkJKSQkhIiMsDStmmAlQMhgFr58CPT4Nhg4gGjuuBKtUxO1mxfLXvK8avGU+OLYfqwdWZ3m069Sq67/IfIlK6OV2Enn32We6//36GDx9Ojx49aNeuHeA4OnT99de7PKCUTSpAxZSbCV8NgW2fOLYb3wO3zgC/cubmKoY8Wx6vrH+Fj3Y5lv/oHN2ZiZ0mEuKnf2CJSMmxGIZhOPugEydOcPz4cZo2bYqXlxcAP//8MyEhIVx33XUuD2mW9PR0QkNDSUtL09EuF1EBcoFT+2BBb0jZDl4+8I8J0Obfbr1UxsnzJxm5fCSbUjYBMKDpAPo37Y+XxcvkZCLijpz5/L6qqw6joqKIiio4i2vr1q2v5qnEQ6gAuciu7+CzxyAnHcpHwj3vQs12Zqcqlk0pmxixbASpWakE+wYzsdNEulTvYnYsEfEQGn4hJepURg5v/rSf91arABWL3QbLJsKKyY7tGu3gnncg2L2Xlfh8z+eMXzMeq2EltkIs07tNp2ZITbNjiYgHURGSElFYAWoSHcpwFSDnnT/tWDB1X5Jju01/+MeL4O175ceVckmHkhi3ehwGBjfG3Mj49uMJ8g0yO5aIeBgVIXGpyxWgYfF16VY/QgXIWcc2w8IH4exh8AmE22ZCk3vNTlVsv578ldE/jcbA4J569/BM22f0/4aImMKpIpSXl8e///1vnnnmGWrVqlVSmcQNqQCVgE3z4X8jwJYDFWs5hsZHNTI7VbEdST/C4CWDybHl0KlaJ55q85T+/xAR0zg9aiw0NJTNmzd7RBHSqLG/pwJUAqw58N1o2HBhseN6N8Edb0BgBVNjucLZ7LM8+N2DHEw/SFxYHO/c9I5Oh4mIy5XoqLHbb7+dL774In8iRfFMKkAlJO13WPgQHN0AWKDbU9BpFHi5/zDyHFtO/urxUeWimNVjlkqQiJjO6SJUt25dxo8fz6pVq2jRogXlyhWcwG3IkCEuCyeljwpQCTqwAj7uC+dTIaAC3DUX6sabncol7Iadp1c+zcaUjZT3Lc/sHrOJCIowO5aIiPOnxq50SsxisbB///5ihyotdGrsTypAJcgwYPVMWPwcGHaIauy4HqhijNnJXGbahmm8ve1tfCw+zLlhDm2rtDU7koiUYSV6auzAgQNXHUzcjwpQCcs5B18mwPYvHdtN74dbpoJvoLm5XGjhroW8ve1tAJ5r/5xKkIiUKlc9fD43N5cDBw5Qp04dfHw0Cr+sUQG6Bk7uhgUPQOpu8PKFni9Dy35uvVTGX634fQUT1k0AYGDTgfSK7WVyIhGRgpxuMOfPn2fw4MG8++67AOzevZvatWszePBgqlWrxpNPPunykHLtnMrI4T8/HeC9NQc5n6sCVGK2fwlfDITcDAiuCve+B9VbmZ3Kpbaf2s6o5aOwG3Z61elF/6b9zY4kInIJp4eijBkzhi1btrBs2TICAgLy98fHx7NgwQKXhpNr51RGDi9/t5NOryzl9eX7OJ9ro0l0KG8/3JIvEzrQ/bpIlSBXsFlh0bOOkWG5GRDTCf69vMyVoOMZx0lISiDLmkWbKm0Y126c/v8RkVLJ6SNCX3zxBQsWLKBt27YFfrE1bNiQffv2uTSclLzCjgA1ruY4AtT9Oh0BcqnMVPikr2N0GEC7QRD/PHiXrVPL6bnpDEwaSGpWKrEVYpnWdRq+br4ciIiUXU7/Bj558iQREZcOe83MzNSHphtRAbrGft/gWCoj/Sj4loPbE6HhHWancrk8Wx4jlo5g79m9hAeGMyd+DsF+wWbHEhG5LKeLUMuWLfnmm28YPHgwQP4H5ltvvUW7du1cm05cTgXoGjMM2PAOfPcE2HKhUizc9wFEXGd2MpczDIPn1jzHuhPrCPIJIrFHIlHlosyOJSJyRU4XoZdeeomePXuyfft2rFYrM2bMYPv27axevZrly5eXREZxARUgE+Rlw7cjHWuGAVx3C9w+BwLK5pxUr295na/2fYW3xZspXaYQVynO7EgiIn/L6SLUsWNHNm/ezMsvv0zjxo358ccfad68OWvWrKFx48YlkVGKQQXIJGcOOS6IPr4ZLF7Q41noMKxMDY2/2Jd7v2T2ltkAjG07lk7RnUxOJCJSNE7PLO1J3HlmaRUgE+1Ngk/7QdYZCAyDu9+GOt3MTlVi1h5fy4BFA7AaVvo16sewFsPMjiQiHq5EZ5YGsNlsfP755+zYsQOABg0a0KtXL02sWAqoAJnIboeVU2HJi4ABVa+He9+HCtXNTlZi9pzZw/Clw7EaVnrG9GRIc601KCLuxenm8ttvv3Hbbbdx4sQJ6tevD8CkSZMIDw/n66+/plGjRi4PKX9PBchk2Wnw+QDY9Y1ju/lD0HMy+AZc+XFuLOV8CgOTBpKRl0HziOa82PFFvCxOT00mImIqp4vQv/71Lxo2bMgvv/xCxYoVAThz5gwPP/wwjz32GKtXr3Z5SLm805m5vLlivwqQmZK3w4LecHofePvDzZOhRR+zU5Wo83nnGZQ0iBOZJ4gJiWFm95n4efuZHUtExGlOF6HNmzcXKEEAFStWZMKECbRqVbZmxy3NTmfm8p+f9vPuahUgU237FL4cBHnnIbS6Y6mMas3NTlWirHYro5aPYsfpHYQFhDE7fjah/qFmxxIRuSpOF6F69eqRnJxMw4YNC+xPSUkhNjbWZcGkcCpApYQtDxaNg7WJju3aXeGut6FcJVNjlTTDMHhp3Uv8dPQnArwDmNV9FtWDy+41UCJS9jldhCZOnMiQIUN47rnnaNu2LQBr165l/PjxTJo0ifT09Pz7uttIq9KssALUqFoIw3rUo0ecCtA1dS7ZsVTGoVWO7Y4joPvT4OVtbq5r4O1tb/Px7o+xYGFS50k0DteUGSLi3pwePu/l9efFkH98+P7xFBdvWywWbDabq3KaojQMn1cBKmUOr4OP+8C54+AXDHfMgbhbzU51TXx34DueWPEEAE+2fpIH4h4wOZGISOFKdPj80qVLrzqYFJ0KUCljGLD+Lfh+DNjzIPw6uG8+VK5rdrJrYkPyBsauHAtA77jeKkEiUmY4XYS6dOlSEjnkAhWgUij3PPxvGPy6wLHd4HbolQj+5c1Mdc0cSDvAkCVDyLPn0aNGD0a1HGV2JBERl/GIGRDvuOMOli1bRo8ePfjkk0/MjlMoFaBS6vQBWPAgJG8FizfcMB7aJZTZpTL+6lTWKQYsHkB6bjpNKjdhYqeJeHvAtVAi4jk8oggNHTqURx55hHfffdfsKJdQASrFdv8In/3LMVliuXC4ex7U8pw1tLKsWQxeMpijGUeJLh/NzO4zCfQJNDuWiIhLeUQR6tq1K8uWLTM7RgEqQKWY3Q4rXoFlLwMGRLeCe96F0GpmJ7tmbHYbT654kq2pWwn1D2VO/BwqBZbtqQFExDOZPh/+ihUruPXWW6latSoWi4UvvvjikvskJiYSExNDQEAAbdq04eeff772QV1o+7F0Ok5awpxl+zifa6NRtRDeeqglXw/qSHyDSJUgM2Wdgf/eB8smAga0+hc8/I1HlSCAKb9MYcmRJfh5+TGz20xiQmPMjiQiUiKu6oiQ1Wpl2bJl7Nu3j/vvv5/g4GCOHTtGSEgI5cs7dwFpZmYmTZs25ZFHHuHOO++85PYFCxYwYsQIXn/9ddq0acP06dO58cYb2bVrFxEREQA0a9YMq9V6yWN//PFHqlatWuQsOTk55OTk5G9fPCeSK9WPCiYqJIAgf28dASpNTmx1LJVx5iD4BMAt06HZP81Odc3N3z6f+TvmAzCh4wSaR5btmbJFxLM5XYQOHTrETTfdxOHDh8nJyeGGG24gODiYSZMmkZOTw+uvv+7U8/Xs2ZOePXte9vapU6fy6KOP0rdvXwBef/11vvnmG95++22efPJJwLHshytMnDiR559/3iXPdSXeXhb++1hbIoL9VYBKiy0L4OuhYM2CCjXhvvehSlOzU11zSYeSeGX9KwAMaz6Mm2rdZHIiEZGS5fSpsaFDh9KyZUvOnDlDYOCfF07ecccdJCUluTRcbm4uGzZsID4+Pn+fl5cX8fHxrFmzxqWvBTBmzBjS0tLy/xw5csTlr/GHyJAAlaDSwJoL34yCzx9zlKDYeHhsmUeWoF9P/sron0ZjYHBPvXt4pNEjZkcSESlxTh8R+umnn1i9ejV+fgVXmo6JieHo0aMuCwaQmpqKzWYjMjKywP7IyEh27txZ5OeJj49ny5YtZGZmEh0dzccff0y7du0uuZ+/vz/+/v7Fzi1uIv24Y5boI+sc211GO/544PDwI+lHGLxkMDm2HDpV68RTbZ5SURcRj+B0EbLb7YUunfH7778THBzsklCutnjxYrMjSGlzcBV8/DBkpoB/KNz5JtT3zNNAZ7PPMjBpIKezTxMXFseULlPw8fKIAaUiIs6fGvvHP/7B9OnT87ctFgsZGRmMGzeOm2++2ZXZqFy5Mt7e3iQnJxfYn5ycTFRUlEtfSzyEYcCa2fDurY4SFNEQHlvqsSUox5bD0KVDOZh+kKhyUczqMYsg3yCzY4mIXDNOF6FXX32VVatW0aBBA7Kzs7n//vvzT4tNmjTJpeH8/Pxo0aJFgWuP7HY7SUlJhZ7aErminAz4tB/8MAYMGzS+B/61CCrVMTuZKeyGnadXPs3GlI2U9y3P7B6ziQiKMDuWiMg15fTx7+joaLZs2cKCBQvYsmULGRkZ9OvXjwceeKDAxdNFlZGRwd69e/O3Dxw4wObNmwkLC6NGjRqMGDGCPn360LJlS1q3bs306dPJzMzMH0UmUiSn9sFHD8DJHeDlAze+BK0f85ilMgozY+MMvj/4PT4WH6Z1m0bdip6xgKyIyMUshmEYzjxgxYoVtG/fHh+fgh3KarWyevVqOnfu7FSAZcuW0a1bt0v29+nTh3feeQeAWbNmMXnyZE6cOEGzZs2YOXMmbdq0cep1rkZ6ejqhoaGkpaUREhJS4q8nJWTnN/B5f8hJh/KRjlmia3r2EcWFuxbywtoXAHixw4v0iu1lciIREddx5vPb6SLk7e3N8ePH8ycz/MOpU6eIiIgo9EJqd6Ui5ObsNlg6AX561bFdox3c8w4Ee/b1ZSt+X8HgJYOxG3YGNh3IgGYDzI4kIuJSznx+O31qzDCMQofVnjp1inLlyjn7dCIl4/xpx/VA+5Y4ttsMgH+8AN6+5uYy2fZT2xm1fBR2w06vOr3o37S/2ZFERExV5CL0x/IXFouFhx9+uMB8OzabjV9//ZX27du7PqEJEhMTSUxMLFNHtzzKsU2w4CFIOwy+QXDba9D4brNTme54xnESkhLIsmbRpkobxrUbp7mCRMTjFbkIhYaGAo4jQsHBwQUujPbz86Nt27Y8+uijrk9ogoSEBBISEvIPrYkb2fg+fDMSbDkQVhvumw+RDc1OZbr03HQGJg0kNSuV2AqxTOs6DV8PPzomIgJOFKF58+YBjhmkR40apdNgUrpYc+C7J2DDO47tej3hjtchsIKZqUqFPFseI5aOYO/ZvYQHhjMnfg7BfqVz8lMRkWvN6WuExo0bVxI5RK5e2u+w8CE4ugGwQLex0GkkeDk9TVaZYxgGz615jnUn1hHkE0Rij0Siynn2xeIiIhe7qnn0P/nkExYuXMjhw4fJzc0tcNvGjRtdEkykSPYvh08egfOpEFAB7poLdeP/9mGeYs6WOXy17yu8Ld5M6TKFuEpxZkcSESlVnP4n88yZM+nbty+RkZFs2rSJ1q1bU6lSJfbv30/Pnj1LIqPIpQwDVs2A9293lKCoJvDv5SpBF/li7xfM2TIHgLFtx9IpupPJiURESh+ni9Ds2bN58803ee211/Dz8+OJJ55g0aJFDBkyhLS0tJLIKFJQzjnHqbBFz4Jhh2YPQL8foWKM2clKjTXH1vD86ucB6NeoH/fUu8fkRCIipZPTRejw4cP5w+QDAwM5d+4cAA8++CD//e9/XZtO5K9O7oL/dIcdX4GXL/zfVOiVCL7OL+9SVu0+s5sRy0ZgNaz0jOnJkOZDzI4kIlJqOV2EoqKiOH36NAA1atRg7dq1gGONMCcnqRZxzvYvHSUodTcEV4VHvodW/Tx6vbC/SjmfQkJSAhl5GTSPaM6LHV/Ey6KLxkVELsfp35Ddu3fnq6++AqBv374MHz6cG264gfvuu4877rjD5QFFsFnhx2ccp8NyMyCmE/x7BUS3NDtZqZKZl0lCUgInMk8QExLDzO4z8fP2MzuWiEip5vRaY3a7Hbvdnr/o6kcffcTq1aupW7cu//73v/Hzc/9fvBfPLL17926tNWamjJPwSV84+JNju/1g6PEceF/VgMcyy2q3MmjJIFYdXUVYQBjzb55P9eDqZscSETFFiS26arVaeemll3jkkUeIjo4udtDSTouumuz3DbDwQUg/Cn7lHdcCNbzd7FSljmEYjF87nk92f0KAdwBv3/g2jcMbmx1LRMQ0znx+O3VqzMfHh1deeQWr1VqsgCJXZBjwyzyYd5OjBFWqC48uUQm6jLe3vc0nuz/BgoVJnSepBImIOMHpa4R69OjB8uXLSyKLCORlwZeD4H/DwJYLcbc6SlB4fbOTlUrfHfiO6RunAzC69Wi61+hubiARETfj9IUWPXv25Mknn2Tr1q20aNHikjXHbrvtNpeFEw9z5pDjVNjxLWDxgh7PQodhGhV2GRuSNzB25VgAesf15oG4B0xOJCLifpy+WNrrCus3WSwWbDZbsUOVFrpG6BramwSf9oOsMxBUCe5+G2p3NTtVqXUg7QC9v+1Nem46PWr04NUur+Lt5W12LBGRUsGZz2+njwjZ7farDiZyCbsdVr4KSyYABlRtDve+BxU04ulyTmWdYsDiAaTnptOkchMmdpqoEiQicpU0BlnMk50Gn/eHXd86tpv3gZ6vgG+AublKsSxrFoOXDOZoxlGiy0czs/tMAn00q7aIyNVSERJzJG+HBb3h9D7w9of/mwLNHzI7Valms9t4csWTbE3dSqh/KHPi51ApsJLZsURE3JqKkFx7Wz+BrwZD3nkIre44FVatudmpSr0pv0xhyZEl+Hn5MbPbTGJCY8yOJCLi9lSE5Nqx5TlWjF8727FduxvcNRfK6ajG35m/fT7zd8wHYELHCTSPVHEUEXEFp+YRslqtvPfeeyQnJ5dUHimrziXDu7f9WYI6jYTen6oEFUHSoSReWf8KAMNbDOemWjeZnEhEpOxwembp/v37k52dXVJ5SoXExEQaNGhAq1atzI5SNhxeB290hsOrwT8E7vvAMUeQRjr9rV9P/sron0ZjYHBvvXvp27Cv2ZFERMoUp2eWbt26NZs3by6BKKVHQkIC27dvZ/369WZHcW+GAevehHduhowTEH4dPLoU4m4xO5lbOJJ+hMFLBpNjy6FTtU6MaTMGiyaXFBFxKaevERo4cCAjRozgyJEjhc4s3aRJE5eFEzeWe96xTMavCxzbDe+A22aBf3lTY7mLs9lnGZg0kNPZp4kLi2NKlyn4eOmSPhERV3PJzNIWiwXDMDSztDic3g8LHoTkbWDxhn+8AG0HaqmMIsqx5fDYj4+xMWUjUeWi+ODmD4gIijA7loiI2yjRmaUPHDhw1cHEA+z+AT571DFZYrlwuOcdiOlodiq3YTfsPL3yaTambKS8b3lm95itEiQiUoKcLkI1a9YsiRzi7ux2WD4Jlr/s2I5uDfe+CyFVzc3lZmZsnMH3B7/Hx+LDtG7TqFuxrtmRRETKtKu66GDfvn1Mnz6dHTt2ANCgQQOGDh1KnTp1XBpO3MT50/D5v2HPj47tVo/CjS+Bj5+5udzMwl0LeXvb2wA81/452lZpa3IiEZGyz+lRYz/88AMNGjTg559/pkmTJjRp0oR169bRsGFDFi1aVBIZpTQ7/iu82dVRgnwC4PbXHctlqAQ5ZcXvK5iwbgIAA5sOpFdsL5MTiYh4Bqcvlr7++uu58cYbefnllwvsf/LJJ/nxxx/ZuHGjSwOaSRdL/40tH8HXQ8GaDRVqwn3zoYpGDTpr+6ntPPz9w2RZs+hVpxcvdHhBw+RFRIrBmc9vp4tQQEAAW7dupW7dgtcu7N69myZNmpSpyRZVhC7Dmgs/jIH1bzm2Y2+AO9+EoDBzc7mh4xnHuf/b+0nNSqVNlTbM6TEHX29fs2OJiLg1Zz6/nT41Fh4eXuiEips3byYiQqNbyrz0Y/DO//1Zgro8CfcvVAm6Cum56QxMGkhqViqxFWKZ1nWaSpCIyDXm9MXSjz76KI899hj79++nffv2AKxatYpJkyYxYsQIlweUUuTgSvi4L2SmQEAo3PkfqHej2ancUp4tjxFLR7D37F7CA8OZEz+HYL9gs2OJiHgcp4vQM888Q3BwMK+++ipjxowBoGrVqjz33HMMGTLE5QGlFDAMx2KpPz4Dhg0iG8F970NYbbOTuSXDMHhuzXOsO7GOIJ8gEnskElUuyuxYIiIeyakiZLVa+fDDD7n//vsZPnw4586dAyA4WP+SLbNyMuCrwfDbZ47tJvfBLdPBL8jUWO5szpY5fLXvK7wt3kzpMoW4SnFmRxIR8VjFWn0+ODi4TJYgrT5/QepeeCveUYK8fKDnZLjjDZWgYvhi7xfM2TIHgLFtx9IpupPJiUREPNtVrT6/adOmkshSamj1eWDnN/CfbnByB5SPgoe/gTaPab2wYlhzbA3Pr34egH6N+nFPvXtMTiQiIle1+vzIkSP5/ffftfp8WWS3wZIXYeVUx3aN9o71woIjTY3l7naf2c2IZSOwGlZ6xvRkSHNdTyciUhpo9fkr8Lh5hDJPwaf9YP9Sx3bbgXDDeNCQ7mJJOZ/CA98+wInMEzSPaM5//vEf/Lw187aISEnR6vPivGObYMFDkHYYfIPgtteg8d1mp3J7mXmZJCQlcCLzBDEhMczsPlMlSESkFHGqCOXl5dG9e3f+97//ERenkS5lxsb34ZuRYMtxDIm/bz5ENjQ7lduz2q2MXD6Snad3EhYQxuz42YT6h5odS0RELuJUEfL19S1TS2h4PGsOfPcEbHjHsV3/ZrjjdcdkiVIshmEwYd0EVh1dRYB3ALO6z6J6cHWzY4mIyF84PWosISGBSZMmYbVaSyKPXCtpv8PbN10oQRbo/jTc94FKkIvM3TaXT3Z/ggULkzpPonF4Y7MjiYhIIZy+Rmj9+vUkJSXx448/0rhx40tGjX322WcuCyclZP8y+OQROH8KAivCXW9BbLzZqcqMb/d/y4yNMwAY3Xo03Wt0NzmRiIhcjtNFqEKFCtx1110lkUVKmmHAqumQNB4MO1RpCve+DxVrmp2szPjlxC88veppAHrH9eaBuAdMTiQiIlfidBGaN29eSeSQkpadDl8OhB1fO7ab9Yb/mwK+gebmKkP2p+1n6NKh5Nnz6FGjB6NajjI7koiI/A2nrxECx5pjixcv5o033shfb+zYsWNkZGS4NJy4yMld8FYPRwny8oVbpkGvWSpBLpSalcrAxQNJz02nSeUmTOw0EW8vb7NjiYjI33D6iNChQ4e46aabOHz4MDk5Odxwww0EBwczadIkcnJyeP3110sip1yt376ALxMgNwNCqsG970F0S7NTlSlZ1iyGLBnC0YyjRJePZmb3mQT6qGSKiLgDp48IDR06lJYtW3LmzBkCA//8ZX/HHXeQlJTk0nBSDDYr/PgMfNzHUYJiOsFjy1WCXMxmtzF6xWi2pm4l1D+UOfFzqBRYyexYIiJSRE4fEfrpp59YvXo1fn4FZ8eNiYnh6NGjLgsmxZBxEj7pCwd/cmx3GArdnwVvp3/c8jcm/zKZpUeW4uflx8xuM4kJjTE7koiIOMHpT0a73V7oemK///47wcHBLgklxfD7L7DwIUg/Cn7l4fbZ0KCX2anKpPe3v88HOz4AYELHCTSPbG5yIhERcZbTp8b+8Y9/MH369Pxti8VCRkYG48aN4+abb3ZlNtMkJibSoEEDWrVqZXaUojMM+OVtmNfTUYIq14NHl6gElZDFhxYzef1kAIa3GM5NtW4yOZGIiFwNp1ef//3337nxxhsxDIM9e/bQsmVL9uzZQ+XKlVmxYgUREREllfWac5vV5/OyHGuFbXYcnSDuNseRIH8doSsJW05uod8P/cix5XBvvXt5uu3TWCwWs2OJiMgFznx+O12EwDF8fsGCBWzZsoWMjAyaN2/OAw88UODi6bLALYrQmUOw8EE4vgUsXtBjnOOaIH0wl4gj6Ufo/V1vTmefpnN0Z2Z0m4GPl669EhEpTUq8CHmKUl+E9i6GT/8FWWcgqBLcPQ9qdzE7VZl1NvssD373IAfTDxIXFsc7N71DkG+Q2bFEROQvnPn81j9l3ZHdDj+9CksnAAZUa+GYHyg02uxkZVaOLYehS4dyMP0gUeWimNVjlkqQiEgZoCLkbrLOwuf9Yfd3ju0WfaHnJPDxNzVWWWY37Dy98mk2pmykvG95ZveYTURQ2bkWTkTEk6kIuZPk7bDgATi9H7z94ZapcH1vs1OVeTM2zuD7g9/jY/FhWrdp1K1Y1+xIIiLiIipC7mLrJ/DVYMg7D6E14L73oOr1Zqcq8xbuWsjb294G4Ln2z9G2SluTE4mIiCupCJV2tjzHUhnr5ji2a3eDu9+GoDBzc3mAFb+vYMK6CQAMbDqQXrGak0lEpKwpUhGqWLFikedJOX36dLECyUXOJcPHD8Ph1Y7tTiOh21jQquYlbvup7YxaPgq7YadXnV70b9rf7EgiIlICilSELp5JWq6Rw2thYR/IOAH+IXDH63Dd/5mdyiMczzhOQlICWdYs2lRpw7h24zRhoohIGVWkItSnT5+SziF/MAz4+U344SmwWyE8Du6bD5VjzU7mEdJz0xmYNJDUrFRiK8Qyres0fL19zY4lIiIlpFjXCGVnZ5Obm1tgX6mceNBd5J6Hr4fC1oWO7YZ3wm2vgX95c3N5iDxbHiOWjmDv2b2EB4YzJ34OwX5apkREpCxzughlZmYyevRoFi5cyKlTpy65vbCV6aUITu+HBQ9C8jaweMM/XoS2A7RUxjViGAbPrXmOdSfWEeQTRGKPRKLKRZkdS0RESpjTq88/8cQTLFmyhDlz5uDv789bb73F888/T9WqVXnvvfdKImPZt+t7eKOrowSVi4A+X0O7gSpB19CcLXP4at9XeFu8mdJlCnGV4syOJCIi14DTR4S+/vpr3nvvPbp27Urfvn3p1KkTsbGx1KxZkw8++IAHHnigJHKWTXY7LH8Zlk9ybEe3diyVEVLF3Fwe5ou9XzBni2N6grFtx9IpupPJiURE5Fpx+ojQ6dOnqV27NuC4HuiP4fIdO3ZkxYoVrk1Xlp0/DR/e+2cJavUoPPyNStA1tubYGp5f/TwA/Rr1455695icSEREriWni1Dt2rU5cOAAANdddx0LFzou7P3666+pUKGCS8OVWSd3w5tdYe8i8AmEO96A/5sCPn5mJ/Mou8/sZsSyEVgNKz1jejKk+RCzI4mIyDXmdBHq27cvW7ZsAeDJJ58kMTGRgIAAhg8fzuOPP+7ygGVS+XDH9T8VY+Bfi6Dp/zM7kcdJOZ9CQlICGXkZNI9ozosdX8TL4vRfBxERcXMWwzCM4jzBoUOH2LBhA7GxsTRp0sRVuUqF9PR0QkNDSUtLc/20AKl7oFxlCKzo2ueVv5WZl8nD3z/MztM7iQmJYf7N8wn1DzU7loiIuIgzn9/FXmusZs2a1KxZs7hPU6okJiaSmJhYslMBVNYK5maw2q2MXD6Snad3EhYQxuz42SpBIiIezOlzAUOGDGHmzJmX7J81axbDhg1zRSbTJSQksH37dtavX292FHEhwzCYsG4Cq46uIsA7gFndZ1E9uLrZsURExEROF6FPP/2UDh06XLK/ffv2fPLJJy4JJVIS5m6byye7P8GChUmdJ9E4vLHZkURExGROF6FTp04RGnrpqYSQkBBSU1NdEkrE1b7d/y0zNs4AYHTr0XSv0d3kRCIiUho4XYRiY2P5/vvvL9n/3Xff5c8vJFKa/HLiF55e9TQAveN680CcJv0UEREHpy+WHjFiBIMGDeLkyZN07+74V3VSUhKvvvoq06dPd3U+kWLZn7afoUuHkmfPo0eNHoxqOcrsSCIiUoo4XYQeeeQRcnJymDBhAi+88AIAMTExzJkzh4ceesjlAUWuVmpWKgMXDyQ9N50mlZswsdNEvL28zY4lIiKlSLHmETp58iSBgYGUL1/elZlKjRKdR0hKVJY1i34/9GNr6laiy0cz/+b5VAqsZHYsERG5Bq7ZPELh4eHFebhIibDZbYxeMZqtqVsJ9Q9lTvwclSARESlUkYpQ8+bNSUpKomLFilx//fVYLJbL3nfjxo0uCydyNSb/MpmlR5bi5+XHzG4ziQmNMTuSiIiUUkUqQr169cLf3x+A22+/vSTziBTL+9vf54MdHwAwoeMEmkc2NzmRiIiUZsVea6ws0zVC7mXxocWMWDYCA4PhLYbzSKNHzI4kIiImcObzW8ttS5mw5eQWnvzpSQwM7q13L30b9jU7koiIuAGnL5auWLFiodcIWSwWAgICiI2N5eGHH6ZvX30QybVxJP0Ig5MGk2PLoXN0Z8a0GXPF69hERET+4HQRevbZZ5kwYQI9e/akdevWAPz88898//33JCQkcODAAQYMGIDVauXRRx91eWCRi53NPsuApAGcyTlDXFgckztPxserWIMhRUTEgzj9ibFy5UpefPFF+vfvX2D/G2+8wY8//sinn35KkyZNmDlzpoqQlKgcWw5Dlg7hUPohqpSrQmKPRIJ8g8yOJSIibsTpa4R++OEH4uPjL9nfo0cPfvjhBwBuvvlm9u/fX/x0IpdhN+yMXTmWTSmbCPYNZnaP2YQHaV4rERFxjtNFKCwsjK+//vqS/V9//TVhYWEAZGZmEhwcXPx0IpcxfeN0fjj4Az4WH6Z1m0ZsxVizI4mIiBty+tTYM888w4ABA1i6dGn+NULr16/n22+/5fXXXwdg0aJFdOnSxbVJRS5YuGsh87bNA+C59s/RpkobkxOJiIi7uqp5hFatWsWsWbPYtWsXAPXr12fw4MG0b9/e5QHNpHmESp8Vv69g8JLB2A07A5sOZECzAWZHEhGRUqbE1xrr0KEDHTp0uKpwIlfrt1O/MWr5KOyGnV51etG/af+/f5CIiMgVXFURstlsfPHFF+zYsQOAhg0bctttt+Ht7e3ScCJ/OJZxjEFJg8iyZtGmShvGtRunuYJERKTYnC5Ce/fu5eabb+bo0aPUr18fgIkTJ1K9enW++eYb6tSp4/KQ4tnSc9MZuHggqVmpxFaIZVrXafh6+5odS0REygCnR40NGTKEOnXqcOTIETZu3MjGjRs5fPgwtWrVYsiQISWRUTxYni2PEUtHsC9tH+GB4cyJn0Own0YkioiIazh9RGj58uWsXbs2f6g8QKVKlXj55Zd13ZC4lGEYPLfmOdadWEeQTxCJPRKJKhdldiwRESlDnD4i5O/vz7lz5y7Zn5GRgZ+fn0tCiQDM2TKHr/Z9hbfFmyldphBXKc7sSCIiUsY4XYRuueUWHnvsMdatW4dhGBiGwdq1a+nfvz+33XZbSWS85hITE2nQoAGtWrUyO4rH+mLvF8zZMgeAsW3H0im6k8mJRESkLHJ6HqGzZ8/Sp08fvv76a3x9HResWq1WbrvtNt555x1CQ0NLJKgZNI+QOdYcW8PAxQOxGlb6NerHsBbDzI4kIiJupETnEapQoQJffvkle/bsYefOnQDExcURG6slDqT4dp/ZzYhlI7AaVnrG9GRIc12ALyIiJeeq5hECqFu3LnXr1nVlFvFwKedTSEhKICMvg+YRzXmx44t4WZw+eysiIlJkRSpCI0aMKPITTp069arDiOfKzMskISmBE5kniAmJYWb3mfh56+J7EREpWUUqQps2bSrSk2mmX7kaVruVkctHsvP0TsICwpgdP5tQ/7JzrZmIiJReRSpCS5cuLekc4qEMw2DCugmsOrqKAO8AZnWfRfXg6mbHEhERD6ELMMRUc7fN5ZPdn2DBwqTOk2gc3tjsSCIi4kFUhMQ03+7/lhkbZwAwuvVoutfobnIiERHxNCpCYopfTvzC06ueBqB3XG8eiHvA5EQiIuKJVITkmtuftp+hS4eSZ8+jR40ejGo5yuxIIiLioVSE5JpKzUpl4OKBpOem06RyEyZ2moi3l7fZsURExEOpCMk1k2XNYsiSIRzNOEp0+Whmdp9JoE+g2bFERMSDqQjJNWGz2xi9YjRbU7cS6h/KnPg5VAqsZHYsERHxcCpCck1M/mUyS48sxc/Lj5ndZhITGmN2JBERERUhKXnvb3+fD3Z8AMCEjhNoHtnc5EQiIiIOKkJSohYfWszk9ZMBGN5iODfVusnkRCIiIn9SEZISs+XkFp786UkMDO6tdy99G/Y1O5KIiEgBKkJSIo6kH2Fw0mBybDl0ju7MmDZjtCiviIiUOipC4nJns88yIGkAZ3LOEBcWx+TOk/HxKtL6viIiIteUipC4VI4thyFLh3Ao/RBVylUhsUciQb5BZscSEREplIqQuIzdsDN25Vg2pWwi2DeY2T1mEx4UbnYsERGRy1IREpeZvnE6Pxz8AR8vH6Z1m0ZsxVizI4mIiFyRipC4xMJdC5m3bR4Az7d/njZV2picSERE5O+pCEmxrfh9BRPWTQBgYLOB3FbnNpMTiYiIFI2KkBTLb6d+Y9TyUdgNO73q9KJ/k/5mRxIRESkyFSG5ascyjjEoaRBZ1izaVGnDuHbjNFeQiIi4FRUhuSrpuekMXDyQ1KxUYivEMq3rNHy9fc2OJSIi4hQVIXFani2P4UuHsy9tH+GB4cyJn0OwX7DZsURERJymIiROMQyDcavH8fOJnwnyCSKxRyJR5aLMjiUiInJVVITEKbO3zObr/V/jbfFmSpcpxFWKMzuSiIjIVVMRkiL7fM/nvL7ldQDGth1Lp+hOJicSEREpHhUhKZI1x9Ywfs14APo16sc99e4xOZGIiEjxqQjJ39p9Zjcjlo3AaljpGdOTIc2HmB1JRETEJVSE5IqSM5MZuHggGXkZNI9ozosdX8TLov9tRESkbNAnmlxWZl4mCUkJJJ9PJiYkhpndZ+Ln7Wd2LBEREZdRESpEYmIiDRo0oFWrVmZHMU2ePY+Ry0ey68wuwgLCmB0/m1D/ULNjiYiIuJTFMAzD7BClVXp6OqGhoaSlpRESEmJ2nGvGMAyeX/M8n+75lADvAN6+8W0ahzc2O5aIiEiROPP5rSNCcom52+by6Z5PsWBhUudJKkEiIlJmqQhJAd/u/5YZG2cAMLr1aLrX6G5yIhERkZKjIiT5fjnxC0+vehqA3nG9eSDuAZMTiYiIlCwVIQFgf9p+hi4dSp49jx41ejCq5SizI4mIiJQ4FSEhNSuVgYsHkp6bTpPKTZjYaSLeXt5mxxIRESlxKkIeLsuaxZAlQziacZTo8tHM7D6TQJ9As2OJiIhcEypCHsxmtzF6xWi2pm4l1D+UOfFzqBRYyexYIiIi14yKkAeb/Mtklh5Zip+XHzO7zSQmNMbsSCIiIteUipCHen/7+3yw4wMAJnScQPPI5iYnEhERufZUhDzQ4kOLmbx+MgDDWwznplo3mZxIRETEHCpCHmbLyS08+dOTGBjcW+9e+jbsa3YkERER06gIeZAj6UcYnDSYHFsOnaM7M6bNGCwWi9mxRERETKMi5CHOZp9lQNIAzuScIS4sjsmdJ+Pj5WN2LBEREVOpCHmAHFsOQ5YO4VD6IaqUq0Jij0SCfIPMjiUiImI6FaEyzm7YGbtyLJtSNhHsG8zsHrMJDwo3O5aIiEipoCJUxk3fOJ0fDv6Aj5cP07pNI7ZirNmRRERESg0VoTJs4a6FzNs2D4Dn2z9PmyptTE4kIiJSuqgIlVErfl/BhHUTABjYbCC31bnN5EQiIiKlj4pQGfTbqd8YtXwUdsNOrzq96N+kv9mRRERESiUVoTLmWMYxBiUNIsuaRdsqbRnXfpzmChIREbkMFaEyJD03nYGLB5KalUpshVimdp2Kr5ev2bFERERKLRWhMiLPlsfwpcPZl7aP8MBw5sTPIdgv2OxYIiIipZqKUBlgGAbjVo/j5xM/E+QTRGKPRKLKRZkdS0REpNRTESoDZm+Zzdf7v8bb4s2ULlOIqxRndiQRERG3oCLk5j7f8zmvb3kdgLFtx9IpupPJiURERNyHipAbW3NsDePXjAegX6N+3FPvHpMTiYiIuBcVITe1+8xuRiwbgdWw0jOmJ0OaDzE7koiIiNtREXJDyZnJDFw8kIy8DJpHNOfFji/iZdGPUkRExFn69HQzmXmZJCQlkHw+mZiQGGZ2n4mft5/ZsURERNySipAbybPnMXL5SHad2UVYQBiz42cT6h9qdiwRERG3pSLkJgzDYMLaCaw6uooA7wBmdZ9F9eDqZscSERFxaypCbmLutrl8uudTLFiY1HkSjcMbmx1JRETE7akIuYFv9n/DjI0zABjdejTda3Q3OZGIiEjZoCJUyv1y4heeWfUMAL3jevNA3AMmJxIRESk7VIRKsf1p+xm6dCh59jx61OjBqJajzI4kIiJSpqgIlVKpWakMXDyQ9Nx0mlRuwsROE/H28jY7loiISJmiIlQKnc87z+CkwRzNOEp0+Whmdp9JoE+g2bFERETKHBWhUsZmtzH6p9FsO7WNUP9Q5sTPoVJgJbNjiYiIlEkqQqWIYRi8sv4Vlh1Zhp+XHzO7zSQmNMbsWCIiImWWilAp8v729/lw54cATOg4geaRzU1OJCIiUrapCJUSiw4tYsovUwAY3mI4N9W6yeREIiIiZZ+KUCmwOWUzY34ag4HBvfXupW/DvmZHEhER8QgqQiY7nH6YIUuGkGPLoXN0Z8a0GYPFYjE7loiIiEdQETLR2eyzDEwayJmcM8SFxTG582R8vHzMjiUiIuIxVIRMkmPLYcjSIRxKP0SVclVI7JFIkG+Q2bFEREQ8ioqQCeyGnbErx7IpZRPBvsHM7jGb8KBws2OJiIh4HBUhE2xL3cbiQ4vx8fJhWrdpxFaMNTuSiIiIR9IFKSZoEt6EWT1mcTbnLG2qtDE7joiIiMdSETJJx2odzY4gIiLi8XRqTERERDyWipCIiIh4LBUhERER8VgqQiIiIuKxVIRERETEY5X5InTkyBG6du1KgwYNaNKkCR9//LHZkURERKSUKPPD5318fJg+fTrNmjXjxIkTtGjRgptvvply5cqZHU1ERERMVuaLUJUqVahSpQoAUVFRVK5cmdOnT6sIiYiIiPmnxlasWMGtt95K1apVsVgsfPHFF5fcJzExkZiYGAICAmjTpg0///zzVb3Whg0bsNlsVK9evZipRUREpCwwvQhlZmbStGlTEhMTC719wYIFjBgxgnHjxrFx40aaNm3KjTfeSEpKSv59mjVrRqNGjS75c+zYsfz7nD59moceeog333yzxN+TiIiIuAeLYRiG2SH+YLFY+Pzzz7n99tvz97Vp04ZWrVoxa9YsAOx2O9WrV2fw4ME8+eSTRXrenJwcbrjhBh599FEefPDBK94vJycnfzs9PZ3q1auTlpZGSEjI1b0pERERuabS09MJDQ0t0ue36UeEriQ3N5cNGzYQHx+fv8/Ly4v4+HjWrFlTpOcwDIOHH36Y7t27X7EEAUycOJHQ0ND8PzqFJiIiUraV6iKUmpqKzWYjMjKywP7IyEhOnDhRpOdYtWoVCxYs4IsvvqBZs2Y0a9aMrVu3FnrfMWPGkJaWlv/nyJEjxX4PIiIiUnqV+VFjHTt2xG63F+m+/v7++Pv752//cdYwPT29RLKJiIiI6/3xuV2Uq39KdRGqXLky3t7eJCcnF9ifnJxMVFRUib/+uXPnAHSKTERExA2dO3eO0NDQK96nVBchPz8/WrRoQVJSUv4F1Ha7naSkJAYNGlTir1+1alWOHDlCcHAwFovFpc/9x4XYR44c0YXY4tFatWrF+vXrzY4hxaSfY/F48vevJN67YRicO3eOqlWr/u19TS9CGRkZ7N27N3/7wIEDbN68mbCwMGrUqMGIESPo06cPLVu2pHXr1kyfPp3MzEz69u1b4tm8vLyIjo4u0dcICQlRERKP5u3trb8DZYB+jsXjyd+/knrvf3ck6A+mF6FffvmFbt265W+PGDECgD59+vDOO+9w3333cfLkSZ599llOnDhBs2bN+P777y+5gFpE3FNCQoLZEcQF9HMsHk/+/pn93kvVPEKexJk5DkRERKRklOrh82WZv78/48aNKzBKTURERK4tHRESERERj6UjQiIiIuKxVIRERETEY6kIiYiIiMdSERKRMu2OO+6gYsWK3H333WZHkaukn2Hx6Xt4eSpCIlKmDR06lPfee8/sGFIM+hkWn76Hl6ci5AbU5EWuXteuXQkODjY7hhSDfobFp+/h5akIuQE1ebnWJk6cSKtWrQgODiYiIoLbb7+dXbt2ufQ1VqxYwa233krVqlWxWCx88cUXhd4vMTGRmJgYAgICaNOmDT///LNLc5RVc+bMoUmTJvnL+LRr147vvvvOpa/hST/Dl19+GYvFwrBhw1z6vJ70PSytVITcgJq8XGvLly8nISGBtWvXsmjRIvLy8vjHP/5BZmZmofdftWoVeXl5l+zfvn07ycnJhT4mMzOTpk2bkpiYeNkcCxYsYMSIEYwbN46NGzfStGlTbrzxRlJSUvLv06xZMxo1anTJn2PHjjn5rsuW6OhoXn75ZTZs2MAvv/xC9+7d6dWrF7/99luh99fP8PLWr1/PG2+8QZMmTa54P30P3ZQhxbJ8+XLjlltuMapUqWIAxueff37JfWbNmmXUrFnT8Pf3N1q3bm2sW7fO6ddZunSpcdddd7kgsYjzUlJSDMBYvnz5JbfZbDajadOmxt13321Yrdb8/Tt37jQiIyONSZMm/e3zX+7vTuvWrY2EhIQCr1W1alVj4sSJTuXX3x+HihUrGm+99dYl+/UzvLxz584ZdevWNRYtWmR06dLFGDp0aKH30/fQfemIUDH9XZtXk5eyIC0tDYCwsLBLbvPy8uLbb79l06ZNPPTQQ9jtdvbt20f37t25/fbbeeKJJ67qNXNzc9mwYQPx8fEFXis+Pp41a9Zc3RvxUDabjY8++ojMzEzatWt3ye36GV5eQkIC//d//1fgPRRG30P3Zfrq8+6uZ8+e9OzZ87K3T506lUcffZS+ffsC8Prrr/PNN9/w9ttv8+STTwKwefPmaxFV5KrY7XaGDRtGhw4daNSoUaH3qVq1KkuWLKFTp07cf//9rFmzhvj4eObMmXPVr5uamorNZiMyMrLA/sjISHbu3Fnk54mPj2fLli1kZmYSHR3Nxx9/XGgZKIu2bt1Ku3btyM7Opnz58nz++ec0aNCg0PvqZ3ipjz76iI0bN7J+/foi3V/fQ/ekIlSC/mjyY8aMyd+nJi/uJiEhgW3btrFy5cor3q9GjRq8//77dOnShdq1azN37lwsFss1Snl5ixcvNjuCaerXr8/mzZtJS0vjk08+oU+fPixfvvyyZUg/wz8dOXKEoUOHsmjRIgICAor8OH0P3Y9OjZWgKzX5EydOFPl54uPjueeee/j222+Jjo5WiZJrZtCgQfzvf/9j6dKlREdHX/G+ycnJPPbYY9x6662cP3+e4cOHF+u1K1eujLe39yUXmSYnJxMVFVWs5/YUfn5+xMbG0qJFCyZOnEjTpk2ZMWPGZe+vn+GfNmzYQEpKCs2bN8fHxwcfHx+WL1/OzJkz8fHxwWazFfo4fQ/dj4qQG1i8eDEnT57k/Pnz/P777zqcKSXOMAwGDRrE559/zpIlS6hVq9YV75+amkqPHj2Ii4vjs88+IykpiQULFjBq1KirzuDn50eLFi1ISkrK32e320lKStLfgatkt9vJyckp9Db9DAvq0aMHW7duZfPmzfl/WrZsyQMPPMDmzZvx9va+5DH6HronnRorQWry4q4SEhL48MMP+fLLLwkODs4/ghkaGkpgYGCB+9rtdnr27EnNmjVZsGABPj4+NGjQgEWLFtG9e3eqVatW6L+KMzIy2Lt3b/72gQMH2Lx5M2FhYdSoUQOAESNG0KdPH1q2bEnr1q2ZPn06mZmZ+dfcyeWNGTOGnj17UqNGDc6dO8eHH37IsmXL+OGHHy65r36GlwoODr7kmrhy5cpRqVKlQq+V0/fQjZk9bK0soZChj61btzYGDRqUv22z2Yxq1ao5PexR5FoCCv0zb968Qu//448/GllZWZfs37hxo3HkyJFCH7N06dJCX6NPnz4F7vfaa68ZNWrUMPz8/IzWrVsba9euLe7b8wiPPPKIUbNmTcPPz88IDw83evToYfz444+Xvb9+hn/vSsPnDUPfQ3dlMQzDuJbFq6y5uM1ff/31TJ06lW7duuW3+QULFtCnTx/eeOON/Ca/cOFCdu7cecm1QyIiInJtqQgV07Jly+jWrdsl+/v06cM777wDwKxZs5g8eTInTpygWbNmzJw5kzZt2lzjpCIiIvJXKkIiIiLisTRqTERERDyWipCIiIh4LBUhERER8VgqQiIiIuKxVIRERETEY6kIiYiIiMdSERIRERGPpSIkIiIiHktFSESKJCYmhunTp5fY83ft2pVhw4a57Pkefvhhbr/9dpc9n4iUTVp9XkRKhc8++wxfX1+zY7i1mJgYhg0b5tJCKVLWqQiJSKkQFhZmdoS/lZubi5+fX4F9NpsNi8WCl5dzB9iL+jjDMLDZbPj46Ne1SEnQqTERoWvXrgwaNIhBgwYRGhpK5cqVeeaZZ/jrUoTnz5/nkUceITg4mBo1avDmm2/m39a9e3cGDRpU4P4nT57Ez8+PpKQkAGbPnk3dunUJCAggMjKSu+++u0CGi49k5OTkMHr0aKpXr46/vz+xsbHMnTsXcJSIfv36UatWLQIDA6lfvz4zZsxw+n2vXLmSTp06ERgYSPXq1RkyZAiZmZn5t8fExPDCCy/w0EMPERISwmOPPcY777xDhQoV+Oqrr2jQoAH+/v4cPnyYM2fO8NBDD1GxYkWCgoLo2bMne/bsyX+uyz3ur5YtW4bFYuG7776jRYsW+Pv7s3LlSvbt20evXr2IjIykfPnytGrVisWLFxf4/h06dIjhw4djsViwWCxFfp8iHs0QEY/XpUsXo3z58sbQoUONnTt3GvPnzzeCgoKMN998M/8+NWvWNMLCwozExERjz549xsSJEw0vLy9j586dhmEYxgcffGBUrFjRyM7Ozn/M1KlTjZiYGMNutxvr1683vL29jQ8//NA4ePCgsXHjRmPGjBkFMgwdOjR/+9577zWqV69ufPbZZ8a+ffuMxYsXGx999JFhGIaRm5trPPvss8b69euN/fv35+ddsGBB/uP79Olj9OrV67Lvee/evUa5cuWMadOmGbt37zZWrVplXH/99cbDDz9c4D2HhIQYU6ZMMfbu3Wvs3bvXmDdvnuHr62u0b9/eWLVqlbFz504jMzPTuO2224y4uDhjxYoVxubNm40bb7zRiI2NNXJzcw3DMC77uL9aunSpARhNmjQxfvzxR2Pv3r3GqVOnjM2bNxuvv/66sXXrVmP37t3G008/bQQEBBiHDh0yDMMwTp06ZURHRxvjx483jh8/bhw/frzI71PEk6kIiYjRpUsXIy4uzrDb7fn7Ro8ebcTFxeVv16xZ0+jdu3f+tt1uNyIiIow5c+YYhmEYWVlZRsWKFQuUkSZNmhjPPfecYRiG8emnnxohISFGenr6ZTP8UYR27dplAMaiRYuK/B4SEhKMu+66K3/774pQv379jMcee6zAvp9++snw8vIysrKy8t/z7bffXuA+8+bNMwBj8+bN+ft2795tAMaqVavy96WmphqBgYHGwoULL/u4wvxRhL744osrv2HDMBo2bGi89tpr+ds1a9Y0pk2b5vT7FPFkOjUmIgC0bdu2wOmUdu3asWfPHmw2W/6+Jk2a5H9tsViIiooiJSUFgICAAB588EHefvttADZu3Mi2bdt4+OGHAbjhhhuoWbMmtWvX5sEHH+SDDz7g/PnzhWbZvHkz3t7edOnS5bJ5ExMTadGiBeHh4ZQvX54333yz0FNNl7Nlyxbeeecdypcvn//nxhtvxG63c+DAgfz7tWzZ8pLH+vn5Ffhe7NixAx8fH9q0aZO/r1KlStSvX58dO3Zc9nFX8tfXzcjIYNSoUcTFxVGhQgXKly/Pjh07/vY9F/V9ingqXX0nIkX211FdFosFu92ev/2vf/2LZs2a8fvvvzNv3jy6d+9OzZo1AQgODmbjxo0sW7aMH3/8kWeffZbnnnuO9evXU6FChQLPGxgYeMUcH330EaNGjeLVV1+lXbt2BAcHM3nyZNatW1fk95KRkcG///1vhgwZcsltNWrUyP+6XLlyl9weGBhYoDQWlTOP++vrjho1ikWLFjFlyhRiY2MJDAzk7rvvJjc394rPU9T3KeKpVIREBOCSErF27Vrq1q2Lt7d3kZ+jcePGtGzZkv/85z98+OGHzJo1q8DtPj4+xMfHEx8fz7hx46hQoQJLlizhzjvvvOR57HY7y5cvJz4+/pLXWbVqFe3bt2fgwIH5+/bt21fknADNmzdn+/btxMbGOvW4wsTFxWG1Wlm3bh3t27cH4NSpU+zatYsGDRoU+/nB8Z4ffvhh7rjjDsBRcA4ePFjgPn5+fgWO4IFr36dIWaRTYyICwOHDhxkxYgS7du3iv//9L6+99hpDhw51+nn+9a9/8fLLL2MYRv6HNsD//vc/Zs6cyebNmzl06BDvvfcedrud+vXrX/IcMTEx9OnTh0ceeYQvvviCAwcOsGzZMhYuXAhA3bp1+eWXX/jhhx/YvXs3zzzzDOvXr3cq5+jRo1m9ejWDBg1i8+bN7Nmzhy+//PKSkW9FUbduXXr16sWjjz7KypUr2bJlC71796ZatWr06tXL6ee73Gt89tlnbN68mS1btnD//fcXOBoHju/bihUrOHr0KKmpqS5/nyJlkYqQiADw0EMPkZWVRevWrUlISGDo0KE89thjTj/PP//5T3x8fPjnP/9JQEBA/v4KFSrw2Wef0b17d+Li4nj99df573//S8OGDQt9njlz5nD33XczcOBArrvuOh599NH8Id///ve/ufPOO7nvvvto06YNp06dKnB0qCiaNGnC8uXL2b17N506deL666/n2WefpWrVqk6/Z4B58+bRokULbrnlFtq1a4dhGHz77bcumyRy6tSpVKxYkfbt23Prrbdy44030rx58wL3GT9+PAcPHqROnTqEh4cDrn+fImWNxTD+MlGIiHicrl270qxZM5csofHHB/H69esv+aAWESltdI2QiLhEXl4ep06d4umnn6Zt27YqQSLiFnRqTERcYtWqVVSpUoX169fz+uuvmx1HRKRIdGpMREREPJaOCImIiIjHUhESERERj6UiJCIiIh5LRUhEREQ8loqQiIiIeCwVIREREfFYKkIiIiLisVSERERExGOpCImIiIjH+v/f03tmGHPlWwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "num_shots = 10_000\n", + "for d in [3, 5, 7]:\n", + " xs = []\n", + " ys = []\n", + " for noise in [0.1, 0.2, 0.3, 0.4, 0.5]:\n", + " circuit = stim.Circuit.generated(\n", + " \"repetition_code:memory\",\n", + " rounds=d * 3,\n", + " distance=d,\n", + " before_round_data_depolarization=noise)\n", + " num_errors_sampled = count_logical_errors(circuit, num_shots)\n", + " xs.append(noise)\n", + " ys.append(num_errors_sampled / num_shots)\n", + " plt.plot(xs, ys, label=\"d=\" + str(d))\n", + "plt.loglog()\n", + "plt.xlabel(\"physical error rate\")\n", + "plt.ylabel(\"logical error rate per shot\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "J5TZ-AlJVGmk" + }, + "source": [ + "From the results here you can see that the repetition code has amazingly good performance! Well... it's not *quite* so amazing when you remember that you're using a phenomenological noise model (instead of a circuit level noise model) and also that you're inserting depolarizing errors instead of bit flip errors (the repetition code is immune to Z errors, and when a depolarizing error occurs it's a Z error one third of the time).\n", + "\n", + "Still, you can see that it's not so hard to run a few different cases and plot them out. A bit tedious, maybe." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c88KJx_mVhZU" + }, + "source": [ + "\n", + "# 8. Use `sinter` to streamline the Monte Carlo sampling process\n", + "\n", + "Now that you understand the basic workflow of sampling from a circuit, making a decoder predict the observable flips, and plotting out the result, you probably never want to do that by hand ever again. And that's without even getting into dividing work into batches, or across multiple CPU cores!\n", + "\n", + "Fortunately, you can use `sinter` to do almost the entire thing for you. Install sinter using `pip install sinter`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ogUrK7LhZyV-" + }, + "outputs": [], + "source": [ + "!pip install sinter~=1.14" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VrayGWt0-qOW" + }, + "outputs": [], + "source": [ + "import sinter\n", + "from typing import List" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dxTADjNX-qOW" + }, + "source": [ + "Wrap your circuits into `sinter.Task` instances, and give those tasks to `sinter.collect`.\n", + "Sinter will spin up multiple worker processes to sample from and decode these circuits.\n", + "`sinter.collect` takes a variety of useful options, such as the maximum number of shots or errors to take from each task, as well as the number of workers to use:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4HmwlVCz-qOW" + }, + "outputs": [], + "source": [ + "tasks = [\n", + " sinter.Task(\n", + " circuit=stim.Circuit.generated(\n", + " \"repetition_code:memory\",\n", + " rounds=d * 3,\n", + " distance=d,\n", + " before_round_data_depolarization=noise,\n", + " ),\n", + " json_metadata={'d': d, 'p': noise},\n", + " )\n", + " for d in [3, 5, 7, 9]\n", + " for noise in [0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5]\n", + "]\n", + "\n", + "collected_stats: List[sinter.TaskStats] = sinter.collect(\n", + " num_workers=4,\n", + " tasks=tasks,\n", + " decoders=['pymatching'],\n", + " max_shots=100_000,\n", + " max_errors=500,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mVDInHcUbAc0" + }, + "source": [ + "Sinter also has a `sinter.plot_error_rate` method which can be used to plot the logical error rates. This method automatically adds highlighted regions quantifying uncertainty in the estimates." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 484 + }, + "id": "ZOsb01E0bFhw", + "outputId": "ceb5a5c3-bb97-4da1-c186-024ad0f5bc92" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIkCAYAAAAEbwOaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOydd5xcZb3/36dML9t7NtkUEkIIoYXea4RQBASli1IuKhd/16siegmWe+WCosIFQaSIKCBSBEWkhF4SCAQIBEJ62c32Mv2U5/fHmZnd2ZndnU3ZbMLzzmte2TnnOc/znDJnvvM93+/nqwghBBKJRCKRSCQSyS6AuqMnIJFIJBKJRCKRbCukcSuRSCQSiUQi2WWQxq1EIpFIJBKJZJdBGrcSiUQikUgkkl0GadxKJBKJRCKRSHYZpHErkUgkEolEItllkMatRCKRSCQSiWSXQRq3EolEIpFIJJJdBmncSiQSiUQikUh2GaRxK5FIJBKJRCLZZZDGrUQikUgkEolkl0Eat5KdjqOOOgpFUUa1zb333ouiKNx7773bZ1I7MYqicNRRR+3oaUh2Ujo6OigvL+fKK6/cqn4uvvhiFEVhzZo122Ziku3GggULUBSFF198cczHHuv71Zo1a1AUhYsvvnjMxhwNY3k8hBDMmTOHww8/fEzG2xqkcbsLoShKzkvTNMrLyznqqKO49957EULs6CkWxZZ8yb344osoisKCBQu227y2F7Zt88gjj3DmmWfS2NiI1+slEAgwc+ZMLrvsMl577bUdPcWtInM+h3uN1y+Okch88Q186bpOdXU18+bN44knntgm4+xIY2IkrrvuOuLxOD/84Q9zlmfmPPDl8/mYPn063/jGN9iwYcMOmrFEsv0YeE848MADh2ynKAoTJkwYw5ltPYqi8OMf/5hXX32VRx55ZEdPZ1j0HT0BybbnuuuuA8AwDD777DMee+wxXnrpJd5++21uvfXWHTy7recPf/gDsVhsVNt88Ytf5KCDDqKurm47zWrLaGlp4ayzzuK1114jFApx/PHHM3XqVIQQrFixgj//+c/87ne/45ZbbuGb3/zmjp7uVnHaaaex9957F1w31PKdhZKSEq6++moAkskky5Yt46mnnuKZZ57hxhtv5Dvf+c6OneB2Yt26ddxxxx189atfpb6+vmCbI488MutZam9v51//+he33XYbDz/8MG+++SZTp04dwxlLdnY+/vhj/H7/jp5GUSxatIgHH3yQL3/5y9ttjLE+HqeddhozZ87k2muv5cwzzxz1U9SxQhq3uyCDvZevvfYaRxxxBLfddhv/8R//weTJk3fMxLYREydOHPU2JSUllJSUbIfZbDmxWIx58+axdOlSvvzlL3PbbbdRVlaW06a3t5ebbrqJnp6eHTTLbcfpp5++03poR6K0tDTvc/fggw/yla98heuuu44rr7xyp/lCHg133HEHpmkOe16POuqonGNjGAZf+MIXeP755/npT3/KPffcs/0nKtll2H333Xf0FIpi4sSJNDc384Mf/IAzzjgDt9u9XcbZEcfjoosu4vvf/z7PP/88xx133JiPXwwyLOFzwKGHHsruu++OEIJ33nknb/1bb73FWWedRW1tLW63m8bGRi6//HI2bdqU1zYT75pMJvnhD3/I5MmT8Xg8TJ06leuvv55UKlVwDsuXL+fiiy+msbERt9tNTU0N5557Lp988klOO0VRuO+++wCYPHly9vFOU1NT3hwyXHzxxRx99NEAXH/99TmPQTOPcYeLuX3nnXc488wzqa6uxuPxMGnSJK688kqam5vz2g4MmbjjjjuYPXs2Xq+XmpoaLrvsslEZoTfffDNLly7l0EMP5YEHHsgzbAHC4TA//vGP8zx/PT09XHPNNcyYMQOv10tZWRknnngizz33XMGxUqkUP/nJT5g6dSoej4fJkyfzwx/+kGQyOeT8TNPktttu46CDDiIcDuP3+9lnn3249dZbsW276P0cLQNj3D799FPOOeccqqurUVWVF198ccT14IR6/Pa3v2Xu3LkEg0ECgQBz587l9ttvLzj3TNxaS0sLX//612loaEDTtK2K0T7nnHMIBALEYjE++uijnHULFy7ksssuY4899iAcDuPz+dhzzz25/vrrSSQSOW2bmpq4/vrrATj66KNzru+BxGIx/ud//oe9996bQCBAMBjk4IMP5s9//nPe3IQQ3HfffRxyyCFUVVXh9XppbGzkxBNP5KGHHipq/4QQ3HPPPTQ2NnLIIYcUfVxcLheXXXYZ4Hi2CjGaz9aGDRv45je/yZQpU/B4PFRUVHDqqaeyePHivLYDwzseeeQRDjjgAPx+P+Xl5Xz5y19m48aNBcdYsWIFF154IQ0NDbjdburr67nwwgtZsWLFsGP8+c9/Zr/99sPv91NfX8//+3//L/uZe+GFFzjqqKMIh8OUlZVxwQUX0NHRsVPs43A8//zzzJs3j/LycjweD9OnT+f73//+kOdv8eLFnHDCCYRCIcLhMMcddxxvvPHGkKE4Q8WYWpbFb3/7Ww499FBKSkrw+XxMmzaNr3/96zn7sGnTJn784x9z6KGHZr/z6uvrOffcc/M+p1tDY2MjV155JatXr+aWW24perstvXcNpK+vj5/85CfsueeehMNhQqEQU6dO5ZxzztlqGwDIeqJ///vfF71fY4303H7OcLlcOe/vvvtuLrvsMjweD6eeeiqNjY2sWLGCu+66iyeffJI333yzoKf07LPPZvHixZx11lm4XC6eeOIJFixYwNtvv83f/va3nC/ef/7zn5xxxhkYhsEpp5zCtGnT2LBhA48++ih///vfWbhwIfvuuy/ghFQ8/vjjLF26lH//93+ntLQUIPt/IU4//XQA7rvvvpxHoECOUVyIp556ijPPPBMhBGeddRaTJk3inXfe4fbbb+eJJ57g1VdfLejp/u53v8szzzzDKaecwgknnMDChQv53e9+x2effcYLL7ww7JgZ7rzzTgB+9KMfoarD/870eDzZv7u7uzn00EP56KOPmDt3LldffTXt7e08/PDDnHDCCdx+++1cfvnl2fZCCM4++2yeeOIJpk6dyje/+U1SqRR33303H3zwQcHxMufqmWeeYcaMGZx77rl4vV4WLlzIt771Ld566y3uv//+ovZzS1m5ciUHHngg06dP57zzziMejxMOh4taf8EFF/CnP/2JxsZGvv71r6MoCo899hhXXnklr776Kg888EDeeJ2dnRx00EEEg0HOOOMMVFWlpqZmm+zL4M/dDTfcwPLlyznkkEM4+eSTSSQSvPbaayxYsIAXX3yR5557Dk3TALj66qt5/PHHeemll7jooosKXtPd3d0cc8wxvPvuu+y7775ccskl2LbNM888w7nnnsuyZcv46U9/mm1/7bXX8j//8z9MnjyZs88+m5KSEpqbm1m8eDF/+ctfOOecc0bcp2XLltHc3LxFj1wz8f+FHmmO5rO1ZMkSTjjhBDo7OznxxBM544wzaG9v5/HHH+ewww7jscce46STTsob47bbbuNvf/sbp556KkceeSRvvfUWDz30EEuXLuW9997L+bwtXryY4447jr6+Pk499VT22GMPli9fzh//+EeeeOIJnnvuOebOnZs3xi233MLTTz/N6aefzlFHHcW//vUvbr75Zjo7OznttNP48pe/zMknn8xll13G66+/zh//+Efa29t5+umnd5p9HMwdd9zBv/3bvxEIBPjSl75EdXU1L774IjfccANPPvkkr732Ws69/OWXX+aEE07AsizOOOMMpk6dygcffMDRRx/NMcccM+J4GVKpFPPnz+fZZ5+lsbGRc889l3A4zJo1a3jsscc47LDD2G233bJj/vznP+foo4/mzDPPJBgMsmLFCh555BH+9re/8dprrzFnzpyixx6O//qv/+K+++7jZz/7GV/96lcpLy8fcZstuXcNRAjBvHnzeP311zn44IP5+te/jq7rbNiwgYULF3L44Yez3377ZdtviQ0wadIkGhoaeO655xBCjM/QBCHZZQBEoVP60ksvCVVVhdvtFps2bcou/+STT4TL5RJTp04VGzZsyNnmueeeE6qqitNPPz1n+ZFHHikAsdtuu4nOzs7s8ng8Lg466CABiD/84Q/Z5Z2dnaK0tFRUVFSIZcuW5fT1wQcfiEAgIPbZZ5+c5RdddJEAxOrVqwvuZ2YOA1m4cKEAxHXXXVdwm3vuuUcA4p577sku6+vrE+Xl5UJVVfHyyy/ntP/5z38uAHH88ccXnFtjY6NYu3ZtdrlhGOLwww8XgHjrrbcKzmEg69atE4DQdV3E4/ER2w/ksssuE4C47LLLhG3b2eWffvqpCIfDwu125xy7Bx54QADioIMOyhmro6NDTJkyRQDiyCOPzBnjuuuuE4D45je/KUzTzC43TVNccsklAhCPP/54UfPNHLPTTjtNXHfddQVfH3/8cbb96tWrs9fyNddck9ffSOv/9Kc/CUDss88+oq+vL7s8EomI/fbbTwDigQceyNkm098FF1wgDMMoar8GzmXSpEl56+6//34BiKqqqrxzvHLlypxzl+GHP/yhAMSDDz6YszxzPhYuXFhwHpljfMMNN+Qsj8fj4sQTTxSKooh33303u7y8vFw0NDSIaDSa11dbW9sQe5vL7bffLgBx0003FVyfmfPgz6RhGOKYY44RgLjkkkvy9qHYz5ZhGGLq1KnC4/GIF198MWeMjRs3ivr6elFbWysSiUTenEKhkHj//fdztvnKV74iAPHQQw9ll9m2LXbffXcBiD/+8Y857R988EEBiBkzZgjLsvLGCIfD4qOPPsouTyQSYo899hCqqory8vKcOVuWJY477jgB5Jyn8b6PA6/HNWvWCLfbLUKhUM7nWQgh/u3f/k0A4tJLL83Z52nTpglA/OMf/8hpn7m2Cl3zhe5X11xzjQDEKaecknMshHCOe2tra/b95s2bRW9vrxjMe++9JwKBgJg3b17O8sxn/KKLLsrbphCZ9oceeqgQQogbb7xRAOLb3/523n40NDTkLNvSe9fA4/H+++8LIO+7WwjnmA/83t4SGyDD6aefLoC87/XxgjRudyEyN4OMwfCDH/xAnH322cLlcglFUcRvfvObnPZXX321AMRTTz1VsL/TTz9daJqWcyPIGJYDDdgMGQPzqKOOyi771a9+JQBx6623FhwjM4eBH5CxMm7/+Mc/CkB85StfyWtvGIZoamoSQM4XbWZuv/vd7/K2ufvuuwUgbrnlloJzGMhbb70lAFFTUzNi24Ekk0nh9/tFMBgUHR0deeszxtH111+fXZb50nzhhRfy2meOy8Cbo2VZory8XNTW1hY09Lq6uoSiKOJLX/pSUXPOHLPhXo899li2febLoaamJu+Lqpj1mf195pln8tY999xzAhBHH310znJAuN1usXnz5qL2afBcSkpKsp+773//+2L+/PlCURThdrvFo48+WnR/HR0dAhBf/epXc5YPZ9y2t7cLTdPE/vvvX7DP9957TwDiP//zP7PLysvLRVNTU8HjVywZg2Lwl+3gOR955JHZY/PNb35T7LbbbgIQlZWVYuXKldn2o/1sPf744wIQ3/nOdwqOn7n3/P3vf8+b07XXXpvX/oUXXhCA+I//+I/ssldffVUA4uCDDy44xmGHHSYA8dJLL+WN8cMf/jCv/fXXX5/9ETWYe++9VwDi3nvv3Wn2ceD1+NOf/nTIH5ydnZ0iFAoJr9ebveZeeeWVgp9FIZx70PTp04sybk3TFCUlJcLn84mNGzcW3IdiOeWUU4TH4xGpVCq7bGuN20QiIZqamoTb7c653gsZt1t67ypk3Bb6XhvMltgAGa644goBiKeffnrEcXYEMixhFyQTn5dBURR+//vf89WvfjVn+RtvvAHASy+9VDB2q7W1Fcuy+PTTT3MeY4CTAT2Yww47DE3TePfdd/PGWLp0aUGZrk8//RRwMj732GOPIvZu27FkyRKAgo+/dF3niCOOYM2aNbz77rt5j2X233//vG0aGxsB6Orq2g6zdfjkk0+IxWIceuihBR9xHXPMMfz0pz/NOQdLlixBVVUOO+ywvPaFYtc+/fRTOjs72W233XIeZQ/E5/Px8ccfj2ru99xzz6gSyubMmZPz6LTY9Zn9LbRvRx55ZN41mqGpqYnq6uqi5zeQnp6evM+dx+PhiSee4MQTT8xrH41G+fWvf81jjz3Gp59+Sl9fX45U31BxkYVYvHgxlmUNKYVnGAZAzvk677zzuOWWW9hjjz04++yzOfLIIzn44INHlXSZiQ8tFCs+kJdeeomXXnoJIBvPd8UVV/CDH/wg+5kZSLGfrcy9Ze3atQX3OxNn+fHHH+c9ti92jOHuEZnlr776Ku+++y5HHHHEiGNkFCUG308BGhoaAHIk0sb7Pg5kuH7KysrYZ599ePnll1m+fDlz5szJfgYL3ZdUVeWQQw7Jfj8Mx/Lly+np6eHAAw8cUrFjMH//+9/57W9/y9tvv017ezumaeasb29v32bKOh6Ph//+7//m3HPP5fvf/z4PP/zwkG239N41kD322IO9996bP//5z6xdu5bTTjuNww47jP333z8vqW1rbIDM9097e/uw89lRSON2FyTzJRmNRnnjjTf42te+xhVXXMGkSZNybjyZL6cbb7xx2P4ikUjeskKxiLquU1lZSWtra94Yv/vd70Y9xvYmk+Aw1E0ss7y7uztvXaEYYF13Pk6WZY04dqbvjo4OEokEXq+3mClv0Zx7enooLy/Pi/sEqK2tzVuWOWcrVqzIM9gGsr3PWaG5FbM+s7+FspMLXaPFjjcckyZNyuoy9/b28uyzz/L1r3+ds88+mzfeeCPnh5thGBxzzDEsWrSIPffck3POOYeqqqrs+bn++uuHTfQbTOZ8LV68uOAXVIaB5+vmm29mypQp3HPPPfz85z/n5z//Obquc9JJJ/GLX/yCadOmjTiuz+cDyEuAG8x11103Kv3pYj9bmf3+y1/+Mmx/ha7TYsfYmntEoR8KmTGGW5f5MQLjfx8HMtp+Mu2HimsvNt4901/mx8FI/PrXv+bqq6+mrKyM448/nokTJ+L3+1EUJZvvMZrPXzF8+ctf5uabb+Yvf/kLb775JgcddFDBdlt67xqIpmm88MIL/PjHP+aRRx7he9/7HgChUIiLLrqI//mf/yEYDAJbZwPE43Gg/z4w3pDG7S5MIBDguOOO48knn2Tffffloosu4pNPPslKEmVusD09PTmJOsWwefPmPG+maZq0t7fn9JUZY+nSpey1115bszvbnMzcWlpaCq7PqCVsDwmxxsZGJk6cyLp167JJFcWwJXMuKSmhs7MTwzDyDNxC/WS2/eIXv8ijjz5a1Ly2ByMlKQy1frj9LXSNFjtesYTDYc4880y8Xi/z58/nwgsvZPHixdn+n3jiCRYtWsTFF1+cJ4PV3Nw87A+KQmTO17e//W1++ctfFrWNpmlcffXVXH311bS2tvLqq6/y4IMP8pe//IVly5axbNmyYb3mQNbLPVSG//Yms99PPPEEp5566nYdY0fcIwb2uzPs48B+Zs2aNWI/mc/g5s2bC/Y31PLBZIz4Yp52mKbJggULqK2tZcmSJXmGeMaTua1RFIWbbrqJI488ku985zu8+uqrBdtt6b1rMGVlZdx8883cfPPNfPbZZ7z00kvccccd3HrrrXR3d2eTgbfGBsh87rf0adf2RkqBfQ7Ya6+9uPTSS9mwYQM333xzdnnm1+Mrr7wy6j4zjxkH8uqrr2JZFvvss89WjZHJEi/GA7o122TmWajqk2ma2TlnlBy2NRk5pJ/+9KcjSmtlPAkzZszA7/ezdOnSgp6UhQsXArlz3nfffbFtu+ANtdC+77777pSWlvLmm2/meJF2FvbZZx9s2+bll1/OW/fyyy9jWdZ2O6cDOfnkk5k3bx7vvPMOf/rTn7LLP/vsMwDOOOOMvG0Kfa5g+Ov7gAMOQFXVLfocg/PldMYZZ/Dwww9zzDHHsHLlSj788MMRt8v8WF2+fPkWjbu1bM39q1iGu0dA4c/btmRn2sfh+unu7ua9997D6/Uyc+bMnPaF7ku2bfP6668XNf/M/er9998fUroqQ3t7O93d3RxyyCF5hm0kEsmGVmwPjjjiCE477TRee+01/vrXvxZssz3uXdOmTeNrX/saL730EsFgMKdq4tZcX8uXL0dVVWbPnj3qbccCadx+TvjhD3+Ix+PhpptuysZbffOb38TlcvHtb3+7YGxTKpUa8qL/yU9+khO3lUgkuOaaawByYnu/+tWvUlpayvXXX19Q09K27bybYUVFBeBUPyqWLdnm9NNPp7y8nD//+c+8+eabOet+9atfsXr1ao477rgtKhpRDN/+9reZM2cOr7zyChdeeGFBYzUSiXD99ddz0003AU7M4nnnnUdfXx8/+tGPctquXLmS3/zmN7hcLi644ILs8sz5uPbaa3MeIXd2dhaMqdV1nW9961s0Nzdz1VVXZR8/DaS5uXmbakJuSy655BIArrnmmpxKdrFYjO9///sAfO1rXxuTufzkJz8BnEfzmbi+jJTX4Ot+1apV2UeIgxnu+q6urua8887j7bff5ic/+UlBA3jlypWsXr0acH4oFSrpbBgGnZ2dAEUVnDj88MPRNC3vszNWnHbaaUydOpX/+7//4x//+EfBNm+88caoqxkO5NBDD2XGjBkFy40+8sgjvPLKK0yfPr1g3Oi2YGfax/PPPx+Xy8Utt9yS/QGX4Uc/+hG9vb2cf/752ScChx56KFOnTmXhwoV58md33nlnUfG24Pzwu/LKK4nH41xxxRV5IQWpVIq2tjbA+az4/X7eeeednEfthmHw7//+79s9fvSGG25A1/XsfWgw2+LetXr1alatWpW3vKuri2QymRNGsKU2QDKZ5L333mOfffYZVqZzRyLDEj4nNDQ0cMUVV/DrX/+a//3f/+V//ud/2H333bn77ru55JJLmDVrFvPmzWP69OkYhsG6det45ZVXqKqqKuiZmTlzJrNmzcrRuV25ciUnn3xyjmFVUVHBI488ki1/e+yxxzJr1iwURWH9+vW88cYb2bjTDMceeyw33ngjl156KWeeeSahUIjS0tJhy8/OmDGDhoYGHnzwQVwuF5MmTUJRFC644AImTZpUcJtgMMjdd9/Nl770JY488ki+9KUvMXHiRN555x3+9a9/UVtbyx133LEVR314/H4///znPznrrLN44IEHePLJJ3PK73722Wc8//zz9Pb25pRN/vnPf84rr7zCrbfeyuLFizn66KOzOrd9fX3ceuutOdq8X/nKV3jooYf429/+xp577slpp52GYRg88sgjzJ07l5UrV+bN7Uc/+hFLly7lt7/9LU8++STHHHMMDQ0NtLa2smLFCl577TV+9rOfjSoJ8PHHH8/GpQ6mqalpm1UvO/fcc3niiSd4+OGHmTVrFqeffno2nm716tWcc845nHfeedtkrJHYf//9Oe2003jiiSf4/e9/z+WXX57Vev7lL3/JBx98wD777MO6det46qmnOPnkkwsasEcffTSqqnLNNdfw4YcfZpO4fvjDHwJw6623smLFCv7rv/6L+++/n8MOO4yamho2bdrExx9/zOLFi/nzn//M5MmTicfjHHbYYUybNo399tuPSZMmkUgkePbZZ/n444859dRTs9614SgpKeHYY4/lxRdfpKura8TEsm2Ny+Xi0Ucf5cQTT+Tkk0/mkEMOYe+998bv97N+/XoWL17MqlWraG5u3uLqcJmiMscffzznnHMOp512GrvvvjuffPIJjz/+OKFQiD/84Q8j6lRvKTvTPjY1NfGrX/2Kb3zjG+y7776cffbZVFVV8dJLL/HGG2+w++67c8MNN2Tbq6rKXXfdxbx58zj11FM588wzmTp1Ku+//z7PPvssX/jCF3j66aeLOrbXXXcdb731Fk8++STTp09n/vz5hEIh1q9fz7/+9S9uvPFGLr74YlRV5aqrruLnP/85s2fP5rTTTiOVSrFw4UI6Ozs5+uijs57q7cGMGTO47LLLuO222wqu3xb3rqVLl3LGGWcwd+5cZs6cSX19PW1tbTzxxBMYhpHzA3pLbYAXX3yRVCrFmWeeufUHZXuxg9UaJNsQKKxzm6GlpUX4/X7h9/tFS0tLdvn7778vLrroIjFx4kThdrtFWVmZmDVrlrjsssvE888/n9NHRoYrkUiIa6+9NitxMnnyZLFgwYIhpYVWr14tvvGNb4hp06YJj8cjQqGQmDFjhjj//PNzZKAy/OIXvxC77767cLvdgkE6ooWkwIQQYtGiReKYY44R4XBYKIqSIyNTSAps4Hann366qKysFC6XSzQ2NoorrriioKzMcDJlI8mRDYVlWeLhhx8WX/ziF0VDQ4PweDzC5/OJGTNmiK997Wvitddey9umq6tLfPe73xXTpk0TbrdblJSUiOOOO66ghIwQjoTY9ddfLyZPnizcbreYNGmS+MEPfiASiUSelEwG27bFH/7wB3HMMceIsrIy4XK5RH19vTj00EPFz372M7Fu3bqi9q8YKbCB448kvVOMNI9lWeL//u//xH777Sd8Pp/w+Xxi3333FbfeemuOXmeGoY7BSAync5vhvffeE4qiiIaGhqze7bp168S5554r6uvrhdfrFXvssYe44YYbhGEYQ87l/vvvF3PmzBFer7fgZz2ZTIpbbrlFHHzwwVm948bGRnHMMceIm2++WbS3twshhEilUuKGG24Q8+bNE42NjcLj8YjKykpx4IEHittvv10kk8mi9z8jVXXbbbflrRtK53YotvSztXnzZvG9731PzJo1S/h8PhEIBMS0adPEmWeeKe6///4cObvhJNWGu66WL18uzj//fFFbWyt0XRe1tbXivPPOE8uXLx9yvwuNMdx9aFfZx2eeeUYcf/zxorS0VLjdbjF16lTxn//5n6KrqyuvrRBCvPnmm+K4444TwWBQBINBceyxx4rXX39dfOMb3xCQq/srxNCfVcMwxC233CLmzp0rAoGA8Pv9Ytq0aeLSSy8VK1asyGn3i1/8QsycOVN4vV5RU1Mjzj//fLFmzZqC1+DWSoENprW1VYTD4YJSYEJs/b1r/fr14pprrhGHHHKIqKmpEW63WzQ0NIh58+bl6QlnGI0NIISjl7wl0oljiSLEAP0ZiWQEjjrqKF566SXkZSORSCzLYvbs2bjdbt59993xWalIslNy6KGH8tZbb9HT00MgENjR05GkaW1tpampiXPPPZe77rprR09nSGTMbQHa2to4+eSTCQQCzJgxg+eff35HT0kikUjGHZqmcdNNN7F06dIdqqwh2TmJxWIFcw3uvfdeXn/9dU444QRp2I4z/vu//xtN07L5BOMVGXNbgG984xvU1tbS1tbGc889x9lnn82KFSuKqgstkUgknydOOukkfv3rX4+odyuRDGbdunXss88+HH/88UybNg3TNHn33Xd59dVXKS0t5Re/+MWOnqJkAEII6urquP/++7dZkYvthQxLGEQkEqG8vJxVq1YxYcIEwHkUf9FFF+VV+Po8IsMSJBKJRLIt6Orq4j//8z956aWXaGlpIZlMUltby3HHHce1117L1KlTd/QUJTspO31YQiQS4brrrmPevHmUl5ejKAr33ntvwbbJZJLvfe971NfX4/P5OPDAA3n22Wdz2qxYsYJgMJg1bAFmz57NsmXLtudu7DS8+OKL0rCVSCQSyVZTVlbGXXfdxYoVK+jr6yOVSrFu3TruvvtuadhKtoqd3rhtb2/nxz/+MR9//DFz5swZtu3FF1/ML3/5S8477zx+/etfo2kaJ510Uo6IdCQSyavUEQ6Hd0h5WIlEIpFIJBLJ6NjpY27r6upobm6mtraWt99+m7lz5xZst2jRIh588EFuvPFGvvOd7wBw4YUXsueee/Ld7343Ww0lGAzS29ubs21vb2+2FrNEIpFIJBKJZPyy03tuPR4PtbW1I7Z75JFH0DQtW/IUwOv18rWvfY033niD9evXA7DbbrsRiURy6lR/+OGHBWtlSyQSiUQikUjGFzu957ZY3n33XaZPn54XcnDAAQcA8N5779HY2EgwGOS0007juuuu45ZbbuH555/n/fff57TTThu2/9bW1myJvwy9vb18+umnzJ49O1tyUCKRSCQSiURSHMlkkvXr13PkkUcWXe73c2PcNjc3F5SuyCzbtGlTdtltt93GRRddREVFBRMmTOChhx4aUQbstttu4/rrr9+2k5ZIJBKJRCKR8Pjjj4/oaMzwuTFu4/F4Qe+p1+vNrs9QVVXFP/7xj1H1f+WVV/KlL30pZ9lHH33E2Wefzd13380ee+yxBbPeccTjcT744ANmz56Nz+fb0dPJYzzNb0fNZSzHHU/HWyLZGuS1PP6R56h4Pg/H6qOPPuKSSy6hsbGx6G0+N8atz+cjmUzmLc8Ij2/tRVFdXU11dXXBdXvssQcHHnjgVvU/1vT29tLT08O+++6bF8oxHhhP89tRcxnLccfT8ZZItgZ5LY9/5Dkqns/TsRpNeOdOn1BWLBlVhcFkltXX14/1lCQSiUQikUgk25jPjed27733ZuHChfT29ub8unnrrbey67cX8Xg8T15svBONRnP+H2+Mp/ntqLmM5bjj6XhLJFuDvJbHP/IcFc/n4VgNDBstls+NcXvWWWdx0003ceedd2Z1bpPJJPfccw8HHnjgqGI5RmLBggU5yWUffPABPT0926z/sWTRokU7egrDMp7mt6PmMpbjjqfjLZFsDfJaHv/Ic1Q8u/KxWrdu3ai32SWM21tvvZXu7u6s4sGTTz7Jhg0bAPjWt75FSUkJBx54IF/60pe45ppraG1tZdq0adx3332sWbOG3//+99t0PgsWLGDBggUsW7aMPffck9mzZ7Pvvvtu0zG2N9FolEWLFnHAAQcQCAR29HTyGE/z21FzGctxx9Pxlki2Bnktj3/kOSqez8OxWrJkyai32SWM25tuuom1a9dm3z/66KM8+uijAJx//vmUlJQA8Ic//IEf/ehH3H///XR1dbHXXnvx1FNPccQRR2zX+fl8viEDvYUQRKNRent7SSaTCCG261yKxTAMysvL6e3t3aJHAluKoigEg0HKysrQ9ZEvz0AgMG6C6HfUXMZy3PF0vCWSrUFey+MfeY6KZ1c+VluS8L9LGLdr1qwpqp3X6+XGG2/kxhtv3L4TKhIhBK2trXR2dgLgcrlQ1fGR46frOlVVVUUZmNsSwzBob28nFosxceJEFEUZ0/ElEolEIpHs3OwSxu3OSjQapbOzE7/fT11dHW63e0dPKYtlWfT19REKhdA0bczGFULQ3NxMT08PfX19u+wvUYlEIpFIJNsHadyOAUOpJXR0dCCEoKamBk3TsCxrB8yuMJm57Ig5VVRU0N3dTXt7+5BtxlOGqFRLkEh2HuS1PP6R56h4Pg/HaktCIxUxXoI8dyEGqyX85je/YeLEiXntysvLqaiokBq7Bdi4cSMdHR10dXXt6KlIJBKJRCLZQaxbt46rrrqKDz/8kFmzZhW1jTRutyMZtYSFCxcWVEtobm5G13WamprGfnIjYFkWsVgMv98/pmEJGVavXo1lWdTV1RVcP54yRKVagkSy8yCv5fGPPEfF83k4VkuWLOHoo48elXErwxLGgKHUEjKP3XeE8VgsmqbtkPmpqoqqqiPG3I6nDFGpliCR7DzIa3n8I89R8ezKx2pL1BLGR2q+RCKRSCQSiUSyDZDGrUQikUgkEolkl0GGJYwBQ6klGIaBruvjSiUhw45USwBHEsw0zYLHDcZXhqhUS5BIdh7ktTz+keeoeD4Px0qqJYwTRqOWUFVVRW1t7Tafg2HZvLehj96ESdirs/eEEC5tbB31H3/8MTfccAPvvfcera2t+Hw+ZsyYwbe+9S2+8IUvDLttS0sLbW1t2QIXEolEIpFIPn9ItYRxxo5QSzAsm9++tIo/vrWO9kgqu7wq6Oa8AydyxZFTijJyt4Vawj/+8Q9uvfVWDjroIOrr64nFYjz66KO8+uqr3H777Vx66aVDbrtmzRpM05RqCeNk3PF0vCWSrUFey+MfeY6K5/NwrKRawjhlrNQSDMvm3x54l4WftDG4aG17JMWvnv+M9zf2cscF+xXtxd0atYRTTjmFU045JWfZVVddxX777cevfvUrrrjiiiG3VRQFl8sl1RLG2bjj6XhLJFuDvJbHP/IcFc+ufKykWsLnnNtfXMnCT9oAGOyOz7x/YXkrv31x5ZjOayCaptHY2Eh3d/cOm4NEIpFIJJJdF2nc7iIYls0f3liT57EdjAL84Y21GJY9FtMCnMcm7e3trFy5kptvvpmnn36aY489dszGl0gkEolE8vlBhiWMU65/chkfbSqsFFCI3riRE2M7FAJoiyQ59ZZXCftcw7Y0TQtd19ijvoTrTikuzqUQ//Ef/8Edd9wBOMUZzjjjDG699dYt7k8ikUgkEolkKKRxO075aFMvb63efkoBH7f0jaL1SP7g4bn66qs566yz2LRpEw8//DCWZZFKjWyISyQSiUQikYwWadyOAVuiczuzLkR+5OzQ9MYNPm6JFN1+Zm1wWM+tEI5igqZpzKwLbZXe7W677cZuu+0GwHnnnce8efOYP38+b7zxBopS2HCWOrfja9zxdLwlkq1BXsvjH3mOiufzcKykzu04YUfo3BqWzYn/9zZdMWNYk1gBygMu/nnl/mOue5vh3nvv5dvf/jaLFi3KGr2DkTq3EolEIpFItkTnVnputwMLFixgwYIFWZ3b2bNnD6tzGwqFtsm4Fx48iV89/9mwbQRw4cFNlJeWDNtuW+jcDjmH9O8p0zSH3PeOjg6qq6uZM2dOwfXjSdtP6txKJDsP8loe/8hzVDy72rHSNi3B++x/Zt8LIViyrvin0hmkcTsGjJXO7TeO2Y33N/bywvJWFHKDGjLvj9m9miuPnoY2Bjq3ra2tVFdX5ywzDIM//vGP+Hw+Zs+ePWTfUud2fI47no63RLI1yGt5/CPPUS7rLz6X1KdLcxcK2EPYxBSF2IAwP/f0vWj8/f1Og+wD+kJ/p9+P9PfAh/xF9mfbNrYQWMJGCJEOd3SWIWwsW2ALgbBtbAG2EITfvgut49OcXQzERh8WKY3bXQiXpnLHBfvx2xdX8oc31tIWSWbXVQY9XHjwJK44auqYhSNcfvnl9Pb2csQRR9DQ0EBLSwsPPPAAy5cv5xe/+AXBYHBM5iGRSCQSyU6JbYGVAssgteoTUp1DyXgOMCwBVnxEavHfAXBsXtHfTKHfKFXAtm0snGVCpA3OtLGJcAxPgeIYoQinp7RhaiNAgG07f9vp5VZ2W8VpL+z0/856508bG8DG+R9B10MbcW+uytmzdfEUMLqYYmnc7mK4NJVvHbsbVxw1lbfXdNETT1Hic7N/U9mYx9iec845/P73v+f222+no6ODUCjEfvvtxw033MCpp546pnORSCQSiWRcYRnpVwpsM2vEZpcZMTBTIEyEZYDmAWJFdW3aOhvfeReBgk2u49W0BbYCtu089heArShZ56uddgALAUJxjFM7bVMLBQQCIZRsnwJAVQAFRcnoK6nO/yooqoKCsx4UVFU4yeRKfztFVVAUBbszQao3N9ndSI5el18at7soLk3l4KkVO3QOX/7yl/nyl7+8Q+cgkUgkEslYYdvO43jLSiFMA9tMIawUlmGAlcS2TISRQKRiCMvAtk2wDIRpIGzHiBW2jVAUDEtgJWyMWAIjmkRJiaIrb8VUnXfd/eEAA1FIe3MFZMxOlHTfirNOEWnbM23oZmxRhQHioIXEjnIGE3l/DnAY96/ILLQFjcLCU+Q+Doc0biUSiUQikXxucB690x/zmX4EbwmBsPv/zllnp/+2LWzLwDZSYKWwTedlGSls00CxEggjjmKbYJkI2wTbMVwV20DYAhsVoWhYqoaNhqXo2OiYwoWZFFiJGFY8ioj1QTKOmYwiTIuJtlm04ecSKaYZK1GwUbBRhePDVUTu3woCVdjp9wPaMHjZwHaZPm1AoKRjakmHIgz8XyH9/4A+1fTfGpn/LVRhoymClWYVKYYrMFUc0rgdA7ZE53ZHk5nTjpqb1LkdX+OOp+MtkWwN8loe/2TOTV8k4jxCF05cp5WO63TsqH6DU0A2IcnOGKFkjFPnvWGJtDHbn7yUtccy723LCQ/IGKOWY6AiDLANFCuFYibTxp2JYtuotoWK6Rh/GZeoqoOqIxQNRdNA8YBLQ1F1FFXBEjaWMLGwMI0kdiKGmYxgxmKIeByMFEoqjltE8KhxAp4oAVcEo8iQBACtO075fW8N8LwOcJkqA72yYtD7tFd3QPtMnpqdXpbNWyvQd+66QX0rjqcYRcWJV8htryBIJbdNgr3Uud0O7Aid210NqXMrkUgknz8sG1b1KcRM8OswJSTYQZLs2xXdjOJPdeAzOvCn2vGl2vGnMn934DV7sm2FgESXixUvV+BK7IIHYwRWJJOctmb1qHRupXG7Hcno3C5cuHBYndumpqaxn9wIbE+d22JYs2YNpmlSV1dXcP140vaTOrcSyc6DvJZ3DEIIDEuQNC1SliBpWKRMm1jKxLAEccPiqQ/bWLiik75k/xPDsFfjmN3KOWlWNS7NiRBVM3GhCjg+QMvxoAoTFdN5fG4bKLaJYjmhAoqwUCwTBctRILAtFGE6j9QVx5soFA2h6qBoCFUb8H5og9IWAlOYmMLAEBaGbRI3k6SinajRdtyxDryxdvzxTsKpLkrMbkqtLnwkh+wTwEyoRFs89DV7iLR4EcnRGbUxN3zYpDixs5kXDPleTZuCqhjUZkA7NW0tqmlhBrVQvwPbDtUmb+z+fl1mfijvlhi3MixhDBgrndvtwdbo3G4NUud2fI47no63RLI1yGt5+2DbgqRpkzCs7P8JwyKStDBMQdJy/k9ZFgJway5UBW57bSXvre/O6683YfH4B21s7E7wX8fW4cIJG1BtA8wUqhlPG7IWijAco9U2nZjXdBaTUHXnpetpY9WTXqYhUElZEDcFMcP5P24I538TYoYgblpEDZuoYRExbRKpFIFkB6FUG2VWOxVWO1V2BzWigwmigzqlA49ijuq4tQkXH3ZX0NfiIbxJUNVmFp08VoiOMNx05vi1LYbiF78zaWzf+n6kcSuRSCQSiWRUWLbjhU0YNknTImk4XthYyvHIpkyblGVjWI6Mk1vTcGkKHl0j6FFwaR5URcHXuoTQM1fzv3ED3MMMuBleefFrHDVrAomUQcRSiVoqcVsnZmlELc3523QTt1RilkLMVEiYIm2gZgxYQcK0iZlJ4qYgYTrxugMJEKdBac95zRzwdzXdqIrIn2OOlEAuvcLHOlHJB3oZH7sCrHa5SCYNJm3qYdb6CHuuNalNQi1GznZxN3zQpPDeFIVT3rKp6yru/NhGGaekjmKSLwlZIa4cka5+pYTMemXQ+0HbDWyvDmqX32/m78HjKIOW9S9VgFoeB7qL28lhkMatRCKRSCSSgpiWneOJTZo2saRJzDBJmYKUaZEyBYZto6Dg1lXcmopH1wh5XU4ogTKExQeULbufiuQaaopwU76z4RWOXXPpCK1sMiUBCiOooLffcFXb8wzZUmX0yYZdhOmklB6llE16iNUeLxu9OptdFh16gm6tj5jZzfQNnez9cQfnrxJMHMJDuboGPpnipXlKCcnGKqr0MmYSpuztV4GewhsNQhUujvIG0MWA0Js8ma50gljmfY693i/RlV0/cDunksOA9f3b2OmEv8yYIl3cgbSmbv+WpNtm2gtHXWIbII1biUQikUg+5xiDjVjDIpayiKVMUla/EWvaNuoAI9br0inxqejq8EYsOAZMe2+UjW1drG/vYX1nFKN1P+7ir0XN8X7r+BHbaFjUKZ3U006T3s5EtZ1GtZ162qilnWrRgWeQd3QkbEUl7ikj6S4loYdJKEFitp/1isY6xWaDy6bFnWSzFqGVXqIZz6MQ1HbB3qsEe68SzFor8BSw3WI+jc1TSuibWosydTKlwSrmKBpz0n04JbxMKAvSaWpElBiKlgCh4jYdcbCUngTFRlhehFkCIS+BtvZscYUcu3VgDLGiDDBbnUIOdloD1xnZOae20yBdrSxTzCFduQxAqAgVHP+tcy2oaloRAQ1UJT2s6sRLp68XDVBVDVVV0BQFVd02Zqk0biUSiUQi+ZyQMu3ccALTJpowiZsWhmmTtGwM08a0Baqi4NFUXLqK36VT6lOLqnRpC0FrX5L1nTHWd0RZ39HH+s4o67pTxM3Bj/ObeMa1Pydqbw/b5z+tuXwkmjh+gsXcUCdVdhsVdjulRhshs5VQqg1/sg1fsnOwKcfgt4MxNTdxbwUJXzlxbzlxXzkJTzlxNUiHrbPRiNGW7KDN7GYzvbSq7bSrsaw01kC8ScF+6wR7rxTMWS2o7c4fTyiQaKjEmDqR1LQJGLWleBWB17adxDcj4vxv2yAUhOYku/WcfghmwuaW9kY+DS7D6DwEYYUAULQIrvJXMToPZ5Zf4dKJraTSRqqdfjkGq3BK4gqBUJzJCOivEiZAVTJGKWm5LicMIVNVTEVFUUFXFFRFQVPTbRTFSUxTnUplqnD6VLP9O2a2qgyoVzbo95BSXYmtadhCEBFxgooXO5qANcOfw8FI41YikUgkkl0IIQSpgZ5Yw/k7kjRIGHbWS2tYNpYl0NR+T2zQreP2qehFGLGWLdjcm2BdZ4z1nTHWdTn/b+iKkzRHLpkackOFV+U3fWfkGLdLPU7w7ZxkKrtsirKRdzyXU9HeB6NMOEq6go7B6i3PMWCzBq3mpsPooS3eSluslbZUJ63R9bSJXmJKeg4KFKwtIASTWmHuapV9VylMXp9CK7DrVshPckodySm1pCZVITwaWBYCG5K92ChOYQc0hOrCxoeluyFpQdKGpIWpu0i6XZw2yeTl3kN4Rw0QSwtLCCuI3nsC+0wz2H+axUq1ClVVBhiSjlGJItCVjJdUQVVBQ8muU3G8saqqZiuVaZl+FBwDloyhqjhhCNlDoeBMR/RH1OZEQmTCHJRCpcocad2fXpHdTlGgE+hctgbO/mbxJxxp3EokEolEslMihMjGwSazMbEWkYRJIpPUlU7ssoVAV1THiNVVQh4dj66hqcOHEoATd9vckzZi0wbsus4YG7vjGNbIaqJlHsHEsMrEEp1JJRqTwiqTSlRKPQqWgAuemMgiawYHaJ/Qo6pcVFcDwEvrNlCSzvaarm4q2LetqMTd4bSxWk7SV0HCV0Eia8CWY2tuhBD0WVHHcDU6aEt10Nb7KW3tHXRavYhC7t1Bh0ZDpZIQjfEA+6yB3VYlqVvVjSeSBHILHglNJVFfTmxSJbGJ1SQrwwjFKewgFA0sFVsLgupKvzSn+IMp0kUcnPK9pkfFDLsxAx6UQAgtHCQcCHKm28uX0NnQLGhf3UnttBrmNIVxuVTHcFUUNFXNGqV62kBV1YGpXJndHGhhDrEccsJOBq7L+XuY0JTh2g23zugYfUFeadxKJBKJRDKOyRqxhk0irUyQMEwiKZOk4chqZeS1bBtcmmPAujSVsNeFW1eLMmINy2ZjV5z1XbEB3tg4m7rjWIMlBQpQ6bGZFLSYFFaYWOJiYrmHiSU6JZ58L7Ca7CGw/h0Cm9/mZW0JfiUCwAt+H1bauHnB7+eLkSjr7UpWizqUcAnlNSFSvkqSvkoSvnKSnlKE2i95Zdgm7UYnralO2pIraetbnDZoO0naw2vLZggKL5WEqRAhKkWYSitIU7NJ7Zouwqub8baso5BYglEaIDm5lviUepJNdQivH0Vzo+tudF134kk1x5C1FQWh2limiUhGIRZHSaRQXRpqOIgeqEAvK8MdDuEvqcAXLMGjeXBrblyqK/t3pD7Cwt6FHL33zF1W2i7kDo16G2ncjgGf1/K7L774Iscdd1zBda+++ioHHXTQkNvK8rvja9zxdLwlkq1hPF/LQghHgcCySGaVCNKFDtKKBKblhBwIHG+cW1PRVRW/rhB2Z4zYAYoBFlhWrl8xadps7E6woTvB+vT/G7oTtPQm82SxClHlV5gYFEwKWEz0p5gYFEwodeP3+RDq4Gf3NomUDULg7V1FqO0dwq3v4Ov+FAXBGl3n6rpKIAhAm6ZlH1nfVF7K/4Wr2UQFXk3wbw0nUu0ux7Jteu0IbYlO2vvW0G500GF10m520WMVpyagC5VKO0SlUkKVWkq1UkqVEqaaEH6hoUdiBFatx7NyE+41S1Hjqbw+hEvHmDoBa8YUzJlTEdVVKLqOX9XwqzpCAUtYmMLEsi0sYWHZFlgp9ISFO2WhCxXFF8BVU40rVII7WII7GMYdDOHWPbhUlxMDS+5pTaX/jefreVsRj8dHvY00brcDg8vvfvDBB/T05H/gMuV3+/r6tnpMrXkJ/me/W1Tb2PE3YtXtU1zbWPG1rAeTuSAvv/xy9tknd7za2tph99swDNra2li+fPmwYyxatGiL57et2VFzGctxx9Pxlki2hl3hWk6lX0ORsGBzHDbHFFriCi1xaIkpdCbTmfHDoCAo90CtX1Drg1qfoMYvqPGBN6c2gGPMNvcCvXGg3xDRrThVfR9S07OUmt738ZrdeeO8GAiz0l1Y4LZX0+jVLDRaMYBH2v4OCrRb7aSG3fN+QkqISq2SKrWKSq2SStV5laql/UYjgGniW7uWwCefEvj0EzzNLQX7S9bWEp0xnej06SSamhD6ADPKSL9y0Cgo4KsBvgHv40A8Dq1xoPDYw7ErXM9DsW7dulFvI43b7cCCBQtYsGBBtvzu7Nmzhy2/GwqN3uU+GOXFv6J2riiqbeDTvyKmHzFsm21Rftfncz65xxxzDGeeeeaotu3o6KC6upo5c+YUXD+eSmjK8rsSyc7DWF7LthAkDSfmNWU58a+Zil0pU2CmixwYtkBVQFccZQKXqqDrCi5VHVFeCyCaNNnQnUx7YeOOR7YrQXt0ZMkrVYHasIcJpV4mlLhpDCk0BW0meOL4RRTVTKLYKVA0bN2LrfucKl+FEAJ3dBPh1rcJtb2Nv/NjVJGvfdXnb2Bj6e6sDE8j4q9mt9irrEiuHHGum+zCcbduRadWL6NOK6PWClJnB6hNeam1fPh0b1YOy9GqssHuALpRuiKoKzagrdiA+tl6lGT+8RJ+L9bu0zBmTSOx+2TMcABLWCjCwid60FUdTdFQFRWX6kJTNDy6G90E1bDQUxaaUNB9flz+IFowhBrwo/r9KH5/Ued3OD4P9+YlS5aMehtp3I4BY1J+98DL4L0/FtVUPeAyKHLMrSm/m9lOVVVisRg+nw9dL+6Sk+V3x+e44+l4SyRbw7a8lk3LJjEgqSthWMRTFjHDJGkKjAGFDlQUXLobt0vF73MUCkYqdJChN27kxMOu74qzrjNGZ3RkL6amKtSX+phY5qOx3M/Ecj+NZT4mBMFrR9FSfaiJLjQzhmJEUUyB7fJh+4PYuhcUlULfBIqVwtf+AYHNb+Pf/DbuaHNeG0t101m6B83le7C2bDIdXj8WBmWeALPcQWarX+KWNX/mk+jaYfehwl1CvbeCelcZdUqQestHfcJFeVxB7U1CygCXC/xuCPjA7QZFB00HzeMka61uRvloDXy8EqW1M28MoYA1qZ7kzCYSM5tITaxG013oio6WDjdwq/50zKsHl6bjUl3oaOhJCzWRREQSKC4XStCPGgigl5SghkLOawgv9dayK9+bM46y0SCN212Fujmw+3xY/tTw7XafD3V7jc2c0nz1q18lEomgaRqHH344N954I/vvv/+YzkEikUi2FsPKrdSVMCxiSZO4YWVVCVKmwLBsR15Lc4xX3ygLHXTHDcd4TSd0Zf7ujo/sidVVhQllPsd4LffTWOYYsnUlXkfeyzbQUhHUVC9asgWtow/FdDy0tu7G1n3YgRong3+oMWJt+Frexr95MYH2pWhWfqJW0ldNX9X+dFbPpq2yiYiSIi7iaIrCNE+QEpcPodq81fkRTzW/zqpoYa8swA8nnc40UYI3bkIsCRHDkccyHU1VfF6orgRfIJuwheYCNNjcCR99hvLhp/DpahQz35Nshfyk9piMucdUxB7TUENhXKpOpe7FrbpxaW50VcetuXCpzgsU7GQSEY9jx6JgWSh+H2owiFbfgBYOoQaDqIEAilpE+TXJNkUat7sSR353ZOP2yO+NzVwAt9vNmWeeyUknnURlZSUfffQRN910E4cffjivv/56XhyuRCKRjAdSZr8qQabgQTRpkjD7jVjDtDEskU3qcukqAXfxhQ6EEHRGU1l5rXWd/UZsX3LkEqRuXaUx44Ut82e9sTVhb64yghCoRhQ10YqW7EFL9Tjvzbgj6K/7sTxhTL83X1EfsG0nB8Ld+TGhzW8Tbn+bQCQ/BlIoGsnKWaTqD8CYsD99wUr67Ai9VoQ+sxev5qbaVY5bdRG3kvyz7U3+0fwmlzzQwTe6h89iK1P+gQ8XlIQQZx0L/jIo9UMgALrbkdBKz92OxhAffgoffIL20QrUrvzcDqGq2FMbsfecjmuvWXgnTaLE5UVXXY4nVnHh0lw4iq4DtrMs7HgCM9aDSMRRXG4Uvw9XTTVaaaljzG5H76ykeKRxO155+vvQ8sHot/OVQzz/UYuzrgL+eU1R3agIgqaFqmtQuxd84eejnsohhxzCIYcckn1/6qmnctZZZ7HXXntxzTXX8M9//nPUfUokEsm2wJHXGlCpyyigEZuOiTUtG5eq4dKVURc6sIWgvS+ZLXCwvjOeNWhjqZHVaHwujcZyX9YD25h+VYc8jvB+ARQriZqKoBl9qMlutFQExYih2klszYPtCmB6Sh0PZxrLEhi2hWk5nmfiPYTbl1DRtYSyjqXoZiR/37ylWA0HwqQD0RsPQNHdRFO9tKd66EptJG4lCOg+6n0VaIpGZ6qXZ1pe5LnWt4laCQBqugWNIxZlcBKbhe6B3fZw1HTSCgSGGYe1G9GWrcD90RpcazahFJJ8qChDn7Mnnjl74dlzTzzBUFqJYPiwOzuZxI7FEPH4IO9sveOdDYWc+FnpnR1XSON2vNLyAax9ddv2Ge8ouk+FgRfH1gW8D2TatGmcdtppPProo1iWtW3ijSUSiaQIeuIpXviknQ86FDre3cT0CZVYtkhrxDqFDlyqmtWJDXuK14i1bEFrXyJd4CCerdi1oStGwhi5WlfAreUYrxlvbGXQPXI8rrBRjXTcbKoPLdmNakZRjThCUbBdfixvKabuxbQEpm1jpASmmcKwbSwbdFUQjq2hpuNdStv6pbryqNodJh4EjQehVk1HVVT6jBidqV7aY930GFFMYVPi8lPurkJRFNbHWnmq+TVe7fgAS/Qb9LWuEsr0BFCcjJUlLNqim1H74vg+WY/n49V4l69G7Sug6uNy4Z61B/695xDYZz/0+vqi4pod72wcEY8j4jEUtwfF70OX3tmdCmncjldqZ2/5tq0f5XtvfRVQPbPoLgQCy7TQdA1la+ZSgMbGRlIpR59vVw2Al0gkOx7TsokkTbqiKe56dTVPvd9MT9wANPh0FSW+dRw3s5az9m2g0u0p2oht7onnxcNu6IqTsoooOevVmZhN6Or3xpb5XaPKnFfMhGPMGhG0RFc61CCGYqWwdR8pzUfKE8awVSeEImkjSKCpCi5NQddUgnqS0s4PCLe9g69lMVqhp36uADTOdQzaCQeAvxwAW9h0GxE6kj10pnrpNaJoqkaJK4BX8yCEYFnvap5qfo33ej7L6XJGoIFT6g5j39r90e67kWKNWy0Sp+4XD8PaDQXXuyZMwLf33vj23hvPzJmonuIqW2W9s7EYCBvFl/bONtSjhaR3dmdEGrfjlS0IA8jSvBTuGCT1deHjo0oksy2LSF8foVBom3tXV61ahdfrJRgMbtN+JRKJJJ6y6EsY9KWN2p5Eipv/tYIPN+UXhOmJm/x1yQbWdkS59qSZDHxKZVg2m7rjrE8bsBmFgo3dccwiKh2U+V05HthMTGyJb+hErWGxLceQTfU5yWCpHtRUDDsVxRAaSdVHQgmRQgcTdFtB18ClQdCl4dXdeHQVf3wTvubFuJsXo25+H8UuEN9b1gSNBzkGbe2eTkxr5rjYJh2pXtqT3XSnIkSsOAHdS7W3DF3VMW2LV9uW8lTza6yJb85upwBzy2cxf+LxTK/a0zGabRuKKN+b7SMSg0i/l1bx+/HNnp01aPWqqqL6yfHOZmJnA3702hrHOxtKJ4NJ7+xOizRud0UGKyfsAIUEgLa2NqoG3WyWLl3K3/72N77whS+gyl/BEolkK7FsQSRh0psw6I0b9MZNooZJwrBwayrPLNtc0LAdyNtru7jp2U+ZUOrLxsNu6o4XVa2rMuimcUBCV2NaYivk3UIjdgCKGUdL9aEke7FjnYhkBCMZwbZMEooXS/ehuGucJChNIaSpeF0qHpeOW1dwaxpuYeBu/wBtzVuw7g3oLaBKoLmhfl/HmJ14IITq8prEzAQdqV7akt30mhGSlknY5afBXYmqqMRTEZ7ZvJin296m3eiPz3WrLo6qPZiTppxMbekkZ6EQ0N0LLW2IVGpUgW/uKVP6vbPTp6MUKS8pvbOfL6Rxu6syUDlhDBUSBnLOOefg8/k45JBDqK6u5qOPPuLOO+/E7/fz859vhWdaIpF8rkkYFr0Jg76ESXcsRSRpEk9Z2MJJwAp5dKqDHixb8PzHm0fuEHjts+GzmqpDnqzx2u+N9eF3b7uvUdsysOK92PFeRLwbkt2IVBTNSqLqbhRPAC1Qi8vtJuzW8Lo0Jz44HSPs1lRUFYi0wro3Yf1bsPEdMBP5gwVrYOLBjkFbvw/o+Y/whRD0GBHHU5vqodeIoioKYT1AldsDVpLOvo083fo2z3d9RMzu19sNu0KcOOkEjp9yImH3gPCzeAJa2ki1bCbW3UpYERRrTur19dT/7/8W1TbjnbVjMUgmpHf2c4Y0bndV6ubAOQ+k/x57ry3A6aefzgMPPMAvf/lLent7qaqq4owzzuC6665j2rRpO2ROEolk58OyBZGkSV/CoCdm0Jswiab6vbN+t051yJUnwfVxc09R2rADqSvxZuNhM97YCWU+vK5tF55l2Y4iQdKwsJMR7EQvItmHx+jCayfwigQuBVSPH3dJFW5vELdLyxqxLjVtxGawTWj90DFo170FnQWqfSmak8sxMR1uUDqpoPQXgGlbdBl9tKfjafvMGD7NTaU7jNsyIRlhXWQFT3V/yGs9n2KJ/ljj+kA9J085mcMnHI5bG2A4mha0d5LcuJHY5k3g8+CfMAmX5i6UtlaQkbyqed5Zvx8tFEKb0IAWDvfrzm5lVTDJ+Ecat7syM+fv0OGvuuoqrrrqqh06B4lEsnOSMCz6Eo5B2xVLEU1axFImli3wu/Wsd3awoWILwaq2KIvXdPLC8tZRjfmdE6Zz5PTqbbYPli0GFHdwXpaVxG1G8dtRfFYfPiuKmzh+xcQV8qJ7S9G9QdxuN25NHcr+hEQ3rF/kGLQbFkMyX88VXxk0HphOBtsf3MPnOcStpKN6kOym24iQsFIEVTcNqgfVSCLiMT5ItfFUx7ss7V2ds+3u5bszf8p89q3ZF1UZYISmQxDiG9YRa9mIZikE6hspD1UTiiu0dg8fMjIcw3pny8qcsINgEEV6Zz93SON2DIjH4/T25n+ADcNA13Usa2Stw7EmM6cdNTchBKZpFjxu4NTTHvj/jmRHzWUsxx1Px1uyayKEIJqyiKUTwqJJk5jh6M/qqoLPpVPmymjLmmCZGOnbU8KweH9TH++s6+WdDT10xUYuglCIkG6Tio/+GjctG8N2ijoYaW1c23ZkZF2KgpckATtOuR3DL2J4RALdTqFrCrrfj+6pRdE92Xw2ASQNk+RAp7MQqF0r0Te8hb5xEVr78oJSXVbFDIyGAzAbDsCu2A0yhqYFxPPL9AoBMTNOjxGly+ijz4wjrCQBoVJlA6pFXHOxKLKJpzveYl28P2ZXQWH/qv35QuMXmFoyFQAjNmDSiSTxzZtItG3GE7fwl9UTLq0hqPsxX3qF1j8/6HhZi8QWgt5IBDseh0QChA0+H6rXi1ZViRoIoPoDWD5v/4+eRMJ57aJ8Hu7N8Xh81NsoQojiUxUlRbFgwQKuv/767Pvf/OY3TJw4Ma9deXk5VVVV1NbWjuX0dgpaWlpoa2ujs3OIghQSieRzTWcSlnUpLOtSWNGjYIp8F2edT9CRhJQNw+t1C0IuuH5fiyLqMowZuhWnqm8ZNb1LqelZitfszmtjqD5aw7PZHJ5Da3gvkq6SbTZ+QiR4O/k2rydfp1f0OxpcuNjPvR+HeA6hXCsfVZ/u5hZqHn0U37r8KmcjkayuZu1//L9RbyfZuVm3bh1XXXUVH374IbNmzSpqG2ncbkeWLVvGnnvuycKFC9l3333z1jc3N6PrOk1NTWM/uRGwLItYLIbf798hhRbWrFmDaZrU1eVn7YLzK3XRokUccMABBAKBMZ7d+JjLWI47no63ZOdFCEHMsIgmnUpgkaRB3HCqhOmqgtel4XdpBSt/WbZgRVuUt9f18s76HtZ15XvjXJrC7LoQ+00Ms19jCVVBN395t4UHlzSPOLev7FvHWfvUIoRwwgksO1uty7BsbEBTFdyagq5puDTwuXS8LhW3puC2E3hEHJcZRTf6wEiAEXc8py6f89JHeDwuBGrvBvSNixzvbOsHBaW6rJJJmA0HYE44EKtqjxyprpEwbNPx0ia66U12kUj24UUj6A2jufzgDtJpp/hX2+u82PIKcavfa1biLuG4huM4puEYgq78EAeBINqxmcTmFvwRAz8eSqobCAbKUJIpYo89RvwfT0P6iaBaUYFSUgLJZE4/thAkTBOvojg/SVQVRVHQ6uoo+8mPUf0BlIHe2c8xn4d785IlSzj66KNHZdzKsIQxwOfzFSxW0N7uZOeO5ypdmqbtkPkpioLL5RqxyEMgEBg3hSB21FzGctzxdLwlOwdJMxM7m1E2sIglLQxL4HN7CAV1qt1awVKykaTJu+u6WLSmk3fWdtGXyDf0ygNu5jaVc0BTGXtNKM1L/DrnwMl81pHg7bVdQ85xzoQSjphZR0vcCQlwqRoeXcXtUQnqCn6Xjt+j49FVPLqK16XhEUl0M+rEukY7IBUFIwKWAW4/BP3gqswpcVsQM+lok68vXqpLC9WhAcWVKHCImnE6Ym20RVvoSXRi2jZhXzmVoQmovjJwB1ib6OCptU/z+qbXcyqJ1QfrmT9lPoc1HJabJJbZBdukt6eN5KaNhLpTVCVVSqqbKK2oR0El9s47dNx1F1Zbm7OBqhI++WRKzz4b1efL6cuOx+lta+UTw+CQhgZKqqtRQyG0QEDGzg7Drnxv9g26RopBGrcSiUQi2WbYtiCacozZ3rhBd9wglnKkujRFxe/RqAx6cOv53lkhBBu74yxe08niNV0s29RTUGt2ek2QuU3lzG0qZ0rl8NnvuqZy7Ukz+euSDTz1fnOOekLYq3PczBpO36cev1vH79bwu3U8LhWPrjmasbrmVC6zLUj2OsZsX4+T0JWKOt5ZTQd3AAJVBSW18oi0po3ZN4uU6tobdO/I/Q7Cti164u10RFroiLfTIww0l5+SkiZ8gSpwBxCuAEs7P+Sp5ffxQfsHOdvPLJ/J/Knz2ad6n9wksTSGZdAT7yLV0kJJl0F1TFASqic8aQKKpmN2dNB5zz3E3nwzu4172jQqLr8cz+TJOX0Jy8Lq7ESkUmiVldDcjHu33XCXbLswC8nnB2ncSiQSiWSrSJm2UxVsgO5sNGlhWDY+l4bfo1PuL1ze1rBsPtrUy6I1nSxe00lzT76h53Np7N1YygFN5ezXVEaZvzgPnhCCeDoM4qApFRwyrZJ1m7toXfcZM2bO5NAZDQQ8uuOJ1VXUwfNLxSCaNmhjnZCKOMts0/HOeoIQrOpP2hoK23TKoq9LG7QFpbrUtFTXwSNKdY00lpHopTPWQnu8k25s+hSBL1hNdagWl7cMXH5MYfL6ptd5auVTrOvrj39VUDio/iDmT5nP1NKpBYdIWSm6k93YXT2Eu5LU9ymE1DChSRNRPR6EZdH7j3/Q9ec/I9LJQIrfT9m55xI6/niUQU8DrWgUu7MDtbQUd9MkRDgMzc0y7ECyxUjjViKRSCSjIqNs0JeuCtYdN4glTWIZ76xboyLoxqMXfiTfHUvxztouFq/pZMm6buJGvipLbdjL3KYy5jaVs2dDSZ6G7VBYtiCWcozrpGXhdWkEPTp1JV5KAy72rfPyVnQFR8+qIRz2D9rYTHtneyHeA8keSEbBjDvxsq4AhGpAK6L6WFaq6y3YsGgYqa4DHIO2YT/whIraxzzMJKQixOJddBoR2jHpETYJX4iQv5qGYA2qy/H8xowYz696kqdXP01noj9h16N5OLrxaE6achLV/sJyaAkzQXeyGxFPUNpjUdZjE0y4CVTWoYWcuSdXraLjjjtIrew34P2HHEL5V7+KXlaW058wTcyODhQhcE2YgGvCBPSyMpJDqORIJMUijVuJRCKRjEjKtLOFFLqysbMmKcvGpzuP88uG8M4KIVjTEWXRmi4Wr+7k0819eSJWqgIz68Ic0FTO3MnlTCj1Fe25MyybaNpbbAsbv1unNKBT5g8Q9umEva5sLG5v7wCpKiGc0IJkn2PQxjrBiDoGLcLxznrD4KoZ2YsqBHR85sTNrn8LNn/k9DGYqt3T2rMHQ9X0kb2+Q41lxCEVQaSi9AqTDmw6sOjxuBGuMkoDtVR4gtlj2B5v5+nVT/PCuheIm/1JYqWeUuZNnsdxE48jOIQObsyI0Z3sRrWgLCoo61YJ9lp4AxVo1WUomoYdj9P14IP0Pf002E5RB726morLLsO39955fVq9vVg93ehl5bga6nHV1qK4tr5ksUQC0riVSCQSSQEy3tlIwqQ3nkp7Zy2iKRNVUQi4dcr87iErdyVNi/c39KTjZztpj+RrrAY9OvtNcryz+04sJeQt3rhJGFZWC1dVIODRqSnxUOZ3E/a5CHn1wt7ejEBQz0boizuGbSrqxL3qXsegLakvToEgFXNiZjMGbawjv40rAI1zHYO28UDwj046K4ttOuOlImAmMXU33Qp0uNx0KBq9CLzeUiq8JTlJX6t7VvP3VX/njU1v5CSJNQQbsklirgKeaCEEUSNKT7IHl+qiKuWlrNsi3Gugmhp6bY0TgiAE0TffpPPuu7Ey0o2aRsmpp1Jy1lmontwYZGEYmG1tKC4d96RJuCdMQNtFE6EkOw5p3EokEokEcDygfQmTSMJMe2dNYkmLhGnic+kE3DqlfndB7yxAeySZNWaXbughZdp5bRrL/RyQDjfYvTY8ZF+DsYUgnnKM67hh4dE0Ah6NypCHEp/LMWg9en7cbLYDC6Lt0L7eed/2CXhxqnb5Sh3DthhPcfd6J252/RvQ/L5jdA6mrAkaHWUDamePSqorBzPpGN6pqFOwwB0g6Q7R4S+h3TboViziwiLgKqXeHUZLKzMIIXi/7X2eXPUkH7Z/mNPlrIpZzJ8ynznVcwomiQkh6DP66E324tW81OrlVPTYBLuS0BdHKy3LhiCYbW10/P73xN9+O7u9Z/fdqbj8ctyNjXn92j09WH196JWVuOvr0Gtr8+JvJZJtgTRuJRKJ5HOKECJdEaw/3CCWcsrcgpI2Zl14XYUz9W0hWLE5kjVoV7XnV0nSVYXZDSWOusHkcmrDxWf9W7Zwwg1S6fAHt0bAozOhzEeJz03I6ygcDBm+sH4xPPENxwC1TRAWAdvmaEMhsEoDdYBxd+R3oXqP/D7MJLS87xi0696E3o35bQZJdREqrM89IkI48b3JdOKapoMrCOF6+lweOoVNu52gx4hiKiYl7hLKXf1qEaZt8trG13hq1VOs71uf7VZVVA6qc5LEppROKTi0LWx6U71EUhH8up8GXy0VMY1gRxzR0YXi9qDVN6BoGsI06f373+l++GFEWqNWDQYpu+ACgkcfjaLmGs12MonZ3obq8+GZMhlXwwS04K6pySoZH0jjViKRSD5HGJZNZIDubF/SkelKGBYel0bArVFa4h/SoxpLmby7rpvFae3ZgdJaGUr9LuZOKmduUxlzGkvxu0dRZMCy02oLJgKB361THnBTFnAT9jrhBkOFQuSQisIb/wftn+Qs1oAwwGBRhuV/7zdux0iqC3A8ykbMMWjNBOg+8AQgVIftDTuhB1aSzmQ3valeNFWjxFuCd8B4USPKc2uf45+r/0lXsl/P16N5OGbiMXxh8heGTBKzbIveVC/RVJSgO8jE0EQqDA+Bthh2ezt2MoVeWZUNL0h8+ikdd9yBsXZtto/AkUdSfuGFaINku4RtY3V1IRJxXFVVuBoa0Kuq8oxfiWRbI41biUQi2YXJyGEN9M5GkxaxlBN/6XdplPhcVIc8Q3pAm3v6tWc/3NiDWUB8dmpVIKs9O606WLAow1DzSxi2o3CQMtFUlaBHo67Em2PQFqpaVqAzSPRAtA0iLdCwL3z0WFHzoGZPWPS77S/VBWCl+sMNbNMJjfCWQqACPGEMl58OO057vJ3uZDeRVISAK0B1oBp9QIhDW6wtmySWsPoN8DJPGfMmz+PYiccOmSRm2iY9yR5iZoywK0xTSROVaphAZxxz82bM7m60klLclVXOlKNRuh94gL5nn83GLev19VRceim+2bPz+rfjcaz2dtRQCNfUqbgnTED1buEPAIlklEjjdhdmadtSAOZUzdkh41988cXcd999Q67fsGEDDQ0NYzgjieTzgWlllA3S3tmEI9MVN6xsidu6sGtIg9G0bD5u6cuGG2zoiue18egqezeWMrepnP0nlVERLL5elp0Oh4glTWJGfzxvVchDid+Jnw26h4mfzevQhngn9LU4hm2i2/GkNh4ATYfBmleH317V4aUb8pdvK6kuIRyvbEYnV9Gcog/BWifBzFsCnjAxYdIR76CtdyW9qV6SVpKwO0xDqCEnPnZ1z2qeXPkkbza/iS3645onhCYwf8p8Dq0/tGCSGDiFF7qT3STNJKWeUupL6qn0lOPvSWK2tJBqbUNxu3FlQhCEIPraa3Teey92d7fTia5TesYZlHzxi3kKB5liDJgGen0d7oYGtIoKqVkrGVOkcbuL0pPs4aKnLwLgpXNeosQz9lVeLr/8co477ricZUIIrrjiCpqamqRhK5FsQ+IZ3dm0QevEqlogwO/WCHuH9872xg2WrHO0Z99Z10U0ma89WxXypL2zZcxuKBlSx7YQpmUTTTkKB6Yt8LlVgj6dxnIfYZ+bsE8fVfgC4JS6jbZB32aItTvKB54QlEzoT+La96KRjduBSWHbQqoLnASwVNQxaI2MEkMAymqcBLa0QSsUhZ5kDx1962lPtNOb6kVVVMLuMFX+qv7uhOC9tvd4auVTLOtYljPUnpV7OkliVXOGPL9JK0l3ohtTmJR6SpkUnkSlrxJ/3Ca1ZiPJ1jbsZAK9ojLrYTVaWuj43e9ILF2a7ce7555UXHYZrvr6vDGsSAS7uwu1pAR3XRN6fT2qLJkr2QFI43YX5YV1L2RlX15Y9wJf3O2LYz6Hgw8+mIMPPjhn2auvvkosFuO8884b8/lIJLsSA72zPXGDvrjzWD9hOkoCfvfw3lkhBOs6Yyxe4xi0y1t680rdqgrMqA0zNy3XNanCPyoPXMp09GcjKcd4DLg1KkPuHLmu0RjIWYy4ExfbtxniHY5X1FsKZZPyjdHK3Rxjdf1bhftSNMe7O/GgrZPqAsfYzhi0lukYs54SKJvsGLPeEmcZYNgG3YkO2uPtdCY66TP68Ok+Kn2VOVJehmXw2iYnSWxD34bsclVRObjuYOZPnc/kksl5U8mQMBN0JZw43DJvGZW+Sqp8VXhtDWPjJuItLVjd3WjhElxpD6swDHr+9jd6/vpXRMqRcFPDYcovvpjA4YfnXQPCNDHb21EUcDU0ZIsxSCQ7Cmnc7iKs6VnD1Quvzr5vi7dl/77p7Zu4b1l/eMCvj/k1k8KTxnJ6Wf70pz+hKArnnnvuDhlfItmZiacs+pJOmduuaIpoygk3EMKJnQ17XVS7hvbOpkybDzc62rOL1nTS2pfMaxNwa+yb1Z4to8RXvPZsJr43lpbscqkqAa9OQ6kvbdDqBD1Fxs8WItGb9tS2OGEIwnZCB0K1hdv3boT3/wIblwzd5+n/53hrtxQzkVY3iDqGtTsAgZps/CzeMOj9IRtxM05nopP2mBNPmzATBD1BGoK5oQeRVITn1z2flyTm1bwcO+lYvjD5C1T6KoecVqbwgoZGmbeMan81lb5KvKoHs62NxKZNmINCEAASH31Ex513YmzoN6SDxx1H2XnnZSXABmL19GD19qJXlOOqr8dVUyOLMUh2ONK43UV4ZeMrrOwpkAQB9KZ66U31lzN8ZcMrTNpj7I1bwzB4+OGHOeSQQ2hqahrz8SWSnQ3LFo6yQdKgJ2bQGzeJGo66gUdX8bt1akKuYUvTdkZTvL3WiZ19b303CSNfe7ah1JctdbtHXXhUxqdl9+vPJtIxvQGPTk3YQ4nfTdjrGLRbHHMpBMS7ILLZ8dbGu5zyt/4KcPkKb7N5Gbz/EKx+hYJVwjI0HT56w1bY/eoGRtwxXN1BKK0Cf2k23AC13yOd0Y7tjHfSHm+nJ9mDjU3YHabClxuP2hprzSaJJa3+Hx9lnjK+MPkLHDvpWAKuwjJaAwsvuDU31b5qqvxVWW+w1dNDYtMazNZW7ERuCILV10fXH/5AZOHCbH+uxkYqLrsM78yZeWPZqRRWWxuKx427KV2MoYDxK5HsCKRxO065YdENLO9cXnR7W9iUecpyfuEXosxTxrNrn+X5dc8P204IgWVZaJrGzIqZfO+A7xU9l6F45pln6OjokCEJEskwJAyL3oSRTQaLpKW6LNuRxQp5dKqDQ3tnbSFY1RbNemc/a43ktdFUhT3rw+zfVM7cSeU0lA1hJA7BwPhZw7YJuDXCPp1JFX7CPhdhrwufeyvF+TNFFyKbnf8T3Y5XNFzvGLeDETasfd0xals+yF3XeCBMOhRe/WXu8n0vLHIuZjoZLApmKh1uEHIUEwaGGww6J5Zt0ZXsoiPeQWeik95kL27dTZmvDI+Wm4C3snslT616ijc3vYkYYJBPDE1k/tT5HFJ/SI5SQs70hE0kFaE32YvP5aMuUEeVv4oKXwUu1YWdTJJavwajpQWzq8sJQahPhyAIQfSll+j8wx+wex0niOJ2U/KlL1Eyf35+wpgQWN3diEgEvarSkfeqrpbFGCTjCmncjlOWdy7n7c1vj9xwlHQlu+hqHd4AHsy2ynL905/+hMvl4uyzz94m/UkkuwKWLdKxswa9cYOeTOysYTmP9T061SN4ZxOGxXvrHe3Zt9d00RnLL3Ub9urs31TOAU3l7N1YSsAzutt/0rSIJh2DVlGdJLXKkJvygIewVyfkdeHWt4F+qZnsDz2IdTpGpbcESifmeENz2n/6DHzwF+jpL1yAqsO042Cvs6E8Xbhgw6JscpnReCiuyt2Gn0cq4ryE4mjP+qscj7E37MxJL6wQkbJSdCY6aYu10Z3sJmbE8Lv91AZrcwxUW9i81/oeT616io86PsrpY3blbOZPnc9elXsN80PGpjfZS8RwpMImhCZQ7a+mzFuGruoI28bY3IrRvAmztRV0F666ehTdmUNq40Y677yTxLL+BDXfPvtQ/vWv46qpyR8vkXCKMfgDuKdOwd3QgBqQxRgk4w9p3I4B8Xic3t7evOWGYaDrOpaVn5U8vWw6QgzzOG0IDNvg/fb3C67bq3IvXGrxsVAZz+30sukF5zgaIpEITzzxBCeccAKlpaUj9ieEwDTNgscNIBqN5vy/I9lRcxnLccfT8d4VyCRaRVMmvXGDuGETN0xsGzy6hs+tUuLVUBUbSCFSMNhcbe1L8c76Ht5Z38OHzREMK/9+Mancy36NJezfWMK0qgGFGewkqXh+vO1AhBAkTIt4ynYMbU3B69ap9mqOVJdHx+/RUBULbItELJlXF2FUGHHHmI22Q7LHScjyhsHbAAqQtID++4aS6MH16ZO4lz+Bmuzpn7crQGr6fFK7n47wVzgL4+mkqFnnEkwbt927n4MnPuCoCpzqYEbMUTfQXKD7wVPnhBl4gk74gaqBDcSSQO4xjBkxelI9dCW66Ev1YQmLoCtIpasSxVKw4hYWFoZt8HrL6/xz/T/ZFNuU3V5TNA6sPpB5jfOYFHJCx1IFfqjYwqbP6CNuxAm4AtS4ayh3l1PiKkExFWKRGHY0itHaitnRgUgk0ErLUL0ekraFiMSJPfE34k8+CaaT7KeUlhK88ELcBx5AUlFIpvr3TdgCq7cXkgm08nL06hrs8jJSlgVD3KO3Bnm/KZ7Pw7GKx/OlCEdCEVtiQUmGZcGCBVx//fXZ97/5zW+YOHFiXrvy8nKqqqqorR0iGWIL+Pvav/Pz935ecN01+1zDSRNP2mZjjYaHHnqIK664grvuuoszzzxzxPYtLS20tbXR2dk5BrOTSMY/toA1fbCsS2VZl0JzPN+bpyuC6SWCWWWCPcoE5cVLz+40BJKbmdr6Txo7XkEX/YZfzFXByuoTWVdxJKY2dJhFbfc7ALSU7rfd5zqYmB1jUWoRbybfJCL6w0U8eJjrmctBnoMoVUu36xz8K1ZQ/djjuDs6ABwpsoMOov3EE7F9ssiCZPyxbt06rrrqKj788ENmzZpV1DbSuN2OLFu2jD333JOFCxey77775q1vbm5G1/Vtmlz1vVe+xzNrn6HEXcK1B16LQPDfb/03PakeTpx0IjccXkCovACWZRGLxfD7/WjbIJbq5JNP5rXXXmPTpk34/f4R269ZswbTNKmrK1yjPRqNsmjRIg444AACO/ix2I6ay1iOO56O985CysxU3bLojaeIpWzihhM769U1fC4Vj0sbtpJXNGny3sY+3l7Xw7sbeukroD1b7nexX2OY/SaWMLsuWFxp2gGYlk3McMrvWrbA59LweVTCXjdBj5MMtk3CDQYiBMS7IdbhqB4k+0B3O7JZeuGnS1rbx7g/+gv6utdQBsSkWuXTSO7xJcxJRxQOWxhENJZi0apODqiFgEs4SWkuv5MM5go6sbT6yNqspjDpSfTQlXS8tFEjik/3EXAF8mJj2+JtPLP+GV5qfomU3W+Ql3nKOGHCCRxVfxR+fej7omEb9KX6MG2ToCtImaeMMm8ZAVcgG7IghMDq7MJsa8Xq6gJFRSstRUlLrdk9PUT/+ADJ117rP6aTJhH82tdwTZuaN6awbKzubrAt9PJy9Joa1JKSMSnGIO83xfN5OFZLlizh6KOPHpVxK8MSxgCfz0c4HM5b3t7eDrBNjMcM1x50LRPDEzlv5nlU+JxHcgfWHcgDHz/ABXtcMOqxNE3b6vm1tbXx/PPP85WvfIVQkdm0iqLgcrkKHreBBAKBEduMFTtqLmM57ng63uMN2xZEUiaRhElPzKAn4UhixVIWLtWF36NRExreUBRCsLG7v9Ttsk09edqzANNrgtlSt1MqA6M2OBKGEzsbMyxURcPv8VBTolHu9xDy6oR9w8f4bjGZoguRYYouDETYsPY1WPoQbP4wd13jgTDny2h1e+MvZv9t01FaMCKARqC8mnBFjaOP6wmDVtzXYcyIOVJeiXZ6Uj0krAQhf4hGd2OOlBc4SWJPrnySt5rfykkSmxSexPwp8zm4/uAhk8TA0ajtTnZjKzal4VKqfI7yweCSulZfH0ZzM8bmzWixmKOC4HO818K2iTz/PN1//CN2+tG14vVSes45hE86qWAimNXXh9XdhV5WhquuDlddHcoOKMYg7zfFsysfK59vdAmvII3bXY4ybxlX7XtVzrIKX0XesrHkoYcewjRNqZIg2eVImhZ9Cceg7cpUBUtaGJaNz60RcOtUBDzDemcNy+ajTb0sSpe6be7Jj1z1uTT2bizlgKZy9msqo8w/OkMjoz8bSZrEjXSRB49GY9BNaaaggmcU5W5Hy+CiC0bc0actVHQBBiSJPQw9/XqrTpLY8bDXl/qTxEbCTDpGrZkAb5lTUGH9OqjeA0qKq9wohKA31UtHooOOeAc9yR4EglJPKZX+XK1ZW9i82/ouT618io87P85Zt1fVXsyfMp/ZlbOH/UGS0ahVUSn19hu1fleud9dOpTCbmx0VhM4utFAIV8OEbN+ptWvpuPNOkp98kt3Gf8ABlF9yCXplvkauMAynGIOm4m6ciHtCA1ppaVHHSCIZT0jjVrLdeeCBB6iurs4rxSuR7GwIIbJVwfoSBl0xg3i6kIKmqPg9GpVBz4iP8btjKd5Z61QGW7Kum7iRH25QG/ZmtWf3bCgZtSfVsoXjnU1ZJEwLv8fRn20o9VHid+S6/G5t+z5mHm3RhUQ3LHsClj3m/J3BHYA9ToNZZ0Bg6MIFORgxx6i102NWTINAFRgqsC5PtqsQpm3Snex2qojFnSpiHs1Dha8ip4oYOAoJr258ladWPcWmSG6S2KENh3LylJNHLJ4TNaJ0J7vRFT1bSazSV4lXz42FFbaN2d6O0dyM1dqKUDXHu5pWQbCTSbr/8hd6n3wS0sm7WmUlFZdcgv+AA/LGFUJg9/Y6xRgqK3DV1eOqrcn2J5HsbMgrV7LdeeONN3b0FCSSLSZl2vQN0p2NpSxSpo3PpeH36JT5Pf1KBAUQQrCmI8qiNV0sXt3Jp5v78koLqArMrAtzQFM5cyeXM6HUN2rD00iX5I0lLWxhO3MLuCgLBJxwA69r1DG5o2Zw0YVEt+NxHa7oQs8GR8rrk3/CgMIFBGtg9lkw42RwjxyrjxCOdFe80xnTWw7hWghUO2oHAMbI2f0JM+GEHsSdKmJxM07QFaQuUIc2KK63L9XHs2uf5ZnVz9CT6ldt8Ok+jpt4HPMmz8uGiBWesiBiROhJ9uDVvNT4aqj2Vxc0oCEdgrBpE8bmVuxoFL2yPwQBILZkCZ133eVIfwGoKuGTT6b07LNz2mWwk0nM9nZUjwf35CanGEMwmNdOItmZkMatRCKRDEAIQTRlZXVnu+MGsXQhBVVR8bs1ygNuPPrwRmLStHh/Q086fraT9ki+pFPQo7NfttRtKSHv6MuWZuJnoykTTVUJeDRqSzyUBdyEvC7C3q0odzsaLNNJEItsdry1iR7H4xqqK1x0AZxKYksfgjWDKolVToe9zoEpRxaOxR2MsCHZC7Eux4AO1vcbta7iFQD6Un1Zo7Yn0YOJSYm7hHJved4PjZZoC/9Y9Q9eXP9iTpJYhbeCk6acxNGNR+eFEQzEFjZ9qT76kn34XD4agg1U+aoo95UXlGwUqRRGSwtGc3N/CMKE/hAEs7OTzrvvJvbmm9lt3NOmUXH55XgmT87vTwisri5ELIqrsgrXhHQxBnUMrhWJZDsjjVuJRPK5J2Xa2UIKXbEUkaRFLGmSsmx8uobfPbJ3FqA9kswas0s39JAy80vdNpb7OSAdbrB7bXjEPgdji3S526RJ3LTw6hp+t0ZVKOCEG/hcBN3bMX52MDlFFzogFXP0aYcqumBbsO71IZLEDoI550Dd3kWFDWCbjhGd6HUS08qanJCHQNXQBvXgLoRNV8KpItaV6KIn1YOu6pR4S/LCAQBWdK3gqVVPsah5UU6SWFO4iflT53NQ3UHDJonZwqYn2UM0FSXoDjIhNIGaQA1lnrI8rzCkjdD2dlKbNmG1tSEUFVdtbbZymLAs+v71L7r+9CdEWg9U8fspO/dcQscfXzBhzI7HHW9tMIB76lSnGEMRKjYSyc6CNG4lEsnnDiEEsZSTDNYbT6W9sxbRlImqKGlj1j3iI3xbCFZsjmQN2lXt+ULquqowu6HEUTeYXE5tePRaopn42WjKMbj9bo2gT2eCz0eJz03Yp+N3j/HtPBmBaCZJrNNRQvCVOYZlIcPUTMKn/0xXEiuUJHY2lOd7GAtiGU7oQyrqJIlV7OYYtf7youTAwJHXaom2ZEMPIimnyldNoCbPOLWFzZLNS3hy1ZN80vlJzro5VXOYP3U+e1bsOWwYiWmb9CR7iBkxQu4QTSVNVPoqKfOW5aksZHczEsHYuBFjcysiFkUrr8gxQpOrVtFxxx2kVq7MLvMfcgjlX/0qellZXn/CsrA6OxGpFK66WtwNDWiVlWMi7yWRjCXSuJVIJJ8LDMsmknCSwboysbNJi4Rp4nPpBNw6pX73iJ7UWMrk3XVOqdt31nbRHTfy2pT6XcydVM7cpjLmNJZukeE5sIqZQBBw65QH3JRnwg18+oihEdscIZwY2khazive5RiyvvKhY2Lj3fDR4+kksf6YVNzBdJLYF4tPEjMTTuiBbTgSXqUTnbhcX1lxnl4cfVqAz7o+I6bFSNkpwp4wDaGGPCMzZaV4ecPL/H3V32mONmeXa4rGYQ2HcfKUk5kYzi/QMxDDMhzJMCNBiaeEutI6qnxVlHiG1owVqRTG5s1OCEJHJ2owiD5ABcGOx+l+8EF6n37aSZgD9Opqyi+9FP8++xTs045Gsbo6UcNh3JMm4WqoR/XsglU+JBKkcSuRSHZRMt7ZTLhBZzSV1p01ASVtzLrwFhGT2dzTrz374cYezALis1OrAlnt2WnVwWHlv4aab8KwiaZMYikTPR0/W1fqzerPhsYqfnYwtp0bTxvvdmJZg9WgD2EgZZPEngZrQLxxsAZmfwlmnFRckhg4Htp4l/O3r8yJ4w1UOeEPo6An2cNz656j1WzFl/RRVlpWMC62N9XLs2ue5Zk1z9Cb6k9A8+t+jpt0HPOa5lHuKx9+ylaK7mQ3hmVQ4imhMdRIpa+SsHvoOWdCEIxNmzDb2hGQE4IAEF20iM7f/x4rXWEMTaPk1FMpOeusgsaqME3Mjg4UYeOqr8c1YQJ6+fBzl0h2dqRxK5FIdhlMy3Z0Z5MmXdEUfelEsIRh4XFpBNwapSX+Eb2zpmXzcUtfNtxgQ1d+bXOPrrJ3Yylzm8rZf1IZFcHRe8HstAEeTZokDAuvy9HGrQ55KA24CXsdj/KYxc8OJlN0IRNPmym6UDpE0QWAlg/h/YdgzatsXZKYcMaLd4HmdozZUDpJrFijOI1hGTRHm1nRvYKfLfkZALe6bs0zbIdKEqv0VXLS5JM4euLR+PThBeUzhReEcHRwq0ocOa+Aa/jqUVYkirFpI8bmzYhIFK0iNwTBbGuj4/e/J/7229llnt13p+Lyy3E3NhbuM1uMoRxXfboYg2v0SYsSyc6GNG4lEslOS6Y4QV823CBJNOlUBUOA361R4nNRHfKMGFfYGzdYss7Rnn1nXRfRAqVuq0KetHe2jNkNJVsUFmBaNtG0QWvYNgG3RtinM7HcR4nfTdjrwuce43CDweQVXUiAr3Toogu2BWtfd4zarU0SE7YTvhDvdtQWSib0G7VFlMUdTFeii42RjWyObuatlrewcR7jv9P+DseXHg/Ap12f8tTKp1jcsjgnSWxyyWTmT3GSxAolew1kcOGFan81lb7KEY1hYRiOCkJLC2Z7RzoEoSGrWiAsi96//53uhx9GJJwCH2owSNkFFxA8+uiC6gb9xRg03JMmObG1RRaskEh2BaRxK5FIdipMy84WUuiOpehLOLqzcaNfOaAu7Brx8b0QgnWdMRavcQza5S29eaVuVQVm1IaZm5brmlTh36Lkm6RpEU0nrAEEPBqVITflAU9Wf3akwg9jQl7RBQH+YYouDJkk5oLdjnfCD4pNEsuUx01GwFsC5VMhVAP+yqJL4w4kZaVY3LKY69+4HlvYaIqWo0P74GcP8viax+lL9eV4aQH2qd6H+VPms0fFHsOebyEEUSNKT7IHl+qiyldFld/x1Hq04T35Qgisjg6MjRuHDEFIfvop7XfeibFmTXZZ4IgjKL/oooLGqhACu6cHq68PvbISd30dem1tQcUEiWRXRhq3Eolk3BPP6M6mDVon0cpCwSlNG/YW551NmTYfbnS0Zxet6aS1L5nXJuDW2DerPVtGiW/0j3EzHuVo0iJmmLhUlYDXqQ7mJITphLyuUcuAbRcKFl1wOUleBaSwAMeruuwxJ1GsUJLYnmc4RRuKYXB53Krd+5PEtlBztSPewcbIRv65+p85iWADiZpRoma/uoWCwpGNR3LylJNpDBV+zJ9BCEGf0Udvohev7qU2UOsUXvBW4CpCgiwTgmC2tmL3RdDKy1ED/WELVjRK95/+RN+//uWcH0Cvr6fi0kvxzZ5dsE+nGEMbqteLZ8pkXA0T0ILDh0JIJLsq0riVSCTjDssWRBImvQmDnrhBX9xRDUiYFh5Nw1ekdxagM5ri7bVO7Ox767tJGPnasw2lvmyp2z3qwluUtGXZjv5sJOXEz/rcTvxsbYmHUr+bsM9FYHuXux0NlgmxdsegLbboQs8GeP9hx1s7MEksVJtOEvsCDFO4IIfB5XHLpzoJar7SLd6lpJVkU2QTzZFm+lJ9nDz1ZFpiLbzZ/Oaw29UH6/nBAT+g0j+8aoMtbHpTvURSEfy6n4ZQA9X+asq95cNq22YQhpFVQbDaO1AGhyAIQez11+m85x6s7m5nI12n9IwzCJ9+Oqo7PyxD2LZTjCERx1VVhauhAb2qShZjkHyukcatRCIZF8RTFn3J/DK3QoDfpRHy6lS7RvbO2kKwqi2a9c5+1hrJa6OpCnvWh9m/qZy5k8ppKBs+LnIoDMvOJoSZtk3ArVPi05lc6SfsdQoqbPdyt6PFTDoGbWRzuuhC1AkDGKroAgyfJDbnyzD5iOKSxKA/SUzVCpfH3QKEEHQkOtjYt5HWeCtuzU19qB5VUfnmPt/EEhaLWxYX3HZu7Vz+fd9/H9Y4tWyLnpRTeCHkDjExNJEqf9WQhRcKzc/q7EyHILQhbOGECwwIQTA2b6bjd78j8d572WXePfek4rLLcNXXF+zXjsex2ttRQ0FcmWIMBUrsSiSfN6RxK5FIdggZ72xf0qAn5oQcRFOOuoFHV/G7dWpCLlxFeFEThsV76x3t2bfXdNEZyy91G/bq7N9UzgFN5ezdWErAs2W3v0y527hhgQIBt05V2E2Z30M4HW4wLuJnBzPaogvZJLEHnTK5A5l4kKN8MJoksWQvxLrTEmJ1W1QetxAJM8HGvo20xFqIGlEqfBU5lcVWdK1gTc+aIbe/dPalQxq2pm3SnewmbsYpcZcwuWQy1f5qSjwlQxZeGIwdjZLatAlz82bsvj7U8gr0ASEIwjDo+dvf6PnrXxEp57pVw2HKL7qIwBFHFPwxly3GYKTQ6+uchLGKivHzVEAi2cFI43YXYf2/XUlq/bqi2robJ9J4+23beUYO77zzDtdeey2vv/46QggOPvhg/vd//5e99957TMaXjC8ShkVvwiCSLqTgKBuYWLbA79YJeXSqgyN7ZwE29yZ4e00ni9Z08cHGbgwrX3u2qcLP3LRBu1tNaItiXDPxs5G0rJhbVwl4dCqCbifcwOsi6NXHR/zsYLak6IKZgE+fccIPejf2L88kie11tlPmthjyyuNOGnV53KF3TdAWb2NTZBNtsTa8upe6YF3W6EyYCf68/M88s+aZYftZ0rqEoxqPylmWslL0JHtImklKPaU0lDRQ5a8i7A4XbUA6IQit6RCEdpRAwCnEMCBcIPHRR3TceSfGhv5kvOCxx1J2/vlooVDBfq1oFLuzA7W0FHfTJFwNDQXDFSSSzzPSuN1FSK1fR+qzlSM3HEOWLFnCYYcdRmNjI9dddx22bXPbbbdx5JFHsmjRImbMmLGjpyjZzti2oC9dRKE3btATN4kZjpHoUh0jsTrkLco7a9mCTzb3sXi1Ez+7tjOW18atqew1wSl1u39TGdWhLfMKWrYgljKJJi2SVjp+1uMkhJX4XYS84yx+djBbUnRh2CSx02HPLxafJFawPG6Ns32R5XGHI2bE2BTZREushZgRo9Kfq07wYfuH3Pn+nbTGWgFQUbGxCbqCXDT9ItpXt/P31N+JmBGWti3NGrdJK0l3ohtTmJR6SpkUnkSlr5KQu7ChWYhsCMKmTU4IgmXnhSBYfX10/fGPRJ5/PrvM1dhIxWWX4Z05s3C/punIeyngmjDBKcZQoMSuRCKRxq1kO/KjH/0In8/HG2+8QUWF86V4/vnnM336dH7wgx/w17/+dQfPULI9SGR1Z40B3lkL07bxu3SCHp3KgKeoCl6RpMm767pYlC5125cw89pUBNzZymB7TSjZ4hhXw0qXu01a2MLG79EpDeiU+QOEfY5c17iLnx3MlhRd6F4PHzzseGu3NkksUx7XSjkhD1tQHnc4bGHTGmtlY2QjHfEO/C4/9cH67I+MuBnngY8f4Lm1z2W32b18d86feT7vbH6HeZPn4TW9rN+4nsP2OYznNz/PSVNOIm7G6U50o6BQ6i2lyufIeRWqXjbs/LIhCK3YkT7UsvLcEAQhiL70Ep1/+AN2r1P5THG7KTnrLEpOOWXIAgtWby9WTzd6eblTZWyQsSyRSHKRxq1ku/HKK68wb968rGELUFdXx5FHHslTTz1FJBIhGNzyJBLJ+MC2BZGUozvbE0tlY2cTKRtdVfC7NapDnqK8s0IINnb3l7pdtqknT3sWYHpNMGvQTqkMbLEHNRM/GzMsVAUCnlx1g5BXL2reO5xs0YUWiHU6Rqa/dOiiC5BOEnsQ1rzGVieJbaPyuMMRM2Ks71vP5thmklaSKn8Vbq3/cfz7be9z5/t30h5vB8CjefjK7l/hhKYTUBWVaWXTAEiajvxb2B3mlKmn0J3sRld0yr3l2cIL3qEk0IZAmCZGS1oFoaMdxedHr2/ICUEwNm50EsY+7C9y4dt7b8ovvRRXTU3Bfu1UyglpcOlOMYYJE9DC2+6YSiS7KtK4lWw3kskkvgKZu36/n1QqxYcffshBBx20A2Ym2VqSZn5VsGjS8c760iVkKwNaUd5Zw7L5aFMvi9Klbpt7EnltfC6NvRtLOaCpnP2ayijzb1mMoS0cua5o0iSelhVzCip4KE2HG4Q8O7Dc7WjJFl1odozLTNEF9xBFF2wL1r6WriQ2OEns4HSS2Jwik8S2XXnc4bBsi9ZYK5uim2iPtxN0B6nz1mV/0MSMGH/86I+8sP6F7DazKmZx2V6XURMobDQCtMZa8Speanw12cILA43lYhBCYHV19asgWDZadU1ODKydStHz2GP0PPYYmM6TB620lPJLLsF/8MGFE8aEwOruRkQi6FWVuOrr0WtqZDEGiaRIpHE7Tmn57/8m+fHyotsbGzaO3GhA27UXXDhsG4HAMi26dQ3vzJnU/uAHRfefYcaMGbz55ptYloWWvimnUineeustADZuLH7Okh2LSAvJt/Ul2RjppSdhEEs5Ul0uVcXv1qgKeopWCeiOpXhnrVMZbMm6bkd5YBC1YW9We3bPhpIt9qBatkgXfTBJWbYTP+vVmeD3UeJzCir4x3P87GCEcLyz0VbHW5s1LocpurAtk8S2cXnc4YikImyMbKQl2kLKTlHjr8kpkvBu67v87v3f0ZnoBMCreTlvj/M4duKxBdUMTNvMenarfFU0lDdQ4avApY7+Eb8di/WrIPT2OiEIg55Exd9/n47f/Q6zOV1IQlEInXgiZV/5Sk7Rhpx+k0nMtlZUvx/3lCm4JzQM2VYikRRGGrfjlOTHy4ktLqzLuLWIRGJUfSts2Zf+lVdeyb/927/xta99je9+97vYts1Pf/pTmtM3+ng8vkX9SsYGIQTRlEVP3KClzdGK/XRzH5ZmZAsUVBQZOyuEYE1HlEVruli8upNPN/cxONpAVWBmXZgDmsqZO7mcCaW+LTY4U6ZNNGUSTZoIBAG3TnnATVnAUTcIefXxHz87mKGKLoTrh1YeiHfBssedRLFkb/9yTwhmnja6JLGc8rhhKJviyHltYXnc4bBsi82xzWyKbKI90U6JuySnwEIkFeH+j+7npQ0vZZfNrpzNZXtdRpW/qmCfkVSE7kQ3QVeQOHGmlE6hLDD6hCxhmpjpQgxmezoEYZAKgtXTQ+d99xF9+eXsMndTExWXX45nt90K9zuwGENNDa76BvSqSlmMQSLZAqRxOwS33347v/vd7/jggw+49tprWbBgwZiO75m5+6jaxz/4AJHIf5xbCMXrHbKEY4aM51bTtVHPJcMVV1zB+vXrufHGG7nvvvsA2H///fnud7/Lz372MxlvO06JpUy6YwZd0RTdcYPumMGnGzvo61BoCCfZd0pZURW8kqbF+xt60vGznbRH8rVngx6d/bKlbksJebcsSUYIQcKwHYWDlImmqgQ9GnUl3hyDdksqj+1wtqTowrBJYmfDjHmjSBIbVB63croTU7sV5XGHozfV6xRjiLVi2AZ1gbocHdp3Nr/DXe/fRVfSifH16T4u2OMCjm48uuCPIcu2aIu3oaAwITSBMspopx1NGd2Pm0yogLFxE2ZrK8I080IQhG0Tef55uh54ADvi/CBUvF5KzzmH8EknDRlWYMdiWB0dqKEQrmnTnGIM3q3T/5VIPs9I43YI6urqWLBgAX/60592yPijDQNYOX9+0VJgrgkNTLr/D8O2sSyLvr4+QqFQNqRgS/jZz37Gd77zHZYtW0ZJSQmzZ8/mB+l9mz59+hb3K9m2xFMW3fGUY9DGDEfT1bB48ZM2XljeSk/cADT4dBVl/vWcNLuOs/adkGcstkeSWWN26YYeUmZ+qdvGcj8HpMMNdq8Nb7E+rC1EtjpY3DDxuXSnoELIQ4nfqQ4WdO9E8bODGW3RBSFgc6aS2KAksaoZsNeXYfLhxSeJZcrjWhb4y/vL43pLtonywWBM26Ql2sKm6CY6452UekupdOd6a+9ddi+vbnw1u2xO1Rwu3etSKn2Fy+ZmvLWl3lLqg/XUBeqIRfIl5EbCjsedEISWFicEobQMfZAObWrdOjruvJPk8v5wMt/cuVRccgl6VWFvsrAszI4OFMt0ijFMmIBWXr7zhMhIJOMUadwOwemnnw7AP/7xjx07kV2AsrIyDjvssOz75557jgkTJrD77lvmEZZsGxKGE3LQFU3RFXMKKyRNi4DHKaZw58ureHttV952XTGDB95axyctfVzzhd1Z3R7LGrSr2qN57XVVYXaDoz07d3I5teEt90iZlk00W+5W4HOrhHw6E8t9lPgz8bM78W1tS4ou2JZTFvf9h6D1o9x1o00Sg+1SHnckepI9bOjbQGusFRubumCut3Zxy2Lu+uAuepKO/q5f93PhrAs5csKRQ3prM7G1E0ITmBCaQImnZNTzEqaJ2dqKsakZs6MdxetzVBAG/OC3k0l6HnmEnr/9zfkhAGgVFVR87Wv4DzhgyL6tSASrqxOttBR3XR2u+noUWYxBItkmjOtvgUgkwo033shbb73FokWL6Orq4p577uHiiy/Oa5tMJvmv//ov7r//frq6uthrr7346U9/yvHHHz/2E5cMyUMPPcTixYu56aabUGUs2ZiTNC16YgbdsRSdaYM2YVr4XTolPhc+t2N4Prh4XUHDdiBvr+3ivLveIlHAO1vqdzF3Ujlzm8qY01i6VQZn0rSIJS0iKSfT3FE3cFM2QK7Lo+9k8bODsS0nSayvxYmrjXeD2zd80QUzAZ/80wk/6N3UvzybJHaOIwVWDNuxPO5wGLZBS8Tx1mY8rEF3vxHdm+rl3g/v5fVNr2eX7VO9D5fOvpRyX3nBPgt5a4cqrzscZldXfwiCYaBVVqF6cs9FbMkSOu+6C7PVKRaBqhI+6SRKzzkHtYBSDDiVy8z2dhRNxd04EfeEBrTS0lHPTyKRDM24Nm7b29v58Y9/zMSJE5kzZw4vvvjikG0vvvhiHnnkEa6++mp222037r33Xk466SQWLlyY4zXcVXE3TtwubbeGl19+mR//+MeccMIJVFRU8Oabb3LPPfcwb948/v3f/31M5iBxkqt64gY98RQd0RR9CZNEyqm6FfLqVLtyy92als3f328uqu+Bhu3UqkBWe3ZadbCoRLNCZMrdxlIW0ZTpVDLzOtXBHINWJ+R1jc9yt6PFTDnG7MCiC97w8EUXhksS2+M0mDWaJDHL8RRvh/K4I9GV6GJjZCOt0VYUVaEuWIc2IIb4zU1vcveHd9ObcvYx4Apw0ayLOLzh8O3qrbXjcYz/z96Zx8dVl/v/PfueTPZM9rQFWrqxWbaCgoiIIig7FwFB2bziAvITfenFe73KBdy4CojsyKICiqiI4kWkbAUKhba0tDRt9kwmmcw+c9bfH99kkmlm0kmTtlnOm1deJd858z3fOWdy5pnnPM/n09OD3NuLFomIEoTq6pxtlMFBBu+7j+Qrr2TH7IsWUXH55TgWLCg4txqJoEajWCvGmDFYZ/THsIHBrGRG/1UFAgF6enqora3ljTfe4EMf+lDe7dauXctjjz3GLbfcwnXXXQfARRddxLJly7j++ut5+eXRb/2rV6/mpZdeyjvPt7/9bb7//e9P/wvZBzTecfv+XsI46uvrsVgs3HLLLcRiMVpbW/n+97/P17/+dazGBX2vIqsjAa3MQDxDPCNku5zW4YDW6yhY1/deT5ShlFz0vs44pI4zDqmnwlsgw1gEqib0Z+OSQlpWhVauw0pNiYNSt50Sp3A2mzO1iFJytJ62WNOFoXZ453ew9a+i/naEbJPYJ8CWP1s4jhx7XP+02+NOhKzKdCe66Y33MiQNUeYsw2MblbqKZCLct+E+Xu15NTt2RM0RXLb8Msqc+dUNcrK1njpqvbWTlvfSVVWoIHQPqyA4neNKEHRVJfa3vxF+9FH0pKjdNbndlJ1/Pr6TTy7cMCZJqP39mBwO7C3DZgy+4i19DQwMJseMjjAcDge1tQXEyMfw+OOPY7FYuPzyy7NjTqeTyy67jG9961t0dHTQ2NgIwJo1awpNYzDNLFy4kGeffXZ/L2PeoKga0bQiSg4SErG0TEJScVgteB3FyXYlJYVXtg9Mar9LAiV7FNjKqpZtCFM0DbfdQqnLSmule1jdwIbLPsvLDXYlHRmup+0tznRB16HvXVj/G9j5MrlNYouFk1jL6uKbxJSMCKb3kj3u7hhMD2aVECxmC3Xeuqwera7rvNLzCvdtuI+YFAPAZ/NxybJLOKbumImztfrUsrXZEoT+ILokY6kaX4KQ2b6dgbvuQtq2LTvmPuYYyi+5BGt5/hKJXDOGKmz1w2YMRkmWgcFeZUYHt8Xy1ltvceCBB1Kyiy3hquFi/rfffjsb3BaLoigoioKqqiiKQjqdxmazFVQOCAaD9Pf354xtG74IplIpotHouOfIsozVakVVxwvY729G1rS/1qbrOoqi5D1uAIlEIuff/cn+WsvI/voGhugeSjGUlEhI6rCxggmP3UqN04LZpIKmohRQipNVjbc7Y7z4wSCvt0eQ1Dx+txPgNClIqeJee0ZRScsaKUkBM6LW12am1G3HYxfZWptFByTktIRcnLrdzEbXRVCbHBABbToqbvk7/cL0QAVSu8ikaSrWjpexb3oca+i9nIfkhqOQDj4LtXq5CEgzGjBeZi33SSmxXx1wlYCvSWRp7R5QgFhs+l5vvt1rMsFkkFAqRFyKU+ooxWlyIidFBnooM8SD7z/Im6E3s885ouoILjrwIkrtpUjJ8a8vpaSIZqL47D5hm2urxJQxEc3kv2aMMPbvVZck5GA/ykBIqCCUlGIpHQ6OJWHTq6fTJH73OOm//lWcS8BcVYX385dgP+QQ0mO2HYuWkVDDg5hcLmwN9eg1NShOJwxLhBkUZiZd32c68+FY7Ykm/pwIbnt6eggEAuPGR8a6u7vHPbY7vv/97/O9730v+/t///d/F2xmA7j99ttzth/Lu+++SyQSGTdeXl5OVVUVsb38wTIVksnJy+ZMB7Is09/fz+Yxsjr5WLt27T5a0e7ZX2vZ9M5b48Yywz+F0HT4IGrizZCJ9QMmkuquWbGRAHeibJ6Ozwa+gc10Ttx7VpDo8E/fnj19lmJCRJSD4x6xaBkaB15kYfCvuKVgdlw1WekoP5YPqk8h7qyHfqB/T49aZPinOOnAvUE/IhGg6zrr5fX8OfVnUrr4AHOb3Hza9WmWycuIbowSZeJgdWD4v8mS9+91cED8DOPZuJHqp/6Ibfj6rZvNhI8/noGPnohut0NHx+53JMsQjcL27ZNe43xnJl3fZzpz+Vi1t7dP+jlTCm4vvfRSrrjiCo488si8j69du5Y777yTe++9dyq72S2pVAqHY/xtUeewCPaeRP033njjpIwbrr76as4+++ycsW3btnHGGWewfPlyDjvssHHP6enpwWq14puBtVeqqpJMJnG73VPSud1TBgYGqK6uZuXKlXkfTyQSrF27llWrVuHZz9aU+2ItI25hsZRCJCURlxSSiQRq3za8DYvxeb27bbDSdZ22gRQvfhBmzfYwg8nculqn1cyHmks5bkEZW0NJfvdW725WZeJTywM0L8u9pa5qOmlZJSWpSJqGwyrseb0OoWzgcVhx2cxzp352V1RJ3PpPDohmLTkFdq9o2CpwO9qUCmPf8kds7z+NeUzmUbf7kA78FNLi0yl3lZP/5vcu6LpoTMvERA2u0y+seV1lwqZ3HyGpEsFkkP5UP0k5SZmzDPuY/YczYe7fcj9vR97Ojh1ZfSQXHnAhJfaSPDMOZ2ulKD7bcLbWXYnVNLmPsfjQEK+/9RbLXC5cqoalrAyzPbc+Vw2FSDzwANKb67Jj1gMPxHvZpVRNcBdQS6bQIkOYvF6sVdXYqqsMea89YCZd32c68+FYrVu3bvcb7cKUgtv777+fk046qWBw29bWxgMPPLDXg1uXy0UmMz5PlR527HIVkGSZTqqrq6nepaN2BJfLNa5kAoQaBLBfgsdisVgs+2V9JpMJm82W97iNxePx7HabfcV0r0XXdWIZhUhSZjAhEU2rxNIqJix4HQ6qbFZ6+8Bf4sPuKnxR6x5K8cL7/bzwfj9dQ7lf9CxmE4c1+fnIgdWsai3PWtJ+aJFG22BmQjmwI5rLOOfIVqwWM7KqkcgoJDIqmq7htjsp91ooczsocVkpcdpmn93tZMlnuuApA0dN4XrWgk1iAVh+NqaDPoHD5qKoimZNERJiWcWFvWePOxG6rhNKhehKdxFUgjidThr8DTm1tf/q/BcPbnqQhCxupZbaS7ls+WWsCuTXhVU1lYH0ALpFp7GykUZfY1G1tR1XXY3UMSbro2qokkSzLKNYLCTHXNustbVUf+MbRP/8Z4Z++9us46PZ66XswgvxnnhiwVpZXVVFE5quYW1sxNbQULAO16B4ZtL1faYzl4/VnsRwe/WK193dvU8Cy0AgQFdX17jxnh4hZ1RXV7fX12Awvei6PnczexMwkqEdSgq3sEhKuIVpGnidVmpLnNiGXcGkCRQNBhMSL24VAe3W4Pgav6V1JXz4wCqOXVhJiWt8V7nVYubbpy7hiXWd/PndHsJjsrxlbhufXB7gk8sDRFIySVnFbAKPw0p1qZ1ytyOrP2ubjXa3k2FX04XkIFgsIktayN42p0lsF+WWPW0SS4VBToPLP2yPWyuMH/Zx41JKSdEV66Iv2UdCTlDhqsBpHdXJHUgN8Kt3fsXb/W9nx1bXr+bipRfjs+e/g5WQE4TTYfwOPwFPgIA3ULQSgtTRnte50QFowz8j6JJEz//7f0g7dmTHPMcfT/nFF4/W4eZBjcVQh8JYy8qwBQLYAgEjW2tgsJ+ZdHD71FNP8dRTT2V/v+uuu3juuefGbTc0NMRzzz1XUL5rOjnkkEN4/vnniUajOd9cXnvttezj+5NCDWWKomAymYyGsgn2P18aylKSSjyjEEnJxNIKCUlB13VcNitldsuwza2MLsnZ1iE5ncr5N5FReHVnhBc/GGRjTxxtl76w1goXxy0s49jWMiq9Ix++EtKuzUxj+MyyCk47uJwNHQN0te+gqq6R5upSVE0nGo3hsluodQmZLq/TgsduwWRSQVVJJWDyBUGzBF2DVAQSoWFJrRjYHGCvAKtNlNQq+ZrEXhpuEsutJd+zJrEMZCKgasNNYg3CJtfuBdW0TxuXdF1nMD1IMBUknA7jsDqEdW5GGOzous6/ev7Fo9seJaWKd4Xf7ufigy7msMrDQIaMnHv3TdM1hjJDaJpGlbuKGlsNPnyk4ilSRb6zNHW8wUghskYMgLm2Fu+ln8e+bJnYU56GMV1WUIeGwGzGWlODXluL6vWKO4bpudAJuf+YSdf3mc58OFb7pKFs06ZN/O53vwPErePXXnuNN998M2cbk8mEx+Ph+OOP58c//vGkFzVZzjrrLG699VbuuuuurM5tJpPhvvvu48gjj5y0UsJUufHGG3Oaywo1lJWUlFBWVkY4HJ6xuq/7o6FMVVVSqRThcJj33ntvwm1nUhH93lhLbPinEJIKz76+kTdDJjaGTah6bra70qFzeKXOYZUatW4xW7q9nc5JrqMSqKwAMu3Iwz006eGfPewlm2OILx/kaWyyqBmaBvM1idnGNInVTbFJbKQ1b2Y0LWXIZBvBhrQh/pD8A9uUUQmtQ22HcqrzVFwdLjqKaMrqGP5vsjQnEsWVdAyjWSyET/gIgx/5CLrNVlzDGEAyUfy2BkUzk67vM525fKz2pKHMpOv65HR/xmA2m/n1r3/NBRdcsKdT7Jaf//znDA0N0d3dzR133MFnP/tZDj30UAC+/OUvUzp8u+icc87h97//PV/72tdYtGgRDzzwAGvXruUf//gHxx9//F5b30Rs3LiRZcuW8fzzz+dtKEulUoRCIdxuN4FAAJtt7zoCTYb91VCm6zp9fX0MDQ1RXl5esEB+JhXRT2YtkqIRyyhEkzLRtEwyoyKpQuPVZbcUZSOrajrvdsd4YWs/r+2MkNlF6cDvsnLsgjKOW1jGokr3HpV3SKpKIqOSklUcFjN2JCLtmzlo2aFUlpVgt87xcoNdkdOijjYRErJeqgROn8iSFji+2SaxLX/ELI1+RdHsPuSDTkM66HR0V35TgnHoOkhxSMeEfJjDD95KcFWI3/cDuq4zkB4gmBTZWrfNnVNaoOs6/+z+J4998BhpVWQyyxxlfP6gz7OyIn+jqI5OOB1G0zQq3ZXUuGsKlivsdn2SRN9556N2FvlVzuHA/9/fxzpBGZsmyajhMCaHHVtlJdbqaszuAuUnBnvMTLq+z3Tmw7Fat24dJ5xwAhs2bGDp0qVFPWdK6UJNK/6Wz55y6623snPnzuzvTz75JE8++SQAF154YTa4ffDBB/nOd77DQw89RDgcZsWKFfzpT3/ab4HtWAo1lI2oJAwODtLW1obNZsNkMs2IWlNd15FlObumfbVPVVVRVRWv10ttbe1u9z2TiugLrSWjqESSsjBXSKrE0yppRcdtc1JeZi2q0UrXdbb0xXjh/X7WbA2NcRATx8dtt3DMwgo+fGA1y+tL98iaVlFF4B3PKFhMNnweF3VuGxVeBxYlzUvtm6mr8s+Y471PyGe6UFomgtpCDO0cbhJ7Nm+TmHlSTWK72OOW7jt73IlIyAk6Y530yX1kzBlqK2pzlBCCySC/fOeXbBzYmB07ofEEPnfw53AXqEVOykkG04P4vX4C3snV1u6KGo8jdXdjUpSin2OrqsLf0pr3MV3ThBlDMiHMGBrqsVZXG2YMe5mZdH2f6czlY7XfGsra2tp45plnskFoc3Mzn/jEJ2htzX+hmAw7xhT3T4TT6eSWW27hlltumfI+9xUmk4nq6mo8Hg/RaDRbmzYTUBSF/v5+qqur91lGeUQhoaysjLKyshkR5O8pkjJifysxkJCIpRXSkorLPmx/aytsfzuW9sHksNJBkL5obt2fzWLi4FKVkw9dyFEHBPYom6pqOomMQiytoKHjc1pp8Lso99opc9vxOMQlIhrdTf3nXELTRCAb74NEv/h/i13IaY1pjspB16H3XXgnX5PYElh5LrQcV7y17X60x51wWZpKX7KPnkQPoVQIn91HubM8+17WdI2/7/w7j7z3CBlVvF8rnBVcvuJyVlbnz9ZqukYoFULTNOq99TR4G/A7/Xu8RmVgAKltB3J/sKAd7mTQUimUUAiz14N94ULsDQ2Y90GjtIGBwZ4z5eD22muv5Wc/+9m4LK7ZbOarX/0qt95661R3MacxmUx4vV683gkyQfuBaDTK5s2bWbly5Zz9NjjdKJpOKJ4hkpIZiGeIZxSSkorTOhzQeosLaIOxNC9uDfHC+/20hXKbBMwmWNHg58MHVnF4nYvwtnU0tPgnFdjquk5SUollFCRFw+OwUFVip9LrwO+2U+K0zuovFnuMqkAyJKS8ksPlB3YPlNQVzpJqKux4UQS1wV3qw5uPhRXnQu3y4q1t97M97kTEpBidsU6CySCSJlHjrsE25rj0Jnr55fpf8t7g6HE4qekkLlhywe6ztXY/taW11HnqcuacDLquo/T0ILV3oIbDWGtqp3TMdFVFHRxElyRsgQD2+joslZXz82/DwGCWMaXg9kc/+hE/+clPOOuss7j22mtZsmQJAO+99x4/+clP+MlPfkJ9fT1f+9rXpmWxs5VCagkzmZnegTlT1qdqOsFB0Sy4cWcfGWykZA27RRgXZO1vVRV5AuGJaFrhlbYhXvxgkPf6xr+mA6rcHLewjGNayyhziw//XdUSdkdGEXW0aVnFYTfjsVuoK7VT4rTgdViwmFWQU8TyKIzNlOO9V1AkUU871nTB4QNHQEhpScIOOAc5he2Dv+F470nM8Z7ssG62IS84CengM9FKm8RgurBk2+h8aRFM7yd73IlQdZVQMkR/qp+IFMFr81Jhq0BLa2TIoOkaz3U+x++2/w5JE8ep0lnJpQddytLypSBBZhe1AR2dofQQqqZS5aqi2l5NCSWkEsUrIeTMp2kovb1IPT2QkUQQio42iTthmq4TH16nmkyhR4Yw+XxYmxrRq6tRbLb9eh7mE3P6ejPNzIdjtSdqCVNqKFu8eDGLFy/mD3/4Q97HzzjjDDZv3rxbC9W5xq5qCbfddhtNTU37cUUGM5GMCu8OCgvczRET2i5KBzUuncMrNQ6v1KkscDfcYN/ikCO09v+d1tA/sKujHyaSxUNb5Udpq/oYGdvuzQXmCiE1xJPJJ2lXR7uZj7Qfycmuk3GYJqNTsHdouel/sIeL0/PIVFez89qv7+UVGRgYTJb29nauueaafddQtmPHDr7yla8UfPzjH/84f/3rX6eyi1nJiHXviFpCIfvdmcxM78Dc1+vTdJ1YWjRbRZISCUnYywJ0hKL0d3dQ39TCssYKrBM0c8mqxvquGC9+EOb19ggZJbecp8JjY/Ww0kFLuWvCW6ByOkXf9g3ULFiGzTlaA6hqouwgIclgAo/dRonTSqnLRonThsM2+drcmf5+KBpdh0xU3PpPDUIqChYzOErAVvgbhDnSjn3TE9i2P4dJG83Eat4AmYPPRF7wMQI2F4Gi17D/7XEnQtEVQskQwWSQmBTDZ/fllBZousazHc/yRNsTyMPHo8pZxWWLL2NJ2ZK8c47N1la6Kqn2VBe02S0WLZlC7upECQYxuT1YfKPlXZlXXyVWZGAL4LJY+JDViqW0FGt1NdbKSkwzVKJxrjNnrjf7gPlwrPa5/W51dTXr168v+Pj69eupqqqayi7mBIXUEmYDM70Dc2+uT9V0oilZ1NAmMsTS4ra+1WzD6XDw0rY+nnm3Z1i5wALvd1Dm7uXU5QHOOqxh2HhBBMYbu6O88H4/L28LEcvkdnD7HFaOXVTJhw+s4uC6EsyTrOmzOV1YnW6SGZVYRkZWNbxOJ/WlPiq8DvxuG17H9NTRzvT3Q0E0VZQdxPqG5byGwO6CyhqwFsgwjjSJrX8M2l/OfWy4Sczcchwus4Wi2otmiD3u7hhKD9Ed7yYoBcEGdSV1WMe4pXXFurhz/Z1sHdoKgAkTp7SewrkHnZvjRjaWkdraUm8pAW9gSrW1IyjhMFJPN6ZgP+7yCszDH+y6rhN58klijz6a3dbi92Me7mvQdJ2kLOO22cTfmq6jqyrWykrKWluxNzRgmY3v8TnIrL3e7Afm8rHa52oJZ599Nj/72c9oaWnhy1/+cvZbQyKR4Oc//zl33303X/3qV6eyCwODfcquAW08rZDIKFjMZrwOK/V+N7qu899/eY83do7PCoWTMg+/1s6W3hjnr2pizbYQL27tJxTPrdl0WM0c2VrBhw+s4tAm/5RsagfiGaSUkAMr99hFQOuyUeKy7ZEk2JxCkYTiQbxPBLfZwLKhsL3tSJPY+t9Af54msZXnQs0kmsRUaVj5ILXf7XEnQlZlehI99MR7GJKGKHOW4bGNZoJUTeVP2//E4+8/ns3W1npquXLllSwuX5x3Tk3XGEgNoGoqdZ46GnwNlDmL1PYtgK7rKH19SDt3og6GhdasQ3xB0WWZ0C9/SeKf/wTA5HZT/fWv4xrjUhmXMrzX0cHRDY24kkm0eBxrZSX2ugDW2tppUVgwMDDYv0wpuP2v//ov3n77bb71rW/x3e9+l7ph8evu7m4UReGEE07gP//zP6dloQYGewtV04mlx2RoU6MBrcdhpc7vzgkSH3u9I29gO5Y3dobHbWMxmzi0USgdHNlagcu+Zx+ikqIRS8vEYqLI3u2w0Frhw++243fbphQozxmkJCSCw8oHg6Ckwe2HsmYwFTg+cgq2PAPv/g5io01iWGxwwCmw4myhXlAsckqUPqiqsMUtWwDeKlGGMMM67gfTg3THuulL9mE2mwl4AljGSI51RDu4c/2dfBD5ABDZ2lMXnMo5B52Dw5I/8z2SrS2xlxAoCVDvrZ9ytlZXVeTOTqSODrREEmtdXTYYVWMxgjffTGbY1dBaXU31DTdgL+BQqQT7wOPBsaAVW30DFu/cvKVrYDAfmVJw63a7+cc//sFTTz2Vo3N7yimncOqpp3LaaacZsikYagl7g6muT9d1EhmV6HBQm5AUUpKKCRNuu5VKhwWLWQMk1IzEiNCBoun86Z3uSe1rSY2H4xaWc3SrnxLn8J+cmkaaRAOoomokZZWkpAh7a7uVajf0Ak0+C36XDnqGVCKzB73mu2emvx+ySHERzCZDwvhA14X6gKtcKBGkx4v6m1Jh7Jv/gP39P2Ea5yT2aaSDPj3qJJYqQu9XSop9m0wikPVVDCsfuIVDrzxzOu5lTaY/2U9/qp+4HKfUXorT5ERJKSgoKJrCX9r/wh92/AFVF38FAXeALyz+AotKF0FaWO2ORUcnkomgqIqorbVXU2oq3WMlhOy8sozc3Y3cKyyKLZWVmFQFVAWlu5voLbei9YnHrIsWUXLt15FKS5F2UWqIDV+LJZ8Pub4erbwcSVNhll2j5zKz5nozA5gPx2qfqyUY5MdQS5i7bI2Y+Pmm4jOuFx+gclil8Sc2E/Gmu1gY/CuNgy9j0UebxBL2aj6oPoX28uNQC2Ql5wO9ai9PJJ+gRxVZbBMmVjtWc6LzRGymmWMV7vrgA+oe+jWW4Q/A6IoV9J1zNvoMsjM3MDDYc/ZELcEIbvciI2oJzz//vKGWMM0Uuz5d10lIKrGUQiQlVA6Sksjeeew2XDZztvFrd8TSCo++2c2zmweKXuc3PtrKUS3+orfXdZ30sB6tpGq4bRY8DsuwuYINj8OSvRuyL8/RjHw/aKqoZR1pEJPiYHMLjdpCDVq6jiX4LvZNj2PrfDXnIaVyMdLBZ6M0HlO8C5imiTpeKQ42j6ipHVE+KFTTu5+RNIlgMkh/sp+knMTv9OeUFiiawtM7n+bpnU9ns7V17jq+sOQLLCxZmHfOsdnaClcF1Z5qSu3TI4mmRqPI3d0o/SHMpaVY3KPNJel/vkD8nntE6Qfg+sxncJ/52XG2uLoOaljYJ8vlZbzV2Tmz3ssGOczI680MZT4cq3Xr1nHCCSfsOykwXde56667uOeee9i+fTvhPLIrJpMJZRL+3nMRQy1h75FvfZqmE8soRIedwqJplXhGxYQFr8NBXYm16IA2nlZ4tW2AF7eGWN85hKpN7rtgmc+D3bX7C05aVomlFZKygtPmwO+3UuFxUOa2UeqyTbjefXmOZsT7QU6PNoklQiAnRVDpbyoclGoK7FgjlA/6x+pum6D5GFh5Ltaa5ViLbhKbmfa4E6HrOgPpAbpiXfTJfTidThr8DZjH1CC3Rdq44+07aI8J3VqzyczpC0/nswd8tmC9bEpJMZAcoMRTQsAToM5bh32aJM3kvj6knh4sg4NYamtHG8c0jfAjjxAf0Vi3Wqm8+mq8xx8//nWrqpAKczhwNDWS8vuhs3NmvJcNJsQ4R8Uzl4/VPldLuP766/nxj3/MIYccwoUXXkhZ2dS6YA0M9hRdFwFtJCkzmJCIpmXiGQVdF1JbtSXOohutEhmF19oGeXFrP293DKHsEtCaEOWbu6PMbWNJoPDFRlY14mmFWEbGZjHjc9io8zsp99gpddtwWGdmkLTfyMQgPtwklh4UAaurHLzVhRu0prtJbAbb405ESknRHeumN9lLXI5T6arMke2SVZkntz3JU9ueQtOF9nKTr4krV17JAv+CvHNqusZgehBZlQl4RcNYhatiWtara1q2cUyNJ7DVBrKas1omQ+i220i+9hoAZp+P6uuvx7lkvL6uLsvIfb1YSktxNDVhrasjbbiMGRjMeaYU3D7wwAOceeaZ/Pa3v52u9RgYTIqEpBAZTI4LaL0OKzW+4gPapKSwtm2QNdtCvLkzPC6gLXXZOGZhBcctquTd7iiPrm0vMNMon1weGJdxVTWdeEYhlpbRgRKnlaZyd1aP1m2fmbey9xu6LjKk8aBQP0iGwWIRweQYU4FxJAdg4+9h01MiKB7BUQJLPwNLzxBzFIuUFMoHOuAuA2+tCKqdMztTous6/al+uuJdhJIhnDYn9d76nEbfD4Y+4I71d9AZ6wTAYrJwxqIz+MwBn8nRtx3LSLbWZ/fR5G+i3ls/bdlaXZLItLcjd3aiqxq2QCBbZqCEwwRvugnpA6HaYK2ro+Zb38JWWztuHi2TQQ32Ya2swtHSjNXQXDcwmDdM6ZM0lUpx0kknTddaDAx2i66L4LA3kgZgS0+MtCmDpoHXObmANi2rvL5jkBe3ioBWUnPdwnxOK8csqOC4A6pYVl+alQNbEihha19sQjmwI5rLOPOwhuyaE5JKPK2QUVWRSS51UuFx4PfY8E2TwcKcopDpQkntxC5e4Z3w7m/h/b/BGCcxSupg+Tlw0ClQwGhgHCNOYqmwyPS6K4U+rbdGKB/McJJykq54F33JPpJykkp3ZU5traRKPPH+Ezy9/elstralpIUrV15JS2lL3jlHsrWSKk17thZASybJ7NiB3NmJyeXGVjn6BUTasYO+m25CDYUAcC5bRtV112HxesfNoyYSqIOD2AIBHK2tWErnjyWygYHBFIPbj370o7z++utcfvnl07UeA4NxjAS0kZRMOCERSclEh28t6jpUT6LkIC2rvLkzzIvbQry+YxBpF/tbj8PCMQsqWb2okhUNpXlrXa0WM98+dQlPrOvkz+/2EE6OBlFlbhufXB7gzMMakFWdwWSapKSKpjCPlQqPhzK33TBYKMSemC7oOvSsh3d+A+2v5D5WvQRWnActq4uvhdU1SEeEm5jdA6UNIqj1VBV2M5tBaLpGMBnMZms9dg913rqcL1Bbw1u5c/2ddMW7AJGtPfPAM/n0wk8XzNamlTShZGivZGsB1EiEzI4dKD09mP1lOUFr8s036f/JT9DT4kut96MfpeKLX8xrj6tGImjxGPbGRhwLWjG7Z/4XEQMDg+llSsHt7bffzsc//nF+8IMfcMUVV1BRMX3f4OcShs7t5NF1nZQszAqiKZlYRqgc6LqO22alxKIxALhMCrqUYiL1UUnReKszykttYd5sj5LeJaB12y2sai7lmFY/K+p82UBZ2828n1lWwWkHl7OhY4Cu9h3UN7VwUF0ZGVmls38Qu9mMx2mh2mfD57Lgc1qxWTRQ0yTi6Skfo315jvb6vuS0uO2fCInAUpXA6QNnnahlzQjN4Rw0FWv7GhybHscysCU7rGNCaTgKaek5qFUHDz9fhaxacQE0FdIxkBNg94KzYVT5wGSBZAZ20XSdaaSUFH2JPgbSA2TUDGXOMmyqDSkpjp2kSjzZ9iR/7fgr+nDleIuvhS8s/gKN3kbUlIq6y3EaUUKQVVkoIdir8Zv8pBNp0kz9fQygDA4id/egDYUxl5VjtttAygj1kGefJfHQr8WXGJMJ9/nn4/jkqSQ0FaTRteo6qENDoCrYAnXogVpkRRmnX7u/r20Gu8c4R8UzH47VXte59fl8426fKopCJiMu+E6nE8su1oUmk4lIJDLphc1mDJ3b/Y+iweYhE28NmHg3bCKj5r5vHWadZeU6h1XoLPbrWA1Tr1mDRU3TNPgvFgafxSP1Z8dVk4328tVsrz6FuDOwH1c4M9mp7OT3yd8T0sRtfQsWTnSeyGrHaiymGdi8qKpUP/00/leEZJtms9F73rnEly3bzwszMDDYl+yJzu2kMrdnnnmmURtYBDfeeCM33nhjVud2+fLlhs5tAXRdJy1rWemuWFohKSmomo7bbsVtt+QtOZDTKfq2b6BmwTJsTiETIqsa73THeLltiLU7IySl3AyU02rm8KYSjm0t45CGEhxTiGhVTSc5rJmrySnUvm1Uth5MVVkpJS6hn7u3/1Zmrc6trovsbHJAKA9kYmC1iWYva+Hb3KbUIPbNT413EnOUCCexA0+jwlVG0feP5AxkIqBqwsXMXSmaxey+Ga18sCtJOZnN1sqaTJmzLKe0IKNmeHz74/y98+/ZbO3CkoVctvgy6j31eeccl611C93a6XxP64qC3NMjHMdUBUt5BabhUh0tmST2v/+LvP4dAMx+P/7rrqN6QWueeVSUgRBmrxdbbQBrddWE65wPuqCzHeMcFc98OFbr1q2b9HMmFdzef//9k96BgaFzm49ETg2tSiytomjgsTup8lqLlsEy2Z1s6JdYszXEK9sHiGdyNZXtVjMfainnuEWVHN5chtO25xmqEaWDREZB1TQ8Die1pVbceNjSt41lzdWU7ofGlVmjc6sqo/W0qWF7XIcXSusnNjwI7xT1tFv/nrdJzHzQKTisToquhh2x6DWZobRC6NN6a8RaZhGKptCX7KNH7mFAG6DEW0KNoyZnm/cG3uPO9XfSlxS2tDazjXMOOodPLvhkjr7tWEZqa71uL63eVuq8dTmNaNOBlk6T6erC3NODw2bHWjO6bjkYJPjDHyJ3dABgb2mh+oYbsOYpe9MyGdTBASyVldibm7FVVxe9hrmsCzpXMM5R8czlY7XPdW4NDCZDUlIYSo42hcUzCpKq4bVbqfDaiw5oVU3nne4Yf//AzLvr3iWWyc3Q2i1mDm8u47gDKjmiuRyXfWoBbSKjEM8oKJqG12Gl0menwuOg1GWjxGUjEY+xBYy7GoWQ00LGKzbcJFaM6cKETWIHw8rzoPnYSTSJ6SJLmxwSagnewHBQWw22yV849zdRKSrMGJJ9KJpCrac2J1ubVtI8uvlRnt3xbHbswLIDuXLlldR56/LOqeka4XSYjJqh1lsrlBCcFdP+vlajUaS2NuSeHsylfiw+3+i633+f4P/8D9pwKZvriCOo+spXMOf5cNOSSZSBAWy1NUIRwe+f1nUaGBjMXiYd3Pb29vL+++9z2GGH4R3TzSrLMv/1X//Fww8/TE9PD4sXL+bGG2/k05/+9LQu2GB2kZTGZGiTwrBgJKAtc9uLzqSqms6m7ggvbgvxygcDDKVkwMxIk5DVbOLw5jJWL6pkVWv5lPRiRcmBMhp8Dwe05R4H/uGA1lA6KII9MV3QFGh7UQS1uzqJtRwLK86F2uXFr0FThYxYOipsecuaR5UPCjhuzWQUTaEn0UNPoofB1CB+px+f3ZezzYbQBu565y6CySAAdrOd8xafxymtp0yYrR1IDeCxeVjoX0i9t37as7UASn8/0s6dyP39WCurcoLWxEsv0f/zn4MssvMln/oUZZ/7HCbL+GuEGo2ixaLYG+qxty7A4p2bt2MNDAz2jElHADfddBOPPvooHcO3jEa49tpr+cUvfkFpaSlLly5l06ZNnHnmmfzjH//g+DyWiAZzl5SkMpSSsgFtPKOQUVQ8jskFtJqu815PlDVbQ7z0QShHcgvAYtI5pKGU4w+q4cjWCjyOPQ9oNV0nmVGJZWRkVcdjt1DusVPhHc7QOou37J3X7Knpgpwc4yTWOzpuscOBHxcatf7G4tcxzh53kQhqZ7A97u6IZCJ0xjrpS/ahoxPwBnKytSklxcPvPcxzO5/Lji0uX8yVK6+k1jPe5ABGs7VpNU2Nu4Z6397J1uq6jtzVjdTRjhqJCMcxmy37WOTJJxl69FGxsdlM+WWXUfLxj+edSxkYAFnC3tKCvaUla8lrYGBgMMKko4EXXniB0047Dbt9tPGjv7+f22+/nSVLlrBmzRr8fj87d+7k6KOP5kc/+pER3M4DUpKazdAOpWRhWDAc0PrdNpy24oTzNV3n/d4YL24LsWZbiMFErvyTxWxiZYOfo5t9NKS3c+CKhdhde5a10XTRFDZiruCxWyjz2LIlB6UumxHQFss404WwMDrYnelCcgA2/B7emyYnMSUjJMWU2WWPOxGyJtMTF9naofQQfqcfrz23Pvid/ne46527CKWEEoLD4uD8xedzcsvJRWVrF5Uuot63d7K1uqIgtXcgdXagZyRsgbpsNlaXZUJ33knihRcAMLndVF97La6VK8fPo2ko/f2YLBbsCxZgb2rKq3NrYGBgMOkrQ0dHBxdddFHO2J/+9Cc0TeO6667DP1z31NzczOc//3nuueeeaVnobGau6txKyrDKQVImmpZJSSppRcNls+BxWCh3WwAFFAVJKTgNuq6zLZTk5e1DvNwWJpTIzdCaTbAs4OPYBX6ObPbjc1qH1RKEasJkEPq5KklJJaNouOxmPA4LdV47PocFr9OK1ayBliGZKE7TdH/pDM4InduRDGlyQJgejGjEOmpFhlSCcfq0gHloJ/ZNj2Nr+z9MY5rENF8dmSVnIi/82KiTWGoiteFh5LRQYNABlw98TeAuF2tRgFhsdzPMSKJSlGAySCgZwmw2U+GowCybycjivZlUkjy27TFe6Hkh+5wl/iVcuvhSql3VyLvc7QChhBDNRMmoGSqcFdTYayg1lZJJZMhMs46vLknI3d3Ivb1gsWIpL8ekKqAqaNEY0Z/+BGWz0Cg2V1VR8o3rUBsaiEu569BVDSUUwux2YQsE0CoqyCSTe7Sm+aALOtsxzlHxzIdjtSc6t5MObtPpdE6tLcCLL76IyWTiox/9aM74woULCYcLW5TOVXbVuX333Xdnrdbv2rVrJ/2c5PDPROg6dCbgrQEzbw2YGMzkZtVM6Cwq0TmkQmdlhY7PFgY1TGQ7jD2Sfds3THp9+dbav7sNi2BPjtV0sC/3u/t9WYDU8M8u6DoV8c0sCv6F2uj6nIcG3QvZVnMqPaWHg2yGzUNTWGV0+OeDKcwxM0kw+gH2vvw+f0j+gaguvjjbsXOK6xSO0I8gszlDBx2FpsnSPfzfPiMuvmTY+vupv+9+7AMDAKSamui++CJUXYeOCdYtZWBoCN57b8pL2V9/rwbFY5yj4pnLx6q9vX3Sz5l0cNva2srbb7+dM/b888/T3NxMY2NuTVw8Hqe8vHzSi5rtzDWdW5vDRXxYhzaalklmVDKqhsNqxmO3Fl1Dq+s6OwdTvNQ2xMvbw/TGcjNyJmBJrZdjWv0c1eKnzF244Sefzu2u+0orKsmMyCY77Wbcdgt+lw2fw4bXacNmmZ7b1PtLZ3C/6NweugwPKUj2QyomTpqzZGLFAU3F2v7isJPY+9lhHRNK49FIB5+NtXopi4HFxSxG10UJQyYONqeoqXVXiEztNNrB7i+GMkP0J/sZSA1gMVvwO/2YGH2vJuQEj2x7hDVDa7JjS8uWcuniS6l0Vuadc1y21lMz7bq1Y1GHhpC7ulEGB7CUlWN2jpY7SBs3Erv9DvThzKvjmKOpuPxyGu3jz52WzqCGB7FWVmKrr8cyDVJH80EXdLZjnKPimQ/Haq/r3AJ89rOfzdbRHnPMMTz44IPs3LmT66+/fty2r776KgsWLJj0ouYas1HnVhq2qA2lIJFSiadVUrKG2+6gtNSKy2Yp+oNx50BC1NBuDdE1ND6jt6TWx+oDqjh2YQUV3snV/NmcrmzN7UjJQTytkJJVnHYHJaVWWj12St2ihrZYubE9YX/pDO71/Y6YLgCe2A5KiILVARXV4t9CTNgkdgqm5Wdj8zdStGaBpojSh0xMBNT+VlHT664Ey+yvvcyoGbrj3fRIPcS0GBVlFbisuV8a3ux7k7vfuZtwRtwRc1ldXLjkQk5sOrHg32NaSRNKCd3aJncT9b56nNbiauAni67rKD09SN09WCJDWOvqs41jALF//IPoXXeBKlROSs8+G/855+RduxqLoUUj2BobsS9YgMU7vTrEc1kXdK5gnKPimcvHap/o3F5//fU8/fTTnH/++ZhMJnRd56CDDuLb3/52znYDAwP88Y9/5Bvf+MakF2Wwf8gooilsKCERHBS3OncMJHF7zPicVqp9jqID2o7BJGu2hXhxW4iOwfFFCgfV+Fi9qJJjF1VS5dvzJhZdH5XtSkoKLpsVr9NKY7kLv9tOics2JeOGeU8qDNEeCA3futZkKGuY2HQhOQAbnoRNTwnDhBH2tElMlYaVD1JCH7fyQKF84CoH8+xv+NN1nYH0AF2xLoKpIHaLnTpfXU4jWFyKc//G+1nTNZqtXVm1ki+u+CKVrgLZWl0nnA6TUlLUuGto8DXsFSWE7P5UFam9HamjEz2dxjq2cUzTCD/8MNGnnhIbW61UXn013gLNxsrgIGTS2JqbcbS2YnbunWDcwMBgbjLp4Nbj8bB27Vp+//vfs337dpqbmznjjDNw7nLx6erq4nvf+x5nnXXWtC3WYPoZCWgjSZnBpEQsrZCSVByayKwESp043MV9sHSFU6zZ1s+abSF2DIwPaBdVezluOKCtKZnah1VaFuvriaZxuUVA21AmAtpSI6CdGh2vwx+uEplSTQFdxaObOUHW8Wy3ig6/ET58vTBVAAjvgHd+m8dJrB5WnCMkvSaTMZRTIqhVFWGLW7YAvFWiDGGWKh/sSlpJ0xXrojfZS0JOUOGqGJdVfb33de5+924iGZE9d1vdXLT0Ij7c8OHdZ2ttXhaWLtyr2VoATZKQ2nYgd3aA2YI1EMiuTctkCN12G8nXXgPAXFJC9Te+gXPJknHz6LqOEgxiMpuwtbbiaG7OyfwaGBgYFMMe3cuzWq2cffbZE26zYsUKVqxYsUeLMti7SIomAtqUxEBCElnPjIrLZhEZWq8DOQ2d7N51qyeSYs1WIdu1PTS+W3NBlYfViypZvaiSQOnUnKDSspq1v7VrQn6hscxNoKrUCGini3QEXr4NBrbmDFuAEoD0Ltu/92chv7X+N9Dxau5jNUthxXnQfMzktGXH2uO6ykWW1lstTBjmCLqu05/qpzveTTAZxGV1EfAGcrK1USnK/Rvu5+Xul7Njh1YfyheXf5FyV/5ehpFsbVoZ1q311lPpqtyr7nlqPIHUth25uxuz14dljAW1Eg4TvOkmpA9Ec5+tvp7qG27AVjted1dXVZTeXsweN/amJmwNDZjmQGbewMBg3zP7C9UMimI0oJUZTGSIZUSG1mm14HVYqfIUX3LQF03z0rYQL24Nsa0/Pu7xlgo3qw+oYvXCSurLpi+gdQyvtabEgRM777aL4LlkillgA4SDV6wXYj1Qdzi898fintf3Lmz585gBE7SsHnYSW1b8/ueYPe5EJOUk3fFuepO9JOUkle7Kcfqyr3a/yr0b7iUqifIgj83DxUsv5rj64wr+nWbUDKFkCI/Nw4LSBXs9WwsieJXa2pD7glgrKjC7R406pB076PvhD1GHFRGcy5dTdd11WPI0veiyjNLXi8Vfhr25CWttrWFnbWBgsMcYwe0cRlI0ommZoaQIaEVdqorDasE3yYC2P5bhpWFjhS194zVDG8tcHHdAFasXVdJYPoETVRFkFNEUFpcU7BbzcEDrocwjSg7cduus0w2esWRiIqiNdgvzA5sbWo8VAeqONbt//tCwRMtwkxgrzoHShuL3n88e1zsc1M5Ce9yJ0HSNYDJIV7yLgdQAbpubOm9dzt9gJBPh3g338lrPa9mxI2qO4LLll1HmzF+nrOs64UyYtJym2l29T7K1uq6j9PYitbejDoax1tRgHqN2kHzjDfp/+lP0tEj1e086iYovfCGv6YKWSqGE+rFVVWNvbcFaUbHX1m1gYDA/MILbOYas7pKhTY8GtF6HlQqPA3ORH3oRCd7eEOTVnVHe6x0f0Nb7Xaw+oJLjFlXSXDE1CZKRgDYhKVjNooGt1ScCWr9bBLQG08hIUBvrESUANqeojR0JKA+7uLjg1lkqmsQOPkM0exXLHLTHnYiknKQj1kFfso+MmqHKXYV9jGyZruu80v0K9224j5gs/tZ8Nh+XLLuEY+qOmVHZWl1VkTs7kTo60BJJrHVjGsd0ndhf/sLgAw+ApoHJRNnnPkfJaaflV0SIx9HCYWx1dTgWLMDimzulJwYGBvsPI2KYA8iqRjQlMzQc0IogUcVhEY5bkwlowwmJlz8I8cKWPjb3WdDpynk8UOpk9aJKjjugkpYKz5SyQ5KiiZIDScFiMuF1WmnxefB77PhdNjwO4+057WTiY4LaASHlVVI3PktaecDE2VurE466avJNYnPQHncids3WeuweAs5Azt/NUHqIe969h9f7Xs+OrapdxaXLL8Xv8Oedd39ka2G4cWznTuSOTnQQge3wPnVVZfDee4k9+ywAJoeDyq98Bc+qVXnnUsJh9FQSW3OTUETYA7kfAwMDg3zscfSg6zqxWAy73T5OKcEgl71hv6tqOrG0TDyjEEnJJDIKKVnDbhZmBTVOC2aTCpqKsmsT0C5EUjKv7ojwUluYTT1x9Owj4kOr2mvnmFY/xy4oo7XClf0wk9OTt79UVI2kpJKUFUwmE267lRqnhVK3Ha/DgssGJpOMmpGJTuAEOpMsB2eF/a6cgkQIkkFIRsBqA2elCGolnV0tck2ZKA6zm0KWCPGP3YpWeSDIgDx/7XEnIiknhXVuKoSsyfidfmyKDUkRx0vXdV7ue5mHtz5MQhHn0GfzcdGBF7GqehUokFHG/xHImkw4HRZNaM4ANbYaHIqD2F4+hnoqhdTVhdIXxORyYSnxkRk+91oySey2/0V+5x0AzGVllFx3LXpr63grXR3UcBh0HVsggF5TgyzLII+3Ct4bzKRrh0F+jHNUPPPhWO2J/a5J13V995uNJ5PJ4PF4+MEPfpDXwGE+s6v97m233UZTU9N+XNF4EjKsHzTx1oCJrRETOrkZH79d59AKnUMrNZo8czKpZpAHq5JgYf+zLAz+FZuW/1tRd+nhvL7gK/t4ZXOLqBblqeRTbFG2ZMeW25bzKden8Jhnl8uQdXCQ+vsfwNHXB0C6ro7uSy5GGaOaYGBgYLCntLe3c80117BhwwaWLl1a1HP2OHPrcDiora3F4dhzAf65ynTa76qaTjwjTAoiSYlERiUpq9jMIuvptFmwmIuLPOMZhbU7I7y0Pcw73TG0Xb7WlLttHNPq55jWMlpKTPS3bSxob7s7FFUjKaskJQVM4LFZ8TislLps+FxW3JNwOMvHTLIcnJH2u0oGEv3iJzUk6lidfpGxzYecxP7e73FseQLTGOMFxd+KdagtZ9OS1V/ghPLxUk5ZxtrjWh2i5GAO2eNOREJO0JfoYzA9iKIplLnKsJhGa4h1XWdN7xoe2fYISUXc+SixlXDxQRdzRNURBecdydY6rU4qnZXUeGrGKSzsLZSBAeTubrRIBHN5BWb76HtI3rqV6B13og/fmbIffhgVX/oSDXnu5umygjIQwuzzYQ8EsFRV7RdFhJl07TDIj3GOimc+HKt9Yr87lksuuYQHH3yQq666CnseX3ADwWTtd1VNz6mhjaVVEhkVq9mGz+Oiwm4tOqBNZBReaxvgxa0h3u4YQtkloi1z2zh2YSWrD6hkSaAkW5srpcQtjrH2trtDUbVsIK5jwed00OC3UT5sf+tzWKf9w2wmWQ7OCPtdOTWsfjBcU2s2QUVNYZtcOQUb/wDrH4XMmNKZqoPg8EuxNq6Cv38nW3srNx6Lt368+D6Q3x7XVwOeqjlhjzsRiqbQm+ilW+5mUB2k1FdKiT33vRBKhbj7nbt5u//t7Njq+tVcvPRifPb8jVS6rjOUGSKpJakpF7q1Va59ExTqmiYax7q7scQT2Orqc9QOEi+9ROTnP8+WE5ScdhplF16YbS4bi5bJoA4OYKmqxtHSjLWqaq+vf3fMpGuHQX6Mc1Q8c/lY7RP73bEsX76cP/zhDyxdupRLLrmElpaWvIv47Gc/O5XdzAtGAtpISmZguCksnhHKAV6HlXq/u+iANikprG0bZM22EG/uDI8LaEtdNo5ZWMFxB1RxcKCk6HnzoagaCUkllpbRAa/DSqDUSYXXQYlLBLTmKcxvUCRyGuK9EOkeDWq9lYWbvZSM0LJ9+xGhWjBC+UI44vPQfOxoLcoY5YTMigsZl/ud4/a4uyOSidAZ6ySYDKKhEfAGsI6xJ9Z1nec7nuehTQ+RUkTtWJmjjMuWX8YRtYWztZIq0Z/sx21zZ5UQXNZ903SlSxKZ9nbkzk50VcMWCGQNFXRdJ/LEEww99pjY2Gym4gtfwHfyyXnnUhMJ1MFBbIEAjtbWHJMHAwMDg73BlILb888/P/v/3/nOd/JuYzKZUFV1KruZs4w0hQ0lRwPaREbBsgcBbUpSeX2HCGjf2DmIrOYGtD6nlWMWCtmuZfWlUwpos6USaQUNDY/DSm2pkwqPQ5QdOI2Adp8S7YZwGJIh8bunorDxgSrB5j/DWw+Pbg9Q1gKHXwKtxwtnsLFUHkDyw//Bu+1DLClfODo+D+xxJ0LWZHrjvXQnuhlKD+F3+vHavTnb9Cf7ueudu3g39G527PiG47no4IvGbTtCNlsrJ6lyV+3TbC2I5rDMjh3InZ2YXG5slaP6urosE7rjDhL/+hcAJreb6muvxbVyZd651EgELR7D3tiIY0FrjsmDgYGBwd5iSsHt888/P13rmDeMBLQjGdpYWiGRFgGtx2GlbhIBbVpWeXNnmBe39vP6zjCSouU87nVYOXphBasXVbKivhSrZc+zaCMBbSKjoGoioK0utWcD2hKnzQho9yVKRgS1AKH3wWESda2FglpNgS3PwLqHIBEcHS9tEEHtghMm1JdVmo6lN9rLEpgX9ri7Yyg9RGe8k2AiiMlsIuANYBlz/DRd4x/t/+DhTQ+TVkVjXrmznC8u/yKH1hxacN79ma0FEYxm2nag9PZg9pdh8Y4G4Go0SvDmm8ls3gyAtbqa6htuwN7YOG4eXdeFM5mqYG9pxd7akmPyYGBgYLA3mVJw++EPf3i61jGn0XWdSHI0oI2mhXSXGTNe5+QC2oyism5nmBe3hVjbNkhml4DWY7dw5IIKjjugkpUNfmxTCGgB4mmFdCaFoml4HVYqfSKg9btt+Jy2KWWADfYARRLlB9EeCA8Hqc5SKFRrpSmw9e+w7kGhbTuCLwCHXwyLTgJzEZeBkRsBkW5wO8FbOxrUzjF73ImQVZnuRDe98V6GpCHKnGV4bLk16cFkkF+u/yUbBzZmx05oPIHPHfw53Lb8mcux2dpKVyX13nqq3dX7tOFKDgaRdrajhvqxVFVjHtMUJnV1EfzhD1F6ewFwHHgg1f/v/+UtMdA1DaWvD5PDjr15AfbGxrzOZAYGBgZ7i2m54mQyGdatW0cwGOTYY4+lsrJyOqadM+wIJZA6h4hn5GxAGyhxFZ1JlVWNde1h1mwN8VrbICk5t8zDZbNw5IJyjltUyaFNZVMKaFVNJykpRGMi26ToGpUldso9DvwuGyUuI6DdLygSxPtEtjYZEkGrww8MCXexXdFU2P48vPkARDpGxz3VcNhFcNApRQa1w8oH0UHALAwfqhpEk5h1fmXiBtODdMW6CCaDmM1m6rx1mMeUcGi6xt92/I1HNz9KRhXarhXOCi5fcTkrq/PftofRbK3L6qK1tJV6b33BIHhvoGsacne3sNKNxbDVBjDZRiurU+++S/+tt6IN62h6Vq+m4uqr82ZidUVB7uvFUlKCvbEJW33dflFEMDAwmN9MObi97bbbuPHGG4lEIgD8/e9/58QTTyQUCrF48WJuvvlmLr300ikvdDYzkJCoh0kHtG93DLFma4hX2wZISrkBrdNmZlVLBasPqOTwpjLs1j0PaDVdJ5lRiWVkJFXDa7dS6rYRBA6s8RGo9E+ppMFgCqiyCGojI0GtBO5KsHsglcc8Qdeg7V/w5v0Q3jE67q6EQy+ExacWL8eViUFiQGRmS+qAXqGiUOqf+uuaRUiqRFe8i95EL1EpSrmzfFzw2Zvo5Zfrf8l7g+9lx05qOokLllwwYbY2kokQl+JUuitp8DZQ5a7KCZj3Nrosi8axjk50RcEWqMs2jgHE/vEPBu66C4b7JvznnEPp2WfnDVi1TAa1P4i1ogJ7czO26up99joMDAwMxjKl4Pa+++7jq1/9Kueddx4nn3xyThBbWVnJiSeeyGOPPTbvg9vemMQxDutuA0RF1XinM8KL2/p5ZfsAiUxuQGu3mvlQi8jQHt5chtNWuEZyd4wEtPGMQkZV8dgtlHvsQrbLZcOspAluEcoKRmC7H1AVEdTGeiAeFI1gngrh6JUPXYedL8Gb98HAB6PjrjI45AJY8unCcmC7komJmlqrA/yNIrDVXEDv+GazOYyu6wykB+iOd9OX7MNusefN1v617a88tvkxJE182ahyVXH5ystZXrm84NySKhFKhXBanCzwL9jn2VoALZUis2MHSlcX2OzYake1i3VNI/zww0SfekoMWK1UXn013uOPzz9XMokyMICttkYoIvj9++AVGBgYGORnSsHtj370I04//XQeeeQRBgYGxj1++OGHc9ttt01lF3OCe17p4k/dr3Pq8gBnHdaQEyyqms67XRHWbO3n5e0DxNJKznPtFjOHN5dx3AGVfKilfOoBrTQc0CoioPV7rJR7PJS6bJS6bNmShuhE3rcGew9VEQ1f0W6I94OaEeYHhZq1dB1r11p450HRWDaCo0QEtQefXnxNrJQQ2WGzQzSa+QLgrREatdNsHz3TSStpuuPd9CR6splV5y6yat3xbu5cfyfvh0eP+8nNJ3PBkgvGbTvCTMjWgmgOy7S1ofT0YC71Y/GNvr+0dJrQbbeRXLsWAHNJCdXXX49z8eL8c40oIjTUY29dgMU7N4XkDQwMZg9TCm63bdvGNddcU/Dx8vLyvEHvfCSclHn4tXa29Mb45imL2dIXY822EC9/MEAkleupbjWbOLy5jNWLKlnVWo7bvuenSR8T0KYVFbfdQqlLBLR+d25Aa7AfURXhJhbtEv8qI0FtAScwXcfSs47j3v8V7uSYTK3dCyvOhWVngr3ITKCUHA5qreCtg9K64aC2gJvZHEbXdUKpEF3xLoKpIE6Lkzrf+Gztn7f/md9u+S2yJv52q93VXLHiCpZWFraGHJutbfW30uBt2OfZWgClvx9p507k/n6slVWYx2iTK4ODBG+6CWn7dgBs9fVUf+tb2Gpq8s81MACyjL2lBXtLC2bDsdLAwGAGMKXg1u/3EwqFCj6+adMmamsnsOmch7yxM8yF975GWs5VObCaTRza5Gf1oiqObC3H45haQJuSVWJphZSs4nZY8LmstIzJ0E6lRtdgGtFUUXYwUn4gp0T5gW+Cv5vut+HN+/D0rCebI7O5YfnZsPys4iW55KSoqTWbhfpBSUD8O88axUZIKSm6Yl30JftIyAkqXBXjMrBdsS7uWH8H24a2AWDCxCmtp3DuQedOnK2VIsQzIls7ooSwr7O1uq4jd3UjdbSjRiLjGsekHTvo++EPhYQX4Fyxgqprr8WSx9JT1zSU/n5MFgv2Ba3Ym5oMRQQDA4MZw5SuRqeeeip33XUXV1999bjHNm7cyK9+9at5X2+bj5HA1mKCFfU+jmktY1VzKd6RgFbLIKUmVxag6zppRSWZUckoGg6bGbfDQk2JDZ/TgtdpwW7RQM+QTmZI72a+xHBn9Mi/M42ZtL49WouuibrWRD+kBoXDmLMUnGWgkbdZzNK/CcfbD2DtfSs7ppgdpA88HW3FOaIUocBzc1CkUVcyZ5kwXvBUgtkOyTTkeXfMpOM93ei6zmB6kGAqSDgdxmF1UGmvhIxQggFQNZVnOp7hDzv+kM3W1rhq+MLiL3Cg/8Ccbccia7KY0+KgzlVHja0Gp+okHovv29eoqsg9vch9vSDJWCoqkXQNJLHmzJvriP385zD8GpwnnojnkotJWa3ZbUbn0lBCIcxuF7ZAAK2igkwyuU9fz1SYy+/luYJxjopnPhyrVCo16eeYdF3Xd79Zfrq7uznyyCPRdZ3TTjuNu+66iwsvvBBVVXniiScIBAKsXbt23kmD3XjjjXzve9/L/h649BfYq5pztjkhoPKxeh3P/LvzazBJ/MntLO55kproO9kx1WSjreoktlZ/Esk2N/3EZwp9ah9PJp+kS+0CRLb2GMcxfNT5UeymWZ7l1nX8a16i6s9/xqTr6CYT/aeeytBxq+eFy5yBgcHMp729nWuuuYYNGzawdGnh0q+xTCm4BQgGg3zrW9/iySefZGhoCACfz8eZZ57JTTfdRPU8loPZuHEjy5YtyxvcfuOjrRzV4t+jedOySlJSSSsqDovI0JY4hQat12GdlpKDRCLB2rVrWbVqFZ48tyX3NzNpfUWtRddFtjQeFP/KCXCWgN0HBWII8+AHONY/iK3zldFpzDakA05FWnYecXMJa7cNsGpRBR7nBN+SFBnSQ6IEwuUXGrWequLVE4p9jbOIESWEYFJka902Nz57bjmHoin8uf3PPLXjKVRdKJcE3AG+sPgLLCpdVHDusdnaCmcFtZ7agiULexstmUTu7BQlBB5vTrOXrqokHniQ9HPPiQGHA9+XrsZxxBH550pnUMODWCsrsdXXYylkHDLDmWvv5bmIcY6KZz4cq3Xr1nHCCSdMKridcpFUdXU1d999N3fffTf9/f1omkZVVRVms1HTORFlPg92V/FvxLSsZu1vnTY7Xp+VRreNsmHprqmoKEyEx+OhZAZ/iM2k9eVdi6ZBcmC4prYPMnFw+8FZVTgzNtgmdGrbXhgdM1vhoFMxHXohDm81DkAfLj/wOG2UuPJkEFVJ7FuRobRCqB/4AsU3mhX7GmcZCTlBZ6yTPrmPtDlNbUUt9l20f3dGd3LH23ewI7oDENna0xaexlkHnjVu2xGytbVSnKqyqv1WWzuCMjCA1NmFqb8f9y6NY1oiQfDHPya9fj0AlvJyqr/5TRwLFuSdS43F0KIRbI2N2BcsyLHlna3MhffyXMc4R8Uzl4+VyzV5F8xp6wDQdR1d1zGZTIYjzW4oc9tYEtj9m3BsQOuwWvA6rNSWOLMBrcu+dwJag2lA10VgGe0eDmpjImta1lRYK3aoXdjkbvsHWb9bkxkOPAUO+5wITItBlYeD2gy4K6CyTjSo2efmt/piUTWVvmQfPYkeQqkQPruPOmeug5aiKfx+6+/5w7Y/ZLO1Dd4Grlx5JYvKCmdrR5QQHBYHLSUtNPoa94sSAohrsdLTIxzHhobGNY7JfX0Ef/hD5M5OAOytrVR/85tYKyryzqcMDkImja25GUdra44tr4GBgcFMZMrB7aZNm/jud7/Ls88+S3K4qcDtdvPxj3+cG2+8kWXLlk15kXONTy4PFDRGSMsqiYxCXFKwW8z4HDZqShyUeez4XXYjoJ3p6LpoFIt2Q6IP0tHhoLa5cFAb7RJB7da/i0YzENsuOklY5ZY2FLdvTRFBrZwSQW3FIhHUFqueMIeJSbGsEoKkSdS4a7DtInXWFmnjjrfvoD3WDoDZZOb0hafz2QM+O27bsUQyEWJSjErX/lNCGEFXVaT2dqSOTvRMBmugDpNl9JqR3rKF4P/8D9qwbrHriCOo+spXcrK62bl0HSUYxGQ2YWttxdHcnBMkGxgYGMxUphTcvvjii3ziE59A0zROP/10DjzwQAC2bNnCH//4R5555hn++te/ctxxx03LYucCRzSXceZhucFKRlGJpxUSkoLNYsbrsNLq84iA1m2bks6twT4kNQSJncKEIR0R6gcTBbWxXnjrIdjyV9BH3OhMsOAjcMQl4G/O/7xdGZETk5JCG7dsgQhqnXPzFtVkUDSFvmQf3fFuBtODlDhKhBLCGGRV5smtT/LUB0+hDX+5aPI1ceXKK1ngz3+bfuR5/an+GZGtBdAkCaltB3JnB5gtWGtrc7LS8TVrCP3iFyALtYeS006j7MILc4LfEXRVRentxexxY29qwtbQkGPLa2BgYDCTmVLU9LWvfY3q6mpeeOEFGhsbcx7r6Ojg+OOP5+tf/zqvv/76lBY5Fyhz2/jk8gBnDjuUSYpGPKMQz8hYzWa8TistwwFtqcs2JZ1bg31MOiL+7d8CxERQOVFQm+iHtx6GzX8S2dYRWo4XQW154YAqB204II71Qmk5VDcLrVpn6Z6+kjlFJBOhM9ZJMBlEQ6PWU4vVnPt39cHQB9yx/g46Y+IWvcVk4YxFZ/CZAz4zbttd554p2VoANZ5AatuO3N2N2evDUjr6HtB1ncjjjzP0m9+IAbOZii9+Ed/HPpZ3Ll2WUfp6sfjLsDc3jQuSDQwMDGY6U4qgNm7cyH/913+NC2wBGhsbueqqq7jxxhunsos5wWVH1/PZj30IHYgOZ2jNJhNep5XmijEBrd1ifIjMJjIxiHRBf+fwgA7+JjAXKB1JDsDbj8J7T4m62BGajoYjLoXKA4rbr6YKxYVYDLCIYLimGVxlU3k1cwZZk+lN9NId72YoPYTf6cdrz22AklSJx99/nKc/eBp9uL65paSFK1deSUtpS+G5d8nWNvga8Nj2by2zEg4jtbUh9wWxVlRgdo9mj3VZJnTHHST+9S8ATG431dddh2vFirxzaakUSqgfW1U19taWgnW4BgYGBjOZKQW3zc3NeYXLR5AkKW/gO9+oK3HQG01jMoHXaaOxzJUNaL0OqxHQziY6XoenvgSaLLKumoJHN3OCrOPZbgXzmHP54euh+mAhw/X2Y7Dx96CO+Xtp+BAc8XmxTTHomghq01FhvuBvgY4OKGsFl5GtBRhKD9EVF7W1ALXe8dnareGt3LH+Drrj3YDI1p554Jl8euGnZ1W2Vtd1lN5e0Tg2GMZaU4PZPqrkoEajBG++mczmzQBYq6up/ta3sDfkr+FW43G0cBhbXR2OBQuw+IxabQMDg9nJlILb7373u3zta1/jk5/8JIccckjOY2+99Rb/+7//y09/+tOp7GJO4LRZqPO7KB+uoTUC2lmKqsBrd0BoS86wBSiB8cZeG/8AO1+GDU+IJq8R6g4T5Qe1+bNn49A1Uc87UsdbcQCU1oNsAToMsX1ERrUn0UNPvIchaQi/I3+29jdbfsNftv8lm61dULqAK1deSVNJ04Rz96f6sZvtMyZbq6sqcmcnUkcHWiKJtS63cUzq6iL4gx+g9Ikg37F4MdXf+EZOucJYlHAYPZXE1twkFBH2QHrHwMDAYKYwpeD21VdfpaamhsMPP5xjjjmGRYuEVM7WrVt55ZVXWLZsGa+88gqvvDIqQm8ymfjZz342tVXPMlqrPKxoKDUC2tmKpok62WgX1B8hgtViaPsXKGMi3trlovyg7tDinq/rIuubGhJ1vBUHiJpad4UIaIc73uc74XQ4q4RgNpsJeAJYdikN2TK4hTvX30lPogcAq9nK2QeezacWfGrctmOJZqJEpSiVrkrqPHXUeGr2a7YWhhvHduxA7uxCBxHYjrm2pN55h/4f/Qht2I7Ts3o1FVdfnZPVHUHXddRQCHQd+4giQp7tDAwMDGYTUwpuf/7zn2f//6WXXuKll17Kefzdd9/l3XffzRmbj8Gty2bU0s5akoOirjbeC1IcapdBy2rYsWb3zx0JbKuWwIcuFYFxMe8DXYdMBJJhIeNVsUho3LorwOhYzyKpEt3xbnoSPUSlKOXO8nFqBWklzW+2/Ia/tv01m61d5F/ElSuvpMFXWGJtJmZrQZgvZNp2IHd1YfZ4sPr9OY/HnnuOgV/9ClTRbOg/91xKzzor7/VHV1Uh9eV04GhsxNbYmFc5wcDAwGC2MaXgVtO06VqHgcHMIhMXmdpoD6QGRTmAv1kEp4ddXFxwW3GAqKltOnoSQW1U1NXaPELSq7QO3JVGUDsGXdcZTA/SFe8imAxis9io89aNy6huGtjEL9f/Mlt/azPbOOegc/jkgk9OmH2NZqJEpAhVrirqPHVUu6snzO7uK5RwWGRse/uwlJdjGWO1qWsa4YcfJvrUU2LAaqXyS1/CW0CGUZdl5L5eLKWlOJqaxmV/DQwMDGYzht6UgcFYlMxwUNsNiRDYXOBvFPa3I1QeMHH21uaGj9wgtik2YEhHRZbY7hZBdEkdeKoKKy/MUzJqhq54Fz3xHuJSnAp3BS5rbn1oWknzyHuP8Ledf8uOHVh2IFeuvJI6b13BuRVNIZgMYjfbaS1pnTHZWhCuYtLOnaiDg1irqzE7HNnHtHSa0G23kVy7FgBzSQnV11+Pc/HivHNpmQxqsA9rZRWOlmasVVX75DUYGBgY7CuM4NbAAESzWLxXlCAkgkKjtiQAljz1h7ou6mYLBben/RQqDyxuv5mYCGqtDhFEl9SDt9oIandB13UG0gOitjbVh8PioM43Plu7IbSBX67/Jf2pfgDsZjvnLT6PU1pPKSpbW+kcVUKYCdlaXdNE41h7B2oiIax0raOXbWVwkOBNNyFt3w6AraGB6htuwFZTk3c+NZFAHRzEFgjgaG0t2GBmYGBgMJsxgluD+Y2mQTIEkU6I9wmpLk+VyL7mI7RVKCZ0rcv/eMtxxQW2UhwSA2BxCHvdkjrwVIPF+JPclZSSojvWTW+yl7gcp9JVidPqzNkmKSd55L1HeK79uezY4vLFXLnySmo9tQXnVjSF/mQ/NrONFp+ord1VZWF/oUsSmfZ25I4OdE3HFgjkuIRl2toI/vCHqIODADhXrKDq2mtzyhXGokYiaPEY9sZGHAtac/RwDQwMDOYSxiepwfxlbLNYJiYatnwFAqFEP7x+D7z/LAw3JmF15qohABx20cT7lJKQ7AezHXx1oqbWWwMW25RfzlxD13X6U/10xbsIJUM4rc68tbXr+9fzq3d+RSgVAsBhcXD+4vM5ueXkibO1UpRoJkqFs4I6bx017poZka0F0JJJMjt2IHd2YnK5sZXlGnQk33iD/p/+FD0t3n/ej32Missuy8nqjqDrOurAAKgK9pZW7K0teZUTDAwMDOYKRnBrMP/IxEVNbbR7tFmskF2unIT1j8H634waMJgscPCn4fCL4V+3ZssT5MZjsRVyGZOTIlNrNoM3IDK13hqwGkFGPpJyMmvGkJSTVLorcVgc47Z5aNNDPN/xfHZsacVSLl9xOTWe/LflITdb2+xrnlHZWhAZ1kzbDuSeHixlZVi8o2vTdZ3on/5E+MEHRXmMyUTZRRdR8qlP5VdE0DSUvj5MDjv25gXYGxvzBsAGBgYGcwnjKrcPSKVSRGeZJmliWCNz5N+Zxh6tT5Ug3g+JPkgOgc0BzloRrKaV3G01FdsHz+J4+wHM6XB2WG44msxhX0ArbQQdzEsvwDsc3A4tPhdHSsqdR84IrVoAVzl4q4bVD2yQTDPe+aF49uU52lf7GqmtDSaDhNNhXDYXlfZKSEOGUXe39QPruX/L/Qxmhm/JW5ycu/BcPlL3EcyYySTyOycm5ARxOY7f7qfaUU2FtQItrRFNz4y/T2VgELmnBy08iLmiErPdBpJ4LbqikHjgQdL/+IfY2OHA9+9fwnL44SRkadxcuqKiDIQwe73YagNo5eVkksl9+XJmJDP92mZgnKPJMB+OVSqV2v1Gu2DSdV2f6o4zmQzr1q0jGAxy7LHHUllZOdUpZzU33ngj3/ve97K/33bbbTQ1FXZAMphZVEXfYVnXY5SkO7NjQ64WNtSfz4Bvybjta4feBKDXf/g+W+N8JaWl+EvqL7wlv5UdW2hdyBmuMyizlE3wzNmNOZUm8PDDeLZuBUAuKaH7kovJ1Nfv55UZGBgY7F3a29u55ppr2LBhA0uXLi3qOVMObm+77TZuvPFGIpEIAH//+9858cQTCYVCLF68mJtvvplLL710KruYtWzcuJFly5bx/PPPc9hhh+3v5UyKRCLB2rVrWbVqFZ4CDSr7k6LWp+tCMzbeJ5rGVAVcfrA5825uDrfhXPcrrN1vZMc0dxWZQz+P3Hpi/rIFIJGWWbttgFWLKvBYEZlaTQVXmWhO81QKNYRpZl+eo725L03XGEgN0J/qJ5wJ47a58dl847Z7K/QW92+5nyFpCBDZ2vMXnc+HAx+eUKM1ISeISTH8Dj/V7moqXZX73WVsLLqiIPf0IPf2gapgKa/AZB59PWowSPSWW1G7ugCwtLRQct21WMrL886npdKoQ0NYKyuwNzRg9o0/lvOZmX5tMzDO0WSYD8dq3bp1nHDCCZMKbqdUlnDffffx1a9+lfPOO4+TTz45J4itrKzkxBNP5LHHHpu3we0ILpeLkpKS/b2MPcLj8czotRdcXyo82iyWjoK3QljY5iM5AG/cC1ueAX3YmMTmhkP+DfPys3BZHbjyPzN3LUqEEhQorRiuqa0VurV7mX15jqZ7X3EpTnesmz65D8ksESgPYNuluS4mxXhg4wOs6RqVXltZtZIvrvgila7Cd4lGamutdiutfqFb67PPrEBPS6XIdHVh7u7GYXdg3UXCK715M4M334w2XNbkXrWKymuuwezM/wVtRBHB1tSIvXUBFu/c/LCbDmb6tc3AOEeTYS4fK5ermE/gXKYU3P7oRz/i9NNP55FHHmFgYGDc44cffji33XbbVHZhYDA5xjWLlUzQLJaCd34L6x8dVT0wmWHJaXD4JSLzujs0RZg9ADjcUNUkFBfsRlAxEaqm0pvspSfeQygdotReSqV7fKC6tmct92y4h0hG3BlyW91ctPQiPtwwcbY2JsUYSg9R4RJKCLXu2hmjhDCCGo2SaWtD6e7B7Pdj2SXDGl+zhtAvfgGyDEDJ6adT9m//liMHNhZlYABkGXtLC/aWlhyjBwMDA4P5xJSC223btnHNNdcUfLy8vDxv0GtgMO0omeGgtquws9gImgpb/yakvZKh0fGmo+HIK6CsZff70zWRHU5HweoHYlC5BCoKa6oaCKJSVJgxJPtQNIWAJ4B1l/MUzUS5b+N9vNL9Snbs0OpD+eLyL1Luyn87HkS2NpQKYTFZaC5pnpHZWgClvx9p507k/n6slVWYx2QmdF0n8vjjDP3mN2LAYqHiC1/A97GP5Z1L1zSU/n5MFgv2Ba3Ym5oMRQQDA4N5zZSugH6/n1AoVPDxTZs2UVtrfNgb7EU0VZQfRDqHncVMInNaqMa18w1hwjDwwehYxSI46iqoL6IhTNchM2yV6yyFqsVgLoWtb+yTEoTZjKIp9CR66En0MJgaxO/05w08X+1+lXs33EtUErfiPTYPFy+9mOPqj5v12Vpd15G7upE62lEjEeE4Zhstw9AkiYE77iDx4osAmNxuqq+7DteKFfnnU1Xk3l4sXg/2piZs9fUFM7sGBgYG84UpBbennnoqd911F1dfffW4xzZu3MivfvWreV9va7CXGOmDDL0P6qDI3HqqCgeY4R3w6p3Q8eromKcSPvQFWPSx4uxupaQwc7A6oWwBlNaLOWKxKb+cuU4kE6Ez1klfsg8dnYB3fLY2kolw74Z7ea3ntezYETVHcNnyyyhzFi4RmS3ZWl1RkNo7kDra0SUZW6AOk2X0fadGIgRvuYXM5s0AWGtqqL7hBuwNDXnn0yQJta8Pa0U59ubmgpa7BgYGBvONKQW33//+9znyyCNZtmwZp512GiaTiQceeIB7772XJ554gkAgwHe/+93pWquBgSAVhoE28f/RLvBP4CyWHIQ374PNfx5tFrM64ZALYMU54v93h5IRQS0IVzF/gzBgmGFZwZmIrMn0xnvpTnQzlB7C7/SPM0zQdZ2Xu1/m/g33E5PFFwWfzcclyy7hmLpjis7WBjwBaj2144LmmYCWTpPZsQOlswtsNqy1tTmvS+rqIviDH6D09QHgWLyY6m98A0tpaf75UimUUD+2mhrsra1Yy+auDJqBgYHBZJnSp0BdXR1vvvkm3/rWt/jNb36Drus89NBD+Hw+zj//fG666aZ5r3lrMI1IidFmsaEBwCJUCZx5ShCUDLz7O3j7YdE4BqJZ7KBT4YjPC6vd3aEpQklByQjjhdJ6EdwarmJFEU6HhctYog+z2UzAGxhXJjCUHuKed+/h9b7Xs2Oraldx6fJL8Tv8BeceydaaMdNc0ky9r54S+8zsFFZjMaS2NuTubswlpVh26WhOvfMOwVtvRR82WPAcdxyVV1+dU66w63xaZAh7fT32BQtyHMwMDAwMDKbBoay6upq7776bu+++m/7+fjRNo6qqCrNR92UwXWSbxbpFA5jVMZyp7Rc1tmPRNdj6HLz+q9FsK0DjKjjySihfsPv9jTSLZWLCVax8oQiiDQWEopBVme5ENz3xHiJShHJnOW5bbrmIruu82PUiD2x8gIQsnHV8dh+XLbuMo+qOmnD+uBQnnA5T7iqnzlM3Y7O1IBQMpLYdyKF+rBWVOY1jALG//52Bu+8GVQXAf+65lJ51VsFstTI4CJk0tuZmHK2tBSXBDAwMDOYzU/pEuPTSS7niiis48sgjAaiqqsp5fO3atdx5553ce++9U9mNwXxFUyHWKxrGEuJ2Ld4aEdzuanML0P0WvHqHqMMdoXyBaBZr+FBx+0xHRbbWWQIVB4hsbTGSYAYADKQG6I53E0wGsZgt1HnrxhkmDKYGufvdu1kXXJcdO7ruaD6/9POUOApnX8dmaxt9jTSWNM7YbK2u6yjd3UgdHahDQ9hqanMysbqqEn74YaJ//KMYsNmo/NKX8K5eXXi+YBCT2YSttRVHc3PBzK6BgYHBfGdKwe3999/PSSedlA1ud6WtrS1bg2tgUDS6LuS8RkwYlPTEzWJDO+G1u2DnS6NjrnL40GVw4CnF1cbKSYj3i8C5rAVKG8Q+J6j3NBglo2bojotsbUyKUe7Kn619ofMFHtz4IElF3IIvtZdy2fLLWBVYNeH8cSnOUHqIMlfZjM/W6oqC1NGB1NGJnslg3aVxTEun6f/Zz0i9LkoxzCUlVF9/Pc7Fi/PPp6oovb2YPW6hiNDQYCgiGBgYGEzAXv106O7u3iNnCYN5TGpIyHrFeyEdA3cZ+PJ3gdvlKM61j8P7f8ptFltxLqw8V7iM7Q4lI0oddB18ARHUemvAMjMDp5mGrusMpAfoincRTAaxW+zU+cZna0OpEL9651es71+fHVtdv5qLl148obLB2Gxtg69hRmdrAbRMBmnHDuTOTjBbxjWOKQMDBP/nf5C2bwfA1tBA9Q03FFQ60GUZpa8Xi78Me3PTuPkMDAwMDMYz6U/wp556iqeeeir7+1133cVzzz03bruhoSGee+45PvShIm8HG8xvxjaLjZQFlDXldxZTMtg3/JaTNj2CTRtuFsMksrQfulRkXHeHpgglBTkl5LxK6kVdbSF9XINxpJU0XbEuepO9xKU4le5KnLuoT+i6zv+1/x+/fu/XpBRxrsocZVy2/DKOqD1iwvnHZmsDnkBes4eZhBpPILVtR+7pwezxjlM6yGzfTvCmm1AHBwFwrlhB9bXXYi7gB59VRKiqxt7agrWiiCZIAwMDA4PJB7ebNm3id7/7HQAmk4nXXnuNN998M2cbk8mEx+Ph+OOP58c//vH0rNRgbqJIEOserqvtB5uzsLOYrsEH/wdrf4Uz3jc6Xn+4qKutWLT7/en6sLNYRJQulLWKoNZhdJwXi67rhFKhbLbWZXXlzdb2J/u56527eDf0bnbs+Ibjuejgi8bJgY1F1VT6U/2YMNHga6DB10CpI78k1kxBGRwUGdu+PtE45s69a5B8/XX6f/Yz9LSwefZ+7GNUXHZZQScxNR5HC4ex1dXhWLBgnDWvgYGBgUFhJh3c3nDDDdxwww0AmM1m7rnnHi644IJpX5jBHCdfs9hEzmI978Crt0P/5uxQ1FmP9ZircC88trja2ExMZIXt3tFmMXdhK1eD8WTUDMGhIL3JXpJykgpXxbhsraZrPLfzOR557xHSqgjmyp3lfHH5Fzm05tAJ5x/J1vqdfuq8dTM+W6vrOkpvL1J7O+pgGGtNLWa7Pefx6J/+RPjBB8UXK5OJsosuouRTnyqsiBAOo6eS2JqbhCKCUdplYGBgMCmm9Kmhadp0rcNgvjDZZrFIJ7z2S9jx4uiYq4zUis/xz8yhfKS+fveBrZwS1rxmB/ibRQmCpwqMppyi0Ycd4bYPbSdiiuC2uanz1o0L0PoSfdz1zl1sHNiYHTuh8QQ+d/DnxjWYjUXVVEIpYeU9W7K1uqoid3YidXSgJZJY63Ibx3RFYeCee4j//e8AmJxOqr76VdxH5C/H0HUdNSTqv+0jigh2Q1PZwMDAYLLM3JSIwdwj2yzWJ8oC3OUFm8VIR2Ddg7DxD6ALDVAsduEqtvICZNWKvqF34v2pkgikNQ28tSKo9QWMZrFJIqkSnbFOAMKZMDXlNdgtuUGXpmv8bcffeHTzo2TUDAAVzgouX3E5K6tXTjj/bMvWgrC+FY1jXWAyicB2TKCvJhL0/+hHpN95BwBLeTnVN9yAo7U173y6qgqpL6cDR2MjtsbGnEDZwMDAwKB4pvwJ8swzz/DjH/+YdevWEYlEshmesajDAuUG85S8zWLN+ZvFVAk2/h7WPQRSfHT8gI8LaS9vtfg9n87tCJoq9iMnR5vFfHWintdgUkQyETqiHXTFuwCodlePC2x7E738cv0veW/wvezYSU0nccGSC+ZcthZASyTItO1A7urC7PFg8ftzHpf7+gj+8IdCMQGwL1hA9Te/ibU8fwmMLsvIfb1Y/X7sjY3jAmUDAwMDg8kxpeD2iSee4JxzzmHp0qWcd9553HHHHVxwwQXous5TTz3FAQccwBlnnDFNSzWYdezaLGZ1TNAspsP2f8LauyDWMzoeOASOvhoqD9z9/nQd0kMiQ+wqEyUIpfXgMJpxJouma/QmeumMdxJOh+lP9zOkDNFIY842z7Q9w282/wZJE182qlxVXL7ycpZXLp9w/pxsraeOWm8tNvPMNyVQwmGRse3tw1pePk7pIL15M8Gbb0aLRgFwr1pF5TXXFHQS0zIZ1GAf1soqHK0tWA27cgMDA4MpM6Xg9oc//CGrVq1izZo1hMNh7rjjDi699FJOPPFEduzYwVFHHUVrgdtwBnMYTRWlB0OdkAwOa8hO0CzWtxFe+QUEN42OlTYKBYSmo/egWWyR0Ks1msX2iLSSpiPWQU+iB0mV8Nq8XP/O9aDDSnklDhx0x7u5c/2dvB8edYM7uflkLlhywbgGs7GomspAegBd02dVthZERlbauRN1cBBrdTVmR+77Ob5mDaFf/AJkGYCS00+n7N/+raDhgppIoA4OYgvU4WhtGScdZmBgYGCwZ0wpuN20aRM//OEPsVgsWIclbeThC3tLSwtXX301//M//8NFF1009ZUazHx0XQSYQ51jmsUqwZ5fx5Not8jUbv/n6JizFA7/PCz5VP4M764oEgz1gtkmAuLSBvBUG81ie0g4HaY91k4wEcRtcxPwBni+/Xm0YZOMN/rfIDOQ4bdbfousib/1anc1V6y4gqWVSyecOyEnCKfCsy5bq2uaaBxr70BNJLDVBnIkvHRdJ/K73zH029+KAYuFii9+Ed9JJxWcU41E0OIx7I2NOBa0jpMOMzAwMDDYc6YU3LrdbuzD3bx+vx+Hw0FPz+gt5ZqaGtra2qa2QoPZQWpIBKuxntFmMW91/qxrJgZvPQQbfg/DARIWGyw7Cw79N5F93R2qIv5NDkJ5tSg/8AXEPAaTRtVUuhPddMe62RreykObH8KM+IIQzoSz292/5X40RlVSjm84nkuXXVp0trbeV0+jr3HWZGt1SSKzcydyZye6pmMLBHIysZokMXDHHSReFGoeJreb6uuuw7ViRf75dB11YABUBXtLK/bWlhzpMAMDAwODqTOl4Paggw5i06bRW8mHHHIIDz30EBdeeCGKovDII4/Q1NQ05UUazGCk5HCzWFcRzWIybHpKqCBkoqPji06CD31BlC7sDk2F1CDEE4BZlCAEFoDN0ALdU5JyMluGoOka3cluuuPdebcdG9gCtJS0TBjYJuQE4XQYv2N2ZWsBtGSSTFsbclcXJpcbW1lZzuNqJELw5pvJbNkCgLWmhupvfQt7fX3e+XRNQ+nrw+SwY29egL2xsaCJg4GBgYHBnjOlK+tnPvMZbrvtNm699VYcDgff/va3Of300/H7/ZhMJhKJBPfee+90rdVgJpFtFusebhazT9wstuNFoVcb7Rodr10BR10N1Yt3vz9dFxnhVBicZVDeCh07xT6NwHaPCaVCdMQ6CCaClDhKKHGU8PGWj7M1vJVXe16d8LlHBY7i5JaT8z6Wk631zq5sLYA6NERmxw7knl4sZWVYvLl3E6TOToI/+AFKMAiAY/Fiqq+/HktJSd75dEVB7uvFUlKCvbEJW72hiGBgYGCwt5hScHvddddx3XXXZX//1Kc+xT//+U+efPJJLBYLn/zkJznhhBOmvEiDGcRIs1i0W9TV6rrQqi3ULBZ8TziL9Y5asFJSD0deCS2ri2sWk+IQD4na3YpF4vmKFdg5LS9pPqJoCl3xLrpiXcTkGNWeUYkvq9nKvx/670QykRx5r7EcFTiKfz/03/Pq0WaztXY/gdIAAW9g1mRrAeS+IFL7TtRQCGt1zbjGsdQ77xC89Vb0ZBIAz/HHU3nVVZhs+V+jlsmg9gexVlRgb27GVl2911+DgYGBwXxm2u+JHXfccRx33HHZ32OxGL5Z5oueyWS46qqreO655xgaGuLggw/mJz/5CUcfffT+Xtr+Y2yzWKJPuH5N1CwW64G1d8MH/xgdc5TA4RfDkk8XVxurpCHeD2aLyNCW1IO3RjSLRaO7f75BXhJygvZoOz3xHsxmM3XeOsxjykhUTeXx9x8vGNgCXLrs0nGBraZrhFIhNE2j3ltPg7cBv9O/t17GtKNrGnJXF1JHB2oshi1QN65sIPb3vzPwq18JYxDAf+65lJ51VsEsrJZMogwMYKutwdHaOk4T18DAwMBg+tlrBV/BYJCf/vSn3HHHHYTD4d0/YQahKAotLS2sWbOGhoYGfvvb33LaaaexY8cOvN4imp3mGumI0KqN9QodWXeZsK/N94EuxeGth2HD46LGFoSSwbLPwqEXFqc5qymi1EGRRVNaSZ34MZrFpoSu6/Sn+umIddCf6qfMUYZ3l+a9UCrEbetuy5H4yse64Do+0viR7O9JOclgenDWZmt1WSbT3o7c0YmuqiKwHdM4pqsq4V//mujTT4sBm43KL30J7+rVBefMKiI01GNvXYDFW+CLoIGBgYHBtLJHwW0wGOTBBx/kgw8+oKysjDPPPJPDDz8cgK6uLv77v/+b+++/n3Q6zUc+8pHpXO8+wePx8N3vfjf7+3nnncfXv/51tmzZkn2d84ahdlAGRNbW4SvcLKYpsOmPsO4BEQyPsOAEWPVFEZzuDl0T6geZOHgqoGI4qLUbMklTRVZlOuOddMe7ScgJat212Hb5svB67+vcuf5OEnICALfVTVJJ4rV5ufjAiwm1hfiz9GfiSpz1/ev5SONHZn22FkBLpci0taF0dYHDiW0XIwUtnab/Zz8j9frrAJhLSqj+f/8P50EHFZxTGRgAWcbe0oK9pWVcaYOBgYGBwd5j0sHt5s2bOf744xkYGMha7d588838+te/xmQy8YUvfIF0Os2ZZ57JN77xjSkFg/F4nFtuuYXXXnuNtWvXEg6Hue+++7jkkkvGbZvJZPjud7/LQw89RDgcZsWKFXz/+9/nYx/72B7vf4StW7cyODjIokWLpjzXrECRRE0tQOgD8OymWWzny/DanRDpGB2vWSqaxWom1j7NzpGJQDIMTj9UHSSkvZyzpwFpJhOVorRH2+lL9GG1WKnz5jYzSarEw+89zLM7ns2Ofaz5Y5yx6Aye2/kcp7SeglNx0tHVwepDV/OPvn9w6oJTZ322FkCNRkVg292D2e/HsksJlTIwQPCmm5CGJQ1tDQ1U33ADtpqavPPpmobS34/JYsG+oBV7U5OhiGBgYGCwj5n0Vfc73/kO8Xic22+/neOOO462tja+9rWv8dWvfpVIJMJpp53GTTfdxIIFC6a8uFAoxH/+53/S1NTEypUr+ec//1lw20suuYTHH3+cr371qxxwwAHcf//9nHrqqTz//POsnuDW4e5IpVJceOGF3HDDDZTOdQchTYV4UCgaDAzrFXsqwFfgdmr/Fnj1Duh5e3TMVwdHXg6tHy6yWSwBiZBQPChbAP4GcFcU91yDCdF0jWAySGesk4HUAOWucty23Cx4d7yb29bdxo7oDkBkay9fcTlH1R0FwLmLzwUgo2QAKLGXcM5B58z6bC2A0t+PtHMncn8/1qrqcRa5me3bCd50E+rgIADOlSup/vrXx1nujqCrKnJvLxavB3tTE7b6+oLuZAYGBgYGe49JB7f/+te/uOqqq7jiiisAOPjgg7FarXziE5/g4osv5r777pu2xQUCAXp6eqitreWNN97gQx/6UN7t1q5dy2OPPcYtt9ySVW+46KKLWLZsGddffz0vv/xydtvVq1fz0ksv5Z3n29/+Nt///vezv8uyzNlnn82iRYtyyhTmHPmaxRx+IALWPJm4eBDW/gq2/X10zO6Fwy6CpWeApQhReiUj6mpNJuEqVlI33CxmmaYXNb/JqBk6o510J7pJq2lqvbXjGsD+1fkv7nn3HjKqCFwX+RdxzWHXUO0u3M2fVtL0x/sptZcSKA1Q56kbV94w09F1HbmrG6mjHTUSEY5juygdJF9/nf6f/hQ9I46N7+Mfp/zSSzFZ8r8/NUlC7evDWlEuFBEKZHYNDAwMDPY+kw5uBwYGWLGL+87KlSsBoXs7nTgcDmprdy/s//jjj2OxWLj88suzY06nk8suu4xvfetbdHR00NjYCMCaNWuK2remaXzuc5/DZDLxwAMPzF1NykLNYmkZiORuKyXg7Ufh3d+CKokxsxUOPkMEts78Gp85aIrI1CoZYZNbWieyvVbDpWm6GEoPCVOGZA8uq4uAJ5Dz/k0rae7dcC//6vxXduzTCz/NOQedk1faC0BHlCDFpTj1FfXU++opc5bl3XYmoysKUnsHUkc7uiSLxrExAauu60SffprwQw+JL30mE+WXXILv1FMLKyKkUiihfmw1NdhbW7GWzb7jYmBgYDCXmHRwq2katl2yHCO/7y8lgbfeeosDDzyQkl0E1FetWgXA22+/nQ1ui+WKK66gp6eHZ599FmsRNXPBYJD+/v6csW3btgGitCE606Sr5DQkgiJ7mhoCmxtcdaCbIC2TSAulg0RaBk3Ftu0ZHOsfxJweGp2iaTXpQy9DL6kHHUhJhfen65COCjUFpx98DSK4tbggmQbSk1p+IpHI+Xd/sr/Wsut+R9QQehO9xOQYfocfh+pASo6el52xndy+8XZ6U70A+Gw+rlhyBcsrlqOmVFTUcfuRNZmByAAANbYa6mx1WCQLUWmGvad3gy5JSF1dKH19YLVhKS/HpCpZK2ddUUjc/wDp//s/8QSHA9+//zvmww8jIed/b6uJJHosirW6Gr2uDsViMWTqZjgz6dphkB/jHBXPfDhWqVRq0s/Zo06HN954A+eY+rRYLIbJZGLNmjUMDQ2N2/6zn/3snuymaHp6eggEAuPGR8a6u/NbiRZi586d3H333TidTirHdE4/88wzORq+Y7n99tv53ve+l/exd999l0gkkvexmYEZEVzuEmDqOjvf/AdLux/DlR49hmH3AjbUn8+g9yBoB+idxL4sQGz4Z/sU1y1KUmYK+2sthfYbJJj9f13XeU16jWdSz2QD2AXWBZztOhtfu4+O9o68c+zKjg072MGOKa95/5OC2GgQak6lCPz6YTzDX0jl0lK6L7mYTHUVdBRxbLq6xI/BrGEmXTsM8mOco+KZy8eqvb190s/Zo+D2pz/9KT/96U/Hjd94443jxkwmE6o6Phs0naRSKRx5pHZGAvDJRv3Nzc1ZJYhiufrqqzn77LNzxrZt28YZZ5zB8uXLOeywwyY137Sja6KuNh4U/2oquMsLlgNkejfDK3dSFd+UHdM8NaQPvRRLy0dYWUyZhpwWCghWO7grRU2tyz8tzWKJRIK1a9eyatUqPAUafPYV+2stI/tdcugSIlqEgfQALpsLny234z8ux7ln8z2si6wDwGwy85mWz/Cp5k/lmDeMRUdnIDWAxWShylVFCSWsX7d+RhzvyaIODSF3daOEB7H4yzA7c68Val+Q6G23oXaJL3DW1lbKrruWQIHyAl0HdWAAzCZstbXY6sabPRjMXGbStcMgP8Y5Kp75cKzWrVs36edM+or8/PPPT3onexuXy0VmuPFjLOl0Ovv43qa6uprqAraaLpdrXMnEPkPXhXZsdLiuVkpAaaVoAMtHoh9evwf9/WcxDddZYvfAoZ/DvPQzuAvZ7I5lpFkMoLJOyHr5avdKs5jH49l/x3YX9vVaVF18aQzKQRLmBFVlVTituR3/Wwa38L9v/S+hVAiACmcFXz7syywuX1xw3rSSJpQK4S/xU+eto85TRyIubnnNpOO9O3RdR+nuRuruxhIZwhqoG9c4lt68mcGbb0YbLiVwr1pF5TXXjFNOyM6pqii9vZg9bqGI0NBgKCLMUmbTe3m+Ypyj4pnLx2pPYrhJB7cf/vCHJ72TvU0gEKArzy3Bnh4hZ1VXV4SBwFwkHRF6tdGeMc1izfkzp3IS1j8G638DagYToGFBOehT2I/8vKiT3R2aIrLCSkZkakecxYoJiA0mRVJO0h4Rt2rSapq60lwLXU3XeGrbU/zu/d+h6cIq9oiaI7hy5ZXjXMnGMpQeIiknCXgCNPoaZ2XTGAw3jnV0IHV0omcyIrDdRekg/uKLhH7xC1BEzW3J6adT9m//VjBY1WUZpa8Xi78Me3MT1traudtoamBgYDCLmRP30g455BCef/55otFozjeX1157Lfv4/mSfN5QpGVF+kAiONos5A6Cbh1UQxqCp2D74G471D2BODWaH03VH8VLpZzh42TI8um1yzWKeemGba3VBMgOMz6pPlZlURL8v16LrOhEpQk+ih1BEZGN9ug85OXpehzJD3PXeXWwMbwTAarJy3qLzOKn+JEyyiYw8/nyouko4FcZmsRFwBai11uY0jc2k4707dElC7u5G7u0Fs2V845iuk3rySZJPPCmeYLHgvfRS7Cd8hIQi551TS2dQw4NYyyuw1QVQPR6IxfbRKzKYTmbTe3m+Ypyj4pkPx2pPGspM+mSLS/cTIzq3+RzKXnvtNY466qgcndtMJsOyZcuoqKjg1Vdf3adrvfHGG3Oay2677Taampr26RqKoSr6Dsu6HqMk3ZkdG3K1sKH+AgZ8hW9bG8xctspbeTz5OAldXOgqzBWc6z6XOus8vXuxCyZZpubxJyh5+20AVJeT7gsvJDVf3AcNDAwMZhnt7e1cc801bNiwgaVLi3A9ZRZkbn/+858zNDSUVTx4+umn6ewUwdiXv/xlSktLOfLIIzn7ptiP9gAAfCZJREFU7LO54YYbCAaDLFq0iAceeIAdO3Zwzz337PM133jjjdx4441s3LiRZcuW7f2GMl2HZKjoZjFzuA3nul9h7X4jO6a5q8gc+nnMrSeywmQmkZZZu22AVYsq8DjziPTLaUiFwWIb0yxWts+cxWZSEf2+WEtSTtKd6CaUDGG1WCl1lKKkFHo391K7uBaTw8STbU/y5/Y/Z59zTM0xXHTgRbisheuVIpkIkipR5aqi1lNbsGRhJh3vQqiRCHJ3N0ooJBrHXLl1s1o0SvTHP0Z5fysA5poa/N+4jpoJypaUSBQyaaw1NdgbGjDlaVw1mF3MhvfyfMc4R8UzH47VPmko29fceuut7Ny5M/v7k08+yZNPituJF154YdYS98EHH+Q73/kODz30EOFwmBUrVvCnP/2J448/fr+seyx7raFsss1iyQF4417Y8oxQTwBRsnDIv2FefhYuq4NdwyCP00aJa0yQrEqiWUzXoSIgmsW8tWDZP2+lmVREvzfWous6wWSQrlQX/Wo/ZaVl2QA0M1zuMcQQv1z/S7YOiaDNYXFw6bJL+XBj4fp4RVMIJoO43C6a3E00ljRiL8JZbiYd7xF0XUfp7RWNY4NhLIE6zPbc1yJ1dBD84Q9RgkIezbFkCdXf+AaWAq9F13XUUAh0HdvChTiamzHZDaORucRMfC8b5GKco+KZy8dqnzSU7Wt27NhR1HZOp5NbbrmFW265Ze8uaKaQjoqgNtoL6bDImpYVahZLwTu/hfWPgjKsZWsyw5LT4PBLxHN3h6aIQFpOgWe4WcxXB7b8XeUGU0dSJTrjnXTHu0kpKWo9teOsbjdKG3nqjadIKkkAmkua+cphX6HOWzgbmZATDKYGqXJXUe+tp8ZdM2sbo3RVRe7oINPRgZ5KY60b3ziWeucdgrfeip4Ux8hz/PFUXnXVOOWEsXMqwSAmpwNHYyO2xsaCtrsGBgYGBjOPPQ5uk8kkxx13HF/84he58sorp3NNBhMhp4YVELogMQAOD/ib8stsaSps/Ru8fo8oWxih6Wg48koRDO8OHRHUpiPgKgd/M5Q2gGP/uNHNFyKZCB2xDnoTvTgsjnEWupIq8cCWB/i/5P9lx05uPpkLD76wYAZW0zUG04MoqkKjr5GmkiZ8dl/ebWcDmiQh7diB3NkJJjPWQGBckB77298YuPtu0MSdCv9551F65pkFg3ldlpH7erH6/dgbG0WwPEsDfwMDA4P5yh4Ht263m7a2NuPCXwTTopagKaIcIBaE1KAoA3BWg9kKGRV2sU219LyF881fYgmPuoCpZQtJH345auDQ4YUVVkDI2u8OdIPbDe5m8FWDsxQyGmT2r8XoTOoQnc616LpOKBWiL9lHJBOh1FGK0+TMsdDtTnRz+8bb6UgI5yy3xc1lSy7jiKoj0NN6tlxhLLImE06HcVld1LvrqbZVo6d1ounizuNMOt4Aeio1bKUbxORyYSnxwRiLXF3TSDzyCOm/PCMGbDZ8V16B9eijC1rpapKMNhDCXFaOva4O1eczFBHmIDPtvWwwHuMcFc98OFb7XC3hggsuIJ1OZ2tgDQT7Uy3Bl+ri4O7HqI2uz46lbGW8FziLjvJjRTmCwaxE13Xekt7i6dTTyIgvH42WRs7xnEOZeXbq0e4NTJkMgccew7vpPQAUr5fuiy4i3TzzFEsMDAwMDCZmT9QSphTcvvfee5x99tkceuihXHHFFbS2tuYt/C0vL9/TXcxqRtQSnn/++cmrJei6KAWIB0VJgZwCt180gOXBlArjeOchbFv/gmm4WUy3OsksPRfp4DPBWkRtrCoLXVxNI2EpYW1bhFVHHI7HN/OK1GdSh+h0rCUqRelN9DKQGsBhdVBizz3mKSXFA+8/wCt9rwBgwsQn6j7BkYkjqV9Sj801vn5URyecDqPrOlWuKgLewITKCRMxE463ruuoAwPIPT1okQjm8grM9tzXrQ4MEL31R6jDTaiWhgZKvnEdlqqqgvOqsTh6MjGqiFDAncxgbjAT3ssGE2Oco+KZD8dq3bp1nHDCCftOCmxkJ5s2beKRRx4puJ2qqgUfmw9MWi0hHRV1tbHhZjF3mShByFcComTg3d/B248IlzEQ2dmDPonpiEtwuivY7Ue1pgolBTkp1BZ8dWAqhbaX8PhKZnQH5kzqEN2TtaiaSk+ihy65iyF9iMqyynEWum2RNn725s/oTfYCUGov5UuHfomD3AfR8VYHNpcNhydXoiqjZhhIDuDz+qj31lPnrcNqnnr/6P463rqmIXd2InX3YEkksNXVY7Lmvp7M9u2Eb7oJdVCYkThXrqT661/HXOCCPxIsoyrYFizE3toyTmXBYO4yk64dBvkxzlHxzOVjtc/VEr773e8aNbfTSbZZrFtka+0TNIvpGmx9Dl7/lajFHaFxlWgWK1+w+/3purDlTQ0JxQR/s5D2cvhgXzqqzVNSSor2aDu9iV4UXSHgCWAZc651XeevO/7Kw+89jKIJd63llcv50iFfwu/0k0nkd36LZqJEM1FqPDU0+BqodFXuk9ezt9AliczOncidneiaji0QGGeRm1y7lv6f/Qw9I46J7+Mfp/zSSwuqHOiahtLXh8lhx968AHtTk6GIYGBgYDBHmFJwe+ONN07TMuY5qgyxHoh0iUDVbIWSemGQkI/ut+DVOyD0/uhY+QI46ipo+FBx+8zEhtUWvFCxSCgg7EMThvlOKBWiM9ZJX6IPn8NHpSM3AI1JMe5cfydv9r0JgNlk5tyDzuW0hadhLlA3rekawWQQi8lCS2kLjb5G3AXKWGYLWjJJpq0NuasLk8uNrSy3tljXdaJPP034oYfElzWzmfKLL8Z36qmFFREUBbmvF0tJCfbGJmz1hiKCgYGBwVxiWnVuRzra9iSFPJcpqJag66IcIN4n5LY0ZdRZTNKB3K5uc6QDx7q7sXW+kh3TXOVkVl6MvPBkkeGdQAEBAEUS+zJbwV0rnMXcFaCYcjrDZ3oH5kxa32TWouoqwWSQYDJIXIpT7irHptjIKKNZ2C1DW7hz050MZsTt9QpHBVctvYoDSg9ATsrZ7eSUnP1XUiXCmTA+m49qdzXVlmqUlEI0NT0Z+P1xvLVYTCgi9Icwl5ZgcbtBGj1OuqIQv+9+Ms8/LwYcDkq+/O+YDztsYkWEwQHMfj+2QACtxEfaUESYV8yka4dBfoxzVDzz4Vjtc7UEEF1s//Ef/8Ff/vIXQiGhpVpZWcknP/lJ/uM//oPm5iK0VOcY062WYJejHNT7B1pC/4cZ0SymmO1sqz6VbdWnolqMBpi5gKZrvJB5gf9L/x864s/yYNvBfMb1GVxm4wvjWMypFIFfP4xn2zYA5NJSui65GGkCK10DAwMDg9nHPldL2Lx5M6tXr2ZoaIiPfexjLFmyJDv+t7/9jbKyMtasWcNBBx20p7uY1eRVS5ASQgEh3g9SVNS3Okog311RVcL+3u9xbHgU03CzmI4JeeHJZA65BN1dsftFaJpQXZBT4PKDpxq81WB1TPi0md6BOZPWt7u16LpOOBOmN9HLYGaQElvJuHKBcCbMLzf9kveGhHyVzWzj/EXnc2LdiQVvmaeTafq39ONZ4KG2rJZaT21RFrp7wr463rquo/T1Iff2oiUSWCsqMVlza2HVvj6it9yK2t0NgHXBAkqu/TrmssJyaFlFhOpqbPUNmN3Gl4X5yky6dhjkxzhHxTMfjtU+V0v45je/idls5q233mL58uU5j23YsIGPfvSjfPOb3+T3v//9VHYz63G5XJS47MJVLDbcLDaRs5iuwQfPw9q7RMnCCPWHYzrqKuwVi9htCDMiJZYZtuataRZ1vM7JdVPO9A7MmbS+fGuRVVlY6MrdJEwJAuWBcQHo28G3uf3t24lKooSgzlPHVw7/Cs0lhe96JOUkkWQEgNaqVlprWgvW4k4ne/N467JMZudOzN3d2FQNa33DuMax9ObNDN58M9pwmY/7yCOpvOYazI7CX9aUgQGQZWwLFmBvaZlwW4P5w0y6dhjkxzhHxTOXj9U+V0t44YUXuPbaa8cFtgDLli3j3//93/nxj388lV3MDRIh0QSWCIlgdqJmsd534JXboX/z6FhZCxx5lVBCKKbxRYpDfFhtoWKR2J+73GgW28fEpFhWDcFqsRLwBnICUEVT+M3m3/D09qezYx/+/+3dd5xU9dX48c/0nZ3tve9SRAIoYMESuyYaUR8LFtQoGsVoxEeNXWnWGI0KwS5RolFjjSXFaISfD4mKiagBEUWB7bOzdXb6vXfu749hVxZ2l5ltMzt73r72hXvnljP3DsOZO+d7vmVHctG0i3ZrB9ZF1yO9awNagEJ7ITXUkJ+aPyKJ7XAK+/0Et25FrasDWwqWvN370no++IDmRx4BNdI5IuPUU8k+99zdEuAuejiM6nJhMJmwjh8X6YhgHtJhBkIIIRLQoN7pFUXpN6NOTU1FUZQ+Hx8z2raDVwVHPlj6OF8dtfDxE7Dtg++X2bPhgIth759EBoDtiRqMdFswGCGrPJLUphX0fndYDBtd13H6nNR56nD5XOTYc3BYen5d5PQ6Wb5+Od+2fwuAzWTjkn0u4fCyw/vcrxpWafI1YTfbmZA5gUwyqaFmWJ/LSNDc7khiW9+AMSsLU3p6j8d1Xaf9pZfoePnlyAKTidz580k/9tg+96lrGkpjI6Y0B9aKCiylpX0mwUIIIZLLoJLbmTNn8tRTT3HJJZeQmZnZ4zG3283KlStjn5krGRmNkRKE3gQ64NPfw8Y/gb5jsguTFfY9C6afC9YoWjmF1chdYTUUSaAzSyG9ONJ1QYyokBaixl1DvbeegBagOK14t8kTPqr/iMe/eBy/GhkBWpVRxVX7XUVJWt+DobyKl1Z/K/mp+ZSmlVKYWkhnEozyV10uQtu3o7hcmPMLMO4yO1g4FKLlkUfwrl0LgDEtjfzrrsM+bVqf+wyHQmhOJ+bcHKyVlVgKC4f1OQghhEgsg0puly5dygknnMDkyZO56KKLmDRpEgCbN29m1apVtLS08PDDDw9JoKOZ7V/3oW37/s5d4JBr0XImYN38Jrb/Po8h5AF2DBYbfyzBGRehO/JBo//WXroemc0s5Inc5U0vjwwYM6WALwAEBhxzorcXSaT4umJwtbtob2un2d+M1Wwl15qL5tfQiHxoCWkhnt/yPKvrV3dv+6OyH3H2hLOxGCy9Tsqgo9MR7EDVVApSCyg2F5OqpdLZ2Tmi52Coj6XrOmqTC6WxgXBnJ+bcPEJGQ49WX+GODtwPPIj6zTcAGAsLybj+OrSSEjyh3iewCAeCaG2tmPPysJSUoNnt+GVCErGTRHrvEL2TaxS9sXCu4tIK7L333uP666/n888/77F8xowZ3HfffRzbz1eHyWrXVmAbLncwteD70gBX2hRSQy4cIddOy37AxtK5dKRWjWSoYoQ0aU380ftHnOHIAEG7wc7pqafzA8sP4hxZYrI6nZQ+/QyWtjYAfOOqqP/pTwkn6WhgIYQQvRvRVmCKorBp0yZycnIoKyujsbGR7du3A1BZWUlRUdFAdptUulqB7Zrc7kzLKCO436WoZQdHN+BL8YOvHSw2sOdCehGkZA75YLFEby+SKPH5FB+1LbXUbarDVmUjNysXk6HnFLofNHzAc988RygcuQu/V+ZeXD7lcnJT+m7l5lN8dCqdZNuyKXYUk2XL2q0l2Eieg6E6lh4KRSZmcDrBbMGUmbnbSzf03//S+dAy9B2f1m2HH07aJT/DYOljECagdnRAKIS5sBBrWRkGq5TkiN4lynuH6Jtco+iNhXM1oq3AjEYj+++/P7/5zW+46qqrKCoqkoQ2FimZsP9FmH5wEqkxDRYzQF4JZJVFZhcb5sFiid5eJF7xKWGFRm8jjUojrnDkDnxBdgE2x/dtpnyKj6f++xT/qv8XAAYMnLrXqczZaw6mPq5bWA/T7G9Gt+hUZVVRkVGx22C0XY3kORjMsbQdM44ZGhqwZ2Ri6mU/7nfewb1yZaQ/M5A1dy6Zp5/e91S6uo7a1ESK0YBlwgRslZX9JsFCdEn09zYh1ygWyXyuRrQVmMlkorKykmCw99o30QejOTJYbMa5YE3b8/phNTJFrxqE1Lwdg8VKZLBYnOi6TmuglXpPPS6fC92g4w65aVabKae8e71v279l+afLcfoiZQhZtix+MfMX7JO3e9u8LkEtSLOvmXRrOqVppZSklew2GG20UpubCW3bjtLswpybh3GXNytd02h79lncb78NgMFqJe/KK3Ecemif+9Q1DbWxEaPDgbWiHEvZ7n1xhRBCjD2D+pdzwYIFrFixgp/97Gfk5OQMVUzJy5EPp/w2UkqwJ3oY/G0Q7AR7DuRMgIySSO9aERc+xUeDp4FGXyOekIccew5hPcy1n10LOkxXpmPVrfxl6194ftPzaDu6X0zPn84VM64g05bZ577dQTfuoJtCRyFl6WXk2fNG6mkNK13XUevrCdXUoLa1Yykq2u3Oatjvx7VsGf5//xsAY2YmhTfeiG3HANVe96soqM5GTFnZWCsrMBcV9Xl3VwghxNgyqORW0zRsNhsTJkxgzpw5VFVV7Xb72GAwcM011wwqyKRx/N3RJbYBN/haI7OJ5e4FmWWRqXNFXGhhjSZfE/Xeelr8LdjNdkrSSzAajKyuXk1Yj3yF/s/Gf/Ll11+yvmk9ACaDiXMmn8Ps8bP7nGQhrIdp8jVhMpioyoyUIdjNyTE1rK6qhGpqCNXUogeDWEpKMJh6lmOoLS003XMPoW3bALCUl1Nw881YCgr63G/Y70dtdmHJL8A6rgpzbhTTUAshhBgzBpXcXnfddd3/v3Llyl7XkeR2h6rDIW+v/tcJ+SJ1teYUyK6EzHJw5MnMYnHUHminzlNHs7+ZUDiEqqvc/fHd3Y+3Bdu6///5Lc+jExmfaTKYWDBzAQeXHNznvgNqgGZ/M1m2LErTSil2FPdZizvahINBQtu2odTWgsnc653V4Lff0nTvvWitrQDYZ8wg/9prMab23dtZ83gIt7VhKSnBNn78bhM+CCGEEINKbrdu3TpUcSS//S7o+zE1CL7mSN/a9JJIXW1aIZiSo95yNApqwUgJgreRjmAHmSmZ5Fnz+Mt3f6HWU9vrNl2JLYCma7QGWvvcf3ugHZ/io9hRTHl6Odkp2UP+HOJF83gIbd2KUl+PMS0dU+bu5RjedetoXrYMfUfNfvoJJ5Bz0UW73dndmdrWhu73YamswDZu3G51u0IIIQQMIrn1+/0sW7aMo48+mpNPPnkoY0o6wbx9cDsqd5+QIaxFZihTgpCaFUlo0/LBYAWvLy6xdkn0xtDDFV/XgDGX30VboA2LyUKuNRejYiSoBDky/0g25W/iE9cn/e7nwPwDOTL/yN0mZtB0jTZ/ZL/F9mKKzEWYQibcodgnGkjESRy0jg6U+nrU5mZMWdkY7Sk9JmbQdR3/n/+C74UXIh/mDAYcF/wU2/HH49VU0NTd9qnroLW1ga5jKS5GLyyMTOstU3uLAUj09zYh1ygWY+FcjfgkDg6Hg2XLlnHJJZcMdBdJaddJHFb++iZyJ/X99bQYXdSwypPeJ6nT6np9fJplGmemntmj360ANI3C1/9E5ieRDwZhq5WGc8/F+4PJcQ5MCCFEohrIJA6D+t57//33Z8OGDYPZRVJasmQJS5Ys6Z7EYXxVFftN2zGQLOSLdEGwpkUmYcgoBFvi9aZL9MbQQxmfGlZp9jfj8rvoCHWQZkkjzdJ7m7bOUCfPfP0Mde7eE1uAy2ZdRoa15zXtCHYQ0kLk2/MpchSRFk0buD1IlEkc9HAYtbGRUEMDBEOYcnMxmHoOoAt7vHQuW4aycSMAxtxcsq6/joKKij6PqSsqakszpowMLEVFmPLzpSOCGLREf28Tco1iMRbO1aeffhrzNoNKbh966CFOPPFEpk2bxrx58zCbpUa0N3arkQyzGhksZrJBYVWkA0JqHiR4X85Ebww9mPh0Xacl0EKDp4GmUBMGs4HS9NI+e8t+1vQZj33+GO3B9n73u9GzkaPKjwIiiXOTrwl7qp1KRyVl6WVYTUPboziekziEQyFC27ZhrK/HajBiKi3dLQFVGhtpuucelLrIBwLrxIkU3Hgj5uy+64zDwSBaWyvmggKsVVWY85KjNZpIHIn+3ibkGsUimc/ViE7iADBv3jyMRiOXXXYZV111FaWlpb22Avv8888Hc5jRL+SNtPZKK94xWKxIBovFmU/xUe+px+lzdvesTbX0Pko/qAX5w5d/4O/b/969LCclh9ZAK2mWNC6cdCHNW5v5c+jPeFQPn7s+56jyo/AqXlr9reSn5lOaVkphamFS3XkMe70Et25DqavF6EjDlJW12zqBTZto+vWvCXd2ApB68MHkLViA0Wbbbd0umteL1tqKpbgY27iqXgekCSGEEH0ZVIaVk5NDbm4ue++991DFk5xSMqBwaqQTgiUl3tGMaV13Uhu8DZGetZbve9b25rv271jx2QrqPfUApJhSmDdtHjMLZvK3rX/jhHEnkKKmUFNXw2EzD+Mfzn9wwrgTaPY3o2oq5enlVGRUkG5NrpZValtbpNVXoxNzTg7GXr4O83zwAc2PPAJqZJBY5mmnkTV3br+ziGkdHYQ9Hqzl5djGj+u3LZgQQgjRm0Elt2vWrBmiMJJc9njIGR/vKMa8rp61Lr8LJayQn5rfZ4mAFtZ489s3eeXrV7pnGts7e2+umHEFhY5CAM6efDYAQTXSDSDDmsHpe52Oy+fCYXFQmVVJaXopFqOl12OMRrquozQ2EqquRmtpwVxQuNtdWF3XaX/pJTpefjmywGQi97LLSD/mmH73q7W0gKZirarCOq4Ko1WmmBZCCBE7+W58JFikH2c8BdQADd4GnF4nHcEOslKyyLfm97m+0+vk4c8e5uu2r4HIhAxzJs3hfyb+T593eCFS6uANe8mz51GRXkGePS+pyhAA1MZGgq5mNK8XS0npbn1pw6EQLQ8/jPef/wTAmJZG/nXXYZ82rc996uEwqtOJwWbFWjkea0VFv/1uhRBCiP7EPJrpiiuu4N875oAHUBSFl156CZfLtdu67733Hsf0c7dGiOEU1sM4vU6+av2KLe1bCIaDlKSX9NmpQNd1Vlev5sYPbuxObEvSSrjjh3dw2l6n9ZnYdk3e4Ff9VKRXMDlnMvmpyTWyX9/RUzZUU0M4GMRSXLxbAqp1dOBcsqQ7sTUXFVF89939J7aqitJQjzHNgW38BKxVVZLYCiGEGJSY79w+9thjHHbYYRxwwAEAuN1u5s6dy7vvvrtbIut0Ovl//+//DU2kQsTAHXLT4GnA6XMSUAPk2nNJMfdd7+wOunnyiyf5xPn95Aw/rvwx5005D5up78FPIS1Ek68JgIqMCiZkT+iz28JopbndhLZti/xiMmPJ3/2ud6imhqZ77kFtipwL25QpFFx/fb/T44aDQTRXE+bcXKyVlVgKCoYjfCGEEGPMkPwrPIh5IIQYUoqm0OhtpN5bT3uwnXRrOiVpJf3eRV3vXM9jXzxGR7ADgCxbFj+f/nNmFMzo91g+xUeLv4VsWzZOnBQ7ipMqsdV1HdXpJFRTg7IjaTVn7t5qxv/ZZzQ98AC6LzKrnuOoo8i77DIMlr5rjcM+H2pLC5aiQmzjxvXaaUEIIYQYiOT5lziB+f1+3O7Yp1eNp0Sf0m/X+HRdpyPUQZOviVZ/KwaDgZyUHEyqiZAa6nUfQS3Ii1te5P3697uXHZB/APMmzSPdmr7b1Lk7c4fcBNUgBakFZJGFE+eIn6vhvEa6qqI0OlGcjeiBIKHMLGhpxrfLlLf+997D+8wqCIcBSD37LFJOOQWvHu4x7e7OtE4Pus+LuaAASkpQjUYYZX8/xOiV6O9tQq5RLMbCuRrI9LuS3A6DXaff/e9//0tHR0ccIxq4devWxTuEfvUXnw9fn4/VqrW84nuF5nAzADZszE6dzczQTNo3ttNOe1THr9nx355iGU5DfdySZ1ZhaWnZbXkl0LbjB8Ds6cTki7zphM1mGs8+C8+++0JtbXQHqq2Nfl0hhliiv7cJuUaxSOZzVV1dHfM2ktwOg12n391nn33Yb7/94h1WTBJ9Sr+u+CbsMwGPwUNboA27xU66NR0DfZcgaGGNt6vf5o1tb3S3+JqUOYn5P5hPvr3vDgoQ6ZHbEmgh3ZJOQWpB96QM8TpXw3Fcra0NV8dytB1lCNEwZGaS/ctrKZg4sc919LCO1toKJhOW4mIsxUUycEzERaK/twm5RrEYC+dqxKbf/f3vf89HH30EQCAQwGAwsGLFCv70pz/1WO/rr78eyO6Tjt1uH7XT4iXqlH7uUORr7EalEVKgOLcYi6n/frKN3kYe/uJhvmn7Boi0+Dpr77M4ecLJ/bb4gkh9bau/lYLsAiozKsmz7z4dbLzO1VAcV9c0lNpaQnV1GMJa9BtaLJT+6leYexlk1r1vVUVxOTGlObBWVGApLe13IgchRkKivreJ78k1il4yn6sRm37373//O3//+997LNs1se2STO2QRPwF1AD13nrqOuoASDGnkJ2W3e82uq6zumY1qzauIqhF6kBL00q5cuaVjMsct8djtgfa8ak+ytLLqMqo6rOV2GgV9vsJbt+OWl+PjgGDOfpJJywFBf0mtuFQCM3Z+H1HhMLCoQhZCCGE6FPMyW14x8ARIUZSWA93T5vr8rswhyMv3VRL/9OzuoNunvjiCf7t/L438wlVJ3DuD87tc3aynY/p8rkwGUyMyxhHRUbFHrcZbdTWVkLV1agNjRgzMzHH+sm/nw+vYb8ftdmFpbAQ67hxmLP7/xAihBBCDAWpuRUJzx1yU99ZT5O/iaAWjJQEGKCTzn63+9T5KY9//jgdochgvmxbNj+f8XOm50/f4zEVTaHJ10SGNYPS9FJK00r3WLowmujhMEp9A0ptDVpbG6ZeptEdDK2zk3BHO9bSUqzjx2NKS6673UIIIRKXJLciYYW0EI3eRhq8DbQF2si0ZZKTkoPBYCBI3226AmqA5758jveq3+tedlDxQVyyzyWkW/ueVKBLV//a/NT8PutrR7NwMEiouhqlrg5dUTH3Mo3uYKitrRAMYKmsxDZuHMaUvifPEEIIIYaaJLci4ei6TkughXpPPS6fC6PRSHFadBMkbGnbworPVtDobQTAbrZz0bSLOLz08Kjqv9sD7XhVb9LW12odHYS2bUNpbMSQ6sCS13+HiFjouo7a1ITBaMAybhy2ysp+J3IQQgghhoMktyKheBUv9Z56mnxNeBUvOfYc7OY9j5TUwhqvb3md1755jbAeqQufnDOZK2ZcQUHqnqd13bm+dnzG+KSrr9V1HbWxkVBtLWpzM+a8fIx9jEDVB1BXr2saamMjRocDa0U5lrIy6YgghBAiLiS5FQlBDas4fU4aPA20BFpwWBx7nDa3S4OngYc/e5gt7VuA2Fp8wff1tenWdMrSy5KvvjYUIlRbS6i2Dt3vx1JcgsHc+199pa4O1emMbf+KgupsxJSVjbWyAnNRkXRJEUIIETeS3Iq4aw20dpcghAlTmFq4x561sKPFV/1qXtjyQneLr7K0Mn4x8xdRtfiC5K+v1TweQtu2ozbUg9WGuaTvDwyBL7+k6de/Bi2GPre6jtLYgCW/AOu4Ksy5uUMUuRBCCDEwktyKuPGrfhq8DTR6GulUOsmyZUVd4+oOufmD9w98tfmr7mU/GfcT5k6eG3U5QXuwHa8Sqa+tzKiMarDZaKI0NaFU16C4XJhycjD1M3uN95//xPXb34KqAmDMyMC0U1uwsK7jUxRSLRaMO5JjPRzGlJWFpaQE2/jxmNKT6/wJIYQYnWJKbi+++OKYD2AwGFi5cmXM24nkpYU1XH4X9Z56mv3NpJhTKEkriboU4D/O//DYZ4/RqUZageWk5HD59MvZJ3+fqLYP62Ga/c0YMTIuYxyVGZXJVV+rqt2zjWmdnViKivoc2KXrOu4//Ym2P/whssBkIu/yy0k76qge63lCQTbV1HBoeTlpVhtqWxu634elrCzSEWEAM8gIIYQQwyGm5Pb999+PuZZOau/A7/fjdrvjHUZMvF5vjz+HiifkocnXRGuglVA4RHZKNpawBcWn7HHbgBrghW9fYE39mu5lB+QcwEVTLiLNkkbQ23d7sC5qWKU10IrD4qAwtZB8Yz4Bb4AAgQE/p+E6VwM5rh4IEKqvR21qAqMJU14+IT0Mod3Pja5peJ95hsA/3gfAYLeTfs3VMG0anl3W9ymR6+MNKaitbaDrWIqL0QsLURQFlD1fPyESQbz+voroyTWK3lg4V36/P+ZtDLqu68MQy5i2ZMkSli5d2v378uXLqaioiGNEo1+NWsMrvldoCbcAYMPGyaknM90yXT5ADYAhGKT4+edJ+2ozAEpmJnUXX0SoqCjOkQkhhBDfq66u5qqrrmLDhg1MnTo1qm0kuR1GGzduZNq0aaxevZr99tsv3uHExOv1sm7dOmbNmoWjn1rNPdF1nfZgO02+JtoCbRiNRrJsWVGXIKhhlbe2v8Wb29/8vsVX1mQuGncRylaFoslFWOx7HnzWqXTiV/wU2AsoTivGYRn4c9rVUJ2rgR73wAMPxOb1ojQ2ors7MebmYrT2fU60tjbc992Ptm0bAKaqKjKuvw5TP9Pjev0BPm92sW9mJpllZZjy8+VDhRiV4vX3VURPrlH0xsK5+vTTTzn66KNjSm5lQNkIsNvtZOw0OGc0cTgcA47dq3ip89TRpDThxUtudm5UPWu7NHgaWPH5Cr5t/xaItPg6Z/I5zB4/G8WnUEMNFrsFm6PvaWO76msNVgMTciZQkVGBzTR008zubDDnajCsLS1Ym5uxaGHMZWX9zjYWqq7GeffdaM3NANhnziT/2mv7rZnVVRWlvR2ArHHjyK6sHNL4hYiHeP19FdGTaxS9ZD5X9gGM6Rh0cvvXv/6VBx54gE8//ZSOjg56uxGsxdJaSIx6SljB6XXS6G2kJdBCmiWN0rTSqO/06brOP6r/wbNfPvt9i6/0MhbMXEBlRvSJlRpWcXqdpFnSKE8vpyStBJNx6KaZjbdwZ2RAnVJbS0p6Bub8rH7X93/xBU3334/u8wGQ9qMfkXvJJf0mw7qqojY2YMrOAper37u7QgghRCIYVHL76quvctZZZzF16lTOOeccHn30Uc4991x0XeeNN95gr7324tRTTx2iUEWi03WdtmBb9wxjOnrUPWu7tAfbefzzx1nftL572YnjTuScyefE1NHAr/pp8bWQl5pHRXoF+alDN81svOm6jtrQQHBHWYExM6tH267eeNasofnRR7t72Gafdx4Zp57a7weO7sQ2NxdrYSG4XEP2HIQQQojhMqjk9p577mHWrFmsXbuWtrY2Hn30US6++GKOOeYYtm3bxsEHH8y4cdE10xejm1/1U99Zj9PnpFPpJDslO+a61n83/pvHv3icztBOLb5mXM4+edG1+OrSEezAG/JSmlZKRWYFGdbk+apGD4UI1tSg1NUR9kVGkBpT+i6z0HWdjldeof2Pf4wsMJvJu/JK0g47rP/j7JTY2saPR+ujlZgQQgiRaAaV3H755Zfcc889mEwmzDum81R2tASqqqriiiuu4N577+WCCy4YfKQiIWlhjSZfE/Xeelr9rdjMtph61kKkxdeqjatYXbO6e9mhJYdy8bSLo57UAXaqr8VAZWYllRmVw1ZfGw9aZyeh7dtR6usx2FIw5edDbU2f6+uKQssTT+BZHTmvxrQ0Cm64gZQpU/o9jq6qqA0NmPIiia05NxdGWSs7IYQQY9egktvU1FSs1shXxVlZWdhsNhoaGrofLywsZOvWrYOLUCSsjmBHdwlCKBwiLzUv5skQvm77mofXP4zT5wQg1ZzKxftczGGl/d9Z3NXO9bVl6WWUppUmTX2truuoTS6UmmoUlwtzTi5GhwNDL71ru4S9Xpp+8xsCX3wBgLmggIJbb8VaWtr/sboT2zxsE8ZjzskZ0ucihBBCDLdBJbd77703X375ZffvM2bM4Nlnn+X8889HVVWef/556e+ahIJakEZvI42eRtqD7WSkZJBnzYtpH2pY5bVvXuP1b15HJzIIcWruVC6fcTl59tj2tXN9bXl6OQWpBTFtn8h0VSVUU4NSV4/m9WApKu5ztrEuanMzzrvvRqmuBsA6cSKFN92EKSur/2MpCmpjoyS2QgghRrVBJbennXYay5cv5/7778dms3HrrbfyP//zP2RlZWEwGPB6vfzud78bqlhFnHV97d/gacDld2E2milOK475Dmm9p56H1z/Mtx2RFl9mo5lz9j6HE8efGFM5A4BH8RAMBylJK6EyszKp6mvDXi/B7dtR6xvAZMJSXILB2P/5CW7dStM996C1tgJgP/BA8q++GqOt//IMSWyFEEIki0Elt9dddx3XXXdd9+8nnXQSa9as4bXXXsNkMjF79myOPvroQQcp4s8T8kR61vqa8Kt+cu25pJhTYtqHruu8u/1dnvvyOULhEAAV6RX8YuYvYmrxBXTf7Q2pISpzkq++Vm1uJlRdjeJswpSVhSk9fY/b+Navx/Wb36AHIlMJp594IjkXXthvqy+QxFYIIURyGfJJHA4//HAOP/zwod6tiBNVV6nprKHR20hroJU0axolaSUxz07VHmjn8S++b/FlwMCJ40/k7L3PjrlOVw2ruHyRtlTlGeVMyJyQPPW1moZSX0+otpZwRwfmgoI93nUF6Hz3XVqefBLCYTAYyL7wQjJPOmnPx9s5sZ04AbP0sRVCCDHKDSq53bp1Kxs2bODkk0/u9fG33nqLffbZh6qqqsEcRsRB12Qc29q30U47ukGnyFGE2Rj7S+aTxk944osnult85abkcsWMK5iaF900ejsLqAGafc1k2bJw4qTYEXtZRKIKBwKRbgh19ei6jrm4ZI93XQmH8b74R/xvvgmAwWol76qrcBx88B6PJ4mtEEKIZDTosgS3291ncvvwww+TlZXFiy++OJjDiBHmU3zUdtYC4PQ5ycvOI9WSGvN+/KqfVRtXsaZmTfeyH5b8kIv3uTjmHrjwff/akrQS8ox5OHHGvI9Epba1EaquRm1owJiegTkzc4/b6IpC0R//iP+zzwEwZmRQcNNNpEyaFNW2amMj5vw8rBMksRVCCJE8BpXcfvjhh1x99dV9Pn7sscfy0EMPDeYQYgTt3LPW5Yl87V/gKCDFElttLcDm1s08/NnDNPmaAHBYHPxs2s84tPTQmPfVNZANHSoyKqjMqCTkC8W8n0Skh8OoDQ2EamvR2tow5eVjTNnz+dY6O+m4914yvvoKAHNxMYW33oqlqGjPx1QU1MYGzPn5ktgKIYRIOoNKbtva2kjvZ6BLWloaLS0tgzmEGCEdwQ5qO2tp9jcTCofITsmmkUYMxFZbq4ZVXv36Vf605U+DbvHVtb8mXxOp5lTK08u7+9eGGP3JbTgUigwaq6tDDynRlSEAitNJ0913o9bVAWCeNInim2+OatCZJLZCCCGS3aCS24qKCv75z39y+eWX9/r4//3f/1FWVjaYQ4hhFtSCNHgacHqdtAfbyUzJJM+aR9Db9wQBfanz1PHw+of5ruM7ACxGC+dMPoefjPtJzC2+4Pv62lx7bnf/2lgHsiUqrbOT0LZtKPUNGOx2zEVFUT234JYtOO+5h3BHBwCd++xD1S+vxZQWZWLrbJTEVgghRFIbVHI7d+5c7rjjDmbNmsWVV16JcUcPTk3TWLFiBX/84x+59dZbhyRQMbS6vuqv99Tj8ruwGC0D6lkLkcFnf9/+d/7w5R96tPhaMHMB5RnlA4rPHXTTGeqkOK2YyoxKMm17rkEdDSKzjTURqq5BbWmOzDaWGl09s2/dOlwPPYQeipxj+0mz+fqHP2Scdc/dJroT2zypsRVCCJHcBpXc3nzzzaxdu5arr76au+66i7333huAzZs343K5OOqooyS5Bfx+P263O95hdPMqXlw+Fy2BFoJakCxbFlaDFdWvoqICoPiVHn/2pT3YzlNfPcV/W/8LRFp8/aT8J5w+/nQsRsuA7gC3BdoI62GKUosoMZdgCBpwB3ueP6/X2+PPeIo2Fl1VUZxOVKeTsD+AOSeHkNkE/Uyj28X/zt/x/v73oOtgMOCYNw/9qCOhsRGf0v810hUVraUZU3Y2lqIiVJMJYnw9JtL5FmIw5LWc+OQaRW8snCu/3x/zNga9q+fTAIXDYVatWsVrr73Gt99GZpyaMGECZ5xxBhdccEH33dyxZMmSJSxdurT79+XLlyflNMQbQxt5w/8GPt0HQKYhkzmOOYwzj4tzZEkkHCbvL38h5//WRn61Wmk491y8P5gc58CEEEKI4VddXc1VV13Fhg0bmDo1uhaig05uRd82btzItGnTWL16Nfvtt1/c4tB1nY5QBy6fi1Z/KxggKyULk6HvEgTFr9D4VSNFk4uw2C09HvOrfp775jnWNq7tXnZo4aH8dNJPSTXH3jIMIKSFaAu2kWXNoshRRE5KTr81qF6vl3Xr1jFr1iwcjtjbig2lPcWitbWhNDaiNrdgzMjA5IjuHOmhEJ2PPEJo3ScAGLKyyLzuOszjIx8efIrCZ42NzCgqItVi2X377ju2OVgryjFGMeBsoM9RiNFCXsuJT65R9MbCufr00085+uijY0puh3yGMrE7u91ORkZGXI7tU3zUe+pxhpx4wh5ysnJi6llrsVuwOb6fIeur1q94eP3DuPyRVmEOi4NL9rmEQ0oOGXCM7qCbznAnpbmlMdfXOhyOuJ3bXe0ai65pKHV1hOrqMHa4cRQXY4yiPhZA6+ig6d57CX39NQCWsjIKb70Vc37+buumWiykWXvOYqYrCmpbK+aCQmwTJ2DKyhr4E9tJIp1vIQZDXsuJT65R9JL5XNnt9pi3iSm5PfroozEajbzzzjuYzWaOOeaYPW5jMBj4xz/+EXNgYnC6Wmg1eBto8bdgt9gpSS8ZUNeCrv29/PXLvLnlze4WX/vk7cPl0y8nx54zoH3quk6zv5mwHqYyo5LKjEpSzLH31E1EYb9/R5uvyGxjltJSDFGW6CgNDTjvugu1sRGAlGnTyL/+ekxRfir/vt1XwZAmtkIIIcRoEFNyq+s64XC4+/dwOLzH9kVS9TDy2gPt1HnqcPldKGGF/NR8rKbo7hj2pq6zjhWfrWBrx1Yg0uJr7uS5nDDuhEEly06fE4fZQVl6GaVppQOa2jcRqW1thLZvR21sjHq2sS6Br76i6d57CXdGpip2HHEEeZdfjqGXsoPeSGIrhBBirIspm1izZk2/v4v4CqgBGryRnrUdwQ6yUrLIt+7+NXa0dF3n3dp3+eO3f0QJR0bkV2VU8YuZv6A8fWAtvrribPY3k5uSS1l6GYWphUnRv1bXdUK1dSi1tWjt0c821sX7r3/h+u1vYUf3g8w5c8g6++yoz004FEJzNmIuKMA2QRJbIYQQY1Ny3Cob48J6GJfPRYO3AZffhdVkHVQJAkBbsI1V3lVs+WYLEGnxdfKEkzlz0plYTNHdReyNO+SmM9hJsSO5+tcCKNXVGFta0ZXoZxuDSFLsfvNN2p59NrLAZCJ3/nzSjz026mN3J7aFhZHENoa7xUIIIUQyGVRyW11d3e/jBoOBlJQU8vLykuLOXCJyh9yRGcZ8TgJqgFx77qDrVj+q/4gnv3gSrxrpm5dnz+MXM37BD3J/MOB96rpOS6AFLawlX33tjv6CSm0ttrR0LHnRTzOsaxqtv/sdne+8A4DBbqfgl7/EPmNG9MdXFLTWVklshRBCCAaZ3FZVVUWVtKakpHD44YezcOFCfvjDHw7mkGIHRVNo9DbS4GugLdBGujWdkrSSQX2I8Ck+ntn4DB/UftC97NDCQ7lkxiUxdVjYVdfgtlRzKpWZlZSllyVFfa2u66iNjQS3RmqRjRmZMdXXhgMBXA8+iP8//wHAlJND4S23YK2qiimOcHMz5uJiSWyFEEIIBpncrly5kuXLl1NTU8N5553HxIkTAfjmm294/vnnqays5KKLLmLLli0899xzHHPMMfztb3/j6KOPHpLgx6KuO6D1nnpcPhcGg4EiR9Ggk8VNLZt4+LOHafY3A+AwOzjZejI/mfITbBbbHrbuW1d9bU5KDuXp5clTXxsKEaqtJVRb133n1miP/k602tZG069+RWjHxCeWykoKb7kFc25u1PsI76jNNeXlSWIrhBBC7DCojKi+vp5QKMSWLVvI2mXwypIlSzjssMPw+/089NBDLFy4kP3335+lS5dKcjtA3T1rfU48IQ859th61vZGDau8tPkl3vr2re4WX/vm78tFe12E98vBTefnDrlxB9wUpyVXfa3W2UloezVKfR0GWwqmggKorYl6+1BtLc677kJzRXoFp0yfTsEvf4kxNfprGQ6FCLe0AGAtL5fEVgghhNhhUHPjPvbYY1xyySW7JbYAOTk5XHLJJaxYsQKA3NxcLr74Yv6z4ytYET01rFLnqWNT6ya+bf+WMGFK0ksGndjWdNZw29rbePPbSO9ai9HCvKnzuGnWTeTYBta7Fr7vX+sP+anMqGSv7L2SIrHVdR3F2URw82ZCNdUYM7Mw5+YSy41o/4YNNN56a3dim3bssRTefHPMia3W5MS04y6vMS0tpuchhBBCJLNB3bltaWnB5/P1+bjX68W14x9xgKKiIul7G6O2QFukBMHvQg2rFDgKBtWzFiLdFf629W+88NULPVp8XTnzSsrSywa17x71tVlJVF+rKIRqa1Hq6tC8XixFxVH3nu3i+eADmh95BFQVgKy5c8k8/fSYyjTCwSBqkxNLURHWoiLYMdGDEEIIISIGlXUceOCBLFu2jFNOOYV99tmnx2NffPEFv/3tb5k1a1b3sk2bNlFWNrjkaazo6lnb6G3EHXKTZcsizTr4O3St/lYe/fxR/tv8XyDS4uuUiadw5qQzB52EJmt9rebxEqrejlpfDyYzlpLSmJ6Xrut0vPYa7S+8EFlgNpN3xRWkHXFETHHsnNjaJkxAjWlrIYQQYmwYVDbz29/+lqOPPpqZM2dyyCGHdA8o27JlCx9++CEZGRksX74cgEAgwJo1a5gzZ87go05iYT3cPW2uy+/CZrJRkja4nrVdPqz/kKf++xReJVJLm2/P5xczf8HknMmD3ndnqJOOQAdFaUVUZVQlRRkCgOpyReprXS5M2dmYYiwB0FWVliefxLNjCmqjw0H+9ddjnzYtpv3smtiaMjLA7Y5pH0IIIcRYMKjkdt999+W///0vv/rVr3jnnXf45JNPAKisrOSKK67ghhtu6L5Tm5KSwvr16wcfcRJzh9zUd9bT5G8ioAbIS83DZhp4p4IuPsXH7zb8jrV1a7uXHVl2JBdOvXDQdbvd/Wu1Hf1rMyuxm+2DDTnudFVFqasjVFuL1tmJubAQozW2cpCwz0fTAw8Q+OwzAEz5+ZFWX+Wxze7Wa2IrhBBCiF4NuhiypKSk++6sGJiQFor0rPVGetZm2jLJScsZkq/0d23xlWZJ49J9L+Wg4oMGvW8trOH0OZOuvjbs8xHcHilD0A3GSBmCMbY752pLC86770bZvh0A6/jxFNx8M+bs7Nhi2TmxnTgRU3p6TNsLIYQQY82QZSIej4eamkg7pPLyctJkBPce7dqz1mg0UpxWPCQJoqIpvPT1S7z97dvdLb6m50/nsumXkZMy8E4IXYJaEJfPRXZKNhXpFUlTX6u2tBCqrkZ1OiPdEHZJJp2/+hXqLoO4wrpOpaLQZrHQYTCgKwpqczNoGgD2Aw4g/+qrMabENiObJLZCCCFE7AadRX3yySfccMMNrF27lnA4DIDRaOTwww/n17/+NQcccMCgg0xGXsVLvaeeJl8TXsVLdkr2oEsEutR01rBi/Qq2uyN3DS1GC+f94DyOrzp+SBLQ7vpaRxGVGZVkpWQNep/xpmtapAyhro5wRwem/AKMtt1LQtTGRpTa2t2W2wBtx8/O0o8/npyLL8ZgMsUUjyS2QgghxMAMKrn9+OOPOeqoo7BarVxyySX84Ac/ACJdEV544QWOOOII1qxZ06NjwlinhlWcPieN3kaafc04rI5BT5vbpbcWX+Myx3HljCspTS8d9P677jSrmppU9bVhv59QdTVKXT26rmMuLok5Ge2NMTOTnEsuifnahoNBVFcTlq4pdSWxFUIIIaI2qOT21ltvpbS0lLVr11JUVNTjsSVLlvDDH/6QW2+9lXfffXdQQSaL1kBrdwmCpmsUOgqxmGLrldqXFn8Lj37+KBuaNwCRFl//M/F/mDNpzpCUOXTV19rNdiqyKihLL8NiHJrY40ltayO0fTtqYyPG9AzMQzjTlyk9feCJbdfgMUlshRBCiJgM+s7tokWLdktsAQoLC5k/fz533HHHYA6RFEJaiO86vsPpdQ5pz9ou/6r/Fyv/u7K7xVdBagG/mPEL9s7Ze0j2n4z1tXo4jFLfgFJbg9bWFilDiLEmdqh1lyIUF0dKEaRuXQghhIjZoJJbo9GIqvbdSl7TNIwxjjJPRrWdtfjb/NjMQ9ezFiJ1u7/77+/4Z/0/u5cdVX4UF0y5YMjqd32KD2/YS1Fq8tTXhoNBQtu3o9TXoysq5pLSISlDGGxMktgKIYQQgzeo5PbQQw/l4Ycf5txzz6WysrLHY9XV1TzyyCP88Ic/HFSAycAdcrN36t5D0rO2y8bmjTzy2SO0BFoASLekc+m+lzKreGjrm32Kj4qsCiozKocsYY4nrb090uarsRFDqgNLXn68Q9opsS3BNnGCJLZCCCHEIAwqub377rs54ogjmDx5MqeddhqTJk0CYPPmzbzxxhuYzWbuueeeIQl0NEsxpwxZYqtoCn/c/Ef+/N2fu1t8zcifwWXTLyM7JbYeqn3RwhounwuA8oxyJmZPHPX1tXo4jNrYSKimBq21FVNePkZ7/AfDSWIrhBBCDK1BJbczZ87k448/5tZbb+XNN9/E5/MBkJqaygknnMCdd97JlClThiRQAdXualasX0F1ZzUAVqOV86ecz48qfzRkNbBBLYjL6yLNmkaAACWOklGf2IZDoR3dEOrQg6GEKEMASWyFEEKI4TDoYfRTpkzh9ddfJxwO43JF7vbl5+djNBrxer3U19dTUlIy6EBH2vz583nrrbfwer1UVlZy9913c/LJJ8cllrAe5q9b/8oLX72AGo7UOI/PHM+VM6+kJG3ozq0n5KE92E6ho5A8Yx7NNI/6gWOa272jvrYBg92Oubh4wM9J13W09vYhiSscCES6IpSUYJswEVOaY0j2K4QQQox1QzZDmdFopLCwsMeyhx56iEWLFqFpu7a2T3zXXnstv/3tb7HZbHzyySccd9xxfPfdd+Tm5o5oHM3+Zh797FE2tmwEIi2+Tt3rVM7Y64whm+pW13VaA60omkJFeqS+VvX3PVBwNNB1HdXpJFRTg9rcjDk3D2Pq4GqG2198kbDHM+jYIomtSxJbIYQQYhgMWXKbbCZPntz9/waDgVAoRF1d3Ygmt/+s+ye/2/C7YWvxBZH62iZfEzaTjfFZ47v717r97iE7xkjTQyFCtbWEauvQ/X4sRcUYLIMrrWh/9VU6Xn018ovJhLmgoLu0Iazr+BSFVIsF4053hc29tMj7PrEtlsRWCCGEGAYJndx6PB7uu+8+Pv74Y9atW0dbWxtPP/008+bN223dYDDIokWLePbZZ2lra2Pfffflzjvv5Ec/+tGAj3/FFVfw9NNPEwgEOPHEE9lnn30G8Wyi5wl5+N2G3/Gv+n91Lzu6/GgumHrBkM4IFtJCNHmbyErJoiK9giJH0egvQ/B4CG3bjtpQD1Yb5pLBz/7W8fbbtL/wAgCm7GyKbr8dS3Fx9+OeUJBNNTUcWl5OmrXvgYOS2AohhBDDL6Gb0DY3N3P77bezadMmpk+f3u+68+bN44EHHuC8885j2bJlmEwmTjzxRNauXTvg4z/yyCN4PB7ee+89fvzjH49I4reheQM3fHBDd2Kbbk3nlwf8ksumXzakia0n5KHJ10Sho5BJ2ZMoTht4LWoi0HUdxdlE8KuvCNVUY8jIxJybO+jn1Pnuu7Q98wwAxowMChct6pHYRksSWyGEEGJkJHRyW1xcTENDA9u3b+e+++7rc71169bx4osvcs8993Dfffcxf/583n//fSorK7nhhht6rHvYYYdhMBh6/bntttt227fJZOLYY4/lvffe4y9/+cuQP8cuIS3Es18+y50f3UlroBWAmQUzue+I+ziw6MAhO46u67T6W/GEPFSkVzApe9KQtRCLF11RCG3bRvCbr1FaWrAUFWNyDD559HzwAS1PPAGA0eGgcOFCrOXlMe9HElshhBBi5MRclvDpp59GvW59fX2su+/BZrP1OrXvrl555RVMJhPz58/vXpaSksLPfvYzbrnlFmpqaijfkZQM9E6uqqps2bJlQNvuyXb3dh5e/3CPFl8/nfpTjqs4bkjvpu5cXzsuaxzl6eWjv82Xz0+gtha1vh5MZiwlpUNyzrwffUTzihWg6xhSUii89VZs48bFHp/fj9rcjKWkmJSJEzEOQdIthBBCiL7FnNwecMABUScPuq6PyFfd69evZ9KkSWRkZPRYPmtWZLauzz77rDu5jUZHRwd//vOfOeWUU0hJSeH1119n9erV/U5I0dTU1N0KrUtXMqyFNILe4G7bhPUwf6v5G69+9yqqHulOMC59HD+f8nOKUosI+UJRx7wnSlih1d9KujWdYlsxueTi9/jx4+91fa/X2+PPRNMVV/s332B1uzFmZGBypIIy+HMWWr8e94MPQjgMVisZ11+HUlWJEtr9GgL4FKXHn13CgSBaWxuWgnwoKkLVNHAP3UC9kbxGif56ECJa8lpOfHKNojcWzpXf33ue0p+Yk9unn3465oMMt4aGBop7qYPsWhbrHWSDwcCTTz7JFVdcga7rTJw4keeff54ZM2b0uc0jjzzC0qVLe33MW+2lhpoey9rD7bzqe5Wt6lYAjBg50nYkRxmPQtms7Lb+UGnZ8V+01q1bNyxxDJXPW3c8l9aWyM8g2bdsofTpZzBqGmGTifqf/pSv09KgZs/X47PGxt4fqK+P/AyTkbxGif56ECJa8lpOfHKNopfM56q6ujrmbWJObi+88MKYDzLc/H4/Ntvuo9RTUlK6H49FRkYGq1evjmmbK664gjPPPLPHsi1btnDqqafiqHBQPjNy51jXdT50fsiz3zyLT43M6FZgL+CyH1zGxMyJMR0zGh3BDhRNIT81n9K0UlLMKVFt5/V6WbduHbNmzcKRQF+l64EAofp63I2NbAgGmV5QiMNmHZJ9K5s30/H7Z0FVwWQi8+qrKdh/vz1u51MUPmtsZEZREakWS487ttaKCgzDNM3vSF6jRH09CBEreS0nPrlG0RsL5yqWctguCd0KLFp2u51gcPevjAOBQPfjw62goICCgoJeH1NMCjaHDU/Iw8oNK/mw/sPux46pOIYLplwQddIZrbAexul1YrVbqUyrpDxjYPW1Dodjt3KPeFFbWgjV1WFwOnGkOiAYxGGz9tt+K1rBLVto+fV9EAyC0Uj+//4vjkMOiWkfqRYLqVoYtaMDa3kZtgkTRqTGdiSvUSK9HoQYDHktJz65RtFL5nM1kBwuKZLb4uJi6urqdlve0NAAEPfpfze3byazOZNHP3u0uxNChjWD+fvO54CiA4b8eDv3ry1PL6fYMcrbfGkaSn09odpawu0dmAoKMBmAttYh2X9o2zacd96JvuMOf94VV+A49NCY9xMOBCOJbWkJtokTBz0jmhBCCCFilxTJ7YwZM1i9ejVut7vHJ5ePP/64+/F4+kv1X3hXe7f79x9k/YDLp15OpjWz14Fmg+FTfLgVN7kpuZRYSkgLp9HZ2RnzfhKlSF0PBlEaGlCcTaDrmPLyMBj6HsQVK7Wuno477kDfMa2u46KL4NBD8PQxeKw3XTF4WlsxFhVCURGKqg7p4LHeyIAyIWInr+XEJ9coemPhXI3IgLJENGfOHO6//36eeOIJrrvuOiAyY9nTTz/NQQcdFFOnhKGwZMmSHoPLNDQsfF8SMC4wDvdGN26GL/lp3PHfYCVckbrf1+PXPgdxRcHS0kLZY49j2ZGENs2eTfvkvaMaPNabDZoKdXWRnxEkA8qEiJ28lhOfXKPoJfO5GpEBZSNtxYoVtLe3d3c8eOutt6itrQVgwYIFZGZmctBBB3HmmWdy880309TUxMSJE1m1ahXbtm1j5cqVIx7zkiVLWLJkCRs3bmTatGk9Hjsw/0DOmHIGZuPQnXodnRZ/CxajhcLUQoocRYPefzyL1HVdR21yoTobCbvdGLNzMO4yaGzXQVyx0lpa6Lj/N4R3JLapc+Yw5fTTYo9VC9PpbGSDpnHg9Omk5eTEvI+BkgFlQsROXsuJT65R9MbCuUrKAWX3338/27dv7/79tdde47XXXgPg/PPPJzMzE4Df//73LFy4kGeffZa2tjb23Xdf3n77bY444oi4xN2bg4sP5sqZVw5pYhvSQri8LrIysihLL6PYUYzRMHQTz410kXo4GCRUXY2xrg6LomIuLcNgMvW5fqrFEvOAMrWtjcZ7fkV4R1/izNNOI+vsswdUl6w4nehZWdDSQlpOTlwK+mVAmRCxk9dy4pNrFL1kPldJOaBs27ZtUa2XkpLCfffd1+80vfF28bSLhzSx9SpeWgOtFDoKqUivINeeO2T7jgetvZ3Q9u0ojY0YUh1Y8vKH/hidnTjvuCMyoxmQfuKJZJ177oASW83rxaDrmPPyoGXwPXaFEEIIMXgJn9wmk3U16zi8+PAh2VdHqANFVShILaDEXIJFseBWRufsV7quozU3ozQ2Em5vj5QhpNign0FdAxlQFvZ66bjrbrQd9Tu2o4/Ceu5cvAOY1UzXwmjNLsxFRSg7vgoa6YJ+GVAmROzktZz45BpFbyycq4EMKDPouq4PQyxj2q4DyqbdNQ1KYR/LPpztODuOkY1dhmCQsqdWYt+R2LpnzKDx7LPAOHQlHEIIIYQYWtXV1Vx11VVs2LCBqVOnRrWNJLfDqGtA2W9f+S31ufUcX3Y86db0Ae9PCSu0BdpIs6RR5Cgi354/bP1rR6JIPez1otTXoza5IMWGKSOTaJ9OLAPK9FAI96/vQ/nySwCsBx5I+lUL+q3l7Tduf4CwpxNrZSWWkpK4FfTLgDIhYiev5cQn1yh6Y+Fcffrppxx99NExJbdSljAC0lPTOW+f8wa1D6/ipT3QTmHOyNbXDkeRuq7rqE4nodpaDM3NpObmDXjCgz0NKNMVhaZly7sTW/vMmRRcey2GAXRYgMiEEmqnG0txMSnjx2Owft/FIV4F/TKgTIjYyWs58ck1il4yn6ukHFAmoDXQSlANUpZWRlVmFQ7L6P10podChGprCdXWofv9WIqKB5xo7vFYmobrwQfxr18PQMq0aeRfd92gjqe1tmLMyMBSXt4jsRVCCCFEYpDkNoGF9TBNviYsRgvjMsZRkVGBxTQ8ieBI0DweQtu2ozbUg9WGuaRk2MoqdE2j+be/xbejsbVt770puPFGjLbY2obtLOz3oyshrFWVmEewn60QQgghoifJbYIKaSGafE1kWbMoTS+lJK1kSPvXjqSuSRmUmmoUlwtTTi6mYawN0sNhWp54Au/atQBYx4+n8JZbMA7gq42d96k1N2MuKcZSWjpUoQohhBBiiElyOwK0kEbQ23dbq10F1AAdoQ5ybDkUW4rJ0DPwdHqGMcLdDVV7EV1VUZxOVGcTYb8Pc04uBou53zZf0eirFZiu63h//3sC//gHAKbyMtJuvAHfII+ptrVjSLVjy85GDQQgEOh+LF6tWKQVmBCxk9dy4pNrFL2xcK6kFViC2LUV2PLly6moqIhjRGOErpP3t3fIWbMGgFBeHjU/vwwtfeAdKoQQQggRP9IKLMF0tQJb+aeVzJg5o991dXRa/C2YDWYKUwspTise0tnMYjXY9iJaWxtKQwNqS2QAlskxsG4IfemtFZjv9dfxvfwKAMb8fDIXLcSUO7iuEnpYR2tyYsrLxzZ+XK+DyKQVmBCjh7yWE59co+iNhXMlrcASlMlqwuboeyBTSAvh8rnITM+kLL0soeprY20voqsqSl0dobo6jG43juJijMPYVaCrFVjHW291J7amnByKlizBUlg46P2rLS0YMjJJGT8uMs1uP6QVmBCjh7yWE59co+gl87mSVmCjkE/x0eJvIT81n8qMSvLs/SdQiSzs8xGsrkatr0fHgKWkFMMIzADmfucd2latAsCYmUnh4sVDktiGAwH0gB/LxImDvgMshBBCiJEhyW0ctQXa8Kt+ytPLqcyoJM2aFu+QBkxtaSFUXY3qdGLMyMQ8Qp8gAx98gOfJJwEwpqVRtHAh1iHoZqDrOqrLhaWoEGtp6bC1LBNCCCHE0JLkNg66+teaDebu/rVW0+icEEDXNJT6ekK1tYTbOzAVFAyql2ws0j7/As8LLwBgSE2l8LbbsFZVDcm+tbY2jGkOLKWlGFNShmSfQgghhBh+ktyOgJ1bgalhlZZAC+mWdApSC8g35hPwBggQ2MNeRlY07UX0UAilvh7F2QS6jikvD4OBQbf5ioZ73TqKX3wRdB1sNjKuvw6lohxlCI4dDimEvR4s5eWEbTYMbne/60srMCFGD3ktJz65RtEbC+dKWoElCGkFNrxSv/6GkmeewahphM1m6i6ah3/ixHiHJYQQQoghJq3AEszOrcAmTJ1AQA2Qn5pPiaOEVMvQtsYaan21F+mabUx1NhJ2uzFm52C0jVxJhbJpEx33/hpCIXSTiZSrFpB+4IFDtn+1ww3o2KrGYc6NbopdaQUmxOghr+XEJ9coemPhXEkrsAQVMATABhNyJ4y6+tqd24uEg0FC1dUY6+qwKCrm0jIMJtOIxRL8+mta7rsfQiEwGGiYew77HnggadahqfENB4NowQDWCROwVVXGPIhMWoEJMXrIaznxyTWKXjKfK2kFlqDSLemMzxpPaVppwvSvjZXW3k5o+3aUxkYMqQ4sefkjevzg1q0477oLPRAAg4G0y3+Op7JyyPav6zpqczOWvHzpjiCEEEKMYpLcjoDitGLK08vjHcaA6Lre3Q1Ba2nBlJePcQCfogYjVFOD8447CO8omM+dPx/DYYdBTc2QHUNrb8doT8FSXoYxNbFLRoQQQgjRN0luR0C6NT3eIQyYUlNDoLUVPRDEXFyCwTyyLxmloQHn7bcT3tGxIOeii0j/0Y/wDGFHhnAohO7xYB0/HnP+yN6RFkIIIcTQGp3fkYth13WXVKmpBQyYi4tHPLFVXS4aly5Fa2sDIOvcc8mYPXtIj6HrOprLhTk/D2vZyMyoJoQQQojhI3duRQ+6rqM6nQS3bgXAmJGBOTNzxONQ29oiiW1zMwCZZ5xB1umnD/lxwm43BpstMllDko40FUIIIcYSSW5HgN/vx72HiQASga4oKM4mFGcjPl+kaXLAbMI4ApMy7CzsdtNxx51ojY0ApPzkJ5hPP61HKYJPUXr8ORC6oqK2t2MtLyOcmrrHyRr6IpM4CDF6yGs58ck1it5YOFcyiUOCkEkcBs7o81H25JOk1DcA0H7QQTSddipI9wIhhBBizJFJHBJM1yQOq1evZr/99ot3OL3SdR2ttQ21sQG1tRVjZhamVDs+ReGzxkZmFBWRarGMSCxhvx/3PfegbvkWANthh5H288t6rYMdbHxapwddVbBVVQ16EJlM4iDE6CGv5cQn1yh6Y+FcySQOCcputydkc2VdUQjV1qLU1WPyekgrKcWwS6KYarEM2SQJ/QkHgzh/80B3Ypt6yCHkL1iwx0kiBhKfrigoPh/WqkpSqqqGbCIKmcRBiNFDXsuJT65R9JL5XMkkDiJqYa+X4PbtqPUNYDJhKS6JW6cAXVFo+vWvCX75JQD2/fcn/6qrhm32M7W5GXNeLtby8hGdYU0IIYQQw0+S2zFIdbkI1dSgOJswZWVhSo9fH15dVWl64AECn38OQMq++5L/y1/udgd5qGhuNwaTCWtJCaa0tGE5hhBCCCHiR5LbMURXVZS6OkJ1dWgdbsyFhRit1vjFo2m4li/H/8knANgmT6bghhuGLSZdVdE62rFWVmIuKhqWYwghhBAiviS5HSPCPh/B6mrU+np0DFhK4zthgR4O0/LYY/j+9S8ArBMnUnjLLRhTUobtmKrLhTlXyhGEEEKIZCbJ7RigtrQQqq5GbXRizMzEHOeic13XaV25Es/q1QBYKispvPVWjKmpw3ZMrbMTg8mIpaQkrmUYQgghhBhektwmMV3TUOrrCdXWEm7vwFRQgNE2/J0P+o1J12l79lk633kHAEtpKUWLFg1rwtldjlBWjkXKEYQQQoikJsltkgoHAoS2b0epr0cP65hLShLiq/j2l17C/eabAJgLCylctAjTME/vq7a0YM7KxlpehsEsL3khhBAimcm/9CNgpKff1dxulIYGNJcLgyMNU2YaQU0FTY16H0Mxve1u+3zrLXwvvwyAMTeX9FtuJpCeBgOY3jfa+DSfD11TseZkoxkMMAzXQabfFWL0kNdy4pNrFL2xcK5k+t0EIdPv7i7rX/+i4I3IHVs1PZ2an1+GkpcX56iEEEIIkchk+t0EM5LT7+qhEEpDA0qTC1QVU04OBtPAuyEM5fS7gTVr8DzxJACGtDQyFy3EXFY2qH1GE5/a3IIx1Y5t3DiMw1jTK9PvCjF6yGs58ck1it5YOFcy/W6CGu7pd7WODkJ1dRgaG7GlOjAXFg7Zvgc7/a5n7Vo8Tz4FgCE1laJFi7CNHz9U4fUZn+b1ohuN2MrLsZaWDtnx+iPT7woxeshrOfHJNYpeMp8rmX53jNF1HbWhgVBtLVprK6bcPIwDeBEMF+/HH9O8fDnoOoaUFApvvXVIE9u+6JpGuLUFS1kZlpKSYT+eEEIIIRKHJLejVDgUIlRdHemGEAhiLipOqE4AvvXrcT34IITDGKxWCm66iZS99x6RY6stLRizsrCUlQ3bNL5CCCGESEyJkw2JqGlu9442Xw0Y7HbMxcUYDIZ4h9XNv2EDrvvuA1UFs5n866/HPm3aiBw77PNh0FSsxcWYs7NH5JhCCCGESByS3I4iuq6jOp2EampRm12Yc3IxJlgBeWDzZpp+9Sv0UAiMRvKvvZbUmTNH5Ni6pqG1tmApKZFyBCGEEGKMkuR2lNAVhVBNLaG6WsI+P5ai4oT7yj343Xc477oLPRAAg4G8q67CMWvWiB1fa23FmJERKUewWkfsuEIIIYRIHJLcjgKax0No23bUhnqw2rCUlCRUGQJAqLoa5x13oPt8AOT+/OekHXbYiB0/7PejKyGsVZWYc3JG7LhCCCGESCyS3CYwXddRm1woNdUormZMOTmYEqwMAUCpr6fx9tsJd3YCkPOzn5F+7LEjdnw9HEZrbsZcUoxlhNp+CSGEECIxSXKboHRVRamtJVRbh+b1YCkqSrgyBAClqYnGpUsJt7cDkH3++WT85CcjGkOkHCEda1kZRilHEEIIIcY0SW4TUNjrJbh9O2p9A5hMWIpLMBgHPtvYcFFbWnAuXYrW0gJA5plnknnqqSMaQzgQRA8GsVZUYM7NHdFjCyGEECLxSHKbYFSXi1BNDYqzCVNWFqZhnDZ2MLSODpy3347qdAKQccopZJ111ojHEW5vw1xSiqVUuiMIIYQQQpLbEeH3+3G73f2uo2saqtOJ0tREuNODKS8Xo8UCoeAIRdmTT1F6/LmzsMdDx513odXVAZDyo+OwnH0WXiU04vH5bSmk5GSjBoMQjM+58nq9Pf5MxuPG6zkKMdTktZz45BpFbyycK7/fH/M2Bl3X9WGIZUxbsmQJS5cu7f59+fLlVFRUxDGioWMMBCh78ilSamsB6Nh/f5xzzoAELJsQQgghxOhWXV3NVVddxYYNG5g6dWpU20hyO4w2btzItGnTWL16Nfvtt1+v62gdHSj19WjNLRjS0zGlJUY3BJ+i8FljIzOKikjdMZBNDwTouPfXqJs3A2A9+GDSr/zFiNcD6zp0NjSwQVM5cOZM0rKyRvT4u/J6vaxbt45Zs2bhGMFuFiN53Hg9RyGGmryWE59co+iNhXP16aefcvTRR8eU3EpZwgiw2+1kZGT0WKZrGkp9PaHaWkztHZiKijDabHGKsG+pFgtpVhvhUIimh5Z1J7b2Aw+k4OqrMZhH/iWktraiOVLB7SYtK2u3cxsvDocjLrGM5HHj9RyFGGryWk58co2il8znym63x7yNJLdxEA4ECG2vRqmvQ9fCmEtKMJhM8Q6rT7qi4PrNbwh88QUAKdOnU3DttXFJbMPBILrfF+lnu4c6ZiGEEEKMPVIoOcLUtjYCmzcT2vodBqst0r82kRNbTcO1fDn+//wHANuUKRTccENceu7quo7qasJcUIClsHDEjy+EEEKIxCd3bkeIHg6j1Deg1NaitbdhysvHmJIS77D6Fw7jefwJgh9+CIB1r70ovPnmuJVPaO3tGFMdWEpKUROwhEMIIYQQ8SfJ7QjQFYXgt9+i1NWjKwrm4sQuQ4DIXdKCP71B8OOPAbBWVVF4220YB1D7MhTCwSC614N1wgTMBfmwY6pfIYQQQoidSXI7ApTaWkJeL4ZUB5a8vHiHs0e6ruN97g9k7UhsLWVlFC5ciClOIzF1XUdtdmHJy8daWorBYIhLHEIIIYRIfFJzOwK0tjZMObmYs7PjHUpU2l98kcBf/wqAsbCQwsWLMWVmxi0erb0do92OpbwMY2pq3OIQQgghROKT5HYEGOypcfs6P1btr71Gx6uvAqBkZZF56y1xTcrDoRC6x4OlsAhzfn7c4hBCCCHE6CDJrejm/vOfaX/+eQCMWVnUzr8UUxzLKCLdEVyY8/OwlpWO+GQRQgghhBh9pOZWAND57ru0Pv00AMaMDDJuvQUlHI5rTGG3G6PNhqW0FGOSzrwihBBCiKElt8IEng8+oOWJJwAwOhwULVqEubQ0rjHpioLmdmMpLsIsPW2FEEIIESVJbsc470cf0bxiBeg6Brudwttuw1pVFe+wIuUIeXlYSsukHEEIIYQQUZOsYQzz/ec/uB56CMJhDFYrhTffjG2vveIdFlpHBwarBWtpCaY0KUcQQgghRPQkuR2j/F98QdP994OqgtlMwY03kjJlSrzD6i5HMBcWSjmCEEIIIWImye0YFPjqK5ruvRcUBUwmCq67Dvv06fEOCwC1uRlzXi7W8vKEn8VNCCGEEIlHktsxJrhlC86770YPBsFoJP9//5fUAw6Id1gAaG43BrMJa0kJprS0eIcjhBBCiFFIWoGNAH9YwxMKxjsM1OpqOu68C93nAyBt/qXoB+zfa2w+Renx53DTVQ21rRVLSQlhhwOD293v+l6vt8ef8RSvWEbyuIl0voUYDHktJz65RtEbC+fK7/fHvI1B13V9GGIZ05YsWcLSpUu7f1++fDkVFRVxjAgsLhfljz2O2eMBwHnaqXQcfHBcYxJCCCGE6E91dTVXXXUVGzZsYOrUqVFtI8ntMNq4cSPTpk3jrytXsv+MGXGLQ2tqouP22wm3tgHgOO887LNP7Hcbn6LwWWMjM4qKSLVYhjc+rw894MdaVYUlykFkXq+XdevWMWvWLBxxnuAhXrGM5HET6XwLMRjyWk58co2iNxbO1aeffsrRRx8dU3IrZQkjwG40kWa1xeXYaksLjXff053YZp19NlmnnRb19qkWy7DGrqsqiteDtayclHHjMJhje0k6HA4yMjKGKbrYxCuWkTxuIp1vIQZDXsuJT65R9JL5XNnt9pi3kQFlSUxrb6dx6VLUpiYAMk87jcw5c+IcVU9qSwvmrGys5WUxJ7ZCCCGEELuS5DZJaZ2dNN5+O2p9PQDpJ55I1rnnYjAY4hzZ9zSPBwM6ltISTJmZ8Q5HCCGEEElAktskFPZ6cd5xB0p1NQBpxx5Lzrx5CZXY6pqG1taKubAIS1FRvMMRQgghRJKQ5DbJhP1+nHffTei77wBwHHYYufPnYzAm1qVWm5sxZ2djLSvFMMwD1oQQQggxdiRWxiMGJRwM0nTvvQQ3bwYg9aCDyFuwIOFm+tK8Xgy6jqWkBFNWVrzDEUIIIUQSkeQ2SeiKguv++wls2ACAfeZM8q++OuESW13TCLe2YC4swFJcHO9whBBCCJFkJLlNArqm4XroIfzr1wOQMm0a+dddl5Bf96stLRizsrCUlSVkfEIIIYQY3SS5HeV0TaP5t7/F9/HHANj23puCG2/EaItPX93+hH0+DJqKtbgYc3Z2vMMRQgghRBKS5HYU03WdlieewLt2LQDW8eMpvOUWjANoeDzcdE1Da23BXFiIpaQk3uEIIYQQIklJcjtK6bpO69NP4/nHPwCwVFRQuHAhxgSdfk9rbcWYkREpR7Ba4x2OEEIIIZKUJLejkK7rtD//PJ1/+QsA5pISChcuxJSeHufIehf2+9GVEJbiYsw5OfEORwghhBBJTJLbUajj1VfpeP11AMwFBRQtXpywNax6OIzW3BwpRygtjXc4QgghhEhyktyOMh1vvUX7iy8CYMrJoXDxYsy5uXGOqm+RcoR0rGVlGKUcQQghhBDDTJLbUcT9zju0rVoFgDEzk6LFi7EUFsY5qr6F/X70YBBLcUlCJ+BCCCGESB6S3I4SnjVraH3ySQCMaWkULVyY0F/z9yxHkO4IQgghhBgZktyOAt5//YvmRx4BwJCaSuFtt2GtqopvUHugtbVhTE/HWlaakD13hRBCCJGcJLlNcL5//xvXsmUQDmOw2Si85RZsEyfGO6x+hQMB9IAfc3ERJilHEEIIIcQIkuQ2gfk//5ym++8HTQOLhYIbbyRl8uR4h9UvXddRXS7MhYVYS0sxGAzxDkkIIYQQY4gktwkq8OWXNN17L6gqmM0UXH899n33jXdYe6S1tWFMc2ApKcGYkhLvcIQQQggxxkhym4CC33yD8+670UMhMBrJv/pqUvfbL95h7VE4GET3+yKTNeTnxzscIYQQQoxBktwmmODWrTjvvBM9EACDgbwrr8Rx8MHxDmuPIuUITZgLCqQcQQghhBBxI8ltAgnV1uK84w7CXi8AufPnk3bEEXGOKjpaezvGVAeWklKMdnu8wxFCCCHEGCXJbYJQGhpwLl1K2O0GIOeii0j/0Y/iHFV0wsEguteDpbgIc4GUIwghhBAifiS53YMPP/wQo9HInXfeOWzHUF0uGpcuRWtrAyDr3HPJmD172I43lHRdR212Yc7Pl3IEIYQQQsSdJLf9CIfDXHPNNRx44IHDdgy1rS2S2DY3A5B5xhlknX76sB1vqGnt7RjtdixlZRhTU+MdjhBCCCHGOHO8A0hkTzzxBAcddBAdHR3Dsn+towPn0qWojY0AZJx0ElnnnDMsxxoO4VAI3ePBOn68dEcQQgghREJI6Du3Ho+HxYsXc8IJJ5CTk4PBYOCZZ57pdd1gMMiNN95ISUkJdrudgw46iHfffXfAx25paeGhhx5i6dKlA95HfzSPB+cdd6DU1gKQ/uMfk33hhaPma/3uyRry87CWlWIwJvRLSQghhBBjREJnJM3Nzdx+++1s2rSJ6dOn97vuvHnzeOCBBzjvvPNYtmwZJpOJE088kbVr1w7o2LfeeitXX301WVlZA9q+P2G/H+dddxHatg0Ax5FHknPJJaMmsQUIu90YbTYspaUYHY54hyOEEEIIASR4cltcXExDQwPbt2/nvvvu63O9devW8eKLL3LPPfdw3333MX/+fN5//30qKyu54YYbeqx72GGHYTAYev257bbbAFi/fj2ffPIJl1566ZA/p3AwiPOeewh98w0AqYccQt4VV4yqO5+6oqC53ZHuCIWF8Q5HCCGEEKJbQtfc2mw2ioqK9rjeK6+8gslkYv78+d3LUlJS+NnPfsYtt9xCTU0N5eXlAFHdyf1//+//sXnzZkpLSwHo6OjAbDbz7bff8vTTTw/w2USSwqZf/5rgl18CYN9/f/KvugqDyTTgfcaD6nJhzsvDUlo2qpJyIYQQQiS/hE5uo7V+/XomTZpERkZGj+WzZs0C4LPPPutObqMxf/58ztlpYNf//u//Mm7cOG666aY+t2lqasLlcvVY9uWOJHbDb+7Hk5pKuKMDPRgCwLLXRByzT6RmyzdRxzWSAqpKdXMzqT4fKebvXyZhrw9dU7FqKqaNWtzi8/v9VFdX8+mnn2KP86QR8YplJI+bSOdbiMGQ13Lik2sUvbFwrrpyqWAwGPU2SZHcNjQ0UFxcvNvyrmX19fUx7S81NZXUndpa2e120tLS+q2/feSRR/ocfHblhg27L9y2FQYx4E0IIYQQYqyoqalhv/32i2rdpEhu/X4/Npttt+UpKSndjw9GXx0adnbFFVdw5pln9ljmdrs59NBD+c9//tNrfIlu2rRpbOgtMU8QiRRfvGIZqeNu2bKFU089lT/96U9MnDhx2I8nxHBKpPcO0Tu5RtFL9nMVDAbZf//9OfLII6PeJimSW7vd3uvt6kAg0P34cCsoKKCgoKDXx6L9pJGIpk6dGu8Q+pVI8cUrlpE87sSJExPqnAsxUPI6TnxyjaI3Fs5VLN2rkmI0UFdXhV11LSspKRnpkLotXrw4bscerESPPZHii1csiXQOhBgt5O9N4pNrFL2xcK5ifY4GXdf1YYplSP373//mwAMP5Omnn2bevHk9Hrv++ut58MEHaW1t7TGo7O677+bWW2+luro6pgFlQoieNm7c2P3V11i4QyCEEGL0Soo7t3PmzEHTNJ544onuZcFgkKeffpqDDjpIElshhBBCiDEi4WtuV6xYQXt7e3fHg7feeovaHVPWLliwgMzMTA466CDOPPNMbr75Zpqampg4cSKrVq1i27ZtrFy5Mp7hC5EU8vPzWbx4Mfn5+fEORQghhOhXwpclVFVVsX379l4f27p1K1VVVUBk8NjChQt57rnnaGtrY9999+WOO+7g+OOPH8FohRBCCCFEPCV8ciuEEEIIIUS0kqLmViSHYDDIxRdfTEVFBRkZGRx88MF8+OGH8Q5LCCEG7dFHH2W//fbDYrGwZMmSeIcjeiHXKDqj4TxJcisShqqqVFVVsXbtWtrb27n66qs5+eST8Xg88Q5NCCEGpbi4mCVLlnDGGWfEOxTRB7lG0RkN50mSW5EwHA4HixYtoqKiAqPRyDnnnIPVamXz5s3xDk0Mwmj4lC/EcDv11FM55ZRTYmpEL0aWXKPojIbzJMltgvv000855ZRTyMnJITU1lWnTprF8+fJhO57H42Hx4sWccMIJ5OTkYDAY+p1+OBgMcuONN1JSUoLdbueggw7i3XffHZJYvvnmG1pbW2W611FuNHzKFyPnk08+4corr2Tq1Kk4HA4qKio466yz+Prrr4f1uIn03pboNm7cyJlnnsn48eNJTU0lLy+PI444grfeemtYjzvar9Fdd92FwWBg2rRpw3qc0X6eRoIktwns73//O4cccghNTU0sXLiQZcuWcdJJJ3W3QhsOzc3N3H777WzatInp06fvcf158+bxwAMPcN5557Fs2TJMJhMnnngia9euHVQcfr+f888/n5tvvpnMzMxB7UvE12j4lC9Gzr333surr77Ksccey7Jly5g/fz4ffPAB++23Hxs2bBi24ybKe9tosH37djo7O7nwwgtZtmwZCxcuBOCUU07p0U9+qI3ma1RbW8vdd9+Nw+EY9mON5vM0YnSRkDo6OvTCwkL9tNNO0zVNi3q71tZW/dVXX+3z8eeff173eDx9Ph4IBPSGhgZd13X9k08+0QH96aef7nXdjz/+WAf0++67r3uZ3+/XJ0yYoB9yyCE91v3hD3+oA73+3HrrrT3WDYVC+uzZs/Vzzz1XD4fDe3rKIgqdnZ36okWL9OOPP17Pzs7u97oGAgH9hhtu0IuLi/WUlBR91qxZ+t///vdBx3DZZZfpixcvHvR+xOj2z3/+Uw8Ggz2Wff3117rNZtPPO++8PrdLhvc2XR+9fw9UVdWnT5+u77333n2uM5av0dlnn60fc8wx+pFHHqlPnTq133XH8nkaKXLnNkE9//zzOJ1O7rrrLoxGI16vl3A4vMftHnnkEc466yxef/313R5buXIl5557LqtWrepze5vNRlFRUVQxvvLKK5hMJubPn9+9LCUlhZ/97Gd8+OGH1NTUdC9fu3Ytuq73+nPnnXd2rxcOh/npT3+KwWBg1apVGAyGqGIR/Yvlk/6Y/JQvRsyhhx6K1WrtsWyvvfZi6tSpbNq0qc/tRvt722hnMpkoLy+nvb29z3XG6jX64IMPeOWVV3jooYeiWn+snqeRJMltgnrvvffIyMigrq6Ovffem7S0NDIyMrj88ssJBAJ9bnfjjTcye/Zs5s6dyz/+8Y/u5a+99hqXXXYZ559/PpdffvmQxLh+/XomTZpERkZGj+WzZs0C4LPPPot5n5dddhkNDQ28/PLLmM0JP4HeqFFcXExDQwPbt2/nvvvu63O9devW8eKLL3LPPfdw3333MX/+fN5//30qKyu54YYbeqx72GGHYTAYev257bbbhvspiSSi6zpOp5O8vLw+1xnt722qqhIIBNA0rcf/JzKv10tzczPffvstDz74IH/961859thj+1x/LF4jTdNYsGABl1xyCfvss09UxxmL52nEjdg9YhGTfffdV09NTdVTU1P1BQsW6K+++qq+YMECHdDPOeecfrf1+/36kUceqaelpekfffSR/t577+k2m00/6aSTdEVRoo5hT193TJ06VT/mmGN2W75x40Yd0B977LGoj6Xrur5t2zYd0FNSUnSHw9H988EHH8S0H9G//q7r9ddfr5tMJr2jo6PH8rvvvlsH9Orq6gEfN5G/whLx9eyzz+qAvnLlyn7XG63vbbqu64sXL97tq96+jp8oLrvssu5YjUajPmfOHL21tbXfbcbaNVqxYoWemZmpNzU16bquR1WWoOtj7zyNNLk1lqA8Hg8+n4+f//zn3d0RTj/9dEKhEI8//ji33347e+21V6/bpqSk8Oabb3L00Udz4oknEgqFOOigg3jppZeG9G6o3+/HZrP1evyux2NRWVmJLhPmxVU0n/LLy8tj2qeqqqiq2uNTvsViwWQyDVncYvT66quv+MUvfsEhhxzChRde2O+6o/W9DWDJkiWjrhXe1VdfzZw5c6ivr+ell15C0zRCoVC/24yla9TS0sKiRYtYuHAh+fn5MR1rLJ2neJCyhARlt9sBmDt3bo/l5557LsAeZ+7KyMjg/vvvp7W1FY/Hw0MPPdS9z6GMMRgM7ra8q2xiqI8nhl9DQwPFxcW7Le9aVl9fH/M+77zzTux2O0899RR33XUXdrudZ599dtCxitGvsbGR2bNnk5mZ2V0buCfy3jZyJk+ezHHHHccFF1zA22+/jcfj4eSTT97jTYixco1uu+02cnJyWLBgwYC2HyvnKR4kuU1QJSUlABQWFvZYXlBQAEBbW1u/23/33Xecd955TJ48mcrKSs444wwaGhqGNMauOs5ddS3reg5i9BiuT/n6LoMT5s2bN9hQxSjX0dHBT37yE9rb2/nb3/4W9fuFvLfFz5w5c/jkk0/22JN4LFyjb775hieeeIKrrrqK+vp6tm3bxrZt2wgEAiiKwrZt22htbe13H2PhPMWLJLcJav/99wegrq6ux/KuO2f9fQXS0NDAj370IywWC++++y7vvvsuXq+XH//4x3v8yxaLGTNm8PXXX+N2u3ss//jjj7sfF6PLWP2UL0ZWIBDg5JNP5uuvv+btt99mypQpUW0n723x1fXhtqOjo891xso1qqurIxwOc9VVVzFu3Ljun48//pivv/6acePGcfvtt/e5/Vg5T/EiyW2COuuss4BIW5CdPfXUU5jNZo466qhet2tra+P444/H4/Hw3nvvUVZWxl577cU777xDTU0Ns2fPxuv1DkmMc+bMQdO0Hk29g8EgTz/9NAcddFDMtZki/sbqp3wxcjRN4+yzz+bDDz/k5Zdf5pBDDolqO3lvGzlNTU27LVMUhd///vfY7fY+P4yMpWs0bdo0Xn/99d1+pk6dSkVFBa+//jo/+9nPet12LJ2neJEBZQlq5syZXHzxxfzud79DVVWOPPJI1qxZw8svv8zNN9/cZ5LxyCOPUFNTw5o1a3oMOJsxYwZvv/02P/7xj1m1ahVXXHFFn8desWIF7e3t3XeJ33rrre5Z0RYsWNA9Y9hBBx3EmWeeyc0330xTUxMTJ05k1apVbNu2bbekXIwOM2bMYPXq1bjd7h6DypL9U74YOb/85S958803Ofnkk2ltbeW5557r8fj555/f63by3jZyLrvsMtxuN0cccQSlpaU0Njbyhz/8ga+++orf/OY3pKWl9brdWLpGeXl5nHrqqbst7+p129tjXcbSeYqbeLZqEP0LhUL6kiVL9MrKSt1isegTJ07UH3zwwX63URRF37BhQ5+Pf/7553uc9auysrLPWUq2bt3aY12/369fd911elFRkW6z2fQDDzxQ/9vf/hbtUxRx0F/rmI8++mi32WwCgYA+ceJE/aCDDhrBKEWyOvLII/t8f+nvnyR5bxs5L7zwgn7cccfphYWFutls1rOzs/XjjjtOf+ONN/rdTq5RdK3A5DwNP4OuS+8lIcaCnT/pP/roo5x++unMnDkT6PlJv2vmnGuuuab7U/66dev4xz/+wRFHHBHPpyCEEELskSS3QowRVVVVbN++vdfHtm7dSlVVFRAZ7LNw4UKee+452tra2Hfffbnjjjs4/vjjRzBaIYQQYmAkuRVCCCGEEElDuiUIIYQQQoikIcmtEEIIIYRIGpLcCiGEEEKIpCHJrRBCCCGESBqS3AohhBBCiKQhya0QQgghhEgaktwKIYQQQoikIcmtEEIIIYRIGpLcCiGEEEKIpCHJrRBCCCGESBqS3AohhBBCiKQhya0QQgDPPPMMBoOBf//730O2z6qqKubNmzdk+9uVwWBgyZIlw7Z/IYQYjSS5FUIkta6ktesnJSWFSZMmceWVV+J0OuMd3rDbtm1bj+e/68+vfvWreIfYq12vm9lsprS0lHnz5lFXVzegffp8PpYsWcKaNWuGNlghREIxxzsAIYQYCbfffjvjxo0jEAiwdu1aHn30Uf7yl7+wYcMGUlNTh+WYmzdvxmhMjHsIc+fO5cQTT9xt+cyZM+MQTfR2vm4fffQRzzzzDGvXrmXDhg2kpKTEtC+fz8fSpUsBOOqoo4YhWiFEIpDkVggxJvzkJz/hgAMOAOCSSy4hNzeXBx54gDfeeIO5c+cOyzFtNtuw7Hcg9ttvP84///yYttF1nUAggN1u3+2xQCCA1WodVPLu9XpxOBz9rrPrdcvLy+Pee+/lzTff5KyzzhrwsYUQySsxbikIIcQIO+aYYwDYunVrj+XBYJBrr72W/Px8HA4Hp512Gi6Xq/vxCy+8kLy8PBRF2W2fP/7xj9l77727f++t5ra9vZ1rrrmGqqoqbDYbZWVlXHDBBTQ3NwMQCoVYtGgR+++/P5mZmTgcDg4//HBWr149VE+9T1VVVZx00km88847HHDAAdjtdh5//HHWrFmDwWDgxRdf5LbbbqO0tJTU1FTcbjcAL7/8Mvvvvz92u528vDzOP//83UoH5s2bR1paGt9++y0nnngi6enpnHfeeTHHePjhhwPw7bffdi+L5pxt27aN/Px8AJYuXdpd7rBzzfJXX33FnDlzyMnJISUlhQMOOIA333wz5hiFEPEld26FEGNSV3KUm5vbY/mCBQvIzs5m8eLFbNu2jYceeogrr7ySP/7xjwD89Kc/5fe//z3vvPMOJ510Uvd2jY2NvP/++yxevLjPY3o8Hg4//HA2bdrExRdfzH777UdzczNvvvkmtbW15OXl4Xa7eeqpp5g7dy6XXnopnZ2drFy5kuOPP55169YxY8aMAT1fn8/XnUDvLCsrC7P5+38KNm/ezNy5c7nsssu49NJLeyTrd9xxB1arleuuu45gMIjVauWZZ57hoosu4sADD+See+7B6XSybNky/vnPf7J+/XqysrK6t1dVleOPP57DDjuM+++/f0DlINu2bQMgOzu7e1k05yw/P59HH32Uyy+/nNNOO43TTz8dgH333ReAjRs38sMf/pDS0lJuuukmHA4HL730Eqeeeiqvvvoqp512WsyxCiHiRBdCiCT29NNP64D+3nvv6S6XS6+pqdFffPFFPTc3V7fb7XptbW2P9Y477jg9HA53b3/NNdfoJpNJb29v13Vd1zVN08vKyvSzzz67x3EeeOAB3WAw6N999133ssrKSv3CCy/s/n3RokU6oL/22mu7xdl1TFVV9WAw2OOxtrY2vbCwUL/44ot7LAf0xYsX9/v8t27dqgN9/nz44Yc94gX0v/3tbz32sXr1ah3Qx48fr/t8vu7loVBILygo0KdNm6b7/f7u5W+//bYO6IsWLepeduGFF+qAftNNN/Ubb5fertsrr7yi5+fn6zabTa+pqeleN9pz5nK5+jxnxx57rL7PPvvogUCge1k4HNYPPfRQfa+99ooqZiFEYpA7t0KIMeG4447r8XtlZSV/+MMfKC0t7bF8/vz5GAyG7t8PP/xwHnzwQbZv386+++6L0WjkvPPOY/ny5XR2dpKeng7AH/7wBw499FDGjRvXZwyvvvoq06dP7/UuYNcxTSYTJpMJgHA4THt7O+FwmAMOOIBPP/10YE9+x/M688wzd1s+ZcqUHr+PGzeO448/vtd9XHjhhT3qb//973/T1NTEkiVLegzumj17NpMnT+bPf/5z9wCuLpdffnlMce963aqqqnjuuecoKyvrXjbYc9ba2sr777/P7bffTmdnJ52dnd2PHX/88SxevJi6urrdXitCiMQkya0QYkx4+OGHmTRpEmazmcLCQvbee+9eB0NVVFT0+L3r6++2trbuZRdccAH33nsvr7/+OhdccAGbN2/mP//5D4899li/MXz77becccYZe4x11apV/OY3v+Grr77qUdvbX+K8J3vttdduiWJv+jvGro9t374doEfpQpfJkyezdu3aHsvMZnOPpDQaXdeto6OD3/3ud3zwwQe9DtQbzDnbsmULuq6zcOFCFi5c2Os6TU1NktwKMUpIciuEGBNmzZrVPeq+P113AHel63r3/0+ZMoX999+f5557jgsuuIDnnnsOq9U6JKP3n3vuOebNm8epp57K9ddfT0FBASaTiXvuuafHIKrh0ltnhGgei4bNZou5u8LO1+3UU0/lsMMO49xzz2Xz5s2kpaUBgz9n4XAYgOuuu67Pu9YTJ06MKW4hRPxIciuEEANwwQUXcO2119LQ0MDzzz/P7Nmzewxy6s2ECRPYsGFDv+u88sorjB8/ntdee61HeUR/A9XipbKyEogMQuvqPtFl8+bN3Y8Pla6E9eijj2bFihXcdNNNQPTnbOfHdjZ+/HgALBZLVHe3hRCJTVqBCSHEAMydOxeDwcD//u//8t1330XVQ/aMM87g888/5/XXX9/tsa47w113jne+U/zxxx/z4YcfDlHkQ+eAAw6goKCAxx57jGAw2L38r3/9K5s2bWL27NlDfsyjjjqKWbNm8dBDDxEIBIDoz1lXd4b29vYeywsKCjjqqKN4/PHHaWho2O2YO7eCE0IkPrlzK4QQA5Cfn88JJ5zAyy+/TFZWVlSJ3PXXX88rr7zCmWeeycUXX8z+++9Pa2srb775Jo899hjTp0/npJNO4rXXXuO0005j9uzZbN26lccee4wpU6bg8XgGHO+nn37Kc889t9vyCRMmcMghhwxonxaLhXvvvZeLLrqII488krlz53a3AquqquKaa64ZcLz9uf766znzzDN55pln+PnPfx71ObPb7UyZMoU//vGPTJo0iZycHKZNm8a0adN4+OGHOeyww9hnn3249NJLGT9+PE6nkw8//JDa2lo+//zzYXkuQoihJ8mtEEIM0AUXXMDbb7/NWWedFdVsZGlpafzf//0fixcv5vXXX2fVqlUUFBRw7LHHdg+0mjdvHo2NjTz++OO88847TJkyheeee46XX36ZNWvWDDjWF154gRdeeGG35RdeeOGAk9uueFNTU/nVr37FjTfe2D3xxb333tujx+1QOv3005kwYQL3338/l156aUzn7KmnnmLBggVcc801hEIhFi9ezLRp05gyZQr//ve/Wbp0Kc888wwtLS0UFBQwc+ZMFi1aNCzPQwgxPAz6zt/jCCGEiNobb7zBqaeeygcffNA9c5YQQoj4kuRWCCEG6KSTTmLTpk1s2bKlz8FKQgghRpaUJQghRIxefPFFvvjiC/785z+zbNkySWyFECKByJ1bIYSIkcFgIC0tjbPPPpvHHnsMs1nuEwghRKKQd2QhhIiR3BMQQojEJX1uhRBCCCFE0pDkVgghhBBCJA1JboUQQgghRNKQ5FYIIYQQQiQNSW6FEEIIIUTSkORWCCGEEEIkDUluhRBCCCFE0pDkVgghhBBCJA1JboUQQgghRNKQ5FYIIYQQQiSN/w8D0+XutxTMJAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1)\n", + "sinter.plot_error_rate(\n", + " ax=ax,\n", + " stats=collected_stats,\n", + " x_func=lambda stats: stats.json_metadata['p'],\n", + " group_func=lambda stats: stats.json_metadata['d'],\n", + ")\n", + "ax.set_ylim(1e-4, 1e-0)\n", + "ax.set_xlim(5e-2, 5e-1)\n", + "ax.loglog()\n", + "ax.set_title(\"Repetition Code Error Rates (Phenomenological Noise)\")\n", + "ax.set_xlabel(\"Phyical Error Rate\")\n", + "ax.set_ylabel(\"Logical Error Rate per Shot\")\n", + "ax.grid(which='major')\n", + "ax.grid(which='minor')\n", + "ax.legend()\n", + "fig.set_dpi(120) # Show it bigger" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gU4GZ66sZllH" + }, + "source": [ + "`sinter`'s goal is to make getting these kinds of results fast and easy." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fe0PdLck-qOW" + }, + "source": [ + "\n", + "# 9. Estimate the threshold and footprint of a surface code\n", + "\n", + "Estimating the threshold of a repetition code under phenomenelogical noise is one thing.\n", + "Estimating the threshold of a true quantum code, such as a surface code, under circuit noise, is...\n", + "well, historically, it would be a whole other thing.\n", + "But when using stim, and pymatching, and sinter, the workflow is exactly identical.\n", + "The only thing that changes are the circuits input into the process.\n", + "\n", + "The hard part is making the circuits in the first place.\n", + "So, for this tutorial, you'll continue to lean on Stim's example circuits.\n", + "You can make simple surface code circuits using `stim.Circuit.generated`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gAtDhdGuV--e" + }, + "outputs": [], + "source": [ + "surface_code_circuit = stim.Circuit.generated(\n", + " \"surface_code:rotated_memory_z\",\n", + " rounds=9,\n", + " distance=3,\n", + " after_clifford_depolarization=0.001,\n", + " after_reset_flip_probability=0.001,\n", + " before_measure_flip_probability=0.001,\n", + " before_round_data_depolarization=0.001)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "huyjsuMBfSP9" + }, + "source": [ + "Surface code circuits have a much more complex structure than repetition codes, because they are laid out in a 2d grid instead of a 1d line. A time slice diagram of the circuit without noise will be much clearer than a timeline diagram:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "id": "-1O4qysufdXj", + "outputId": "42a217ab-1a92-4850-b634-932f3a8f603e" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "Tick 3\n", + "\n", + "Tick 4\n", + "\n", + "Tick 5\n", + "\n", + "Tick 6\n", + "\n", + "Tick 7\n", + "\n", + "Tick 8\n", + "\n", + "Tick 9\n", + "\n", + "Tick 10\n", + "\n", + "Tick 11\n", + "\n", + "Tick 12\n", + "\n", + "Tick 13\n", + "\n", + "Tick 14\n", + "\n", + "Tick 15\n", + "\n", + "Tick 16\n", + "\n", + "Tick 17\n", + "\n", + "Tick 18\n", + "\n", + "Tick 19\n", + "\n", + "Tick 20\n", + "\n", + "Tick 21\n", + "\n", + "Tick 22\n", + "\n", + "Tick 23\n", + "\n", + "Tick 24\n", + "\n", + "Tick 25\n", + "\n", + "Tick 26\n", + "\n", + "Tick 27\n", + "\n", + "Tick 28\n", + "\n", + "Tick 29\n", + "\n", + "Tick 30\n", + "\n", + "Tick 31\n", + "\n", + "Tick 32\n", + "\n", + "Tick 33\n", + "\n", + "Tick 34\n", + "\n", + "Tick 35\n", + "\n", + "Tick 36\n", + "\n", + "Tick 37\n", + "\n", + "Tick 38\n", + "\n", + "Tick 39\n", + "\n", + "Tick 40\n", + "\n", + "Tick 41\n", + "\n", + "Tick 42\n", + "\n", + "Tick 43\n", + "\n", + "Tick 44\n", + "\n", + "Tick 45\n", + "\n", + "Tick 46\n", + "\n", + "Tick 47\n", + "\n", + "Tick 48\n", + "\n", + "Tick 49\n", + "\n", + "Tick 50\n", + "\n", + "Tick 51\n", + "\n", + "Tick 52\n", + "\n", + "Tick 53\n", + "\n", + "Tick 54\n", + "\n", + "Tick 55\n", + "\n", + "Tick 56\n", + "\n", + "Tick 57\n", + "\n", + "Tick 58\n", + "\n", + "Tick 59\n", + "\n", + "Tick 60\n", + "\n", + "Tick 61\n", + "\n", + "Tick 62\n", + "\n", + "Tick 63\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "M\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "Tick 3\n", + "\n", + "Tick 4\n", + "\n", + "Tick 5\n", + "\n", + "Tick 6\n", + "\n", + "Tick 7\n", + "\n", + "Tick 8\n", + "\n", + "Tick 9\n", + "\n", + "Tick 10\n", + "\n", + "Tick 11\n", + "\n", + "Tick 12\n", + "\n", + "Tick 13\n", + "\n", + "Tick 14\n", + "\n", + "Tick 15\n", + "\n", + "Tick 16\n", + "\n", + "Tick 17\n", + "\n", + "Tick 18\n", + "\n", + "Tick 19\n", + "\n", + "Tick 20\n", + "\n", + "Tick 21\n", + "\n", + "Tick 22\n", + "\n", + "Tick 23\n", + "\n", + "Tick 24\n", + "\n", + "Tick 25\n", + "\n", + "Tick 26\n", + "\n", + "Tick 27\n", + "\n", + "Tick 28\n", + "\n", + "Tick 29\n", + "\n", + "Tick 30\n", + "\n", + "Tick 31\n", + "\n", + "Tick 32\n", + "\n", + "Tick 33\n", + "\n", + "Tick 34\n", + "\n", + "Tick 35\n", + "\n", + "Tick 36\n", + "\n", + "Tick 37\n", + "\n", + "Tick 38\n", + "\n", + "Tick 39\n", + "\n", + "Tick 40\n", + "\n", + "Tick 41\n", + "\n", + "Tick 42\n", + "\n", + "Tick 43\n", + "\n", + "Tick 44\n", + "\n", + "Tick 45\n", + "\n", + "Tick 46\n", + "\n", + "Tick 47\n", + "\n", + "Tick 48\n", + "\n", + "Tick 49\n", + "\n", + "Tick 50\n", + "\n", + "Tick 51\n", + "\n", + "Tick 52\n", + "\n", + "Tick 53\n", + "\n", + "Tick 54\n", + "\n", + "Tick 55\n", + "\n", + "Tick 56\n", + "\n", + "Tick 57\n", + "\n", + "Tick 58\n", + "\n", + "Tick 59\n", + "\n", + "Tick 60\n", + "\n", + "Tick 61\n", + "\n", + "Tick 62\n", + "\n", + "Tick 63\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_code_circuit.without_noise().diagram(\"timeslice-svg\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fPOBAR4T-qOW" + }, + "source": [ + "You can also make 3d diagrams of the circuit, using `timeline-3d`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "outputId": "42a217ab-1a92-4850-b634-932f3a8f603e", + "id": "XLqwFH29-qOW" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":4,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"control_x_line_cross\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.4375,0.5625],\"min\":[0.375,0.5],\"name\":\"tex_coords_gate_MR\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":130,\"max\":[1,-32,-32],\"min\":[-17,-40.4852828979492,-40.4852828979492],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-15.25,-41.4852828979492,-41.4852828979492],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":3,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":4,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":5,\"byteLength\":48,\"byteOffset\":0,\"name\":\"control_x_line_cross\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MR\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":1560,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":48,\"name\":\"control_x_line_cross\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MR\",\"uri\":\"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":1560,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAwE9QC8IAAADCAAAAwHf4EMIoqAXCAAAAwE9QC8KeoBbCAAAAwHf4EMLGSBzCAAAAwJ6gFsJPUAvCAAAAwMZIHMJ3+BDCAAAAwCioBcLGSBzCAAAAwAAAAMKeoBbCAAAAwHf4EMJ3+BDCAAAAwE9QC8JPUAvCAAAAwMZIHMLGSBzCAAAAwJ6gFsKeoBbCAABAwE9QC8IAAADCAABAwCioBcIoqAXCAABAwE9QC8KeoBbCAABAwCioBcLGSBzCAABAwJ6gFsJPUAvCAABAwHf4EMJ3+BDCAABAwCioBcJ3+BDCAABAwAAAAMKeoBbCAABAwHf4EMIoqAXCAABAwE9QC8JPUAvCAABAwMZIHMJ3+BDCAABAwJ6gFsKeoBbCAACAwE9QC8KeoBbCAACAwHf4EMJ3+BDCAACAwJ6gFsJPUAvCAACAwMZIHMIoqAXCAACAwJ6gFsLu8CHCAACAwMZIHMLGSBzCAACAwCioBcJ3+BDCAACAwE9QC8JPUAvCAACAwHf4EMLGSBzCAACAwJ6gFsKeoBbCAACAwMZIHMJ3+BDCAACAwO7wIcJPUAvCAACgwE9QC8KeoBbCAACgwCioBcJ3+BDCAACgwJ6gFsJPUAvCAACgwHf4EMIoqAXCAACgwJ6gFsLu8CHCAACgwHf4EMLGSBzCAACgwCioBcIoqAXCAACgwE9QC8JPUAvCAACgwHf4EMJ3+BDCAACgwJ6gFsKeoBbCAACgwMZIHMIoqAXCAACgwO7wIcJPUAvCAAAgwU9QC8IAAADCAAAgwXf4EMIoqAXCAAAgwU9QC8KeoBbCAAAgwXf4EMLGSBzCAAAgwZ6gFsJPUAvCAAAgwcZIHMJ3+BDCAAAgwSioBcLGSBzCAAAgwQAAAMKeoBbCAAAgwXf4EMJ3+BDCAAAgwU9QC8JPUAvCAAAgwcZIHMLGSBzCAAAgwZ6gFsKeoBbCAAAwwU9QC8IAAADCAAAwwSioBcIoqAXCAAAwwU9QC8KeoBbCAAAwwSioBcLGSBzCAAAwwZ6gFsJPUAvCAAAwwXf4EMJ3+BDCAAAwwSioBcJ3+BDCAAAwwQAAAMKeoBbCAAAwwXf4EMIoqAXCAAAwwU9QC8JPUAvCAAAwwcZIHMJ3+BDCAAAwwZ6gFsKeoBbCAABAwU9QC8KeoBbCAABAwXf4EMJ3+BDCAABAwZ6gFsJPUAvCAABAwcZIHMIoqAXCAABAwZ6gFsLu8CHCAABAwcZIHMLGSBzCAABAwSioBcJ3+BDCAABAwU9QC8JPUAvCAABAwXf4EMLGSBzCAABAwZ6gFsKeoBbCAABAwcZIHMJ3+BDCAABAwe7wIcJPUAvCAABQwU9QC8KeoBbCAABQwSioBcJ3+BDCAABQwZ6gFsJPUAvCAABQwXf4EMIoqAXCAABQwZ6gFsLu8CHCAABQwXf4EMLGSBzCAABQwSioBcIoqAXCAABQwU9QC8JPUAvCAABQwXf4EMJ3+BDCAABQwZ6gFsKeoBbCAABQwcZIHMIoqAXCAABQwe7wIcJPUAvCAACAPyioBcIoqAXCAACIwSioBcIoqAXCAACAP09QC8IAAADCAACIwU9QC8IAAADCAACAP3f4EMIoqAXCAACIwXf4EMIoqAXCAACAP8ZIHMIoqAXCAACIwcZIHMIoqAXCAACAPyioBcJ3+BDCAACIwSioBcJ3+BDCAACAP09QC8JPUAvCAACIwU9QC8JPUAvCAACAP3f4EMJ3+BDCAACIwXf4EMJ3+BDCAACAP56gFsJPUAvCAACIwZ6gFsJPUAvCAACAP8ZIHMJ3+BDCAACIwcZIHMJ3+BDCAACAP+7wIcJPUAvCAACIwe7wIcJPUAvCAACAPwAAAMKeoBbCAACIwQAAAMKeoBbCAACAPyioBcLGSBzCAACIwSioBcLGSBzCAACAP09QC8KeoBbCAACIwU9QC8KeoBbCAACAP3f4EMLGSBzCAACIwXf4EMLGSBzCAACAP56gFsKeoBbCAACIwZ6gFsKeoBbCAACAP8ZIHMLGSBzCAACIwcZIHMLGSBzCAACAP56gFsLu8CHCAACIwZ6gFsLu8CHC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MF3+BDCAABAwAAA8MF3+BDCAAAgwAAA9MF3+BDCAABAwAAA8MF3+BDCAAAgwAAA7MF3+BDCAABAwAAA8MF3+BDCAAD4wAAA+MEAAPjBAAD4wAAA+MHu8CXCAAD4wAAA+MEAAPjBAAD4wO7wJcIAAPjBAAD4wAAA+MEAAPjBAAB0wQAA+MEAAPjBAAD4wAAA+MHu8CXCAAD4wO7wJcLu8CXCAAD4wAAA+MHu8CXCAAB0wQAA+MHu8CXCAAD4wO7wJcIAAPjBAAD4wO7wJcLu8CXCAAD4wO7wJcIAAPjBAAB0we7wJcIAAPjBAAD4wO7wJcLu8CXCAAB0we7wJcLu8CXCAAB0wQAA+MEAAPjBAAB0wQAA+MHu8CXCAAB0wQAA+MEAAPjBAAB0we7wJcIAAPjBAAB0wQAA+MHu8CXCAAB0we7wJcLu8CXCAAB0we7wJcIAAPjBAAB0we7wJcLu8CXC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":3},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":4},\"material\":2,\"mode\":6},{\"attributes\":{\"POSITION\":4},\"material\":3,\"mode\":3},{\"attributes\":{\"POSITION\":5},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":4,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":5,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-33.4142,-33.4142]},{\"mesh\":0,\"translation\":[-0,-36.2426,-33.4142]},{\"mesh\":0,\"translation\":[-0,-39.0711,-33.4142]},{\"mesh\":0,\"translation\":[-0,-33.4142,-36.2426]},{\"mesh\":0,\"translation\":[-0,-36.2426,-36.2426]},{\"mesh\":0,\"translation\":[-0,-39.0711,-36.2426]},{\"mesh\":0,\"translation\":[-0,-33.4142,-39.0711]},{\"mesh\":0,\"translation\":[-0,-36.2426,-39.0711]},{\"mesh\":0,\"translation\":[-0,-39.0711,-39.0711]},{\"mesh\":0,\"translation\":[-0,-34.8284,-32]},{\"mesh\":0,\"translation\":[-0,-34.8284,-34.8284]},{\"mesh\":0,\"translation\":[-0,-37.6569,-34.8284]},{\"mesh\":0,\"translation\":[-0,-40.4853,-34.8284]},{\"mesh\":0,\"translation\":[-0,-32,-37.6569]},{\"mesh\":0,\"translation\":[-0,-34.8284,-37.6569]},{\"mesh\":0,\"translation\":[-0,-37.6569,-37.6569]},{\"mesh\":0,\"translation\":[-0,-37.6569,-40.4853]},{\"mesh\":1,\"translation\":[-1,-34.8284,-32]},{\"mesh\":1,\"translation\":[-1,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-1,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-1,-37.6569,-40.4853]},{\"mesh\":2,\"translation\":[-2,-34.8284,-32]},{\"mesh\":3,\"translation\":[-2,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-2,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-2,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-2,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-2,-39.0711,-36.2426]},{\"mesh\":2,\"translation\":[-2,-33.4142,-39.0711]},{\"mesh\":3,\"translation\":[-2,-32,-37.6569]},{\"mesh\":2,\"translation\":[-2,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-2,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-2,-39.0711,-39.0711]},{\"mesh\":3,\"translation\":[-2,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-3,-34.8284,-32]},{\"mesh\":3,\"translation\":[-3,-33.4142,-33.4142]},{\"mesh\":2,\"translation\":[-3,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-3,-33.4142,-39.0711]},{\"mesh\":2,\"translation\":[-3,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-3,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-3,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-3,-32,-37.6569]},{\"mesh\":2,\"translation\":[-3,-36.2426,-33.4142]},{\"mesh\":3,\"translation\":[-3,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-3,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-3,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-4,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-4,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-4,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-4,-39.0711,-33.4142]},{\"mesh\":2,\"translation\":[-4,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-4,-39.0711,-39.0711]},{\"mesh\":2,\"translation\":[-4,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-4,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-4,-36.2426,-39.0711]},{\"mesh\":3,\"translation\":[-4,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-4,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-4,-40.4853,-34.8284]},{\"mesh\":2,\"translation\":[-5,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-5,-33.4142,-36.2426]},{\"mesh\":2,\"translation\":[-5,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-5,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-5,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-5,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-5,-33.4142,-33.4142]},{\"mesh\":3,\"translation\":[-5,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-5,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-5,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-5,-39.0711,-33.4142]},{\"mesh\":3,\"translation\":[-5,-40.4853,-34.8284]},{\"mesh\":1,\"translation\":[-6,-34.8284,-32]},{\"mesh\":1,\"translation\":[-6,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-6,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-6,-37.6569,-40.4853]},{\"mesh\":4,\"translation\":[-7,-34.8284,-32]},{\"mesh\":4,\"translation\":[-7,-34.8284,-34.8284]},{\"mesh\":4,\"translation\":[-7,-37.6569,-34.8284]},{\"mesh\":4,\"translation\":[-7,-40.4853,-34.8284]},{\"mesh\":4,\"translation\":[-7,-32,-37.6569]},{\"mesh\":4,\"translation\":[-7,-34.8284,-37.6569]},{\"mesh\":4,\"translation\":[-7,-37.6569,-37.6569]},{\"mesh\":4,\"translation\":[-7,-37.6569,-40.4853]},{\"mesh\":1,\"translation\":[-9,-34.8284,-32]},{\"mesh\":1,\"translation\":[-9,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-9,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-9,-37.6569,-40.4853]},{\"mesh\":2,\"translation\":[-10,-34.8284,-32]},{\"mesh\":3,\"translation\":[-10,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-10,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-10,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-10,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-10,-39.0711,-36.2426]},{\"mesh\":2,\"translation\":[-10,-33.4142,-39.0711]},{\"mesh\":3,\"translation\":[-10,-32,-37.6569]},{\"mesh\":2,\"translation\":[-10,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-10,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-10,-39.0711,-39.0711]},{\"mesh\":3,\"translation\":[-10,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-11,-34.8284,-32]},{\"mesh\":3,\"translation\":[-11,-33.4142,-33.4142]},{\"mesh\":2,\"translation\":[-11,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-11,-33.4142,-39.0711]},{\"mesh\":2,\"translation\":[-11,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-11,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-11,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-11,-32,-37.6569]},{\"mesh\":2,\"translation\":[-11,-36.2426,-33.4142]},{\"mesh\":3,\"translation\":[-11,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-11,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-11,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-12,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-12,-36.2426,-36.2426]},{\"mesh\":2,\"translation\":[-12,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-12,-39.0711,-33.4142]},{\"mesh\":2,\"translation\":[-12,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-12,-39.0711,-39.0711]},{\"mesh\":2,\"translation\":[-12,-33.4142,-36.2426]},{\"mesh\":3,\"translation\":[-12,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-12,-36.2426,-39.0711]},{\"mesh\":3,\"translation\":[-12,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-12,-39.0711,-36.2426]},{\"mesh\":3,\"translation\":[-12,-40.4853,-34.8284]},{\"mesh\":2,\"translation\":[-13,-34.8284,-37.6569]},{\"mesh\":3,\"translation\":[-13,-33.4142,-36.2426]},{\"mesh\":2,\"translation\":[-13,-37.6569,-34.8284]},{\"mesh\":3,\"translation\":[-13,-36.2426,-33.4142]},{\"mesh\":2,\"translation\":[-13,-37.6569,-40.4853]},{\"mesh\":3,\"translation\":[-13,-36.2426,-39.0711]},{\"mesh\":2,\"translation\":[-13,-33.4142,-33.4142]},{\"mesh\":3,\"translation\":[-13,-34.8284,-34.8284]},{\"mesh\":2,\"translation\":[-13,-36.2426,-36.2426]},{\"mesh\":3,\"translation\":[-13,-37.6569,-37.6569]},{\"mesh\":2,\"translation\":[-13,-39.0711,-33.4142]},{\"mesh\":3,\"translation\":[-13,-40.4853,-34.8284]},{\"mesh\":1,\"translation\":[-14,-34.8284,-32]},{\"mesh\":1,\"translation\":[-14,-37.6569,-34.8284]},{\"mesh\":1,\"translation\":[-14,-34.8284,-37.6569]},{\"mesh\":1,\"translation\":[-14,-37.6569,-40.4853]},{\"mesh\":4,\"translation\":[-15,-34.8284,-32]},{\"mesh\":4,\"translation\":[-15,-34.8284,-34.8284]},{\"mesh\":4,\"translation\":[-15,-37.6569,-34.8284]},{\"mesh\":4,\"translation\":[-15,-40.4853,-34.8284]},{\"mesh\":4,\"translation\":[-15,-32,-37.6569]},{\"mesh\":4,\"translation\":[-15,-34.8284,-37.6569]},{\"mesh\":4,\"translation\":[-15,-37.6569,-37.6569]},{\"mesh\":4,\"translation\":[-15,-37.6569,-40.4853]},{\"mesh\":5,\"translation\":[-16,-33.4142,-33.4142]},{\"mesh\":5,\"translation\":[-16,-36.2426,-33.4142]},{\"mesh\":5,\"translation\":[-16,-39.0711,-33.4142]},{\"mesh\":5,\"translation\":[-16,-33.4142,-36.2426]},{\"mesh\":5,\"translation\":[-16,-36.2426,-36.2426]},{\"mesh\":5,\"translation\":[-16,-39.0711,-36.2426]},{\"mesh\":5,\"translation\":[-16,-33.4142,-39.0711]},{\"mesh\":5,\"translation\":[-16,-36.2426,-39.0711]},{\"mesh\":5,\"translation\":[-16,-39.0711,-39.0711]},{\"mesh\":6,\"translation\":[0,0,0]},{\"mesh\":7,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_code_circuit.without_noise().diagram(\"timeline-3d\")\n", + "\n", + "# Note: if you are viewing this notebook on GitHub, the 3d model viewer is likely blocked.\n", + "# To view the 3d model, run this notebook locally or upload it to https://colab.google.com/\n", + "# GLTF files can be viewed directly in online viewers such as https://gltf-viewer.donmccurdy.com/\n", + "\n", + "# The 3d viewer is interactive, try clicking and dragging!" + ] }, - "id": "fWTvZ_Xmqv9M", - "outputId": "3ef3584c-1ad8-49ee-d68f-0ee15e4ea7a0" - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIiCAYAAAA6tlWsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AACxNElEQVR4nOzdd1gUV9sG8Ht36V0EBBRRwd5FxYKKLfZeYheN0Ygl+r2aRBNbYmKM0Viwxq6xRGOPxt4w9hJFsICAokSkF6m75/vDl31ddqkLLuX+XReX7pmzM8+UnX0YzjwjEUIIEBERERGRklTXARARERERFTdMkomIiIiIsmCSTERERESUBZNkIiIiIqIsmCQTEREREWXBJJmIiIiIKAsmyUREREREWTBJJiIiIiLKgkkyEREREVEWTJKJiIiIiLJgkkxERERElAWTZPpgtm7dColEgq1bt+o6FCUvLy9IJBKEhIToOpQ8k0gk8PT0VGmbP38+JBIJLly4oJOY6MMJCQmBRCKBl5dXkS5H03FG+XPhwgVIJBLMnz9f16EUO9kdx5rOyfnpS4WvSpUqqFKliq7D0AkmyWWMRCJR+ZHJZLCxsUGHDh2wa9cuXYdX6Jg85g2/bEgbHypxp+KjOF70ICpseroOgHRj3rx5AID09HQ8evQIhw8fxvnz53Hr1i0sW7asSJbZr18/tGjRAg4ODkUy/4JYtGgRvvrqK1SsWFHXoWhl8uTJGDJkCCpXrqzrUIjov5o3b46AgADY2NjoOpRip2LFiggICIClpWWB51Fazt9UfDFJLqOy/vnv7Nmz6Ny5M5YvX46pU6cWyZ9WLC0ttTohFgUHB4dilbQXlI2NDb+IiYoZExMT1KpVS9dhFEv6+vpab5vScv6m4ovDLQgA0LFjR9SqVQtCCNy8eROA6lCFXbt2wd3dHWZmZioJdHh4OCZNmoQqVarAwMAAtra26N+/P27fvq22jJz+PBcWFobJkyejWrVqMDQ0RPny5dG7d29lLFnJ5XKsW7cOrVu3hqWlJYyNjeHq6opx48bh6dOnAN6No1qwYAEAoH379irDTDLlNv4tJCQEQ4YMgY2NDYyMjNC0aVMcO3ZMY0xxcXGYNm0aKlWqBCMjI9SqVQvLli3Ds2fP8v2n6LS0NHz33XdwcXGBoaEhqlatim+++Qapqaka+2c3rOTy5cvo1asXKlWqBENDQ9jb26NFixbK7QK8G4Kzbds2AEDVqlWV2+j9/Xz79m18/vnnaNiwIaytrWFkZITq1avjP//5D2JiYtTieX9fnz9/Hp6enjA3N4eFhQV69OiBgIAAjevx9u1bLF68GE2bNoW5uTnMzMxQu3ZtTJ06Fa9fv1bru2jRIjRq1AimpqYwMzNDy5YtsXv37rxsYqXM8XZJSUmYOXMmKleuDENDQ7i6umLx4sUQQmh83/Xr1zFw4EDY29vDwMAATk5OmDBhAl69eqWxf3R0NGbNmoXatWvD2NgYlpaW6NixI06dOqWxf0JCAv7v//5P7XhSKBTZrkt+t0l+jzNN5s+fj6pVqwIAtm3bpvI5e/+zrlAosG7dOjRr1gxmZmYwNTVFs2bNsHbt2hzXKavXr19jxowZqFmzJkxNTWFlZYWaNWvCy8sLz549U/bLbThAbmP7s57zrl27BolEgn79+mUbW+3atWFoaIjo6GgAmsck16pVCwYGBoiMjNQ4j8WLF0MikcDHx0elPb/nyOxs3boVAwYMQLVq1WBsbAwLCwu0bt0aO3fuzPM8PD09MWbMGADAmDFjVPZ55rk0t++Pwhiik9Mwsd9//x1t27ZVfj/Ur18fixYt0nhsF/QcoImnpyckEgnS0tLw7bffombNmjA0NFRZz9u3b2PAgAGws7ODoaEhnJ2d4e3tjfDw8Gznp0l2x3hB1kcIAR8fH9StWxdGRkaoWLEiJk+ejLi4OI3LTktLw8qVK9GkSROUK1cOJiYmqFKlCvr06YMzZ87keXsVd7ySTEqZH5ysH8ilS5fi9OnT6NWrF9q3b6/80AQHB8PDwwOvXr1Chw4dMHToULx48QL79u3Dn3/+iT/++AM9e/bMdbl37tzBRx99hOjoaHTp0gX9+/dHZGQkDh06BA8PDxw8eBDdu3dX9k9LS0PPnj1x+vRpODk5YdiwYbCwsEBISAgOHjwIDw8PVK9eHdOmTcOhQ4dw8eJFjB49Ot9Xx0NDQ9G8eXNUq1YNI0eORHR0NPbu3as8CbRv317ZNyUlBR06dMCdO3fQuHFjDB8+HHFxcfj+++9x+fLlfC1XCIHBgwfj8OHDcHFxweTJk5GWlobNmzfjwYMHeZ7PX3/9hR49esDCwgK9e/dGxYoVER0djYCAAKxZs0Y55GbevHk4dOgQ/vnnH3z++eewsrICAOW/APDrr7/i4MGDaNeuHTp16gSFQoHbt29j2bJlOHHiBK5fvw5zc3O1GI4dO4bDhw+jW7du+Oyzz+Dv74/jx4/j5s2b8Pf3V7n6HRMTg/bt2+Off/5BzZo1MXbsWBgYGCAoKAhbtmxB//79UaFCBQBAbGwsOnTogLt376JJkyYYO3YsFAoFTp48iWHDhuHhw4dYuHBhnrdVeno6unTpglevXqFbt27Q09PDoUOH8NVXXyElJUW5rTJt3rwZ48ePh6GhIXr37g0nJyc8ffoUGzduxNGjR3Ht2jWVoS+hoaHw9PRESEgI2rRpg65duyIpKQnHjh1D165dsX79enz66afK/qmpqejYsSNu3ryJhg0bYvjw4YiNjcV3332HixcvalyH/G6TwjrOPD09ERsbixUrVqBhw4bo27evclqjRo2U/x85ciR27doFJycnjBs3DhKJBAcPHoS3tzd8fX3x22+/5bqst2/fonXr1ggKCkLnzp3Rq1cvCCEQGhqKw4cPY+DAgahWrVqeY8+OpnNeixYtULNmTRw/fhxRUVEoX768yntu3LiBR48eYcCAAbC2ts523qNHj8bs2bOxe/duTJkyRW36tm3bYGBggGHDhinb8nuOzMnEiRNRt25dtG3bFg4ODoiKisLx48cxcuRIPH78GN99912u8/Dy8oKVlRUOHz6MPn36qOzn988bQPbfH0Vp9uzZWLRoEWxsbDBs2DCYmZnhxIkTmD17Nk6ePIlTp07BwMBA5T35PQfkZsCAAbh58ya6deuGvn37ws7ODsC7c+KAAQMghMDAgQPh7OyM27dvY+3atTh8+DB8fX2Vv3RqI7/rM23aNKxcuRIODg4YP3489PX1cfjwYVy/fh1paWlq28vLywu7d+9GvXr1MGrUKBgbG+PVq1fw9fXFX3/9hU6dOmm9DsWCoDIFgNC020+fPi0kEomQSCQiJCRECCHEvHnzBABhYmIi7ty5o/aejz76SAAQCxcuVGm/cuWKkMlkwtraWiQkJCjbt2zZIgCILVu2KNvS09OFi4uLMDQ0FBcuXFCZz8uXL4Wjo6Owt7cXKSkpyvZZs2YJAKJXr14q7UIIkZKSIiIiIpSvM9fh/PnzGrfH6NGjBQARHBysbAsODlZup/nz56v0/+uvvwQA0a1bN5X2b7/9VgAQQ4YMEQqFQtn+/PlzYWNjIwCI0aNHa4whq99++00AEC1atBDJycnK9qioKFGtWjUBQLRr107lPZrWs3///gKAuHfvntoy3rx5k+t2eF9ISIjIyMhQa9+4caMAIH788UeV9sx9LZPJxJkzZ1SmffXVVwKAWLx4sUr70KFDBQDx2WefCblcrjItISFBxMbGqsWbdR7JycmiS5cuQiKRiLt372pcl6ycnZ2V+/Tt27fK9tevXwtLS0thaWkp0tLSlO2PHz8W+vr6wsXFRYSFhanM68yZM0IqlYq+ffuqtLdr105IJBKxe/dulfaYmBjRsGFDYWRkJP79919l+/fffy8AiP79+6tsi2fPnoly5cppPJ7yu00KcpxlJ/Mzk90xvmvXLgFANG7cWOWckJiYKNzc3AQA8dtvv+W6nCNHjggAYtq0aWrTUlNTRXx8vPK1pvPN+3L6HGV3zvvhhx8EALFq1Sq1ad7e3gKAOHLkiLLt/PnzAoCYN2+esu3FixdCKpUKNzc3tXncuHFDud8zFeQcmZPAwEC1ttTUVNGhQwehp6endkxnJ7ftm9u2zO6YyemcnJe+f//9twAgnJycRHh4uLI9PT1d9OzZUwAQ33//vcp88nsOyEm7du0EAFG/fn2182xCQoKwtrYWUqlUXLp0SWXajz/+KACIzp07a5yfJtntg/yuz5UrVwQA4eLiIqKiopTtycnJokWLFgKAcHZ2VrbHxsYKiUQi3NzcNH4vREZGat44JRCT5DImM/mbN2+emDdvnpg9e7YYMGCAkMlkAoCYPn26sm/mSU7TF9KLFy8EAFG5cmWNJ48RI0YIAGLbtm3KNk0f6EOHDgkAYsaMGRrjXb58uQAg/vzzTyGEEBkZGcLS0lIYGxuLly9f5rq+2iTJzs7OGk8AlStXFuXLl1dpc3FxEVKpVGOSuXDhwnwlyZ06dRIAxLlz59SmZW7D/CTJjx8/znWZuSXJ2VEoFMLCwkK0b99eY5zDhw9Xe8+zZ88EADFgwABl2+vXr4VUKhUODg4iMTExx2VGRkYKmUwmmjZtqnH6vXv3BAAxc+bMPK1D5hfK06dP1aaNGjVKABAPHjxQtk2bNk0AEMeOHdM4v759+wqZTKZM2DLjGThwoMb+mZ+B1atXK9tcXV2FVCrVmNBk7uv3j6eCbJOCHGfZyS1JzlzWyZMn1aadOXNGAFA7hjTJTJJnzZqVa19tkmRN5zwh/pfgZt3OqampwtraWtjZ2Yn09HRlu6YkWQghOnfuLAAIPz8/lfZJkyYJAOLw4cPKtvyeIwvqjz/+UDtn5ySvSXJ227KokuRx48YJAGL9+vVqy3z8+LGQSqWiatWqKu35PQfkJDOpPXTokNq0nTt3CgBi6NChatPS09NFlSpVBAARGhqqNj9NckuS87o+mdts8+bNav0zj+H3k+S4uDgBQLRq1UrlolBpxOEWZVTmmFSJRAIrKyu0adMGn3zyCUaMGKHWt3nz5mptd+/eBQC0adMG+vr6atM7dOiAnTt34u7duxg1alS2cVy9ehXAuz9Ha6olmjm+OCAgAN27d8ejR48QFxcHd3d3ODo65r6iWmjUqBFkMplau5OTkzJuAIiPj0dQUBCcnJw0Dunw8PDI13Lv3LkDqVSq8X35qVs7fPhwHDhwAO7u7vj444/Rvn17tG7dGpUqVcpXPMC7P92tX78ee/bsgb+/P+Li4lTGkb58+VLj+5o2barW5uTkBAAqY5lv3rwJhUKBtm3bwtTUNMdYbt68Cblcnm392fT0dADIdtyzJpaWlnB1dc1TrJn7/uLFixrHg0ZEREAul+PJkydwc3NT9o+Li9MY75s3b1TiTUhIQGBgIJycnODi4qLW39PTU2VMOVCwbVJYx1leZC5L03zbtWsHmUymPKfkpF27dqhYsSJ+/PFH3LlzB927d0fr1q2z/awWlKZzHgBUqlQJHTt2xOnTp+Hv7486deoAAI4ePYro6GhMnz4denq5f616eXnh9OnT2LZtG3766ScA74aR7d69G3Z2dipDJ/J7jszN8+fPsXjxYpw9exbPnz9HcnKyyvTsPssFld22LCp37twB8O47KKsaNWqgUqVKCA4ORlxcnMqN5Pk5B+SFpvXOKTY9PT20bdsWISEhuHv3rtaVivKzPplxtWvXTq2/h4eH2mfLwsICvXr1wtGjR9GoUSMMGDAAbdq0gbu7O0xMTLSKu7hhklxGiXzciGBvb6/WljmuLLs7izPbY2Njc5x3VFQUAGDfvn059ktMTFSZ34co+ZN1bF0mPT09lQQxPj4eAJTjZbPKrj07cXFxsLa21vjLh6Z9kZ3+/fvj2LFjWLp0KTZv3oz169cDANzc3LBo0SJ07tw5z/P6+OOPcfDgQVSrVg19+vSBvb09DA0NAQDLly/P9kYvTdswM4mQy+XKtvzs18xj5ubNmznetJR5zORFTvsaUI01c/lLlizJcZ6Zy8/sf/r0aZw+fTrX/pmfreyOG03HQEG2SWEdZ3mRuays4xqBd9vYxsYGERERuc7HwsIC165dw7x583DkyBGcPHkSwLvqLt7e3vjmm280rk9+5bT+7ye4ixcvBgDlja+jR4/O0/z79esHCwsL7Ny5E4sWLYJMJsOxY8cQHR2NadOmqSTa+T1H5uTZs2do3rw5YmJi0KZNG3z00UewtLSETCZDSEgItm3blq+bNvOisI+l3OTlu+n58+eIjY1VSZLzcw7Ii6L83syL/KxPTueczM9nVnv37sXixYuxa9cu5fhmIyMjDBw4ED///HO+v/eKKybJlCtNd9Zmnlz+/fdfje/JvEs3t5JvmdMPHz6M3r175xpL5ge/sK92aMPCwgIA1KovZMquPTuWlpaIjo5Genq62hd+dts7Oz169ECPHj2QlJSE69ev49ixY1i7di169uyJu3fvKq+E5eTWrVs4ePAgOnXqhBMnTqh8gSsUCuWVMG3kZ79mHjPTp08vspreeVl+XFycct/npf+KFSswderUPPfP7rjRdAwUZJsU5nGmzbIyMjIQGRmZp20JvLuau2nTJggh4O/vj3PnzmH16tX49ttvoVAolDeeSaVS5fyzyi0Jya6aAKCa4P7www+IiorCiRMn0LBhQzRs2DBP62BsbIzBgwdj48aNOH36NLp27Zptop3fc2ROli1bhqioKGzZskWtqsTu3buVMRSmnLZlUXj/u0nTX2Ly+t2krcL63nz/OM76V4rCSKbfX97r16/VbnzN/Hxm/QuksbEx5s+fj/nz5+PFixe4dOkStm7dip07dyIkJCTfN6wXVywBRwXSuHFjAICvr6/GL6Hz588DAJo0aZLjfFq0aAEAef5A1apVC1ZWVrh//362pbbel/lnovxeBcgPCwsLVKtWDS9fvtRYisjX1zdf82vSpAkUCoXG9xX0yYGmpqbo0KEDli1bhtmzZyMtLQ0nTpxQTs9pOwUGBgIAevfurXaSvnHjhtqfawuiefPmkEqluHTpEpKSkvLUV1cn4fwes/ntb25uDldXV7x8+RJBQUFq0zUdAwXZJoV5nOX2OWvcuDEUCgUuXbqkNu3SpUuQy+W5niuykkgkqFu3LqZMmaK8Qn/o0CHl9HLlygEAXrx4ofbeW7du5WtZ78tMcF+9eoUzZ85g165dyMjIyPNV5EyZSeq2bdvw5s0bnDhxAg0aNFCpFAHk//jJSeZnecCAAWrTsquakp0PcW4tiMzvJk3HcGBgIMLCwlC1atVsr7QWpZxiy8jIUO7j9z8LRXUcvy9zeZqOAV9f31z3sZOTE4YPH46TJ0/C1dUVvr6+yr+AlHRMkqlAKlWqhM6dOyMkJATLly9XmXb9+nXs2rUL5cqVy7GmKAD06dMHLi4uWL16NY4fP66xz9WrV/H27VsA707M3t7eSE5Oxmeffab2p8G0tDTlGE8AyjJNz58/z+8q5suoUaOgUCgwa9YslaEsL168UNs+ucmsP/r1118jJSVF2R4dHZ2vsmaXLl3S+AtM5hXK98eO5bSdMsdZZz2xR0REYNKkSXmOJye2trYYMmQIwsPDMWPGDLW6uYmJico/CdrZ2WH48OG4desWvvvuO40n8KCgIAQHBxdKbFlNnjwZ+vr6mD59Op48eaI2PS0tTSWhadq0Kdq0aYMDBw5g8+bNGuf54MEDleEGY8aMgUKhwJdffqmyLYKDg7Fy5Uq19xdkmxTWcQa8+yKXSCTZfs7Gjh0LAJg1a5byswy8K+n21VdfAQA++eSTXJfz8OFDjVfYNR3TTZs2hVQqxa5du1SWGR0djS+++CIPa5W9zAR3+/bt2L59O/T09DB8+PB8zaN169aoXr06Dh8+jHXr1iE9PV1jzeD8niNzkt1n+eTJk9i4cWO+4v9Q59b8yjzWFi5cqPJdIJfLleeWvBxrRaFv376wtrbG7t27ce3aNZVpy5cvR3BwMDp16qQyHjlzbPOvv/6q0v/s2bP5rgmfnczj7vvvv1fW+AbelTadNWuWWv83b95oLBOZlJSExMRE6OnpaRxaVRJxuAUVWObDPGbOnIlTp06hadOmyjrJUqkUW7Zs0Vg79336+vo4cOAAunTpgh49eqBVq1Zo1KgRTExM8OLFC9y8eRPPnj1DeHi48gtw3rx5uH79Oo4ePYoaNWqgZ8+eMDc3x4sXL3Dq1CksWbJE+aFv3749pFIpZs2aBT8/P+Vv5d98802hbosvvvgChw4dwp49e/D48WN89NFHiIuLUxa0P3TokPLPZrkZOnQo9u7diyNHjqBevXro06cP0tPTsX//fjRr1kzj1UVNpk6dipcvX6J169bKh73cvn0b586dg7OzM4YMGaLs27FjRyxZsgSffvopBgwYAHNzc1hZWWHy5Mlo1qwZWrdujQMHDqBVq1bw8PDA69evceLECdSsWbPQbqD08fGBn58f1q1bhwsXLqBLly4wMDBAcHAwTp48iSNHjihv/PLx8cHTp08xd+5c7NixAx4eHqhQoQJevXqFgIAA3Lx5E7t37y6UeqNZ1apVC5s3b8bYsWNRt25ddO3aFTVq1EB6ejqeP3+Oy5cvw9bWFo8ePVK+Z9euXejQoQM++eQTrFy5Eu7u7rCyskJYWBju378PPz8/XL16VVlL9T//+Q8OHTqEP/74A02aNEGXLl0QGxurPJ6OHDmicfvlZ5sU1nEGAGZmZnB3d8fly5cxfPhw1KhRAzKZDL1790aDBg0wbNgwHD58GL///jvq1q2Lvn37QiKR4NChQwgODsbHH3+cpyTz9OnTmDlzJlq2bIkaNWrAzs4OYWFhOHz4MKRSKWbOnKns6+DggOHDh2PHjh1o1KgRevTogfj4eBw/fhxt27bN042C2WndujVcXV2xb98+pKeno1evXsp9lx+jRo3CnDlz8N1332WbaBfkHJkdb29vbNmyBYMGDcLAgQPh6OgIPz8//PXXXxg8eDD27t2b59hbtmwJExMTLF++HFFRUcoxuFOmTNHpk1VbtWqFL774Aj/99BPq1auHgQMHwtTUFCdOnICfnx88PDxUjpMPyczMDJs3b8agQYPQrl07DBo0CJUrV8bt27dx6tQp2NvbK+8dyTRmzBgsWbIEixYtwj///IM6dergyZMnOHHiBPr164c//vhD67hat26NKVOmYNWqVcptllknuVy5cmpjqF++fInGjRujfv36aNCgAZycnBAfH49jx47h33//xdSpU3P97i8xdFxdgz4wZFMnWZPcyqcJIURYWJj47LPPROXKlYW+vr4oX7686NOnj7hx44Za35xKBr1+/Vp8+eWXom7dusLY2FiYmpoKV1dXMWDAALFjxw6VskpCvCuXs2rVKtGsWTNhamoqTExMhKurq/j000/Vyt7s2LFDWYs26/rnp9xQpuxK8sTExIgpU6YIBwcHYWBgIGrWrCl+/vlncf36dQFAfP7559lux6xSU1PFggULRNWqVYWBgYFwdnYWs2fPFikpKXkuAbd3714xZMgQ4erqKkxNTYW5ubmoW7eumD17tkot6UxLly4VtWrVEgYGBmolf6KiosTEiROFs7OzMDQ0FNWqVROzZs0SSUlJwtnZWaWvEAUrvyXEu7q5CxcuFPXr1xfGxsbCzMxM1K5dW3z++efi9evXatto1apVomXLlsLCwkIYGBgIJycn0aFDB/HLL7/kuVanpvgz5fQZuH//vhg9erSoXLmyMDAwEOXKlRN169YV48ePF2fPnlXrHx8fL77//nvRpEkTYWpqKoyMjESVKlVE9+7dxfr169VK38XFxYnp06cLR0dHYWhoqDyegoKCsj0+87tN8nuc5eTp06eiZ8+ewtraWkgkErX9L5fLxerVq4Wbm5swNjYWxsbGokmTJsLHx0etLnZ2/P39xfTp04Wbm5uwsbFRxjxgwABx5coVtf4pKSlixowZomLFisra1j/88INIT0/P8+coO999953yfLJ//36NfbIrAZcpNDRUSKVSAUD07Nkzx+Xl9xyZnStXroj27dsLKysrYWZmJlq3bi0OHjyYa6yanDhxQrRo0UKYmpoqt0XmuTS3bVlUJeAy7d69W7Ru3VqYmZkJQ0NDUadOHbFw4UKVmuCZCnoO0CSnkm2Zbty4Ifr27StsbGyEvr6+cHJyEp999lm2ZU39/PxEt27dhJmZmTA1NRXt2rUTFy5cyLEEXH7XR6FQiFWrVim/AxwcHIS3t7eIjY1Vm19MTIxYsGCBaN++vXB0dBQGBgbC3t5etGvXTuzatatUlYWTCJGPMgdEWli3bh0mTpyIXbt2YejQoboO54P59ddfMX78eKxbtw4TJkzQdThERESUBxyTXABv3rxBjx49YGpqipo1a+Ls2bO6DqlEyBy/WZA6vSWBphsJnz9/rvxTaq9evXQQFRERERUExyQXwKRJk2Bvb483b97gzJkzGDx4MJ4+fQpra2tdh1YsHT16FMePH8fWrVtRsWJF5d3apc2AAQOQnp4ONzc3WFlZISQkBMeOHcPbt2+xaNGiIn/4CRERERUeDrfIp8TERFhbW+PZs2fKK6Kenp4YPXq08m5xUuXl5YUjR46gWbNmWLFiBWrVqqXrkIrEmjVrsGPHDjx9+hRxcXEwMzND48aNMXnyZPTv31/X4REREVE+lPokOTExEUuWLMH169dx48YNxMTEaCykDgCpqanKO8NjYmLQoEEDLFy4UOXJZHfv3kXHjh1VyqRMmTIFhoaG+Pnnnz/EKhERERFRESv1Y5IjIyPx7bffIiAgINenIXl5eWHZsmUYPnw4VqxYAZlMhu7du6sU209MTFR7MpSFhUW+HoFLRERERMVbqR+T7ODggPDwcNjb2+PWrVto1qyZxn43btzAnj17sGTJEsyYMQPAuxqW9erVwxdffIG///4bwLs6h/Hx8SrvjY+Ph5mZWdGuCBERERF9MKX+SrKhoaGyyHlO9u/fD5lMhvHjxyvbjIyM8Mknn+Dq1avKR0JWr14diYmJePnypbKfn58f6tatW/jBExEREZFOlPoryXl19+5d1KhRQ20oReYjIe/duwcnJyeYmZmhT58+mDdvHlatWoWzZ8/i/v376NOnT7bzjoiIUHk8JvDu6vOTJ09Qv359GBoaFv4KEREREZVyqampePHiBdq1awcrK6tCnTeT5P8KDw9Xe/QiAGXb+zVw16xZg9GjR6N8+fKoVKkS9u7dm2P5tzVr1mDBggWFHzQRERER4dChQzlesCwIJsn/lZycrPGKrpGRkXJ6JltbWxw/fjzP8/b29sagQYNU2vz9/TF48GBs3rwZderUKWDUVBwlJyfjwYMHqF+/PoyNjXUdDhUy7t/Si/u29OK+Lb38/f0xduxYODk5Ffq8mST/l7GxMVJTU9XaU1JSlNMLys7ODnZ2dhqn1alTB+7u7gWeNxU/8fHxiIuLQ5MmTdSG71DJx/1benHfll7ct6VfUQxdLfU37uVVZhWMrDLb+LQ0IiIiorKDSfJ/NWrUCE+ePFEr73b9+nXldCIiIiIqG5gk/9fAgQMhl8uxYcMGZVtqaiq2bNkCd3f3IhnrQkRERETFU5kYk+zj44PY2FhlhYqjR48iLCwMwLtHSltaWsLd3R2DBg3CrFmzEBERAVdXV2zbtg0hISHYtGmTLsMnIiIiog+sTCTJP//8M0JDQ5WvDxw4gAMHDgAARowYAUtLSwDA9u3bMWfOHOzYsQMxMTFo0KABjh07hrZt2+okbiLKv4yMDMTExCAxMRFCiEKff3p6OqytrREeHo7IyMhCnz/pDvdt6cV9W7JIJBKYmZmhXLly0NPTXapaJpLkkJCQPPUzMjLCkiVLsGTJkqINiIiKhBACYWFhSE5OhkwmK5KTq56eHmxtbXV64qaiwX1benHflizp6emIjIzE27dvUblyZUgkEp3EwaOFiEqNhIQEJCcnw9LSEg4ODkVyYpXL5UhISIC5uTlkMlmhz590h/u29OK+LVmEEAgPD0dcXBwSEhJ0VraPN+4RUamRWZ3Gzs5OZ1ceiIhIOxKJRPl8iaxVxz4kJslEVGqkp6dDT0+Pf1IlIirhMs/l6enpOouBSTIRlRpCCEilPK0REZUGUqm0SG7AzvPydbZkIqIiwGEWRESlg67P50ySiYiIiIiyYJJMRERERJQFk2QiIioynp6e8PT0LNR5SiQSzJ8/P8c+ISEhkEgk2Lp1a6EuO6sqVarAy8uryOafl3UloqLBJJmIiIhKpOPHj+v0l4i///4b8+fPR2xsrM5iyEqhUOCnn35C1apVYWRkhAYNGmD37t15fn9sbCzGjx8PW1tbmJqaon379rhz547GvkeOHEGTJk1gZGSEypUrY968ecjIyFDpEx4ejq+++grt27eHubk5JBIJLly4oM0qfjBMkomIiAro8ePH+PXXX3UdRpl1/PhxLFiwQGfL//vvv7FgwYJilSR//fXX+PLLL9G5c2esWrUKlStXxrBhw7Bnz55c36tQKNCjRw/s2rULkydPxk8//YSIiAh4enri6dOnKn1PnDiBvn37wsrKCqtWrULfvn2xcOFCTJkyRaXf48ePsXjxYrx8+RL169cv1HUtaiwmSkSUi3S5ArdCYhCXnAZzQxlqWPPUSe8YGhrqOgStKBQKpKWlwcjISG1aUlISTE1NtZr/27dvYWJikuf+hbHMsuzly5dYunQpJk2aBB8fHwDAuHHj0K5dO8ycORODBg3K8YmD+/fvx99//419+/Zh4MCBAIDBgwejRo0amDdvHnbt2qXsO2PGDDRo0ACnTp1S1qa3sLDADz/8gM8//xy1atUCALi5uSEqKgrW1tbYv38/Bg0aVFSrX+h4JZmIKBvpcgVWnn2KlovOYuiv1/DZzjsYvukmuq65hVXnApEuV3ywWBISEjBt2jRUqVIFhoaGsLOzQ+fOnVX+DHr58mUMGjQIlStXhqGhIZycnDB9+nQkJyerzMvLywtmZmZ4/vw5evbsCTMzM1SsWBGrV68GADx48AAdOnSAqakpnJ2dVb4YAWDr1q2QSCS4dOkSJkyYgPLly8PCwgKjRo1CTExMruuSmpqKefPmwdXVVRnnF198gdTUVLV+06dPh62tLczNzdG7d2+EhYUVdBMCAM6dO4c2bdrA1NQUVlZW6NOnDwICAtT6XbhwAU2bNoWRkRFcXFywfv16zJ8/X60klaYxybGxsZg+fbpyX1WqVAmjRo1CZGQkACAtLQ1z586Fm5sbLC0tYWpqijZt2uD8+fMFXq+8blOJRILJkyfjt99+Q926dWFoaIi//vpLuU8vXrwIb29v2NnZoVKlSsr3rVmzRtnf0dERkyZNUrt66unpiXr16uH27dto27YtTExMMHv27GxjzjwOg4KC0L17d5ibm2P48OEA8nYse3l5KY9ZiUSi/MmkUCiwfPly1K1bF6ampqhRowYmTpyYp2P0/v378PLyQrVq1WBkZAR7e3uMHTsWUVFRyj7z58/HzJkzAQBVq1ZVLj8kJCTb+b6/jVq1agVjY2NUrVoV69atyzWmvDh8+DDS09Ph7e2tbJNIJJg4cSLCwsJw9erVHN+/f/9+VKhQAf3791e22draYvDgwTh8+LDyePL394e/vz/Gjx+v8vAmb29vCCGwf/9+ZZu5uTmsra0LZf0+NF4OISLSIF2uwPjtt3D+8RtkrdQZnZSO5WcDcf9lPNaPdIO+rOivN3z22WfYv38/Jk+ejDp16iAqKgq+vr4ICAhAkyZNAAD79u3D27dvMXHiRJQvXx43btzAqlWrEBYWhn379qnMTy6Xo1u3bmjbti1++ukn/Pbbb5g8eTJMTU3x9ddfY/jw4ejfvz/WrVuHUaNGoWXLlqhatarKPCZPngwrKyvMnz8fjx8/xtq1axEaGooLFy5kW99UoVCgd+/e8PX1xfjx41G7dm08ePAAv/zyC548eYJDhw4p+44bNw47d+7EsGHD0KpVK5w7dw49evQo8DY8c+YMunXrhmrVqmH+/PlITk7GqlWr0Lp1a9y5cwdOTk4AgLt376Jr165wcHDAggULIJfL8e2338LW1jbXZSQmJqJNmzYICAjA2LFj0aRJE0RGRuLIkSMICwuDjY0N4uPjsXHjRgwdOhSffvopEhISsGnTJnTp0gU3btxAo0aN8rVe+dmmwLtfFH7//XdMnjwZNjY2qFKlCu7duwfgXZJja2uLuXPnIikpCcC7ZHDBggXo1KkTJk6cqNzXN2/exJUrV6Cvr6+cd1RUFLp164YhQ4ZgxIgRqFChQo6xZ2RkoEuXLvDw8MDPP/+svOqcl2N5woQJePXqFU6fPo0dO3aozXvChAnYunUrxowZg8mTJ+Px48fYuHEj7t27pxZ3VqdPn8azZ88wZswY2Nvb4+HDh9iwYQMePnyIa9euQSKRoH///njy5Al2796NX375BTY2NgCQ63ESExOD7t27Y/DgwRg6dCh+//13TJw4EQYGBhg7dqyyX+YvVbkxNzdX/kXj7t27MDU1Re3atVX6NG/eXDndw8Mj23ndvXsXTZo0UXsoU/PmzbFhwwY8efIE9evXx927dwEATZs2Venn6OiISpUqKaeXeIJ0ws/PTwAQ165d03UoVMji4uLEoUOHRFxcnK5DKXOCgoJEUFBQocxrxZknwvnLY7n+rDzzpFCWlxtLS0sxadKkHPu8fftWrW3RokVCIpGI0NBQZdvo0aMFAPHDDz8o22JiYoSxsbGQSCRiz549yvZHjx4JAGLevHnKti1btggAws3NTaSlpSnbf/rpJwFAHD58WNnWrl070a5dO+XrHTt2CKlUKi5fvqwS57p16wQAceXKFSGEEPfu3RMAhLe3t0q/YcOGqcWjSXBwsAAgtmzZomxr1KiRsLOzE1FRUcq2f/75R0ilUjFq1CiRkZEhYmJiRM+ePYWJiYl4+fKlst/Tp0+Fnp6eyPq16ezsLEaPHq18PXfuXAFAHDhwQC0mhUIhhBAiIyNDpKamqkyLiYkRFSpUEGPHjlVpz8u65nWbZs5PKpWKhw8fqvTN3KceHh4iIyND2R4RESEMDAzERx99JORyubLdx8dHABCbN29WtrVr104AEOvWrcsx3kyZx+FXX32lNi2vx/KkSZPU9okQQly+fFkAEL/99psQQij37Z9//qnSnh1Ny9+9e7cAIC5duqRsW7JkiQAggoODc5xfpsxttHTpUmVbamqq8th8//MEIE8/7x/jPXr0ENWqVVNbblJSUrbb+n2mpqZqx6AQQrnd/vrrL5X1fv78uVrfZs2aiRYtWmic/759+wQAcf78+RzjyJSXc/q1a9cEAOHn55eneeYHh1sQEWWRLldg+9UQtSvIWUkAbL8a+kGGXVhZWeH69et49epVtn2MjY2V/09KSkJkZCRatWoFIYTGKzvjxo1TmX/NmjVhamqKwYMHK9tr1qwJKysrPHv2TO3948ePV7kaN3HiROjp6eH48ePZxrhv3z7Url0btWrVQmRkpPKnQ4cOAKAccpA5j6lTp6q8f9q0adnOOyfh4eG4d+8evLy8VP7026BBA3Tu3Fm5PLlcjrNnz6Jv375wdHRU9nN1dUW3bt1yXc4ff/yBhg0bol+/fmrTMq+uy2QyGBgYAHh3FTg6OhoZGRlo2rRptlUEcpLXbZqpXbt2qFOnjsZ5ffrppypjVs+cOYO0tDRMmzZN5erip59+CgsLC/z5558q7zc0NMSYMWPyFf/EiRPV2vJ7LGe1b98+WFpaonPnzsrtERUVBTc3N5iZmeU6tOX95aekpCAyMhItWrQAgALto/fp6elhwoQJytcGBgaYMGECIiIicPv2bWX76dOn8/TTpUsX5XuSk5M1jpPPHHOedehVVnl9f+a/2fXNbTklBYdbEBFlcSskBpGJabn2EwDeJKbiVkgMWrqUL9KYfvrpJ4wePRpOTk5wc3ND9+7dMWrUKFSrVk3Z5/nz55g7dy6OHDmiNu4yLi5O5bWRkZHan4UtLS1RqVIltaESlpaWGsdxVq9eXeW1mZkZHBwcchyT+fTpUwQEBGT7J+mIiAgAQGhoKKRSKVxcXFSm16xZM9t55yQ0NDTb99euXRsnT55EUlIS3rx5g+TkZLi6uqr109SWVVBQEAYMGJBrv23btmHp0qV49OgR0tPTle1Zh7TkRV63aV6WkXVadtvNwMAA1apVU07PVLFiReUvAHmhp6enMvY5U36OZU2ePn2KuLg42NnZaZyedZtkFR0djQULFmDPnj1qffOy/Jw4Ojqq3ZxYo0YNAO/qe2cm4506dcr3vI2NjdXGoQPvEv3M6YXx/sx/s+ub23JKCibJRERZxCXnniBr078gBg8ejDZt2uDgwYM4deoUlixZgsWLF+PAgQPo1q0b5HI5OnfujOjoaHz55ZeoVasWTE1N8fLlS3h5eUGhUL3and0d7tm1CyEKZT0UCgXq16+PZcuWaZyeOS64NNu5cye8vLzQt29fzJw5E3Z2dpDJZFi0aBGCgoLyPb/8btOcEhhtk5v8vt/Q0FBt/Gt+j2VNFAoF7Ozs8NtvvynnmZycDGNjY8hkslzHDQ8ePBh///03Zs6ciUaNGsHMzAwKhQJdu3bN0/ILw7///punfpaWlsrt7uDggPPnz0MIofLLbnh4OACo/HVEEwcHB2Xf92V9v4ODg7I96/EVHh6uHANd0jFJJiLKwtI471fCCtK/oBwcHODt7Q1vb29ERESgSZMm+P7779GtWzc8ePAAT548wbZt2zBq1Cjle06fPl1k8Tx9+hTt27dXvk5MTER4eDi6d++e7XtcXFzwzz//oGPHjtne3AcAzs7OUCgUCAoKUrmK+fjx4wLF6uzsnO37Hz16BBsbG5iamsLW1hZGRkYIDAxU66epLSsXFxf4+fnl2Gf//v2oVq0aDhw4oLIN5s2bl+v8s1tmXrZpQby/3d7/q0VaWhqCg4MLdLUzN/k5lrNbXxcXF5w5cwatW7eGsbEx5HI5EhISYG5unmMJNODdjXVnz57FggULMHfuXGV71jrBOS0/J69evVIrdffkyRMA76qlZMpMRHOzZcsWZYWVRo0aYePGjQgICFAZUnP9+nXl9Jw0atQIly9fhkKhUPnl5fr16zAxMVFe8c6cz61bt1QS4levXiEsLAzjx4/PU+zFHcckExFl0bRKOdiYGeRpTLKtmSGaVilXpPHI5XK1P/Ha2dnB0dFR+efOzC/+96/4CiGwYsWKIotrw4YNKkMF1q5di4yMjBzH7g4ePBgvX77U+ACO5ORkZUWFzHmsXLlSpc/y5csLFKuDgwMaNWqEbdu2qZQu8/Pzw6lTp5SJvUwmQ8eOHXHo0CGV8d+BgYE4ceJErssZMGAA/vnnHxw8eFBtWua+0bSvrl+/nmt5ruzkdZsWRKdOnWBgYICVK1eqxLtp0ybExcVpVW0kO/k5ljMTzazl6AYPHgy5XI7vvvtO7T0ZGRk5PvxD0/IBzcdedsvPSUZGBtavX698nZaWhvXr18PW1hZubm7K9oKMSe7Tpw/09fWxZs0aZZsQAuvWrUPFihXRqlUrZXt4eLjacJ+BAwfi9evXOHDggLItMjIS+/btQ69evZRjkOvWrYtatWphw4YNkMvlyr5r166FRCJR1lgu6XglmYgoC32ZFKNaVsGy009y7CcAjGrpXOQl4BISElCpUiUMHDgQDRs2hJmZGc6cOYObN29i6dKlAIBatWrBxcUFM2bMwMuXL2FhYYE//vgjTzVhCyotLQ0dO3bE4MGD8fjxY6xZswYeHh7o3bt3tu8ZOXIkfv/9d3z22Wc4f/48WrduDblcjkePHuH333/HyZMn0bRpUzRq1AhDhw7FmjVrEBcXh1atWuHs2bN5upqbnSVLlqBbt25o2bIlPvnkE2UJOEtLS5VHG8+dOxenT59G69atMXHiRMjlcvj4+KBevXrKUmnZmTlzpvKBCWPHjoWbmxuio6Nx5MgRrFu3Dg0bNkTPnj1x4MAB9OvXDz169EBwcDDWrVuHOnXqIDExMd/rlddtWhC2traYNWsWFixYgK5du6J3797Kfd2sWTOMGDGiQPPNSX6O5cykcurUqejSpQtkMhmGDBmCdu3aYcKECVi0aBHu3buHTp06QS6XIywsDPv378eKFSuyTeQsLCyUpRHT09NRsWJFnDp1CsHBwdku/+uvv8aQIUOgr6+PXr165fhAFEdHRyxevBghISGoUaMG9u7di3v37mHDhg0qN8IW5Cp9pUqVMG3aNCxZsgTp6elo1qwZDh06hMuXL+O3335TuYo+a9YsbNu2DcHBwcor2AMHDkSLFi0wZswY+Pv7w8bGBmvWrIFcLld7suGSJUvQu3dvfPTRRxgyZAj8/Pzg4+ODcePGqZWgW7hwIQDg4cOHAIAdO3bA19cXAPDNN9/kez0/mEKvl0F5whJwpRdLwOlOYZaAS8uQizFbbgjnL4+JKlnKvmW+HrPlhkjLkOc+My2lpqaKmTNnioYNGwpzc3NhamoqGjZsKNasWaPSz9/fX3Tq1EmYmZkJGxsb8emnn4p//vlHrUzU6NGjhampqdpy2rVrJ+rWravW7uzsLHr06KF8nVku7OLFi2L8+PGiXLlywszMTAwfPlylvFrmPN8vASeEEGlpaWLx4sWibt26wtDQUJQrV064ubmJBQsWqHxukpOTxdSpU0X58uWFqamp6NWrl3jx4kWBS8AJIcSZM2dE69athbGxsbCwsBC9evUS/v7+Qoj/lQnLyMgQZ8+eFY0bNxYGBgbCxcVFbNy4UfznP/8RRkZGatvm/RJwQggRFRUlJk+eLCpWrCgMDAxEpUqVxOjRo0VkZKQQ4l0puB9++EE4OzsLQ0ND0bhxY3Hs2DExevRo4ezsrDKvvKxrfrYpAI2lBDP36c2bNzXO38fHR9SqVUvo6+uLChUqiIkTJ4qYmBiVPtkdP9nJ7jgUIu/HckZGhpgyZYqwtbUVEolErRzchg0bhJubmzA2Nhbm5uaifv364osvvhCvXr3KMbawsDDRr18/YWVlJSwtLcWgQYPEq1evNO6P7777TlSsWFFIpdJcy8FlbqNbt26Jli1bCiMjI+Hs7Cx8fHxyjCc/5HK58vgyMDAQdevWFTt37lTrl1mCL2u80dHR4pNPPhHly5cXJiYmol27dtkeFwcPHhSNGjUShoaGolKlSuKbb75RKWOXCTmUsMuJrkvASYQopLsxKF8ePnyIevXq4dq1a3B3d9d1OFSI4uPjcf78ebRv3x4WFha6DqdMySxT9v7YSW2kyxVYdyEI26+G4k3i/+7iLm+qj1Etq8C7vesHeZBIcZP5gIabN28W+AplcZTbuNW+ffvi4cOHGsemUvGWnzHJRcnT0xORkZG5jlund/JyTr9+/TpatGgBPz8/1K1bt1CXz+EWRETZ0JdJMaVjdXzm6YJbITGIS06DuaEMNaz1YG1lCVkZTJDLisxKCJmePn2K48ePY/To0TqMiog+JCbJRES50JdJlXWQM69IUelWrVo1eHl5KWsBr127FgYGBvjiiy90HRoRfSBMkomIiLLo2rUrdu/ejX///ReGhoZo2bIlfvjhB7UHqBBR6cUkmYiI8sXLy0tZl7W02rJli65DoFLowoULug6B8oED6oiIiIiIsmCSTERERESUBZNkIiIiIqIsmCQTEREREWXBJJmIiIiIKAsmyUREREREWTBJJiIiIiLKgkkyEVEJsHXrVkgkEoSEhOg6FCoEFy5cgEQiUamb6+XlhSpVqugknsTERIwbNw729vaQSCSYNm0aQkJCIJFIsHXrVp3ERKRrfJgIERHl2a5duxAREYFp06bpOhQqRD/88AO2bt2KOXPmwMXFBbVr19bY7/jx47hx4wbmz5//YQMk0gEmyURElGe7du2Cn58fk+Qi8Ouvv0KhUOhk2efOnUOLFi0wb948ZZsQAsnJydDX11e2HT9+HKtXr2aSTGUCh1sQERH9V0ZGBtLS0nSybH19fRgaGupk2REREbCyslJpk0gkMDIygkwm00lMRLrGJJmIqAQ7ceIE2rRpA1NTU5ibm6NHjx54+PChSp/79+/Dy8sL1apVg5GREezt7TF27FhERUWp9EtISMC0adNQpUoVGBoaws7ODp07d8adO3cAAJ6envjzzz8RGhoKiUQCiUSS6xja06dPw8PDA1ZWVjAzM0PNmjUxe/ZslT5hYWHo27cvTE1NYWdnh+nTp+PkyZNqY3arVKkCLy8vtWV4enrC09NT+TotLQ1z586Fm5sbLC0tYWpqijZt2uD8+fMq78scc/vzzz9j+fLlqFGjBipUqAB/f38AwKNHjzBw4EBYW1vDyMgITZs2xZEjR1TmkZ6ejgULFqB69eowMjJC+fLl4eHhgdOnT+e4XTTJOib5/fg2bNgAFxcXGBoaolmzZrh586ba+/MSb1aZY6ODg4Px559/KvdrSEiI2phkLy8vrF69GgCU/SQSSb7Xk6ik4HALIqISaseOHRg9ejS6dOmCxYsX4+3bt1i7di08PDxw9+5dZcJ1+vRpPHv2DGPGjIG9vT0ePnyIDRs24OHDh7h27Zoy0fnss8+wf/9+TJ48GXXq1EFUVBR8fX0REBCAJk2a4Ouvv0ZcXBzCwsLwyy+/AADMzMyyje/hw4fo2bMnGjRogG+//RaGhoYIDAzElStXlH2Sk5PRsWNHPH/+HFOnToWjoyN27NiBc+fOFXi7xMfHY+PGjRg6dCg+/fRTJCQkYNOmTejSpQtu3LiBRo0aqfTfsmULUlJSMG7cOACAtbU1Hj58iNatW6NixYr46quvYGpqit9//x19+/bFH3/8gX79+gEA5s+fj0WLFmHcuHFo3rw54uPjcevWLdy5cwedO3cu8Dq8b9euXUhISMCECRMgkUjw008/oX///nj27JlyKERe482qdu3a2LFjB6ZPn45KlSrhP//5DwDA1tYWb968Uek7YcIEvHr1CqdPn8aOHTsKZd2IijVBOuHn5ycAiGvXruk6FCpkcXFx4tChQyIuLk7XoZQ5QUFBIigoqEiXkZGRIWJiYkRGRkaRLierLVu2CAAiODhYCCFEQkKCsLKyEp9++qlKv3///VdYWlqqtL99+1Ztfrt37xYAxKVLl5RtlpaWYtKkSTnG0aNHD+Hs7JynmH/55RcBQLx58ybbPsuXLxcAxO+//65sS0pKEq6urgKAOH/+vLLd2dlZjB49Wm0e7dq1E+3atVO+zsjIEKmpqSp9YmJiRIUKFcTYsWOVbcHBwQKAsLCwEBERESr7tmPHjqJ+/foiJSVF2V+hUIhWrVqJ6tWrK9saNmwoevTokZfNoeL8+fNq6zd69GiVbZsZX/ny5UV0dLSy/fDhwwKAOHr0qLItr/Fmx9nZWW09Mpe/ZcsWZdukSZNESUwddPW5Je3k5Zx+7do1AUD4+fkV+vJ5JZmIyoR9t15g/+2wHPvUcbTAvF51la8fvorDt0f9s/QSyMiQQ09PBuDdFdi9E1qq9Ph4/dVslzHQrRIGNXXKV+yanD59GrGxsRg6dCgiIyOV7TKZDO7u7ipDC4yNjZX/T0lJQWJiIlq0aAEAuHPnDtq0aQMAsLKywvXr1/Hq1Ss4OjpqHWPmGNfDhw9jzJgxkErVR/gdP34cDg4OGDhwoLLNxMQE48ePxxdffFGg5cpkMuU4WoVCgdjYWCgUCjRt2lQ5dOR9AwYMgK2tLeRyOQAgOjoa586dw7fffouEhAQkJCQo+3bp0gXz5s3Dy5cvUbFiRVhZWeHhw4d4+vQpqlevXqB4c/Pxxx+jXLlyyteZ++vZs2f5jpeI8o5JMhGVCWExybgeHJ2v98QnZ+T7PQByfE+LauXzPT9Nnj59CgDo0KGDxukWFhbK/0dHR2PBggXYs2cPIiIiVPrFxcUp///TTz9h9OjRcHJygpubG7p3745Ro0ahWrVqBYrx448/xsaNGzFu3Dh89dVX6NixI/r374+BAwcqE+bQ0FC4urqqjW2tWbNmgZaZadu2bVi6dCkePXqE9PR0ZXvVqlXV+mZtCwwMhBACc+bMwZw5czTOPyIiAhUrVsS3336LPn36oEaNGqhXrx66du2KkSNHokGDBlrF/77KlSurvM5MmGNiYvIdLxHlHZNkIioTKpUzhntV6xz71HG0UHltYayn4T3qV5Kzymk5lcoZZzstPzJLhe3YsQP29vZq0/X0/nd6Hzx4MP7++2/MnDkTjRo1gpmZGRQKBbp27apScmzw4MFo06YNDh48iFOnTmHJkiVYvHgxDhw4gG7duuU7RmNjY1y6dAnnz5/Hn3/+ib/++gt79+5Fhw4dcOrUqXxXTcjuJjG5XK4yr507d8LLywt9+/bFzJkzYWdnB5lMhkWLFiEoKEhjnO/L3CYzZsxAly5dNC7T1dUVANC2bVsEBQXh8OHDOHXqFDZu3IhffvkF69atU45x1lZ220kIke94iSjvmCQTUZkwqKlTvoc51HW0VBtKIZfLkZCQAHNz82yTl6zvKQouLi4AADs7O3Tq1CnbfjExMTh79iwWLFiAuXPnKtszr0Rn5eDgAG9vb3h7eyMiIgJNmjTB999/r0yS81vNQCqVomPHjujYsSOWLVuGH374AV9//TXOnz+PTp06wdnZGX5+fhBCqMz78ePHavMqV64cYmNj1dpDQ0NVrnbv378f1apVw4EDB1Tm+X4N4JxkzktfXz/HbZvJ2toaY8aMwZgxY5CYmIi2bdti/vz5hZYk5ya/8WqD1SyoLGEJOCKiEqhLly6wsLDADz/8oDKcIFNmZYLMRD7zqmOm5cuXq7yWy+UqQy+Adwm4o6MjUlNTlW2mpqZq/bITHa0+7CSzskTmPLt3745Xr15h//79yj5v377Fhg0b1N7r4uKCa9euqdQxPnbsGF68eKHST9M6X79+HVevZj9W/H12dnbw9PTE+vXrER4erjb9/aoPWcvomZmZwdXVVWWbFbX8xKstU1NTAND4ywpRacMryUREJZCFhQXWrl2LkSNHokmTJhgyZAhsbW3x/Plz/Pnnn2jdujV8fHxgYWGBtm3b4qeffkJ6ejoqVqyIU6dOITg4WGV+CQkJqFSpEgYOHIiGDRvCzMwMZ86cwc2bN7F06VJlPzc3N+zduxf/93//h2bNmsHMzAy9evXSGOO3336LS5cuoUePHnB2dkZERATWrFmDSpUqwcPDAwDw6aefwsfHB6NGjcLt27fh4OCAHTt2wMTERG1+48aNw/79+9G1a1cMHjwYQUFB2Llzp/KqeqaePXviwIED6NevH3r06IHg4GCsW7cOderUQWJiYp627+rVq+Hh4YH69evj008/RbVq1fD69WtcvXoVYWFh+OeffwAAderUgaenJ9zc3GBtbY1bt24py+h9SHmNV1tubm4AgKlTp6JLly6QyWQYMmRIocybqLhhkkxEVEINGzYMjo6O+PHHH7FkyRKkpqaiYsWKaNOmDcaMGaPst2vXLkyZMgWrV6+GEAIfffQRTpw4oVLBwsTEBN7e3jh16hQOHDgAhUIBV1dXrFmzBhMnTlT28/b2xr1797Blyxb88ssvcHZ2zjZJ7t27N0JCQrB582ZERkbCxsYG7dq1w4IFC2Bpaalc7tmzZzFlyhSsWrUKJiYmGD58OLp164auXbuqzK9Lly5YunQpli1bhmnTpqFp06Y4duyYsrZvJi8vL/z7779Yv349Tp48iTp16mDnzp3Yt2+fysNJclKnTh3cunULCxYswNatWxEVFQU7Ozs0btxYZdjK1KlTceTIEZw6dQqpqalwdnbGwoULMXPmzDwtp7DkNV5t9e/fH1OmTMGePXuwc+dOCCGYJFOpJRFZ/wZHH8TDhw9Rr149XLt2De7u7roOhwpRfHw8zp8/j/bt26tUGKCil1kSq6DVGPIiL2OSSXsXLlxA+/btcf78eZWn6RUl7tvSi/u2ZMrLOf369eto0aIF/Pz8ULdu3Wz7FQTHJBMRERERZcEkmYiIiIgoCybJRERERERZ8MY9IiIqdjw9PdXK1hERfUi8kkxERERElAWTZCIqVXj1kYiodND1+ZxJMhGVGlKpFHK5XOcnViIi0o4QAnK5HFKp7lJVJslEVGoYGhpCLpcjIiKCiTIRUQklhEBERATkcjkMDQ11Fgdv3COiUqNChQpITU1FdHQ04uLiIJPJIJFICnUZQgikp6cjKiqq0OdNusV9W3px35YcmVeQ5XI5jI2NUaFCBZ3FwivJ+ZSamoqxY8eicuXKsLCwQIsWLXD16lVdh0VEeDfconLlyrCysoKBgUGRfBlmZGTgzZs3yMjIKPR5k25x35Ze3Lclh0QigYGBAaysrFC5cmWdDrfgleR8ysjIQJUqVeDr64tKlSrh999/R69evRASEgIzMzNdh0dU5kmlUjg4OBTZ/OPj4/Ho0SM0bNiQjx0vZbhvSy/uWyoIXknOJ1NTU8ydO1f5282QIUNgYGCAx48f6zo0IiIiIiokJTZJTkxMxLx589C1a1dYW1tDIpFg69atGvumpqbiyy+/hKOjI4yNjeHu7o7Tp08XShxPnz5FdHQ0XF1dC2V+RERERKR7JTZJjoyMxLfffouAgAA0bNgwx75eXl5YtmwZhg8fjhUrVkAmk6F79+7w9fXVKobk5GSMGDECs2bNgqWlpVbzIiIiIqLio8QmyQ4ODggPD0doaCiWLFmSbb8bN25gz549WLRoEZYsWYLx48fj3LlzcHZ2xhdffKHS18PDAxKJROPPN998o9I3PT0dgwYNgqurK+bOnVsk60hEREREulFib9wzNDSEvb19rv32798PmUyG8ePHK9uMjIzwySefYPbs2Xjx4gWcnJwAIM9XlhUKBUaOHAmJRIJt27axnAwRERFRKVNik+S8unv3LmrUqKF2N2vz5s0BAPfu3VMmyXk1YcIEhIeH4+TJk9DTy30TRkRE4M2bNyptgYGBAIDdN16gRs1akEmZaJcWSUlJKv9S6cL9W3px35Ze3LelV3JycpHNu9QnyeHh4RrLQWW2vXr1Kl/zCw0NxcaNG2FkZAQbGxtl+4kTJ9CmTRuN71mzZg0WLFigcdrv9yLwOOkSRlVXwKTU742y5caNG7oOgYoQ92/pxX1benHflj7Pnz8vsnmX+rQsOTlZ4yMNjYyMlNPzw9nZOd+Pu/X29sagQYNU2gIDA9G3b18AQECsFOuCTLF8QG242Jrma95U/CQlJeHGjRto3rw5TE25P0sb7t/Si/u29OK+Lb3u3LlTZPMu9UmysbExUlNT1dpTUlKU04uanZ0d7OzsNE5zr2KFu0lAaHQyRmz7B0sHN0LXermPtabiz9TUlEXrSzHu39KL+7b04r4tfYoyjyux1S3yKrMKRlaZbY6Ojh86JBVfdK6G6Z1qAACS0uT4bOdtLDv1GApF/q5WExEREVHhKfVJcqNGjfDkyRPEx8ertF+/fl05XZekEgk+71Qdv45qCjPDdxf2V54LxKfbbyE+JV2nsRERERGVVaU+SR44cCDkcjk2bNigbEtNTcWWLVvg7u6e78oWRaVznQo4NKk1qv13TPLt5zGIe8skmYiIiEgXSvSYZB8fH8TGxiorVBw9ehRhYWEAgClTpsDS0hLu7u4YNGgQZs2ahYiICLi6umLbtm0ICQnBpk2bdBm+Glc7Mxya1Boz9/2DkS2qwMnaRNchEREREZVJJTpJ/vnnnxEaGqp8feDAARw4cAAAMGLECOWjordv3445c+Zgx44diImJQYMGDXDs2DG0bdtWJ3HnxMJIH+tHNlVrv/s8Bg0rWUHKespERERERa5EJ8khISF56mdkZIQlS5bk+Pjq4uzasygM33gd7Wva4ZePG8LcSF/XIRERERGVaqV+THJJJ4TAzycfQ64QOBPwGn1XX0HQm0Rdh0VERERUqjFJLuYkEgk2eTVDh1rv6iwHvUlCX58rOOP/WseREREREZVeTJJLAEtjfWwc1RRTOrgCABJSMzBu+y2sPPuU9ZSJiIiIigCT5BJCKpXgPx/VxLoRTWBqIAMALDv9BJ/tvI3E1AwdR0dERERUujBJLmG61nPAwUmtUaX8u/Jwp/xfY92FIB1HRURERFS6MEkugWpUMMfhSR7wrGmLhpUsMfm/wzCIiIiIqHCU6BJwZZmliT42jW6GhJR0GOnLlO2pGXIYyKSQSFhPmYiIiKigeCW5BJNJJbAyMVC+FkLgP7//A+/f7iCJ45SJiIiICoxXkkuRndef49j9cADAszdJWD/SDVVsTHUcFREREVHJwyvJpUivBg5oU90GAPD4dQJ6+/jiwuMIHUdFREREVPIwSS5FrEwMsHVMc3zWzgUAEJ+SgTFbb2LNhUAIwXrKRERERHnFJLmUkUkl+KpbLawa2hjG+jIIAfz012NM3n0Xb9M4TpmIiIgoL5gkl1K9GjrigHcrOFkbAwD+vB+OIRuuQc4n9BERERHliklyKVbbwQJHJnkoxykPa14ZMilLwxERERHlhtUtSrlypgbY4tUMZwJeo2s9B12HQ0RERFQi8EpyGaAnk6olyEFvEvHVH/c5TpmIiIhIA15JLoMSUtIxfvstBL1Jwj9hcdgw0g1O1ia6DouIiIio2OCV5DIoQy5QwcIIABAQHo9ePr7wfRqp46iIiIiIig8myWVQOVMDbB/bHJ94VAUAxL5Nx6jN1/HrpWesp0xEREQEJslllp5Mijk962D5x41gqCeFQgDfHw/AtL33kJwm13V4RERERDrFJLmM69u4Iv6Y2AoVrd7VUz587xUGrP0br2KTdRwZERERke4wSSbUq2iJI5Nbo0U1awBAXHI6DPV4aBAREVHZxeoWBAAob2aIHZ+446e/HqFPo4oob2ao65CIiIiIdCZfSfL27dsLtJBRo0YV6H30YenLpPi6Rx219hMPwtG+lh2M9GU6iIqIiIjow8tXkuzl5aXWJpG8e8xx1qoIme0Ak+SS7PiDcHj/dgf1Klpg/cimyrHLRERERKVZvpLk4OBgldexsbEYPXo0LC0tMWXKFNSsWRMA8OjRI6xatQoJCQnYtm1b4UVLH5QQAvtvhwEA/F7Go/cqX6we3gQtqpXXcWRERERERStfd2c5Ozur/Cxfvhy2tra4cOECBg4ciPr166N+/foYNGgQLly4gPLly+OXX34pqtipiEkkEqwf6QavVlUAAFFJaRi+8Tq2XglmPWUiIiIq1bQqYXDo0CH069dPZWiFcsZSKfr374/Dhw9rswjSMX2ZFPN718WSgQ1goCeFXCEw/6g/Zuy7j5R01lMmIiKi0kmrJFkIgUePHmU73d/fn1ccS4lBTZ2wb0JL2P/3cdZ/3AnDx+uvIjyO9ZSJiIio9NEqSe7bty/Wrl2LZcuW4e3bt8r2t2/fYunSpVi/fj369OmjdZBUPDR0ssLRKR5oVqUcAOCfsDjsuxWm46iIiIiICp9WdZJXrFiB4OBgzJgxA7NmzYKDgwMAIDw8HOnp6WjdujWWL19eGHFSMWFrbojfxrXAd8f88Tz6LSa1d9V1SERERESFTqsk2dLSEhcvXsThw4dx4sQJhIaGAgC6du2K7t27o1evXhrHK1PJZqAnxXd96yEtQwGZ9H/7N+5tOgz1paynTERERCVeoTxxr0+fPhxWUQYZvPfo6gy5AhN/u42kNDnWj3CDvaWRDiMjIiIi0o5WY5KJMu24Foq/g6Lwz4tY9Fzli5sh0boOiYiIiKjAtK5usX79ejRv3hw2NjaQyWRqP3p6hXKxmoq54e7OGO5eGQAQmZiKoRuuYee1UFY3ISIiohJJqwz2iy++wLJly9CoUSOMGDEC5cqVK6y4qIQx0JPi+371Ua+iJeYe9kO6XOCbQ37wexmHBX3qwlCP45SJiIio5NAqSd62bRsGDBiA33//vbDioRJuaPPKqFHBHBN33kZEQir23HyBx68TsG6EGypYcJwyERERlQxaDbdITk5Gp06dCisWKiXcnMvh6BQPNKlsBQC4+zwWw369BrmCQy+IiIioZNAqSe7YsSNu3rxZWLFQKVLBwgi7x7fA0OZOAIBZ3WqrlIsjIiIiKs60SpLXrFmDa9eu4YcffkBUVFRhxUSlhKGeDIv6N8CxKR7oVKeCyjTe0EdERETFmVZJcs2aNfHs2TPMmTMHdnZ2MDU1hYWFhcqPpaVlYcVKJVS9iqrHwJ3nMRj263VExKfoKCIiIiKinGl1496AAQP4RD3KlzcJqZi48zZex6eil48v1o5wQ5PKrIpCRERExYtWSfLWrVsLKQwqK8yN9NCuhi1+vxWG1/GpGLL+Gr7rWxcfN6us69CIiIiIlPjEPfqgjPRlWDygAb7rUxd6UgnS5Ap8+ccDzDnkh7QMBQAgXa7A1aAo/OUXjqtBUUiXK3QcNREREZU1Wl1J3r59e576jRo1SpvFUCkjkUgwsmUV1LS3gPdvtxGZmIYd10IREB4PN+dy+ONOGCIT05T9bc0MMbKlMyZ6ukBfxt/riIiIqOhplSR7eXllO+39scpMkkmT5lWtcWSyBz7beRv3w+JwKzQGt0Jj1PpFJqZi2eknuPciFutHujFRJiIioiKnVbYRHBys9hMYGIgzZ86gX79+cHNzg5+fX2HFSqWQo5Uxfp/QEnUdLbLtk1ks7tyjCKy7EPRhAiMiIqIyTask2dnZWe2nWrVq6NChA/bv3w9bW1v4+PgUVqxUSsmkEvwbl5xrPwmA7VdDOUaZiIiIilyR/t26Z8+e2Lt3b1EugkqBWyExiEpKz7WfAPAmMRW3QtSHZBAREREVpiJNkoOCgpCamlqUi6BSIC45LfdOWvQnIiIiyi+tbty7dOmSxvbY2FhcunQJK1euRN++fbVZBJUBlsYGRdqfiIiIKL+0SpI9PT01PnFPCAGZTIZBgwZh1apV2iyCyoCmVcrBxswAUYlpypv0smOsL0NDJz7qnIiIiIqWVkny+fPn1dokEgnKlSsHZ2dnWFhkX7GAKJO+TIpRLatg2eknufZNTpdj7NabWD2sCcqbGX6A6IiIiKgs0ipJbteuXWHFQWXcRE8X3HsRi3OPIiABVK4oZ742M9RDYmoGrj2LRm+fK1g/0g31KvKqMhERERU+rZLkTElJSbh48SJCQ0MBvCsN165dO5iamhbG7KkM0JdJsX6kG9ZdCML2q6F4k/i/Gz5tzAwxqqUzRreqgjmH/XD43iu8jE3GzZBoJslERERUJLROkletWoVvvvkGiYmJEOJ/1//Mzc3x/fffY/LkydougsoIfZkUUzpWx2eeLrgVEoO45DRYGhugaZVyyqfsLf+4Eeo5WuLJ6wR4taqi24CJiIio1NIqSd6+fTs+//xztGzZElOnTkXt2rUBAAEBAVi1ahU+//xzWFpaYuTIkYUSLJUN+jIpWrqU1zhNIpHg07bVIIRQuWn0ZWwyjPVlsDZl5QsiIiLSnlZ1kpctW4a2bdvi0qVL+Pjjj9GgQQM0aNAAH3/8MS5evIg2bdpg6dKlhRVrsXP16lVIpVIsXLhQ16GUOe8nyMlpcozbdgu9Vvni4as4HUZFREREpYVWSfLjx48xaNAgyGQytWmZJeAeP36szSKKLYVCgenTp6NZs2a6DqXM23/7BQLC4/EyNhkD1v6Nw/de6jokIiIiKuG0SpItLS0REhKS7fSQkJBSWwZuw4YNcHd3Vw4xId0Z0cIZs7vXglQCpKQr8Pmee/j+T39kyBW6Do2IiIhKKK2S5B49emDVqlXYs2eP2rS9e/fCx8cHvXr10mYR2UpMTMS8efPQtWtXWFtbQyKRYOvWrRr7pqam4ssvv4SjoyOMjY3h7u6O06dPF3jZUVFRWL58ORYsWFDgeVDhkUgkGN/WBdvGNoelsT4A4NfLwfDachMxSXyENREREeWfVknyjz/+iGrVqmH48OGoWLEiPD094enpiYoVK2LYsGGoVq0afvzxx8KKVUVkZCS+/fZbBAQEoGHDhjn29fLywrJlyzB8+HCsWLECMpkM3bt3h6+vb4GW/fXXX2PatGmwsrIq0PupaLSpboujkz1Qy94cAOAbGIlePr7wfxWv48iIiIiopNEqSba1tcWdO3ewbNky1K9fH69fv8br169Rv359/PLLL7h9+zZsbGwKK1YVDg4OCA8PR2hoKJYsWZJtvxs3bmDPnj1YtGgRlixZgvHjx+PcuXNwdnbGF198odLXw8MDEolE488333wDALh79y5u3ryJTz/9tEjWi7RTubwJDni3Qo/6DgCAsJhkTPztNodeEBERUb5oXSfZyMgIn3/+OT7//HON0y9duoS2bdtquxg1hoaGsLe3z7Xf/v37IZPJMH78eGWbkZERPvnkE8yePRsvXryAk5MTAOTpyvLFixfx+PFjVKxYEQAQFxcHPT09BAUFYcuWLQVcGypMJgZ68BnWGPUuWmL5mSdYNrgh9GRa/T5IREREZUyhPHFPkyNHjmDx4sW4du0a5HJ5US0mV3fv3kWNGjXUbiBs3rw5AODevXvKJDkvxo8fjyFDhihff/7556hatSq++uqrbN8TERGBN2/eqLQFBgYCAJKTkxEfz+EARWF4E1t8VMMStmZ6Kts4Xa5QPpykKCQlJan8S6UL92/pxX1benHfll7JyclFNu8CJcmnT5/GihUrEBQUhHLlymHQoEGYPn06AODQoUP45ptvEBAQgPLly2PevHmFGnB+hYeHw8HBQa09s+3Vq1f5mp+JiQlMTEyUr42NjWFmZpbj+OQ1a9Zke5PfgwcPEBfH2r4fysMYCQ6GSDG2hhyORfzU9Bs3bhTtAkinuH9LL+7b0ov7tvR5/vx5kc0730ny8ePH0atXLwghYGNjg8DAQFy/fh0RERF4+/YtVq1aBRcXF6xevRpeXl4wMjIqirjzLDk5GYaGhmrtmXFp+xtIdhU13uft7Y1BgwaptAUGBqJv376oX78+mjRpolUMlDf/xqfi619vIzFVjpUBBviuZw18VNu20JeTlJSEGzduoHnz5jA1LeJMnD447t/Si/u29OK+Lb3u3LlTZPPOd5L8008/wdHREadPn0atWrUQFxeHIUOG4JdffoFEIoGPjw8mTJig8QEjumBsbIzU1FS19pSUFOX0omZnZwc7OzuN04yNjUttLenixtxcYKKnK34+9RjJ6QrMOPgI3jHp+M9HNSGTSnKfQT6Zmppy35Zi3L+lF/dt6cV9W/oUZR6X74GZd+/excSJE1GrVi0A7x4osnDhQqSlpWH27Nnw9vYuNgky8L8qGFlltjk6On7okEhHJBIJJrV3xWavZjA3evf74ZoLQfhk203EvU3XcXRERERUnOQ7SU5ISICzs7NKW+br4viI5kaNGuHJkydqN8ddv35dOZ3KlvY17XBksgeq25kBAC48foM+q33x5HWCjiMjIiKi4qJAt/hLJBKNrw0MDLSPqJANHDgQcrkcGzZsULalpqZiy5YtcHd3z1dlCyo9qtqY4uCk1uhStwIAICTqLfquvgK/l7yJkoiIiApY3WL79u24du2a8nVKSopyPPKhQ4dU+kokEqxYsUKrILPj4+OD2NhYZYWKo0ePIiwsDAAwZcoUWFpawt3dHYMGDcKsWbMQEREBV1dXbNu2DSEhIdi0aVORxEUlg5mhHtYOd8Pq84FYduYJ6le0RM3/Pq2PiIiIyrYCJcmnTp3CqVOn1NqzJshA0SbJP//8M0JDQ5WvDxw4gAMHDgAARowYAUtLSwDvkvo5c+Zgx44diImJQYMGDXDs2LEiecgJlSxSqQRTOlZHvUqWqF/RskjrJxMREVHJke8kWaEoPo/3DQkJyVM/IyMjLFmyJMfHV1PZ1r6mavURhUJgwdGHGNHCGdUr8OoyERFRWcPLZkQa/HLmCbZdDUXf1Vdw8uG/ug6HiIiIPjAmyUQa6EnffTSS0uSYsOM2lp1+AoVC6DgqIiIi+lCYJBNp8Hmn6tgw0g1mhu9GJK08+xTjd9xCfArrKRMREZUFTJKJsvFRXXscmtQa1WzePcL0TEAE+q6+gsCIRB1HRkREREWNSTJRDlztzHBocmt0rPXuxr5nb5LQd/UVnPF/rePIiIiIqCgVOEkWQiA+Ph4pKSmFGQ9RsWNhpI9fRzXF1A6uAIDE1Awkp8t1HBUREREVpQInyWlpabC2tsbKlSsLMx6iYkkqleD/PqqJdSPcMK1TdfRq6KjrkIiIiKgIFehhIgBgaGgIe3t7GBoaFmY8RMVa13r26FrPXqXt0b/xMJBJUc3WTEdRERERUWHTakyyl5cXtm/fjrS0tMKKh6hEiUlKw7htt9DH5wrOPXqNdLkC/7yIBQD88yIW6fLi8/AdIiIiyrsCX0kGgPr16+PQoUOoW7cuvLy8UKVKFRgbG6v169+/vzaLISq2zj6KQFhMMgBg7NZbMDGQwVyagdmNgZn770Mue4KRLZ0x0dOFj7wmIiIqQbRKkocOHar8/5w5czT2kUgkkMt5kxOVTgPdKsFQT4ppe+5CLoC3aXLIpUDKfw/5yMRULDv9BPdexGL9SDcmykRERCWEVkny+fPnCysOohIrODIJ8vcexpeqkOCXBzJkKIDM5nOPIrDuQhCmdKyukxiJiIgof7RKktu1a1dYcRCVSOlyBbZfDYEE/0uIAeDfZAkk77VIAGy/GorPOOyCiIioRCiUb+vU1FRcvXoVhw8fRmRkZGHMkqhEuBUSg8jENJUE2VTv3SsBibJNAHiTmIpbITEfNkAiIiIqEK2T5JUrV8LBwQEeHh7o378/7t+/DwCIjIyEjY0NNm/erHWQRMVVXLJ6ZRdzfcCrhhxSldQ5+/5ERERU/GiVJG/ZsgXTpk1D165dsWnTJgjxv6TAxsYGHTp0wJ49e7QOkqi4sjQ20NjeuLyArZF6u0QiUW8kIiKiYkerJHnp0qXo06cPdu3ahV69eqlNd3Nzw8OHD7VZBFGx1rRKOdiYGUBT6vt+PiwBYG6oh5n7/sHFJ28+VHhERERUQFolyYGBgejWrVu2062trREVFaXNIoiKNX2ZFKNaVtEwsEKVAPA2XY74lAyM2XIDay8EqfzlhYiIiIoXrZJkKyurHG/U8/f3h729fbbTiUqDiZ4u6FDLDgDUrihnvu5Qyw4/D2oAI30pFAJY/NcjTN59F2/TMj5orERERJQ3WiXJ3bt3x4YNGxAbG6s27eHDh/j111/Ru3dvbRZBVOzpy6RYP9IN/+lcAzZmhirTbMwM8Z/ONbB+pBv6Na6EAxNbo1K5d0+l/PN+OPqv+RvPo97qImwiIiLKgVZJ8sKFCyGXy1GvXj188803kEgk2LZtG0aMGIGmTZvCzs4Oc+fOLaxYiYotfZkUUzpWx9+zOmDJwAYAgCUDG+DvWR0wpWN1ZW3kOo4WODrZA61dywMAHv2bgF4+vrj8lOOUiYiIihOtkmRHR0fcvn0bXbt2xd69eyGEwI4dO3D06FEMHToU165dg42NTWHFSlTs6cukaOhkBQBo6GSl8cEh5UwNsG1Mc3zapioAIC45HaM338Dd56yhTEREVFxo9cQ9ALCzs8PGjRuxceNGvHnzBgqFAra2tpBK+VQxouzoyaT4ukcd1KtoiS//uI8OtezQ6L/JNREREeme1klyJiEEhBCQSCSsBUuUR30aVUSNCuaobG3Czw0REVExovXlXn9/fwwcOBAWFhZwcHCAg4MDLCwsMHDgQPj5+RVGjESlWm0HC5ga/u/31dQMOcZuvYkrgXzEOxERka5odSX58uXL6NatGxQKBfr06YMaNWoAAB4/fowjR47gxIkT+Ouvv9CmTZtCCZaoLJh76CHOPYrAhccRmN29Nj7xqMqrzERERB+YVkny9OnTYWdnh4sXL8LJyUll2osXL9C2bVv83//9H27evKlVkERliXs1axy69xKpGQos/DMAfi/j8OOABjDSl+k6NCIiojJDq+EWDx8+hLe3t1qCDABOTk6YOHEiH0tNlE/9m1TCHxNbwdHSCABw6N4rDFz3N17GJus4MiIiorJDqyTZ2dkZqamp2U5PS0vTmEATUc7qVbTEkSkecK9qDQDwexmPXqt8cTWIj3knIiL6ELRKkufOnYuVK1fi3r17atPu3r2LVatWYf78+dosgqjMsjEzxM5x7vBqVQUAEJ2UhhGbrmP3jee6DYyIiKgM0GpM8rVr11ChQgW4ubmhVatWcHV1BQA8ffoUV69eRb169XD16lVcvXpV+R6JRIIVK1ZoFzVRGaEvk2J+77qoV9ESsw8+gFwh4GxtouuwiIiISj2tkmQfHx/l/69cuYIrV66oTH/w4AEePHig0sYkmSj/BrpVQo0KZggIj0crVz7FkoiIqKhplSQrFIrCioOIctGgkhUaVLJSabv27N0Y5RbVyusgIiIiotKLz44mKqFeRL/FxJ23MWLjdWz7OwRCCF2HREREVGowSSYqofzD45GUKkeGQmDekYeYuf8+UtLlug6LiIioVGCSTFRCdalrj70TWqCChSEAYP/tMHy8/irC41hPmYiISFtMkolKsMaVy+HoFA80dS4HAPgnLA69VvniZki0jiMjIiIq2ZgkE5VwduZG2PVpC4xoURkAEJmYhqEbrmHHtVCOUyYiIiogJslEpYCBnhQL+9bHj/3rw0AmRYZC4I/bYchQMEkmIiIqCK1KwGVKTU3FnTt3EBERgdatW8PGhnVciXRhSPPKqGFvjrmH/bBuhBv0Zfw9mIiIqCC0/gZduXIlHBwc4OHhgf79++P+/fsAgMjISNjY2GDz5s1aB0lEedekcjkcnewBe0sjZZsQAk9fJ+gwKiIiopJFqyR5y5YtmDZtGrp27YpNmzapjH+0sbFBhw4dsGfPHq2DJKL8kUgkKq/XXgxC95WX8dv1UB1FREREVLJolSQvXboUffr0wa5du9CrVy+16W5ubnj48KE2iyAiLUXEp2DFmadIlwt8fdAPsw48QGqG5nrK6XIFrgZF4S+/cFwNikK6nE/VJCKiskmrMcmBgYGYOnVqttOtra0RFRWlzSKISEt2FkbY9ak7Ptt5B28SUrH7xnM8/jce60a4wc7i3ZCMdLkCay8EYfvVEEQmpinfa2tmiJEtnTHR04Xjm4mIqEzR6lvPysoKkZGR2U739/eHvb29NosgokLg5myNY1M80MjJCgBw53kseq7yxe3QGKTLFRi//RaWnX6CqPcSZACITEzFstNPMGHHbV5VJiKiMkWrJLl79+7YsGEDYmNj1aY9fPgQv/76K3r37q3NIoiokFSwMMLeCS0wpJkTACAiIRVDNlyF9847OP/4DQAga8G4zNfnHkVg3YWgDxcsERGRjmmVJC9cuBByuRz16tXDN998A4lEgm3btmHEiBFo2rQp7OzsMHfu3MKKlYi0ZKgnw6L+9bGwbz3oSSVIlwucDnid6/skALZfDeXVZCIiKjO0SpIdHR1x+/ZtdO3aFXv37oUQAjt27MDRo0cxdOhQXLt2jTWTiYoZiUSCES2csXt8C1ga6+fpPQLAm8RU3AqJKdrgiIiIigmt78Sxs7PDxo0bER0djdevXyM8PBwxMTHYvHkz7OzsCiNGIioCzapYY3a3Wvl6T1xyWu6diIiISgGtkuSxY8fi+vXryte2traoUKECpNJ3s71x4wbGjh2rXYREVGQqlzfNV39LY4MiioSIiKh40SpJ3rp1K4KCsr+ZJzg4GNu2bdNmEURUhJpWKQcbMwNIcuknwbtycE2rlPsQYREREelckRY+ffXqFYyNjYtyEUSkBX2ZFKNaVlGrapGVADCqpTNrJRMRUZmR74eJHD58GIcPH1a+3rBhA86cOaPWLzY2FmfOnEGzZs20i5CIitRETxfcexGLc48iIIF6GTgAaOpcDp95unzo0IiIiHQm30myv78/9u3bB+DdXfLXr1/H7du3VfpIJBKYmpqibdu2WLZsWeFESkRFQl8mxfqRblh3IQjbr4biTWKqWp/7L+Nw+N4rDHSrpIMIiYiIPrx8J8mzZs3CrFmzAABSqRSbNm3CsGHDCj0wIvpw9GVSTOlYHZ95uuBWSAziktNgYaQP//B4LDrxCGkZCszY9w/+jUvG5A7VdR0uERFRkct3kvw+hYIPFiAqTfRlUrR0Ka983crVBnUdLTFp1x28TctAh1oVdBgdERHRh6NVkkxEpV9Ll/I4Mrk1nr5ORB1HC12HQ0RE9EFofav6iRMn0LlzZ5QvXx56enqQyWRqP6XRTz/9BCcnJ5ibm6Nx48ZISEjQdUhERaZSORO0r6X6cKA/74fjwJ0wHUVERERUtLS6kvzHH39g8ODBqFu3LoYMGYK1a9di2LBhEELg8OHDqF69Ovr27VtIoRYfq1evxl9//YUrV67AyckJDx48gIEBH7JAZYf/q3jM2PcPktPl8HsZj9nda0GP5eGIiKgU0SpJXrRoEZo3bw5fX1/ExMRg7dq1GDt2LDp06ICQkBC0aNECVatWLaxYiwW5XI7vv/8ely9fRuXKlQEADRo00HFURB9WQko6jPSlSE6XY/OVYDz6Nx4+w5rA2pS/LBIRUemg1aUff39/DBkyBDKZDHp67/Lt9PR0AECVKlXg7e2NxYsXax+lBomJiZg3bx66du0Ka2trSCQSbN26VWPf1NRUfPnll3B0dISxsTHc3d1x+vTpAi03LCwMb9++xf79+1GhQgXUrFkTv/76qxZrQlTyuFcrjyOTPVDH4d0Y5b+DotBrlS/8XsbpODIiIqLCoVWSbGJiohxmYGVlBUNDQ4SHhyunV6hQAcHBwdpFmI3IyEh8++23CAgIQMOGDXPs6+XlhWXLlmH48OFYsWIFZDIZunfvDl9f33wv9+XLl4iLi8OTJ08QEhKCffv2Yfbs2bh8+XJBV4WoRHKyNsEfE1uhd0NHAMDL2GQMXPc3Dt97qePIiIiItKdVklyzZk34+/srXzdq1Ag7duxARkYGUlJSsGvXLuWQhMLm4OCA8PBwhIaGYsmSJdn2u3HjBvbs2YNFixZhyZIlGD9+PM6dOwdnZ2d88cUXKn09PDwgkUg0/nzzzTcAoHzM9ty5c2FsbIwGDRpgyJAhOH78eJGsJ1FxZmwgw4ohjfB199qQSoCUdAU+33MP3//pjww5S0QSEVHJpVWS3K9fPxw+fBipqe+e0PX111/jwoULsLKygq2tLS5fvoyvvvqqUALNytDQEPb29rn2279/P2QyGcaPH69sMzIywieffIKrV6/ixYsXynZfX18IITT+LFy4EABQo0YNGBgYQCKRKN/3/v+JyhqJRIJP21bD9rHusDLRBwAERiTyc0FERCWaVjfuzZgxAzNmzFC+7tmzJy5cuIADBw5AJpOhR48eaN++vdZBauPu3buoUaMGLCxU67s2b94cAHDv3j04OTnleX6mpqYYOHAgvv/+e6xcuRLPnj3D3r17sX///mzfExERgTdv3qi0BQYGAgCSk5MRHx+f5+VT8ZeUlKTyb1nRoIIBdnk1wtKzz7CghyuSEktnWcSyun/LAu7b0ov7tvRKTk4usnkX+sNE2rRpgzZt2ihfJyQkwNzcvLAXk2fh4eFwcHBQa89se/XqVb7nuXr1anzyySewsbGBjY0NvvvuO5V1zmrNmjVYsGCBxmkPHjxAXBxvdiqNbty4oesQdKK3NXD76mvla7kCeBovQS0rocOoCl9Z3b9lAfdt6cV9W/o8f/68yOZdZE/ci4iIwPLly7F27VrExMQU1WJylZycDENDQ7V2IyMj5fT8srKywh9//JHn/t7e3hg0aJBKW2BgIPr27Yv69eujSZMm+Y6Biq+kpCTcuHEDzZs3h6mpqa7D0bkfTwVhV8AreLWohM89q0AmLdnDMLh/Sy/u29KL+7b0unPnTpHNu0BJckREBLZv346goCCUK1cOAwYMgJubG4B31R++//57bN26FSkpKfD09CzMePPN2NhYOWb6fSkpKcrpRc3Ozg52dnYapxkbG6sNBaHSwdTUtMzv24iEFPz58N1Qo63XwhAUlYJVQxvDyqTk11Pm/i29uG9LL+7b0qco87h8J8mPHj1C27ZtERUVBSHe/fn0p59+ws6dOyGRSDBu3DikpKRgwIABmDlzpjJ51hUHBwe8fKlekiqzVJ2jo+OHDomozLAzN8KRya0xfvttPH6dgMtPI9Hb5wo2jHJDLXt+URERUfGV7+oWc+bMQWJiItasWQM/Pz8cPXoU1apVw7Rp0+Dl5YVu3brh8ePH2LNnj84TZOBdWbonT56o3Rx3/fp15XQiKjrO5U1xwLsVutd/V43mefRb9Fv9N/68H57LO4mIiHQn30nypUuXMHHiREyYMAF16tRBjx49sGrVKkRERGDIkCH4/fffUa1ataKItUAGDhwIuVyODRs2KNtSU1OxZcsWuLu756uyBREVjKmhHlYPa4IvutaERAIkp8sxadcdLP7rEeSK0nVDHxERlQ75Hm4RFRWFBg0aqLRlPvGuX79+hRNVHvn4+CA2NlZZoeLo0aMICwsDAEyZMgWWlpZwd3fHoEGDMGvWLERERMDV1RXbtm1DSEgINm3a9EHjJSrLJBIJvD1dUdvBAp/vvov4lAysuxiETrUrwM25nK7DIyIiUpHvJFmhUEBfX1+lLfO1mZlZ4USVRz///DNCQ0OVrw8cOIADBw4AAEaMGAFLS0sAwPbt2zFnzhzs2LEDMTExaNCgAY4dO4a2bdt+0HiJCGhf0w5HJntg/I5b6N3QkQkyEREVSwWqbnHr1i1lCTXgXS1kiUQCX19fxMbGqvXv379/gQPMSUhISJ76GRkZYcmSJTk+vpqIPpwqNqY4NKk1jPVlKu3xKemwMNLP5l1EREQfToGS5OXLl2P58uVq7fPnz1drk0gkkMvlBVkMEZViJgaqp5/X8Sno7eOLQW5OmN65Romvp0xERCVbvpPk8+fPF0UcRFTGfbH/Pl7Hp8LnfCAevorD8iGNYWnMq8pERKQb+U6S27VrVxRxEFEZN69XHYzfcRuBEYk4//gN+q6+gg0j3VC9gu4ea09ERGVXvkvAEREVhWq2Zjjo3Qof1akAAAiOTELf1Vfwl9+/Oo6MiIjKIibJRFRsmBvpY90IN0zvVAMAkJQmx2c7b2PZqcdQsJ4yERF9QEySiahYkUol+LxTdWwc1RTmhu9GhK08F4hFJwJ0HBkREZUlTJKJqFjqVKcCDk1ujWq2prAy0ceollV0HRIREZUhBSoBR0T0IbjYmuHwpNYIiXwLJ2sTXYdDRERlSIGvJL99+xZubm5Yt25dYcZDRKTC3Egf9StZqrRtvRKMX04/4ThlIiIqMgW+kmxiYoLg4GBIJCz4T0QfztWgKHz3ZwDkCoGHr+Lxy8cNYc6n9BERUSHTakxy165dcfLkycKKhYgoV7bmBnD+79CLMwGv0Xf1FQS9SdRxVEREVNpolSTPmTMHT548wciRI+Hr64uXL18iOjpa7YeIqLC42pnj0OTW6FDLDgAQ9CYJfX2u4Iz/a6TLFbgaFIW//MJxNSgK6XKFjqMlIqKSSqsb9+rWrQsA8Pf3x65du7LtJ5fLtVkMEZEKCyN9bBzVFL+ceYJV5wKRkJqBcdtvwcRAhrdp/zvf2JoZYmRLZ0z0dIG+jMV8iIgo77RKkufOncsxyUSkE1KpBP/5qCZq2pvj8933IBdCJUEGgMjEVCw7/QT3XsRi/Ug3JspERJRnWiXJ8+fPL6QwiIgK5tmbJMiF5ioXma3nHkVg3YUgTOlY/cMFRkREJVqhXlZJTk5GcnJyYc6SiChb6XIFtl8NQW5/z5IA2H41lGOUiYgoz7ROkp8/f44xY8agQoUKMDMzg5mZGSpUqICxY8ciNDS0MGIkItLoVkgMIhPTkFu1ZAHgTWIqboXEfIiwiIioFNBquMWjR4/g4eGB2NhYdO7cGbVr11a2b9++HUePHoWvry9q1qxZKMESEb0vLjmtSPsTEVHZpVWS/NVXX0EqleLu3buoX7++yjQ/Pz907NgRX331FQ4ePKhVkEREmlgaG+Srf3Iah1sQEVHeaDXc4uLFi5g6dapaggwA9erVw+TJk3HhwgVtFkFElK2mVcrBxswg1zHJmeYd8cOFxxFFGhMREZUOWiXJ6enpMDY2zna6iYkJ0tPTtVkEEVG29GVSjGpZJdcxyZniUzIwZutNrLkQCJFNRQwiIiJAyyS5cePG2LhxI+Li4tSmxcfHY9OmTWjSpIk2iyAiytFETxfl0/eyXlHOfN2hlh2Wf9wIxvoyCAH89NdjTN59F2/TMj5orEREVHJoNSZ5wYIF6Nq1K2rVqoUxY8agRo0aAIDHjx9j27ZtiIqKwurVqwslUCIiTfRlUqwf6YZ1F4Kw/Woo3iSmKqfZmBliVEtnfPbfJ+7VqGCOCTtv4UV0Mk4/fI3AtoloUMlKd8ETEVGxpVWS3KFDBxw/fhwzZ87Ejz/+qDKtUaNG2LFjB9q3b69VgEREudGXSTGlY3V85umCWyExiEtOg6WxAZpWKafylL06jhY4MskDU/fcRc8GDkyQiYgoWwVOktPT0xEQEIBatWrh7t27+Pfff5V1kZ2dnWFvb19oQRIR5YW+TIqWLuVz7FPO1ADbxjSHVKo6OCMkMgnO5U0gkeT1NkAiIirNCjwmWSqVws3NDQcOHAAA2Nvbw93dHe7u7kyQiahYy5ogB0YkotcqX0zhOGUiIvqvAifJMpkMzs7OSE1Nzb0zEVEx9t0xfySkZuDY/XD0X/M3XkS/1XVIRESkY1pVt5gyZQo2bNiA6OjowoqHiOiD++XjRmj132Eaj/5NQC8fX/g+jdRxVEREpEta3bgnl8thaGgIFxcXDBw4EFWqVFGrmyyRSDB9+nStgiQiKkrWpgbYPrY5fjzxCBt9gxH7Nh2jNl/HrG61Ma5NVY5TJiIqg7RKkmfMmKH8/6ZNmzT2YZJMRCWBnkyKb3rWQb2Klvjyj/tIzVDg++MB8HsVhx/7N4CxgUzXIRIR0QekVZIcHBxcWHEQERULfRtXhKudGSbsuI2Xsck4fO8VLIz08V3feroOjYiIPqACJ8nJyclYsWIF2rdvj169ehVmTEREOlWvoiWOTG6NSbvu4EV0MqZ1qq7rkIiI6AMrcJJsbGyM9evXo06dOoUZDxFRsVDezBA7PnHHv3EpKG9mqGxXCAEhdBgYERF9EFpVt3Bzc4Ofn19hxUJEVKzoy6RwsjZRaVt1MRQ7AqVISZfrKCoiIvoQtEqSly9fjj179mDjxo3IyGABfiIq3U4+/Beb/n6B25FSjN5xHy9jk3UdEhERFRGtkmQvLy9IpVJMmDABFhYWqF69Oho0aKDy07Bhw8KKlYhIp9ycy8HNyQIAEPDvu6f0XQ2K0nFURERUFLSqbmFtbY3y5cujZs2ahRUPEVGxZWNmiA3D6mP6tsu49K8U0UlpGLHpOr7pURteraqwnjIRUSmiVZJ84cKFQgqDiKhk0JdJMaCqAp2b1sJ3fwUiLUOBBUf94fcyHt/3qwcjfdZTJiIqDbQabkFEVFb1aVAB+ya0hL2FEQDgjzth+Hj9VaRm8IY+IqLSIN9Jsre3N27duqV8nZ6ejt9//x1v3rxR63vmzBl06NBBuwiJiIqphk5WODrFA82rWAMAWrvawFCPV5KJiEqDfCfJ69atw5MnT5Sv4+PjMXToUDx48ECt7+vXr3Hx4kXtIiQiKsZszQ2xc5w7vutTF//5iPdnEBGVFoUy3EKwsj4RlWEGelKMbFkFMun/btyLSkzFohMBrKdMRFRCcUwyEVEhS5crMHnXXay/+Awfb7iGf+NSdB0SERHlE5NkIqJClpSagTS5AgDwz4tY9Fzli5sh0TqOioiI8oNJMhFRIbMyMcDuT1tguHtlAEBkYiqGbriGnddCOTyNiKiEKFCd5O3bt+PatWsAgJSUFEgkEvj4+ODQoUMq/d6/wY+IqCwx0JPi+371Ua+iJeYe9kO6XOCbQ37wexmHBX3qsgoGEVExV6Ak+dSpUzh16pRKW9YEOROfQEVEZdnQ5pVRo4IZPtt5B28SUrHn5gs8fp2AdSPcUOG/NZaJiKj4yfdwC4VCka8fuZx3dhNR2ebmbI1jUzzQuLIVACDwdSISUzN0GxQREeVIq8dSExFR3lSwMMKe8S0w/4g/Otayg4utma5DIiKiHDBJJiL6QAz1ZFjUv75a+82QaDSsZAUDPd5LTURUXPCMTESkQ3eex2D4r9cx9NdriIhnPWUiouKCSTIRkQ6tuxCENLkCt0Nj0MvHF3eex+g6JCIiApNkIiKdWjm0MQY3rQQAeB2fiiHrr2HPjec6joqIiJgkExHpkJG+DIsHNMB3fepCTypBmlyBrw48wDeHHiAtQ6Hr8IiIyiwmyUREOiaRSDCyZRXs+rQFbMwMAAA7rz3H8I3XEJHAccpERLqQr+oWY8eOzfcCJBIJNm3alO/3ERGVNc2rWuPIZA98tvM27ofF4WZIDHzOBeLbPvV0HRoRUZmTryT53Llz+X6CHp+4R0SUd45Wxvh9Qkt8fdAPD1/F4atutXQdEhFRmZSvJDkkJKSIwihZ7t27h0mTJuHBgwewsbHB7NmzMW7cOF2HRUSlhJG+DD8PaoCE1AyYGPzvNJ2aIYdUIoG+jCPliIiKGs+0BTBy5Eh06dIFsbGx2L9/P6ZPn46AgABdh0VEpYhEIoGFkb7ytRACXx/0w/CN1xGZmKrDyIiIygYmyQUQEhKCoUOHQiqVokmTJqhduzYePXqk67CIqBQ78s8r7L8dhhvB0ei1yhf3w2J1HRIRUammdZJ84sQJdO7cGeXLl4eenh5kMpnaT1FITEzEvHnz0LVrV1hbW0MikWDr1q0a+6ampuLLL7+Eo6MjjI2N4e7ujtOnTxd42VOmTMHOnTuRkZGBGzdu4Pnz52jRokWB50dElJsude3Rv0lFAEB4XAoGrruKP26H6TgqIqLSS6sk+Y8//kDPnj3x+vVrDBkyBAqFAkOHDsWQIUNgbGyMBg0aYO7cuYUVq4rIyEh8++23CAgIQMOGDXPs6+XlhWXLlmH48OFYsWIFZDIZunfvDl9f3wItu1u3bti+fTuMjIzQqlUrLF68GA4ODgWaFxFRXhjpy7B0UEPM7VkHMqkEaRkK/GffP1hw9CHS5aynTERU2LRKkhctWoTmzZvj7t27WLBgAYB3ZeJ+++03+Pn5ITw8HFWrVi2UQLNycHBAeHg4QkNDsWTJkmz73bhxA3v27MGiRYuwZMkSjB8/HufOnYOzszO++OILlb4eHh6QSCQaf7755hsAQHR0NHr06IElS5YgNTUVd+7cwaxZs3Dnzp0iWU8iokwSiQRjPapixyfNYW36rp7ylishGLnpOqI4TpmIqFBplST7+/tjyJAhkMlk0NN7dwd2eno6AKBKlSrw9vbG4sWLtY9SA0NDQ9jb2+fab//+/ZDJZBg/fryyzcjICJ988gmuXr2KFy9eKNt9fX0hhND4s3DhQgBAUFAQTE1NMXDgQMhkMjRo0ACtWrXCxYsXC38liYg0aOVigyOTW6OuowUA4NqzaPRf+zdS0uU6joyIqPTIVwm4rExMTGBg8O5qhpWVFQwNDREeHq6cXqFCBQQHB2sXoZbu3r2LGjVqwMLCQqW9efPmAN6Vc3Nycsrz/GrUqIG3b9/i8OHD6N27NwICAnD58mV89tln2b4nIiICb968UWkLDAwEACQnJyM+Pj7Py6fiLykpSeVfKl2Ky/61kAGbh9fDt8ef4s+HbzCkiT3SkpOQlqzTsEq04rJvqfBx35ZeyclFd9LTKkmuWbMm/P39la8bNWqEHTt2YMSIEcjIyMCuXbtQuXJlrYPURnh4uMbxwpltr169ytf8LC0t8fvvv+PLL7/EiBEjYG1tjf/7v/9Dp06dsn3PmjVrlMNRsnrw4AHi4uLyFQOVDDdu3NB1CFSEisv+7WwOVKolgUPCE5w//0TX4ZQKxWXfUuHjvi19nj9/XmTz1ipJ7tevH1auXImff/4ZhoaG+Prrr9GnTx9YWVlBIpEgKSkJmzdvLqxYCyQ5ORmGhoZq7UZGRsrp+dWlSxd06dIlz/29vb0xaNAglbbAwED07dsX9evXR5MmTfIdAxVfSUlJuHHjBpo3bw5TU1Ndh0OFrDju3w5ZXofFpuCXc8H4pqsrypnoa3wPqSuO+5YKB/dt6VWU94RplSTPmDEDM2bMUL7u2bMnLly4gAMHDkAmk6FHjx5o37691kFqw9jYGKmp6je0pKSkKKcXNTs7O9jZ2WmcZmxsrDYUhEoHU1NT7ttSrLju3+Q0Of5z8B8EhMfD/98krB/phnoVLXUdVolSXPctaY/7tvQpyjxOqyRZkzZt2qBNmzaFPdsCc3BwwMuXL9XaM8dOOzo6fuiQiIiKlKudGQLC4/EyNhkD1/2NxQMaoE+jiroOi4ioRNGqukVwcDCOHj2a7fSjR48iJCREm0VorVGjRnjy5InazXHXr19XTiciKi2MDWRYOaQRZnevBakESElX4PM99/D9n/7IYD1lIqI80ypJnjFjBlauXJnt9NWrV+Orr77SZhFaGzhwIORyOTZs2KBsS01NxZYtW+Du7p6vyhZERCWBRCLB+LYu2Da2OSyN341J/vVyMLy23ERMUpqOoyMiKhm0Gm5x9epVTJs2LdvpHTt2xPLly7VZRI58fHwQGxurrFBx9OhRhIW9e0zrlClTYGlpCXd3dwwaNAizZs1CREQEXF1dsW3bNoSEhGDTpk1FFhsRka61qW6Lo5M9MH7HLTz6NwG+gZHovdoXm0c3Q/UK5roOj4ioWNMqSY6JiYG5efYnWjMzM0RFRWmziBz9/PPPCA0NVb4+cOAADhw4AAAYMWIELC3f3ayyfft2zJkzBzt27EBMTAwaNGiAY8eOoW3btkUWGxFRcVC5vAkOeLfCzP338ef9cKSmK5RXl4mIKHtaJcmVK1fGlStXMHHiRI3TL1++jEqVKmmziBzldbyzkZERlixZkuPjq4mISisTAz34DG2M+hUt0ayKNewsjHQdEhFRsafVmOShQ4di9+7dWLlyJRSK/90QIpfLsWLFCuzduxfDhg3TOkgiItKORCLBZ+1c4OZcTqX96D+vEPuW45SJiLLS6kryrFmz4Ovri2nTpuH7779HzZo1AQCPHz/Gmzdv4Onpia+//rpQAiUiosJ17tFrTN1zF07lTLBhlBtq2bN+LBFRJq2uJBsaGuLUqVPYtGkTmjdvjsjISERGRqJ58+bYvHkzzpw5o/Fpd0REpHsn/V5DCOB59Fv0X/M3jj8I13VIRETFhtYPE5FKpRgzZgzGjBlTGPEQEdEH8uOA+qhc3gQ/n3qMt2lyeP92B96eLvjPRzUhk0p0HR4RkU5pdSWZiIhKLolEgkntXbHZqxnMjd5dM1lzIQifbLuJuLfpOo6OiEi38nUluX379pBKpTh58iT09PTQoUOHXN8jkUhw9uzZAgdIRERFq31NOxyZ7IHx22/haUQiLjx+gz6rfbFhVFPUYD1lIiqj8nUlWQihUsVCoVBACJHjz/v9iYioeKpqY4qDk1qjS90KAICQqLf443aYjqMiItKdfF1JvnDhQo6viYio5DIz1MPa4W5YcyEQfwdFYUaXmroOiYhIZ7S+cY+IiEoPqVSCyR2qY6Knq8rNe3HJ78Yo82l9RFRWaJUkP3/+PMfpEokERkZGsLGxgUTCO6WJiEqK9xNkuUJg2p67CIl6i19HucHVjuOUiaj00ypJrlKlSp6SXyMjI7Rp0wZz5sxB69attVkkERF9YEf+eYnzj98AAPqu/htLBzdEl7r2Oo6KiKhoaZUkb9q0CStXrsSLFy8wfPhwuLq6AgCePn2KXbt2wdnZGWPGjEFgYCB27tyJDh064K+//kL79u0LJXgiIip6fRpWRGjUWyw/8xSJqRmYsOM2pnasjmkdq0PKespEVEpplSS/evUKaWlpCAwMhJWVlcq0+fPnw8PDA8nJyVi+fDnmzJkDNzc3LFiwgEkyEVEJIpVKMK1TDdR1tMT0vfeQmJqBlWefwv9VHJZ93AgWRhynTESlj1YPE1m3bh3GjRunliADgLW1NcaNGwcfHx8AQPny5TF27Fjcvn1bm0USEZGOdK5TAYcmtUY1G1MAwJmACPRdfQWBEYk6joyIqPBplSRHRUXh7du32U5PSkrCmzdvlK/t7e0hhNBmkUREpEOudmY4NLk1OtayAwA8e5OEYb9eQ0q6XMeREREVLq2S5GbNmmHFihV48OCB2rT79+9j1apVaN68ubItICAAlSpV0maRRESkYxZG+vh1VFNM7eAKiQSY26sOjPRlug6LiKhQaTUmedWqVWjfvj0aN26Mli1bKm/cCwwMxNWrV2FhYfH/7d17XFR1/j/w18wAMwM4XBQFlIuKeENUNEgkvKwZX7yWYpqYuBpuotZ2sTUr8VLU6s+NRCs3Fy0zU1JTM81LfgtFwLwrK2iCCih4ARyEgRnO9w9zfg0XuXNmhtfz8TiPdj7nzJkX89nPg7eHz/kcfPLJJwCA0tJSHDlyBBMnTmx8aiIiEpVUKsFrI7tjTF9XdKv06GpBELjsJxGZvEYVyb6+vjh37hw+/PBD7N+/H6mpqQAADw8PzJkzBwsWLNBfOVYoFDh16lTjExMRkdGoXCBfyCnEP747h9jJ/dDFyVakVEREjdfoJ+65urrqrxYTEVHrVfigHJFf/obsghKMizuK2Cn9MLxHB7FjERE1SKPmJP+ZWq1GWloa0tLSoFbzTmciotamjcICz/l1BADc12gxc+MJrD6UgYoK3rBNRKan0UVyamoqhg0bBgcHB/j4+MDHxwcODg4YPnw4Tpw40RQZiYjIBEilErw+sjs+C/eDtZUMggD8vwPpmPP1Sag1WrHjERHVS6OmWyQnJ2Po0KGwsrLCrFmz0LNnTwAPV7H45ptvEBwcjCNHjhiscEFEROYtxMcFndvZIvKrE8i68wD7LtzElTVqrHtxIDr/scYyEZGxa1SRvGjRInTs2BGJiYlwdnY22BcdHY3Bgwdj0aJFOHDgQKNCEhGRaenu3Aa7ooIwf8sp/G96PjLy1Bgbl4gv/+qP/u4OYscjIqpVo6ZbJCcnY/bs2VUKZADo0KEDIiMjcfz48cZ8BBERmSg7a0v8J+IJvDy0KwDAqY0cXdtzxQsiMg2NupIslUqh1dY8z0yn00EqbbJ7A4mIyMTIpBK8FdIDPq526O7cBiqFpdiRiIjqpFEVbGBgINasWYOsrKwq+65du4a1a9di8ODBjfkIIiIyA6N8XeBV6SryZ/97BVl3ikVKRET0eI26kvzBBx8gODgYPXr0wLPPPgtvb28AwKVLl/D999/DwsICMTExTRKUiIjMx9YT1/Hhj//F2p8vY/ULfhji7SR2JCIiA40qkvv374/k5GQsWrQIu3btwoMHDwAA1tbWCAkJwfLly9GrV68mCUpERObj+t2Hvy+KSrWYEZ+CN5/pgb8N6cLHWROR0Wj0E/d69eqFHTt2oKKiAvn5+QAAJycnSKVSFBcXIycnB66uro0OSkRE5uP1kd3RrUMbLEg4g9LyCny07784n1OIFRN9YW3V6F9NRESN1mR31UmlUnTo0AEdOnTQ36z38ccfw83Nrak+goiIzMjYvq7Y/vJgdHJQAgB+OJuL59Yew7U7D0RORkTUhEUyERFRffVyVWH33CAM9moLAPjvzfsYE5eIXzPyRU5GRK0di2QiIhKVg40VNs7wx0tPdQYAFJaU4+yNQpFTEVFrx4lfREQkOguZFItG9YJPRzv8kn4bc/54AAkRkVhYJBMRkdEY168jxvXraNB2s7AU5boKuDlai5SKiFqjehfJJ0+erPOxOTk59T09ERGRXmm5DrM3/YZrd4qx5gU/BHq1EzsSEbUS9S6SBw4cWOd1LAVB4JqXRETUYAfTbuHM9QIAQPj6ZLwd2hMzgzrzdwsRNbt6F8nx8fHNkYOIiKiK0b6uKNNWYOH2c9BoK7D8hzSczy5EzHO+UFrJxI5HRGas3kXy9OnTmyMHERFRtZ7z6wTvDm0Q+eUJ5BSWYufpHGTkqfH5tAHo5MB5ykTUPLgEHBERGT2fjnbYNS8IAZ0dAQAXcoowNu4ojl25LXIyIjJXLJKJiMgktLOVY9OsAEQEegIA7haX4ZUtp1FSphM3GBGZJRbJRERkMixlUkSP7Y2VYX1hYyVD7OR+nJtMRM2C6yQTEZHJmTigE/7Soz0cbKwM2kvLdVBYsmgmosbjlWQiIjJJlQvkY5dvI/ifP+P473dESkRE5oRFMhERmbyCB2WI2nwSefc1CP8iGRuPZUIQBLFjEZEJY5FMREQmz97aCgtDe8JKJoW2QsDiXRfwZsJZlJbzpj4iahgWyUREZBYmDXTDt7OfRAeVHACQ8NsNPP95EnILS0RORkSmiEUyERGZjf7uDtg9LwgDPRwAAGduFGLM6kSkXL0rcjIiMjUskomIyKy0b6PA5peexNQAdwDAbXUZXvj3cT54hIjqhUUyERGZHSsLKd5/tg9inusDS5kEfTrZYcAfV5eJiOqC6yQTEZHZmuLvju7ObdDRXgm5BddPJqK645VkIiIya37uDuigUuhfC4KAd3aew4lMzlMmopqxSCYiolZl7ZEr2HT8Gqb8+zi+Ts4SOw4RGSkWyURE1Ko42ljBUiZBuU7Aoh3nsXD7WWi0XE+ZiAyxSCYiolZlir87tkQ+Cac2D9dT/iblOqasO468+xqRkxGRMWGRTERErc4AD0fsmReEfm72AICT1wowJf40rt4XNxcRGQ8WyURE1Cp1UCnw7ewn8fxANwBAvroMqy/IsOPMTZGTEZExYJFMREStltxChg8n9MGy8T6wkEqgEySQiB2KiIwCi+QafPrpp/Dz84OlpSWio6MN9uXn52PUqFGwsbFB9+7dcejQIXFCEhFRo0kkEkx70gNfTO2DZzpVYHxfZ7EjEZER4MNEauDi4oLo6Ghs3ry5yr6oqCg4OzsjPz8fBw8exKRJk5CRkQFHR0cRkhIRUVPwc7NDoVuFQdvlvPu4X6pFf3c+rY+oteGV5BqMHz8eY8eOhb29vUG7Wq3Gzp07sWTJElhbW2Ps2LHo06cPvv/+e3GCEhFRsygqLUfkl7/h+c+PY2vqdbHjEFELM+oiWa1WY/HixQgJCYGjoyMkEgk2bNhQ7bEajQZvvfUWXF1doVQqERAQgAMHDjR5poyMDNja2qJTp076tj59+uDChQtN/llERCSe1Kt3ce3uA5TpKrDgu7N4d+d5lGkran8jEZkFoy6Sb9++jaVLlyItLQ19+/Z97LERERFYtWoVpk6ditjYWMhkMoSGhiIxMbFJM6nVaqhUKoM2lUoFtVrdpJ9DRETi+kvPDvh6VgDa2lgBAL46noWpXxxHPtdTJmoVjLpIdnFxQW5uLrKysrBixYoaj0tJScGWLVsQExODFStWIDIyEocPH4aHhwcWLFhgcGxQUBAkEkm12zvvvFNrJltbWxQVFRm0FRUVwdbWtmE/JBERGa2ALm2xe14QfDvZAQBSM+9hzOpEnLleIG4wImp2Rl0ky+VyODvXfpdxQkICZDIZIiMj9W0KhQIzZ85EUlISrl///3PJEhMTIQhCtdvy5ctr/axu3bpBrVYjOztb33b+/Hn07t27nj8dERGZAld7JbbOHoQJfg+n2d0sKkXY50nYdoLzlInMmVmsbnHq1Cl4e3tXmQbh7+8PADh9+jTc3NzqdU6tVgutVgudTgetVovS0lJYWlrC1tYW48aNw+LFi7F69WocOnQIZ8+exbhx42o8V15eHvLz8w3aLl++DAAoKSmpcmWaTFtxcbHBf8m8sH/NV219+94znvBqa4WVB39HmbYC/zpwCcGdbaG0lLVkTGoAjlvzVVJS0mznNosiOTc3Fy4uLlXaH7Xl5OTU+5zLly/HkiVL9K/ff/99xMfHIyIiAmvXrsX06dPRtm1bdOrUCd9+++1jl39bu3atwbn+7Ny5cygsLKx3PjJ+KSkpYkegZsT+NV+P61tXAC/3lGDzFSnCPYpxPPGXlgtGjcZxa36uXbvWbOc2iyK5pKQEcrm8SrtCodDvr6/o6OgqDxF5xMnJCXv37q3zuebMmYOwsDCDtsuXL2P8+PHo06cP/Pz86p2PjFdxcTFSUlLg7+8PGxsbseNQE2P/mq+69u0wADN0FbCUGc5YzFeXwcnWqplTUkNw3JqvkydPNtu5zaJIViqV0Giq3m1cWlqq3y+m9u3bo3379tXuUyqVVaaJkHmwsbFh35ox9q/5akjf7j6Tgze2nUHMc33wnF+n2t9AouC4NT/NWeMZ9Y17dfVoFYzKHrW5urq2dCQiImolCh+UY+H2c9BoK/Da1jNYuvsitDqup0xk6syiSO7Xrx/S09Or3ACXnJys309ERNQc7KwtsW7aADhYWwIA/nP0KqatT8EdNddTJjJlZlEkT5w4ETqdDuvWrdO3aTQaxMfHIyAgoN4rWxAREdVHoFc77JobhF4uD/+Un/T7HYyNO4rz2bwxm8hUGf2c5Li4OBQUFOhXqNi9ezdu3LgBAJg3bx7s7OwQEBCAsLAwLFy4EHl5efDy8sLGjRuRmZmJ9evXixmfiIhaCTdHa3z3ciDe+u4sdp3JQXZBCSZ+dgwfTfDFuH4dxY5HRPVk9EXyypUrkZWVpX+9fft2bN++HQAQHh4OO7uHT0H68ssv8e677+Krr77CvXv34Ovriz179iA4OFiU3ERE1PoorWSIndwPfTraIebHNJSWV+CVLadhp7TE0O7V38BNRMbJ6IvkzMzMOh2nUCiwYsWKxz6+moiIqLlJJBK8FNwFPV1UmPvNSfi5OyC4m5PYsYionoy+SCYiIjJFQd3aYffcIKiUlpBKJfp2QRAgkUge804iMgZmceMeERGRMXJztIad0lL/ulxXgRkbUrHrTP2fBEtELYtXkomIiFrI+z+k4cilfBy5lI8L2YVYENIDMimvKhMZI15JJiIiaiHDerSHSvHw+tTnv/yOiPgUFDwoEzkVEVWHRTIREVELGeLthN3zgtC9QxsAwK8ZtzEmLhFpuUW1vJOIWhqLZCIiohbk0dYG2+cEIrSPMwDg+t0SPLf2GPac5TxlImPCIpmIiKiF2cgtsOYFPywI6Q6JBCgp12Hu5lNYfShD7GhE9AcWyURERCKQSCSYM9QL/4l4AiqFBSQSwKejndixiOgPXN2CiIhIRMO6t8euuUE4/vsdDOvBp/IRGQsWyURERCLzbGcDz3Y2Bm2/Zd3DraJShPZxESkVUevGIpmIiMjI3Coqxd82/Yb8+xpEDeuK157uzvWUiVoY5yQTEREZmczbxSgt1wEA1vx8BTM3pqKwpFzkVEStC4tkIiIiIxPQpS12zQ2CV3tbAMCRS/kYv+YoMm7dFzkZUevBIpmIiMgIdW5ng51RgzGyVwcAwNXbxRi/5ij2nb8pcjKi1oFFMhERkZGylVvgs/ABeO1pbwBAcZkOf9v0G1b9dAkVFYLI6YjMG4tkIiIiIyaVSjD/L93wxYsD0Ub+8H77g2l5KNNViJyMyLyxSCYiIjIBI3p1wM65g/GEpwM+nzYACkuZ2JGIzBqLZCIiIhPR1ckWW2cPgpujtb5NEAScu1EoYioi88QimYiIyIRIJIbrJccfzcSYuET860A65ykTNSEWyURERCaqqLQcnxzOAADEHspA5Fe/4X4p11MmagoskomIiEyUSmGJhL8Fossfj7Q+mHYL49ccxZV8tcjJiEwfi2QiIiIT5tXeFjvnDsZferQHAFzJL8b4uKM4lHZL5GREpo1FMhERkYlTKSzx7xcHYv5wLwDAfY0WMzeewCeHMjhPmaiBWCQTERGZAalUgtdGdsdn4QNgY/VwebhVB9JxJD1P5GREpslC7ABERETUdEJ8nNHVaTBe+vIE/Ds7Ylj39mJHIjJJLJKJiIjMTLcObfD93CDILaQGS8ZptDrILfgQEqK64HQLIiIiM2SntDR4Kl+xRovxa44h7nAGBIHzlIlqwyvJRERErcB7319AWm4R0nKLcCGnCCvD+sJGzjKAqCa8kkxERNQKRAZ3gfsfj7P+8fxNPLv2KDJvF4ucish4sUgmIiJqBbo7t8GuuYMR7O0EAEi/pcbYuEQcucTVL4iqwyKZiIiolbC3tkJ8xBN4eWhXAEBRqRYzNqRi7ZHLnKdMVAmLZCIiolZEJpXgrZAeiHuhP5SWMggC8M99l7Bk90WxoxEZFRbJRERErdBoX1dsnxMIN0clrGRSjOvnKnYkIqPC21qJiIhaqZ4uKuyKCsLpGwXo7+4gdhwio8IryURERK2Yg41VlafyHbx4C5//7xXOU6ZWjVeSiYiISO9ynhqvfnsaao0W53OK8NGEPrC2YrlArQ+vJBMREZFeua4C9taWAIDdZ3Iw4dMkXL/7QORURC2PRTIRERHp9XRRYdfcIAR2bQsASMstwpi4RCRm3BY5GVHLYpFMREREBhxtrPDlX/0xK6gzAKDgQTle/E8y/v3L75ynTK0Gi2QiIiKqwkImxTuje+Hj5/tBbiFFhQC8vzcNr2w5jdJyndjxiJodi2QiIiKq0fj+HfHdy4HoaK8EANxWa2AhlYiciqj5sUgmIiKix/LpaIddcwfj2f4dEfeCHyxkLB/I/PH/5URERFSrtrZy/Ov5fnC0sdK36SoE/Hgul/OUySyxSCYiIqIGWbH/El7++iRe23qG85TJ7LBIJiIionorKi3H7jM5AIAdp7Ix8bNjyC4oETkVUdNhkUxERET1plJY4vu5gxHQ2REAcD67CGNWJyLpyh2RkxE1DRbJRERE1CDtbOXYNCsAEYGeAIC7xWUIX5+M+KNXOU+ZTB6LZCIiImowS5kU0WN7Y8VEX1hZSKGrELBk90W8vo3zlMm0sUgmIiKiRgsb6IZtswfBWaUAAGw/mY3kq3dFTkXUcCySiYiIqEn0dbPH7nlBeMLTAVHDumKIt5PYkYgazELsAERERGQ+nNrI8fWsJyGr9FS+O2oNHG2sIJHwaX1kGnglmYiIiJqUlYXUoEi+o9ZgbNxRLEg4y3nKZDJYJBMREVGzWrL7IrILSrDttxt4ft1x5BZyPWUyfiySiYiIqFm9M7onBng4AADOXC/AmNVHkZrJm/rIuLFIJiIiombVvo0C37z0JKYGuAMAbqs1mLLuODYdz+J6ymS0WCQTERFRs7OykOL9Z/sg5rk+sJRJoK0Q8M7O81i4/Rw0Ws5TJuPDIpmIiIhazBR/d2yJHIT2beQAgC2p17Fw+zmRUxFVxSK5Bp9++in8/PxgaWmJ6OhofbtGo8Ff//pXuLu7Q6VS4cknn0RSUpJ4QYmIiEzMAA8H7J4XBD93e7SRWyBqmJfYkYiq4DrJNXBxcUF0dDQ2b95s0K7VauHp6YnExER06tQJW7duxZgxY5CZmQlbW1uR0hIREZmWDioFvol8Ehm31OjqxN+fZHx4JbkG48ePx9ixY2Fvb2/QbmNjg/feew/u7u6QSqWYPHkyrKyscOnSJXGCEhERmSi5hQw+He0M2rakXOM8ZTIKRl0kq9VqLF68GCEhIXB0dIREIsGGDRuqPVaj0eCtt96Cq6srlEolAgICcODAgWbPmJGRgbt378LLi38qIiIiaoyT1+7hve8v4JuUa5iy7jjyikrFjkStmFEXybdv38bSpUuRlpaGvn37PvbYiIgIrFq1ClOnTkVsbCxkMhlCQ0ORmJjYbPlKSkoQHh6OhQsXws7OrvY3EBERUY1c7ZTo6aoCAJy8VoDRqxNx8to9kVNRa2XURbKLiwtyc3ORlZWFFStW1HhcSkoKtmzZgpiYGKxYsQKRkZE4fPgwPDw8sGDBAoNjg4KCIJFIqt3eeeedOmcrLy9HWFgYvLy88N577zX4ZyQiIqKHnO0U+DbySUwa2AkAkHdfg8mfH8eWlGsiJ6PWyKiLZLlcDmdn51qPS0hIgEwmQ2RkpL5NoVBg5syZSEpKwvXr1/XtiYmJEASh2m358uV1ylVRUYFp06ZBIpFg48aNkEgktb+JiIiIaqWwlOGjCb5YNq43LKQSlOkq8I/t5/DOznMo01aIHY9aEbNY3eLUqVPw9vaGSqUyaPf39wcAnD59Gm5ubvU6p1arhVarhU6ng1arRWlpKSwtLSGTyTB79mzk5uZi//79sLCo/SvMy8tDfn6+QdvFixcN/kvmo6SkBNeuXcPJkyehVCrFjkNNjP1rvti3xsVbCrztb4UVB39HYYkW/9mdhaTUU3g3xAtKK1m9zsW+NV+P6iiNRtP0JxdMRGpqqgBAiI+Pr7Kvd+/ewvDhw6u0X7hwQQAgfPbZZ/X+vMWLFwsADLb4+HghMzNTACAoFArBxsZGv/3yyy/1Ohc3bty4cePGjRu3ptk2bNhQ71qvNmZxJbmkpARyubxKu0Kh0O+vr+joaIOHiPyZUM/nzM+ZMwdhYWEGbadPn0Z4eDi2bt2KXr161TsfGa/Lly9j/Pjx2LlzJ1c9MUPsX/PFvjVf7FvzdfHiRUyaNAne3t5Nfm6zKJKVSmW1l9lLS0v1+8XUvn17tG/fvtp9vXr1Qu/evVs4EbUELy8v9q0ZY/+aL/at+WLfmq/KU26bglHfuFdXj1bBqOxRm6ura0tHIiIiIiITZhZFcr9+/ZCeno6ioiKD9uTkZP1+IiIiIqK6MosieeLEidDpdFi3bp2+TaPRID4+HgEBAfVe2YKIiIiIWjejn5McFxeHgoIC5OTkAAB2796NGzduAADmzZsHOzs7BAQEICwsDAsXLkReXh68vLywceNGZGZmYv369WLGr5GTkxMWL14MJycnsaNQE2Pfmjf2r/li35ov9q35as6+lQj1XaqhhXl6eiIrK6vafVevXoWnpyeAhzfpvfvuu9i0aRPu3bsHX19fLFu2DM8880wLpiUiIiIic2D0RTIRERERUUsziznJRERERERNiUUyEREREVElLJKJiIiIiCphkUxEREREVAmL5Bam0Wjw1ltvwdXVFUqlEgEBAThw4IDYsaiRjhw5AolEUu12/PhxseNRPajVaixevBghISFwdHSERCLBhg0bqj02LS0NISEhsLW1haOjI6ZNm4b8/PyWDUx1Vte+jYiIqHYs9+jRo+VDU61SU1Mxd+5c9O7dGzY2NnB3d8ekSZOQnp5e5ViOWdNS175trjFr9Oskm5uIiAgkJCTg1VdfRbdu3bBhwwaEhobi559/RlBQkNjxqJHmz5+PJ554wqDNy8tLpDTUELdv38bSpUvh7u6Ovn374siRI9Ued+PGDQQHB8POzg4ffPAB1Go1Vq5ciXPnziElJQVWVlYtG5xqVde+BQC5XI4vvvjCoM3Ozq6ZE1JDfPTRRzh69CjCwsLg6+uLmzdvIi4uDn5+fjh+/Dh8fHwAcMyaorr2LdBMY1agFpOcnCwAEFasWKFvKykpEbp27SoMGjRIxGTUWD///LMAQNi2bZvYUaiRSktLhdzcXEEQBCE1NVUAIMTHx1c57uWXXxaUSqWQlZWlbztw4IAAQPj8889bKi7VQ137dvr06YKNjU0Lp6OGOnr0qKDRaAza0tPTBblcLkydOlXfxjFreurat801ZjndogUlJCRAJpMhMjJS36ZQKDBz5kwkJSXh+vXrIqajpnL//n1otVqxY1ADyeVyODs713rcd999h9GjR8Pd3V3fNmLECHh7e2Pr1q3NGZEaqK59+4hOp0NRUVEzJqKmEBgYWOUqcLdu3dC7d2+kpaXp2zhmTU9d+/aRph6zLJJb0KlTp+Dt7Q2VSmXQ7u/vDwA4ffq0CKmoKc2YMQMqlQoKhQLDhg3DiRMnxI5EzSA7Oxt5eXkYOHBglX3+/v44deqUCKmoKT148AAqlQp2dnZwdHREVFQU1Gq12LGojgRBwK1bt9CuXTsAHLPmpHLfPtIcY5ZzkltQbm4uXFxcqrQ/asvJyWnpSNRErKysMGHCBISGhqJdu3a4ePEiVq5ciaeeegrHjh1D//79xY5ITSg3NxcAahzPd+/ehUajgVwub+lo1ARcXFywYMEC+Pn5oaKiAvv27cPatWtx5swZHDlyBBYW/NVp7L7++mtkZ2dj6dKlADhmzUnlvgWab8xypLegkpKSagegQqHQ7yfTFBgYiMDAQP3rsWPHYuLEifD19cXChQuxb98+EdNRU3s0Vmsbz/yFa5piYmIMXk+ePBne3t5YtGgREhISMHnyZJGSUV3897//RVRUFAYNGoTp06cD4Jg1F9X1LdB8Y5bTLVqQUqmERqOp0l5aWqrfT+bDy8sL48aNw88//wydTid2HGpCj8Yqx3Pr8fe//x1SqRQHDx4UOwo9xs2bNzFq1CjY2dnp7wMCOGbNQU19W5OmGLO8ktyCXFxckJ2dXaX90Z+BXF1dWzoSNTM3NzeUlZWhuLi4ylx0Ml2P/mT7aOz+WW5uLhwdHXlFyswolUq0bdsWd+/eFTsK1aCwsBD/8z//g4KCAvz6668Gv1M5Zk3b4/q2Jk0xZnkluQX169cP6enpVe68TE5O1u8n8/L7779DoVDA1tZW7CjUhDp27AgnJ6dqb8xMSUnhWDZD9+/fx+3bt+Hk5CR2FKpGaWkpxowZg/T0dOzZswe9evUy2M8xa7pq69uaNMWYZZHcgiZOnAidTod169bp2zQaDeLj4xEQEAA3NzcR01FjVPfEpjNnzmDXrl0YOXIkpFIONXMzYcIE7Nmzx2DpxkOHDiE9PR1hYWEiJqPGKC0txf3796u0L1u2DIIgICQkRIRU9Dg6nQ7PP/88kpKSsG3bNgwaNKja4zhmTU9d+rY5x6xEEAShwe+meps0aRJ27NiBv//97/Dy8sLGjRuRkpKCQ4cOITg4WOx41EDDhw+HUqlEYGAg2rdvj4sXL2LdunWwtLREUlISevbsKXZEqoe4uDgUFBQgJycHn376KZ577jn9CiXz5s2DnZ0drl+/jv79+8Pe3h6vvPIK1Go1VqxYgU6dOiE1NZV/ujVStfXtvXv30L9/f0yZMkX/SNv9+/dj7969CAkJwQ8//MB/9BqZV199FbGxsRgzZgwmTZpUZX94eDgAcMyaoLr0bWZmZvON2SZ/PAk9VklJifDGG28Izs7OglwuF5544glh3759YseiRoqNjRX8/f0FR0dHwcLCQnBxcRHCw8OFjIwMsaNRA3h4eAgAqt2uXr2qP+78+fPCyJEjBWtra8He3l6YOnWqcPPmTfGCU61q69t79+4J4eHhgpeXl2BtbS3I5XKhd+/ewgcffCCUlZWJHZ+qMWTIkBr7tHKZwzFrWurSt805ZnklmYiIiIioEv7NiIiIiIioEhbJRERERESVsEgmIiIiIqqERTIRERERUSUskomIiIiIKmGRTERERERUCYtkIiIiIqJKWCQTEREREVXCIpmIiIiIqBIWyURERERElbBIJiIycp6enoiIiGj1GYiIWhKLZCKiBrpy5Qpmz56NLl26QKFQQKVSYfDgwYiNjUVJSYnY8Wo0dOhQSCQSSCQSSKVSqFQqdO/eHdOmTcOBAwea7HP27t2L6OjoJjsfEVFLshA7ABGRKfrhhx8QFhYGuVyOF198ET4+PigrK0NiYiLefPNNXLhwAevWrRM7Zo06deqEmJgYAEBxcTEuX76M7du3Y9OmTZg0aRI2bdoES0tL/fGXLl2CVFq/6yp79+7FmjVrWCgTkUlikUxEVE9Xr17F5MmT4eHhgcOHD8PFxUW/LyoqCpcvX8YPP/wgYsLa2dnZITw83KDtww8/xPz587F27Vp4enrio48+0u+Ty+UtHZGISFScbkFEVE///Oc/oVarsX79eoMC+REvLy+88sor+tdarRbLli1D165dIZfL4enpibfffhsajcbgfYIgYPny5ejUqROsra0xbNgwXLhwodoMBQUFePXVV+Hm5ga5XA4vLy989NFHqKioaPDPJZPJ8Mknn6BXr16Ii4tDYWGhfl/lOcnl5eVYsmQJunXrBoVCgbZt2yIoKEg/XSMiIgJr1qwBAP3UDolEon//ypUrERgYiLZt20KpVGLAgAFISEiokkkikWDu3LnYuXMnfHx8IJfL0bt3b+zbt6/KsdnZ2Zg5cyZcXV0hl8vRuXNnvPzyyygrK2vW742IzBOvJBMR1dPu3bvRpUsXBAYG1un4WbNmYePGjZg4cSJef/11JCcnIyYmBmlpadixY4f+uPfeew/Lly9HaGgoQkNDcfLkSYwcOdKgyAOABw8eYMiQIcjOzsbs2bPh7u6OY8eOYeHChcjNzcXHH3/c4J9NJpNhypQpePfdd5GYmIhRo0ZVe1x0dDRiYmIwa9Ys+Pv7o6ioCCdOnMDJkyfx9NNPY/bs2cjJycGBAwfw1VdfVXl/bGwsxo4di6lTp6KsrAxbtmxBWFgY9uzZU+UzExMTsX37dsyZMwdt2rTBJ598ggkTJuDatWto27YtACAnJwf+/v4oKChAZGQkevTogezsbCQkJODBgwewsrJq1u+NiMyQQEREdVZYWCgAEMaNG1en40+fPi0AEGbNmmXQ/sYbbwgAhMOHDwuCIAh5eXmClZWVMGrUKKGiokJ/3Ntvvy0AEKZPn65vW7ZsmWBjYyOkp6cbnPMf//iHIJPJhGvXrj0205AhQ4TevXvXuH/Hjh0CACE2Nlbf5uHhYZChb9++wqhRox77OVFRUUJNv2YePHhg8LqsrEzw8fERhg8fbtAOQLCyshIuX76sbztz5owAQFi9erW+7cUXXxSkUqmQmppa5bMefZ+N/d6IqHXhdAsionooKioCALRp06ZOx+/duxcA8Nprrxm0v/766wCgn7t88OBBlJWVYd68eQbTEl599dUq59y2bRueeuopODg44Pbt2/ptxIgR0Ol0+OWXX+r9c/2Zra0tAOD+/fs1HmNvb48LFy4gIyOjQZ+hVCr1//vevXsoLCzEU089hZMnT1Y5dsSIEejatav+ta+vL1QqFX7//XcAQEVFBXbu3IkxY8Zg4MCBVd7/6Pts7u+NiMwLp1sQEdWDSqUC8PgC8s+ysrIglUrh5eVl0O7s7Ax7e3tkZWXpjwOAbt26GRzn5OQEBwcHg7aMjAycPXsWTk5O1X5mXl5enbLVRK1WA3j8PwSWLl2KcePGwdvbGz4+PggJCcG0adPg6+tbp8/Ys2cPli9fjtOnTxvMzf7zPxAecXd3r9Lm4OCAe/fuAQDy8/NRVFQEHx+fx35mc39vRGReWCQTEdWDSqWCq6srzp8/X6/3VVf8NVRFRQWefvppLFiwoNr93t7ejTr/o5+tcmH/Z8HBwbhy5Qq+//57/PTTT/jiiy/wr3/9C5999hlmzZr12PP/+uuvGDt2LIKDg7F27Vq4uLjA0tIS8fHx2Lx5c5XjZTJZtecRBKEeP1Xzf29EZF5YJBMR1dPo0aOxbt06JCUlYdCgQY891sPDAxUVFcjIyEDPnj317bdu3UJBQQE8PDz0xwEPr3Z26dJFf1x+fr7+iukjXbt2hVqtxogRI5rqR9LT6XTYvHkzrK2tERQU9NhjHR0dMWPGDMyYMQNqtRrBwcGIjo7WF8k1/cPgu+++g0KhwP79+w2WlouPj29QZicnJ6hUqlr/4dKc3xsRmR/OSSYiqqcFCxbAxsYGs2bNwq1bt6rsv3LlCmJjYwEAoaGhAFBl5YRVq1YBgH4lhxEjRsDS0hKrV682uEJa3YoLkyZNQlJSEvbv319lX0FBAbRabYN+Lp1Oh/nz5yMtLQ3z58/XTy2pzp07dwxe29rawsvLy2DqhI2NjT7Tn8lkMkgkEuh0On1bZmYmdu7c2aDcUqkU48ePx+7du3HixIkq+x99n831vRGReeKVZCKieuratSs2b96M559/Hj179jR44t6xY8ewbds2/ZrCffv2xfTp07Fu3ToUFBRgyJAhSElJwcaNGzF+/HgMGzYMwMOroW+88QZiYmIwevRohIaG4tSpU/jxxx/Rrl07g89/8803sWvXLowePRoREREYMGAAiouLce7cOSQkJCAzM7PKeyorLCzEpk2bADxcUu7RE/euXLmCyZMnY9myZY99f69evTB06FAMGDAAjo6OOHHiBBISEjB37lz9MQMGDAAAzJ8/H8888wxkMhkmT56MUaNGYdWqVQgJCcELL7yAvLw8rFmzBl5eXjh79my9+uKRDz74AD/99BOGDBmCyMhI9OzZE7m5udi2bRsSExNhb2/fJN8bEbUiIq+uQURkstLT04WXXnpJ8PT0FKysrIQ2bdoIgwcPFlavXi2UlpbqjysvLxeWLFkidO7cWbC0tBTc3NyEhQsXGhwjCIKg0+mEJUuWCC4uLoJSqRSGDh0qnD9/vsrya4IgCPfv3xcWLlwoeHl5CVZWVkK7du2EwMBAYeXKlUJZWdljcw8ZMkQAoN9sbW2Fbt26CeHh4cJPP/1U7XsqZ1i+fLng7+8v2NvbC0qlUujRo4fw/vvvG3y2VqsV5s2bJzg5OQkSicRgObj169cL3bp1E+RyudCjRw8hPj5eWLx4cZUl4wAIUVFRteYRBEHIysoSXnzxRcHJyUmQy+VCly5dhKioKEGj0TTJ90ZErYtEEOp55wMRERERkZnjnGQiIiIiokpYJBMRERERVcIimYiIiIioEhbJRERERESVsEgmIiIiIqqERTIRERERUSUskomIiIiIKmGRTERERERUCYtkIiIiIqJKWCQTEREREVXCIpmIiIiIqBIWyURERERElbBIJiIiIiKqhEUyEREREVEl/weBJe7PcnyBoAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "Hgh1I4Fefztj" + }, + "source": [ + "Yet another useful type of diagram, for understanding the structure of this circuit, is a \"detector slice diagram\".\n", + "A detslice diagram shows how the stabilizers checked by the circuit's detectors are changing over time.\n", + "If you look carefully you can see the stabilizers establspot that, halfway through the measurement cycle of the surface code, its state is actually temporarily an even larger surface code!\n", + "You can also see the stabilizers establish themselves at the beginning of the circuit, and drain away at the end." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "id": "BUFs-tWlfx_U", + "outputId": "cd940223-754c-4841-f168-fff8be898166" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_code_circuit.diagram(\"detslice-svg\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pWcO6j68-qOW" + }, + "source": [ + "There is also the diagram type `detslice-with-ops-svg`, which is a overlays the time slice and detslice diagrams. For example, `detslice-with-ops-svg` shows how the first round gradually projects the system into the surface code state." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aRPHBfk--qOW", + "outputId": "759ce9ba-6f21-4618-ee24-f31e5607ba0c" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "Tick 3\n", + "\n", + "Tick 4\n", + "\n", + "Tick 5\n", + "\n", + "Tick 6\n", + "\n", + "Tick 7\n", + "\n", + "Tick 8\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "R\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "MR\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "H\n", + "\n", + "Tick 0\n", + "\n", + "Tick 1\n", + "\n", + "Tick 2\n", + "\n", + "Tick 3\n", + "\n", + "Tick 4\n", + "\n", + "Tick 5\n", + "\n", + "Tick 6\n", + "\n", + "Tick 7\n", + "\n", + "Tick 8\n", + "\n", + "\n", + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_code_circuit.without_noise().diagram(\n", + " \"detslice-with-ops-svg\",\n", + " tick=range(0, 9),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K75kGz3IWYAW" + }, + "source": [ + "Notice that when you created this surface code circuit, you specified a lot more error parameters.\n", + "These parameters are adding full circuit noise, instead of just phenomenological noise.\n", + "Because the noise is richer, and because this is a quantum code instead of a classical code, the decoding problem is much harder and threshold is going to be noticeably lower.\n", + "Looking at the match graph, you can see `pymatching` has a much more complicated problem to solve than before!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "id": "VWqbGm3ygkkp", + "outputId": "d95d3bed-f7bf-4925-a0dc-2fecc2fb8e91" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0,0.400000005960464],\"min\":[-0.400000005960464,0,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0.400000005960464,0],\"min\":[-0.400000005960464,-0.400000005960464,0],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0,0.400000005960464],\"min\":[-0.400000005960464,0,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":9,\"max\":[0.400000005960464,0.400000005960464,0],\"min\":[-0.400000005960464,-0.400000005960464,0],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":4102,\"max\":[18.6666679382324,27.3704261779785,36.539981842041],\"min\":[-9.3704252243042,-9.3704252243042,-9.5399808883667],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":718,\"max\":[27.3704261779785,6,36.539981842041],\"min\":[-0.666666984558105,-0.666666984558105,-9.5399808883667],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":1,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":2,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":3,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":4,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":5,\"byteLength\":108,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":49224,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":7,\"byteLength\":8616,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+\"},{\"byteLength\":108,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA\"},{\"byteLength\":49224,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAQEEAAAAAo4uuwEYXXUG66ALBAAAAAAAAQEEAAAAAAADAQAAAwEAAAAAAAAAAAAAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAwEAAAAAAAABAQQAAQEEAAAAAAADAQAAAwEAAAAAAAADAQAAAwEAAAEBAAADAQAAAwEAAAAAAAADAQAAAwEAAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAAAAAAAAAAAAQEEAAEBAAADAQAAAwEAAAAAAAAAAAAAAQEEAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAAAAAACQQQAAwEAAAAAAAABAQQAAQEEAAAAAAACQQQAAwEAAAAAAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAAADAQAAAwEAAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAAAAAADAQAAAwEAAAEBAAACQQQAAwEAAAAAAAADAQAAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAAAAAACQQQAAwEAAAEBAAACQQQAAwEAAAAAAAACQQQAAwEAAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAAAAAABAQQAAQEEAAEBAAACQQQAAwEAAAAAAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAAAAo4uuwEYXXUG66ALBAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAQEEAAAAAgethQYHrYUHDoxjBAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBAAADAQAAAAAAAAMBAAADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAEBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAEBAAAAAAAAAQEEAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAADAQAAAAAAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAEBAAABAQQAAwEAAAMBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAACQQQAAwEAAAEBAAABAQQAAQEEAAEBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAACQQQAAwEAAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAACQQQAAwEAAAEBAAACQQQAAwEAAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAAAAAAAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAEBAAABAQQAAkEEAAEBAAADAQAAAQEEAAEBAAABAQQAAkEEAAEBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAADAQAAAAAAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAABAQQAAwEAAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAQEEAAEBAAADAQAAAwEAAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAABAQQAAQEEAAEBAAAAAAAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAAABAQQAAwEAAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAkEEAAEBAAABAQQAAkEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAAMBAAADAQAAAAAAAABBBAADAQAAAAAAAAMBAAADAQAAAAAAAABBBAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAEBA/VF4QASFy8CGcI3AAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAAAAAAAAQEEAAMBAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAwEAAAMBAAABAQQAAQEEAAMBAAADAQAAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAAMBAAAAAAAAAQEEAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAADAQAAAAAAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAAMBAAABAQQAAwEAAABBBAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAEBAkmJqQbp1VkD8scjAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAACQQQAAwEAAAMBAAABAQQAAQEEAAMBAAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAADAQAAAwEAAABBBAACQQQAAwEAAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAACQQQAAwEAAAMBAAACQQQAAwEAAABBBAACQQQAAwEAAAMBAAACQQQAAwEAAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAMBAAAAAAAAAQEEAABBBAAAAAAAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAAEBABIXLwIHrYUGGcI3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAMBAAABAQQAAkEEAAMBAAADAQAAAQEEAAMBAAABAQQAAkEEAAMBAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAADAQAAAAAAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAABAQQAAwEAAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAAADAQAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAAEBAunVWQJJiakH8scjAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AABAQQAAQEEAAEBAkmJqQZJiakH8scjAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAQEEAAMBAAADAQAAAwEAAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAABAQQAAQEEAAMBAAAAAAAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAAEBAkmJqQZJiakH8scjAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBAAABAQQAAwEAAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBAAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBAAABAQQAAkEEAABBBAABAQQAAkEEAAMBAAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAAEBAgethQUHhwkGGcI3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAMBATDxhQI0l7sAglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAMBAcbR3QT0uIUBoDC3AAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAACQQQAAwEAAAEBBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAMBAjSXuwO2wZ0EglE6+AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBBAABAQQAAkEEAABBBAADAQAAAQEEAABBBAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAMBAPS4hQHG0d0FoDC3AAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAMBAcbR3QXG0d0FoDC3AAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAMBA7bBnQWOJy0EglE6+AADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAABAQQAAwEAAABBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBAADAQAAAAAAAAEBBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAwEAAABBBAAAAAAAAQEEAABBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAABBBAAAAAAAAQEEAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAQEEAABBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAADAQAAAAAAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAABBBAABAQQAAwEAAAEBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AACQQQAAwEAAABBBAABAQQAAQEEAABBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAACQQQAAwEAAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAACQQQAAwEAAABBBAACQQQAAwEAAAEBBAACQQQAAwEAAABBBAACQQQAAwEAAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAABBBAABAQQAAkEEAABBBAADAQAAAQEEAABBBAABAQQAAkEEAABBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAADAQAAAAAAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAABAQQAAwEAAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAQEEAABBBAADAQAAAwEAAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAABAQQAAQEEAABBBAAAAAAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBBAABAQQAAwEAAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAkEEAABBBAABAQQAAkEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAEBBAADAQAAAAAAAAHBBAADAQAAAAAAAAEBBAADAQAAAAAAAAHBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAABBBkiRJQJIkCcFu25ZAAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAAAAAAAAQEEAAEBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAwEAAAEBBAABAQQAAQEEAAEBBAADAQAAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAEBBAAAAAAAAQEEAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAADAQAAAAAAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAEBBAABAQQAAwEAAAHBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAABBBQs6GQdwbkz/Iqdw/AABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAACQQQAAwEAAAEBBAABAQQAAQEEAAEBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAACQQQAAwEAAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAACQQQAAwEAAAEBBAACQQQAAwEAAAHBBAACQQQAAwEAAAEBBAACQQQAAwEAAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAAEBBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAABBBkiQJwdy2bUFu25ZAAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAAEBBAABAQQAAkEEAAEBBAADAQAAAQEEAAEBBAABAQQAAkEEAAEBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAADAQAAAAAAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAABAQQAAwEAAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAABBB3BuTP0LOhkHIqdw/AAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAQEEAAEBBAADAQAAAwEAAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAABAQQAAQEEAAEBBAAAAAAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAABBBQs6GQULOhkHIqdw/AABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBAABAQQAAwEAAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBAABAQQAAkEEAAHBBAABAQQAAkEEAAEBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAABBB3LZtQUmS1EFu25ZAAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAEBB/Bg4QEPtFcEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAEBBVlWVQbCqKr+qqgpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAEBBQ+0VwcH5cUEgAydBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAEBBsKoqv1ZVlUGqqgpBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAEBBVlWVQVZVlUGqqgpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAEBBwflxQaL22kEgAydBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBBAADAQAAAAAAAAJBBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAHBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAHBBAAAAAAAAQEEAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAADAQAAAAAAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAHBBAABAQQAAwEAAAJBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAACQQQAAwEAAAHBBAABAQQAAQEEAAHBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAACQQQAAwEAAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAACQQQAAwEAAAHBBAACQQQAAwEAAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAADAQAAAQEEAAHBBAABAQQAAkEEAAHBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAADAQAAAAAAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAABAQQAAwEAAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAQEEAAHBBAADAQAAAwEAAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAABAQQAAQEEAAHBBAAAAAAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBAABAQQAAwEAAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAkEEAAHBBAABAQQAAkEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAJBBAADAQAAAAAAAAKhBAADAQAAAAAAAAJBBAADAQAAAAAAAAKhBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAHBB/Bg4QEPtFcFwfoRBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAAAAAAAAQEEAAJBBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAwEAAAJBBAABAQQAAQEEAAJBBAADAQAAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAJBBAAAAAAAAQEEAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAADAQAAAAAAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAJBBAABAQQAAwEAAAKhBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAHBBVlWVQbCqKr+rqpJBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAACQQQAAwEAAAJBBAABAQQAAQEEAAJBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAACQQQAAwEAAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAACQQQAAwEAAAJBBAACQQQAAwEAAAKhBAACQQQAAwEAAAJBBAACQQQAAwEAAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAHBBQ+0VwcH5cUFwfoRBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAJBBAABAQQAAkEEAAJBBAADAQAAAQEEAAJBBAABAQQAAkEEAAJBBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAADAQAAAAAAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAABAQQAAwEAAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAHBBsKoqv1ZVlUGrqpJBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAQEEAAJBBAADAQAAAwEAAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAABAQQAAQEEAAJBBAAAAAAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAHBBVlWVQVZVlUGrqpJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBBAABAQQAAwEAAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBBAABAQQAAkEEAAKhBAABAQQAAkEEAAJBBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAHBBwflxQaL22kFwfoRBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAJBBkiRJQJIkCcEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAJBBQs6GQdwbkz9kNcpBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAJBBkiQJwdy2bUEkSbJBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAJBB3BuTP0LOhkFkNcpBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAJBBQs6GQULOhkFkNcpBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAJBB3LZtQUmS1EEkSbJBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBAADAQAAAAAAAAMBBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAwEAAAKhBAAAAAAAAQEEAAKhBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAKhBAAAAAAAAQEEAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAADAQAAAAAAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAKhBAABAQQAAwEAAAMBBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAACQQQAAwEAAAKhBAABAQQAAQEEAAKhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAACQQQAAwEAAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAACQQQAAwEAAAKhBAACQQQAAwEAAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAADAQAAAQEEAAKhBAABAQQAAkEEAAKhBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAADAQAAAAAAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAABAQQAAwEAAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAQEEAAKhBAADAQAAAwEAAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAABAQQAAQEEAAKhBAAAAAAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhBAABAQQAAwEAAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAkEEAAKhBAABAQQAAkEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBBAABAQQAAwEAAAMBBAADAQAAAAAAAAMBBAABAQQAAwEAAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAKhBTDxhQI0l7sAondlBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAAAAAAMBB/VF4QASFy8AiXPtBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAwEAAAMBBAAAAAAAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAwEAAAMBBAABAQQAAQEEAAMBBAADAQAAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAAAAAAAAQEEAANhBAADAQAAAwEAAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAADAQAAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBAADAQAAAQEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAKhBcbR3QT0uIUCNoe1BAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAAMBBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAACQQQAAwEAAAMBBAABAQQAAQEEAANhBAACQQQAAwEAAAMBBAABAQQAAQEEAANhBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAACQQQAAwEAAAMBBAACQQQAAwEAAANhBAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAMBBAAAAAAAAQEEAANhBAAAAAAAAQEEAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAAKhBjSXuwO2wZ0EondlBAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBAABAQQAAkEEAAMBBAADAQAAAQEEAAMBBAABAQQAAkEEAAMBBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAKhBPS4hQHG0d0GNoe1BAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAMBBAAAAAAAAQEEAANhBAABAQQAAQEEAAMBBAAAAAAAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAABAQQAAwEAAAMBBkmJqQbp1VkBAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAAMBBAABAQQAAQEEAANhBAABAQQAAQEEAAMBBAABAQQAAQEEAANhBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAQEEAAKhBcbR3QXG0d0GNoe1BAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAkEEAAKhB7bBnQWOJy0EondlBAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAkEEAAMBBgethQUHhwkEiXPtBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAANhBAADAQAAAwEAAANhBAAAAAAAAQEEAANhBAADAQAAAwEAAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAAAAAAAAQEEAAMBBBIXLwIHrYUEiXPtBAAAAAAAAQEEAANhBo4uuwEYXXUEuugxCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVCAADAQAAAwEAAANhBAABAQQAAQEEAANhBAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAADAQAAAQEEAAMBBunVWQJJiakFAFgVCAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAANhBAACQQQAAwEAAANhBAABAQQAAQEEAANhBgethQYHrYUHxKBJCAABAQQAAQEEAAMBBkmJqQZJiakFAFgVC\"},{\"byteLength\":8616,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAAAA/VF4QP1ReEDDoxjBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAAAA6aK7QXTRhUC66ALBAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAEBAunVWQLp1VkD8scjAAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAEBAQeHCQf1ReECGcI3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAMBAPS4hQD0uIUBoDC3AAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAMBAY4nLQUw8YUAglE6+AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAABBB3BuTP9wbkz/Iqdw/AADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAABBBSZLUQZIkSUBu25ZAAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAEBBsKoqv7CqKr+qqgpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAEBBovbaQfwYOEAgAydBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAHBBsKoqv7CqKr+rqpJBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAHBBovbaQfwYOEBwfoRBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAJBB3BuTP9wbkz9kNcpBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAJBBSZLUQZIkSUAkSbJBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAKhBPS4hQD0uIUCNoe1BAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAACQQQAAwEAAAKhBY4nLQUw8YUAondlBAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtBAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAANhB/VF4QP1ReEDxKBJCAADAQAAAwEAAAMBBunVWQLp1VkBAFgVCAACQQQAAwEAAANhB6aK7QXTRhUAuugxCAACQQQAAwEAAANhB6aK7QXTRhUAuugxCAACQQQAAwEAAAMBBQeHCQf1ReEAiXPtB\"}],\"materials\":[{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0.5,0.5,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0},\"material\":0,\"mode\":6},{\"attributes\":{\"POSITION\":1},\"material\":0,\"mode\":6},{\"attributes\":{\"POSITION\":2},\"material\":0,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":3},\"material\":1,\"mode\":6},{\"attributes\":{\"POSITION\":4},\"material\":1,\"mode\":6},{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":7},\"material\":3,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[0,12,0]},{\"mesh\":1,\"translation\":[6,6,0]},{\"mesh\":0,\"translation\":[12,12,0]},{\"mesh\":1,\"translation\":[18,6,0]},{\"mesh\":0,\"translation\":[6,0,3]},{\"mesh\":1,\"translation\":[6,6,3]},{\"mesh\":0,\"translation\":[12,6,3]},{\"mesh\":1,\"translation\":[18,6,3]},{\"mesh\":0,\"translation\":[0,12,3]},{\"mesh\":0,\"translation\":[6,12,3]},{\"mesh\":0,\"translation\":[12,12,3]},{\"mesh\":0,\"translation\":[12,18,3]},{\"mesh\":0,\"translation\":[6,0,6]},{\"mesh\":1,\"translation\":[6,6,6]},{\"mesh\":0,\"translation\":[12,6,6]},{\"mesh\":1,\"translation\":[18,6,6]},{\"mesh\":0,\"translation\":[0,12,6]},{\"mesh\":0,\"translation\":[6,12,6]},{\"mesh\":0,\"translation\":[12,12,6]},{\"mesh\":0,\"translation\":[12,18,6]},{\"mesh\":0,\"translation\":[6,0,9]},{\"mesh\":1,\"translation\":[6,6,9]},{\"mesh\":0,\"translation\":[12,6,9]},{\"mesh\":1,\"translation\":[18,6,9]},{\"mesh\":0,\"translation\":[0,12,9]},{\"mesh\":0,\"translation\":[6,12,9]},{\"mesh\":0,\"translation\":[12,12,9]},{\"mesh\":0,\"translation\":[12,18,9]},{\"mesh\":0,\"translation\":[6,0,12]},{\"mesh\":1,\"translation\":[6,6,12]},{\"mesh\":0,\"translation\":[12,6,12]},{\"mesh\":1,\"translation\":[18,6,12]},{\"mesh\":0,\"translation\":[0,12,12]},{\"mesh\":0,\"translation\":[6,12,12]},{\"mesh\":0,\"translation\":[12,12,12]},{\"mesh\":0,\"translation\":[12,18,12]},{\"mesh\":0,\"translation\":[6,0,15]},{\"mesh\":1,\"translation\":[6,6,15]},{\"mesh\":0,\"translation\":[12,6,15]},{\"mesh\":1,\"translation\":[18,6,15]},{\"mesh\":0,\"translation\":[0,12,15]},{\"mesh\":0,\"translation\":[6,12,15]},{\"mesh\":0,\"translation\":[12,12,15]},{\"mesh\":0,\"translation\":[12,18,15]},{\"mesh\":0,\"translation\":[6,0,18]},{\"mesh\":1,\"translation\":[6,6,18]},{\"mesh\":0,\"translation\":[12,6,18]},{\"mesh\":1,\"translation\":[18,6,18]},{\"mesh\":0,\"translation\":[0,12,18]},{\"mesh\":0,\"translation\":[6,12,18]},{\"mesh\":0,\"translation\":[12,12,18]},{\"mesh\":0,\"translation\":[12,18,18]},{\"mesh\":0,\"translation\":[6,0,21]},{\"mesh\":1,\"translation\":[6,6,21]},{\"mesh\":0,\"translation\":[12,6,21]},{\"mesh\":1,\"translation\":[18,6,21]},{\"mesh\":0,\"translation\":[0,12,21]},{\"mesh\":0,\"translation\":[6,12,21]},{\"mesh\":0,\"translation\":[12,12,21]},{\"mesh\":0,\"translation\":[12,18,21]},{\"mesh\":0,\"translation\":[6,0,24]},{\"mesh\":1,\"translation\":[6,6,24]},{\"mesh\":0,\"translation\":[12,6,24]},{\"mesh\":1,\"translation\":[18,6,24]},{\"mesh\":0,\"translation\":[0,12,24]},{\"mesh\":0,\"translation\":[6,12,24]},{\"mesh\":0,\"translation\":[12,12,24]},{\"mesh\":0,\"translation\":[12,18,24]},{\"mesh\":0,\"translation\":[0,12,27]},{\"mesh\":1,\"translation\":[6,6,27]},{\"mesh\":0,\"translation\":[12,12,27]},{\"mesh\":1,\"translation\":[18,6,27]},{\"mesh\":2,\"translation\":[0,0,0]},{\"mesh\":3,\"translation\":[0,0,0]}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]}]}" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_code_circuit.diagram(\"matchgraph-3d\")\n", + "\n", + "# Note: if you are viewing this notebook on GitHub, the 3d model viewer is likely blocked.\n", + "# To view the 3d model, run this notebook locally or upload it to https://colab.google.com/\n", + "# GLTF files can be viewed directly in online viewers such as https://gltf-viewer.donmccurdy.com/" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_aw3w686hJCa" + }, + "source": [ + "Okay, enough looking at the circuits, time to collect.\n", + "\n", + "Collecting data using `sinter.collect` will take a bit longer this time.\n", + "You can specify `print_progress=True` to get progress updates while the collection runs.\n", + "Another useful argument (not used here) is `save_resume_filepath`, which allows you to cancel and restart collection without losing the work that was done." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "p4hgivJmeG0G", + "scrolled": true + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "surface_code_tasks = [\n", + " sinter.Task(\n", + " circuit = stim.Circuit.generated(\n", + " \"surface_code:rotated_memory_z\",\n", + " rounds=d * 3,\n", + " distance=d,\n", + " after_clifford_depolarization=noise,\n", + " after_reset_flip_probability=noise,\n", + " before_measure_flip_probability=noise,\n", + " before_round_data_depolarization=noise,\n", + " ),\n", + " json_metadata={'d': d, 'r': d * 3, 'p': noise},\n", + " )\n", + " for d in [3, 5, 7]\n", + " for noise in [0.008, 0.009, 0.01, 0.011, 0.012]\n", + "]\n", + "\n", + "collected_surface_code_stats: List[sinter.TaskStats] = sinter.collect(\n", + " num_workers=os.cpu_count(),\n", + " tasks=surface_code_tasks,\n", + " decoders=['pymatching'],\n", + " max_shots=1_000_000,\n", + " max_errors=5_000,\n", + " print_progress=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w3JgGXrSe5r-" + }, + "source": [ + "You can now plot the collected data.\n", + "Try using the `failure_units_per_shot_func` argument to plot per round error rates instead of per shot error rates, by retrieving the `'r'` entry (short for rounds) that you put in the metadata:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 484 + }, + "id": "kJSbrfBDe8tQ", + "outputId": "abc40cb7-b334-4458-f69e-5016890c5635" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAIkCAYAAADcY6eQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd5iU1dn48e/0ujPbgaUqVaRJFURAUTSoiIoVC2mWFGMSX33VGNGYqNFoLDGv+WkIGmtsscQCBlEQKSKISIelLmyfmZ3+PM/5/TG7yw47u2yjKPfnuvbSecp5zhRm7jlzn/uYlFIKIYQQQgghRKuZj3QHhBBCCCGE+LaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmBafCskk0nuuusu+vbti8PhwGQy8eabbx7pbn3rzJ49G5PJxMcff3ykuyKEaKXi4mJMJhOzZs060l1psW/ze06vXr3o1avXke5GmkmTJmEymY50N9rk29z3g5FgWjRL13X+3//7f0ycOJHc3FxsNhuFhYUMGTKEH/3oR7z11luHpR9/+tOfuOeeeygqKuLmm2/mrrvuYsCAAYfl2h1t586d/O///i8jRowgJyen/jE944wzePTRRwkEAke6i21W92F/sL/i4uIj3dU2mTVrVqP74na7GThwIL/+9a8pKyvrkOuYTCYmTZrUIW0dKw58XiwWC7m5uUyaNIl//OMfKKWOdBfFEVZRUcHvfvc7xo0bR35+Pjabjby8PE499VT+8Ic/sG/fviPdxTb5+OOPMZlMzJ49u9Xn9urVC5PJRFZWVpP3vy4I3rx5czt7+t1lPdIdEEcvXdc599xzef/998nOzuacc86hW7duJBIJ1q5dywsvvMD69euZNm3aIe/LO++8g9frZd68edjt9kN+vUPl6aef5mc/+xnxeJyhQ4dy+eWXk5OTQ0VFBYsWLeKmm27id7/7HeXl5Ue6q+3i9/u56aabmtyfnZ192PpyKJx//vkMGzYMgH379vGf//yHhx9+mNdee40vvviCvLy8I9vBY9hdd90FpH7N2rx5M2+88QYLFy5kxYoVPPHEE0e4d+JIeeedd7jyyisJBAL06dOHCy64gMLCQgKBAEuXLuU3v/kNf/jDH9i8eTOdO3cG4KOPPjrCvW7s2WefJRKJdHi7NTU13HXXXfzf//1fh7dd51D1/WggwbRo0osvvsj777/P0KFDWbhwIX6/P21/JBJh6dKlh6Uve/bsIS8v71sdSD///PP8+Mc/Jicnh9dee41zzjmn0TGLFy/mpz/96RHoXcfKzs5u0yjJt8X06dPTfmqPxWKcfPLJrF69mieeeKI+oBOH34Gvu8WLFzNhwgSefPJJfv3rX3PccccdmY6JI2bhwoVccMEFWK1W5syZwzXXXNMo3WDNmjX84he/IBaL1W/r3bv34e7qQfXo0eOQtNunTx+efvppfvGLX3DCCScckmscqr4fDSTNQzTps88+A1I/bR8YSAO43W5OO+20tG3N5cc1le9X99P51q1befzxxxkyZAgul4tJkybV79u2bRvbt2+v/wm3YR7bP/7xDy666CKOP/54XC4XPp+PU045hX/+859N3rfKykruuOMOBg0ahNvtxu/3M3ToUP73f/+XcDjc6NjbbruNE044AZfLhd/vZ/LkyXz44YcHeQT3C4VC3HjjjQC89NJLGQNpgFNOOSXjF5SPPvqIs88+m9zcXBwOB/369eN///d/m0wJ+eKLLzj77LPJysrC5/NxxhlnsGTJkmb7uH79embNmkX37t2x2+106tSJK664gg0bNrT4frZFc89/S/YDbNq0iauvvpquXbtit9spKiri6quvZtOmTY2u1/A1+sILLzBmzBi8Xm+7ciOdTiczZ84EYPny5Wn7AoEADz74IKeffjrdunXDbrdTUFDAtGnTGj0n//jHP+o/5BcuXJiWtnBgkLh06VJmzJhB586dsdvtdO/eneuuu449e/Y06t/WrVu59tpr6dOnDy6Xi9zcXAYPHsz1119PRUVFi+5jXerJnj17uOqqqygsLMTlcjFixAheeOGFJs/74IMPmDp1Kvn5+TgcDnr37s3//M//UF1d3ejYuhzVYDDIr371K3r16oXNZmvXF7NTTjmFAQMGoJTiiy++aLT/lVdeYcKECfj9flwuF4MHD+a+++4jHo83+RhkUvc6bZjC1PA9r7i4mMsuu4z8/HycTicjR47knXfeydhWKBTiV7/6Fd26dcPpdDJgwAAefvhhDMNo1X2vez394x//yLg/0/1p+O/j1VdfZfTo0bjdbnJzc7nsssvYvXt3xrYO9XtOS94HMjEMg+uuuw5N03j00Ufr2znQ4MGDmT9/Pl27dq3flilnuuFj+v777zNp0iT8fn9am7qu83//93+ccsop9a+rPn368KMf/SjtPSnTa6ZOU6kbB+Ydz5o1q/5z+O677057z2hNnvp9992HruvccsstLT4HWvfZlClnWinF3LlzGTduHAUFBTidTrp3785ZZ53Fyy+/3KiNXbt28bOf/Yzjjz8eh8NBXl4e06ZNa/S+e7jJyLRoUt1P1Rs3bjws1/vFL37Bp59+yjnnnMPUqVOxWCyMGjWKXr168ec//xmgPnWgYZrADTfcwIknnsiECRPo0qULFRUV/Oc//+Gqq65iw4YN/O53v0u7zrZt2zjttNPYvn07I0aM4IYbbsAwDDZu3MgjjzzC9ddfj8fjAWD79u1MmjSJ4uJiTj31VM4++2zC4TDvvPMOZ599Nk899RQ//vGPD3rfXn31VSorKzn55JOZMmVKs8c6HI6020899RQ33HADHo+Hiy++mMLCQj7++GMeeOAB3n77bRYvXpz2eHz22WecccYZJBIJLrzwQvr06cOqVauYNGkSp59+esZrvv/++1x44YUkk0nOO+88+vTpw65du3j99dd59913WbBgAcOHDz/o/WyPTM9/S/YvX76cM844g1AoxLRp0xg4cCDr16/nn//8J//+97+ZP38+o0aNanS9P/3pT8ybN4/zzjuP0047rcNy1W02W9rtdevWcccddzBhwgTOOecccnJy2LFjB2+99Rbvvfceb7/9NmeffTYAw4YN46677uLuu++mZ8+eaV88GwYNf//737n22mtxOBxMmzaN7t27s2nTJp5++mnefvttPv/88/pRoJKSEkaNGkUwGGTq1KlcdNFFxGIxtm3bxnPPPcfPfvazFqelVFVVMW7cOLKzs/n+979PdXU1r7zyCjNnzmT37t38z//8T9rxd999N7NnzyY3N5dzzz2XwsJCvvrqKx566CH+85//sGTJEnw+X9o5iUSC008/ncrKSqZMmYLP5+uw0eQDn5vbb7+d++67j/z8fK644gq8Xi/vvfcet99+Ox988AEffvhhh/watn37dkaPHs3xxx/PVVddRWVlJS+//DLnn38+8+fPTxuUiMfjTJ48meXLlzN06FBmzpxJdXU1v/vd71i4cGG7+9JSTz75JG+99RbTpk1j4sSJLF26lJdffpnVq1ezatWqtPepw/mec7D3iQMtXLiQDRs20LVrV374wx82e6zZbMZsbtkY46uvvsr777/P9773Pa6//nq2b98OpF6/5557LvPmzaN79+5cccUV+Hw+iouLeeONNxg/fjx9+/Zt0TVaYvr06QDMnTuXiRMnpr1PtGaAYPr06UyYMIF33nmHBQsWNBooy6S1n02Z3HHHHdx3330cd9xxXHLJJfj9fkpKSli+fDn/+te/uPTSS+uPXblyJVOmTKGyspKzzjqLCy+8kPLyct58803Gjx/PG2+8wdSpU1t8nzuUEqIJK1euVDabTZlMJnXllVeq1157TRUXFzd7zl133aUAtWDBgkb7tm3bpgB1zTXXpG2/5pprFKCKiorU1q1bM7bbs2dP1bNnz4z7Nm/e3GhbPB5Xp59+urJarWrXrl1p+8aOHasA9Yc//KHReWVlZSoajdbfnjhxojKZTOrFF19MO66qqkoNHTpUOZ1OtXfv3oz9augHP/iBAtQdd9xx0GMbKi4uVna7XWVlZal169al7bvhhhsUoH784x/XbzMMQ/Xv318B6s0330w7/s9//rMCGj0/lZWVKjs7W+Xl5am1a9emnbNmzRrl8XjUSSed1KL+1j3Hfr9f3XXXXRn//vrXv6adc7Dnv7n9hmGoAQMGKED985//TNv30ksvKUD1799f6bpev73uNep2u9XKlStbdL8O7MucOXPStkciETV48GAFqIceeihtX3V1tSorK2vU1s6dO1WXLl3UgAEDGu0D1MSJEzP2YcOGDcpms6nevXs3em3Pnz9fmc1mNX369Pptjz32mALUn//850Zt1dTUqEgk0tTdbdQnQF188cVpj+fWrVtVTk6OstlsasuWLfXb//vf/ypAjR07VlVVVaW1NWfOHAWom266KW17z549FaAmT56sampqWtSvA/t3oIULFyqz2azsdrvas2dP/fbPPvtMAap79+6qpKSkfnsymVTnnnuuAtTvf//7Rtdo6nmpe21s27atflvdvwdAzZ49O+34999/XwHqe9/7Xtr23//+9wpQF154YcbHOdN7aFPqHucDX6/N3Z+6fx9ZWVnqq6++Stt3+eWXK0C9/PLL9dsO13tOSz4nMrnnnnsUoGbOnNnic+pk+type0xNJpN67733Gp1z2223KUCdd955KhaLpe2LxWKqtLS0/nam10ydBQsWKEDdddddadsnTpzY6HXe1LEtUfdvLplMqmXLlimTyaRGjBihDMNodM1NmzbVb2vtZ1NTfc/NzVVdu3ZV4XC4Ud8avm8mk0nVu3dv5XA41Mcff5x23O7du1VRUZHq3Llzo8f8cJFgWjTr5ZdfVp07d65/QwRUbm6umj59unrrrbcaHd+eYDrTh32d5oLpprz22msKUHPnzq3ftmLFCgWoYcOGpX1QZbJq1SoFqBkzZmTc/+abbypA/eUvfzloX773ve8poFEgeTD33nuvAtRtt93WaF9lZaXKyspSTqez/g1k0aJFClATJkxodLymaap3796Nnp+6D7wnnngiYx9uuukmBTT60MukYfDQ1N/QoUPTzjnY89/c/rr7O3bs2Iznjh8/XgFq4cKF9dvqXqMHBnItUdeX888/v/7LwQ033KC6d+9e/7hn+lBoys9//nMFqO3bt6dtby5oq3s+3nnnnYz7p0+friwWiwoGg0qp/cH0U0891eJ+ZQIoi8WSMZCpe0wbBozTp09XgPr6668ztjds2DBVUFCQtq3ug33VqlVt6l9dQHHXXXep22+/XV1yySX1AwKPPfZY2vE/+tGPmnxcNmzYoMxmszruuOMaXaMtwXTPnj2VpmmNzunRo4fKy8tL29anTx9lNpszDhLUPc6HI5jO9MW/7gvSr3/96/pth+s9pyWfE5nUBXa33nprq85TqvlguuEX1jqapim/369cLpfavXv3Qds/2oJppZS67LLLFKCee+65RtdsGEy39rOpqb7n5uaqXr16HTQIrvu8vfnmmzPur3tNvfvuuwe/04eApHmIZl1yySVccMEFLFiwgEWLFvHll1+yaNEi3nzzTd58802uvvrqtDzP9hg9enSbztuxYwcPPPAAH330ETt27CAajabtb5jj9/nnnwNw1llnHfTnvLp8v0AgkDFns64M2rp169rU75ZYuXIlQMafSnNycjjppJP45JNPWL9+PUOHDq0/fuLEiY2Ot1gsjB8/ni1btqRtr7ufq1evzng/69J81q1bx8CBA1vU7549e7a6/N3Bnv9M+5t7fOq2171uJ0yY0KrrNeff//43//73v9O2nXnmmbz77ruNUgkgNQnu0UcfZcmSJZSWlpJIJNL27969u8WTc+qer4ULF2bMEywtLUXXdTZu3MiIESOYNm0at99+Oz/96U/54IMPOOusszjllFMYOHBgq//d9ujRI2PKxaRJk7j77rv58ssv0/pps9n417/+xb/+9a9G5yQSCcrKyqioqEhLM3E6nQwZMqRV/Wro7rvvTrttMpl45pln+P73v5+2vbnXTr9+/ejWrRvbtm0jEAhknDPSGsOGDcuYjtC9e/e0vOJQKMTmzZvp3r17xslvdY/z4TBy5MhG27p37w6k0n3qHO73nPb8u+1Imfqxfv16AoEAY8aMoaio6Aj0qv3uu+8+3njjDe644w5mzJiB0+nMeFxrP5uaMnPmTB5//HEGDhzIJZdcwsSJExk7dmyjf3N1r5nt27dnfM3U5aKvW7fuiKR6SDAtDspmszFlypT6XF9d13nttdf4wQ9+wLPPPssFF1xQn7fVHnXliFpj69atjB49mqqqKk499VSmTJmC3+/HYrFQXFzM3Llz0yYS1U16ajjJpCl1E7PmzZvHvHnzmjyupqbmoG116dIFoMnJO02py+OtO7+pduvuV93xnTp1ynh8pse47n7+v//3/5rtS0vuZ3sc7PnPtL+1j09rrtecOXPmMGvWLHRdZ+vWrdx55528/PLL3HDDDTz99NNpx77xxhv1H0pnnnkmvXv3xuPxYDab+fjjj1m4cGHGyW5NqXu+HnzwwWaPq3u+evbsybJly5g9ezbvv/8+r7/+OpAKjG6++eb6ibEtcbDXVcO884qKCjRNO2jwV1NTkxZMFxYWtuvLuaqtJx0Oh1myZAk//OEPuf766+nZs2faB39LXjs7duygurq63cF0U3mjVqs1bVJhW/79HiqZ+my1pkIGXdfrtx3u95zWPgZtfe89mEz9aM3ny9GqV69e/PznP+ehhx7i0Ucf5dZbb814XHveext65JFHOP7445kzZw73338/999/P1arlalTp/KnP/2JPn36APtfM5m+mDd0qD+nmiLVPESrWSwWLrnkEn75y18C8N///rd+X91or6Zpjc472D+qtnyAPvzww1RUVPDMM8/w8ccf89hjj/G73/2O2bNnc9ZZZzU6vu4DoiVvrHUfoI8++igqlRKV8W/OnDkHbWv8+PFA6+uW1vVh7969GfeXlJSkHVf336aK72dqp+6c1atXN3s/r7nmmlb1vbUO9vxn2t/ax6c112sJi8VC375966uCPPPMM40WMrrzzjux2+2sWLGCN998s34BotmzZ9O/f/9WX7PuvgQCgWafr4YjhSeccAIvv/wyFRUVrFixgvvvvx/DMPjFL37BM8880+JrH+x11fBx9vv95OTkNNtHpRQ9e/ZMa6ujVkjzeDycccYZvP322+i6zjXXXJNW47Ytrx2TyZTxvQ0O/v7WEm3599uc9rwft9Thfs9p7euj7r33448/TvsS0F6Z+tGazxc4PM9PW9xxxx3k5uZy3333NbnmQXveexuyWCzcdNNNrF69mn379vHaa69xwQUX8NZbb3H22WfXDzTUtfPvf/+72dfMkSpLKsG0aLOsrCxg/0gQpH7egdQqfwdasWJFh/ehbkWmiy66qNG+TDPfTz75ZCBVrutgZabqjv3000/b201mzJhBbm4uS5YsYf78+c0e23CU8qSTTgLIWOKourqaVatW4XQ66+uC1s1+z3TfdV1n0aJFjbZ35P083Jp7fAAWLFgAcMgrkZjNZh599FEAbr311rQP7c2bNzNw4MBGtVsNw8j4fNS119QHf3ueL6vVyogRI7j11lt58cUXAXjzzTdbfP6OHTuaLOMF+5+Pun5WVVWxdu3aVvezIw0ZMoQf//jH7Nq1i0ceeaR+e3Ovnc2bN7Nr1y6OO+64tBHanJycjO9tuq6zatWqdvc1KyuLPn36sHv37kapEU31tTmH4/34aH/PmThxIv3792fXrl0HHfgwDINkMtnmaw0YMIDs7Gy++uqrjCUqD9RRz09dClFHfVnIzs7mzjvvJBAINPnLUms/m1qisLCQCy+8kFdeeYXTTz+dLVu28PXXXwNH/+eUBNOiSS+++CLz5s3LGHTu3bu3/ie6hrmodXlkc+bMSfu2vXPnTu65554O72Nd6Z8D/0F/8MEHjX5uBxgxYgTjxo1j1apVPPDAA432V1RU1BftHzlyJKeeeiqvv/46f//73zNef82aNZSWlh60n1lZWTz22GMAXHrppXzwwQcZj/v8888ZO3Zs/e0rr7wSm83G448/3mgp1zvvvJNgMMiVV15ZX6Zq3Lhx9O/fn08++aRRTu8TTzyR8QP6+9//PtnZ2dx9990sW7as0X7DMFr9IX64nHLKKfTv359Fixbx6quvpu179dVX+fTTT+nXr1/96NShNGbMGM4991zWr1/Ps88+W7+9V69ebNq0Ke3DVSnF7Nmz+eabbzK2lZeXl/EDFuBnP/sZNpuNX/7ylxnLViYSibQPnC+++CJj2b+6kUS3292yO0jqw/rWW29Ne0/Ytm0bjz32GFarlSuvvLJ+e90vVz/+8Y8zBhbhcLh+DsOh9pvf/AaHw8FDDz1Un+/7gx/8AIB77703bRl4Xde5+eabMQyjUSm10aNHs2PHjkY15u+999760mjt9f3vfx/DMJp8nFtj5MiRmM1mXnjhhbRR+crKylbXE27K0f6eYzabeeqpp7Bardx4443885//zLi0/DfffMOUKVPalQ5isVj4yU9+QjQa5frrr2+UvlU3T6BO3eflgekua9asqf9y3hJ1aVI7duxoa9cb+clPfkLv3r156qmnMn6Bbu1nUybxeJzFixc32p5MJqmsrAT2vz+df/759O7dm7/85S/85z//ydjekiVLjtgKi5IzLZq0dOlSHn30UTp37sz48ePrJx5t27aNd999l2g0yvnnn8+MGTPqzxkzZgwTJkzgk08+YfTo0Zx++uns27ePt99+m7POOqvJAKGtfvKTnzBnzhwuvvhiZsyYQVFREV9//TXvv/8+l1xyScai7//85z+ZNGkSt99+O6+99hqTJk1CKcWmTZv48MMPWb9+fX2Q/sILL3D66afzwx/+kMcee4wxY8aQnZ3Nrl27+Oqrr/j6669ZsmQJhYWFB+3rzJkziUaj/OxnP+Pss89m2LBhjBs3rn458SVLlrB69Wry8/Prz6mrsf3Tn/6U4cOHc8kll1BQUMDChQtZsmQJAwYMSPtSUDfZ6swzz+Siiy5Kq/laV1z//fffT+tXXl4er776KhdccAEnn3wykydP5sQTT8RkMrFz506WLFmS9iWjJaqrq5tdaGPWrFntWiSljslkYu7cuZx55plceumlnH/++QwYMIANGzbw5ptvkpWVxbPPPtvi2rHtdc899/Duu+9y9913M3PmTOx2O7/85S+5/vrrOemkk7jooouw2WwsXryYb775hvPOO4+33367UTuTJ0/mpZde4rzzzmP48OHYbDYmTJjAhAkTGDBgAH//+9/5wQ9+wIknnsjZZ59Nv379SCaT7Nixg08//ZSCggLWr18PwHPPPcdTTz3F+PHj6d27Nzk5OWzZsoW3334bh8PR7LLvBxoyZAhLly5lxIgRTJkypb7OdHV1NX/84x/TJs1NnjyZ+++/n9tuu42+ffsydepUjjvuOGpqati+fTsLFy5k/PjxjV6Ph0LXrl25/vrrefTRR/njH//Ifffdx7hx47jlllv44x//yKBBg5gxYwYej4f33nuPr7/+mvHjxzeqm33zzTfzwQcfcP7553PppZeSm5vLZ599xrZt25g0aVKHBIC//vWvefPNN3nttdcYPnw4Z511Vv3jPGHChEZpRM3p0qULM2fO5LnnnmPYsGGcc845BINB/vOf/zBhwoS0CaNtdbS85zRn4sSJvP7661x11VVcddVV/O53v2PSpEkUFBQQCARYsWIFS5cuxePx4HK52nWtu+66i6VLl/L222/Tr18/zj33XLKysti5cycffvghDz74YH39+PPPP5++ffvy4osvsmvXLsaMGcOOHTv497//zfnnn88rr7zSomv279+frl278tJLL2Gz2ejZsycmk4mrrrqqURpVS9ntdu677z4uueSSjF8UW/vZlEk0GmX8+PH06dOHESNG0LNnT2KxGPPmzWPdunVMmzatfmTbZrPx+uuvc9ZZZ3HOOecwbtw4hg0bhtvtZufOnSxfvpytW7dSUlLSqgGCDtPxBULEd8WOHTvUE088oaZPn6769eunsrKylM1mU507d1bf+9731HPPPZexvFxVVZX60Y9+pAoKCpTdblcnnniieuqppw5aGi9TeaA6zZXGW7x4sTrttNNUdna28nq96pRTTlFvvPFGs+WCysvL1S233KL69eunHA6H8vv9aujQoer2229vVNosGAyq3//+92r48OHK4/Eop9OpevXqpaZOnaqeeuqpVtfD3bFjh7rlllvUSSedpPx+v7JarSo/P19NmjRJPfLIIyoQCDQ654MPPlBnnnmmys7OVna7XfXu3Vv9z//8T6P6vXVWrFihzjrrLOX1epXX61WTJ09Wn3322UFLF/70pz9Vffr0UQ6HQ2VlZan+/furK6+8Ur3xxhstum8tKY134PUP9vy35PWxfv16deWVV6rOnTsrq9WqOnfurGbOnKnWr1/f6NjmHoODaarOdEMXXnihAtJKsc2ZM0cNHTpUud1ulZeXp6ZPn66++uqrJvuyb98+dfnll6vCwkJlNpszvo6/+uordc0116gePXoou92ucnJy1IknnqiuvfZa9dFHH9Uf9/nnn6vrr79eDRkyROXk5Cin06l69+6tZs2apdasWdPi+05tGbXdu3ermTNnqoKCAuVwONRJJ52knn/++SbP+/TTT9XFF1+sunTpomw2m8rPz1dDhw5Vv/zlL9Xy5cvTjm1LCcyG/WvuI23v3r3K7XYrt9udVhv+xRdfVKeccoryer3K4XCogQMHqnvvvTet3nxD//73v9WIESOUw+FQubm56tJLL1XFxcXNlsZrqpRdplJhSikVCATUL3/5S1VUVKQcDofq37+/euihh9SWLVtaVRpPqVRt45tvvll17dq1vj75H/7wB5VMJpstjdea8qZKHfr3nJa8DxxMeXm5uueee9TYsWNVbm6uslqtKicnR40dO1b97ne/U/v27Us7vrnSeM29BySTSfX444+rUaNGKY/Ho9xut+rTp4/68Y9/nFZeTqnU58Ell1xS/29z5MiR6rXXXmtVaTyllFq2bJk6/fTTlc/nUyaTqcXvcQeWxjtQ3boMHFAar05rPpsO7HsikVAPPPCAOvvss1X37t2Vw+FQ+fn5asyYMeqvf/2risfjjdrYt2+fuvXWW9WJJ56oXC6X8ng8qk+fPuqiiy5Szz33XJP341AzKZXh9w4hhBCiAZPJxMSJE4/alB8hhDhSJGdaCCGEEEKINpJgWgghhBBCiDaSYFoIIYQQQog2kmoeQgghDkqm1wghRGYyMi2EEEIIIUQbSTAthBBCCCFEG0kwLYQQQgghRBtJzvR3SHV1NQsXLqR79+7NLuEphBBCCCEai8fj7Ny5k4kTJ5Kdnd2icySY/g6YPXs2d99995HuhhBCCCHEd8Kbb77J+eef36JjZQXE75CVK1cyYsQI/v73vzNw4MAj3R0hDioajbJmzRoGDx6My+U60t0R32HyWhNCtMTWrVu54oor+OKLLxg+fHiLzpGR6e+QutSOgQMHMmbMmCPcGyEOLhgMEggEGD58OD6f70h3R3yHyWtNCNESXq8XoFXpsjIBUQghhBBCiDaSYFoIIYQQQog2kmBaCCGEEEKINpJgWgghhBBCiDaSCYjHIE3TqKqqoqamhmO9mIvJZMLr9ZKTk4PVKv8chBBCCNE6MjJ9jFFKsWvXLsrLy0kmk0e6O0dcMpmkvLyc3bt3H/NfLIQQQgjRejIUd4wJhUJEo1H8fj9dunTBZDId6S4dUUopSkpKCAQChEIhKZklhBBCiFaRkeljTDAYBKCwsPCYD6QhleZRWFgI7H9shBBCCCFaSoLpY0wymcRqtUp+cAN1j4ekvQghhBCitSSYPsYopTCb5Wk/kNlslpxpIYQQQrSaRFXHIEnvaEweEyGEEEK0hQTTQgghhBBCtJEE00IIIYQQQrSRBNNCCCGEEEK0kQTTokMkdYMlWyp4/+sSlmypIKkbh70Pa9eu5eKLL+b444/H7XaTn5/PhAkTePvttw97X4QQQghxbJD6aKJdkrrBXz/ewrNLiimvSdRvL/A6uGpsT26Y1Bub5fB8Z9u+fTuhUIhrrrmGoqIiIpEIr732GtOmTeOpp57i2muvPSz9EEIIIcSxQ4Jp0WZJ3eDaZ1ewYEMZB9bCKK+J8/C8jazaWc1TV404LAH11KlTmTp1atq2n/3sZ4wYMYKHH35YgmkhhBBCdDhJ8xBt9tePt7BgQxkAB1Zorrv93/Wl/N/HWw5rvxqyWCx0796d6urqI9YHIYQQQnx3STAt2iSpGzy7pLjRiPSBTMCzS7Yf1hzqcDhMeXk5W7Zs4ZFHHuG9995j8uTJh+36QgghhDh2SJqHAODut9fyzZ5gi48PRpNpOdJNUUBZTZxpjy/C57K1uP2BRT7uOu/EFh/f0K9//WueeuopILWy4YUXXsgTTzzRpraEEEIIIZojwbQA4Js9QZZuqzxk7a/bGzpkbR/opptuYsaMGezZs4dXXnkFXddJJA4e+AshhBBCtJYE0wJIjQS3RjCabFWAfELnrFaPTLfVgAEDGDBgAABXX301U6ZM4bzzzmPp0qWybLgQQgghOpQE0wKg1SkVSd1g7H0fUVGTaDT5sCETkO918NbPxx+2EnkHmjFjBtdddx0bN26kf//+R6QPQgghhPhukgmIok1sFjNXj+3VbCANqZzpq8f2PGKBNEA0GgUgEAgcsT4IIYQQ4rtJgmnRZjdM6s3pAwoBGlX1qLt9+oBCrp/U+7D0p7S0tNG2ZDLJs88+i8vlYuDAgYelH0IIIYQ4dkiah2gzm8XMU1eN4P8+3sKzS7ZTVhOv35fvdXD12J5cfxhXQLzuuusIBoNMmDCBrl27snfvXp5//nnWr1/Pn/70J7xe72HphxBCCCGOHRJMi3axWcz8fHJfrp/UmxXFVQSiCfwuOyN75Rz21I5LL72UZ555hr/+9a9UVFSQlZXFiBEjeOCBB5g2bdph7YsQQgghjg0STIsOYbOYGds774j24bLLLuOyyy47on0QQgghxLFFcqaFEEIIIYRoIwmmhRBCCCGEaCMJpoUQQgghhGgjCaaFEEIIIYRoIwmmjzLxeJwf/OAH9OjRA5/Px8knn8ySJUuOdLeEEEIIIUQGEkwfZTRNo1evXixatIjq6mpuuukmzjvvPGpqao5014QQQgghxAEkmD7KeDwefvvb39KjRw/MZjOXXXYZdrudDRs2HOmuCSGEEEKIA3yrgunf//73mEwmBg0adEivU1NTw1133cXZZ59Nbm4uJpOJf/zjH00eH4/HufXWWykqKsLlcjFmzBjmzZvXIX3ZtGkTlZWV9OnTp0PaE0IIIYQQHedbE0zv2rWLP/zhD3g8nkN+rfLycu655x7WrVvH0KFDD3r8rFmzePjhh5k5cyaPPvooFouFqVOnsmjRonb1IxqNcuWVV3Lbbbfh9/vb1ZYQQgghhOh435pg+uabb+bkk09m5MiRBz22qqqK119/vcn9L774IuFwuMn9Xbp0oaSkhO3bt/Pggw82e61ly5bx0ksvcd999/Hggw9y7bXX8t///peePXtyyy23pB07fvx4TCZTxr/f/OY3accmk0kuvvhi+vTpw29/+9uD3mchhBBCCHH4fSuC6U8++YRXX32VP//5zy06/sknn+SSSy7hjTfeaLTvmWee4YorrmDu3LlNnu9wOOjcuXOLrvXqq69isVi49tpr67c5nU5++MMfsmTJEnbu3Fm/fdGiRSilMv7de++99ccZhsFVV12FyWRi7ty5mEymFvVFCCGEEEIcXtYj3YGD0XWdn//85/zoRz9i8ODBLTrn1ltvZdmyZVx++eW8++67TJ48GYDXX3+d6667jiuvvJIbbrihQ/r35Zdf0q9fP3w+X9r20aNHA7Bq1Sq6d+/eqjavu+46SkpK+OCDD7BaW/8URaNRgsFgxn3JZBKr1Yqu661u97tMKYWmaU0+buLQqPuFqLlfioToCPJaE0K0RFuqpx31wfT//d//sX37dubPn9/ic6xWKy+//DJnn30206dPZ/78+dTU1HDFFVfwve99jzlz5nTYaG9JSQldunRptL1u2549e1rV3vbt23n66adxOp3k5+fXb3/vvfc49dRTM54ze/Zs7r777vrba9asIRAIZDw2NzeXgoICQqFQq/r1bbBo0SLOO++8jPs+/PBDRo0a1eS5yWSSsrIy1q9ff6i6J5qxbNmyI90FcYyQ15oQojk7duxo9TlHdTBdUVHBb3/7W+68804KCgpada7T6eStt97itNNOY+rUqSQSCcaMGcMrr7zSptHepkSjURwOR8br1+1vjZ49e6KUatU5s2fPZvbs2axdu5ZBgwYxePBghg8fnvHYkpISrFYrWVlZrbpGI7uWY377xhYdakx7HLoePNe9vVwuFwA///nPG+XWDxkypNn7XFFRQWFhYYsmnIqOEw6HWbZsGaNHjz4sk4vFsUtea0KIlli3bl2rzzmqg+nf/OY35Obm8vOf/7xN5/t8Ph566CFOP/10AP785z/XB1wdxeVyEY/HG22PxWL1+w83l8vVKO2kTnl5OQAWi6V9F1n1TyhvWe1ry6p/Qo8x7bteS65Te58mTJjAjBkzWnWuyWTCZrM1+biJQ8vj8chjLw4Lea0JIZrj9Xpbfc5ROwFx06ZN/O1vf+PGG29kz549FBcXU1xcTCwWI5lMUlxcTGVlZbNtbN26lZkzZzJgwAB69uzJRRddRElJSYf2s67yx4HqthUVFXXo9Y4ao3/c8mNHteLYDhIKhdA07bBfVwghhBDHlqM2mN69ezeGYXDjjTdy3HHH1f8tXbqUjRs3ctxxx3HPPfc0eX5JSQlnnnkmNpuNefPmMW/ePMLhMFOmTDloEN4aw4YNY+PGjY0mri1durR+/3dSl6Ew4NyDHzfgXOgy5ND3p4Hvf//7+Hw+nE4np512GitWrDis1xdCCCHEseOoTfMYNGhQxtJ2v/nNbwiFQjz66KP07t0747lVVVWcddZZ1NTUsGjRIrp16wbABx98wKRJkzjnnHOYP39+h+TNzZgxg4ceeoi//e1v3HzzzUBqRcQ5c+YwZsyYVlfy+FaZeAusf+cgx9x6ePoC2O12LrroIqZOnUp+fj7ffPMNDz30EKeeeiqfffYZJ5100mHrixBCCCGODUdtMJ2fn8/06dMbba+rNZ1pX50nn3ySnTt38vHHH9O3b9/67cOGDeOdd95hypQpzJ07l5/85CdNtvHEE09QXV1dX43j7bffZteuXUBqglvdioRjxozh4osv5rbbbqO0tJQ+ffowd+5ciouLeeaZZ1p5r4+g9/4X9q5p/XmuXIg2MdLvyoP3b2tbfzoPhu/d36pTxo0bx7hx4+pvT5s2jRkzZjBkyBBuu+023n///bb1RQghhBCiCUdtMN0et956K9OnT+fEE09stG/8+PF8/vnnB61Z/dBDD7F9+/b626+//nr9qopXXnll2vLezz77LHfeeSfPPfccVVVVDBkyhHfeeYcJEyZ00D06DPauge3tW/68kWhFx7fZSn369OH888/n9ddfR9f19k+8FEIIIYRo4FsXTH/88ccHPcZqtWYMpOsMGXLwHN7i4uIW98npdPLggw8edOnxo1rnli2Ik1HpN41Hp115UHjCkenPAbp3704ikSAcDsssfiGEEEJ0qG9dMC0OkVamVKQpWQ1PHTAKf/Wbh33iYVO2bt2K0+lsU7kbIYQQQojmHLXVPMS3yIGVPY5ABQ+AsrKyRttWr17NW2+9xZQpUzCb5eUuhBBCiI4lI9OiYzSs7HEYK3g0dOmll+JyuRg3bhyFhYV88803/O1vf8PtdnP//e0YeRdCCCGEaIIE06JjdBkKlz5f+/9HJr1j+vTpPP/88zz88MMEg0EKCgq48MILueuuu+jTp88R6ZMQQgghvtskmBYd54QWLOJyCN14443ceOONR7QPQgghhDi2SBKpEEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtBBCCCGEEG0kwbQQQgghhBBtJMG0EEIIIYQQbSTBtOgwq8tWs7ps9RG7/qxZszCZTE3+7d69+4j1TQghhBDfTdYj3QHx3RCIB7jmvWsAWHjpQvwO/2Hvw3XXXccZZ5yRtk0pxfXXX0+vXr3o2rXrYe+TEEIIIY5+SimCiSC7Qrtafa4E06JD/HfHf9GVXv//F/S94LD3YezYsYwdOzZt26JFi4hEIsycOfOw90cIIYQQRzfN0KiKVVERraAyVklxoLjVbUgwLdqkOFDMTQtuqr9dFi2r//+HVjzE3LVz628/evqj9PT1PJzdq/fCCy9gMpm44oorjsj1hRBCCHH0iWpRKmOVlEfKCSQCRLUoHpuHfHd+q9uSYFq0yae7P2VLYEvGfcFEkGAiuP/YXZ/Sc+DhD6aTySSvvPIK48aNo1evXof9+kIIIYQ4etSlclTEKqiIVhCMBzEw8Nl95DpzMZlMVJgrWt2uBNMCgAeWPcD6yvUtPt5QBjmOHKriVc0el+PIYd72eXy046NW9WdA7gBuHX1rq8450AcffEBFRYWkeAghhBDHsKSRTEvlqEnW4LA4yHHl4LA42t2+BNMCgPWV61mxb0WHt1sVr6KqtPmA+1B54YUXsNlsXHLJJUfk+kIIIYQ4ciLJSP0odCAeIKbF8Dq8dPF0wWK2dNh1JJgWQGokuC2SRrLJcnhDC4ZiM9sOa3/q1NTU8O9//5uzzjqLvLy8drUlhBBCiG8HQxkE4gEqo5WUx8oJJUIA+Bw+8lx5mEymDr+mBNMCoM0pFW9seqPJYHpGvxlM7zO9Hb1quzfffFOqeAghhBDHiKSeTE0ojJZTHa8mlAzhsrrIc+Vht9gP6bUlmBbt8tmezwDwO/zcefKdKBT3fn4vgXiAxbsXH7Fg+vnnn8fr9TJt2rQjcn0hhBBCHHrhZJjKaCVl0TKCiSAxLYbP4aOrtytm0+FZm1CCadEut4+5ne5Z3Zl5wkzyXKl0ilGdRvH8uue5auBVR6RPZWVlzJ8/n8svvxy3231E+iCEEEKIQ8NQBtXx6voJhYFEAIvJgs/uo8Bd0K62t1dva/U5EkyLdslx5nDj8BvTtuW58hptO5xefvllNE2TFA8hhBDiOyShJ9JSOWoSNbhtbgpdhdgsbZujtb/xCDWhPfxl9V9bfaoE0+I75/nnn6ewsLDR0uJCCCGE+PYJJUJUxapSqRzxIEkjSZY9i65Z7Uzl0DSIByBaDbEAy/ctx8BodTMSTIvvnCVLlhzpLgghhBCiHXRDpzpenRqFjlWnUjnMFvwOPy6rq+0NKyAegliAPVWbeXjzK6AUmExUaZE2NSnBtBBCCCGEOCrEtBhVsar6VI5IMoLb5qaTpxNWczvCVi0BsQBEqiAehEQNq6q+Zle8st19lmBaCCGEEEIcMUopQskQldFKKmIVBGIBNKXhc/gocha1PZXDMOpHoYlWQiIMWhIcbvAWMsV7OhsTVXxeubZd/ZdgWgghhBBCHHaaoaVV5QglQtgsNvxOP06rs+0NJ6K1AXQVJEIQD4PVDg4vePa3a1GKMwpHsblmF+WJQJsvJ8G0EEIIIYQ4bKJaNC2VI6pF25/KoWupUehoNcSqIVEDSge7F7I6g3n/6HZYi/Jp+Wrml65gV7Ss3fdHguljkFLqSHfhqKOUOiRLjAohhBAi9TkbTATrS9sF40F0dPx2P7nO3LZ9BitSQXPdKHS8BpJRsLnAlQMNyuUppdgS3s380hV8VvE1CSNZv8+sFEY7YgAJpo8xZrOZRCIhwWMDSil0XcduP7TLjQohhBDHmqSRpDqWqspRFasimAjisDrIceXgsDja1qiWTAXQserUf+M1qZFnuxdc2dAgvonqcRZXrGH+vhUUR0rSminCyqWVZaxyOFjgcePXdX5WXsX1reyOBNNHmXg8zg033MD8+fOprq5m4MCBPPLII4wdO7ZD2nc4HESjUUpLSyksLDzmA2qlFKWlpei6jsPRxn/UQgghhEgTSUaojFVSEa2gOl5NTIvhtXsp8hZhMVta36ChUvnPsSBEKlMj0locHB7w5IMlPaTdHt7LvNLlLCr/ipiRqN9uxsyInP6cUTiSUYaVvh/eTZU5TJ9kkpmBEHtjyQOvfFASTB9lNE2jV69eLFq0iG7duvHKK69w3nnnUVxcjNfrbXf7nTp1Ih6PU1lZSSAQwGKxHLMBdd2ItK7ruFwuOnXqdKS7JIQQQnxrGcogGA9SEa2gIl5BMB5EofA7/OS58toWbyRjDdI4QqmKHBZrahTak5d2aMJIsqRiLfNLl7OpZlfavly7j8mFIzitYDi5dl/qeCDYdTg5u1dyY1VqAuLeNtxvCaaPMh6Ph9/+9rf1ty+77DJ+9atfsWHDBkaMGNHu9s1mMz169GDfvn3E43EMo/Ur/XxXmEwm7HY7DoeDTp06YTa3YxUlIYQQ4hiV1JNpy3yHkiFcVhd5rjzsljakUOp6bUm76tSEwmRNaoKhwwveQjhgZHt3tIz5pSv4pGwVYT1Wv92EiWHZfTijcBTDsvtgMTUeES8bNA3f7pWt72MDR3UwvXbtWmbPns0XX3zB3r17cbvdDBw4kP/5n//hvPPOO2TXramp4cEHH2Tp0qUsW7aMqqoq5syZw6xZszIeH4/H+e1vf8tzzz1HVVUVQ4YM4d577+XMM89sd182bdpEZWUlffr0aXdbdcxmM126dOmw9oQQQghx7Aknw2kTCmNaDK/DS1dvG5f5jodTC6pEakvaJSJgc4LTDwcE5UlDY1nlOuaXrmBdqDhtn9/m5fSC4ZxWOJxCR06zl4zl9CRYNBTfntWt72+tozqY3r59O6FQiGuuuYaioiIikQivvfYa06ZN46mnnuLaa689JNctLy/nnnvuoUePHgwdOpSPP/642eNnzZrFq6++yk033UTfvn35xz/+wdSpU1mwYAHjx49vcz+i0ShXXnklt912G36/v83tCCGEEEJ0BEMZBOKBVCpHrIJgIogJE36Hn3x3fusb1DSI16ZxxFIrEwJg94CvS9pkQoC9sUo+Kl3Bx2VfEjpg+e9BvuM5o3AkI3MGYD1YXrZSuMs2kr1tEZ5961rf7waO6mB66tSpTJ06NW3bz372M0aMGMHDDz/cZDBdVVXFggULuPDCCzPuf/HFF5k2bRoejyfj/i5dulBSUkLnzp1ZsWIFo0aNarKPy5Yt46WXXuLBBx/k5ptvBuDqq69m0KBB3HLLLXz22Wf1x44fP57FixdnbOeOO+7g3nvvrb+dTCa5+OKL6dOnT1rahxBCCCHE4ZbQE/Wj0IF4gFAihMvmIt+V3/pUDkWDlQlrS9ppMbC7wJ2bVtIOQDN0VlZvYH7pCr4KbEnbl2V1M7FgGJMLR9LFmZ5DnYmtppzs4sVkb1uMPdz+GtNwlAfTmVgsFrp3787y5cubPObJJ5/krrvu4l//+hcXXHBB2r5nnnmGH/3oR/zlL3/hJz/5ScbzHQ4HnTt3blF/Xn31VSwWS1pg73Q6+eEPf8jtt9/Ozp076d69OwCLFi1qUZuGYXDVVVdhMpmYO3fuMTtBUAghhBBHVk2ihspYJWXRMoLxIAkjgc/uo2tWG1I5tHgqgI5Up9I5EjX7JxO6cxqNQpfHq/lv2UoWlK6kKhlK2zcgqydnFI5kdO4J2M3pwfeBzMkYWbtWkLNtMZ7S9Wn7DLOFmqKhhAv60eXLl1p3f2p9K4LpcDhMNBolEAjw1ltv8d5773HppZc2efytt97KsmXLuPzyy3n33XeZPHkyAK+//jrXXXcdV155JTfccEOH9O3LL7+kX79++Hy+tO2jR48GYNWqVfXBdEtdd911lJSU8MEHH2C1tv4pikajBIPBVp8nxOEWDofT/ivEoSKvNSFazlAGwUSQQDxAIB6gJlmD2WTGa/Pit/pBg6TWwhJySqUqcMRDqQA6GUmldthdYOuUqg9tkCqtUXvtr4KbWVCxgtXBjSj2LzTnNjs5JXcok/JG0s1VmGo+CfGM1zXwVmwkb/tisncvx6KnHxXJ7klFj/FUdhuD7sgCwLV3I5Q2PVjblG9FMP3rX/+ap556CkhNnrvwwgt54oknmjzearXy8ssvc/bZZzN9+nTmz59PTU0NV1xxBd/73veYM2dOh432lpSUZJzMV7dtz549rWpv+/btPP300zidTvLz9+cevffee5x66qkZz5k9ezZ33313/e01a9YQCLR9jXkhDrdly5Yd6S6IY4S81oRouyjRdrbgrv1rLGSE+CLxBcvjywmo9Bimm6Ubo+yjGGwfjF2zo/bBzqauEC+le+UiulcuwpMoT9sXs/rYlTOOnXnjCbp6pDY2WMcl6JtOAd/RYPqmm25ixowZ7Nmzh1deeQVd10kkEs2e43Q6eeuttzjttNOYOnUqiUSCMWPG8Morr7RptLcp0Wg042IfTqezfn9r9OzZs9XLfc+ePZvZs2ezdu1aBg0axODBgxk+fHir2hDiSAiHwyxbtozRo0c3OYdBiI4grzUhMlNKEdEiBBIBqmPVhBIhdKXjsXlw29yYaMXgo6Gn8p8TNamR6GQElA42N1hdqVHohocrg3U12/hv+Qq+DK5HZ3+5XofZzticwZyWN5Je7qIGZ+mNLmvWYmTvXkHejkVklW9Iv4bJQqDLSVT0OIVgp0FgtuIH/Bnage7sCMwE/tby+8y3JJgeMGAAAwYMAFKT+6ZMmcJ5553H0qVLmx1h9vl8PPTQQ5x++ukA/PnPf8blcnVo31wuF/F44x8YYrFY/f7DzeVyNUo7EeJo5vF45DUrDgt5rQmRohs6VfEqKqIVVMVTy3xbLVZys3NxWp0tb0iRCp4bTiZMRsHmAl9Wo8mEAMFkmIXlq/ho3wr2xivT9vVwd+KMwpGMzxuCu7l+KAN36QZyti3Ct3MFZj19kDWa04vq404h0PNkdEdq0buWrHMc6tL6UsTfimD6QDNmzOC6665j48aN9O/fv8njtm7dysyZMxkwYADRaJSLLrqIxYsXd2iN5S5durB79+5G20tKUr8bFBUVNdonhBBCCHEkxLRY2gIrkWQEj91DJ08nrOZWhIVaMhVAx6pTf/Ga1GIqdi+4shtNJlRKsT60g49KV/B55Vo0tX9k2GayMjZvEGcWjqSPt1uzA6W2UOn+ahyRirR9SaePQK9xVPc6hXh2txbfFV3phLQoNckoNVrrU1m+lcF0XepEc3nBJSUlnHnmmdhsNubNm0c0GmX8+PFMmTKFhQsXkpub2yF9GTZsGAsWLCAYDKaNdixdurR+vxBCCCHEkaKUIpgIUhmrpCJaQSAeQEfHb/eT68xt+TwyQ6UWU4kFahdWqUlV6HB4wFOQqsxxgLAW5dPy1cwvXcGuaHopuiJnPmd0GsmE/KF4rZlzqQHMySi+ncvJ3rYYT9nG9C6ZrYS6DqP6uPHUdB7UaHXEpiiliOpxQlqEpKHhtbrp5irA7m7Z+Q0d1cF0aWkphYWFaduSySTPPvssLpeLgQMHZjyvqqqKs846i5qaGhYtWkS3bqlvJx988AGTJk3inHPOYf78+R2SNzdjxgweeugh/va3v9XXmY7H48yZM4cxY8a0upKHEEIIIURH0AyNqlgqlaMyVkkoEcJutZPtzG5dKkcy1iCNI5RaqdBqS41CexrXdlZKsSW8m/mlK/is4msSxv7KHxaThTG5J3BG4ShOyOrZdCCvDDyl68netjhjGkck9ziqjxtPsMfo+jSOltAMjaAWIaLFcFhs+CxevHYvDlyYdQdbQq2vhnZUB9PXXXcdwWCQCRMm0LVrV/bu3cvzzz/P+vXr+dOf/oTXm/nBe/LJJ9m5cycff/wxffv2rd8+bNgw3nnnHaZMmcLcuXObrDMN8MQTT1BdXV1fjePtt99m165dAPz85z+vX5FwzJgxXHzxxdx2222UlpbSp08f5s6dS3FxMc8880xHPRRCCCGEEC0SSUaoildRHiknkAgQ1aJ4bB46ezu3PJVD12sXVqmGaHVqRNrQweGFrMKMI8BRPc7iijXM37eC4khJ2r5CRw5nFI5kYsEw/Lamg197aB/Z2xbjL/4sQxqHP5XGcdwpxP1dW3Y/SAX3YT1GSItgGAYOkxO/KQ+X4cGUtBPVLQSSBgk9SiimtbjdOkd1MH3ppZfyzDPP8Ne//pWKigqysrIYMWIEDzzwANOmTWvyvFtvvZXp06dz4oknNto3fvx4Pv/8cwYPHtzstR966CG2b99ef/v111/n9ddfB+DKK69MW9772Wef5c477+S5556jqqqKIUOG8M477zBhwoTW3mUhhBBCiFarS+WoiFVQEa0gGA9iYOCz+1qXyhEP7x+FTtRAIgI2ZyoPuomVDreH9zKvdDmLyr8iZuwfQTZjZkROf84oHMlg//FNLvJiTkbx7VieWtq7fFPavlQax0m1aRwntjiNAyBhJAklI1QnoliUDTsuHLoLm3KBbidoKKxmcFjB67Rit5gJeVq5miOtDKafffbZVl8AUhU42uKyyy7jsssua/V5Vqs1YyBdZ8iQIQdto7i4uMXXczqdPPjggzz44IMtPkcIIYQQor2SRjItlaMmWYPD4iDXldvyZb41DeK1AXSsdmVCSKVx+Lo0mkwIqUB1ScVa5pcuZ1PNrrR9uXYfkwtHcFrBcHLtTVTPMQw8pevI3rYI366VGdI4jqf6uFNancZhGAZViQgVsRo0XWHS7TiVHxtubMqFzWzFYbPgcJpxWM00qvxnZCqZ17xWBdOzZs1qtK3um86BtZEbfgNqazAthBBCCCEaiyQj9aPQgXiAmBbD6/DSxdMFS0tGbxW1aRwNcqG1eGplQnduxpJ2ALujZcwvXcEnZasI67H67SZMDMvuwxmFoxiW3QeLKXMf7KG9DdI40sviJZ3ZVB+XqsaR8Le8GlpSVwRiUSrjYQKxKBZlx4oTl/KQZfXgt7tx2Mw4rJZM3wtAGZiTESyJILZIWYYDmteqYHrbtm1pt6urq7nmmmvw+/38/Oc/ry9Tt379eh5//HFCoRBz585tdaeEEEIIIUQ6QxkE4gEqo5WUx8oJJUIA+Bw+8lx5LUvl0OK11TiqU8t7J2pSVTjs3lQQnaGNpKGxrHId80tXsC5UnLbPb/NyesFwTiscTqEjJ+MlzYkI/p2pNA53+eb0+2S2Euo2PJXG0Wlgi9I4kroiltSJJDUqojVUx8MYhgkbDrIs+eTZfeQ5vbhstszBcy1TMoIlWYM5GcOwu4nZc/lKM5o+oQmtCqZ79uyZdnv27NkUFBTw4Ycfpj2BgwcP5qKLLmLKlCk88sgjzJkzp9UdE0IIIYQQkNSTabWhQ8kQLquLPFdey1I5DCMVOMeCEK2sLWmnpUraeTNPJgTYG6vko9IVfFz2JSEtkrZvsO94JheOZGTOAKyZzk9L4/gCs55M2x3J651aVKXHaAx789XVkrointSJaQaxhE51IkIgESaqJXGZXWTbcyh0+8l1+HBZm388THoCcyKIJRHGsDow7D6inu68sEHxzrpqSndUNXt+Ju2agPjmm2/y+9//PuM3IbPZzIUXXshvfvOb9lxCCCGEEOKYFE6GqYxWUhYtI5gIEtNi+Bw+unq7NjmZL00i2iCNI5iaTGh1gCMLPJlL42mGzsrqDcwvXcFXgS1p+7KsbiYWDGNy4Ui6OBuXxAOwB0vI3raY7OLPsEXTA9OkK5vqXuOoPm48CV/TC+hpuiKmGcQ1nWhcJ6bpRJNJAskwMSOG2+Ig25FF3yw/fpsXj8XV/ONhaKkR6EQITBYMWxbx7M7ozlziVh/3friNFdtbH0TXaVcwrZRi/fr1Te7/5ptvGuVSCyGEEEKIzAxlUB2vrp9QGEgEsJgs+Ow+CtwFB29A11Ij0PUl7cKAnkrjyOoM5sxBZ3m8mv+WrWRB6UqqkqG0fQOyenJG4UhG556A3dw4l9qciODfsSyVxlGRHoAbFhvBrqk0jnCngRmvr+mKuGYQ03RiCZ1oUiepKWKaRlzFSaoEVqsi1+XFZ8vHb8vCZ/Fgy9CXesrAnAxjSYQwGTqGPYuktxu6Mw/dkY1hT01q/NfyHe0KpKGdwfT06dP561//Sq9evbj++utxu1Or10QiEf7617/y1FNPMXPmzHZ1UAghhBDiuy6hJ9JSOWoSNbhtbgpdhdiamAxYT5Fazrvh0t7JKNhc4M5pcjKhoQxWVW/mo9IVrKzeiGL/AKjb4mRC/lAmF46ku7sww8kGnn1rydm2mKxdX2A20uszp9I4xtemcaSvbqgZikSyNnhO6kRqg+eErqMMMJkNNFMczZLAY3XgsWaTbfWRZfXiNjubWehFYdKiWBIhzFocw+5GcxWgO/PQnNkYdh80GMHWdIN3vyrJ3FYrtCuYfvTRR9m2bRs333wzt912G126pIbsS0pKSCaTnHLKKfz5z39udyeFEEIIIb6LQolQfRAdiAfQDI0sexZds1qQyqEl9o9C1wXRZktqFNqVnXEyIUBVIsTHZSv5qPQLyhOBtH29PV05s9MoxuaeiCNDPnYqjWNRbRpHddq+pCuH6uNOobrXuLQ0Dt1QxJNG7eizRiSxP3g2DLBZzFgtYLVpxFQMkwk8Zjd+ax4+q5csqxdrE9VBAEx6HHMiVJsH7UyNQvuPQ3NkozuyoYmFataVBKmOJjPua412BdN+v5+FCxfy73//m/fee69+kZOzzz6bqVOnct5557W8SLgQQgghxDFAN3Sq49WUR8upilURTASxmC34HX5cVlfzJxsqtRphLACR2smEehLsbvAUpCpzZDzNYG1wG/P2reCL6vXoan/VCofZzvj8wZxROJLjPI1L0pkT4QZpHFvT27XYCHYbkUrjKDwBzOZU8JzQa0efU8FzQlckNANDV1itZuwWEz6nHZ0kYT1C2IjjNrvIs2aTbfORZfHgsjSz5LmhpUagkzW1edC++jxo3ZGNama59JqYxpo9AT5cu7f5x7qFOmQFxPPPP5/zzz+/I5oSQgghhPhOimkxqmJV9akckWQEt81NJ0+ngy/znYztz4OOh1IrFVptqVFoW9OBYzAZZmH5Kj7at4K98fS6zj3cnTizcBSn5A3GfWDwaRh4960le9sisnatbJTGEc7vm1pUpfsoNKubuK4Tj+nEkwkiCZ24bpDUDHRDYbWYsVlM+Jw2LGYTujKI6lHKk1GsZgtui4tO9nx8Ni9eiwdLUyPy9XnQQUyGkZ4H7czBsGWuChKOa6zdE2TN7mq+2h1gW1mYjpzRd1QvJy6EEEII8W2mlCKUDFEZraQiVkEgFkBTGj6HjyJnUfOpHLpeu7BKde1kwlBqhT6HF7I6NTmZUCnF+tAOPipdweeVa9HU/lX9bCYrY/MGcWbhSPp4uzXKIHAEdtcuqrIEW6w6bV/CnUug1ziqep5CyF1ALGkQjxpEEmESukFCN9A0A5vVgs1iIsthw2LZ335Mj1OdjJJUSdxmF4WOPPzWLHxWLw5zEyXtlMKsRTEnQpj1OIbNg+YqRHfloTka50EDRBIa35QEWbMrwFe7A2wtq8HIED1bTIDJhJ5pZyu0u5rH3/72N5555hm2bt1KVVXj2ZAmkwlN0zKcLYQQQgjx3aQZWlpVjlAihM1iw+/042wmBQFFqgJHw5UJk9HU6LMrG5qpKx3Wonxavpr5pSvYFU1fya/Imc8ZnUYyIX8Y3gNSScyJMP7tS8nethh35YFpHHaC3UZQ2mMc5Tl9iWkQTWjEKyIkdUVSM7BaTdgtZrx2K1ZXemCrKZ2IHiWiR7GbbXgtLrJtnciyNF/SzqTHa9M4IhiWVD3opCsPzZGD7vCn5UHHknp98Lxmd4BNpaGMwbPZBH0LsxjSzc/grn5O6OLjzVW7eX7pjiYf05ZoVzB9yy238PDDDzNs2DCuvPJKcnIyr3wjhBBCCHEsiGpRKmOVVEQrqI5XE9WieGyeg6dyaNr+iYSx2pUJ4aCTCZVSbAnvZn7pCj6r+JqEsX9CncVkYUzuCZxROIoTsnqmj0IbOt69X5O9bTFZu79slMYRyuvLvu5j2V1wEjXYiGsGyao4mm5gMZuwWc247RZsrsaVQpRSRI04YT2CgYHH4qKLo/DgJe1q86AtiRqU2ZqqB+3vgu7MScuDjms66/dU1488b9oXQssQPZtN0LvAy5BufgZ19TOwiw+3Pf05mDG8Gxv2ho5cnem5c+dy0UUX8corr7SnGSGEEEKIby2lFMFEsL4qRzAexMDAZ/eR68xtuhhD/WTC4P5RaC2emkzozm2ypB1AVI+zuGIN8/etoDiSXt6t0JHDGYUjmVgwDL/Nm7ZvfxrHZ9hi6ZU84q5cSrqeTHGnUVTZ80hoCi1sYDFr2Cy1wbPZBk3cnaShEdYjxFQMp8lBti3r4CXtlN6gHrSBbs8ikdUd3VVbD9rmIakbrN8bYs2ufXy1O8CGvZmDZxNwXIGHIV39DO6azYlFPjyO5kNdq8XMHVNP4LWVu3h3TQn7mj26iTbacE69aDTKGWec0Z4mhBBCCCG+lZJGkupYelUOh9VBjisHh8XR9IlavLYaR3XtyoQ1qSocdm8qiG6mEtr28F7mlS5nUflXxIxE/XYzZkbm9Gdy4UgG+49PS5+wxGvw71hK9rZFuCqL09rTzTZKOp3Etk6j2ePtjWaAGRN2A1w2C3Zn08EzgKEUUSNGWI9gMoHb7CbPmo3fmtV0Sbv6POggZj1xQB50DnGLl42lNXy9u4Kvdm9lfUmIhG40bgfoledmSLdsBnf1M6jIj9fZ+tDWajFz6ageXDS8G/MWm7j17608v9VXbGDy5MksX76ca6+9tj3NCCGEEEJ8a0SSkbRUjpgWw2v3UuQtwmJuoh6yYaQC57pc6ERNKrXD4QFvYao+dBMSRpIlFWuZX7qcTTW70vbl2n1MLhzBaQXDybX7GlyvLo1jEVm7VzVK4yj392Zr4Wi25QzBsLmwW824LGbsFnOzwfP+PiUI61HiRgKXxUme7eAl7UxaLLWsdzKCYXFi2P0kXPnEbX42BCys2VjDV7t3sq4kSFzLHDz3yHWnRp67+TmxyI8/Q5pJW1ktZvp2ymr9ee256JNPPslZZ53FH/7wB6677jry8jKv0y6EEEII8W1mKINgPEhFtIKKeAXBeBCFwu/wk+fKazqVIxFpkMYRTN22OsDhA08zo9fA7mgZ80tX8EnZKsJ6rH67CRPDsvtyRuFIhmX3wdJg9NdRvYvsbYtS1TjiwbT2wo5cthSMpLhwFAlvJ2xWEz6LpbmB8DR1Je3CeitK2hlJLIkaLIkQymxDt2cRc3ZmQ8TDqt2Kr/aEWVdSSjSpNz4X6JbjYnBXf/1ftrvpCZhHSruC6f79+2MYBnfeeSd33nknTqcTiyX9m5XJZCIQCDTRghBCCCHE0SupJ9OW+Q4lQ7isLvJcedibqqyha/sD6FggVZ0DA+we8HVpNo0jaWgsq1zH/NIVrAsVp+3z27ycXjCc0wtHUODIrt9uidfgLf6c7G2L8FZvTztHM9vZkTeEnV1OpjqvL3arDbsJWhOSxvQ4YaMVJe0a5kErRcLqZX2yG19W2VlVqrF2b4BIorLxeUAXv7N25DmVupHrOfqC5wO1K5i+6KKLZIVDIYQQQnznhJPhtAmFMS2G1+Glq7eJZb4VqeW8Y9W1o9A1oMXA5gJ3TrOTCQH2xir5qHQFH5d9SUiLpO0b7DueyYUjGZkzAGttOoiWTOLc/RW5xYvJ2/cVZpU+slvq78OuLmMo6zICVbuoS/Pj4OlaXdJOKcxaBHMiBFqSLVE3K6tz+bLCylf74oTrqpMcoJPPwZCu2QyuLVeX721NL48O7Qqm//GPf3RQN4QQQgghjixDGQTigVQqR6yCYCKICRN+h598d37mk7REavQ5FkgF0vGaVP6z3ZsKopsZdNQMnZXVG5hfuoKvAlvS9mVZ3UwsGMbkwpF0ceah6Yp40kCr3Epe8Wd03rMMZzKUdk7YmcueopPZU3Qy0ab62wylFDEjTliPoqO3qKSdSYthjofYUR1jZbWbLys9rC6HYFwBydq//fK9jvqc5yFd/RT6mqm5fZjFkjrBWPLgBx5AVkAUQgghxDGtUSpHIoTL5iLflZ85laO+pF0AIpWpyYR6MlXS7iCTCQHK49X8t2wlC0pXUnVAQDwgqydnFI5kePYA0C3ENJ2yfWXk7V5K3z1LyTlgAqJmcbC300nsLjqZqpw+jVYDbNH9P6Cknd/mrS1p58FtdjXKQlB6gj2VYVbvjfNlpZ1VlQ6q43Ujyukl63I99gbBczadfI6jJqshrulEEzrRpE5cM3BaLZjb0LV2BdPPPvtsi467+uqr23MZIYQQQogOF06GqYxWUhYtI5gIEtfjZNmz6JrVRCpHMpYafY5UQyII8QhYbalRaFvzI6yGMlhVvZmPSlewsnojqkHQ6bY4GZ83hFNzhpNvyyemaeytiJJXupZeez+nqPIbLAekcVTk9GN30cns6zQMvbkVFZvsT8tL2iml2B3SWLMnwupSjVUVFiriFsDdqN1st62+zvPgrn6KspuoL30ENAyeE5qRqmBit5DnteN32fE6rPjjh7max6xZs5rc1/CBk2BaCCGEEEeDA1M5AokAFpMFn91Hgbug8Qm6nqrCEa2unUwYAkMHhxeyOoG5+ZHgqkSIj8tW8lHpF5Qn0gsyHOcuYnzOcAZ5+qNrZhIxRWjvJnrtW8px5StxJtPzjCOuPHYXjWVP0RiirrZVUMtU0q5uMmHDknYlNQar92ms3hdnValOecxMqmZeeqqHz2lNVdrols2Qrn665TQeyT5SEppBNJkKoGOahsNqwWW3kOuxk+224XFYU392K5baIekKR+tL7bUrmN62bVujbbquU1xczJNPPsmOHTuYO3duey4hhBBCCNFuTaVyFLoKsR04OVCRqsBRVxM6HoJkNDWZ0JUNTVXxqGUog7XBbczbt4Ivqtejq/01kx1mG8N9JzLCM4R8ayEJzSBcEaR35UqOL11Gds3utLZSaRzDa9M4ercpjaMlJe1KwwafliZYtU/nq9Ik+9LmQO6/ZpbDyqDaMnVDuvnpnuvGfJQGz3ZLKnjO8djIdrszBs8doV3BdM+ePTNuP/744zn99NM555xzeOKJJ/jLX/7SnssIIYQQQrRJi1M56gLoRAhiodRodLwmNYHQ7k0F0QcJGoPJMAvLV/HRvhXsjaeXfutiL2S4dwgnOPpjUTYcSlFU9hXH7VtGYcXXmFX6IiUVuf1TaRyFw9CtbatwETPiRPQocSOJx5Je0i4Us7J8l8bq0jir92mUhBsvzw3gsZsZVORjcLccBnf10yvfc9QEz0ndIFKf86xjM5vrg2e/a3/w7HV0bPB8oEM6AfHcc8/lzjvvlGBaCCGEEIdNi1M5DFUbQNfUpnDUQDKSSu2wu8CTd9CSdkop1od2MH/fCpZWrUVrkNtsNVkZ6OrPUOdgeriKsFvNFET20H3vUopKlmM/II0j7CpgT9EYdheNIdbGNI79Je1i2M1WPBYXXZ2d0JJuNpfZ+arUYFVpgt2hWMbz3VYY1NnNoG45DO5RwHH5nkMaiLZGw+A5ltSxWcy47Gay3Vb8ThdeZ23qht2C1dL6Efy2OqTB9JYtW4jH44fyEkIIIYQQQAtTOQwjFUDHQ/sXVElGQBmpahyuHDZF9oIWoq8ru8lr1SSiLChbxX/LVlASL0/bl2vJZYR3CCOyBuG3u3FrYbrs/ZSuuz/H1yiNw0lJ51QaR3V274OOfmeSqaSdl0J2VXrZVG5jTZliR9AAGsdkTotiUIGFIUU+BvXI5/guhVgOYyDanKRu1E8YjCV1rAcEzx6nDa/disdxeIPnA7UrmP7kk08ybq+uruaTTz7hscceY/r06e25hBBCCCFEsw6ayqHrqRUJ6/6S4dSy3ibA5gZ3HlhSIVGNFuGub/4OwN9G3ILX6kpdRKXqEG8I7eS/ZV+wMvgNSaXV98GMmYHufoz1n0Rfdw/M6BSUfU3XPZ9TUJ6exqEw1aZxjKG0HWkcDUvaaUkXJYFcdlR62FBuZUf9SuLpVUAcZsWgXMXQTjYGd8+hd1EhJqf/oOX8DofGwbMJl82Cz2Wle25q5PloCJ4P1K5getKkSRlnbCqlsFgsXHzxxTz++OPtuYQQQgghRCMHTeWoW9K7blXCZKQ2gDbX1oMuyBhALq9cj0Eq8F1S/g1jsocQiMVYUrmGJYEvKUmUph2fa83mZP8wRvkG47W48YV20nXjv+hSshx7Mpx2bNhdwO6ik9nTZQwxV24b73eqpF15LMb2Kie7qnLZWuFid9CMonFMZjMrTszWGJavGNrFSd/OuVg8ueiObNRBJlIeakndIFY7YTCq6VjNjYNnj92Cx2HFdhQFzwdqVzC9YMGCRttMJhM5OTn07NkTn8/XnuaFEEIIIdI0m8qhTKm853BFqpRdMpKqwmG2pEagMyyosidazsObXgJSKdTVDRZR+eeO93l+xwfEVTxtKRIzJgZ6+jLWfxJ93L1wJkIU7fqcrnuWkFWzJ639VBrHiNo0juPblMYBEIhrfFNusLHCxo7KPPYEbRmDZ6sZTshRDM+NMyzP4IRCNxZ3AZorLxVAW11oGdo/HDR9f7WNuuDZabPgdVnp6nThdaYmCx7twfOB2hVMT5w4saP6IYQQQgjRpEypHD67j66uAsyJCAT3QDSwP4C22sDqBq8vcy1oBXHd4Msdi9kVLct4zbhKpN12mWycmnMyo/1DyDY7KSz7mq4b/kp+xTeN0zjy+rO7aCz7CoditGEEOKbBxgoL68pgY4WNkqADQzUOni0m6J9r5qR8g5Nyogz2x7G7stDtebUBdA5Jm7fNQXx71AfPtWkb5tqRZ6/LSpHDRZYrFTy77Vbs1m9P8HygDpmAGA6HWbhwIdu3bwdSJfMmTpyIx+PpiOaFEEIIcQxqMpXD4qTAMEG4MpXCkYiCFgOrPTUCnamMXW3wHNd04klFJKGR0HSm7ylhnxHmQ2/zMctJ0Ri/tRRRautO103/ocveFRnSOApTaRxFo4k5W5fGkdBgS5WVDeVW1peb2VFtyxg8m03QL9fC0EILw/J0hvrCeFQUw+ZBt2eju/KJOrLRHf421aRuD91QRBM6kaSWFjx7HFa6+J1kOW31I8/f5uD5QO0Oph9//HF+85vfUFNTg1L7fwTJysri97//PT/72c/aewkhhBBCHEMypnJgphAztmQE4ntT+c9aHKyOVA60Oyc9gG4ieI5rCk03MJnAajbxYec+1OzdCko1OXo7pSbM/WUVJJwGfXZ/nt5Xq5O9nUem0jj8x7V4BDipw9ba4HljuZVtVRb0TMEz0DvHzLBOVoYWWhica5ClarAkajCsDgx7FnFHd3RnLpozG8ytX8GvrRoGz3EtNTLvPgaC5wO1K5h+9tln+cUvfsHYsWO58cYbOeGEEwBYt24djz/+OL/4xS/w+/1cddVVHdJZIYQQQnx3paVyxAPE4yF8QFddx5wIp6pwaMnUSoR2D7hz9wevCuJa88Gz3WLBaTOTtCVZHvyKJYEvqdIC4HY12687KqqwAbZYee2lTJTnncCeojEtTuNI6lBcbakPnrdWWdGMxsGzCUVPPwzrZGV4JzuDC6x4rQaWZAhzIgSaGcPmI+E/rj6NQ1mdGa7Y8XRDNVhhMFUlpC547uyz4nPVLdFtwWE98tVBDpd2BdMPP/wwEyZM4KOPPsJi2f+gDRkyhBkzZjB58mT+9Kc/STAthBBCiIzSUjmiFQTCe7FoUXw6FOhJ0CKpyhxWJzh84KktI1c/8qwdNHi2O22AYme8hMXlX/BVzfq0xVUcJitDIiGWuzIH1Z+4XUyvCVPj7sTuriezp8to4s6cZu+XZsD2BsHzliorST3zqHVRlsaJBTCis52RhW78TjMoA3MygiVRhimmY9i9aJ4iNFc+uiMb4zDkQTcMnqNJHZNJ4bJZcDusdPI5jtng+UDtCqY3bNjAQw89lBZI16krjXfzzTe35xJCCCGE+A6qT+UIl1Jds4dQpAyXlqRQKWx6Yv8qhE4/WOz7g+dYMmPwbDaZsFnM9cFzXZyZMJIsD37NZ4GV7I7vS+tDJ3s+p2QN5UzNyuuRdwDw6zp3lleiTCbuzcshYLGw0Oun08CfEPD3ajKA1Q3YEdgfPG+utJJoIngu8CTom59kSKGJkZ1cdPX4sZpSsZQpGcESqcGcjGHY3WjOPHRXProjB93hO6R50LqhUqXqagNoGgTPhT4HPqcNjyM1Eu20HbvB84HaFUz7/X6Ki4ub3F9cXCzl8YQQQghRL5wMUxkpoyywnWDNXuLRCnzKRFdDYUbVr0KI2ZYKnpM68UiCSEIjrukkDhI81ylLVPJ54EuWB9cQNfYvnW3GzBBPb6YaPiZWFFO4+QWsepwTzWZ6+bOYGQiRZ6Tyf0dFYzzvz6LSeT2Vvp5YGlzDULDzgOA5pmUOnvM9SXrmROiXn2RwgYke3ix81hxcllR6hklPYE5UYUmEa/OgfSSzeqA7cg5pHvSBwbNC4bJbcNmsFGRJ8NxS7QqmzznnHB5//HFGjBjBZZddlrbv5Zdf5oknnmDmzJnt6qAQQgghvt0MZRCIVlIR2E5FcCeBmhIsWgyfYaLAak/lQNtcxJUllfMcUUQSkVYFz3XXWRfewmeBlWyMbEvb57d4ONOUx8XVlQwoXohZpVdb9hgWLqs0kWfaX+IuzzDoV96X65NDWRFOcm7/GJsrU8Hzpgor0SaC5wK3znG5MbrnhOidH6eLx4HP4sVnzSbL6sZisoChY4lXp/KgTRYMWxbx7M7oztoFVQ5BHrShVP0iKZGkDkrhrA2e8732+rQNrwTPrdKuYPr+++9nyZIlzJw5k1//+tf07dsXgE2bNrF3714GDBjA/fff3yEdFUIIIcS3SzIRoTK4nfLADqqDuwjFKnEZBoVWDzZHLnGTk6AilbYRThLXYmnBs93afPBcp0aLsCy4miWBL6nWgmn7TjRlcWlNlHNK12NPW3olVYmjLH8Q72mj+NOuURxn2su7jtvTjnlMuxCAr0ttfF2aeYQ412XQPz/JcXkxumUHcTlieCwusqwe/NZ8fFYvDrO9Ng86jCURwmToGPYskt5utQF0Dobd24ZHuWkHBs+qNnh2W63keuz43RI8d4R2BdMFBQWsXLmSp556ivfee6++zvTgwYO59dZbufbaa3E6D88MUyGEEEIcBbQE4VAJlcEdlFVvIxirJJ4I4bN6ybflkTS7qNZNRMJam4NnAKUU22N7+Cywkq9q1qM3mFDowszUqMHVFXs4Ppk+Ah23eSktHMq+wmFU5PVDw8af5/mIYGKt6sUH+kjOsqwA4H19FN+oXo2uneM06Jev0T9fo3deHJcjTESPYTNb8VpctQG0B4/FjdlkTuVBR6swa/FUHrSrAN2ZWpGwI/OgGwbP0aSOcUDwnD7ybMZ0BBZy+S5qd51pp9PJL37xC37xi19k3P/JJ58wYcKE9l5GCCGEEEcrLY4RqSQQ2k1F1TYqIqUE4pUYyobD6sdhL6BKU8TDOgktnhY8u2wWbC0InuskjARfhtbxWeAL9sRL0/YdrxnMrK7m3Jow7gZrX0SduewrHMa+TsOoyj4eTGYMBXuCZhZttxOK7w9mH9MurA+mH9MuaHT9758UZlTXBHEVJ6xH0dExm1x0duSTbfORZfFgN9sw6XHMscraPGhnahTa1wvNmYPuyAZz+9fNOzB41pXCabPgtlnI8djxS/B8WHTICoiZvPXWWzzwwAN8/vnn6Lp+8BOEEEII8e2RjEK0mmSknMrAdspq9lAarqRaT2I2+zCbu6IrC4GoQtPjbQ6e65QlKlkSWMny4BpiRrx+u0UppoQjXBqsYXg8Tl2zIU8X9nUaRmnhUIJZ3TEwsStgYePWVL7zpgoLkWTjEeG1qhfXJn4JkHFUWjNFKdWqcJjs+Gxesq1Z+Kxe3GYXJqVjSYQwJ2tq86B9HZoHrZQiljTqJwxqyqgPnrM9NrJddtwOC16HFZfNIsHzYdKmYHrevHk8+uijbNmyhZycHC6++GJ++cvUC+/NN9/kN7/5DevWrSMvL4+77rqrQzsshBBCiCMkEYZYAKJV1AT3UBLcw96acsq0BEHDhNXsx6IcGElqg2dw2SypOs9tiOt0ZbAuvJnPAivZFClO29dJ07g4VMNFoRry9dSkwWpfL/Z1Gsa+wqGEXJ3YFbSwodTKpnVWNjczYfBAHxqjmtzntUNXRyd81iyyLB5sJnMqDzq6B5NhNMiDzkN35mDYml+mvDkHBs+6UjisZlx2C539DvxuOx4Jno+4VgfT//nPfzjvvPNQSpGfn8/mzZtZunQppaWlRCIRHn/8cXr37s1f/vIXZs2aJTnTQgghxLeVUrUBdDUqUkUkUEppaC+lNeXsSSaoUAZJZcNBNi6LE7vZjM1ixm4xtyl4rhPSwiwLrubz6i+p1kNp+8ZEY1weDDExEsVsMlOV3YdvOg2jJH8oG+P5bCy3snGNlS3NlKrLdhr0y9Pom6/RO0fjkSVeQnETzXda4XfAmV27kGV1YtaimKMVmPU4hs2D5ipEd+ahObMx7G3Lg64LnuvK1SUNA6fVkh4821Ol6tx2CZ6PFq0Opv/4xz9SVFTEvHnzGDBgAIFAgMsuu4xHHnkEk8nEE088wXXXXZdxIRchhBBCHOWUgngIFasmGignHqogVFNJabiCPVqSckMnqHRcZgfZdg8uq73dwXPqsori2G4+r1zK6shm9AaVN7yGwfmhMJeEQvTUoSLvBL7uNYwV9mF8Hchm424rW9ZYiTexSEquy6Bvnka/fI1+eRr5biMtzWRSrzhvb2h+SXEwcUEfCzlaGHO0DMNSWw/alYfmyG5THrRSirhm1Oc81wXPTruFQpcDv8uG12GV4Pko1+pg+ssvv+TWW29lwIABQGrhlnvvvZdRo0Zx991385Of/KTDOymEEEKIQ8gwUPEA0WAVsUApsZoqYjXVBGJh9iqdUj1J1KyjTDrZTg+dbW7M5o6pQBE3EnxduZwl1V+wXUXS9vWLJ7gsFOLsqE4gbxBrug/nSW0oX1d62bq66RUG8906ffM0+ubp9MtPBc/Nmdy7ho2Vig1lbkCR6ZvB2IIkV/YMo8xZxP1d0GsnErYmD7o+eK5N20joBi5bKngucNnJdtnxOqy4HVbcNgtmswTP3watDqZDoRA9e/ZM21Z3e9SopnOMhBBCCHH0UIZOJFhFNFhOLFhGNFSFFg0RSyQpB4Jmg4hFJ0EUh91KZ2sWToujw64fql7PivJFLNTLCTeIy621EwovjOi4nSeyyDWKy41BbNjpImk0vUhKv3wtNfqcp5HrVhmPa8hQiqgRI6xHMJlM/HiUzuKtVhZss1O9f34juXaD83vDJYNy0dyty4M+MHiuH3m2mcnPspPttu8feZbg+VurTRMQD/yZoe623W5vf4+EEEII0eGUUkRiCSLBCqKhSqLV+0hEghjRIEldodlc1NjtRNw6URUlakRxmh3kWHKwdkAZN5TCE9zO9tJP+SixkxX22gi69j+dNY1pYZ3u2kA+SYzlquAJJIzMKaOdPDp9a1M2+uZp5LgOHjzXSRoaYT1C1IjjtjjJs2WTbfPhMzs56QSNnx5fw9flEFBOPG43J3QvAFcumt1HS0qQ1OU7x5I6ca0u51mC5++yNv3rePbZZ/n888/rb8disfp86TfffDPtWJPJxKOPPtquTgohhBCidQxDEU3qhCNRIqFKIoEKkqFy9GgAIx7CYrFicfpIZOUTM8ep0oPUaGESehKvxUOhPQ9zexcTUQY5VZuxl37B4shG3nBZKLVawb6/3eExg16h3nxZNZk/6b3JlGLR2avXTxjsl6fhd7Y8eIbUF4moEaNGj2AygcfsId+eQ7bZhd9Q2OJRTCqCYfeiewo4IS8X3e5Dd/gxDvJFIq7tr/PcMHjO89rxu+qCZwseu1WC5++oNgXTH374IR9++GGj7QcG0iDBtBBCCHE4GIYiktSJxDVqIhFqAuUka6oxasox4kHsehS7zYHdlYXZn0cNcSqTQaq1cmoSYSxY8Frc5Nqy29UPk5Ekv2I9BaWr2FO9jlfdFuZ73GhZ+1NE3Ab0CHRhX+UZLEycyMID2ijK0usnDPbN1fC1MniuoxkaNXqEmIrjNDnItfnJMTnIVia8SR1ljmJYPWieLmjOXAy7H92eBeamiyg0DJ4TmpGqnW23kOtpOPJswW23YpHg+ZjQ6mDaMJpP4hdCCCHEoZcWPMc1AjUhEjXV6OEqVKQchx7FpWLYHA4sfh+GvTNJpQjoNVQl9hDUwkT1VCpHnjW7XakcFi1GQflaOpWuwlP+De+7LPze52VToS/tOH/MS6zqFPYFTmGf2p8a2tWXGnnul6fRJ08jy9G24BnqRqHjhPUICoXH7CLf5CIXM9lJMFvNGDYvCbevdhKhD8PmbbKUXaJBznNM03DUlqpLBc+pFQY9DiseCZ6PWYdsBUQhhBBCdJy64Dkc1wjHNaqjCWKRCFq4CiNSiUsL4lZRXMSw2F0Ydh+GrTOYzIT1GIFEJVVabSqH0f5UDluihsKyr+i0bxV5lesptsCcrCze6ppHuEGlD5NhgtCJ1FSdSijaAxPQ3a/TNy9GvzydPnkaXnvbg+c6mtJrc6FjOE02crCSh5Vsw4LT5k3VgnZkpyYQ2n0YVnfGHOiGwXNc17GZUyPPOR4b2W63BM+iEQmmhRBCiKNQpuA5kjBIREIY0WpcySAeI4SbKHYVRzlcGDYfhrUzmsmEoQxq9AjVySDVWogavf2pHM5YJYWlq+m0bxW5VZvRUCxwu3i5MJdlrvQScSrpJ1E1Fq16BN28LkYXafTLC9M7V8fTAcEz1C5yYsQJ61F0I0kWZgqUhVyTFY8jD7Pdh+7IJubMRrf7M5axq0vbiCUNYpqG3WKpD559ThdeZ2r02euQ4FlkJsG0EEIIcRRoKniOxTWS8RBurQaPESLPCOE0IpiNBIbViW7zkbS66kdZk4ZGUKuhKhnokFQOT3gfnfZ9Sf6+1eSGtgNQZjHzf9lZvJrlTU0obECr6UtOYgwDvcfTv49Bn1wNl62m/Q9QA7rSCetRIloNLqWTY5jIM7vxOvJwOPIwXHkkHX4MexaqQTm/hqXq6qpt1C3PXTfy7LbXjTxbsFo6ppa2+G6TYFoIIYQ4AhoGzzVxjUBd8JzQiSY0XCpKlgqTbQRx6SEsyRpMegLD7kF3+tGs6Sv2RfUYAS3U/lQOpfCFdpK9ZxUF+1ZTEC9JbQaWOx28nOVlvseN3iBFwmQ46axOYqz/JE46zofTCpBo/4N0gJgeJ6wFMZJhshTkWdxkOzvjdhRidheiO3zE7L76lQiVUsSTetoKgw5LerUNj8MiaRuiXSSYFkIIIQ6DA4Pn6kiCaLI2eE7q2M3gJUYBNbiMaqzJEOZkDSZDQ7d50Jw5jdIUOiyVQxnY923Fs2s1vatXkW9U1O8Km0y87fXwrC+Hnfb0YDPP3JkJuScx0j8Qu9nWnoenSbrSiSQCxBLVOAydbKuXbFc3PK7OONxdMBz+2hrQ5lTaR9IgmkwQO2B57nxnqtqGxy6l6kTHanMwrZQiFApht9txOlu+lKYQQghxLDho8Gwx47KayDVHcFtDWBJVWOJBzFoYlJGaMOfKR1kaL4iWNDQCWohqLdjmVI5AWEPfsZku5asYGv2SXEJp+zfbbDyRVcTCLBOaeX8lL6vJwlDvCYzLHk53R5dGC7l1CKWIJ0NEE5VoWhS3NYtOzi743J3xeHpgduamKnJQu0hKOEksaaArVZ+2Uehy4Hftr7Yhi6SIQ6XNwXQikSA3N5c//OEP3HLLLR3ZJyGEEOJbp0XBs82C32Gmiy2CNRnEEqnEkqjBnKxBoTBsXjRXIcqSeZS3PakclVETxaUanpJ1DAitZKqxmixTNO2YmDLxtLsPb+U4KXEESCV3pCYL5lj9jPWfxGj/EDwWd0c8ZOmUjpGMEktUEkmGsdrcuB25+LK74vF0xenqgmFzE6lL2whHMZTCYbPgtlnIdtvwu+147Km0DbfdcmgCfSEO0OZg2uFw0LlzZxwOx8EPFkIIIb5jMgbP9VUh9pdU87tsFHosWJMhLPEAlppKLMkQ5kQYZTZj2DwkPJ3r83wbXaeNqRzlETObyi3sLYtSVLmGcdoXXGReg8OUTB1QG2cmlJWPHAP5d342q5xlhFUYiNcf0t99PGP9wxngOb79KyIeSGmYtBhaIkg4GSZuseBy5JDn70eWuwinqyuayUNNUqcsrIOK4LBbcFut5Hjs+F023A4LXocVl02CZ3FktCtnetasWTz77LPccMMN2O2Nf4YSQgghvitaFTxbHZiNJOZEEEs4gCVWiSVZgzkZRpmtqRxob1GzK+21JpVDqVTwvLHCyqZyK9XlAUYnV3K2eTmjzeuxmgxocKkITta5B/F5px4sdgdYG9mMQXXdIDRus5NRviGc7D+JfHtOhz6OJkPDpEUgGSaix6gxmzDZvLizuuN3FmG1dwaTj2BSEYwqnDYNl81KnseO323DbU+VqXPazBI8i6NCu4LpwYMH8+abb3LiiScya9YsevXqhcvlanTchRde2J7LCCGEEIedYSjCCY1IQk8LnqMJI20xj7rg2WQyYdLjWOIVWMJBLLFKzMkazMkIymJDt3nRnNlgajqAhpalcigFpWEzmyqsbKqwsrHcSk58L2eZV/C/luUMM2+BAzJFasxeduQOpbzrCcy3aSwOraY0sQIi+4/p5ujMuOzhDPOegK0DJxSa9DgmLYpFixFDJ2SCuMWK3d0LuzUfi70LZrMf3WzHbrbgslvp5LPic+4feXbamn/chDhS2hVMX3755fX/f+edd2Y8xmQyoet6ey4jhBBCHHItDZ6z3TYctcEzgEmLYYkGsMSqscSrawPoKIbVnsqBduY2uVR1/bUPksqhFOwLm9lYXhs8V1gJxEycaCrmbMtyfmdeTj/H7kbthuw5lHcaSmmnYaxz+VgcWs3K4AISKll/TN2EwlOyR9Dd2aVjHkylMOlxzFoUsxZDN1uoMZsJWKxolmyw5mG1dsJqzyXP6cftsJHlsJLltNWXqpPgWXxbtCuYXrBgQUf1QwghhDis6oLncFwnnGh58AykRlnjgdq/SsyJGsx6HMPqrK/CkWmp6gM1lcqRa8mmLGJnaXkqcN5UYSUYN2PGYKRpAzdaVnCWYzndTOWN2gx5OlNaOJR9hcOozOrK1+FNfFa9jG0Vu9KOy7VlM9Z/EqN8Q/BYGv+q3GrKwKTFUgG0kcQw24iarJRb3ASxoCzZuO0FFHgKyHPlUuDx1gbPqVJ1DqsEz+LbqV3B9MSJEzuqH6JWPB7nhhtuYP78+VRXVzNw4EAeeeQRxo4de6S7JoQQ33rhhEYkEGt18IxSmJNhLPEA5niDEWi9dhVCexaatbBFATQ0TuWI6UnCET87q3PYVGFjc4WVUCI1mm0nyTjzV5xlXc6Zli/INwUbtRfw9WBf4TD2dRpG2NOZ6mSQpcFVLC1+i5Aerj/OBAxw92Zc9nD6uY/H3N6cY6XXp2+YDI2k2U6NclBlclNpGJjsXnyufHq68yjy5tMpKxe/04HHYcVuldUFxXdDhyzaEo/HWblyJaWlpZxyyink5+d3RLPHJE3T6NWrF4sWLaJbt2688sornHfeeRQXF+P1eo9094QQ4ltDrx951qioSiUGbygJkTQnDx48Q20AXYMlEcQSq60BnQztX4XQ0XgVwuY0TOWoTIbYWp1ke6WHXVWd2VJlJ5zYH1y6iTHVvIqzLCuYbF6J1xRL7xomKnP6UFo4jH2FQ4m5clFKsTm6nc/2vM434U0YdbMJAbfZxWh/akJhXmsWc8lEabXpG1F0zSCOnZjJRcjsJGI2odvMZLmy6e/JpSirkKKsfPLcWRI8i++sdgfTjz32GLNnzyYQCAAwb948Tj/9dMrLyxkwYAB//OMf+cEPftDujh4rPB4Pv/3tb+tvX3bZZfzqV79iw4YNjBgx4gj2TAghjm5J3SAc1wgndMKxJMFYKv85ltSJRVKjswqaDp4BlJEKoOO1OdCJAOZkGJORRLe5M65CeNB+GRpVyRBfV4RZU2awqdzKjupCosn0tIZsQpxhWck51mWcYlqDHS1tv2GyUp43gH2dhlFaMJikPQtIjXJ/Ub2Cz6pXUpasTDunh7OIsf6TGOo9AVsLF3PJxGQkMWkRVDxCUlfETU5iJg/K4SNhtxK3gsdp53h3DkXeAop8eeS7crE0U61EiO+KdgXTc+bM4aabbuKyyy5jypQpaUFzfn4+p59+Oi+99FKbg+nly5czd+5cFixYQHFxMXl5eZx88snce++99OvXrz1db1ZNTQ0PPvggS5cuZdmyZVRVVTFnzhxmzZqV8fh4PM5vf/tbnnvuOaqqqhgyZAj33nsvZ555Zrv7smnTJiorK+nTp0+72xJCiO+SuKan8p3jGjUxjVA8mUrbSBpohoHDasFls5DrsWOyG+zaAz6nDfuBE9uUkSphl0hV4Gi8CmFexlUIm6MbirUVUZbvi7GmTGdLhY2Y5mt0XGcqON+xnHNtyxmobcCCkbZfszgoKxjEvsKhlOWfiN5gJHxPfB+fVX/JytBakmkTCq2clHUC4/wj6Obs3Kp+N2TS4uiJCEY8TAIzCZzgyMXs9YPdjdUJhjlJkTOLAk82nTwF5DpzcdsOwYIuQhzF2hVM/+lPf+L888/nhRdeoKKiotH+ESNG8Nhjj7W5/QceeIDFixdz8cUXM2TIEPbu3csTTzzB8OHD+fzzzxk0aFB7ut+k8vJy7rnnHnr06MHQoUP5+OOPmz1+1qxZvPrqq9x000307duXf/zjH0ydOpUFCxYwfvz4NvcjGo1y5ZVXctttt+H3+9vcjhBCfNsppYgljVTOc1wnFEsSimup1QU1Hd1QuKwWnDYLhVk2bJb0lIJE8oAGDT0VPCdqa0C3YhXCTDRDsalKZ9U+jS9LE6wrV8Q0E6mP2fSP2iHO3VzqXsYEYwXdY9tqG2jQV5uX0sLB7CscRkXuAIwG/dCUzpqaDXxWvZLiWPqEwjxbNmP9wxnlG4y7LRMKlUJPRNHiEYxElKTJisnuxuzpgtXtJ9vjR9nNJIngsJrJdvrJceSQ68ol29HyZcyF+K5p1yt/8+bN3HjjjU3uz83NzRhkt9SvfvUrXnjhhbQFYS699FIGDx7M/fffzz//+c+M51VVVbFgwYIm61u/+OKLTJs2DY/Hk3F/ly5dKCkpoXPnzqxYsYJRo0Y12cdly5bx0ksv8eCDD3LzzTcDcPXVVzNo0CBuueUWPvvss/pjx48fz+LFizO2c8cdd3DvvffW304mk1x88cX06dMnLe1DCCGOBUopIgm9PngORJNE4jpRTSOW1EGZcNpSI89+lw2rpWX5uOZ4AHuitHYRlQNXIewELaytnNQVG6t0virVWV2qsbZcJ5aWlbE/hSTXqTMleytnW5YzLLqS7MietNrOAFFHdip9o3AYVdm9UQekR1QlAywNrGZpcBU1+v6TTcAJnj6M8w+nr/u41k0oVJDQNIxEFD0RRmlxzDYXFocba1YnsrKycXh8WB0OEipCTI/gtrrw2TuT58oj15mLx5b5c1SIY0m7guns7GzKyxuX5anzzTff0Llz239iGjduXKNtffv25cQTT2TdunVNnvfkk09y11138a9//YsLLrggbd8zzzzDj370I/7yl7/wk5/8JOP5dUult8Srr76KxWLh2muvrd/mdDr54Q9/yO23387OnTvp3r07AIsWLWpRm4ZhcNVVV2EymZg7d66s8CSE+M5rWOM5HNdSwXNCJ5pM5TxbTCZcNgtum5VctwOLuWXviyYthooFWF+8jy0VJmJqIyOza7BYLalFVA6yCmGdhK7YUKHzVZnOV6Ua35TrxJpYQiHXpdE/L8kZ7vWM01bSq/JLXNWVjY6rcXdiX6dh7CscRtDXo1ElEEMpNkeK+Sywkm/Cm1ENJhR6LC5G+4Zysn9Ys0uKN6QUJHQdLamhxyOYtAh2s4HF7sbuzcaZlYvD48Ph8eOwO4kaEUKJEFG9Bp/NR2dPL/Jcefgd/g5d0EWIb7t2BdNTp07lb3/7W8agdO3atfy///f/OnzyoVKKffv2ceKJJzZ5zK233sqyZcu4/PLLeffdd5k8eTIAr7/+Otdddx1XXnklN9xwQ4f058svv6Rfv374fOm5cKNHjwZg1apV9cF0S1133XWUlJTwwQcfYLW2/imKRqMEg41LJwlxtAmHw2n/FccO3VBEk6lgOZpI5TzHkgYJzSCmGdgsJhxWC06rCb/TQip21sDQ0OPQ5FJgysCkRbAkwxixEK99E+KdbYrqhIm69bRzHNlMPd7GjP5WrJqCAyb6QW3wXGnwdbnB1+U66ysMEkajwwDIdSU5PifOwNwkE63r6Rv8kk5lq3GUhxodG8jqwd6Ck9hbMIywp8ECKQ3uUFSPsaLmKz4PraT8wAmFjq6M9Y1gsHtA/YRCo3H3Uw+FAs3QSWoKTUtg1uPYSeAwmbDYndh9RdjcfuwuL3anFywWdKVTE6uhLFSGw+LAa/OS48zBZ/fhtrohCdFklCjRpp4BIb7VampqWn1Ou4Lpe++9lzFjxjBo0CDOO++8+pHUv//977z22mt06dKlw1MUnn/+eXbv3s0999zT5DFWq5WXX36Zs88+m+nTpzN//nxqamq44oor+N73vsecOXM6bLS3pKSELl0arxhVt23Pnj2tam/79u08/fTTOJ3OtBKD7733HqeeemrGc2bPns3dd99df3vNmjX11VWE+DZYtmzZke6COMokav/aSjfg6Q1mvqlunP5RFVc8vy7JlyVxftTfwGKGhA7FNSY2B01sDpjYXgOayvw5UehU9PEpevsUA7xR+sa+oiiwgk5bV2Mz0oNMhYkKb39K/CMoyR5B1J7f5B0s0Ur4PPE5XyW+Isn+JG8bNobYhzDGPoYiaxEkgQAcmAbeFBvpK4vrgK5BIgJUGECw9i9dggQhQuxlbwuvJMS3344dO1p9TruC6aKiIr744gtuv/12Xn75ZZRSPPfcc2RlZXH55Zdz//33d2jN6fXr1/PTn/6UsWPHcs011zR7rNPp5K233uK0005j6tSpJBIJxowZwyuvvNKm0d6mRKNRHA5HxuvX7W+Nnj17opQ6+IENzJ49m9mzZ7N27VoGDRrE4MGDGT58eKvaEOJICIfDLFu2jNGjRzc5h0F8OyU0o3bUOZX3HE5oJJIGMU1H18FuNadGnm3mRpMFD0opTHostYhKIpRaPEWLYtKiYDJjWJ08v9nON9V1Q8kHBsWp299Um/n7FiuGgo2VBloTb73dsqBvrk6PnAhF/hDZVHN89Ra6V6ylYM86LEZ6WKubrFTkDmBvwUmU5g8hUVvCDsB2QLK0pjTWhNfzWfALdsTTlwPPs+Yw1jeCEd6GEwr3n68UaLpOUlckdQOUwm7WcRhx7CYNm92Oze7C5vZic2WB3Q1Wd/3DoSudSDJCJBnBbrHjsXnSRqElxVAci5pLI25Ku6PKwsJCnn76aZ5++mnKysowDIOCggLM5o4tzr53717OOecc/H5/fZ7ywfh8Ph566CFOP/10AP785z/jcnXAkqkNuFwu4vF4o+2xWKx+/+HmcrkapZ0IcTTzeDzymv0Wq6u0URPXiCQ0QjGNmngqfSOaNFAKnFYHLreFbJul9cEzgKFjToZqy9cFsCRCmLTaFQgtDgyHB8ObDSYLylD8Z1vLfqr9urxx7kYvv5nBBRb65Wt09degrEGMSAk9yzdw3Mb15FVvwawylLDLP5F9hcMoK0gvYWem8TWqkgE+D6xiaXA14bQJhSYGevow1j+cvu5eDSYUGhgKkppOQlMkjFReiN0MDnOSbHMcp1nD5nBhd2Vhd/vA6Qe7F2yutO8TUS1KMB4kaSTJcmXRK6cXuc5ccp252FpRwUSI76K2LJDXYUO0SimUUphMpg7/NhsIBPje975HdXU1n376KUVFRS06b+vWrcycOZMBAwYQjUa56KKLWLx4cca0jLbq0qULu3fvbrS9pKQEoMV9FUKIbwujNt+5boGUQDRRW2lDJ5bQMWHCZbfgtFnJcVtaPFnwQCYtVjvyHEqtQJiswZQMY1IK3eZGd2SjWRyNJu6VbP2Gl9Vj0ILS0Lckr2Ofuy9jutoYUmDhhHzAUkO1VoERLKbTji/pVbGB/ODORucmbB5KC4dkLGGXiaEUmyLb+CywknXhLQdMKHQzpnZCYY4tVQpVNxQxTSOh1Y48m8BhsWC3KrJJ4jIlcJgMbC43Nkd+Knh2ZIHDC9b0X0x1Qyf0/9m78+i46vPw/++ZuTN39hnti21ZBpvNNpjNhrDagG1MQmi2JoTShOQXGk7aL2nTpJQTIFvTljQlaUraNISQtDRtE9IsLMYmdooTg1kMeGMxXrFlW+vsc/ffH3c0kizJljQjyZjndQ4HNPfeuZ+RB+uZj57FyJDVswS8ARJqgrpgXXknWnahhZi4ioPp7du3c9ddd7F69WryeffTdTgcZsWKFdxzzz0V94IuFou85z3v4fXXX2ft2rWcddZZY7quo6ODa665Br/fz5o1aygUClx66aUsX76c3/72t9TW1la0rn6LFi1i3bp1pNPpITtrzz77bPm4EEK8nfWP5c5rbspGqqCT122KukXRHOi0EQ0o1I2j08Yw5fHdGbxaCp/eh9fI4zULOF7FHaAyQvs6x3E4lHPY2mmytdNi+cEnOM07fJNjJH/oW0dh0UIuaLVIGb1ovTuoO/Q8Z3RuoyZ/ZNj5BTXJkVIHjpFa2I0kbxV5Lv0Kz6Q202X0Djk2OziDSxLnsTB6Oh586KZFumBgWDYeLwR8PlS/l2TQQ9ijozoFAj4HRQ2DPwGhJARiEIiAMjyYL5pF0noazdSIBWLMjM4st7ULjHMQjRBiZBUF008//TTXXnsttm3z3ve+tzyV8LXXXuOXv/wljz/+OE888cSohXPHY1kWf/iHf8jGjRv5xS9+wcUXXzym63p7e1mxYgXZbJYNGzYwc+ZMAFavXs2VV17Jddddx9q1a6uSo/mBD3yAb3zjG3zve98r95nWNI0HH3yQJUuWjLuThxBCTDfDssuBc1436csbbos63UazLPxeLyG/j3jQT6N/lLHcY2Ub+PT+9I1evHoWr5nHY+nY/lB5AiGegdQQ23HYm7LZ0mmxpRRAdxUGdnn3eq7hBnXdmG7/79bVfCL7LKGXfs+czleIFfuGnTPQwu4c0vHZw3bCR/NW8RC/T73IS5ntGM5Ayw2/x895sfksiS+i3lePbjmkchZen+UGzwEvNYof1WcTcjQCFFG8PvCHwZ+EYNzdgQ64HTiGfUsdm4zu7kIrXoWEmqA27qZxxAIxvJ7qpmEK8U5XUTD92c9+lsbGRn77298OCxr379/P5Zdfzp//+Z/z3HPPTej5/+Iv/oJf/vKXvOc976Gnp2fYkJabbrppxOvuv/9+9u/fz/r165k3b1758UWLFvHrX/+a5cuX89BDD43aZxrgO9/5Dn19feVuHL/61a946y132tSf/umflicSLlmyhA9+8IPccccdHDlyhLlz5/LQQw+xZ88eHnjggQm9biGEmEqaaZWD5/4ez/3Bs25ZBBWFoN9LMuxHVSoMngGPkS9NH8zg1XrxGTm8Rg7H4y0Fz7U4voE0BcNyeKPXZEunxdZOi21dJplRWn0EFQjUnsKavgu4xvv8Mdex327gR4G/o+614Z0sUvE2Djeew+HGReSiY08NNGyTV7Kv8vvUi+wrDu3mVO+v5YLoOSwInYXPDuBzPNhAKOAlHPW7BZmYBNBQzDR4FTeADtQM5D8HojDKzn/RLJLRMxStIjF/jNZoK/WhemqCNai+4YXyQojq8DjjbR0xSCgU4itf+Up5R/Zof//3f88999xTTv8YryuvvJLf/va3ox4fbemmafLaa6+N2ov6lVdeYeHChcf8gdDe3s7evXtHPLZ7927a29vLXxeLRb74xS/y7//+7/T29nL22Wfzla98hRUrVoz6/JOhv5vHM888w5IlS6b03kJMRDqdZt26dSxdulQKEKdQsZTvnNfdlIKM5k4VLBoWpu0QLI3lDvl9BJQq7GKWiwcz+Ip9eI0MXiOH1yxiKyq2P4KthMvDU/KGw47ugV3nV7sttFEaSydUDwvqfSxo8LGwQeHUGi+K18PaF3bw6f1/OeYlOnjorTmVw43uDnQxVDeul9hj9PFM6iU2pV8mZw10cfLg4bTgqZwbPptTgrMJ+H0EfB7CAR+qoqAqHgIYKFYBjCIoATeAVmMDu8+ByPCGJCW2Y5PVs2T0DIpHIabG3DQOtZa4GpddaCHGqT+W2rp16zFnmgxW0c707NmzR+xk0U/X9YrSHNavXz+h6xRFOeY34Oyzzz7uc+zZs2fM9wsGg9x7773ce++9Y75GCCGmguP0Fwta5HWTdMEgq1kUDZOCYQEeVMVN20gExz6W+3g8loZPSw8qHszhMXN4bBvLH8JS45jhRvB46C3abD1gsbXTYEunyZt9bueKkTSFPSxoUFjY4AbQbXHviBsjV557Bi93nM055iujrtFAobfudI40LeJIw9noamzUc0diOw6v53fx+9SLvJp7k8FLjnjDLIosZEn8HBrUpFuQqfgI+L2oPvBZGhgpKOqgBCEQgmjzQAGhP3jMe2uW5k4nNAvE/DFaIi3Uh+pJBpOElKnvIiXEO1lFwfRdd93FZz/7Wa677rphhXabN2/mn/7pn7jvvvsquYUQQohxsG2HvGGR10yymhs85/VBnTZKxYJup40KigWP5jjubrORKbWuKxUPGnkcX6l4MNyI41HcYsFDJls6i2zttNifGWW0IG6bugUNPhbWKyxo8NEYOUawbxuEurcTOfw84UObUM3RixB/mXwf6qJLcALjDzzzVoFNqVfYmNpMj9k35FibOoN3Jc7jwpoziQQCqH4vqs+HFwuMPOgF3EbbIVDjkCilb6hRd1f6GGzHJmfkSOtpfPiIqTFmRmZSG6olHojjG0MxpBCi+ioKpp955hmampo4//zzede73sXcuXMBeOONN9i4cSMLFixg48aNbNy4sXyNx+PhW9/6VmWrFkIIAQx02shpJjnNbVNXMAY6bSgeL0G/l2hAoT6iDupbXAW2gU/P4tXT+LS+Uhu73JDiQT1Yw940bOmw2NJpsLWzOKRYcDCfB06r9ZV3nefXK8TVY6/XV+whcvh5IoeeJ9S5GZ95/EFZhxrOIXDu1Ywrx9GBXfkDbEy9yNbcq5iD5n8HPH4uSCxgWf0FnBpvcYNnL2AZYOSgmHcnrATCEKottbAr5T/7jv9jWLd00nqaglEg4o/QEm6hLlRHUk0S9ofH8yqEEJOgomD6O9/5Tvm/f/e73/G73/1uyPEtW7awZcuWIY9JMC2EEBPX32kjq5vkigbpolmeNKiZNgGfl1DARyLkp7EKxYJH85iFgeLBYk+peDCP4wHbH6Gg1vBaSmHLwVKxYGeO7Chzr4MKnFXnK6dtnFHnI6gcZ72ORbD3DcKHnydy6DmCqTeHnWLjoSvRRlf9AvRIE4te+cGQ42+euuq4r9NxQLcsCobOy9lXeSH3Eh3G4SHnNKt1XNVwIcsaziUSKKVlWDpoGTAK4PG5A1MijUMD6DEMNbMdm7yRJ62n8eAhFogxIzKDmmANSTUpu9BCnEAqCqZte/RfzQkhhKicZrr5zjnNJFs0yWgGBd2iYNiYto3q8xEK+KiNBFCVSQiwHBuvXioe1Prw6ulS8aCGrQTIEmZrtpGtXQ5bOi1e7dHRrZFbbYxWLHg8Xj1L+MgLbvrG4RdQ9OHdNzR/mLdq5nKkfj6ZhnOw1YGC1sOHXqDpyMsAHGpYRCY+vJanP3g2TAfdsug1+ni5sIWX8lsp2MWBteDhgpozWd50IfPjc9y6QFODfK8bQCt+d2R3vBaCpQJCf2TUDhxHMyyjvAsd8odoDDWW+0LLLrQQJ6aqTUAUQghRmf6x3P0DUjLFUqeNUs6zZTuESp02GmP+iY3lHgOPpQ0E0P2TB80cHtui2w7zcl+ELT1xtnRapWLBkQvRmyNDiwVnxUYuFhzGcQik97jpG4efI9j9Kp4RRnL3xWawv3Yu+2tPo1hzGiFfeMTn33nKKg6ldgCQbr8OoDya27AcNMsCx23ZvFffw/PZl3ktv2tIGkjSH+WqxvNZ1nA+dYG4Gzjnu8HU3WmD/jBE6kcd4X3sl+uUc6EB4oE4LZGW8i604pUf1UKcyOT/UCGEmCaO45DXrXLwnC4Y5DSLgum2qsPxlFvUJULV67QxwkIGigc1N//Za+bwaHkOagovp8K80ptkS5fDWxkb6P9nqPaEtxQ4uwF0Q3js6/WYRcKdLxM5/Bzhwy/gL3QOO8fyBemsO539tfPYlWzHDtUR8YUJeP0ca8/2cKSe21rdXtGfU2rwZt3gP6B4Cfi8eBSLzbmt/K77Rbr0viHXnhmbzfKmxVyYOA3F0sEsQLHDDZYDUYiPPsL7eEzbJK2lyZt5Qoq7C10bcoerRPyVDxUTQkwNCaaFEGKK2P1juXWrPBwlr1sUDAvNsPCWOm2E/Qq11ey0MeJizFLxYAqflsKnZ3D0HHtTJi+lQrzSG2BLt0p3uVhwaKPniRQLHs2f6yB86Dkih58j1LUFr20OO6cYaaWrYSH7a09lb6yZIhDxhYj6QviO0UPZsh0My0I3HZ7Pbscu7TO/ob3Bu+rPIRTwcVDv4KnuF9jUu23IhMKgN8Bl9eewvOE8ZvljoOfdXWh/CNQEJJPHHOF9LI7jkDfzZPQMlmOR8CdojLupHAk1gd87vucTQkw/CaaFEGKSmJZNTnf7O5c7begWRcOmYFgEfF6Cfh8xVaEhWuVOGyPwmEV8etpN4Sj2YOs53ujUeLnXyyu9Klt7wkcVCw4kOvQXCy4s7TqfPpZiwaPZBqGubUQOP0fk8PMEssNb19leP4X6BXQ3nM1bNfPoUEPkrDwePER9YRLekYsqTctGt2wMy+FIsZtH+n6Jx+PBA2SsXPm81el1rM9uIGsWhgTQADNDDVzTcD6XxU8lbFngeN1vQbj+uCO8j8e0zfKI75ASojZYS33QnU4YDUTH/XxCiBOHBNNCCFElumm7gbNukS0apIsGBd2maFjopk1AcYPnRMhPY6z6nTaGcWy8RrY0tjuFlu3llSMaW7ssXukLsKNXQbdH/jGQUD2lQkE3bWNu0juhnXJfobuU+/w84c6X8I7Qus4I1ZNvuoC+xvM4lJxDDzppM0vBKhK0DWqUBP7BecMOGHYpeDZtLMvBp3jw+7yEA16O6PvpMntGXE/eKpK3BgoKPXhYUnM619TM5yx/HZ7+AsJwZEwjvI+nvyOHZVvEAjHmJOZQG6wlGUzKLrQQJwkJpoUQYoKKhlVO2RhSLGhYmJaDWsp3rouo1RnLPQYeSy8XD6ZT3WzryLGly2RLt5edaR82Iw8GmXCx4NEci2DP66XOG88RTO0aforHS7H2THJNF5BtuoC+SBMpK0ufkSJrdGLaJhFfmMZAPV6PB9txu5oYpoNh2diOg+Lz4lc8xIIKIb+C6vcSULyoipe2uks4ZB7imZ5tx1zqTLWWL8xYSUO4blwjvI/HtE2yepasnkVVVJJqkoZQg7sL7Y9O/ocoIcSUqkowrWkaL774IkeOHOGSSy6hvr6+Gk8rhBAnjMGdNtzg2Z0wWNBNCoaN4zgEFbdNXSw4eZ02RlgYXjOPR0vT2dPLtoMpth7R2dIN+3M+wAtHBdAeBk0WbHAnC46nWPBoXj1D5PALbu/nIy/iG6F1nRmIk286n1zTheQbz8Pwh8iYOXqNFJnCPrJWHsWjEPWFUXx+N0WmaKFbbq62X/ES8HkIq37CAQVV8RBQfKg+L0enTudMnVMjrWzuewPNHrlN3+L4XP7s1D9ACdaOeYT38RTMAmktjWmbRP1R2uJt1IXqqFFr8PtkF1qIk1XFwfS3v/1t7rnnHlKpFABr1qxh2bJldHV1ccYZZ/D3f//33HLLLRUvVAghppJtOxQMd9c5p7udNvKaRd50d589lDptBBRqwr7JLRYctjgLj5Zm35Futh3oY/vhIlu6bLq0/qhyaE6v4oXTanzltI35DQqxQAXrdRwC6d1EDrnpG8GekVvXFROnkmu+kFzThWg1c8HjQ7N1UmaGvnwnGTNH0dFQUQk7MWzLS1az8Xh1Al4fAb+HeEglGPChKl5UxUfA5xl1x3hf/jBPHt7E010vo9mjTIop+eTC/w8l1nLcEd7HY9kWGSNDRsug+lQSaoL6UD1JNUk8EJddaCHeASoKph988EFuv/12PvzhD7N8+fIhQXN9fT3Lli3jJz/5iQTTQogTnmU75ULBnG6SKujk9YGx3L5Sp41oQKFusjttjMDU8rx5sJPtB/rYeijHti6LnDl4DQPbsyEFzqy0WPAoHrNA+MhLpfSN5/EXu4edYykh8o3nkm+6gFzTBVjBWsDd1c9aeTeINtKk9By6bREgiGLH8Pi8eBUvasBDyO9H9ftQFTeA9vuOvW7LsXi+9zVWH3qW7Zk9Q47FfSHS1sjjxV/M7ubKmtkT+2YARbNIWk+jmzrRQJRZsVnl4SoBX2UBuhDi7aWiYPof/uEfeO9738vDDz9Md/fwv1jPP/98vv3tb1dyCyGEmBSmZZcD57xu0pc3KBgWRd1Gsyz8Xi8hv4940E+jfwqKBY+S13Ree6uT7Qd62NaR47VuE33I5u/AepKDigXnV1AseDR/9gCRQ27wHOoeuXWdFptVCp4vpFB3JgwqqjNsk7SZpbPYR4+eIW3k8ToKCX+EuD9AwOclHHAD54DiJeAf20REgJSR5TdHXmDN4efoMTLlxz3AufFTWTHjctZ1vcQznZuJ+qP88Wl/TNfuLh7VHyVrZnm582WunHXluL4ftmOT0TNk9Ax+r5+EmqA27vaFll1oId65Kgqmd+7cyZ/92Z+Nery2tnbEIFsIIaaaZlrkS8Fzf4/n/uBZtyyCikLQ7yUZ9qMqUx889+Z1th/oYcdbPWzryLCr18B2Rj63OeIp5zovbPAxc6LFgkfxWAah7i2ED7mTBwO5jmHn2F4/hYazyZUCaDPSPPS4DX1aji49TVexj6ydB49JPBBmdqyBaCBA0O8WCgZ8PrzjTNXemdnP6kMb2dj7KqYz0Ps64guytHkJ17RdTVOiHRQ/c2ZdTMuux1k5ZyVBM8j+A/u59NxLeerwU6w6ZdWY71nehbZ0ov4oM6IzqA+5be1U3/gGtQghTj4VBdPJZJKurq5Rj2/fvp3m5uZRjwshxGQplvKd87o7ljtddKcKFg0L03aLBYN+H/VR/5R12ujnOA6H0kW2HUyz/a0etnekOZAeOcf36GLBhQ0+6isoFjyaUuhyCwcPlVrXDWob188INZBrvpB80wXk68/GUQYK9UzLQTctCrpJj5Ela2UoeHIYaKgBH6eGksTVIEFFQVW8E+qQYRgFNna9zOrOF3izcGTIsbZIKyvbruaStmWoRxUQxgNx/vCMPwRAM7XyYx8+48PHvaft2GT1LBk9g+JRiKtxdxdarSWuxvEeY2CMEOKdpaJgetWqVXzve9/jtttuG3Zs27Zt/Nu//ZvkSwshJp3j9BcLugNS0gWDrGZRNNxOGwCqMpC2MWWdNkos22FfT45tB9NsO5Bie0eKnvzwlAkAxQOn1XrLbeoqLhY8mm0R7H3NHZxy6HnU9O5hpzgeL4Xas8g3u7vPeqwNSjvfhmmjFU000+3xbHtMNE+evCeL4S/gqAaN/iB1oRoi/gnmDjsOmEW6852s7XyRp/peHZL77PV4Wdx0ASvmXMsZtWdU9bcImqWR0TMUzAIxf4zWaCt1wTpqgjUElcq6fQghTk4VBdNf/epXWbJkCQsWLOA973kPHo+Hhx56iB/84Af87Gc/o6WlhbvuuqtaaxVCCMDttJE3LPKa254u3T+W27TcThulYsGgfxo6bQCGZfPGkSzbDqbYfjDNjo40Od0a8dyQz+Gsei8LG/wsaFQ4o9aHWmGx4NG8WorIkRdLxYMv4DOyw84x1ST5xvPJNV9AvuFc7EAUHNBMG71ouX2eLQe/4iHg86L4DWw1j04WwykQ8Dk0BSJEldDEdm0tE8wCjp5nR3Y/T/Tt4Pn0m+Ux4ACJQIKrZ1/NVW1XURuqreRbMoTt2OSMHGk9jQ8fMTXGzMhMakO1JNSE7EILIY6pomC6tbWVF154gb/+67/mv/7rv3Achx//+MfEYjE+8pGP8Ld/+7fSc1oIUTHLdtxCQc0iq7mdNgrGQKcNxeMl6PcSDSjURyZ/LPfR8rrJjo6MGzx3pHn9cAbDGjnhORmwWVjvYUFjgAWNAU6tUrHgEI6DmtpFuDS2O9jzGh6Gr6eYnOfmPjdfiJaci+140U0LzbTRikVsBwI+tzAwGfYTCnjRPAXypMhbeXJWHsXro9kfJzje3GHHAVMDowBGkSI2G7K7Wd39EvsLnUNOnVczjxXtK7io5SIUb/VmjemWTlpPUzAKRPwRWsIt1IXqSKpJwv5w1e4jhDi5Vfy3UmNjI9///vf5/ve/T2dnJ7Zt09DQgHe8VSVCCFFiWLYbOOsmuVK+c8GwKOhuoBfwuSkbiZCfxukqFjyYZtvBFNs60uzpyo1aLNgaslhQBwsaFRY0hZgZ903Kej1GnnDnS+XR3Upx+DhtSwmTbzyPXNMF5JvOR/cn0U0bzbQppnU8HjcdRvX5iIUUoqqfkN8LXpOcnaPXTNGn58hbBSJKiKZgzfiC29LuM2YRTAMUlUO2xpN9W1jf+eKQMd9+r593tb6LFe0rOCV5SjW+RQA4OGT1LGk9jQcPsUCMGZEZ7i50IIHP6zv+kwghxCAVBdO33HILt956K0uWLAGgoaFhyPFNmzbxL//yL/zgBz+o5DZCiJOcbtn05HR3QIpmki4aFHSLgmFj2jaqz50sWBsJoCpTG+wMKRYsBdAHU8OL9AA8OJwSs1lYa7GwQWF+c5C66CTl2TqO27qutPsc6tqGxxmpdV1bKXi+gEziTIq2B9200TUbr6GhKj6CAS+1ET9hVXEH0fjd4SgZK0e3nqa7kCJt5rEci4Q/Qm2gcWwfCBwHrIHdZzxe8Iew1QQv24d48uAGXurZjjNo17w+VM81s69hadtS4oF41b5dZqmt35HcESKxCI2hRurD9dSoNbILLYSoSEXB9A9/+EOuvvrqcjB9tN27d5dzqIUQol9/p42uPjcofbUjjenVKZgWlu0QKnXaaIxNT7Hg3u5SsWBHmh0H0/TkRx5JrXjg9KTFOTUGC+rhrMYgkXAcJml302PphLq2lAenjNy6LkCh4RxyTRfQV38e2UCDm+9s2vg1m4DfSyToozGgEg74CPkVggEvgdL32bBNevUU3YU0PXqarFVA9fqp8UdRxzKMxLbc4NkslHef8YcgVEfO5+O3XS/z5FvrOZQ/POSyBfULWNG+gvMaz6vq7nDeyJPW0xhFt1vKzNhMWupaSKrJqqaMCCHeuSb1b5KDBw8SCoUm8xZCiLeBouHmOuc1i3TRIFM0KRom+ZxbCFfQbaJRN21DmeLg2bBsXj+ccXedO9K8eqxiQQXm1zqcXaNzTlLn9AYVJRjB8SXL3S6qTcl3uq3rDj9HuPNlvJY2/DWEm8rBc3d8Pprjx3IcAl4vASAR9BMLurvOQb+PYMCH/6g87ZxZoEfP0K2nSBlZipZO1B+mJViLz3OM4La8+1x0g2g8EAiBmoBEAgIR9mu9rH5rPU8feBpt0PpVn8oVM69geftyZsZmVuk7NjBcJa2lCSpBatQaov4oO9jB7Phs4qHq7XgLIcS4g+lf/OIX/OIXvyh//b3vfY+1a9cOO6+vr4+1a9dy4YUXVrZCIcTbiuM4FA27PBylv01dwXD7PON4CAXcThuRaJAOoDYSIBCcml3CcRULBj0srIOzawwWxQvMSYJXjWArSRyfO+lvlFTpibMtgj07yrnPanrPsFMcj49C7Vn0NZxPd+15pNQWwEPA70X1eYn6fURUpfR99hJUFEb6jGI7Nn1Glh4tTbeRJm3k8Hg8JJQIdYHE6Kkc5d3nIpg6KAFQQhCrgWAMAhEsX5Dnuzaz+tXVbO/ePuTy5kgzK9pXcMXMK6qaYlEuKCy1tZsVm0V9qJ7aYC2FXIEd7KjavYQQot+4f3pt376d//mf/wHA4/Hw7LPP8sILLww5x+PxEIlEuPzyy/nmN79ZnZUKIU5Ig3s89wfPOc0ib5pougWlNnVhv0JtWB3SuUK3J79wsDens60jXW5Tt6d79GLBlqiPBfUezqkxOSeRZ1ZIx/EHsZUwtj+J4/Ey8p51ZXxaivDhF9zd5yMv4jNyw84x1SSp+vPpqT2XzuRCbH/ELRZUfDQFfETV/p1nL0HFd8yNcs3S6TUydGkp+vQsWatAyKdSryYIDBoHPnQB2kD6huMBfxDUOCTi4I+AGgUlSEpP8Zt9T7Fm7xp6BhVBevBwbuO5rJizgoX1C6vWbs5xHApmgZSWAiAWGLmtXYHCsZ5GCCEmbNzB9B133MEdd9wBgNfr5YEHHuDGG2+s+sKEECem/uA5q5nkNKsUPJtDejyH/T6iAYW6o4LnqVhbR6pYStlIse1gmo5RiwWhvSbgThWs0VmULNLoS+F4wPa7u8/GZA3pcGzU1C4ih54jfPh5gr2vD2td5+Ahn5hLT935dNUsopA4FdWvEPB7afb7CKuKm+9cGs193Fs6DlmzQI+epktPkTJymLZJzB9mRqB+eHBrW27qhlko7T77QQlDNAlqzA2e/WHwuT9G3ux7k9V7VvP7g78vF/sBRPwRls5ayjWzr6Ep0lTxt668PMcmrafJalmCSpD6UD11oTrqgnVSUCiEmFIV/V7Vtu1qrUMIcYJyHIe87u4653SLVF4nr1vkS6O5faWd5/H2eDYtm60dGfZ2e+jryHD27NC486WPLhbcfjBFb37ksdyK18NpDSEWNPg5u9ZiYTxH3JPGaxaxlQC2P4yutMAkFaV5jTzhI5tLvZ9fQNF6h51jKhH6ahfRXXcumYbz8IVrURUvtaqPUEApDaLx4feN/QOKaVv0GVm69T569SxpI4fi9RH3Rwgd3Rva0kudN/Ju/oo/BIEYxOMQiEIg4j5Wur1hGTzz1tM8secJ3ux7c8hTtcXaWDlnJZfMuAR1vD2oj0G3dFJaiqJVHEjlCNdTE6zBP9quuhBCTCIpZRZCDHH0dMFU/3TBUo9nn8fNeY6pCg3R8Q9IMS2bn774Fo++0kFfwQB88PpOasJ7WbWwhQ+cN3PUoFo3bd44knHb1HW4kwXzoxUL+n2c2RxlQWOAs+vgzGiWkJ3Fa+bx2Ca2L4ylRDHDDZNTPOg4+LNvETlUal3XvQ2PM3ytuUgbPXXnkWk4H73+LFTVT1T1U+d3W9aFRsl3Pp6CpdGrZ+jS+0bvDW3bbt6zkR+0+xyCaLObwhGIuP/4hv6o6C50s3bvWp7a9xRpPV1+3Ovxsrh5MSvaV1R1zLfjOOTNPCkthRcvMTVGW7yNWtVN5ZjqPuNCCDFYxcH0448/zje/+U1efPFFUqkUjjM8GdGyJiPLUAhRDf3Bc64cPOvk9YHpgn6vl6DfRzzoJ+j3VhS4mJbN1x7bwfN7h+/K9uYN/uPZfbx2KMOdq85E8XnJaSY7DvX3d07zxpFjFAuG/JzVGmdBU5CFdR7mRooEjBResxOvkcfRfdj+CGaooVw8WG0eS3Nb15UCaP9R7d8ALG+AVM1C0o0XUGi6EF+imaiq0BzwElJ8qIqPic68chyHtFnqDa2N0hvaMqCYcnegHae0+xyFeGIgePaHy7vPg597R88OVu9ZzXOHnsN2Bn4zmQgkuGr2VVzddnVVx3xbtkVGz5DV3VSOxlAjdaE6aoO1ksohhDhhVBRM/+xnP+NDH/oQ8+fP58Mf/jDf/e53ufHGG3Ech1/84hfMmzePG264oUpLFUJUg10azZ3TLHK6SV9ep6BbFA2bgmFN6nTBn7741oiB9GDP7+3lrx55BcNyjl0smAhyZkuc+c1RFjb4mBUqomgpfHoPHiOHN61h+4JuAB2sgWO1d6uAkj/idt449ByhrldGbF1XDDWRanAHpzjN5xAKh0n4fTT7faiKt+KNcbc3dIZufYTe0B7F3X3Wetwiwv7d50gjBEu7z/4oKCP/OCiaRTYc2MCTe55kX2bfkGPzkvNYMWcFS5qX4K/iBxTN0khpKTRTIx6I0xZvoz5UTzKYlFQOIcQJp6Jg+utf/zqLFy9mw4YN9Pb28t3vfpdbbrmFZcuWsWfPHi666CLmzJlTrbUKISbAKgfPbgCdKrjBc0G30Sx35zkUKAXPsckbzW1aNo++MnzIyEheO5wd8rUHaK+PML8lzlmtceY3qjT6i3j1DL7iAXxGDm8+j4ODrYSxgknMySoetE1CPTsIl3af1aMCTADb4yNbcxb55guxZixGqZ1NKOCnZtBwlGoYtTe0P47P1CDfC44NStANmmMtA4WDgciw3efBDuUO8eSeJ1m/fz15M19+vH/M9/L25ZyaPLVqr8VxHHJGjrSexouXuBqnPd5ObbCWeCAuqRxCiBNWRcH09u3b+frXv47P50Mp7WoYhlv8097ezm233cbf/d3fcfPNN1e+UiHEmFi24w5IKQXQfXmDgjGQ86wqbtpGMuxHrfLO87Fs70iXcqTHpq02zOL2Wua3xjmjOUrcW8SnZ/BqnfjyKbx6Dq9VxPH5sZQwZqR50ooHfcVewkdedLtvHNmMzxzeus5Qa8g1XYA5YwnMPA81HKfe70OpcjeTEXtDAwmPjzrHhyefdnOc/SGINAzqvBFxd6WP89wvd77Mk3ue5KUjLw0Z810XrGN5+3KWzlpKXK3umO+MniFn5AgpofKY79pgLSFFhn4JIU58Ff3kCYfDBALueNlkMomqqnR0DOw8NTU1sXv37spWKIQ4JtOyyfV32xhUMFg0LDTTIqi47dNqIwFUZXJSHUZiOw77e/JsPZBiy8E0m/cdO73jaDdd2MqlM/349DS+9F68en/xoIGthLADUUxlsooHbdS+ne7Y7kPPEep7Y/gpeCjWnIbeugSnbQmBxtOI+/0Tznc+nmG9oY0MIceh3vEQcDzg90EgDNEmd3CKv5T7PIZgPmfk+O3+3/Lknic5lD805Nj8uvmsnLOy6mO+i2aRtJ5GN/XyLnRdqE7GfAsh3nYq+hvr9NNPZ/v2gclWixYt4sc//jE33XQTpmny8MMP09bWVvEihRADDMsmr1lkdZNc0SBVNCjoNgXdwrBtVJ+PUMA3LcHznq4cWw+m2HogzdaDKTJF8/gXjqKusIdQV8EtHvR6sZUwZqgOxxeo4qoHeI0c4SObCXVsInLkBfx6atg5lj+K3nI+9syL8M5eTDBaR2gSN/aH9IbWekkVezH1HDG8zPBH8PrDbsAcHNS67ji7z4PtT+9n9d7VPP3W1Iz5dhyHrJElradRUIircerjbls7SeUQQrxdVRRM/8Ef/AHf/va3+cY3voGqqtx55528973vJZlM4vF4yOVy/OAHP6jWWoV4RzIsu9zjOVs0SBX60zZsDMsm6PcR8vuoj6oExjC8o1os22FXZ7YcPG/rSJHTRu7ckwj5Oaslxkv7UxSM43X3cagNOJwdy2D7IpjB5OQUDzoOgfQ+1EPPud03+l7FO0LrOiM5B2vGEryzLybQOp/QFOyalntDFzrpLXSTLvag2BBXk4RiM9zAWY2VigcjY9p97mfZFs8ffp7Ve6ZuzLdpm6T1NDk9R9gfpjncXB7zHZys3HYhhJgiFf1U+NznPsfnPve58tfvfve7Wb9+PY888gg+n4/rrruOpUuXVrxIId5JdLM/eDbJFk3SRcMtGDQsTMspjYz20Rjz469iMdvxmJbNzs5sedd5+8H0qIFxbTjAghlxFsxIsKA1wcyaEB6Ph588t4//eHZ4wd5QHq4/TYVYkqqPhTKK+A+/TPjwc8Q7XyBY7Bx2iuNTMVvOw9N+MUrbRfijjUxV/4iCWaQ3f4Su3GH6ir3kHZOImqQpPgclXDvQuk4Z/+58Skvxm32/GX3Md/sKFjZUb8w3uKkcKS2FaZvEA3HmJOZIKocQ4qRT9b/NLrvsMi677LLy15lMhlgsVu3bCHHS0EzLTdvQSsGzZpRa1VmYtkNQcXeepzp4Niyb1w9n2HowzdYDKV49lKZojBze1kdVN3huTbBwRoKWRHDYr+w9Rp6PnO5j536FZw+auCP2hu+oLmlV+MOzqjMxz7bBSR8kdOg5Yp3Pk+jdhs/Wh58Xa4W2i/HOvghP89n4lepN7Dsex9RJ5zvpLhyhu9hLGhvLp5JItlEbbsATiLm50BNMxp6OMd9ZI0tGy6B4FRJqgvqQm8oR88cklUMIcdKZtK2BI0eOcN999/Hd736X3t7xFR4JcTLTTMvt8ayZZIoG6aJJ0XB3nu3+4DngDkmZyuBZMy1ePzQ4eM6gWyMHz01xlQWtCXfneUaCplFa6nksDZ/Wh6/Qi0/rwadn+Juzdf49Eed/d/voLQ6cWxP08N55Af7wzMCEO2CYloOuawS6thHrfIHarhcJ598adp7jVaDlHDxtF8Gsi/AmZ03ofhPiOGAUMIopegtddJsFejDJAoF4CzXhJtRwDVQQ0BuWwTMdz0zpmG/TNklrafJGnrA/TEukxU3lCNVW9T5CCHGimVAwfeTIEX70ox/x5ptvUlNTw/vf/37OP/98AA4cOMDXvvY1fvjDH1IsFrnyyiuruV4h3naKpemCed0iXTDIaCZF3SJvWDiOU855TgT9o47Rnqx1vXoow9YDKbYeTPHaoQzmKBNSWhPBcuC8oDVBQ+wYwZFt4NNSKFofvkI3Xj2D1yq4BYTBGhwlyI1J+NBCh80dOjsP55nbFObclvEH0YZpo5k2dq6b2JEXaOx5kUTvKyiD+iKXheuhbQm0XYSn9Xx3t3eq2CboWdBz5LQMPVh0OwYpr4diKEI03EhLpBHfOIoHRzLVY74BCmaBlJbCsi0SgQSNiUZ3wIqarGr3DyGEOFGNO5h+9dVXufzyy+nu7i6PDv/7v/97/v3f/x2Px8MnP/lJisUi73//+/nLv/zLcpAtxDtFf/Cc0yzSRYOsZlLQTQqlFIn+tI1kOICvyj2IjyWvm+zoGAie3ziSxRoleJ5VEyoHzvNb49RFj7Oz6Nj4tDQ+rRdfsQefnsJr5LF9KnYghqk0EOx9jdaNdw+5bI7joJs2gR4vnlcHvheHz/1/aLWnH3UP0Ewb3bTRDINg3xvU925mdveLRNJDd18B8Hih8SxouwhmLYG6uZPTRm8kjgNmAfQc6HlsoM8LPbZJd1Al7Vh4/DUkIo3UKaGKgtvpGPNtOzZZPUtGz+D3+kmqSRpCDW4qR0DS+oQQ7yzjDqa/+MUvks1muf/++7nsssvYvXs3n/3sZ7n99ttJpVK85z3v4W//9m855ZRTJmO9QpxwCrpVnjCYLhhkNYuC4aZu4HjcneeAQk3YN6XBc1Yz2X4wXeq2keLNzuyoo7nb68LltI35rXGS4TEUuDkOXiODT+tDKXTj09N49SyO14cViGEGa92AtiS+98kRpwWO1MshsXc1h5Kno1sWmmGjmRYePUdD38u09G4m0fkiygit61DjMGuxG0DPvBCCieO/jmqxzVLwnCuN7Q6hKX56Q3G6sOhzTLIECKkR6gNxAhW2+JuOMd+GZZDW3VSOaCBKa7S13JWj0tcjhBBvV+MOpv/v//6PT3/609x6660AnHXWWSiKwrXXXssf//Ef8+CDD1Z9kUKcKBzHoWjYZLWB4DmnWRRMk4Ju4cFDKOAj7FeoDatTGjynCwbbOtLlnefdnTlGip09wJyGyEDw3BInHhp7wOUx8ihaL75CDz6tD6+RAcAOxNCjrTDKr/ZTc64jsffJMd1jV8M1ZNMFarS3mNG9mUT3C4R6duBxRsjhrpsLsy5yA+jGM0e9f9U5DpjFgQAaD6gRnGAN2UCIHo9Fl6WRsjVM2yEWSDIjEK24W8ZUj/kGyBt50noay3FTOVoiLeWuHNXs/iGEEG9H4w6mu7u7Ofvss4c8ds455wBu32khTiaO41Aw3E4bec1ypwtqFnnTzXv2eDyE/dMTPPfldbYdHAie93SPkCeM24L41IZoOW3jrNY4UXV8/+t7zKJbSFjsdVM59Awe28AKRDHDTThj2P3UkqeSbbmIaMczxzwvlzydU7p+Q2T7Cyj5I8NPUIIw84KB9I1Iw7heS0VsE/R8afe56K4lEIFkPWYwTp/HodvS6DUypLU0itcdTFLpWOzpGPNtOzYZPUNGz6D6VJJqksZQIzXBGqKBaNXuI4QQb3fjDqZt28bvH/qDs//raFT+ghVvb47jkC+nbVikCrobPBsWmmHh9XgI+X1EAwr1ERXvFLb56snp5cB564EU+3sLI57n83qY1xgt7zyf2RIjHJhArXF/IWGxF1+xv5BQw/YPFBKOh2k6vDXnQ5xxnGA60vca9L029MHELDdwbrsIWs6GqUwpKO8+Z91ufoEIhGogXAtqnILPT6+t0VXspk/rI2/kiQQiNEWaKu6lPB1jvnVLJ62nKRgFYoEYM6MzqQvVUResq2rKiBBCnCwm9Df9888/TzA48IM0k8ng8XjYsGEDfX19w85/3/veN+EFCjGZbNvdec5pJtn+tI3SgJSiYaF4vAT9XmKqQkN0aoPnI5niwM7zgRQHU8URz1O8Hk5vjpWD5zOaYwT9EwyubAufni61s+vCZ2Tw6nlspb+QsHHMRXz9nTY0053UqHg9BOJzSDctIX742WNf7PVD66KB3edE9UZaH5dtgZF3g2ej6LaoC0Qh0eYG0cEETiBK2irQXeymO/MWaS2NhZsCURusrbhbxlSP+QY3lSOlpXBwiAfizIjMoC5UR0JNSCqHEEIcw4SC6fvuu4/77rtv2OP33HPPsMc8Hg+WdbzxwUJMDdt2yJe7bZj0FXTyuk1RtyiabvAcCviIq/4pDZ4dx+FwRmPrgRRbSsHzkYw24rkBn5czmmOltI04pzXHUJUKdib7CwmLvSjFQYWEPj+WP4YZH1pIOJr+4LloWhimjV/xoio+4kGFiOojQoHogd+imj2jP0n75XDaCphxLlRxnPVxDc59tm1Qo6AmocYNnlHjEIhgOCa9xV66U2/SU+xxUyAUlZpQTcW9lC3b4oXDL/DEniembMy37dik9TRZLUtQCVIXqqM+VE9dsK6q9xFCiJPZuIPpdevWTcY6hJgUtu2UUzZyuklfXqdgDATPfq+XkN8dkNLoH3nwyGRwHIeDfcVyysbWg2m6siMHz0G/lzOa4wPBc1OsKsNcvEautAM9UiHhjGMX8jmgW6WdZ8PCsBwCihdV8ZII+okFFYIBH0GvRbhjE76tT8G+Z8A2Rn/O9stg+Zcrfl1jUt59zoFRcMdz+6MQnwnhGlAToMbKY7tzRo6e7Ft0F7pJaSmKZrHczaLSFIu0luapfU9N6ZjvciqHWSDmjzEzNrPclUNSOYQQYnzGHUxfccUVk7EOIarCKgXP/eO5UwWdgm5R0G00ayB4ToT8NCpTGzzv7y2Uc563HUjTkx8+1hog5PdxVmu8lLYRZ25DtGrDXAYKCXtQim4A7bFNrEAUI9LkpleM+AJKwXOpTZ1pO/h9bvCcDPuJqn5CAR/BgJeQz4vv8MuwZQ3s/m2p08Ug4XqYcR68cVRnj/NursprHJWplQan5MGxwB9xd5yTs93d52DcTecovSdsx6av2ENPoYfuYjdpPY0HDwk1QV2oruL3zrHGfF8560qWz15e1THfjuOQN91UDg8e4mqcmRE3HzquxiWVQwghJmjSxokLMRWs8s5zKW0jb7j5zrqbbhDwuWkbybAfdQqDZ9tx2NudHwieD6ZJFUbelY2oPua3uIHzgtYEpzREq9sVxDZQin3lgSpePYPXLGIHIpihWpyR0hNKA1LcISlu8BzweQn4vSQjpeDZ7yMU8BJSFLxeoGcXbFsDO9dCrnPo8/kjMOdymHcNtJzj7nobedizAQBj1iX46+dV7zUDOPZA6oZRAJ/fDZbjreXcZ9R4efe5n27p9BR76Cp0kdJSZPQMIX+I+lB9xb2U+8d8r96zmp19O4ccm6wx35ZtkdEzZHU3laMh1FDehZZUDiGEqJwE0+JtxbRscnr/eO6B4LmgW+4kPcVbmi44tcGzZTvs7sqV0za2H0yT0cwRz40FlfKu84LWBLPrItVvqWdb+PTUQCGhnnUnEvqD7kCV8NBCQscBzXQHpOimjeW4wbPq91ITCRBVFUIBd3JjUPG5wTNA9ghsfwp2rnGD6cG8ils8OO8aaLvYLeQb7Lw/LgfT2tk3UZXkAlMbCKAdy827VmOQbBuU+xxl4AX0v36HrJEdEkSbtkksEGNGbEbFu7bdhW7W7lvLb/b+htSgYTOTOeZbt3RSWgrN0oj6o7TF26gL1VETrME/2m8ghBBCjJsE0+KEZlp2Od85WzRIFQ0Kuu0Gz5ZFUHGDvNpIoLIivHGybIc3O7PlgsEdHWly+siFtsmwv9xpY0FrnFm14ckpbHQcvKVOHEqhG59xVCFhaKCQ0HFAMwamC9oOBBQvQcVLLBggGvQT8rsfTIJ+39AGHlrGTd94Yy10vAxHj4ZpXghzr4ZTrjz2BML6eeSvuJst+/o4s3aCQ0Yce2jus1dxc59jLeXWdQTjwwP5EtM26dP66C5001vsJaNn8Hl9VekN7TgOr/a8yhN7npiyMd+O45AzcqT1NF68xNW4G0QH64gH4lP24VIIId5JJJgWJxTDst2UDd0iWzRIFw3ypZxn07ZRFXd3tD6qElCmLsfTsGx2HsmW0zZ2dGQoGCMHz3WRQHlAyoIZcWYkQ5MaxHiNnDtMpegWEvqMLI7Hg+WPYsZmgMeHbYNuWGimQdG0cBxQ/V6CPh/xkJ+oqrj5zqWd52HLtXTY9yy8sQb2bRxeSJic7e5Az73KDWTHyGy7hEPpQ5w5nhds6QO7z5YJgbDb+zk+c1Duc2zY7vNgBbNAb7GXrkLXkN7QjZHGintDH3fMd/sKlrRUd8y3ZVuk9TQ5I0dICdEYaqQ+7KZyVPqhQAghxLFJMC2mlW7a5HW3x3O2aJIuGm7BoGFjWjaq3w2eG2P+qnSwGCvDsnntUKactvHqoQyaOcIoa6Axpg6kbcxI0BwPTvoO4LEKCfVIEzZ+N22jYKMZBg5uVxDV5xZfRgalbaiKd+TW0Y4Nh7a4AfSu9W7x3mDhOjj1KjeIrps75v7T4+bY7q5zfwDt87u7z5EmiNS5aRxqHPzHHiLjOA5pPV1O5ah2b+hDuUOs2buG9fvXkzMGii4nc8x30SyS1tPopk4sEKMt1kZ9qJ6aYE3FHwqEEEKMzYT/ts3n81x22WX8f//f/8ef/MmfVHNN4iSmm3Z5QEq2aJLWDIqlISmm5RCcpuC5aFi8djhTHpDy2uEMhuWMeG5LIjgk57kxPr5JgBPlsfRBI737Cwk1rEAEXa2laCtu0WDWAizUUp/nmrAbPPd/b0cNnvv17HKLCHc+BdnDQ4/5wzDnMph7DbSee+z2eZWwjIGpg5bh3jcQgVgrhJIDAfQxdp/7Gbbh9oYudFe9N7Tt2LzS+Qqr96yesjHf/akcKT2FD5/bXSReR22wVlI5hBBiGkw4mA6Hw+zevVv+4hbHpJmWm/OsmWSKBhnNLO08W1i2Q0hxc3KnOngu6BY7DqXLPZ7fOJzBtEcOnmckQ+V85wUzEtRHq9dp4bhGLCTMYXiD5LxR8kotmm7jMRyCik0w4KXW7yesKqVuG27wfFzZI/Dmb9xCwu43hx7z+EqFhFfD7HfBOMeIj4mD27Kuv3WdV3GD50ijuwMejLsBtH/sKQt5I+9OKJyE3tB5I8/6/eundMy3aZuk9TR5I09ICdEcbi535QhOxp+JEEKIMano94ArV65k9erV3HrrrdVaj3ibKxoW+VK3jXTBDZ6LukXBtLDtgZ3nRNBftd7JY5HXTbYfTJfSNtLs7MxijRI8t9WGB4Ln1gQ1kcraoY2bY+PV0yhaH76CO5HQ0TJojkKKCHlPI148qF4fIcVLXSRAJKgQ8ituKsdYc8n1LOz6PzeAPvgSwwoJmxa4hYSnXgnBZHVfI5Ra1+Xd/04fgEjI7bQRazlq93nsAant2PRpfZPWG3o6xnz3p3IYlkEsEKM93k5dqI6kmpRUDiGEOAFU9DfxF7/4RT74wQ/yR3/0R9x6663MmTOHUGj4zlFtbfWq1cWJpVgezW0N2nk2KRhufrGqeAn7FRKhqQ2es0WTbR2l6YIH0uzqyjJS7OwB2usj5V3n+a0JEqHpaRvm1bOlNI5uKPRh5lMULcj7IjiBBgL+gNuqzu8jrCqE/W7RYGA831fLgP39hYS/d78eLDGrVEh4tduPudocx81/1lJgFMEp9Tmunwc1jW4AHRh/7+PJ7A3dP+Z79Z7VbOveNuTYZI75zhk50loaxaOQCCaoC9ZRG6ol5o/JbwSFEOIEUlEwPX/+fAC2b9/Oww8/POp5ljVy1wPx9lM03MmCec0iXTTIFE2KhlnqbOEhqPgIBRRqwr7q904+hlTBYNug0dx7unJH77MC4PXAKfXRcrHgWS1xYsHp67nrMQv4tD7IdWHmejAKKQzThEAMb6gJVQ3QHFAIB3yE/G7RoN83zu+rY8PhrQOFhFpm6PFQzUAhYf1pk1NIaGpQTLl50ErITduoPRWsIOx6ye0GEhtfXvFk94ZOa2l+s/83rNmzhu5id/nxyRzzbdomac1N5Qj7w7REWsoFhZLKIYQQJ6aKgum77rpLdkhOYo7jUDRsN3jW3bSNrGZRMNy8Zw8ed4S0X6EmrE5p8Nyb18uB89YDKfb15Ec8z+uBeY2xcrHgmS1xIur0/mrcY+lYuR7MXDd2rhunmCLgGHhDUQKJJpLhMOGAm/McDPjwT/T72rvH7QW9c80IhYQhaL/czYNuPdfNUa42ywAtDVrWTdVQ424BYaTeDeD9QUinx/20k9kbGqZ+zDe4rfrSWhrLttxUjoSbylGj1lQ171oIIUT1VfQT9J577qnSMsSJwHEcCsZAwWC6YJDTLPKmiaZb4PEQ8vsI+xVqpzh47s5qbBkUPB/oK4x4nuL1MK8pVk7bOLM5Tigw/cGIpmuY2R6sfC9O7gghO08IHSUYIdjURCgcc/PJAz6USr6vuS548yk3iO5+Y+gxjxdmLXY7cbRfMjmFhLYFegaKGTelQ427u879AbQanfBTT2Zv6OkY8207NlkjS0bLoHgVEmqiXFAYC8Sqdh8hhBCTq6rbUYWCG+CMlDctTjz9wXO2lPOcKujkNbdYsKhbeEvBczSgUDfFwfORdLFcLLj1YIqOVHHE8/w+D6c3xdyCwRkJTm9yg9Lp5DgOmmlT0A3MfB/ke4mYvUScHCGnQDgSIhBpRI3ECAWUyoJncFMndpcKCQ9sZlghYeNZbgrHKUvdwr5qcxy3mFHLgKm7AXOsZSCADiYmnDoy2b2hp2PMt2EZ5a4c/d1F+lM5qhmsCyGEmBoVB9P79u3j7rvv5rHHHqOrqwuA+vp6rrvuOu6++25mz55d8SJFdTiOU+60kdMtUnmdvG6RNyyKhoVvUPBcH1EnZ+T1KOs6lC6WiwW3HkxxJKONeG5A8XJmc6w8YfC0ptiUTkIcyUDwbFHQTRw9Q8TKELf7CNsZYp4iasRPIJokFG7HV42x55YBbz3n5kHv/Z07FXCwxCy3iHDuVZCobneJMiPvBtB63u0DHaqFSIMbQIeSFfWgnsze0NMx5hvcdnppPY3lWCT8CVqSLdQGa0mqSUnlEEKIt7GKgulXX32VSy+9lL6+Pq655hrOPPPM8uM/+tGP+NWvfsWGDRs4/fTTq7JYMT627ZAvd9swSRX6R3NbaKbtBs8BHzFVoSE6tcHzgb5COXDeeiBFd04f8dyQ38eZLbHSkJQEcxujU9qPeiT9ueRFw+2XrVs2EY9O1MlQb/aR8GYJO3nUgIMaqcUXmlGdnGTHcQsJd66FN9e5+ciDhWrg1GVuGkfD6ZNXSKhl3J1oX8AtJEzOdgPpUA0olXXOmMze0NMx5tt2bLJ6lrSeJuANkFSTNIQaqA3WEg1MPOVFCCHEiaOin/B/9Vd/hdfrZfPmzSxcuHDIsa1bt3LVVVfxV3/1V/z85z+vaJFifPoKBm92Zt20Dd2mqFsUTQu/10vQ7yMe9BP0e6eseNRxHPb15Mv5ztsOpujNGyOeGw74OKslzsJS2sapDdEpTS8Zie04FA2LouHuPpuOTVDxEfaZtCgZapQsETNFyMmjBgy8wRioM0Cp0q/s+/a6O9A7n4JMx9BjShDaL3MLCWecPzmFhLbpBtDFtDvApb8TR7gOwrXjGqQympSe4kjvkSG9oeNqvCq9oY815vvi1otZ0b6i6mO+DcsgpacoGAW3u0h0RjkfutJWfUIIIU4sFf3k/e1vf8tf/MVfDAukARYsWMBnPvMZvvnNb1ZyCzEBe7ty6AfTBHxed0BKyE+jok5Z8Gw7Dnu7c2w5MBA8p4vmiOdGVYX5pWLBBa0J5tRHTpjguTyp0RkYNtMc85H0asTsbsJmH6qZxWsW3Gl9al1VAksA8t2wszSRsOv1occ8Xph5oZsHPfuS6t1zMMd2u3BoabeoUI1Dsm0ggA5EK975NiyDroKbGrarbxcFX6FqvaGnY8w3DKRy2I5NPBBnRmQGdaE6Emqiqi30hBBCnDgqCqYNwzhmsWE4HMYwRt6BFJNrdm14yoJny3bY3ZUrtapLse1gmqw2cvCcCPnd4LmUtjG7Ljxl6SWjsWwHzXSD57xh4TgOwYCPkOIjGfGTCCpEnSwRK0XI6MGjZdydWiUIwRj4m6qTUqHnYc/T7i70wRfdgHawhjPdAPrUpW5KRbU5jpsHXUyDWXQHqEQa3ULCcC2oCfBWHhAWzALdhW66Cl10p9z+zV6Ptyq9oY835ntF+wrObzq/qjnKtmOT0TNktFJet1rjpnKEaon4I1W7jxBCiBNTRcH0ueeey/e//30++clPkkgkhhxLp9M88MADnHfeeRUtUIyf1+OZ1EDatGze7MyV8523d6TJ6yMP5qkJ+8u7zgtmJJhVE5r23uSW7ZTznQuGBeXgWaE2EiAe8hMJ+Ih48oTMFJ5clxtgaumBfsk1s90d4krZJuzf5OZB7/kdWEcVXsZnuIWE866ZvEJCs+i+Pj3n7nIHExCZ6wbQwST4Kk8dcRyHjJEpB9Epze2cEVbCZMkS8UcqCqSPNeb78pmXs7x9ObNisyp+HYPplk5aT1MwC8T8MWbGZpZTOaqZdy2EEOLEVtFPyS996UusXLmSM844g49//OOcdtppALz22ms89NBDdHd388///M9VWaiYPoZl88aRbKnbRoodh9IUDXvEc+ujgXLgvKA1QWsyeEIEz4VS2kbRsMDTn7ahUB8tBc+qQiSgEHQKeIq9kOuBfE9pWmApzSFRxULCI9tLEwnXuZMBBwsm3ULCeVe7u9GT8f2z9FIedAYUf+n1zXTTOEI1Vcv3th273Bu6t9hLSksRUALUheoI+AJouZG7tozpJRxnzPfy2cu5ctaVVR3z7TgOeTNPSkvhwUMsEGNmZCZ1oTrialxSOYQQ4h2ooshg2bJlPPbYY/zlX/4lf/u3fzvk2KJFi/jxj3/M0qVLK1qgmHq6afPa4Uw5bePVQxl0c+TguTGmsmBGgoWlALopPnW52aMxLZuiYZM3TLTSukN+L2FVoTGuEg/6iag+Iqri9qQ2NSj0Qm93KYBOuf2Sg3GINbpdK6qhb5+7A/3GWsgcHHpMCUL7pW4njpmTWUhYyoPG46Zx1J4CkVIAHaheSoJhG/QUeugsdNKn9ZHTc4QDYZqjzRUPWJmOMd+WbZExMmS1LEElSEOogbpQHXXBuqoG60IIId5+JvxTzTAMduzYwRlnnMHmzZs5dOgQe/fuBWD27Nk0NzdXbZFifHZ3FzjfslHG2EKuaFi8dijDllLaxuuHMxiWM+K5LYngoLSNOI2xSZiiN06mZQ/sPJsWXq+HkOIGy81xhXjITzgwKHgGsEwo9EBfL+Q63QDTKBUShqrToQJwg/M3S4WEna8NPebxuh045l3jBtKTEZQ5tpu+oaXd3tRqzE0dKU8kjFd153twPnRKS1G0isQDcVpjrRUHt8cb833N7GtojlT37x3d0klpKTRLI+qPMis2i/qwO2DF75VUDiGEEBUE016vl/PPP59/+Id/4M/+7M9obm6WAPoE8eCzB3js0HOsWtjCB86bOSyozusmOzoy5U4bbxzJYtojB88za0KD0jbi1EWnf0KbYdnllI2CaeHzlobNhBRa1CCxYCltQ/WhDh6QYttucFvodcduF1Nuv2R/0A0qo1UqJDTysGeDm8Zx4IURCgnPcPOgT13qplVMBj1/1AeEOog2DkwkrPKQkIw+NB/axiapJqkP1x/zup2pnRwxjzCLkfOZjzfme0X7Ci6deWlVJwc6jkPOyJHW03jxElfjtMXbqAvWEQ/Ep/03L0IIIU4sEw6mfT4fs2fPRtMmnvMoJk9v3uA/nt3Ha4cy/L+r5/H6oWy5YPDNziyjxM6014WZXwqe57fGqQlPf09cw7LJl4LnomGh+NzgORZSmBEMEQ26+c4RVRk+DdFx3KBycACtZQYKCSN11SskfOv5UiHhBreob7BYq5sDPfdqt8XcZDA197Vq2VKnkTjUzHELCUM1UOWiONux6dP66C64Q1bSehq/zz/mKYVZPcvXNn8NHDjHOAeVgWumY8y3ZVtk9AxZ3U3laAw1UheqozZYK6kcQgghRlVR8uKf/umf8p3vfIdPfOIT1NZWd/SuqI7n9/Zy8wObGCl29gBz6iPurvOMBPNb4sRD0/+ra920y502ioaF3+clFPASDynMqg0RURWiqhs8jzoNUc+5u9D5HjedQ8sAttverZqFhJ073B3oN9dBsW/ocTVeKiS8BhrPmpxCQtssdRoZ9AGhrqWUB13r7rpXWX8+dFehiz6tj4yeIeKP0BRpGlc+9OBR3i90vcDViat5tedVVu9ZzaZDm6ZszLdmaW4qh6kRD7i70PWhepLBpKRyCCGEOK6KIgrLslBVlVNPPZUPfOADtLe3D+s77fF4+OxnP1vRIkVl+gNprwdObYiWc57PaokTDU5Cods4aebAdEHNcic1hgI+kmGFRDBEJOgnGlAIq75jjxI3iu4OdL67FECnwTTcXtCxpuoVEqbeKk0kXAvpA0OP+VRov8QNoGdeOEmFhJabnlJMuwG9Whrp3R9Aq5MzprpoFukudtOVd4PoolkkrsbH3B/6YPYg33x+YIhTr9Zb/u8fv/5jfvT6jzDsoX3pJ2vMd38qR0pP4cNHQk3QHm+nNlgrqRxCCCHGpaKf9J/73OfK//3AAw+MeI4E0yeGP764nVULmwkHpjd4dhwHzbTLfZ510yaguMFzTcRPMhwmXErZiAR8xy+itAwo9LnBc38/6P6JhOE6N92hGgq97u7zG2vc3ejB+gsJ517tjvYOTEYhoQNGrvT6dDdgjjZDtN4NoIOJydn5ZuR86ISaGPeo75eOvMRb2bdGPKbb+pCvT02cyi0Lb6n6mG/TNsnoGXJGjpASoinURH3Y7Q0dUiZhkqQQQoiTXkWR1e7du6u1DjHJWpPBaQmk+4Pn/m4bumUTVHwEA17qogESoUC5TV0koIxtlLhtubnPhV7IHnFTHPoLCYPx6k0kNApu/vPOtfDWc8MLCetPc1vZzV02eYWERsHdYdfzbrePYA1EG9wAOpSseiFhP9uxSWkpugpd9BR6SOmpceVDj2R5+3Je632NZzuePeZ55zedz2fP/2zFLfQGK5pF0noa3dSJq3Ha4+3UhepIqsmq3kcIIcQ7z4R/ihQKBb71rW+xdOlS3vOe91RzTWISxNSpCRgcx6FoDOw8G3YpePZ7qY+5wXO01GkjPNbg2X1iN6jM97hpHMU+N4j2+atfSHjgBbcX9J6nRygkbHYD6HlXu6kVk8HUBj4g+AKlgSptgwaqTF5RqGEb9BZ76cx3VpQPfTTTNnm241k6c53HPO+ilov4zLmfqUqA6zgOWSNLWkujeBQSwQR18TpqQ7XE/DFJ5RBCCFEVE/6JFQqF+Nd//VfOOuusaq5HTIKasJ8zW+KT8ty246AZAzvPptO/8+yjITQQPIcDPiIBBe9Yg+d+WrbUiaMbir2lQkJnYGJf1QoJX3N7Qb/5G/d+g6lxt43d3Gugaf7kFRJqmdJAFV9poMqpAwH0ZKSODDJSPnRMjY05H3o0WT3LU/ueYvWe1fQUe457/i0Lbqk4kDZtk7SeJq/nCflDtERayl05gtVK+xFCCCFKKvqpdf7557N169ZqrUVMkusWtox5gMvx2I7j7jrrbtFgf/AcCvhoTqjEQ343eFYVwn7f+INnKBUS9rgBdH8hoWWWCgmbq9fiLX3A3YHeucYtKhzMF4DZgwoJq9xWDnDTRvonEtpWaaDKTIg0lAaqxCYtD7pfVs+6QXShi75i34TzoY92IHuAx3c/zv/t/78h+dDxQJx5yXm8cOSFEa978ciLXDnrygnds2gWSWkpTNskHojTnnBTOWrUGnyTlA4jhBBCVBRM33fffaxatYoFCxbwsY99DEWR3MMTzQWza3j/eTMnfP3g4LlgWNiOg+r3Efb7SIb9JMKlnOeAu/s84QDMMkqdOHog3wXFzEAhYaS+ioWEfbCrVEh4ZPtRBz0w4zy3kHDO5VUdr13mOO5QFy3tfmhQYxBpHJhIGEyCt3pjsEdydD50Wk/j8/pIBpMV7dw6jsOWri08tusxXup8acixtlgbq05Zxbta38V3X/4uAFF/lD8+7Y/p2t3Fo/qjZM0sL3e+PK5g2nZsskaWjJZB8Sok1AT1IbegMOqPSiqHEEKISVdR9Puxj30Mr9fLrbfeyp/92Z8xY8aMEVvjvfzyyxUtUoxfTdjPdQtbeP8IExCPxbKdcr5zwbDAcVADPsKKQk0kQCI0MF0w5K8geIaBQsJ8z8BIbz3njvKuZiGhWYQ9v3N3oPc/B4419HjdPDcH+tRl7q7wZDCLbieO/tenJqB2rhtAh2rAN/kfRE3bLOdD92q9ZPQMYX+YxkhjRakVuqWz4cAGHtv9GG9lhu7wn9t4LqtOWcWCugXl98rHF3yc5nAzK+esJGgG2X9gP5eeeylPHX6KVaesGvNrSWtp8kaesD9MS6TFDaJDtVWdhiiEEEIcT0U/wWtra6mrq+P000+v1npEFXx8yQw+sOLCMQXRlu2U852LhgUeh6DfR8ivUBcJkAj7CQfcISlBv7fynT7HGejEkesCLXVUIWF99QoJD252d6D3PO12xRgs2jRQSFjTXvn9RmIZ7geEYgaU0uuLz3DzoMO1oExN0KdZGt2F7nJRYbXyoXuLvTy590nW7l1LRs+UH1d9KlfMvIKVc1bSGm0ddl08EOcPz/hDd22mVn7sw2d8+Lj3LJgFUloKy7ZIBBI0JZrKXTkklUMIIcR0qCiYXr9+fZWWIappTl1o1EDasp1yykbRtACHkN9HWFVojKvEg37Cqq8UPFcxONGyg/Kg+9wg0+Nx86ATs6rT4s1xoOs1Nw/6zadGKCSMwSlXunnQTQuqE7QfzbZAz7i70Hjce9bMcbuNhGsnJ3VkFIPzoVPFFCYmiUDl+dC7U7t5fPfj/O7A77AG7fLXBmtZ2b6SZW3LiAaqNzjGdmyyepa0nibgDZBUkzSEGtxUjireRwghhJgISXI+yZnW0NHcHo+HsN9HWPXRFHcLBsMBt89zVYNncHeD+ztx9BcS2pY7cCTeUsVCwoNuL+g31kBq/9BjPr9bSDj3api1ZJIKCR23jZ2Wdnej1djQHWg1PumFhANLccr50N3FblJays0lDiYqyoe2HZsXDr/AY7seY0fP0KE1c5NzWXXKKhY3L65qz2bDMtyuHEaeaCDKjOiMcj50oFrTLIUQQogKjfsn32233cYtt9zCBRdcAIBhGPz85z9n6dKlNDQMzTddu3Ytf/M3f8NvfvOb6qxWjIlh2RxJFymYFj6vh5DfDZZbEkFiwYGcZ1WZhF+Lm7obQBcGFxIW3QA60lC91IZiH7y53g2iDx/dUcYDree6O9BzLoPJ2r008u4OtFEqlAzVQbSxVEiYmLSBKiPpz4fuKnTRU+whY2QIKSEaw40VjeEumAXW71/PE7uf4HD+cPlxr8fL4ubFrDplFafVnFaFVzAgb+RJ62ksx03l6G9tl1STFaWlCCGEEJNh3MH0v/zLv3DppZeWg+l0Os1HPvIR1qxZw7Jly4ace/jwYX77299WZ6VizFTFSzSk0KqGiAaV0pAUhYAySYGIbZVGeveOUEiYgEBLde5jFmHv7900jv3PjlBIeKqbB33qMjeonQym5r4+Let2GAnG3TSOcG2pkHASdr6PQbM0ego9dBbcfOiCUSCquru4lQSeR/JHWL1nNb/Z9xsK5kC+eVgJc1XbVayYs4L6UH01XgIADu6OekbPoPpUatQaN5UjVEvEP3WpMUIIIcR4VeV3so7jVONpRJW010c4d1bN5AXPALbtFg8WeiHbX0iYdafzqTF3F7oaqQ225RYS7lwDu592d4MHizbB3KvcNI7aUyq/34hrMN0daC3j7jarcahrcfOgQzXuh4YpljNyblFhoXNIPnRtsHbC+dCO4/B67+s8uutRnjv0HA4D/1/3d9+4ctaVVR18YtgGAIdyh0jGk8yMziynclSyoy6EEEJMFcmZPglN6i60lhnoxFFIuUG0x+sWEiarWEjY/cZAIWG+e+jxQBROWep24mheOImFhFn39dqW28ou2TbQD1qNVf+exzEsH1pP4fNU3h/atE2e6XiGx3Y9xq7UriHH5tfNZ9Upqzi38dyqplj0p3KYRROA2bHZzKibQUJNSCqHEEKItxUJpsXx6fnSQJVu99+DJ/YlZlRnpDdAusPNgd65Fvr2Dj3m9cPsi900jrYl7oTCanMcMHKD8rxjEGmCaH8AnZj0gSojMW2TPq2Pznzn0HzoUGX50Fk9y9p9a1m9ezW92kDnE8WrcEnrJaw6ZRWz47Or8RKA4V05atQaov4oO9hBW7yNeHByRt4LIYQQk0mCaTGyKSskTMGu9W4AfWjL8OMti0qFhJdP3m6wUXB3oPUc+MPuFMJow8BEwikYqDIS3dLpLrit7Xq1Xgpmgai/8nzoY436vmb2NVzTfg1JNVmFV+AybZOUlhrWlaMuWEchV2AHO47/JEIIIcQJakJRwo9+9COeeeYZAIrFIh6Ph+985zv87//+75DzXn/99YoXKKaQZbpdMgq9kC0VEhp5CIQhlAB/tQoJNdi30W1lt/9ZNyd5sNpT3B3ouVdNXiGhpbsBdDHtfjBQ426/6/5CwikaqDKSnJGjp9DDkcIRUloK0zZJqJXnQ49l1Hc1W84VzeLA+gMJWpLDu3IUKBznWYQQQogT24SC6SeffJInn3xyyGNHB9L9Kp6YJybXsQoJg3E3mK1WIWHHS24e9O7/c9MpBos0uEWEc692u3JMBtt0X5uWAnzuTnfdXLcfdKjG/dAwTRzHIa2n6cp30VXsGsiHVivLhz7WqO/zGs9j1SmrmF83v2r/nzqOQ9bIktbSKB63v3X/LrQMWBFCCHEyGncwbdv2ZKxDTCXHGSgkzA+aSOgtBZhVLSTcWcqDfspNFxksEHEnEs69GlrOmZxCQsd20zeKqYE87/hMN3jvLyScxg98lm3Rq/VWPR96oqO+J8q0TTJ6hpyRI6SEaIm0uF05QrWovunb5RdCCCEmm+RMv5McXUhYTLu9mqtdSJg55AbPO9dA756hx7x+aLvIzYOetWRy0ikcp5QHnQKj6Hb/iDQOdOIIJqelkHAw3dLpKfbQme8ckg/dGmnFV8EHmd2p3Ty26zF+f/D3UzLqW7M0UloK3dSJq3Ha4+3UheqoUWsqeh1CCCHE24UE0yc7UysF0D1uEK2l3XzhQNQtsqtWMKtlBgoJO14efrzlHDcP+pQrJq+Q0Cy6HxD0HCilgTG1c90AOpSc8oEqI8kbeboL3UPyoeNqvKJ86Kke9e04DjkjR1pP48VLQk1QF6+jNlhLPBCX1C4hhBDvKBJMn4xsq9QHeqRCwioOGTE12PeMuwO971koDeAoq2l3d6BPvQpizdW559EsY2AiodfnBtDxGQN50P7qDRiZqP586O6i25kjpaXwetwgNKRM/M+iYBZYt28dT+x5giP5I+XH+0d9X3fKdcyrmVeNlwC4QXtaT5PVsgSVII2hRurD7oCVSl6HEEII8XYmwfTJqPtNOJhzd4uVoDtQpVqFhI7t7jy/sQZ2/9bdBR4sUg+nXu0OVKk9dXLykW0L9Izbrs9x3ELJZPvAREL1xCh068+H7i50013oJmNkCCpB6kP1FXXNOJI/whO7n2Dd/nVTMupbt3TSepqCWSDmj9EWb6M+VE8ymMTvnf7dfiGEEGI6STB9Mir0gK8NamZXr6iv+003gH7zKch1Dj3mj7jpG/2FhJORK+s4AxMJTd39gBBrcYP3cK3b2u4ESS8YKR864o/QEmmZcB6x4zi81vsaj+16bPio70gz1865litmXlHVUd95I09KS+HgEA/EmRmZSV2ojoSakFQOIYQQokSC6ZORorq7tZXKHhmYSNgzdMw0XsUtIJx3DbRdPHl9mY18aaBK3u3+Eap1O3GEa92UjhOoyC1v5OkudtOZ7ySlpTBso+J8aNM2eebgMzy2e2pGfQ+eUqj6VGqDtTSEG6gL1hH2T1/rQCGEEOJEJcG0GErLuOkbb6yBjldg0A4oAM1nuzvQp1xZnYB9JKbmrmNwmkpytpsHHUy6PbBPEKPlQ8cD8YqCz4ye4al9T4046vvSGZdy7Zxrqzrqe/CUwlggNmRKYSUt+oQQQoiT3biC6VtuuWXcN/B4PDzwwAPjvk5MIUt3CwnfWOtOJjy6kDA5292BnnuVm1oxGWzT7cShZUr9ruPuQJX+dnbVKpqsksH50D3FHlJaqir50AcypVHfbw0d9Z0IJLim/Rqunn11VUd9F80ifVoflm2NOqVQCCGEEKMbVzD9m9/8Zty/rpbcyqkX+v29sG9QEd4Vn4fGs4ae5NjuzvPOtW5LOz079Hi4zg2e517jBrWT8efo2AM70LblBtDJtoEAOhA9YfKg+xmWUd6F7i32kjNyRANRWqMT7w/tOA6vdL3CY7se4+XOoW0FJ2PUt+3Ybms7LY3iVUiqSRpCDdQGa2VKoRBCCDFO4wqm9+zZM0nLENXkyx2G3kHTBl99dCCY7tnlpnDsfApyR4Ze6A/DnMvdXeiWRZNXSGjk3E4cZtHtOR1pgmgpgFYT0z5QZST9+dBdhS76in0YtkFMjTEjOGPCO7i6pfP0W0/z+O7HeSs7MOrbg4fzms7j2jnXVnXUt2mbpPU0OT1XLoiUKYVCCCFEZSRn+p1gzhXw8k/cftDdbw495vG5EwnnXg2z3zWJhYSFUiFhzk3ZCCbdoTH9Ewl9J95b0XEcMkaG7sJAPjRAQk1UlA/dW+zlyT2lUd/G8FHf1865lpZo9dJpjp5SOCcxR6YUCiGEEFVy4kUworqCCXj8CwwrJGxa4O5An3KFG8xOBkt3A+hiBhS/u+ucmOV24gjVTF7gXiHLtujT+ugqdNFT7CGtpVEVlbpQXUWpFrtTu3l016NsPLhxyKjvumAdK+esZOmspVVLsxhpSmF93N2Fjvljkn4lhBBCVEnFwfTjjz/ON7/5TV588UVSqRSO4ww7x7KsEa4UU6KYGvjvZJubAz33aohPYiGhlnWnEuJx86BrTykNVKl1pzCeoI7Oh84becKBMM3R5gmP4j7WqO95yXnlUd/V2iG2bIuMniGrZwn5QzKlUAghhJhkFQXTP/vZz/jQhz7E/Pnz+fCHP8x3v/tdbrzxRhzH4Re/+AXz5s3jhhtuqNJSxYSEakuFhFdD/WmTV0io59wA2jLcADo+o1RIWOvmRZ/AO6EFs1BO5ejT+tAsjbgapzXYOuF86LyRZ/3+9SOO+l7SsoRVc1ZVddS3bumktBSapRH1R8tTCmuCNRP+ICCEEEKI46vop+zXv/51Fi9ezIYNG+jt7eW73/0ut9xyC8uWLWPPnj1cdNFFzJkzp1prFeN16WfhjHdPYiFhwQ2gjYLbeSNU544t78+DPgELCfsdKx+6Idww4ecdbdR3xB9hWdsyVrRXd9R3/5RCgLgapy3WRl2ojnggLqkcQgghxBSoKJjevn07X//61/H5fCiK+1SG4fYobm9v57bbbuPv/u7vuPnmmytfqRif9svgrPdW/3lNzU0d0XOghNyBKrWnuDvQoSSc4AM+bMemT+tzR30Xe0lpKQJKoKJ86Kke9W07Nhk9Q1pLl3tb14XqZEqhEEIIMQ0qCqbD4TCBgBuAJJNJVFWlo6OjfLypqYndu3dXtkIxMedV8QOMZbg70Fp2YKBKrHXQQJXqBImTybANego9dBY66dP6yOm5ivOhp3rUt2EZpPV0eUrhrNgst7VdsFamFAohhBDTpKJg+vTTT2f79u3lrxctWsSPf/xjbrrpJkzT5OGHH6atra3iRYrxMRoXQH2F+bi2BXqpE4fjlAaqzB4IoNW3x3CPEfOhA3FaYxPPh87oGdbuXcuTe56cklHfBbNASkthOaUphaX+0Ak1IVMKhRBCiGlWUTD9B3/wB3z729/mG9/4Bqqqcuedd/Le976XZDKJx+Mhl8vxgx/8oFprFWNknHLNxC50HHcSopYBU3cD5ljLQAAdTJzQhYSDZfSh+dA2tjvpr4J86AOZAzy2+zGefuvpSR/1bTs2WSNLRsvIlEIhhBDiBFZRMP25z32Oz33uc+Wv3/3ud7N+/XoeeeQRfD4f1113HUuXLq14kWJ87NiM8V1g5EsDVfLuFMRQLURKA1VCyckpYJwE/fnQ3YVuugvdpPU0fp+fmlDNhCf8OY7DK52v8NjuqRn13T+lMK/nCfvDtERaaAi7QXS17iGEEEKI6ql6z6zLLruMyy67rNpPK6rN1EoBdBZ8AQiW0jhC/QNV3j6Bm2Eb9BZ76cy7+dAZPUPEH6Ep0jThfGjd0vm/t/6PJ3Y/MeKo71VzVnFW3VlV65hRNIuk9TSGZRAPxGlPtFMfqiepJmVKoRBCCHECqyiY3r17N1u3buU973nPiMd/9atfsXDhQtrb2yu5jagW2yxNJEy7Y8SDcag9FcJ17lRC/9trqEfRLLpDVvJuPnTRLBJX48yIzZhwLnFPsYc1e9aMOOr7yllXsrJ9ZdVGffdPKUzpKXz4ZEqhEEII8TZUcZpHOp0eNZj+53/+Z5LJJD/5yU8quY2ohGMPTCS0rVIhYdtAAB2Ivm3yoPuNlA+dUBPUheomHIDu6tvFY7sfGzbquz5Uz4r2FVUd9V2eUmhkCSkhmkJN5VSOarXPE0IIIcTUqCiY3rhxI7fffvuox6+66iruu+++Sm7xjqBpGp/+9KdZu3YtfX19nHXWWfzjP/4jF1988cSfVM+5O9Bm0Z1AGGl0CwnDtaAmTuiBKiOxHZuUlqKr0EVPoYeUnqo4H9p2bJ4/9DyP7X6MV3teHXJsXs08Vs2p7qjvwVMKY/4YbTGZUiiEEEK83VX0E7y3t5dYLDbq8Wg0Snd3dyW3eEcwTZP29nY2bNjAzJkz+e///m/e8573sGfPHqLRCeyG6gU3nSOYgMhcN4AOJsH39gvYJiMfeqpHfeeNPH1aHx487pTCeBt1QZlSKIQQQpwMKoqu2tra+N3vfsenP/3pEY8//fTTzJw5s5JbvCNEIhHuuuuu8tcf/vCH+fM//3Nee+01zj///PE/YXImtJ5bKiSc2K7tdCuaRXqKPeUgumgWiamxivKhj+SP8Pjux1m/f/2kj/run1KY0TIElSANoYbygBWZUiiEEEKcPCoKpj/ykY/wla98hcWLF/OZz3wGbyl1wLIsvvOd7/Bf//Vf3HnnnVVZ6FTIZrPce++9PPvss2zatIne3l4efPBBPvaxjw07V9M07rrrLn784x/T29vL2WefzVe/+lWuuWaCPZ4HeeONN+jp6WHu3LkTe4JkG8SaK17HdMjqWbeosNBFX7Gv4nxox3F4tedVHtv9GM8fen7YqO9Vc1Zx+czLq5arbFgGKT1FwSgQC8SYGZvpBtGhWvxemVIohBBCnGwqCqbvuOMONmzYwO23387XvvY1Tj/9dABee+01Ojs7ufLKK99WwXRXVxdf/vKXaWtr45xzzmH9+vWjnvuxj32Mn/70p9x+++3MmzePH/7wh6xatYp169Zx6aWXTngNhUKBm266iTvuuINEIjHh53k76c+HHtwf2uf1kQwmJxzkmrbJxoMbeXz348NGfS+oX8CqOatY1LioahMEj55SOCMyg7pQnUwpFEIIIU5yFQXTqqry5JNP8tBDD/HII4/w5ptvArB48WLe//73c/PNN5d3q98OWlpa6OjooLm5meeff54LL7xwxPM2bdrET37yE+69997y0Jqbb76ZBQsW8PnPf57f//735XMvvfRSfve73434PHfeeSdf/epXy18bhsEHP/hB5s6dOyTt42Rl2ia9xV6O5I+U86HD/jCNkcYJ50On9TRP7X1q2Khvv9fPJTMuqeqo78FTCv1eP0k1SWOokdpQLRF/pCr3EEIIIcSJreKKNK/Xy8c//nE+/vGPV2M900pVVZqbj58e8dOf/hSfz8enPvWp8mPBYJBPfOIT/PVf/zX79+9n1qxZAGzYsGFM97Ztmz/6oz/C4/Hw0EMPndSFaZql0V3ormo+dP+o7/976/8wbKP8eCKQYHn7cq6efTUJtTo7/aZtktbS5A13SmFrtLWcDy1TCoUQQoh3lrdfe4cTwObNmznttNOIx+NDHl+8eDEAL730UjmYHqtbb72Vjo4OVq9ejaIc/4/lyJEjdHZ2Dnls586dgJsqkk6nx3X/qZA38qT0FL3FXjJaBguLqD9Kg78BTDBM4/hPMojjOGzt2crqt1azpWfLkGOzIrNYMWsFFzVd5OYqm6CZWkXr1y2drJHFtE2i/igtgRaSapK4P47X8lLMFSlSrOge7zS5XG7Iv4WYLPJeE0KMRTabHfc14wqmly5ditfrLQd8y5YtO+41Ho+Hp556atwLO5F1dHTQ0jJ8Cl7/YwcPHhzX8+3du5fvf//7BINB6usHukk8/vjjo45mv//++/nSl7404rEtW7aQSqXGtYbpoqHRzfjaJxqOwUv6S/xe+z2d9sAHCg8eTldO513qu5ijzMFzyMOhQ4eqvWRgYusWo9u0adN0L0G8Q8h7TQhxLPv27Rv3NeMKph3Hwbbt8te2bR83HcFxnGMefzsqFAqo6vCWc8FgsHx8PGbPnj3u79Ntt93GBz/4wSGP7dy5kxtuuIGFCxdy3nnnjev5qs1yLNJamt5iLyk9Rc7MEfQFifqjE86H7tV6eerAU6w7uI6sMfDJUfWpXNZ8GdfMvIbmcHW6mPTnQxfMAkFfkFggRo1aQ0JNSCpHFeVyOTZt2sTixYuJRCTPXEweea8JIcZix44d475mXFHN0d0tjtXt4mQWCoXQtOEpA8VisXx8sjU2NtLY2DjisVAoNCwFZapolkZPoYfOQid9eh8Fq0A0HGVWYNaE86GPN+p7WduyqhX89U8pLFpF4qE4TUF31HdSTcqUwkkUiUSm7T0r3lnkvSaEOJaJDMuT6GACWlpaOHDgwLDHOzo6AGhtbZ3qJU27nJFziwoLnaSKKUxMEoEEtcHaCRVTHm/U93VzruPC5gurMurbcRzyZp6UlsKLV6YUCiGEEGLMKgqmj5dX4vF4ynnAJ1NAsmjRItatW0c6nR6yw/Hss8+Wj78TOI5T7g/dVewipafweSrrD5038qzbv44ndj9BZ2EgH9rr8XJRy0VcO+faqo36th2btJ4mq2VlSqEQQgghJqSiYLq9vX1MQXIwGOSyyy7ji1/8IpdcckkltzwhfOADH+Ab3/gG3/ve98p9pjVN48EHH2TJkiXj7uTxdmPaJn1aH535TnqKPWSMDCElRGOoEb9vYlP+DucO88SeJ0Yc9X1V21Usb19etVHf5SmFZoGY351S2BBuoCZYI1MKhRBCCDEuFQXTDzzwAN/+9rfZv38/H/3oR8vjr9944w0efvhhZs+ezcc//nF27tzJv//7v7Ns2TKeeOIJli5dWpXFT4bvfOc79PX1lTty/OpXv+Ktt94C4E//9E9JJBIsWbKED37wg9xxxx0cOXKEuXPn8tBDD7Fnzx4eeOCB6Vz+pNIt3d2FLnTRq/VSMAtE/VFmRCfWH/pYo75bIi1cO+faqo76zht50noa27GJB+LMiMygPlRPXI3LlEIhhBBCTEhFwfTBgwfRdZ2dO3eSTCaHHLvnnnu49NJLKRQK3HfffXzxi1/k/PPP50tf+tIJHUx/4xvfYO/eveWvH3nkER555BEAbrrppvKI7x/96Ed88Ytf5Mc//jG9vb2cffbZ/PrXv+byyy+flnVPppyRo6fQw5HCEVJaCtM2SagTz4fuH/X92O7H2J3aPeRYtUd9245NVs+S1tMEvAGZUiiEEEKIqqoomP6Xf/kX/vzP/3xYIA1QW1vLJz/5Sb71rW/xl3/5l9TV1XHLLbdw7733VnLLSbdnz54xnRcMBrn33ntP+NczUY7jkNbTdOW7huZDqxPPhz7eqO9Vc1bRFm+ryvoHTymMBCLMiM6QKYVCCCGEqLqKgunu7m7y+fyox3O53JApfc3NzSdl3+mTiWVb9Gq9Vc2HfivzFo/tfoyn33p66KhvNcHy2dUd9V00i6S0FJZtEQ/EaUo0UReqI6kmq9L5QwghhBBisIqC6QsvvJBvfetbXH/99SxcuHDIsVdeeYV/+qd/Ko/YBrcR9syZMyu5pZgkuqXTU+yhM985JB+6NdI6oSDUcRxe7nyZx3Y/xiudrww5Njs+m1VzVvGu1ndNOEA/+l45I0dKS6F4FBLBRHkXOhaIVfz8QgghhBCjqSiY/qd/+ieWLl3Kueeey8UXX1wuQNy5cycbN24kHo/z7W9/G3AHmqxfv54PfOADla9aVE3eyNNd6B6SDx1X4xPOh9YsjaffeprHdz/OgexAL24PHs5rOo9Vc1ZxVt1ZVWmVaNkWaT1NzsgRUkK0RFrcIDpUi+obPqFSCCGEEKLaKgqmzz77bLZs2cLf/u3fsnr1ap577jnAHY9922238fnPf768Ex0MBtm8eXPlKxYV68+H7i5205nvJK2n8Xq8JNQEIWVi0xt7Cj2s3ruap/Y+NWzU99JZS1nRvoKWaEtV1q9ZGikthW7qxNU47fH2ciqHTCkUQgghxFSqOPJobW0t7z6LE1t/PnR3oZvuQjcZI0NQCVIfqp9wUd6bfW/y+O7HRxz1vbJ9JUvbllala8ZIUwrr424qh0wpFEIIIcR0qdo2XjabZf/+/QDMmjVrQrPNxeQYKR864o/QEmmZUD50/6jvR3c/yms9rw05dlrNaayas6pqo76PnlLYGGqkPuwG0RPdRRdCCCGEqJaKg+nnnnuOz3/+82zYsAHbtgHwer1cdtll/P3f/z0XXHBBxYsUE5M38uVUjpSWwrCNivKhjzfqe9WcVcytmVuVteuWTlpPl6cUzorNoj5cL1MKhRBCCHFCqSiYfvbZZ7nyyisJBAJ88pOf5MwzzwTcrh3/+Z//yeWXX8769euHdPQQky9v5NmV2kVXoctNi/B4iQfihP3hCT3f8UZ9r2hfQV2ormprHzylcGZkJnWhOhJqQlI5hBBCCHHCqSiYvvPOO5kxYwYbNmygubl5yLF77rmHSy65hDvvvJM1a9ZUtEgxPvsy+9B6tIryocujvnc9xvOHJ3fU9+AphapPpUatoSHUQF2obsIfAIQQQgghpkLFO9N33XXXsEAaoKmpiU996lN85StfqeQWYgI0U6M1OrH+0KZt8vuDv+fx3Y8PG/W9sH4h1865tmqjvk3bJKWlyBt5ooFoeUphXbCuKv2nhRBCCCEmW0XBtNfrxTTNUY9bloXXW3nQJcbHa3oxCyYmo//ZHC2jZ/jNwd/w1IGnSOmp8uN+r5+Lmy5m+czlzIrOAsDIG6M9zZjolk5Gz2A5FlF/lBnqDJJqkrg/jsfyUMgVKFA4/hOJt71cLjfk30JMFnmvCSHGIpvNHv+ko1QUTL/rXe/in//5n7nxxhuZPXv2kGP79u3j/vvv55JLLqnkFmIM7rnnHr70pS+Vvy68VWC/d/+Yrj1sHWajtpGX9JeGBN9RT5TF6mIWBxYTLUThDdjP2J5zPDQ0uumu+vOKt5dNmzZN9xLEO4S814QQx7Jv375xX+NxHMc5/mkj27x5M5dffjmmafIHf/AHnHbaaQC89tpr/OIXv0BRFJ5++mnOOeecid5CjMO2bdtYsGAB//bIv3He+eeNep7t2Gzt2crq/avZ2rt1yLG2aBsrZq5gSdOSqnTNsByLrJGlaBYJ+oLEA3GSapJEMEHAO7He1uLkkcvl2LRpE4sXLyYSqbwfuRCjkfeaEGIsduzYwUUXXcTWrVuZP3/+mK6paGf63HPP5dlnn+XOO+/kl7/8Jfl8HoBwOMzKlSv56le/yllnnVXJLcQEeFUvamT4OO3+Ud+P7X6Mg9mD5ccnY9R3eUqhpRMPx2kNtlIXqqNGralK/2lxcolEIsTj8elehngHkPeaEOJYJjInpeI+02eddRY///nPsW2bzk6393BDQwNer5dcLsfBgwdpbW2t9DZiHIpmccjXxxv1vXLOSpojw4tIx8txHHJGzh1PjjuevC5eR12ojpg/Jq3thBBCCHHSqdoERK/XS1NT05DH7rvvPu666y4syxrlKjEZXk+9zhVcwZt9b/LYrsd4puOZSR31LVMKhRBCCPFOVbVgWpw4nnzrSZ5+7Gl0Wx/yeLVHfR89pbAt3kZ9qJ5kMClTCoUQQgjxjiDB9EnIcAx89kCw3B5v55MLP1m1Ud95I09KS+HgkFATMqVQCCGEEO9YEkyf5M5tPJe/uOAvULyV/VEfPaWwLlRXHrAiUwqFEEII8U4lwfRJ7KKWi/jMuZ+pKJA2LIO0niZv5IkFYsyMzqQ+5OZDy5RCIYQQQrzTjTvKevHFF8d87sGDB49/kpg0tyy4ZcKBdMEskNJSWLZFQk3QEmmhLlRHUk1WZZS4EEIIIcTJYNyR1gUXXDDmvFjHcSSHdhq9eORFrpx15ZjPtx3bbW2npVG8Ckk1SUOogdpgLdHA+PsuCiGEEEKc7MYdTD/44IOTsQ5RRUFfEICXO18eUzBt2qabyqHnCfvDtERaaAg3UBOsQfUNH/4ihBBCCCFc4w6m//iP/3gy1iGq6NYzbuVw/WFWnbLqmOcVzSJpPY1u6iTUBO2JdplSKIQQQggxDlKAeBIK+8N8+IwPj3hspCmF9fF6akO1MqVQCCGEEGKcJJh+h7Bsi4yeIatnCflD5SmFdcE6gkpwupcnhBBCCPG2JMH0SU63dFJaCs3SiPqj5SmFNcGaintPCyGEEEK800k0dZLqn1IIEFfjtMXbqAvWEQ/EJZVDCCGEEKJKJJg+CRXMAnkj704oDNXJlEIhhBBCiEkiwfRJqDHcyBm1Z8iUQiGEEEKISSbB9EloVnQWTZGm6V6GEEIIIcRJT+ZCn4QkJ1oIIYQQYmpIMC2EEEIIIcQESZrHSahQKJBOp6d7GUIcVy6XG/JvISaLvNeEEGORzWbHfY0E0yeBe+65hy996Uvlr7ds2UIqlZrGFQkxPps2bZruJYh3CHmvCSGOZd++feO+xuM4jjMJaxHTYNu2bSxYsIB169Zx3nnnTfdyhDiuXC7Hpk2bWLx4MZFIZLqXI05i8l4TQozFjh07uOiii9i6dSvz588f0zWyM30SCoVCxOPx6V6GEGMWiUTkPSumhLzXhBDHEo1Gx32NFCAKIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQRJMCyGEEEIIMUESTAshhBBCCDFBEkwLIYQQQggxQcp0L0BUX6FQIJ1OT/cyhDiuXC435N9CTBZ5rwkhxiKbzY77GgmmTwL33HMPX/rSl8pfb9myhVQqNY0rEmJ8Nm3aNN1LEO8Q8l4TQhzLvn37xn2Nx3EcZxLWIqbBtm3bWLBgAevWreO8886b7uUIcVy5XI5NmzaxePFiIpHIdC9HnMTkvSaEGIsdO3Zw0UUXsXXrVubPnz+ma2Rn+iQUCoWIx+PTvQwhxiwSich7VkwJea8JIY4lGo2O+xopQBRCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmBZCCCGEEGKCJJgWQgghhBBigiSYFkIIIYQQYoIkmD4BfepTn6KlpYV4PM7ChQv51a9+Nd1LEkIIIYQQI5Bg+gT053/+5+zZs4d0Os0PfvADbrrpJrq7u6d7WUIIIYQQ4igSTJ+AzjjjDFRVBcDj8aDrOgcOHJjmVQkhhBBCiKO9LYLpF198keuvv57a2lrC4TALFizg29/+9qTdL5vNcvfdd7Ny5Upqa2vxeDz88Ic/HPV8TdP4whe+QGtrK6FQiCVLlrBmzZqK1nDbbbcRCoW48MILWbZsGQsXLqzo+YQQQgghRPWd8MH0k08+ycUXX8yRI0f44he/yLe+9S3e/e5389Zbb03aPbu6uvjyl7/Mjh07OOecc457/sc+9jG++c1v8tGPfpRvfetb+Hw+Vq1axYYNGya8hvvvv59sNsvatWtZvnw5Ho9nws8lhBBCCCEmhzLdCziWdDrNzTffzHXXXcdPf/pTvN6xxf69vb2sW7eO973vfSMe/8///E+uv/56IpHIiMdbWlro6OigubmZ559/ngsvvHDUe23atImf/OQn3HvvvXzuc58D4Oabb2bBggV8/vOf5/e//3353EsvvZTf/e53Iz7PnXfeyVe/+tUhj/l8Pq666iruu+8+5s2bx6pVq475uoUQQgghxNQ6oXemH374YQ4fPszXvvY1vF4vuVwO27aPe93999/Phz70IX7+858PO/bAAw9w44038tBDD416vaqqNDc3j2mNP/3pT/H5fHzqU58qPxYMBvnEJz7Bxo0b2b9/f/nxDRs24DjOiP8cHUgPZpomO3fuHNN6hBBCCCHE1Dmhd6bXrl1LPB7nwIED3HDDDbz++utEIhH+6I/+iH/8x38kGAyOeN0XvvAFNm3axEc+8hEeffRRrrrqKgAeeeQRbr31Vm666SY+/elPV2WNmzdv5rTTTiMejw95fPHixQC89NJLzJo1a8zPl0qlePTRR7n++usJBoP8/Oc/Z926dXz9618f83MUCgXS6fSYzxdiuuRyuSH/FmKyyHtNCDEW2Wx23Nec0MH0G2+8gWmavPe97+UTn/gEX//611m/fj3/9E//RF9fH//5n/854nWKovBf//VfrFy5khtuuIG1a9eSzWa58cYbufbaa3nwwQerloPc0dFBS0vLsMf7Hzt48OC4ns/j8fBv//Zv3HbbbTiOw9y5c3n44YdZtGjRqNfcc889fOlLXyp/vWXLFlKp1LjuK8R02rRp03QvQbxDyHtNCHEs+/btG/c1J3Qwnc1myefz/Mmf/Em5e8f73vc+dF3nX//1X/nyl7/MvHnzRrw2GAzyy1/+kqVLl7Jq1Sp0XWfJkiX893//N4pSvZddKBTKbeyOvn//8fGIx+OsW7duXNfcc8893HPPPWzbto0FCxawcOFCzjvvvHE9hxDTIZfLsWnTJhYvXjxqDYMQ1SDvNSHEWOzYsWPc15zQwXQoFALgIx/5yJDHb7zxRv71X/+VjRs3jhpMgxuYfuMb32DZsmUA3HfffeXnrOYaNU0b9nixWCwfn2qhUGhY2okQJ7JIJCLvWTEl5L0mhDiWaDQ67mtO6ALE1tZWAJqamoY83tjYCLhdO45l165dfPSjH+WMM85g9uzZvP/976ejo6Oqa+zv/HG0/sf6X4MQQgghhDj5nNDB9Pnnnw8wbPpffx5yQ0PDqNd2dHRwzTXX4Pf7WbNmDWvWrCGXy7F8+XJ6enqqtsZFixbx+uuvDyv4e/bZZ8vHhRBCCCHEyemEDqY/9KEPAW47u8G+//3voygKV1555YjX9fb2smLFivLQk5kzZzJv3jxWr17N/v37ue6666pW0f2BD3wAy7L43ve+V35M0zQefPBBlixZMq5OHkIIIYQQ4u3lhM6ZPvfcc7nlllv4wQ9+gGmaXHHFFaxfv57/+Z//4Y477hg1heL+++9n//79rF+/fkhO9aJFi/j1r3/N8uXLeeihh7jttttGvfd3vvMd+vr6yrvgv/rVr8pTF//0T/+URCIBwJIlS/jgBz/IHXfcwZEjR5g7dy4PPfQQe/bsGfYhQAghhBBCnFxO6GAa4F/+5V9oa2vjwQcf5Oc//zmzZ8/mH//xH7n99ttHveYLX/gCN9xwA/Pnzx927NJLL+WZZ55h4cKFx7zvN77xDfbu3Vv++pFHHuGRRx4B4KabbioH0wA/+tGP+OIXv8iPf/xjent7Ofvss/n1r3/N5ZdfPs5XK4QQQggh3k5O+GDa7/dz9913c/fdd4/5GkVRRgyk+5199tnHfY49e/aM+X7BYJB7772Xe++9d8zXCCGEEEKIt78TOmdaCCGEEEKIE5kE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTOib6wAAAFV5JREFUQgghhBBCTJAE00IIIYQQQkyQBNNCCCGEEEJMkATTQgghhBBCTJAE00IIIYQQQkyQMt0LENWjaRoA27dvn+aVCDE2hUKBffv28eKLLxIKhaZ7OeIkJu81IcRY7Nq1CxiIqcbC4ziOM1kLElPjnnvu4Utf+tJ0L0MIIYQQ4qTwv//7v7z3ve8d07kSTJ9E+vr6qKmp4YUXXkBV1elejhBjsmDBArZu3TrdyxAnuZ07d3LDDTfwv//7v8ydO3e6lyOEOEFpmsb+/fu54oorSCaTY7pGgumTjMfjQf5IxduJvGfFVNi2bVv5g9v8+fOnezlCiJOIFCCeZO6+++7pXoIQ4yLvWSGEEG9nsjMthBDipCc700KIySI700IIIYQQQkyQBNNCCCFOeg0NDdx99900NDRM91KEECcZSfMQQgghhBBigmRnWgghhBBCiAmSYFpU7FOf+hQtLS3E43EWLlzIr371q+lekhDHJO9ZIYQQ1SJpHqJir776KnPmzEFVVZ577jmuvvpqdu3aRV1d3XQvTYgRyXtWCCFEtcjOtKjYGWecUZ646PF40HWdAwcOTPOqhBidvGfFWGiaxi233EJbWxvxeJyLLrqIjRs3TveyhBAnGAmmq+yNN97gwx/+MDNnziQcDnPGGWfw5S9/mXw+P2n3zGaz3H333axcuZLa2lo8Hg8//OEPRz1f0zS+8IUv0NraSigUYsmSJaxZs6aiNdx2222EQiEuvPBCli1bxsKFCyt6PjF1XnjhBVauXEk8HicWi7F8+XJeeumlSb2nvGfF24FpmrS3t7Nhwwb6+vq4/fbbec973kM2m53upQkhTiCS5lFF+/fv5+yzzyaRSPAnf/In1NbWsnHjRn74wx9y/fXX84tf/GJS7rtnzx7mzJlDW1sbp5xyCuvXr+fBBx/kYx/72Ijnf+QjH+GnP/0pt99+O/PmzeOHP/whzz33HOvWrePSSy+d8Dosy2L9+vVs3bqV//f//t+En0dMnRdffJFLLrmEWbNmceutt2LbNvfffz89PT1s2rSJ008/fVLuK+9Z8XbV2trKr371K84///zpXooQ4kThiKr52te+5gDO1q1bhzx+8803O4DT09Mz4nU9PT3Oz372s1Gf9+GHH3ay2eyox4vFotPR0eE4juM899xzDuA8+OCDI5777LPPOoBz7733lh8rFArOqaee6lx88cVDzr3kkkscYMR/7rzzzlHX8+53v9t59NFHRz0uThyrVq1yampqnK6urvJjBw8edKLRqPO+971v1OvkPSumUiaTce666y5nxYoVTk1NzTHfL8Vi0fn85z/vtLS0OMFg0Fm8eLHz5JNPVmUdr7/+uqOqqtPX11eV5xNCnBwkzaOK0uk0AE1NTUMeb2lpwev1EggERrzu/vvv50Mf+hA///nPhx174IEHuPHGG3nooYdGva+qqjQ3N49pjT/96U/x+Xx86lOfKj8WDAb5xCc+wcaNG9m/f3/58Q0bNuA4zoj/fPWrXx31HqZpsnPnzjGtR0yvp59+mquvvnpI4V1LSwtXXHEFv/71r0f9dba8Z8VU6urq4stf/jI7duzgnHPOOea5H/vYx/jmN7/JRz/6Ub71rW/h8/lYtWoVGzZsqGgNhUKBm266iTvuuINEIlHRcwkhTjLTE8OfnB5//HEHcK6//npn8+bNzr59+5yf/OQnTjwed26//fZRrzMMw7n++usdVVWdtWvXlh//2c9+5vh8Puemm25ybNse0xqOt8t39dVXO2eeeeawx9euXesAzi9/+csx3adfX1+f8x//8R9OJpNxDMNw/vu//9tRVdXZvHnzuJ5HTI9AIODcfPPNwx7/4Ac/6ADOxo0bR7xO3rNiKo31NxmT9VsMXded6667zrnxxhvH/L4WQrxzKNMRwJ+sVq5cyVe+8hX+5m/+hl/+8pflx++8885j7oopisJ//dd/sXLlSm644QbWrl1LNpvlxhtv5Nprr+XBBx/E4/FUZY0dHR20tLQMe7z/sYMHD47r+TweD//2b//GbbfdhuM4zJ07l4cffphFixZVY7likp1++uk888wzWJaFz+cDQNd1nn32WYBRO1zIe1ZMpbH+JuNYv8X467/+a/bv38+sWbMAxrxTbds2f/RHf4TH4+Ghhx6q2vtaCHHykGC6ytrb27n88st5//vfT11dHY8++ih/8zd/Q3NzM5/5zGdGvS4YDPLLX/6SpUuXsmrVKnRdZ8mSJfz3f/83ilK9P6ZCoVBuCXb0/fuPj0c8HmfdunVVWZuYerfddhuf/vSn+cQnPsHnP/95bNvmq1/9Kh0dHcCx3w/ynhUnms2bN3PaaacRj8eHPL548WIAXnrppXIwPVa33norHR0drF69uqrvayHEyUP+Zqiin/zkJ3zqU5/i9ddfZ+bMmQC8733vw7ZtvvCFL/CRj3zkmEMh4vE43/jGN1i2bBkA9913H6FQqKprDIVCaJo27PFisVg+Lt45/uRP/oT9+/dz7733lnOcL7jgAj7/+c/zta99jWg0eszr5T0rTiTV/i3G3r17+f73v08wGKS+vr78+OOPP85ll11W2WKFECcNKUCsovvvv59zzz23HEj3u/7668nn82zevPmY1+/atYuPfvSjnHHGGcyePZv3v//95R3CamlpaRnxOfsfa21trer9xInva1/7GocPH+bpp5/mlVde4bnnnsO2bQBOO+20Y14r71lxIqn2bzFmz56N4zgUCgWy2Wz5HwmkhRCDSTBdRYcPH8ayrGGPG4YBuB0DRtPR0cE111yD3+9nzZo1rFmzhlwux/Lly+np6anaGhctWsTrr79e7jzSrz9HVvJG35lqamq49NJLy4NL1q5dy8yZMznjjDNGvUbes+JEI7/FEEJMBwmmq+i0005j8+bNvP7660Me/8///E+8Xi9nn332iNf19vayYsUKstlsOYiZN2/e/9/e3cdUWfZxAP8eeTm8uVDg6AaLw6uMIYKgLIOidKDCH4CiO2mATCobrHCwaAsO4BqymWnTgKYB7ZgQCJMwZSthRAONbDQasoHAwClgQqDIAeV6/ug55+HIS3CCQJ/vZzub93W//e7rPjv+uO7rum5UVVWhu7sbISEhePjw4YLEuHv3bjx58gRffPGFtkytViM/Px9+fn7z7k9Iz5/i4mL8/PPPeP/997FixfQ/EfzO0nLEpxhEtBTYZ3oBJScna/vSxcfHw8rKCpWVlbh8+TIOHjw44w/5559/ju7ubtTU1MDFxUVb7uXlhcrKSgQFBaGwsBDvvvvujOc+deoUBgcHtX0Cv/32W/T09AAAEhIStPOi+vn5ITIyEh9++CH6+vrg7OyMwsJCdHZ24uzZswtVFfSMqK2tRWZmJoKCgmBlZYWGhgbk5+dj+/bts74RkN9ZWo68vLxQXV2NoaEhnUGIfIpBRItqiafme+5cu3ZN7NixQ6xdu1YYGRkJV1dX8fHHH4vx8fEZ9xkfH5/y1sTJmpqa/nZuU3t7+xnnTO3o6NDZ9tGjRyIpKUmsXbtWSKVSsWnTJnHlypV5XSc9H9ra2kRQUJCwtrYWUqlUuLm5iaysLKFWq2fdj99ZWiqzzTPd0NAwZZ7p0dFR4ezsLPz8/P7FKIno/4lECCGWIoknIiKaq8lPMnJychAREQFvb28Auk8yNG/mTExM1D7FuH79On744Qe88sorS3kJRPScYjJNRETLnlwuR1dX17TrOjo6IJfLAfw12DA1NRUqlQoDAwPw9PTEkSNHEBwc/C9GS0T/T5hMExERERHpibN5EBERERHpick0EREREZGemEwTEREREemJyTQRERERkZ6YTBMRERER6YnJNBERERGRnphMExERERHpick0EREREZGemEwTEREREemJyTQRERERkZ6YTBMRERER6YnJNBHREigoKIBEIkFjY+OCHVMulyMmJmbBjvc0iUSC9PT0RTs+EdGziMk0EdEC0iTJmo+JiQlcXV0RHx+P3t7epQ5v0XV2dupc/9Ofo0ePLnWI03r6vhkaGsLW1hYxMTG4ffu2XsccGRlBeno6ampqFjZYIlpWDJc6ACKi51FmZiYcHBwwOjqKuro65OTk4LvvvkNzczPMzMwW5Zytra1YsWJ5tJEoFArs3LlzSrm3t/cSRDN3k+9bQ0MDCgoKUFdXh+bmZpiYmMzrWCMjI8jIyAAABAYGLkK0RLQcMJkmIloEO3bsgK+vLwDg4MGDsLKywvHjx3Hx4kUoFIpFOadUKl2U4+pj48aN2L9//7z2EUJgdHQUpqamU9aNjo7C2Nj4H/2x8PDhQ5ibm8+6zdP3zdraGtnZ2aioqMCePXv0PjcRPb+WRxMGEdFz7vXXXwcAdHR06JSr1WocPnwYNjY2MDc3R3h4OPr7+7Xro6OjYW1tjfHx8SnHDAoKwrp167TL0/WZHhwcRGJiIuRyOaRSKezs7BAVFYV79+4BAMbGxpCWlgYfHx+88MILMDc3R0BAAKqrqxfq0mckl8sRGhqKqqoq+Pr6wtTUFHl5eaipqYFEIkFRURE++ugj2NrawszMDENDQwCAkpIS+Pj4wNTUFNbW1ti/f/+UrhgxMTGwsLBAe3s7du7ciZUrV2Lfvn3zjjEgIAAA0N7eri2bS511dnbCxsYGAJCRkaHtPjK5z/nNmzexe/durF69GiYmJvD19UVFRcW8YySipcWWaSKif4EmGbOystIpT0hIwKpVq6BUKtHZ2YkTJ04gPj4excXFAIA333wTX331FaqqqhAaGqrd7+7du7h69SqUSuWM53zw4AECAgLQ0tKC2NhYbNy4Effu3UNFRQV6enpgbW2NoaEhnDlzBgqFAnFxcRgeHsbZs2cRHByM69evw8vLS6/rHRkZ0Sbsk1laWsLQ8H//9bS2tkKhUODtt99GXFyczh8HR44cgbGxMZKSkqBWq2FsbIyCggIcOHAAmzZtQlZWFnp7e3Hy5En89NNP+PXXX2Fpaand//HjxwgODoa/vz+OHTumV/eazs5OAMCqVau0ZXOpMxsbG+Tk5ODQoUMIDw9HREQEAMDT0xMA8Pvvv+Pll1+Gra0tUlJSYG5ujm+++QZhYWG4cOECwsPD5x0rES0RQURECyY/P18AEN9//73o7+8X3d3doqioSFhZWQlTU1PR09Ojs922bdvExMSEdv/ExERhYGAgBgcHhRBCPHnyRNjZ2Ym9e/fqnOf48eNCIpGIW7duacvs7e1FdHS0djktLU0AEGVlZVPi1Jzz8ePHQq1W66wbGBgQa9asEbGxsTrlAIRSqZz1+js6OgSAGT/19fU68QIQV65c0TlGdXW1ACAcHR3FyMiItnxsbEzIZDLh4eEhHj16pC2vrKwUAERaWpq2LDo6WgAQKSkps8arMd19Ky0tFTY2NkIqlYru7m7ttnOts/7+/hnrbOvWrWL9+vVidHRUWzYxMSG2bNkiXFxc5hQzES0PbJkmIloE27Zt01m2t7fHuXPnYGtrq1P+1ltvQSKRaJcDAgLw6aefoqurC56enlixYgX27duHzz77DMPDw1i5ciUA4Ny5c9iyZQscHBxmjOHChQvYsGHDtK2cmnMaGBjAwMAAADAxMYHBwUFMTEzA19cXN27c0O/i/3tdkZGRU8rd3d11lh0cHBAcHDztMaKjo3X6Tzc2NqKvrw/p6ek6gwFDQkLg5uaGS5cuaQf8aRw6dGhecT993+RyOVQqFezs7LRl/7TO7t+/j6tXryIzMxPDw8MYHh7WrgsODoZSqcTt27enfFeIaHliMk1EtAhOnz4NV1dXGBoaYs2aNVi3bt20g+defPFFnWVNd4KBgQFtWVRUFLKzs1FeXo6oqCi0trbil19+QW5u7qwxtLe3Y9euXX8ba2FhIT755BPcvHlTp2/2bIn633FxcZmSmE5ntnM8va6rqwsAdLqCaLi5uaGurk6nzNDQUCcJngvNffvzzz/x5Zdfora2dtqBnf+kztra2iCEQGpqKlJTU6fdpq+vj8k00TOCyTQR0SLYvHmzdlaI2WhaOJ8mhND+293dHT4+PlCpVIiKioJKpYKxsfGCzC6hUqkQExODsLAwJCcnQyaTwcDAAFlZWTqD7hbLdDN3zGXdXEil0nnP/jH5voWFhcHf3x9vvPEGWltbYWFhAeCf19nExAQAICkpacZWeWdn53nFTURLh8k0EdEzICoqCocPH8adO3fw9ddfIyQkRGdQ3HScnJzQ3Nw86zalpaVwdHREWVmZTneT2QY2LhV7e3sAfw1a1MyOotHa2qpdv1A0CfJrr72GU6dOISUlBcDc62zyuskcHR0BAEZGRnNqvSei5Y1T4xERPQMUCgUkEgnee+893Lp1a05zOO/atQtNTU0oLy+fsk7T8q1pGZ/cEn7t2jXU19cvUOQLx9fXFzKZDLm5uVCr1dryy5cvo6WlBSEhIQt+zsDAQGzevBknTpzA6OgogLnXmWb2kMHBQZ1ymUyGwMBA5OXl4c6dO1POOXlqRCJa/tgyTUT0DLCxscH27dtRUlICS0vLOSWOycnJKC0tRWRkJGJjY+Hj44P79++joqICubm52LBhA0JDQ1FWVobw8HCEhISgo6MDubm5cHd3x4MHD/SO98aNG1CpVFPKnZyc8NJLL+l1TCMjI2RnZ+PAgQN49dVXoVAotFPjyeVyJCYm6h3vbJKTkxEZGYmCggK88847c64zU1NTuLu7o7i4GK6urli9ejU8PDzg4eGB06dPw9/fH+vXr0dcXBwcHR3R29uL+vp69PT0oKmpaVGuhYgWHpNpIqJnRFRUFCorK7Fnz545ve3QwsICP/74I5RKJcrLy1FYWAiZTIatW7dqB+bFxMTg7t27yMvLQ1VVFdzd3aFSqVBSUoKamhq9Yz1//jzOnz8/pTw6OlrvZFoTr5mZGY4ePYoPPvhA+6Kb7OxsnTmmF1JERAScnJxw7NgxxMXFzavOzpw5g4SEBCQmJmJsbAxKpRIeHh5wd3dHY2MjMjIyUFBQgD/++AMymQze3t5IS0tblOsgosUhEZOfUxER0bJ18eJFhIWFoba2VvtmPiIiWlpMpomInhGhoaFoaWlBW1vbjIPbiIjo38VuHkREy1xRURF+++03XLp0CSdPnmQiTUS0jLBlmohomZNIJLCwsMDevXuRm5sLQ0O2gxARLRf8RSYiWubY5kFEtHxxnmkiIiIiIj0xmSYiIiIi0hOTaSIiIiIiPTGZJiIiIiLSE5NpIiIiIiI9MZkmIiIiItITk2kiIiIiIj0xmSYiIiIi0hOTaSIiIiIiPTGZJiIiIiLS038AB0KDbmZS0u4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1)\n", + "sinter.plot_error_rate(\n", + " ax=ax,\n", + " stats=collected_surface_code_stats,\n", + " x_func=lambda stat: stat.json_metadata['p'],\n", + " group_func=lambda stat: stat.json_metadata['d'],\n", + " failure_units_per_shot_func=lambda stat: stat.json_metadata['r'],\n", + ")\n", + "ax.set_ylim(5e-3, 5e-2)\n", + "ax.set_xlim(0.008, 0.012)\n", + "ax.loglog()\n", + "ax.set_title(\"Surface Code Error Rates per Round under Circuit Noise\")\n", + "ax.set_xlabel(\"Phyical Error Rate\")\n", + "ax.set_ylabel(\"Logical Error Rate per Round\")\n", + "ax.grid(which='major')\n", + "ax.grid(which='minor')\n", + "ax.legend()\n", + "fig.set_dpi(120) # Show it bigger" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6bPcsxWhZebc" + }, + "source": [ + "You can see from the plot that the threshold of the surface code is roughly 1%.\n", + "\n", + "There is a problem here, though.\n", + "The problem is that the threshold isn't the only metric you care about.\n", + "The threshold tells you the absolute worse qubit quality that could possibly work, but it doesn't tell you how many of those qubits you would need to hit a target logical error rate.\n", + "What you **really** want to estimate is the quality *and corresponding quantity* of qubits needed to do fault tolerant computation.\n", + "\n", + "Suppose, for the sake of example, that you have qubits with a physical error rate of 0.1% according to the noise model you are using.\n", + "Collect logical error rates from a variety of code distances so you can predict the code distance needed to achieve a target logical error rate." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OVjDeVXzkEO2", + "scrolled": true + }, + "outputs": [], + "source": [ + "noise = 1e-3\n", + "\n", + "surface_code_tasks = [\n", + " sinter.Task(\n", + " circuit = stim.Circuit.generated(\n", + " \"surface_code:rotated_memory_z\",\n", + " rounds=d * 3,\n", + " distance=d,\n", + " after_clifford_depolarization=noise,\n", + " after_reset_flip_probability=noise,\n", + " before_measure_flip_probability=noise,\n", + " before_round_data_depolarization=noise,\n", + " ),\n", + " json_metadata={'d': d, 'r': d * 3, 'p': noise},\n", + " )\n", + " for d in [3, 5, 7, 9]\n", + "]\n", + "\n", + "collected_surface_code_stats: List[sinter.TaskStats] = sinter.collect(\n", + " num_workers=os.cpu_count(),\n", + " tasks=surface_code_tasks,\n", + " decoders=['pymatching'],\n", + " max_shots=5_000_000,\n", + " max_errors=100,\n", + " print_progress=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "41iMwGAQqYz2" + }, + "source": [ + "To a good first approximation, logical error rates decrease exponentially with code distance.\n", + "Use scipy's linear regression to get a line fit of code distance versus log error rate." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w7QmBLpTkzxr", + "outputId": "8db9ac92-e3ec-4043-cdc9-64cde485af8e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LinregressResult(slope=-1.1895861614770902, intercept=-4.615053480324744, rvalue=-0.998930299836957, pvalue=0.0010697001630429748, stderr=0.0389381734731575, intercept_stderr=0.24932596232733958)\n" + ] + } + ], + "source": [ + "import scipy.stats\n", + "\n", + "# Compute the line fit.\n", + "xs = []\n", + "ys = []\n", + "log_ys = []\n", + "for stats in collected_surface_code_stats:\n", + " d = stats.json_metadata['d']\n", + " if not stats.errors:\n", + " print(f\"Didn't see any errors for d={d}\")\n", + " continue\n", + " per_shot = stats.errors / stats.shots\n", + " per_round = sinter.shot_error_rate_to_piece_error_rate(per_shot, pieces=stats.json_metadata['r'])\n", + " xs.append(d)\n", + " ys.append(per_round)\n", + " log_ys.append(np.log(per_round))\n", + "fit = scipy.stats.linregress(xs, log_ys)\n", + "print(fit)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bt6fVetwq0os" + }, + "source": [ + "Plot the collected points and the line fit, to get a projection of the distance needed to achieve a per-round error rate below one in a trillion." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 482 + }, + "id": "fWTvZ_Xmqv9M", + "outputId": "3ef3584c-1ad8-49ee-d68f-0ee15e4ea7a0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIiCAYAAAA6tlWsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AACxNElEQVR4nOzdd1gUV9sG8Ht36V0EBBRRwd5FxYKKLfZeYheN0Ygl+r2aRBNbYmKM0Viwxq6xRGOPxt4w9hJFsICAokSkF6m75/vDl31ddqkLLuX+XReX7pmzM8+UnX0YzjwjEUIIEBERERGRklTXARARERERFTdMkomIiIiIsmCSTERERESUBZNkIiIiIqIsmCQTEREREWXBJJmIiIiIKAsmyUREREREWTBJJiIiIiLKgkkyEREREVEWTJKJiIiIiLJgkkxERERElAWTZPpgtm7dColEgq1bt+o6FCUvLy9IJBKEhIToOpQ8k0gk8PT0VGmbP38+JBIJLly4oJOY6MMJCQmBRCKBl5dXkS5H03FG+XPhwgVIJBLMnz9f16EUO9kdx5rOyfnpS4WvSpUqqFKliq7D0AkmyWWMRCJR+ZHJZLCxsUGHDh2wa9cuXYdX6Jg85g2/bEgbHypxp+KjOF70ICpseroOgHRj3rx5AID09HQ8evQIhw8fxvnz53Hr1i0sW7asSJbZr18/tGjRAg4ODkUy/4JYtGgRvvrqK1SsWFHXoWhl8uTJGDJkCCpXrqzrUIjov5o3b46AgADY2NjoOpRip2LFiggICIClpWWB51Fazt9UfDFJLqOy/vnv7Nmz6Ny5M5YvX46pU6cWyZ9WLC0ttTohFgUHB4dilbQXlI2NDb+IiYoZExMT1KpVS9dhFEv6+vpab5vScv6m4ovDLQgA0LFjR9SqVQtCCNy8eROA6lCFXbt2wd3dHWZmZioJdHh4OCZNmoQqVarAwMAAtra26N+/P27fvq22jJz+PBcWFobJkyejWrVqMDQ0RPny5dG7d29lLFnJ5XKsW7cOrVu3hqWlJYyNjeHq6opx48bh6dOnAN6No1qwYAEAoH379irDTDLlNv4tJCQEQ4YMgY2NDYyMjNC0aVMcO3ZMY0xxcXGYNm0aKlWqBCMjI9SqVQvLli3Ds2fP8v2n6LS0NHz33XdwcXGBoaEhqlatim+++Qapqaka+2c3rOTy5cvo1asXKlWqBENDQ9jb26NFixbK7QK8G4Kzbds2AEDVqlWV2+j9/Xz79m18/vnnaNiwIaytrWFkZITq1avjP//5D2JiYtTieX9fnz9/Hp6enjA3N4eFhQV69OiBgIAAjevx9u1bLF68GE2bNoW5uTnMzMxQu3ZtTJ06Fa9fv1bru2jRIjRq1AimpqYwMzNDy5YtsXv37rxsYqXM8XZJSUmYOXMmKleuDENDQ7i6umLx4sUQQmh83/Xr1zFw4EDY29vDwMAATk5OmDBhAl69eqWxf3R0NGbNmoXatWvD2NgYlpaW6NixI06dOqWxf0JCAv7v//5P7XhSKBTZrkt+t0l+jzNN5s+fj6pVqwIAtm3bpvI5e/+zrlAosG7dOjRr1gxmZmYwNTVFs2bNsHbt2hzXKavXr19jxowZqFmzJkxNTWFlZYWaNWvCy8sLz549U/bLbThAbmP7s57zrl27BolEgn79+mUbW+3atWFoaIjo6GgAmsck16pVCwYGBoiMjNQ4j8WLF0MikcDHx0elPb/nyOxs3boVAwYMQLVq1WBsbAwLCwu0bt0aO3fuzPM8PD09MWbMGADAmDFjVPZ55rk0t++Pwhiik9Mwsd9//x1t27ZVfj/Ur18fixYt0nhsF/QcoImnpyckEgnS0tLw7bffombNmjA0NFRZz9u3b2PAgAGws7ODoaEhnJ2d4e3tjfDw8Gznp0l2x3hB1kcIAR8fH9StWxdGRkaoWLEiJk+ejLi4OI3LTktLw8qVK9GkSROUK1cOJiYmqFKlCvr06YMzZ87keXsVd7ySTEqZH5ysH8ilS5fi9OnT6NWrF9q3b6/80AQHB8PDwwOvXr1Chw4dMHToULx48QL79u3Dn3/+iT/++AM9e/bMdbl37tzBRx99hOjoaHTp0gX9+/dHZGQkDh06BA8PDxw8eBDdu3dX9k9LS0PPnj1x+vRpODk5YdiwYbCwsEBISAgOHjwIDw8PVK9eHdOmTcOhQ4dw8eJFjB49Ot9Xx0NDQ9G8eXNUq1YNI0eORHR0NPbu3as8CbRv317ZNyUlBR06dMCdO3fQuHFjDB8+HHFxcfj+++9x+fLlfC1XCIHBgwfj8OHDcHFxweTJk5GWlobNmzfjwYMHeZ7PX3/9hR49esDCwgK9e/dGxYoVER0djYCAAKxZs0Y55GbevHk4dOgQ/vnnH3z++eewsrICAOW/APDrr7/i4MGDaNeuHTp16gSFQoHbt29j2bJlOHHiBK5fvw5zc3O1GI4dO4bDhw+jW7du+Oyzz+Dv74/jx4/j5s2b8Pf3V7n6HRMTg/bt2+Off/5BzZo1MXbsWBgYGCAoKAhbtmxB//79UaFCBQBAbGwsOnTogLt376JJkyYYO3YsFAoFTp48iWHDhuHhw4dYuHBhnrdVeno6unTpglevXqFbt27Q09PDoUOH8NVXXyElJUW5rTJt3rwZ48ePh6GhIXr37g0nJyc8ffoUGzduxNGjR3Ht2jWVoS+hoaHw9PRESEgI2rRpg65duyIpKQnHjh1D165dsX79enz66afK/qmpqejYsSNu3ryJhg0bYvjw4YiNjcV3332HixcvalyH/G6TwjrOPD09ERsbixUrVqBhw4bo27evclqjRo2U/x85ciR27doFJycnjBs3DhKJBAcPHoS3tzd8fX3x22+/5bqst2/fonXr1ggKCkLnzp3Rq1cvCCEQGhqKw4cPY+DAgahWrVqeY8+OpnNeixYtULNmTRw/fhxRUVEoX768yntu3LiBR48eYcCAAbC2ts523qNHj8bs2bOxe/duTJkyRW36tm3bYGBggGHDhinb8nuOzMnEiRNRt25dtG3bFg4ODoiKisLx48cxcuRIPH78GN99912u8/Dy8oKVlRUOHz6MPn36qOzn988bQPbfH0Vp9uzZWLRoEWxsbDBs2DCYmZnhxIkTmD17Nk6ePIlTp07BwMBA5T35PQfkZsCAAbh58ya6deuGvn37ws7ODsC7c+KAAQMghMDAgQPh7OyM27dvY+3atTh8+DB8fX2Vv3RqI7/rM23aNKxcuRIODg4YP3489PX1cfjwYVy/fh1paWlq28vLywu7d+9GvXr1MGrUKBgbG+PVq1fw9fXFX3/9hU6dOmm9DsWCoDIFgNC020+fPi0kEomQSCQiJCRECCHEvHnzBABhYmIi7ty5o/aejz76SAAQCxcuVGm/cuWKkMlkwtraWiQkJCjbt2zZIgCILVu2KNvS09OFi4uLMDQ0FBcuXFCZz8uXL4Wjo6Owt7cXKSkpyvZZs2YJAKJXr14q7UIIkZKSIiIiIpSvM9fh/PnzGrfH6NGjBQARHBysbAsODlZup/nz56v0/+uvvwQA0a1bN5X2b7/9VgAQQ4YMEQqFQtn+/PlzYWNjIwCI0aNHa4whq99++00AEC1atBDJycnK9qioKFGtWjUBQLRr107lPZrWs3///gKAuHfvntoy3rx5k+t2eF9ISIjIyMhQa9+4caMAIH788UeV9sx9LZPJxJkzZ1SmffXVVwKAWLx4sUr70KFDBQDx2WefCblcrjItISFBxMbGqsWbdR7JycmiS5cuQiKRiLt372pcl6ycnZ2V+/Tt27fK9tevXwtLS0thaWkp0tLSlO2PHz8W+vr6wsXFRYSFhanM68yZM0IqlYq+ffuqtLdr105IJBKxe/dulfaYmBjRsGFDYWRkJP79919l+/fffy8AiP79+6tsi2fPnoly5cppPJ7yu00KcpxlJ/Mzk90xvmvXLgFANG7cWOWckJiYKNzc3AQA8dtvv+W6nCNHjggAYtq0aWrTUlNTRXx8vPK1pvPN+3L6HGV3zvvhhx8EALFq1Sq1ad7e3gKAOHLkiLLt/PnzAoCYN2+esu3FixdCKpUKNzc3tXncuHFDud8zFeQcmZPAwEC1ttTUVNGhQwehp6endkxnJ7ftm9u2zO6YyemcnJe+f//9twAgnJycRHh4uLI9PT1d9OzZUwAQ33//vcp88nsOyEm7du0EAFG/fn2182xCQoKwtrYWUqlUXLp0SWXajz/+KACIzp07a5yfJtntg/yuz5UrVwQA4eLiIqKiopTtycnJokWLFgKAcHZ2VrbHxsYKiUQi3NzcNH4vREZGat44JRCT5DImM/mbN2+emDdvnpg9e7YYMGCAkMlkAoCYPn26sm/mSU7TF9KLFy8EAFG5cmWNJ48RI0YIAGLbtm3KNk0f6EOHDgkAYsaMGRrjXb58uQAg/vzzTyGEEBkZGcLS0lIYGxuLly9f5rq+2iTJzs7OGk8AlStXFuXLl1dpc3FxEVKpVGOSuXDhwnwlyZ06dRIAxLlz59SmZW7D/CTJjx8/znWZuSXJ2VEoFMLCwkK0b99eY5zDhw9Xe8+zZ88EADFgwABl2+vXr4VUKhUODg4iMTExx2VGRkYKmUwmmjZtqnH6vXv3BAAxc+bMPK1D5hfK06dP1aaNGjVKABAPHjxQtk2bNk0AEMeOHdM4v759+wqZTKZM2DLjGThwoMb+mZ+B1atXK9tcXV2FVCrVmNBk7uv3j6eCbJOCHGfZyS1JzlzWyZMn1aadOXNGAFA7hjTJTJJnzZqVa19tkmRN5zwh/pfgZt3OqampwtraWtjZ2Yn09HRlu6YkWQghOnfuLAAIPz8/lfZJkyYJAOLw4cPKtvyeIwvqjz/+UDtn5ySvSXJ227KokuRx48YJAGL9+vVqy3z8+LGQSqWiatWqKu35PQfkJDOpPXTokNq0nTt3CgBi6NChatPS09NFlSpVBAARGhqqNj9NckuS87o+mdts8+bNav0zj+H3k+S4uDgBQLRq1UrlolBpxOEWZVTmmFSJRAIrKyu0adMGn3zyCUaMGKHWt3nz5mptd+/eBQC0adMG+vr6atM7dOiAnTt34u7duxg1alS2cVy9ehXAuz9Ha6olmjm+OCAgAN27d8ejR48QFxcHd3d3ODo65r6iWmjUqBFkMplau5OTkzJuAIiPj0dQUBCcnJw0Dunw8PDI13Lv3LkDqVSq8X35qVs7fPhwHDhwAO7u7vj444/Rvn17tG7dGpUqVcpXPMC7P92tX78ee/bsgb+/P+Li4lTGkb58+VLj+5o2barW5uTkBAAqY5lv3rwJhUKBtm3bwtTUNMdYbt68Cblcnm392fT0dADIdtyzJpaWlnB1dc1TrJn7/uLFixrHg0ZEREAul+PJkydwc3NT9o+Li9MY75s3b1TiTUhIQGBgIJycnODi4qLW39PTU2VMOVCwbVJYx1leZC5L03zbtWsHmUymPKfkpF27dqhYsSJ+/PFH3LlzB927d0fr1q2z/awWlKZzHgBUqlQJHTt2xOnTp+Hv7486deoAAI4ePYro6GhMnz4denq5f616eXnh9OnT2LZtG3766ScA74aR7d69G3Z2dipDJ/J7jszN8+fPsXjxYpw9exbPnz9HcnKyyvTsPssFld22LCp37twB8O47KKsaNWqgUqVKCA4ORlxcnMqN5Pk5B+SFpvXOKTY9PT20bdsWISEhuHv3rtaVivKzPplxtWvXTq2/h4eH2mfLwsICvXr1wtGjR9GoUSMMGDAAbdq0gbu7O0xMTLSKu7hhklxGiXzciGBvb6/WljmuLLs7izPbY2Njc5x3VFQUAGDfvn059ktMTFSZ34co+ZN1bF0mPT09lQQxPj4eAJTjZbPKrj07cXFxsLa21vjLh6Z9kZ3+/fvj2LFjWLp0KTZv3oz169cDANzc3LBo0SJ07tw5z/P6+OOPcfDgQVSrVg19+vSBvb09DA0NAQDLly/P9kYvTdswM4mQy+XKtvzs18xj5ubNmznetJR5zORFTvsaUI01c/lLlizJcZ6Zy8/sf/r0aZw+fTrX/pmfreyOG03HQEG2SWEdZ3mRuays4xqBd9vYxsYGERERuc7HwsIC165dw7x583DkyBGcPHkSwLvqLt7e3vjmm280rk9+5bT+7ye4ixcvBgDlja+jR4/O0/z79esHCwsL7Ny5E4sWLYJMJsOxY8cQHR2NadOmqSTa+T1H5uTZs2do3rw5YmJi0KZNG3z00UewtLSETCZDSEgItm3blq+bNvOisI+l3OTlu+n58+eIjY1VSZLzcw7Ii6L83syL/KxPTueczM9nVnv37sXixYuxa9cu5fhmIyMjDBw4ED///HO+v/eKKybJlCtNd9Zmnlz+/fdfje/JvEs3t5JvmdMPHz6M3r175xpL5ge/sK92aMPCwgIA1KovZMquPTuWlpaIjo5Genq62hd+dts7Oz169ECPHj2QlJSE69ev49ixY1i7di169uyJu3fvKq+E5eTWrVs4ePAgOnXqhBMnTqh8gSsUCuWVMG3kZ79mHjPTp08vspreeVl+XFycct/npf+KFSswderUPPfP7rjRdAwUZJsU5nGmzbIyMjIQGRmZp20JvLuau2nTJggh4O/vj3PnzmH16tX49ttvoVAolDeeSaVS5fyzyi0Jya6aAKCa4P7www+IiorCiRMn0LBhQzRs2DBP62BsbIzBgwdj48aNOH36NLp27Zptop3fc2ROli1bhqioKGzZskWtqsTu3buVMRSmnLZlUXj/u0nTX2Ly+t2krcL63nz/OM76V4rCSKbfX97r16/VbnzN/Hxm/QuksbEx5s+fj/nz5+PFixe4dOkStm7dip07dyIkJCTfN6wXVywBRwXSuHFjAICvr6/GL6Hz588DAJo0aZLjfFq0aAEAef5A1apVC1ZWVrh//362pbbel/lnovxeBcgPCwsLVKtWDS9fvtRYisjX1zdf82vSpAkUCoXG9xX0yYGmpqbo0KEDli1bhtmzZyMtLQ0nTpxQTs9pOwUGBgIAevfurXaSvnHjhtqfawuiefPmkEqluHTpEpKSkvLUV1cn4fwes/ntb25uDldXV7x8+RJBQUFq0zUdAwXZJoV5nOX2OWvcuDEUCgUuXbqkNu3SpUuQy+W5niuykkgkqFu3LqZMmaK8Qn/o0CHl9HLlygEAXrx4ofbeW7du5WtZ78tMcF+9eoUzZ85g165dyMjIyPNV5EyZSeq2bdvw5s0bnDhxAg0aNFCpFAHk//jJSeZnecCAAWrTsquakp0PcW4tiMzvJk3HcGBgIMLCwlC1atVsr7QWpZxiy8jIUO7j9z8LRXUcvy9zeZqOAV9f31z3sZOTE4YPH46TJ0/C1dUVvr6+yr+AlHRMkqlAKlWqhM6dOyMkJATLly9XmXb9+nXs2rUL5cqVy7GmKAD06dMHLi4uWL16NY4fP66xz9WrV/H27VsA707M3t7eSE5Oxmeffab2p8G0tDTlGE8AyjJNz58/z+8q5suoUaOgUCgwa9YslaEsL168UNs+ucmsP/r1118jJSVF2R4dHZ2vsmaXLl3S+AtM5hXK98eO5bSdMsdZZz2xR0REYNKkSXmOJye2trYYMmQIwsPDMWPGDLW6uYmJico/CdrZ2WH48OG4desWvvvuO40n8KCgIAQHBxdKbFlNnjwZ+vr6mD59Op48eaI2PS0tTSWhadq0Kdq0aYMDBw5g8+bNGuf54MEDleEGY8aMgUKhwJdffqmyLYKDg7Fy5Uq19xdkmxTWcQa8+yKXSCTZfs7Gjh0LAJg1a5byswy8K+n21VdfAQA++eSTXJfz8OFDjVfYNR3TTZs2hVQqxa5du1SWGR0djS+++CIPa5W9zAR3+/bt2L59O/T09DB8+PB8zaN169aoXr06Dh8+jHXr1iE9PV1jzeD8niNzkt1n+eTJk9i4cWO+4v9Q59b8yjzWFi5cqPJdIJfLleeWvBxrRaFv376wtrbG7t27ce3aNZVpy5cvR3BwMDp16qQyHjlzbPOvv/6q0v/s2bP5rgmfnczj7vvvv1fW+AbelTadNWuWWv83b95oLBOZlJSExMRE6OnpaRxaVRJxuAUVWObDPGbOnIlTp06hadOmyjrJUqkUW7Zs0Vg79336+vo4cOAAunTpgh49eqBVq1Zo1KgRTExM8OLFC9y8eRPPnj1DeHi48gtw3rx5uH79Oo4ePYoaNWqgZ8+eMDc3x4sXL3Dq1CksWbJE+aFv3749pFIpZs2aBT8/P+Vv5d98802hbosvvvgChw4dwp49e/D48WN89NFHiIuLUxa0P3TokPLPZrkZOnQo9u7diyNHjqBevXro06cP0tPTsX//fjRr1kzj1UVNpk6dipcvX6J169bKh73cvn0b586dg7OzM4YMGaLs27FjRyxZsgSffvopBgwYAHNzc1hZWWHy5Mlo1qwZWrdujQMHDqBVq1bw8PDA69evceLECdSsWbPQbqD08fGBn58f1q1bhwsXLqBLly4wMDBAcHAwTp48iSNHjihv/PLx8cHTp08xd+5c7NixAx4eHqhQoQJevXqFgIAA3Lx5E7t37y6UeqNZ1apVC5s3b8bYsWNRt25ddO3aFTVq1EB6ejqeP3+Oy5cvw9bWFo8ePVK+Z9euXejQoQM++eQTrFy5Eu7u7rCyskJYWBju378PPz8/XL16VVlL9T//+Q8OHTqEP/74A02aNEGXLl0QGxurPJ6OHDmicfvlZ5sU1nEGAGZmZnB3d8fly5cxfPhw1KhRAzKZDL1790aDBg0wbNgwHD58GL///jvq1q2Lvn37QiKR4NChQwgODsbHH3+cpyTz9OnTmDlzJlq2bIkaNWrAzs4OYWFhOHz4MKRSKWbOnKns6+DggOHDh2PHjh1o1KgRevTogfj4eBw/fhxt27bN042C2WndujVcXV2xb98+pKeno1evXsp9lx+jRo3CnDlz8N1332WbaBfkHJkdb29vbNmyBYMGDcLAgQPh6OgIPz8//PXXXxg8eDD27t2b59hbtmwJExMTLF++HFFRUcoxuFOmTNHpk1VbtWqFL774Aj/99BPq1auHgQMHwtTUFCdOnICfnx88PDxUjpMPyczMDJs3b8agQYPQrl07DBo0CJUrV8bt27dx6tQp2NvbK+8dyTRmzBgsWbIEixYtwj///IM6dergyZMnOHHiBPr164c//vhD67hat26NKVOmYNWqVcptllknuVy5cmpjqF++fInGjRujfv36aNCgAZycnBAfH49jx47h33//xdSpU3P97i8xdFxdgz4wZFMnWZPcyqcJIURYWJj47LPPROXKlYW+vr4oX7686NOnj7hx44Za35xKBr1+/Vp8+eWXom7dusLY2FiYmpoKV1dXMWDAALFjxw6VskpCvCuXs2rVKtGsWTNhamoqTExMhKurq/j000/Vyt7s2LFDWYs26/rnp9xQpuxK8sTExIgpU6YIBwcHYWBgIGrWrCl+/vlncf36dQFAfP7559lux6xSU1PFggULRNWqVYWBgYFwdnYWs2fPFikpKXkuAbd3714xZMgQ4erqKkxNTYW5ubmoW7eumD17tkot6UxLly4VtWrVEgYGBmolf6KiosTEiROFs7OzMDQ0FNWqVROzZs0SSUlJwtnZWaWvEAUrvyXEu7q5CxcuFPXr1xfGxsbCzMxM1K5dW3z++efi9evXatto1apVomXLlsLCwkIYGBgIJycn0aFDB/HLL7/kuVanpvgz5fQZuH//vhg9erSoXLmyMDAwEOXKlRN169YV48ePF2fPnlXrHx8fL77//nvRpEkTYWpqKoyMjESVKlVE9+7dxfr169VK38XFxYnp06cLR0dHYWhoqDyegoKCsj0+87tN8nuc5eTp06eiZ8+ewtraWkgkErX9L5fLxerVq4Wbm5swNjYWxsbGokmTJsLHx0etLnZ2/P39xfTp04Wbm5uwsbFRxjxgwABx5coVtf4pKSlixowZomLFisra1j/88INIT0/P8+coO999953yfLJ//36NfbIrAZcpNDRUSKVSAUD07Nkzx+Xl9xyZnStXroj27dsLKysrYWZmJlq3bi0OHjyYa6yanDhxQrRo0UKYmpoqt0XmuTS3bVlUJeAy7d69W7Ru3VqYmZkJQ0NDUadOHbFw4UKVmuCZCnoO0CSnkm2Zbty4Ifr27StsbGyEvr6+cHJyEp999lm2ZU39/PxEt27dhJmZmTA1NRXt2rUTFy5cyLEEXH7XR6FQiFWrVim/AxwcHIS3t7eIjY1Vm19MTIxYsGCBaN++vXB0dBQGBgbC3t5etGvXTuzatatUlYWTCJGPMgdEWli3bh0mTpyIXbt2YejQoboO54P59ddfMX78eKxbtw4TJkzQdThERESUBxyTXABv3rxBjx49YGpqipo1a+Ls2bO6DqlEyBy/WZA6vSWBphsJnz9/rvxTaq9evXQQFRERERUExyQXwKRJk2Bvb483b97gzJkzGDx4MJ4+fQpra2tdh1YsHT16FMePH8fWrVtRsWJF5d3apc2AAQOQnp4ONzc3WFlZISQkBMeOHcPbt2+xaNGiIn/4CRERERUeDrfIp8TERFhbW+PZs2fKK6Kenp4YPXq08m5xUuXl5YUjR46gWbNmWLFiBWrVqqXrkIrEmjVrsGPHDjx9+hRxcXEwMzND48aNMXnyZPTv31/X4REREVE+lPokOTExEUuWLMH169dx48YNxMTEaCykDgCpqanKO8NjYmLQoEEDLFy4UOXJZHfv3kXHjh1VyqRMmTIFhoaG+Pnnnz/EKhERERFRESv1Y5IjIyPx7bffIiAgINenIXl5eWHZsmUYPnw4VqxYAZlMhu7du6sU209MTFR7MpSFhUW+HoFLRERERMVbqR+T7ODggPDwcNjb2+PWrVto1qyZxn43btzAnj17sGTJEsyYMQPAuxqW9erVwxdffIG///4bwLs6h/Hx8SrvjY+Ph5mZWdGuCBERERF9MKX+SrKhoaGyyHlO9u/fD5lMhvHjxyvbjIyM8Mknn+Dq1avKR0JWr14diYmJePnypbKfn58f6tatW/jBExEREZFOlPoryXl19+5d1KhRQ20oReYjIe/duwcnJyeYmZmhT58+mDdvHlatWoWzZ8/i/v376NOnT7bzjoiIUHk8JvDu6vOTJ09Qv359GBoaFv4KEREREZVyqampePHiBdq1awcrK6tCnTeT5P8KDw9Xe/QiAGXb+zVw16xZg9GjR6N8+fKoVKkS9u7dm2P5tzVr1mDBggWFHzQRERER4dChQzlesCwIJsn/lZycrPGKrpGRkXJ6JltbWxw/fjzP8/b29sagQYNU2vz9/TF48GBs3rwZderUKWDUVBwlJyfjwYMHqF+/PoyNjXUdDhUy7t/Si/u29OK+Lb38/f0xduxYODk5Ffq8mST/l7GxMVJTU9XaU1JSlNMLys7ODnZ2dhqn1alTB+7u7gWeNxU/8fHxiIuLQ5MmTdSG71DJx/1benHfll7ct6VfUQxdLfU37uVVZhWMrDLb+LQ0IiIiorKDSfJ/NWrUCE+ePFEr73b9+nXldCIiIiIqG5gk/9fAgQMhl8uxYcMGZVtqaiq2bNkCd3f3IhnrQkRERETFU5kYk+zj44PY2FhlhYqjR48iLCwMwLtHSltaWsLd3R2DBg3CrFmzEBERAVdXV2zbtg0hISHYtGmTLsMnIiIiog+sTCTJP//8M0JDQ5WvDxw4gAMHDgAARowYAUtLSwDA9u3bMWfOHOzYsQMxMTFo0KABjh07hrZt2+okbiLKv4yMDMTExCAxMRFCiEKff3p6OqytrREeHo7IyMhCnz/pDvdt6cV9W7JIJBKYmZmhXLly0NPTXapaJpLkkJCQPPUzMjLCkiVLsGTJkqINiIiKhBACYWFhSE5OhkwmK5KTq56eHmxtbXV64qaiwX1benHflizp6emIjIzE27dvUblyZUgkEp3EwaOFiEqNhIQEJCcnw9LSEg4ODkVyYpXL5UhISIC5uTlkMlmhz590h/u29OK+LVmEEAgPD0dcXBwSEhJ0VraPN+4RUamRWZ3Gzs5OZ1ceiIhIOxKJRPl8iaxVxz4kJslEVGqkp6dDT0+Pf1IlIirhMs/l6enpOouBSTIRlRpCCEilPK0REZUGUqm0SG7AzvPydbZkIqIiwGEWRESlg67P50ySiYiIiIiyYJJMRERERJQFk2QiIioynp6e8PT0LNR5SiQSzJ8/P8c+ISEhkEgk2Lp1a6EuO6sqVarAy8uryOafl3UloqLBJJmIiIhKpOPHj+v0l4i///4b8+fPR2xsrM5iyEqhUOCnn35C1apVYWRkhAYNGmD37t15fn9sbCzGjx8PW1tbmJqaon379rhz547GvkeOHEGTJk1gZGSEypUrY968ecjIyFDpEx4ejq+++grt27eHubk5JBIJLly4oM0qfjBMkomIiAro8ePH+PXXX3UdRpl1/PhxLFiwQGfL//vvv7FgwYJilSR//fXX+PLLL9G5c2esWrUKlStXxrBhw7Bnz55c36tQKNCjRw/s2rULkydPxk8//YSIiAh4enri6dOnKn1PnDiBvn37wsrKCqtWrULfvn2xcOFCTJkyRaXf48ePsXjxYrx8+RL169cv1HUtaiwmSkSUi3S5ArdCYhCXnAZzQxlqWPPUSe8YGhrqOgStKBQKpKWlwcjISG1aUlISTE1NtZr/27dvYWJikuf+hbHMsuzly5dYunQpJk2aBB8fHwDAuHHj0K5dO8ycORODBg3K8YmD+/fvx99//419+/Zh4MCBAIDBgwejRo0amDdvHnbt2qXsO2PGDDRo0ACnTp1S1qa3sLDADz/8gM8//xy1atUCALi5uSEqKgrW1tbYv38/Bg0aVFSrX+h4JZmIKBvpcgVWnn2KlovOYuiv1/DZzjsYvukmuq65hVXnApEuV3ywWBISEjBt2jRUqVIFhoaGsLOzQ+fOnVX+DHr58mUMGjQIlStXhqGhIZycnDB9+nQkJyerzMvLywtmZmZ4/vw5evbsCTMzM1SsWBGrV68GADx48AAdOnSAqakpnJ2dVb4YAWDr1q2QSCS4dOkSJkyYgPLly8PCwgKjRo1CTExMruuSmpqKefPmwdXVVRnnF198gdTUVLV+06dPh62tLczNzdG7d2+EhYUVdBMCAM6dO4c2bdrA1NQUVlZW6NOnDwICAtT6XbhwAU2bNoWRkRFcXFywfv16zJ8/X60klaYxybGxsZg+fbpyX1WqVAmjRo1CZGQkACAtLQ1z586Fm5sbLC0tYWpqijZt2uD8+fMFXq+8blOJRILJkyfjt99+Q926dWFoaIi//vpLuU8vXrwIb29v2NnZoVKlSsr3rVmzRtnf0dERkyZNUrt66unpiXr16uH27dto27YtTExMMHv27GxjzjwOg4KC0L17d5ibm2P48OEA8nYse3l5KY9ZiUSi/MmkUCiwfPly1K1bF6ampqhRowYmTpyYp2P0/v378PLyQrVq1WBkZAR7e3uMHTsWUVFRyj7z58/HzJkzAQBVq1ZVLj8kJCTb+b6/jVq1agVjY2NUrVoV69atyzWmvDh8+DDS09Ph7e2tbJNIJJg4cSLCwsJw9erVHN+/f/9+VKhQAf3791e22draYvDgwTh8+LDyePL394e/vz/Gjx+v8vAmb29vCCGwf/9+ZZu5uTmsra0LZf0+NF4OISLSIF2uwPjtt3D+8RtkrdQZnZSO5WcDcf9lPNaPdIO+rOivN3z22WfYv38/Jk+ejDp16iAqKgq+vr4ICAhAkyZNAAD79u3D27dvMXHiRJQvXx43btzAqlWrEBYWhn379qnMTy6Xo1u3bmjbti1++ukn/Pbbb5g8eTJMTU3x9ddfY/jw4ejfvz/WrVuHUaNGoWXLlqhatarKPCZPngwrKyvMnz8fjx8/xtq1axEaGooLFy5kW99UoVCgd+/e8PX1xfjx41G7dm08ePAAv/zyC548eYJDhw4p+44bNw47d+7EsGHD0KpVK5w7dw49evQo8DY8c+YMunXrhmrVqmH+/PlITk7GqlWr0Lp1a9y5cwdOTk4AgLt376Jr165wcHDAggULIJfL8e2338LW1jbXZSQmJqJNmzYICAjA2LFj0aRJE0RGRuLIkSMICwuDjY0N4uPjsXHjRgwdOhSffvopEhISsGnTJnTp0gU3btxAo0aN8rVe+dmmwLtfFH7//XdMnjwZNjY2qFKlCu7duwfgXZJja2uLuXPnIikpCcC7ZHDBggXo1KkTJk6cqNzXN2/exJUrV6Cvr6+cd1RUFLp164YhQ4ZgxIgRqFChQo6xZ2RkoEuXLvDw8MDPP/+svOqcl2N5woQJePXqFU6fPo0dO3aozXvChAnYunUrxowZg8mTJ+Px48fYuHEj7t27pxZ3VqdPn8azZ88wZswY2Nvb4+HDh9iwYQMePnyIa9euQSKRoH///njy5Al2796NX375BTY2NgCQ63ESExOD7t27Y/DgwRg6dCh+//13TJw4EQYGBhg7dqyyX+YvVbkxNzdX/kXj7t27MDU1Re3atVX6NG/eXDndw8Mj23ndvXsXTZo0UXsoU/PmzbFhwwY8efIE9evXx927dwEATZs2Venn6OiISpUqKaeXeIJ0ws/PTwAQ165d03UoVMji4uLEoUOHRFxcnK5DKXOCgoJEUFBQocxrxZknwvnLY7n+rDzzpFCWlxtLS0sxadKkHPu8fftWrW3RokVCIpGI0NBQZdvo0aMFAPHDDz8o22JiYoSxsbGQSCRiz549yvZHjx4JAGLevHnKti1btggAws3NTaSlpSnbf/rpJwFAHD58WNnWrl070a5dO+XrHTt2CKlUKi5fvqwS57p16wQAceXKFSGEEPfu3RMAhLe3t0q/YcOGqcWjSXBwsAAgtmzZomxr1KiRsLOzE1FRUcq2f/75R0ilUjFq1CiRkZEhYmJiRM+ePYWJiYl4+fKlst/Tp0+Fnp6eyPq16ezsLEaPHq18PXfuXAFAHDhwQC0mhUIhhBAiIyNDpKamqkyLiYkRFSpUEGPHjlVpz8u65nWbZs5PKpWKhw8fqvTN3KceHh4iIyND2R4RESEMDAzERx99JORyubLdx8dHABCbN29WtrVr104AEOvWrcsx3kyZx+FXX32lNi2vx/KkSZPU9okQQly+fFkAEL/99psQQij37Z9//qnSnh1Ny9+9e7cAIC5duqRsW7JkiQAggoODc5xfpsxttHTpUmVbamqq8th8//MEIE8/7x/jPXr0ENWqVVNbblJSUrbb+n2mpqZqx6AQQrnd/vrrL5X1fv78uVrfZs2aiRYtWmic/759+wQAcf78+RzjyJSXc/q1a9cEAOHn55eneeYHh1sQEWWRLldg+9UQtSvIWUkAbL8a+kGGXVhZWeH69et49epVtn2MjY2V/09KSkJkZCRatWoFIYTGKzvjxo1TmX/NmjVhamqKwYMHK9tr1qwJKysrPHv2TO3948ePV7kaN3HiROjp6eH48ePZxrhv3z7Url0btWrVQmRkpPKnQ4cOAKAccpA5j6lTp6q8f9q0adnOOyfh4eG4d+8evLy8VP7026BBA3Tu3Fm5PLlcjrNnz6Jv375wdHRU9nN1dUW3bt1yXc4ff/yBhg0bol+/fmrTMq+uy2QyGBgYAHh3FTg6OhoZGRlo2rRptlUEcpLXbZqpXbt2qFOnjsZ5ffrppypjVs+cOYO0tDRMmzZN5erip59+CgsLC/z5558q7zc0NMSYMWPyFf/EiRPV2vJ7LGe1b98+WFpaonPnzsrtERUVBTc3N5iZmeU6tOX95aekpCAyMhItWrQAgALto/fp6elhwoQJytcGBgaYMGECIiIicPv2bWX76dOn8/TTpUsX5XuSk5M1jpPPHHOedehVVnl9f+a/2fXNbTklBYdbEBFlcSskBpGJabn2EwDeJKbiVkgMWrqUL9KYfvrpJ4wePRpOTk5wc3ND9+7dMWrUKFSrVk3Z5/nz55g7dy6OHDmiNu4yLi5O5bWRkZHan4UtLS1RqVIltaESlpaWGsdxVq9eXeW1mZkZHBwcchyT+fTpUwQEBGT7J+mIiAgAQGhoKKRSKVxcXFSm16xZM9t55yQ0NDTb99euXRsnT55EUlIS3rx5g+TkZLi6uqr109SWVVBQEAYMGJBrv23btmHp0qV49OgR0tPTle1Zh7TkRV63aV6WkXVadtvNwMAA1apVU07PVLFiReUvAHmhp6enMvY5U36OZU2ePn2KuLg42NnZaZyedZtkFR0djQULFmDPnj1qffOy/Jw4Ojqq3ZxYo0YNAO/qe2cm4506dcr3vI2NjdXGoQPvEv3M6YXx/sx/s+ub23JKCibJRERZxCXnniBr078gBg8ejDZt2uDgwYM4deoUlixZgsWLF+PAgQPo1q0b5HI5OnfujOjoaHz55ZeoVasWTE1N8fLlS3h5eUGhUL3and0d7tm1CyEKZT0UCgXq16+PZcuWaZyeOS64NNu5cye8vLzQt29fzJw5E3Z2dpDJZFi0aBGCgoLyPb/8btOcEhhtk5v8vt/Q0FBt/Gt+j2VNFAoF7Ozs8NtvvynnmZycDGNjY8hkslzHDQ8ePBh///03Zs6ciUaNGsHMzAwKhQJdu3bN0/ILw7///punfpaWlsrt7uDggPPnz0MIofLLbnh4OACo/HVEEwcHB2Xf92V9v4ODg7I96/EVHh6uHANd0jFJJiLKwtI471fCCtK/oBwcHODt7Q1vb29ERESgSZMm+P7779GtWzc8ePAAT548wbZt2zBq1Cjle06fPl1k8Tx9+hTt27dXvk5MTER4eDi6d++e7XtcXFzwzz//oGPHjtne3AcAzs7OUCgUCAoKUrmK+fjx4wLF6uzsnO37Hz16BBsbG5iamsLW1hZGRkYIDAxU66epLSsXFxf4+fnl2Gf//v2oVq0aDhw4oLIN5s2bl+v8s1tmXrZpQby/3d7/q0VaWhqCg4MLdLUzN/k5lrNbXxcXF5w5cwatW7eGsbEx5HI5EhISYG5unmMJNODdjXVnz57FggULMHfuXGV71jrBOS0/J69evVIrdffkyRMA76qlZMpMRHOzZcsWZYWVRo0aYePGjQgICFAZUnP9+nXl9Jw0atQIly9fhkKhUPnl5fr16zAxMVFe8c6cz61bt1QS4levXiEsLAzjx4/PU+zFHcckExFl0bRKOdiYGeRpTLKtmSGaVilXpPHI5XK1P/Ha2dnB0dFR+efOzC/+96/4CiGwYsWKIotrw4YNKkMF1q5di4yMjBzH7g4ePBgvX77U+ACO5ORkZUWFzHmsXLlSpc/y5csLFKuDgwMaNWqEbdu2qZQu8/Pzw6lTp5SJvUwmQ8eOHXHo0CGV8d+BgYE4ceJErssZMGAA/vnnHxw8eFBtWua+0bSvrl+/nmt5ruzkdZsWRKdOnWBgYICVK1eqxLtp0ybExcVpVW0kO/k5ljMTzazl6AYPHgy5XI7vvvtO7T0ZGRk5PvxD0/IBzcdedsvPSUZGBtavX698nZaWhvXr18PW1hZubm7K9oKMSe7Tpw/09fWxZs0aZZsQAuvWrUPFihXRqlUrZXt4eLjacJ+BAwfi9evXOHDggLItMjIS+/btQ69evZRjkOvWrYtatWphw4YNkMvlyr5r166FRCJR1lgu6XglmYgoC32ZFKNaVsGy009y7CcAjGrpXOQl4BISElCpUiUMHDgQDRs2hJmZGc6cOYObN29i6dKlAIBatWrBxcUFM2bMwMuXL2FhYYE//vgjTzVhCyotLQ0dO3bE4MGD8fjxY6xZswYeHh7o3bt3tu8ZOXIkfv/9d3z22Wc4f/48WrduDblcjkePHuH333/HyZMn0bRpUzRq1AhDhw7FmjVrEBcXh1atWuHs2bN5upqbnSVLlqBbt25o2bIlPvnkE2UJOEtLS5VHG8+dOxenT59G69atMXHiRMjlcvj4+KBevXrKUmnZmTlzpvKBCWPHjoWbmxuio6Nx5MgRrFu3Dg0bNkTPnj1x4MAB9OvXDz169EBwcDDWrVuHOnXqIDExMd/rlddtWhC2traYNWsWFixYgK5du6J3797Kfd2sWTOMGDGiQPPNSX6O5cykcurUqejSpQtkMhmGDBmCdu3aYcKECVi0aBHu3buHTp06QS6XIywsDPv378eKFSuyTeQsLCyUpRHT09NRsWJFnDp1CsHBwdku/+uvv8aQIUOgr6+PXr165fhAFEdHRyxevBghISGoUaMG9u7di3v37mHDhg0qN8IW5Cp9pUqVMG3aNCxZsgTp6elo1qwZDh06hMuXL+O3335TuYo+a9YsbNu2DcHBwcor2AMHDkSLFi0wZswY+Pv7w8bGBmvWrIFcLld7suGSJUvQu3dvfPTRRxgyZAj8/Pzg4+ODcePGqZWgW7hwIQDg4cOHAIAdO3bA19cXAPDNN9/kez0/mEKvl0F5whJwpRdLwOlOYZaAS8uQizFbbgjnL4+JKlnKvmW+HrPlhkjLkOc+My2lpqaKmTNnioYNGwpzc3NhamoqGjZsKNasWaPSz9/fX3Tq1EmYmZkJGxsb8emnn4p//vlHrUzU6NGjhampqdpy2rVrJ+rWravW7uzsLHr06KF8nVku7OLFi2L8+PGiXLlywszMTAwfPlylvFrmPN8vASeEEGlpaWLx4sWibt26wtDQUJQrV064ubmJBQsWqHxukpOTxdSpU0X58uWFqamp6NWrl3jx4kWBS8AJIcSZM2dE69athbGxsbCwsBC9evUS/v7+Qoj/lQnLyMgQZ8+eFY0bNxYGBgbCxcVFbNy4UfznP/8RRkZGatvm/RJwQggRFRUlJk+eLCpWrCgMDAxEpUqVxOjRo0VkZKQQ4l0puB9++EE4OzsLQ0ND0bhxY3Hs2DExevRo4ezsrDKvvKxrfrYpAI2lBDP36c2bNzXO38fHR9SqVUvo6+uLChUqiIkTJ4qYmBiVPtkdP9nJ7jgUIu/HckZGhpgyZYqwtbUVEolErRzchg0bhJubmzA2Nhbm5uaifv364osvvhCvXr3KMbawsDDRr18/YWVlJSwtLcWgQYPEq1evNO6P7777TlSsWFFIpdJcy8FlbqNbt26Jli1bCiMjI+Hs7Cx8fHxyjCc/5HK58vgyMDAQdevWFTt37lTrl1mCL2u80dHR4pNPPhHly5cXJiYmol27dtkeFwcPHhSNGjUShoaGolKlSuKbb75RKWOXCTmUsMuJrkvASYQopLsxKF8ePnyIevXq4dq1a3B3d9d1OFSI4uPjcf78ebRv3x4WFha6DqdMySxT9v7YSW2kyxVYdyEI26+G4k3i/+7iLm+qj1Etq8C7vesHeZBIcZP5gIabN28W+AplcZTbuNW+ffvi4cOHGsemUvGWnzHJRcnT0xORkZG5jlund/JyTr9+/TpatGgBPz8/1K1bt1CXz+EWRETZ0JdJMaVjdXzm6YJbITGIS06DuaEMNaz1YG1lCVkZTJDLisxKCJmePn2K48ePY/To0TqMiog+JCbJRES50JdJlXWQM69IUelWrVo1eHl5KWsBr127FgYGBvjiiy90HRoRfSBMkomIiLLo2rUrdu/ejX///ReGhoZo2bIlfvjhB7UHqBBR6cUkmYiI8sXLy0tZl7W02rJli65DoFLowoULug6B8oED6oiIiIiIsmCSTERERESUBZNkIiIiIqIsmCQTEREREWXBJJmIiIiIKAsmyUREREREWTBJJiIiIiLKgkkyEVEJsHXrVkgkEoSEhOg6FCoEFy5cgEQiUamb6+XlhSpVqugknsTERIwbNw729vaQSCSYNm0aQkJCIJFIsHXrVp3ERKRrfJgIERHl2a5duxAREYFp06bpOhQqRD/88AO2bt2KOXPmwMXFBbVr19bY7/jx47hx4wbmz5//YQMk0gEmyURElGe7du2Cn58fk+Qi8Ouvv0KhUOhk2efOnUOLFi0wb948ZZsQAsnJydDX11e2HT9+HKtXr2aSTGUCh1sQERH9V0ZGBtLS0nSybH19fRgaGupk2REREbCyslJpk0gkMDIygkwm00lMRLrGJJmIqAQ7ceIE2rRpA1NTU5ibm6NHjx54+PChSp/79+/Dy8sL1apVg5GREezt7TF27FhERUWp9EtISMC0adNQpUoVGBoaws7ODp07d8adO3cAAJ6envjzzz8RGhoKiUQCiUSS6xja06dPw8PDA1ZWVjAzM0PNmjUxe/ZslT5hYWHo27cvTE1NYWdnh+nTp+PkyZNqY3arVKkCLy8vtWV4enrC09NT+TotLQ1z586Fm5sbLC0tYWpqijZt2uD8+fMq78scc/vzzz9j+fLlqFGjBipUqAB/f38AwKNHjzBw4EBYW1vDyMgITZs2xZEjR1TmkZ6ejgULFqB69eowMjJC+fLl4eHhgdOnT+e4XTTJOib5/fg2bNgAFxcXGBoaolmzZrh586ba+/MSb1aZY6ODg4Px559/KvdrSEiI2phkLy8vrF69GgCU/SQSSb7Xk6ik4HALIqISaseOHRg9ejS6dOmCxYsX4+3bt1i7di08PDxw9+5dZcJ1+vRpPHv2DGPGjIG9vT0ePnyIDRs24OHDh7h27Zoy0fnss8+wf/9+TJ48GXXq1EFUVBR8fX0REBCAJk2a4Ouvv0ZcXBzCwsLwyy+/AADMzMyyje/hw4fo2bMnGjRogG+//RaGhoYIDAzElStXlH2Sk5PRsWNHPH/+HFOnToWjoyN27NiBc+fOFXi7xMfHY+PGjRg6dCg+/fRTJCQkYNOmTejSpQtu3LiBRo0aqfTfsmULUlJSMG7cOACAtbU1Hj58iNatW6NixYr46quvYGpqit9//x19+/bFH3/8gX79+gEA5s+fj0WLFmHcuHFo3rw54uPjcevWLdy5cwedO3cu8Dq8b9euXUhISMCECRMgkUjw008/oX///nj27JlyKERe482qdu3a2LFjB6ZPn45KlSrhP//5DwDA1tYWb968Uek7YcIEvHr1CqdPn8aOHTsKZd2IijVBOuHn5ycAiGvXruk6FCpkcXFx4tChQyIuLk7XoZQ5QUFBIigoqEiXkZGRIWJiYkRGRkaRLierLVu2CAAiODhYCCFEQkKCsLKyEp9++qlKv3///VdYWlqqtL99+1Ztfrt37xYAxKVLl5RtlpaWYtKkSTnG0aNHD+Hs7JynmH/55RcBQLx58ybbPsuXLxcAxO+//65sS0pKEq6urgKAOH/+vLLd2dlZjB49Wm0e7dq1E+3atVO+zsjIEKmpqSp9YmJiRIUKFcTYsWOVbcHBwQKAsLCwEBERESr7tmPHjqJ+/foiJSVF2V+hUIhWrVqJ6tWrK9saNmwoevTokZfNoeL8+fNq6zd69GiVbZsZX/ny5UV0dLSy/fDhwwKAOHr0qLItr/Fmx9nZWW09Mpe/ZcsWZdukSZNESUwddPW5Je3k5Zx+7do1AUD4+fkV+vJ5JZmIyoR9t15g/+2wHPvUcbTAvF51la8fvorDt0f9s/QSyMiQQ09PBuDdFdi9E1qq9Ph4/dVslzHQrRIGNXXKV+yanD59GrGxsRg6dCgiIyOV7TKZDO7u7ipDC4yNjZX/T0lJQWJiIlq0aAEAuHPnDtq0aQMAsLKywvXr1/Hq1Ss4OjpqHWPmGNfDhw9jzJgxkErVR/gdP34cDg4OGDhwoLLNxMQE48ePxxdffFGg5cpkMuU4WoVCgdjYWCgUCjRt2lQ5dOR9AwYMgK2tLeRyOQAgOjoa586dw7fffouEhAQkJCQo+3bp0gXz5s3Dy5cvUbFiRVhZWeHhw4d4+vQpqlevXqB4c/Pxxx+jXLlyyteZ++vZs2f5jpeI8o5JMhGVCWExybgeHJ2v98QnZ+T7PQByfE+LauXzPT9Nnj59CgDo0KGDxukWFhbK/0dHR2PBggXYs2cPIiIiVPrFxcUp///TTz9h9OjRcHJygpubG7p3745Ro0ahWrVqBYrx448/xsaNGzFu3Dh89dVX6NixI/r374+BAwcqE+bQ0FC4urqqjW2tWbNmgZaZadu2bVi6dCkePXqE9PR0ZXvVqlXV+mZtCwwMhBACc+bMwZw5czTOPyIiAhUrVsS3336LPn36oEaNGqhXrx66du2KkSNHokGDBlrF/77KlSurvM5MmGNiYvIdLxHlHZNkIioTKpUzhntV6xz71HG0UHltYayn4T3qV5Kzymk5lcoZZzstPzJLhe3YsQP29vZq0/X0/nd6Hzx4MP7++2/MnDkTjRo1gpmZGRQKBbp27apScmzw4MFo06YNDh48iFOnTmHJkiVYvHgxDhw4gG7duuU7RmNjY1y6dAnnz5/Hn3/+ib/++gt79+5Fhw4dcOrUqXxXTcjuJjG5XK4yr507d8LLywt9+/bFzJkzYWdnB5lMhkWLFiEoKEhjnO/L3CYzZsxAly5dNC7T1dUVANC2bVsEBQXh8OHDOHXqFDZu3IhffvkF69atU45x1lZ220kIke94iSjvmCQTUZkwqKlTvoc51HW0VBtKIZfLkZCQAHNz82yTl6zvKQouLi4AADs7O3Tq1CnbfjExMTh79iwWLFiAuXPnKtszr0Rn5eDgAG9vb3h7eyMiIgJNmjTB999/r0yS81vNQCqVomPHjujYsSOWLVuGH374AV9//TXOnz+PTp06wdnZGX5+fhBCqMz78ePHavMqV64cYmNj1dpDQ0NVrnbv378f1apVw4EDB1Tm+X4N4JxkzktfXz/HbZvJ2toaY8aMwZgxY5CYmIi2bdti/vz5hZYk5ya/8WqD1SyoLGEJOCKiEqhLly6wsLDADz/8oDKcIFNmZYLMRD7zqmOm5cuXq7yWy+UqQy+Adwm4o6MjUlNTlW2mpqZq/bITHa0+7CSzskTmPLt3745Xr15h//79yj5v377Fhg0b1N7r4uKCa9euqdQxPnbsGF68eKHST9M6X79+HVevZj9W/H12dnbw9PTE+vXrER4erjb9/aoPWcvomZmZwdXVVWWbFbX8xKstU1NTAND4ywpRacMryUREJZCFhQXWrl2LkSNHokmTJhgyZAhsbW3x/Plz/Pnnn2jdujV8fHxgYWGBtm3b4qeffkJ6ejoqVqyIU6dOITg4WGV+CQkJqFSpEgYOHIiGDRvCzMwMZ86cwc2bN7F06VJlPzc3N+zduxf/93//h2bNmsHMzAy9evXSGOO3336LS5cuoUePHnB2dkZERATWrFmDSpUqwcPDAwDw6aefwsfHB6NGjcLt27fh4OCAHTt2wMTERG1+48aNw/79+9G1a1cMHjwYQUFB2Llzp/KqeqaePXviwIED6NevH3r06IHg4GCsW7cOderUQWJiYp627+rVq+Hh4YH69evj008/RbVq1fD69WtcvXoVYWFh+OeffwAAderUgaenJ9zc3GBtbY1bt24py+h9SHmNV1tubm4AgKlTp6JLly6QyWQYMmRIocybqLhhkkxEVEINGzYMjo6O+PHHH7FkyRKkpqaiYsWKaNOmDcaMGaPst2vXLkyZMgWrV6+GEAIfffQRTpw4oVLBwsTEBN7e3jh16hQOHDgAhUIBV1dXrFmzBhMnTlT28/b2xr1797Blyxb88ssvcHZ2zjZJ7t27N0JCQrB582ZERkbCxsYG7dq1w4IFC2Bpaalc7tmzZzFlyhSsWrUKJiYmGD58OLp164auXbuqzK9Lly5YunQpli1bhmnTpqFp06Y4duyYsrZvJi8vL/z7779Yv349Tp48iTp16mDnzp3Yt2+fysNJclKnTh3cunULCxYswNatWxEVFQU7Ozs0btxYZdjK1KlTceTIEZw6dQqpqalwdnbGwoULMXPmzDwtp7DkNV5t9e/fH1OmTMGePXuwc+dOCCGYJFOpJRFZ/wZHH8TDhw9Rr149XLt2De7u7roOhwpRfHw8zp8/j/bt26tUGKCil1kSq6DVGPIiL2OSSXsXLlxA+/btcf78eZWn6RUl7tvSi/u2ZMrLOf369eto0aIF/Pz8ULdu3Wz7FQTHJBMRERERZcEkmYiIiIgoCybJRERERERZ8MY9IiIqdjw9PdXK1hERfUi8kkxERERElAWTZCIqVXj1kYiodND1+ZxJMhGVGlKpFHK5XOcnViIi0o4QAnK5HFKp7lJVJslEVGoYGhpCLpcjIiKCiTIRUQklhEBERATkcjkMDQ11Fgdv3COiUqNChQpITU1FdHQ04uLiIJPJIJFICnUZQgikp6cjKiqq0OdNusV9W3px35YcmVeQ5XI5jI2NUaFCBZ3FwivJ+ZSamoqxY8eicuXKsLCwQIsWLXD16lVdh0VEeDfconLlyrCysoKBgUGRfBlmZGTgzZs3yMjIKPR5k25x35Ze3Lclh0QigYGBAaysrFC5cmWdDrfgleR8ysjIQJUqVeDr64tKlSrh999/R69evRASEgIzMzNdh0dU5kmlUjg4OBTZ/OPj4/Ho0SM0bNiQjx0vZbhvSy/uWyoIXknOJ1NTU8ydO1f5282QIUNgYGCAx48f6zo0IiIiIiokJTZJTkxMxLx589C1a1dYW1tDIpFg69atGvumpqbiyy+/hKOjI4yNjeHu7o7Tp08XShxPnz5FdHQ0XF1dC2V+RERERKR7JTZJjoyMxLfffouAgAA0bNgwx75eXl5YtmwZhg8fjhUrVkAmk6F79+7w9fXVKobk5GSMGDECs2bNgqWlpVbzIiIiIqLio8QmyQ4ODggPD0doaCiWLFmSbb8bN25gz549WLRoEZYsWYLx48fj3LlzcHZ2xhdffKHS18PDAxKJROPPN998o9I3PT0dgwYNgqurK+bOnVsk60hEREREulFib9wzNDSEvb19rv32798PmUyG8ePHK9uMjIzwySefYPbs2Xjx4gWcnJwAIM9XlhUKBUaOHAmJRIJt27axnAwRERFRKVNik+S8unv3LmrUqKF2N2vz5s0BAPfu3VMmyXk1YcIEhIeH4+TJk9DTy30TRkRE4M2bNyptgYGBAIDdN16gRs1akEmZaJcWSUlJKv9S6cL9W3px35Ze3LelV3JycpHNu9QnyeHh4RrLQWW2vXr1Kl/zCw0NxcaNG2FkZAQbGxtl+4kTJ9CmTRuN71mzZg0WLFigcdrv9yLwOOkSRlVXwKTU742y5caNG7oOgYoQ92/pxX1benHflj7Pnz8vsnmX+rQsOTlZ4yMNjYyMlNPzw9nZOd+Pu/X29sagQYNU2gIDA9G3b18AQECsFOuCTLF8QG242Jrma95U/CQlJeHGjRto3rw5TE25P0sb7t/Si/u29OK+Lb3u3LlTZPMu9UmysbExUlNT1dpTUlKU04uanZ0d7OzsNE5zr2KFu0lAaHQyRmz7B0sHN0LXermPtabiz9TUlEXrSzHu39KL+7b04r4tfYoyjyux1S3yKrMKRlaZbY6Ojh86JBVfdK6G6Z1qAACS0uT4bOdtLDv1GApF/q5WExEREVHhKfVJcqNGjfDkyRPEx8ertF+/fl05XZekEgk+71Qdv45qCjPDdxf2V54LxKfbbyE+JV2nsRERERGVVaU+SR44cCDkcjk2bNigbEtNTcWWLVvg7u6e78oWRaVznQo4NKk1qv13TPLt5zGIe8skmYiIiEgXSvSYZB8fH8TGxiorVBw9ehRhYWEAgClTpsDS0hLu7u4YNGgQZs2ahYiICLi6umLbtm0ICQnBpk2bdBm+Glc7Mxya1Boz9/2DkS2qwMnaRNchEREREZVJJTpJ/vnnnxEaGqp8feDAARw4cAAAMGLECOWjordv3445c+Zgx44diImJQYMGDXDs2DG0bdtWJ3HnxMJIH+tHNlVrv/s8Bg0rWUHKespERERERa5EJ8khISF56mdkZIQlS5bk+Pjq4uzasygM33gd7Wva4ZePG8LcSF/XIRERERGVaqV+THJJJ4TAzycfQ64QOBPwGn1XX0HQm0Rdh0VERERUqjFJLuYkEgk2eTVDh1rv6iwHvUlCX58rOOP/WseREREREZVeTJJLAEtjfWwc1RRTOrgCABJSMzBu+y2sPPuU9ZSJiIiIigCT5BJCKpXgPx/VxLoRTWBqIAMALDv9BJ/tvI3E1AwdR0dERERUujBJLmG61nPAwUmtUaX8u/Jwp/xfY92FIB1HRURERFS6MEkugWpUMMfhSR7wrGmLhpUsMfm/wzCIiIiIqHCU6BJwZZmliT42jW6GhJR0GOnLlO2pGXIYyKSQSFhPmYiIiKigeCW5BJNJJbAyMVC+FkLgP7//A+/f7iCJ45SJiIiICoxXkkuRndef49j9cADAszdJWD/SDVVsTHUcFREREVHJwyvJpUivBg5oU90GAPD4dQJ6+/jiwuMIHUdFREREVPIwSS5FrEwMsHVMc3zWzgUAEJ+SgTFbb2LNhUAIwXrKRERERHnFJLmUkUkl+KpbLawa2hjG+jIIAfz012NM3n0Xb9M4TpmIiIgoL5gkl1K9GjrigHcrOFkbAwD+vB+OIRuuQc4n9BERERHliklyKVbbwQJHJnkoxykPa14ZMilLwxERERHlhtUtSrlypgbY4tUMZwJeo2s9B12HQ0RERFQi8EpyGaAnk6olyEFvEvHVH/c5TpmIiIhIA15JLoMSUtIxfvstBL1Jwj9hcdgw0g1O1ia6DouIiIio2OCV5DIoQy5QwcIIABAQHo9ePr7wfRqp46iIiIiIig8myWVQOVMDbB/bHJ94VAUAxL5Nx6jN1/HrpWesp0xEREQEJslllp5Mijk962D5x41gqCeFQgDfHw/AtL33kJwm13V4RERERDrFJLmM69u4Iv6Y2AoVrd7VUz587xUGrP0br2KTdRwZERERke4wSSbUq2iJI5Nbo0U1awBAXHI6DPV4aBAREVHZxeoWBAAob2aIHZ+446e/HqFPo4oob2ao65CIiIiIdCZfSfL27dsLtJBRo0YV6H30YenLpPi6Rx219hMPwtG+lh2M9GU6iIqIiIjow8tXkuzl5aXWJpG8e8xx1qoIme0Ak+SS7PiDcHj/dgf1Klpg/cimyrHLRERERKVZvpLk4OBgldexsbEYPXo0LC0tMWXKFNSsWRMA8OjRI6xatQoJCQnYtm1b4UVLH5QQAvtvhwEA/F7Go/cqX6we3gQtqpXXcWRERERERStfd2c5Ozur/Cxfvhy2tra4cOECBg4ciPr166N+/foYNGgQLly4gPLly+OXX34pqtipiEkkEqwf6QavVlUAAFFJaRi+8Tq2XglmPWUiIiIq1bQqYXDo0CH069dPZWiFcsZSKfr374/Dhw9rswjSMX2ZFPN718WSgQ1goCeFXCEw/6g/Zuy7j5R01lMmIiKi0kmrJFkIgUePHmU73d/fn1ccS4lBTZ2wb0JL2P/3cdZ/3AnDx+uvIjyO9ZSJiIio9NEqSe7bty/Wrl2LZcuW4e3bt8r2t2/fYunSpVi/fj369OmjdZBUPDR0ssLRKR5oVqUcAOCfsDjsuxWm46iIiIiICp9WdZJXrFiB4OBgzJgxA7NmzYKDgwMAIDw8HOnp6WjdujWWL19eGHFSMWFrbojfxrXAd8f88Tz6LSa1d9V1SERERESFTqsk2dLSEhcvXsThw4dx4sQJhIaGAgC6du2K7t27o1evXhrHK1PJZqAnxXd96yEtQwGZ9H/7N+5tOgz1paynTERERCVeoTxxr0+fPhxWUQYZvPfo6gy5AhN/u42kNDnWj3CDvaWRDiMjIiIi0o5WY5KJMu24Foq/g6Lwz4tY9Fzli5sh0boOiYiIiKjAtK5usX79ejRv3hw2NjaQyWRqP3p6hXKxmoq54e7OGO5eGQAQmZiKoRuuYee1UFY3ISIiohJJqwz2iy++wLJly9CoUSOMGDEC5cqVK6y4qIQx0JPi+371Ua+iJeYe9kO6XOCbQ37wexmHBX3qwlCP45SJiIio5NAqSd62bRsGDBiA33//vbDioRJuaPPKqFHBHBN33kZEQir23HyBx68TsG6EGypYcJwyERERlQxaDbdITk5Gp06dCisWKiXcnMvh6BQPNKlsBQC4+zwWw369BrmCQy+IiIioZNAqSe7YsSNu3rxZWLFQKVLBwgi7x7fA0OZOAIBZ3WqrlIsjIiIiKs60SpLXrFmDa9eu4YcffkBUVFRhxUSlhKGeDIv6N8CxKR7oVKeCyjTe0EdERETFmVZJcs2aNfHs2TPMmTMHdnZ2MDU1hYWFhcqPpaVlYcVKJVS9iqrHwJ3nMRj263VExKfoKCIiIiKinGl1496AAQP4RD3KlzcJqZi48zZex6eil48v1o5wQ5PKrIpCRERExYtWSfLWrVsLKQwqK8yN9NCuhi1+vxWG1/GpGLL+Gr7rWxcfN6us69CIiIiIlPjEPfqgjPRlWDygAb7rUxd6UgnS5Ap8+ccDzDnkh7QMBQAgXa7A1aAo/OUXjqtBUUiXK3QcNREREZU1Wl1J3r59e576jRo1SpvFUCkjkUgwsmUV1LS3gPdvtxGZmIYd10IREB4PN+dy+ONOGCIT05T9bc0MMbKlMyZ6ukBfxt/riIiIqOhplSR7eXllO+39scpMkkmT5lWtcWSyBz7beRv3w+JwKzQGt0Jj1PpFJqZi2eknuPciFutHujFRJiIioiKnVbYRHBys9hMYGIgzZ86gX79+cHNzg5+fX2HFSqWQo5Uxfp/QEnUdLbLtk1ks7tyjCKy7EPRhAiMiIqIyTask2dnZWe2nWrVq6NChA/bv3w9bW1v4+PgUVqxUSsmkEvwbl5xrPwmA7VdDOUaZiIiIilyR/t26Z8+e2Lt3b1EugkqBWyExiEpKz7WfAPAmMRW3QtSHZBAREREVpiJNkoOCgpCamlqUi6BSIC45LfdOWvQnIiIiyi+tbty7dOmSxvbY2FhcunQJK1euRN++fbVZBJUBlsYGRdqfiIiIKL+0SpI9PT01PnFPCAGZTIZBgwZh1apV2iyCyoCmVcrBxswAUYlpypv0smOsL0NDJz7qnIiIiIqWVkny+fPn1dokEgnKlSsHZ2dnWFhkX7GAKJO+TIpRLatg2eknufZNTpdj7NabWD2sCcqbGX6A6IiIiKgs0ipJbteuXWHFQWXcRE8X3HsRi3OPIiABVK4oZ742M9RDYmoGrj2LRm+fK1g/0g31KvKqMhERERU+rZLkTElJSbh48SJCQ0MBvCsN165dO5iamhbG7KkM0JdJsX6kG9ZdCML2q6F4k/i/Gz5tzAwxqqUzRreqgjmH/XD43iu8jE3GzZBoJslERERUJLROkletWoVvvvkGiYmJEOJ/1//Mzc3x/fffY/LkydougsoIfZkUUzpWx2eeLrgVEoO45DRYGhugaZVyyqfsLf+4Eeo5WuLJ6wR4taqi24CJiIio1NIqSd6+fTs+//xztGzZElOnTkXt2rUBAAEBAVi1ahU+//xzWFpaYuTIkYUSLJUN+jIpWrqU1zhNIpHg07bVIIRQuWn0ZWwyjPVlsDZl5QsiIiLSnlZ1kpctW4a2bdvi0qVL+Pjjj9GgQQM0aNAAH3/8MS5evIg2bdpg6dKlhRVrsXP16lVIpVIsXLhQ16GUOe8nyMlpcozbdgu9Vvni4as4HUZFREREpYVWSfLjx48xaNAgyGQytWmZJeAeP36szSKKLYVCgenTp6NZs2a6DqXM23/7BQLC4/EyNhkD1v6Nw/de6jokIiIiKuG0SpItLS0REhKS7fSQkJBSWwZuw4YNcHd3Vw4xId0Z0cIZs7vXglQCpKQr8Pmee/j+T39kyBW6Do2IiIhKKK2S5B49emDVqlXYs2eP2rS9e/fCx8cHvXr10mYR2UpMTMS8efPQtWtXWFtbQyKRYOvWrRr7pqam4ssvv4SjoyOMjY3h7u6O06dPF3jZUVFRWL58ORYsWFDgeVDhkUgkGN/WBdvGNoelsT4A4NfLwfDachMxSXyENREREeWfVknyjz/+iGrVqmH48OGoWLEiPD094enpiYoVK2LYsGGoVq0afvzxx8KKVUVkZCS+/fZbBAQEoGHDhjn29fLywrJlyzB8+HCsWLECMpkM3bt3h6+vb4GW/fXXX2PatGmwsrIq0PupaLSpboujkz1Qy94cAOAbGIlePr7wfxWv48iIiIiopNEqSba1tcWdO3ewbNky1K9fH69fv8br169Rv359/PLLL7h9+zZsbGwKK1YVDg4OCA8PR2hoKJYsWZJtvxs3bmDPnj1YtGgRlixZgvHjx+PcuXNwdnbGF198odLXw8MDEolE488333wDALh79y5u3ryJTz/9tEjWi7RTubwJDni3Qo/6DgCAsJhkTPztNodeEBERUb5oXSfZyMgIn3/+OT7//HON0y9duoS2bdtquxg1hoaGsLe3z7Xf/v37IZPJMH78eGWbkZERPvnkE8yePRsvXryAk5MTAOTpyvLFixfx+PFjVKxYEQAQFxcHPT09BAUFYcuWLQVcGypMJgZ68BnWGPUuWmL5mSdYNrgh9GRa/T5IREREZUyhPHFPkyNHjmDx4sW4du0a5HJ5US0mV3fv3kWNGjXUbiBs3rw5AODevXvKJDkvxo8fjyFDhihff/7556hatSq++uqrbN8TERGBN2/eqLQFBgYCAJKTkxEfz+EARWF4E1t8VMMStmZ6Kts4Xa5QPpykKCQlJan8S6UL92/pxX1benHfll7JyclFNu8CJcmnT5/GihUrEBQUhHLlymHQoEGYPn06AODQoUP45ptvEBAQgPLly2PevHmFGnB+hYeHw8HBQa09s+3Vq1f5mp+JiQlMTEyUr42NjWFmZpbj+OQ1a9Zke5PfgwcPEBfH2r4fysMYCQ6GSDG2hhyORfzU9Bs3bhTtAkinuH9LL+7b0ov7tvR5/vx5kc0730ny8ePH0atXLwghYGNjg8DAQFy/fh0RERF4+/YtVq1aBRcXF6xevRpeXl4wMjIqirjzLDk5GYaGhmrtmXFp+xtIdhU13uft7Y1BgwaptAUGBqJv376oX78+mjRpolUMlDf/xqfi619vIzFVjpUBBviuZw18VNu20JeTlJSEGzduoHnz5jA1LeJMnD447t/Si/u29OK+Lb3u3LlTZPPOd5L8008/wdHREadPn0atWrUQFxeHIUOG4JdffoFEIoGPjw8mTJig8QEjumBsbIzU1FS19pSUFOX0omZnZwc7OzuN04yNjUttLenixtxcYKKnK34+9RjJ6QrMOPgI3jHp+M9HNSGTSnKfQT6Zmppy35Zi3L+lF/dt6cV9W/oUZR6X74GZd+/excSJE1GrVi0A7x4osnDhQqSlpWH27Nnw9vYuNgky8L8qGFlltjk6On7okEhHJBIJJrV3xWavZjA3evf74ZoLQfhk203EvU3XcXRERERUnOQ7SU5ISICzs7NKW+br4viI5kaNGuHJkydqN8ddv35dOZ3KlvY17XBksgeq25kBAC48foM+q33x5HWCjiMjIiKi4qJAt/hLJBKNrw0MDLSPqJANHDgQcrkcGzZsULalpqZiy5YtcHd3z1dlCyo9qtqY4uCk1uhStwIAICTqLfquvgK/l7yJkoiIiApY3WL79u24du2a8nVKSopyPPKhQ4dU+kokEqxYsUKrILPj4+OD2NhYZYWKo0ePIiwsDAAwZcoUWFpawt3dHYMGDcKsWbMQEREBV1dXbNu2DSEhIdi0aVORxEUlg5mhHtYOd8Pq84FYduYJ6le0RM3/Pq2PiIiIyrYCJcmnTp3CqVOn1NqzJshA0SbJP//8M0JDQ5WvDxw4gAMHDgAARowYAUtLSwDvkvo5c+Zgx44diImJQYMGDXDs2LEiecgJlSxSqQRTOlZHvUqWqF/RskjrJxMREVHJke8kWaEoPo/3DQkJyVM/IyMjLFmyJMfHV1PZ1r6mavURhUJgwdGHGNHCGdUr8OoyERFRWcPLZkQa/HLmCbZdDUXf1Vdw8uG/ug6HiIiIPjAmyUQa6EnffTSS0uSYsOM2lp1+AoVC6DgqIiIi+lCYJBNp8Hmn6tgw0g1mhu9GJK08+xTjd9xCfArrKRMREZUFTJKJsvFRXXscmtQa1WzePcL0TEAE+q6+gsCIRB1HRkREREWNSTJRDlztzHBocmt0rPXuxr5nb5LQd/UVnPF/rePIiIiIqCgVOEkWQiA+Ph4pKSmFGQ9RsWNhpI9fRzXF1A6uAIDE1Awkp8t1HBUREREVpQInyWlpabC2tsbKlSsLMx6iYkkqleD/PqqJdSPcMK1TdfRq6KjrkIiIiKgIFehhIgBgaGgIe3t7GBoaFmY8RMVa13r26FrPXqXt0b/xMJBJUc3WTEdRERERUWHTakyyl5cXtm/fjrS0tMKKh6hEiUlKw7htt9DH5wrOPXqNdLkC/7yIBQD88yIW6fLi8/AdIiIiyrsCX0kGgPr16+PQoUOoW7cuvLy8UKVKFRgbG6v169+/vzaLISq2zj6KQFhMMgBg7NZbMDGQwVyagdmNgZn770Mue4KRLZ0x0dOFj7wmIiIqQbRKkocOHar8/5w5czT2kUgkkMt5kxOVTgPdKsFQT4ppe+5CLoC3aXLIpUDKfw/5yMRULDv9BPdexGL9SDcmykRERCWEVkny+fPnCysOohIrODIJ8vcexpeqkOCXBzJkKIDM5nOPIrDuQhCmdKyukxiJiIgof7RKktu1a1dYcRCVSOlyBbZfDYEE/0uIAeDfZAkk77VIAGy/GorPOOyCiIioRCiUb+vU1FRcvXoVhw8fRmRkZGHMkqhEuBUSg8jENJUE2VTv3SsBibJNAHiTmIpbITEfNkAiIiIqEK2T5JUrV8LBwQEeHh7o378/7t+/DwCIjIyEjY0NNm/erHWQRMVVXLJ6ZRdzfcCrhhxSldQ5+/5ERERU/GiVJG/ZsgXTpk1D165dsWnTJgjxv6TAxsYGHTp0wJ49e7QOkqi4sjQ20NjeuLyArZF6u0QiUW8kIiKiYkerJHnp0qXo06cPdu3ahV69eqlNd3Nzw8OHD7VZBFGx1rRKOdiYGUBT6vt+PiwBYG6oh5n7/sHFJ28+VHhERERUQFolyYGBgejWrVu2062trREVFaXNIoiKNX2ZFKNaVtEwsEKVAPA2XY74lAyM2XIDay8EqfzlhYiIiIoXrZJkKyurHG/U8/f3h729fbbTiUqDiZ4u6FDLDgDUrihnvu5Qyw4/D2oAI30pFAJY/NcjTN59F2/TMj5orERERJQ3WiXJ3bt3x4YNGxAbG6s27eHDh/j111/Ru3dvbRZBVOzpy6RYP9IN/+lcAzZmhirTbMwM8Z/ONbB+pBv6Na6EAxNbo1K5d0+l/PN+OPqv+RvPo97qImwiIiLKgVZJ8sKFCyGXy1GvXj188803kEgk2LZtG0aMGIGmTZvCzs4Oc+fOLaxYiYotfZkUUzpWx9+zOmDJwAYAgCUDG+DvWR0wpWN1ZW3kOo4WODrZA61dywMAHv2bgF4+vrj8lOOUiYiIihOtkmRHR0fcvn0bXbt2xd69eyGEwI4dO3D06FEMHToU165dg42NTWHFSlTs6cukaOhkBQBo6GSl8cEh5UwNsG1Mc3zapioAIC45HaM338Dd56yhTEREVFxo9cQ9ALCzs8PGjRuxceNGvHnzBgqFAra2tpBK+VQxouzoyaT4ukcd1KtoiS//uI8OtezQ6L/JNREREeme1klyJiEEhBCQSCSsBUuUR30aVUSNCuaobG3Czw0REVExovXlXn9/fwwcOBAWFhZwcHCAg4MDLCwsMHDgQPj5+RVGjESlWm0HC5ga/u/31dQMOcZuvYkrgXzEOxERka5odSX58uXL6NatGxQKBfr06YMaNWoAAB4/fowjR47gxIkT+Ouvv9CmTZtCCZaoLJh76CHOPYrAhccRmN29Nj7xqMqrzERERB+YVkny9OnTYWdnh4sXL8LJyUll2osXL9C2bVv83//9H27evKlVkERliXs1axy69xKpGQos/DMAfi/j8OOABjDSl+k6NCIiojJDq+EWDx8+hLe3t1qCDABOTk6YOHEiH0tNlE/9m1TCHxNbwdHSCABw6N4rDFz3N17GJus4MiIiorJDqyTZ2dkZqamp2U5PS0vTmEATUc7qVbTEkSkecK9qDQDwexmPXqt8cTWIj3knIiL6ELRKkufOnYuVK1fi3r17atPu3r2LVatWYf78+dosgqjMsjEzxM5x7vBqVQUAEJ2UhhGbrmP3jee6DYyIiKgM0GpM8rVr11ChQgW4ubmhVatWcHV1BQA8ffoUV69eRb169XD16lVcvXpV+R6JRIIVK1ZoFzVRGaEvk2J+77qoV9ESsw8+gFwh4GxtouuwiIiISj2tkmQfHx/l/69cuYIrV66oTH/w4AEePHig0sYkmSj/BrpVQo0KZggIj0crVz7FkoiIqKhplSQrFIrCioOIctGgkhUaVLJSabv27N0Y5RbVyusgIiIiotKLz44mKqFeRL/FxJ23MWLjdWz7OwRCCF2HREREVGowSSYqofzD45GUKkeGQmDekYeYuf8+UtLlug6LiIioVGCSTFRCdalrj70TWqCChSEAYP/tMHy8/irC41hPmYiISFtMkolKsMaVy+HoFA80dS4HAPgnLA69VvniZki0jiMjIiIq2ZgkE5VwduZG2PVpC4xoURkAEJmYhqEbrmHHtVCOUyYiIiogJslEpYCBnhQL+9bHj/3rw0AmRYZC4I/bYchQMEkmIiIqCK1KwGVKTU3FnTt3EBERgdatW8PGhnVciXRhSPPKqGFvjrmH/bBuhBv0Zfw9mIiIqCC0/gZduXIlHBwc4OHhgf79++P+/fsAgMjISNjY2GDz5s1aB0lEedekcjkcnewBe0sjZZsQAk9fJ+gwKiIiopJFqyR5y5YtmDZtGrp27YpNmzapjH+0sbFBhw4dsGfPHq2DJKL8kUgkKq/XXgxC95WX8dv1UB1FREREVLJolSQvXboUffr0wa5du9CrVy+16W5ubnj48KE2iyAiLUXEp2DFmadIlwt8fdAPsw48QGqG5nrK6XIFrgZF4S+/cFwNikK6nE/VJCKiskmrMcmBgYGYOnVqttOtra0RFRWlzSKISEt2FkbY9ak7Ptt5B28SUrH7xnM8/jce60a4wc7i3ZCMdLkCay8EYfvVEEQmpinfa2tmiJEtnTHR04Xjm4mIqEzR6lvPysoKkZGR2U739/eHvb29NosgokLg5myNY1M80MjJCgBw53kseq7yxe3QGKTLFRi//RaWnX6CqPcSZACITEzFstNPMGHHbV5VJiKiMkWrJLl79+7YsGEDYmNj1aY9fPgQv/76K3r37q3NIoiokFSwMMLeCS0wpJkTACAiIRVDNlyF9847OP/4DQAga8G4zNfnHkVg3YWgDxcsERGRjmmVJC9cuBByuRz16tXDN998A4lEgm3btmHEiBFo2rQp7OzsMHfu3MKKlYi0ZKgnw6L+9bGwbz3oSSVIlwucDnid6/skALZfDeXVZCIiKjO0SpIdHR1x+/ZtdO3aFXv37oUQAjt27MDRo0cxdOhQXLt2jTWTiYoZiUSCES2csXt8C1ga6+fpPQLAm8RU3AqJKdrgiIiIigmt78Sxs7PDxo0bER0djdevXyM8PBwxMTHYvHkz7OzsCiNGIioCzapYY3a3Wvl6T1xyWu6diIiISgGtkuSxY8fi+vXryte2traoUKECpNJ3s71x4wbGjh2rXYREVGQqlzfNV39LY4MiioSIiKh40SpJ3rp1K4KCsr+ZJzg4GNu2bdNmEURUhJpWKQcbMwNIcuknwbtycE2rlPsQYREREelckRY+ffXqFYyNjYtyEUSkBX2ZFKNaVlGrapGVADCqpTNrJRMRUZmR74eJHD58GIcPH1a+3rBhA86cOaPWLzY2FmfOnEGzZs20i5CIitRETxfcexGLc48iIIF6GTgAaOpcDp95unzo0IiIiHQm30myv78/9u3bB+DdXfLXr1/H7du3VfpIJBKYmpqibdu2WLZsWeFESkRFQl8mxfqRblh3IQjbr4biTWKqWp/7L+Nw+N4rDHSrpIMIiYiIPrx8J8mzZs3CrFmzAABSqRSbNm3CsGHDCj0wIvpw9GVSTOlYHZ95uuBWSAziktNgYaQP//B4LDrxCGkZCszY9w/+jUvG5A7VdR0uERFRkct3kvw+hYIPFiAqTfRlUrR0Ka983crVBnUdLTFp1x28TctAh1oVdBgdERHRh6NVkkxEpV9Ll/I4Mrk1nr5ORB1HC12HQ0RE9EFofav6iRMn0LlzZ5QvXx56enqQyWRqP6XRTz/9BCcnJ5ibm6Nx48ZISEjQdUhERaZSORO0r6X6cKA/74fjwJ0wHUVERERUtLS6kvzHH39g8ODBqFu3LoYMGYK1a9di2LBhEELg8OHDqF69Ovr27VtIoRYfq1evxl9//YUrV67AyckJDx48gIEBH7JAZYf/q3jM2PcPktPl8HsZj9nda0GP5eGIiKgU0SpJXrRoEZo3bw5fX1/ExMRg7dq1GDt2LDp06ICQkBC0aNECVatWLaxYiwW5XI7vv/8ely9fRuXKlQEADRo00HFURB9WQko6jPSlSE6XY/OVYDz6Nx4+w5rA2pS/LBIRUemg1aUff39/DBkyBDKZDHp67/Lt9PR0AECVKlXg7e2NxYsXax+lBomJiZg3bx66du0Ka2trSCQSbN26VWPf1NRUfPnll3B0dISxsTHc3d1x+vTpAi03LCwMb9++xf79+1GhQgXUrFkTv/76qxZrQlTyuFcrjyOTPVDH4d0Y5b+DotBrlS/8XsbpODIiIqLCoVWSbGJiohxmYGVlBUNDQ4SHhyunV6hQAcHBwdpFmI3IyEh8++23CAgIQMOGDXPs6+XlhWXLlmH48OFYsWIFZDIZunfvDl9f33wv9+XLl4iLi8OTJ08QEhKCffv2Yfbs2bh8+XJBV4WoRHKyNsEfE1uhd0NHAMDL2GQMXPc3Dt97qePIiIiItKdVklyzZk34+/srXzdq1Ag7duxARkYGUlJSsGvXLuWQhMLm4OCA8PBwhIaGYsmSJdn2u3HjBvbs2YNFixZhyZIlGD9+PM6dOwdnZ2d88cUXKn09PDwgkUg0/nzzzTcAoHzM9ty5c2FsbIwGDRpgyJAhOH78eJGsJ1FxZmwgw4ohjfB199qQSoCUdAU+33MP3//pjww5S0QSEVHJpVWS3K9fPxw+fBipqe+e0PX111/jwoULsLKygq2tLS5fvoyvvvqqUALNytDQEPb29rn2279/P2QyGcaPH69sMzIywieffIKrV6/ixYsXynZfX18IITT+LFy4EABQo0YNGBgYQCKRKN/3/v+JyhqJRIJP21bD9rHusDLRBwAERiTyc0FERCWaVjfuzZgxAzNmzFC+7tmzJy5cuIADBw5AJpOhR48eaN++vdZBauPu3buoUaMGLCxU67s2b94cAHDv3j04OTnleX6mpqYYOHAgvv/+e6xcuRLPnj3D3r17sX///mzfExERgTdv3qi0BQYGAgCSk5MRHx+f5+VT8ZeUlKTyb1nRoIIBdnk1wtKzz7CghyuSEktnWcSyun/LAu7b0ov7tvRKTk4usnkX+sNE2rRpgzZt2ihfJyQkwNzcvLAXk2fh4eFwcHBQa89se/XqVb7nuXr1anzyySewsbGBjY0NvvvuO5V1zmrNmjVYsGCBxmkPHjxAXBxvdiqNbty4oesQdKK3NXD76mvla7kCeBovQS0rocOoCl9Z3b9lAfdt6cV9W/o8f/68yOZdZE/ci4iIwPLly7F27VrExMQU1WJylZycDENDQ7V2IyMj5fT8srKywh9//JHn/t7e3hg0aJBKW2BgIPr27Yv69eujSZMm+Y6Biq+kpCTcuHEDzZs3h6mpqa7D0bkfTwVhV8AreLWohM89q0AmLdnDMLh/Sy/u29KL+7b0unPnTpHNu0BJckREBLZv346goCCUK1cOAwYMgJubG4B31R++//57bN26FSkpKfD09CzMePPN2NhYOWb6fSkpKcrpRc3Ozg52dnYapxkbG6sNBaHSwdTUtMzv24iEFPz58N1Qo63XwhAUlYJVQxvDyqTk11Pm/i29uG9LL+7b0qco87h8J8mPHj1C27ZtERUVBSHe/fn0p59+ws6dOyGRSDBu3DikpKRgwIABmDlzpjJ51hUHBwe8fKlekiqzVJ2jo+OHDomozLAzN8KRya0xfvttPH6dgMtPI9Hb5wo2jHJDLXt+URERUfGV7+oWc+bMQWJiItasWQM/Pz8cPXoU1apVw7Rp0+Dl5YVu3brh8ePH2LNnj84TZOBdWbonT56o3Rx3/fp15XQiKjrO5U1xwLsVutd/V43mefRb9Fv9N/68H57LO4mIiHQn30nypUuXMHHiREyYMAF16tRBjx49sGrVKkRERGDIkCH4/fffUa1ataKItUAGDhwIuVyODRs2KNtSU1OxZcsWuLu756uyBREVjKmhHlYPa4IvutaERAIkp8sxadcdLP7rEeSK0nVDHxERlQ75Hm4RFRWFBg0aqLRlPvGuX79+hRNVHvn4+CA2NlZZoeLo0aMICwsDAEyZMgWWlpZwd3fHoEGDMGvWLERERMDV1RXbtm1DSEgINm3a9EHjJSrLJBIJvD1dUdvBAp/vvov4lAysuxiETrUrwM25nK7DIyIiUpHvJFmhUEBfX1+lLfO1mZlZ4USVRz///DNCQ0OVrw8cOIADBw4AAEaMGAFLS0sAwPbt2zFnzhzs2LEDMTExaNCgAY4dO4a2bdt+0HiJCGhf0w5HJntg/I5b6N3QkQkyEREVSwWqbnHr1i1lCTXgXS1kiUQCX19fxMbGqvXv379/gQPMSUhISJ76GRkZYcmSJTk+vpqIPpwqNqY4NKk1jPVlKu3xKemwMNLP5l1EREQfToGS5OXLl2P58uVq7fPnz1drk0gkkMvlBVkMEZViJgaqp5/X8Sno7eOLQW5OmN65Romvp0xERCVbvpPk8+fPF0UcRFTGfbH/Pl7Hp8LnfCAevorD8iGNYWnMq8pERKQb+U6S27VrVxRxEFEZN69XHYzfcRuBEYk4//gN+q6+gg0j3VC9gu4ea09ERGVXvkvAEREVhWq2Zjjo3Qof1akAAAiOTELf1Vfwl9+/Oo6MiIjKIibJRFRsmBvpY90IN0zvVAMAkJQmx2c7b2PZqcdQsJ4yERF9QEySiahYkUol+LxTdWwc1RTmhu9GhK08F4hFJwJ0HBkREZUlTJKJqFjqVKcCDk1ujWq2prAy0ceollV0HRIREZUhBSoBR0T0IbjYmuHwpNYIiXwLJ2sTXYdDRERlSIGvJL99+xZubm5Yt25dYcZDRKTC3Egf9StZqrRtvRKMX04/4ThlIiIqMgW+kmxiYoLg4GBIJCz4T0QfztWgKHz3ZwDkCoGHr+Lxy8cNYc6n9BERUSHTakxy165dcfLkycKKhYgoV7bmBnD+79CLMwGv0Xf1FQS9SdRxVEREVNpolSTPmTMHT548wciRI+Hr64uXL18iOjpa7YeIqLC42pnj0OTW6FDLDgAQ9CYJfX2u4Iz/a6TLFbgaFIW//MJxNSgK6XKFjqMlIqKSSqsb9+rWrQsA8Pf3x65du7LtJ5fLtVkMEZEKCyN9bBzVFL+ceYJV5wKRkJqBcdtvwcRAhrdp/zvf2JoZYmRLZ0z0dIG+jMV8iIgo77RKkufOncsxyUSkE1KpBP/5qCZq2pvj8933IBdCJUEGgMjEVCw7/QT3XsRi/Ug3JspERJRnWiXJ8+fPL6QwiIgK5tmbJMiF5ioXma3nHkVg3YUgTOlY/cMFRkREJVqhXlZJTk5GcnJyYc6SiChb6XIFtl8NQW5/z5IA2H41lGOUiYgoz7ROkp8/f44xY8agQoUKMDMzg5mZGSpUqICxY8ciNDS0MGIkItLoVkgMIhPTkFu1ZAHgTWIqboXEfIiwiIioFNBquMWjR4/g4eGB2NhYdO7cGbVr11a2b9++HUePHoWvry9q1qxZKMESEb0vLjmtSPsTEVHZpVWS/NVXX0EqleLu3buoX7++yjQ/Pz907NgRX331FQ4ePKhVkEREmlgaG+Srf3Iah1sQEVHeaDXc4uLFi5g6dapaggwA9erVw+TJk3HhwgVtFkFElK2mVcrBxswg1zHJmeYd8cOFxxFFGhMREZUOWiXJ6enpMDY2zna6iYkJ0tPTtVkEEVG29GVSjGpZJdcxyZniUzIwZutNrLkQCJFNRQwiIiJAyyS5cePG2LhxI+Li4tSmxcfHY9OmTWjSpIk2iyAiytFETxfl0/eyXlHOfN2hlh2Wf9wIxvoyCAH89NdjTN59F2/TMj5orEREVHJoNSZ5wYIF6Nq1K2rVqoUxY8agRo0aAIDHjx9j27ZtiIqKwurVqwslUCIiTfRlUqwf6YZ1F4Kw/Woo3iSmKqfZmBliVEtnfPbfJ+7VqGCOCTtv4UV0Mk4/fI3AtoloUMlKd8ETEVGxpVWS3KFDBxw/fhwzZ87Ejz/+qDKtUaNG2LFjB9q3b69VgEREudGXSTGlY3V85umCWyExiEtOg6WxAZpWKafylL06jhY4MskDU/fcRc8GDkyQiYgoWwVOktPT0xEQEIBatWrh7t27+Pfff5V1kZ2dnWFvb19oQRIR5YW+TIqWLuVz7FPO1ADbxjSHVKo6OCMkMgnO5U0gkeT1NkAiIirNCjwmWSqVws3NDQcOHAAA2Nvbw93dHe7u7kyQiahYy5ogB0YkotcqX0zhOGUiIvqvAifJMpkMzs7OSE1Nzb0zEVEx9t0xfySkZuDY/XD0X/M3XkS/1XVIRESkY1pVt5gyZQo2bNiA6OjowoqHiOiD++XjRmj132Eaj/5NQC8fX/g+jdRxVEREpEta3bgnl8thaGgIFxcXDBw4EFWqVFGrmyyRSDB9+nStgiQiKkrWpgbYPrY5fjzxCBt9gxH7Nh2jNl/HrG61Ma5NVY5TJiIqg7RKkmfMmKH8/6ZNmzT2YZJMRCWBnkyKb3rWQb2Klvjyj/tIzVDg++MB8HsVhx/7N4CxgUzXIRIR0QekVZIcHBxcWHEQERULfRtXhKudGSbsuI2Xsck4fO8VLIz08V3feroOjYiIPqACJ8nJyclYsWIF2rdvj169ehVmTEREOlWvoiWOTG6NSbvu4EV0MqZ1qq7rkIiI6AMrcJJsbGyM9evXo06dOoUZDxFRsVDezBA7PnHHv3EpKG9mqGxXCAEhdBgYERF9EFpVt3Bzc4Ofn19hxUJEVKzoy6RwsjZRaVt1MRQ7AqVISZfrKCoiIvoQtEqSly9fjj179mDjxo3IyGABfiIq3U4+/Beb/n6B25FSjN5xHy9jk3UdEhERFRGtkmQvLy9IpVJMmDABFhYWqF69Oho0aKDy07Bhw8KKlYhIp9ycy8HNyQIAEPDvu6f0XQ2K0nFURERUFLSqbmFtbY3y5cujZs2ahRUPEVGxZWNmiA3D6mP6tsu49K8U0UlpGLHpOr7pURteraqwnjIRUSmiVZJ84cKFQgqDiKhk0JdJMaCqAp2b1sJ3fwUiLUOBBUf94fcyHt/3qwcjfdZTJiIqDbQabkFEVFb1aVAB+ya0hL2FEQDgjzth+Hj9VaRm8IY+IqLSIN9Jsre3N27duqV8nZ6ejt9//x1v3rxR63vmzBl06NBBuwiJiIqphk5WODrFA82rWAMAWrvawFCPV5KJiEqDfCfJ69atw5MnT5Sv4+PjMXToUDx48ECt7+vXr3Hx4kXtIiQiKsZszQ2xc5w7vutTF//5iPdnEBGVFoUy3EKwsj4RlWEGelKMbFkFMun/btyLSkzFohMBrKdMRFRCcUwyEVEhS5crMHnXXay/+Awfb7iGf+NSdB0SERHlE5NkIqJClpSagTS5AgDwz4tY9Fzli5sh0TqOioiI8oNJMhFRIbMyMcDuT1tguHtlAEBkYiqGbriGnddCOTyNiKiEKFCd5O3bt+PatWsAgJSUFEgkEvj4+ODQoUMq/d6/wY+IqCwx0JPi+371Ua+iJeYe9kO6XOCbQ37wexmHBX3qsgoGEVExV6Ak+dSpUzh16pRKW9YEOROfQEVEZdnQ5pVRo4IZPtt5B28SUrHn5gs8fp2AdSPcUOG/NZaJiKj4yfdwC4VCka8fuZx3dhNR2ebmbI1jUzzQuLIVACDwdSISUzN0GxQREeVIq8dSExFR3lSwMMKe8S0w/4g/Otayg4utma5DIiKiHDBJJiL6QAz1ZFjUv75a+82QaDSsZAUDPd5LTURUXPCMTESkQ3eex2D4r9cx9NdriIhnPWUiouKCSTIRkQ6tuxCENLkCt0Nj0MvHF3eex+g6JCIiApNkIiKdWjm0MQY3rQQAeB2fiiHrr2HPjec6joqIiJgkExHpkJG+DIsHNMB3fepCTypBmlyBrw48wDeHHiAtQ6Hr8IiIyiwmyUREOiaRSDCyZRXs+rQFbMwMAAA7rz3H8I3XEJHAccpERLqQr+oWY8eOzfcCJBIJNm3alO/3ERGVNc2rWuPIZA98tvM27ofF4WZIDHzOBeLbPvV0HRoRUZmTryT53Llz+X6CHp+4R0SUd45Wxvh9Qkt8fdAPD1/F4atutXQdEhFRmZSvJDkkJKSIwihZ7t27h0mTJuHBgwewsbHB7NmzMW7cOF2HRUSlhJG+DD8PaoCE1AyYGPzvNJ2aIYdUIoG+jCPliIiKGs+0BTBy5Eh06dIFsbGx2L9/P6ZPn46AgABdh0VEpYhEIoGFkb7ytRACXx/0w/CN1xGZmKrDyIiIygYmyQUQEhKCoUOHQiqVokmTJqhduzYePXqk67CIqBQ78s8r7L8dhhvB0ei1yhf3w2J1HRIRUammdZJ84sQJdO7cGeXLl4eenh5kMpnaT1FITEzEvHnz0LVrV1hbW0MikWDr1q0a+6ampuLLL7+Eo6MjjI2N4e7ujtOnTxd42VOmTMHOnTuRkZGBGzdu4Pnz52jRokWB50dElJsude3Rv0lFAEB4XAoGrruKP26H6TgqIqLSS6sk+Y8//kDPnj3x+vVrDBkyBAqFAkOHDsWQIUNgbGyMBg0aYO7cuYUVq4rIyEh8++23CAgIQMOGDXPs6+XlhWXLlmH48OFYsWIFZDIZunfvDl9f3wItu1u3bti+fTuMjIzQqlUrLF68GA4ODgWaFxFRXhjpy7B0UEPM7VkHMqkEaRkK/GffP1hw9CHS5aynTERU2LRKkhctWoTmzZvj7t27WLBgAYB3ZeJ+++03+Pn5ITw8HFWrVi2UQLNycHBAeHg4QkNDsWTJkmz73bhxA3v27MGiRYuwZMkSjB8/HufOnYOzszO++OILlb4eHh6QSCQaf7755hsAQHR0NHr06IElS5YgNTUVd+7cwaxZs3Dnzp0iWU8iokwSiQRjPapixyfNYW36rp7ylishGLnpOqI4TpmIqFBplST7+/tjyJAhkMlk0NN7dwd2eno6AKBKlSrw9vbG4sWLtY9SA0NDQ9jb2+fab//+/ZDJZBg/fryyzcjICJ988gmuXr2KFy9eKNt9fX0hhND4s3DhQgBAUFAQTE1NMXDgQMhkMjRo0ACtWrXCxYsXC38liYg0aOVigyOTW6OuowUA4NqzaPRf+zdS0uU6joyIqPTIVwm4rExMTGBg8O5qhpWVFQwNDREeHq6cXqFCBQQHB2sXoZbu3r2LGjVqwMLCQqW9efPmAN6Vc3Nycsrz/GrUqIG3b9/i8OHD6N27NwICAnD58mV89tln2b4nIiICb968UWkLDAwEACQnJyM+Pj7Py6fiLykpSeVfKl2Ky/61kAGbh9fDt8ef4s+HbzCkiT3SkpOQlqzTsEq04rJvqfBx35ZeyclFd9LTKkmuWbMm/P39la8bNWqEHTt2YMSIEcjIyMCuXbtQuXJlrYPURnh4uMbxwpltr169ytf8LC0t8fvvv+PLL7/EiBEjYG1tjf/7v/9Dp06dsn3PmjVrlMNRsnrw4AHi4uLyFQOVDDdu3NB1CFSEisv+7WwOVKolgUPCE5w//0TX4ZQKxWXfUuHjvi19nj9/XmTz1ipJ7tevH1auXImff/4ZhoaG+Prrr9GnTx9YWVlBIpEgKSkJmzdvLqxYCyQ5ORmGhoZq7UZGRsrp+dWlSxd06dIlz/29vb0xaNAglbbAwED07dsX9evXR5MmTfIdAxVfSUlJuHHjBpo3bw5TU1Ndh0OFrDju3w5ZXofFpuCXc8H4pqsrypnoa3wPqSuO+5YKB/dt6VWU94RplSTPmDEDM2bMUL7u2bMnLly4gAMHDkAmk6FHjx5o37691kFqw9jYGKmp6je0pKSkKKcXNTs7O9jZ2WmcZmxsrDYUhEoHU1NT7ttSrLju3+Q0Of5z8B8EhMfD/98krB/phnoVLXUdVolSXPctaY/7tvQpyjxOqyRZkzZt2qBNmzaFPdsCc3BwwMuXL9XaM8dOOzo6fuiQiIiKlKudGQLC4/EyNhkD1/2NxQMaoE+jiroOi4ioRNGqukVwcDCOHj2a7fSjR48iJCREm0VorVGjRnjy5InazXHXr19XTiciKi2MDWRYOaQRZnevBakESElX4PM99/D9n/7IYD1lIqI80ypJnjFjBlauXJnt9NWrV+Orr77SZhFaGzhwIORyOTZs2KBsS01NxZYtW+Du7p6vyhZERCWBRCLB+LYu2Da2OSyN341J/vVyMLy23ERMUpqOoyMiKhm0Gm5x9epVTJs2LdvpHTt2xPLly7VZRI58fHwQGxurrFBx9OhRhIW9e0zrlClTYGlpCXd3dwwaNAizZs1CREQEXF1dsW3bNoSEhGDTpk1FFhsRka61qW6Lo5M9MH7HLTz6NwG+gZHovdoXm0c3Q/UK5roOj4ioWNMqSY6JiYG5efYnWjMzM0RFRWmziBz9/PPPCA0NVb4+cOAADhw4AAAYMWIELC3f3ayyfft2zJkzBzt27EBMTAwaNGiAY8eOoW3btkUWGxFRcVC5vAkOeLfCzP338ef9cKSmK5RXl4mIKHtaJcmVK1fGlStXMHHiRI3TL1++jEqVKmmziBzldbyzkZERlixZkuPjq4mISisTAz34DG2M+hUt0ayKNewsjHQdEhFRsafVmOShQ4di9+7dWLlyJRSK/90QIpfLsWLFCuzduxfDhg3TOkgiItKORCLBZ+1c4OZcTqX96D+vEPuW45SJiLLS6kryrFmz4Ovri2nTpuH7779HzZo1AQCPHz/Gmzdv4Onpia+//rpQAiUiosJ17tFrTN1zF07lTLBhlBtq2bN+LBFRJq2uJBsaGuLUqVPYtGkTmjdvjsjISERGRqJ58+bYvHkzzpw5o/Fpd0REpHsn/V5DCOB59Fv0X/M3jj8I13VIRETFhtYPE5FKpRgzZgzGjBlTGPEQEdEH8uOA+qhc3gQ/n3qMt2lyeP92B96eLvjPRzUhk0p0HR4RkU5pdSWZiIhKLolEgkntXbHZqxnMjd5dM1lzIQifbLuJuLfpOo6OiEi38nUluX379pBKpTh58iT09PTQoUOHXN8jkUhw9uzZAgdIRERFq31NOxyZ7IHx22/haUQiLjx+gz6rfbFhVFPUYD1lIiqj8nUlWQihUsVCoVBACJHjz/v9iYioeKpqY4qDk1qjS90KAICQqLf443aYjqMiItKdfF1JvnDhQo6viYio5DIz1MPa4W5YcyEQfwdFYUaXmroOiYhIZ7S+cY+IiEoPqVSCyR2qY6Knq8rNe3HJ78Yo82l9RFRWaJUkP3/+PMfpEokERkZGsLGxgUTCO6WJiEqK9xNkuUJg2p67CIl6i19HucHVjuOUiaj00ypJrlKlSp6SXyMjI7Rp0wZz5sxB69attVkkERF9YEf+eYnzj98AAPqu/htLBzdEl7r2Oo6KiKhoaZUkb9q0CStXrsSLFy8wfPhwuLq6AgCePn2KXbt2wdnZGWPGjEFgYCB27tyJDh064K+//kL79u0LJXgiIip6fRpWRGjUWyw/8xSJqRmYsOM2pnasjmkdq0PKespEVEpplSS/evUKaWlpCAwMhJWVlcq0+fPnw8PDA8nJyVi+fDnmzJkDNzc3LFiwgEkyEVEJIpVKMK1TDdR1tMT0vfeQmJqBlWefwv9VHJZ93AgWRhynTESlj1YPE1m3bh3GjRunliADgLW1NcaNGwcfHx8AQPny5TF27Fjcvn1bm0USEZGOdK5TAYcmtUY1G1MAwJmACPRdfQWBEYk6joyIqPBplSRHRUXh7du32U5PSkrCmzdvlK/t7e0hhNBmkUREpEOudmY4NLk1OtayAwA8e5OEYb9eQ0q6XMeREREVLq2S5GbNmmHFihV48OCB2rT79+9j1apVaN68ubItICAAlSpV0maRRESkYxZG+vh1VFNM7eAKiQSY26sOjPRlug6LiKhQaTUmedWqVWjfvj0aN26Mli1bKm/cCwwMxNWrV2FhYfH/7d17XFR1/j/w18wAMwM4XBQFlIuKeENUNEgkvKwZX7yWYpqYuBpuotZ2sTUr8VLU6s+NRCs3Fy0zU1JTM81LfgtFwLwrK2iCCih4ARyEgRnO9w9zfg0XuXNmhtfz8TiPdj7nzJkX89nPg7eHz/kcfPLJJwCA0tJSHDlyBBMnTmx8aiIiEpVUKsFrI7tjTF9XdKv06GpBELjsJxGZvEYVyb6+vjh37hw+/PBD7N+/H6mpqQAADw8PzJkzBwsWLNBfOVYoFDh16lTjExMRkdGoXCBfyCnEP747h9jJ/dDFyVakVEREjdfoJ+65urrqrxYTEVHrVfigHJFf/obsghKMizuK2Cn9MLxHB7FjERE1SKPmJP+ZWq1GWloa0tLSoFbzTmciotamjcICz/l1BADc12gxc+MJrD6UgYoK3rBNRKan0UVyamoqhg0bBgcHB/j4+MDHxwcODg4YPnw4Tpw40RQZiYjIBEilErw+sjs+C/eDtZUMggD8vwPpmPP1Sag1WrHjERHVS6OmWyQnJ2Po0KGwsrLCrFmz0LNnTwAPV7H45ptvEBwcjCNHjhiscEFEROYtxMcFndvZIvKrE8i68wD7LtzElTVqrHtxIDr/scYyEZGxa1SRvGjRInTs2BGJiYlwdnY22BcdHY3Bgwdj0aJFOHDgQKNCEhGRaenu3Aa7ooIwf8sp/G96PjLy1Bgbl4gv/+qP/u4OYscjIqpVo6ZbJCcnY/bs2VUKZADo0KEDIiMjcfz48cZ8BBERmSg7a0v8J+IJvDy0KwDAqY0cXdtzxQsiMg2NupIslUqh1dY8z0yn00EqbbJ7A4mIyMTIpBK8FdIDPq526O7cBiqFpdiRiIjqpFEVbGBgINasWYOsrKwq+65du4a1a9di8ODBjfkIIiIyA6N8XeBV6SryZ/97BVl3ikVKRET0eI26kvzBBx8gODgYPXr0wLPPPgtvb28AwKVLl/D999/DwsICMTExTRKUiIjMx9YT1/Hhj//F2p8vY/ULfhji7SR2JCIiA40qkvv374/k5GQsWrQIu3btwoMHDwAA1tbWCAkJwfLly9GrV68mCUpERObj+t2Hvy+KSrWYEZ+CN5/pgb8N6cLHWROR0Wj0E/d69eqFHTt2oKKiAvn5+QAAJycnSKVSFBcXIycnB66uro0OSkRE5uP1kd3RrUMbLEg4g9LyCny07784n1OIFRN9YW3V6F9NRESN1mR31UmlUnTo0AEdOnTQ36z38ccfw83Nrak+goiIzMjYvq7Y/vJgdHJQAgB+OJuL59Yew7U7D0RORkTUhEUyERFRffVyVWH33CAM9moLAPjvzfsYE5eIXzPyRU5GRK0di2QiIhKVg40VNs7wx0tPdQYAFJaU4+yNQpFTEVFrx4lfREQkOguZFItG9YJPRzv8kn4bc/54AAkRkVhYJBMRkdEY168jxvXraNB2s7AU5boKuDlai5SKiFqjehfJJ0+erPOxOTk59T09ERGRXmm5DrM3/YZrd4qx5gU/BHq1EzsSEbUS9S6SBw4cWOd1LAVB4JqXRETUYAfTbuHM9QIAQPj6ZLwd2hMzgzrzdwsRNbt6F8nx8fHNkYOIiKiK0b6uKNNWYOH2c9BoK7D8hzSczy5EzHO+UFrJxI5HRGas3kXy9OnTmyMHERFRtZ7z6wTvDm0Q+eUJ5BSWYufpHGTkqfH5tAHo5MB5ykTUPLgEHBERGT2fjnbYNS8IAZ0dAQAXcoowNu4ojl25LXIyIjJXLJKJiMgktLOVY9OsAEQEegIA7haX4ZUtp1FSphM3GBGZJRbJRERkMixlUkSP7Y2VYX1hYyVD7OR+nJtMRM2C6yQTEZHJmTigE/7Soz0cbKwM2kvLdVBYsmgmosbjlWQiIjJJlQvkY5dvI/ifP+P473dESkRE5oRFMhERmbyCB2WI2nwSefc1CP8iGRuPZUIQBLFjEZEJY5FMREQmz97aCgtDe8JKJoW2QsDiXRfwZsJZlJbzpj4iahgWyUREZBYmDXTDt7OfRAeVHACQ8NsNPP95EnILS0RORkSmiEUyERGZjf7uDtg9LwgDPRwAAGduFGLM6kSkXL0rcjIiMjUskomIyKy0b6PA5peexNQAdwDAbXUZXvj3cT54hIjqhUUyERGZHSsLKd5/tg9inusDS5kEfTrZYcAfV5eJiOqC6yQTEZHZmuLvju7ObdDRXgm5BddPJqK645VkIiIya37uDuigUuhfC4KAd3aew4lMzlMmopqxSCYiolZl7ZEr2HT8Gqb8+zi+Ts4SOw4RGSkWyURE1Ko42ljBUiZBuU7Aoh3nsXD7WWi0XE+ZiAyxSCYiolZlir87tkQ+Cac2D9dT/iblOqasO468+xqRkxGRMWGRTERErc4AD0fsmReEfm72AICT1wowJf40rt4XNxcRGQ8WyURE1Cp1UCnw7ewn8fxANwBAvroMqy/IsOPMTZGTEZExYJFMREStltxChg8n9MGy8T6wkEqgEySQiB2KiIwCi+QafPrpp/Dz84OlpSWio6MN9uXn52PUqFGwsbFB9+7dcejQIXFCEhFRo0kkEkx70gNfTO2DZzpVYHxfZ7EjEZER4MNEauDi4oLo6Ghs3ry5yr6oqCg4OzsjPz8fBw8exKRJk5CRkQFHR0cRkhIRUVPwc7NDoVuFQdvlvPu4X6pFf3c+rY+oteGV5BqMHz8eY8eOhb29vUG7Wq3Gzp07sWTJElhbW2Ps2LHo06cPvv/+e3GCEhFRsygqLUfkl7/h+c+PY2vqdbHjEFELM+oiWa1WY/HixQgJCYGjoyMkEgk2bNhQ7bEajQZvvfUWXF1doVQqERAQgAMHDjR5poyMDNja2qJTp076tj59+uDChQtN/llERCSe1Kt3ce3uA5TpKrDgu7N4d+d5lGkran8jEZkFoy6Sb9++jaVLlyItLQ19+/Z97LERERFYtWoVpk6ditjYWMhkMoSGhiIxMbFJM6nVaqhUKoM2lUoFtVrdpJ9DRETi+kvPDvh6VgDa2lgBAL46noWpXxxHPtdTJmoVjLpIdnFxQW5uLrKysrBixYoaj0tJScGWLVsQExODFStWIDIyEocPH4aHhwcWLFhgcGxQUBAkEkm12zvvvFNrJltbWxQVFRm0FRUVwdbWtmE/JBERGa2ALm2xe14QfDvZAQBSM+9hzOpEnLleIG4wImp2Rl0ky+VyODvXfpdxQkICZDIZIiMj9W0KhQIzZ85EUlISrl///3PJEhMTIQhCtdvy5ctr/axu3bpBrVYjOztb33b+/Hn07t27nj8dERGZAld7JbbOHoQJfg+n2d0sKkXY50nYdoLzlInMmVmsbnHq1Cl4e3tXmQbh7+8PADh9+jTc3NzqdU6tVgutVgudTgetVovS0lJYWlrC1tYW48aNw+LFi7F69WocOnQIZ8+exbhx42o8V15eHvLz8w3aLl++DAAoKSmpcmWaTFtxcbHBf8m8sH/NV219+94znvBqa4WVB39HmbYC/zpwCcGdbaG0lLVkTGoAjlvzVVJS0mznNosiOTc3Fy4uLlXaH7Xl5OTU+5zLly/HkiVL9K/ff/99xMfHIyIiAmvXrsX06dPRtm1bdOrUCd9+++1jl39bu3atwbn+7Ny5cygsLKx3PjJ+KSkpYkegZsT+NV+P61tXAC/3lGDzFSnCPYpxPPGXlgtGjcZxa36uXbvWbOc2iyK5pKQEcrm8SrtCodDvr6/o6OgqDxF5xMnJCXv37q3zuebMmYOwsDCDtsuXL2P8+PHo06cP/Pz86p2PjFdxcTFSUlLg7+8PGxsbseNQE2P/mq+69u0wADN0FbCUGc5YzFeXwcnWqplTUkNw3JqvkydPNtu5zaJIViqV0Giq3m1cWlqq3y+m9u3bo3379tXuUyqVVaaJkHmwsbFh35ox9q/5akjf7j6Tgze2nUHMc33wnF+n2t9AouC4NT/NWeMZ9Y17dfVoFYzKHrW5urq2dCQiImolCh+UY+H2c9BoK/Da1jNYuvsitDqup0xk6syiSO7Xrx/S09Or3ACXnJys309ERNQc7KwtsW7aADhYWwIA/nP0KqatT8EdNddTJjJlZlEkT5w4ETqdDuvWrdO3aTQaxMfHIyAgoN4rWxAREdVHoFc77JobhF4uD/+Un/T7HYyNO4rz2bwxm8hUGf2c5Li4OBQUFOhXqNi9ezdu3LgBAJg3bx7s7OwQEBCAsLAwLFy4EHl5efDy8sLGjRuRmZmJ9evXixmfiIhaCTdHa3z3ciDe+u4sdp3JQXZBCSZ+dgwfTfDFuH4dxY5HRPVk9EXyypUrkZWVpX+9fft2bN++HQAQHh4OO7uHT0H68ssv8e677+Krr77CvXv34Ovriz179iA4OFiU3ERE1PoorWSIndwPfTraIebHNJSWV+CVLadhp7TE0O7V38BNRMbJ6IvkzMzMOh2nUCiwYsWKxz6+moiIqLlJJBK8FNwFPV1UmPvNSfi5OyC4m5PYsYionoy+SCYiIjJFQd3aYffcIKiUlpBKJfp2QRAgkUge804iMgZmceMeERGRMXJztIad0lL/ulxXgRkbUrHrTP2fBEtELYtXkomIiFrI+z+k4cilfBy5lI8L2YVYENIDMimvKhMZI15JJiIiaiHDerSHSvHw+tTnv/yOiPgUFDwoEzkVEVWHRTIREVELGeLthN3zgtC9QxsAwK8ZtzEmLhFpuUW1vJOIWhqLZCIiohbk0dYG2+cEIrSPMwDg+t0SPLf2GPac5TxlImPCIpmIiKiF2cgtsOYFPywI6Q6JBCgp12Hu5lNYfShD7GhE9AcWyURERCKQSCSYM9QL/4l4AiqFBSQSwKejndixiOgPXN2CiIhIRMO6t8euuUE4/vsdDOvBp/IRGQsWyURERCLzbGcDz3Y2Bm2/Zd3DraJShPZxESkVUevGIpmIiMjI3Coqxd82/Yb8+xpEDeuK157uzvWUiVoY5yQTEREZmczbxSgt1wEA1vx8BTM3pqKwpFzkVEStC4tkIiIiIxPQpS12zQ2CV3tbAMCRS/kYv+YoMm7dFzkZUevBIpmIiMgIdW5ng51RgzGyVwcAwNXbxRi/5ij2nb8pcjKi1oFFMhERkZGylVvgs/ABeO1pbwBAcZkOf9v0G1b9dAkVFYLI6YjMG4tkIiIiIyaVSjD/L93wxYsD0Ub+8H77g2l5KNNViJyMyLyxSCYiIjIBI3p1wM65g/GEpwM+nzYACkuZ2JGIzBqLZCIiIhPR1ckWW2cPgpujtb5NEAScu1EoYioi88QimYiIyIRIJIbrJccfzcSYuET860A65ykTNSEWyURERCaqqLQcnxzOAADEHspA5Fe/4X4p11MmagoskomIiEyUSmGJhL8Fossfj7Q+mHYL49ccxZV8tcjJiEwfi2QiIiIT5tXeFjvnDsZferQHAFzJL8b4uKM4lHZL5GREpo1FMhERkYlTKSzx7xcHYv5wLwDAfY0WMzeewCeHMjhPmaiBWCQTERGZAalUgtdGdsdn4QNgY/VwebhVB9JxJD1P5GREpslC7ABERETUdEJ8nNHVaTBe+vIE/Ds7Ylj39mJHIjJJLJKJiIjMTLcObfD93CDILaQGS8ZptDrILfgQEqK64HQLIiIiM2SntDR4Kl+xRovxa44h7nAGBIHzlIlqwyvJRERErcB7319AWm4R0nKLcCGnCCvD+sJGzjKAqCa8kkxERNQKRAZ3gfsfj7P+8fxNPLv2KDJvF4ucish4sUgmIiJqBbo7t8GuuYMR7O0EAEi/pcbYuEQcucTVL4iqwyKZiIiolbC3tkJ8xBN4eWhXAEBRqRYzNqRi7ZHLnKdMVAmLZCIiolZEJpXgrZAeiHuhP5SWMggC8M99l7Bk90WxoxEZFRbJRERErdBoX1dsnxMIN0clrGRSjOvnKnYkIqPC21qJiIhaqZ4uKuyKCsLpGwXo7+4gdhwio8IryURERK2Yg41VlafyHbx4C5//7xXOU6ZWjVeSiYiISO9ynhqvfnsaao0W53OK8NGEPrC2YrlArQ+vJBMREZFeua4C9taWAIDdZ3Iw4dMkXL/7QORURC2PRTIRERHp9XRRYdfcIAR2bQsASMstwpi4RCRm3BY5GVHLYpFMREREBhxtrPDlX/0xK6gzAKDgQTle/E8y/v3L75ynTK0Gi2QiIiKqwkImxTuje+Hj5/tBbiFFhQC8vzcNr2w5jdJyndjxiJodi2QiIiKq0fj+HfHdy4HoaK8EANxWa2AhlYiciqj5sUgmIiKix/LpaIddcwfj2f4dEfeCHyxkLB/I/PH/5URERFSrtrZy/Ov5fnC0sdK36SoE/Hgul/OUySyxSCYiIqIGWbH/El7++iRe23qG85TJ7LBIJiIionorKi3H7jM5AIAdp7Ix8bNjyC4oETkVUdNhkUxERET1plJY4vu5gxHQ2REAcD67CGNWJyLpyh2RkxE1DRbJRERE1CDtbOXYNCsAEYGeAIC7xWUIX5+M+KNXOU+ZTB6LZCIiImowS5kU0WN7Y8VEX1hZSKGrELBk90W8vo3zlMm0sUgmIiKiRgsb6IZtswfBWaUAAGw/mY3kq3dFTkXUcCySiYiIqEn0dbPH7nlBeMLTAVHDumKIt5PYkYgazELsAERERGQ+nNrI8fWsJyGr9FS+O2oNHG2sIJHwaX1kGnglmYiIiJqUlYXUoEi+o9ZgbNxRLEg4y3nKZDJYJBMREVGzWrL7IrILSrDttxt4ft1x5BZyPWUyfiySiYiIqFm9M7onBng4AADOXC/AmNVHkZrJm/rIuLFIJiIiombVvo0C37z0JKYGuAMAbqs1mLLuODYdz+J6ymS0WCQTERFRs7OykOL9Z/sg5rk+sJRJoK0Q8M7O81i4/Rw0Ws5TJuPDIpmIiIhazBR/d2yJHIT2beQAgC2p17Fw+zmRUxFVxSK5Bp9++in8/PxgaWmJ6OhofbtGo8Ff//pXuLu7Q6VS4cknn0RSUpJ4QYmIiEzMAA8H7J4XBD93e7SRWyBqmJfYkYiq4DrJNXBxcUF0dDQ2b95s0K7VauHp6YnExER06tQJW7duxZgxY5CZmQlbW1uR0hIREZmWDioFvol8Ehm31OjqxN+fZHx4JbkG48ePx9ixY2Fvb2/QbmNjg/feew/u7u6QSqWYPHkyrKyscOnSJXGCEhERmSi5hQw+He0M2rakXOM8ZTIKRl0kq9VqLF68GCEhIXB0dIREIsGGDRuqPVaj0eCtt96Cq6srlEolAgICcODAgWbPmJGRgbt378LLi38qIiIiaoyT1+7hve8v4JuUa5iy7jjyikrFjkStmFEXybdv38bSpUuRlpaGvn37PvbYiIgIrFq1ClOnTkVsbCxkMhlCQ0ORmJjYbPlKSkoQHh6OhQsXws7OrvY3EBERUY1c7ZTo6aoCAJy8VoDRqxNx8to9kVNRa2XURbKLiwtyc3ORlZWFFStW1HhcSkoKtmzZgpiYGKxYsQKRkZE4fPgwPDw8sGDBAoNjg4KCIJFIqt3eeeedOmcrLy9HWFgYvLy88N577zX4ZyQiIqKHnO0U+DbySUwa2AkAkHdfg8mfH8eWlGsiJ6PWyKiLZLlcDmdn51qPS0hIgEwmQ2RkpL5NoVBg5syZSEpKwvXr1/XtiYmJEASh2m358uV1ylVRUYFp06ZBIpFg48aNkEgktb+JiIiIaqWwlOGjCb5YNq43LKQSlOkq8I/t5/DOznMo01aIHY9aEbNY3eLUqVPw9vaGSqUyaPf39wcAnD59Gm5ubvU6p1arhVarhU6ng1arRWlpKSwtLSGTyTB79mzk5uZi//79sLCo/SvMy8tDfn6+QdvFixcN/kvmo6SkBNeuXcPJkyehVCrFjkNNjP1rvti3xsVbCrztb4UVB39HYYkW/9mdhaTUU3g3xAtKK1m9zsW+NV+P6iiNRtP0JxdMRGpqqgBAiI+Pr7Kvd+/ewvDhw6u0X7hwQQAgfPbZZ/X+vMWLFwsADLb4+HghMzNTACAoFArBxsZGv/3yyy/1Ohc3bty4cePGjRu3ptk2bNhQ71qvNmZxJbmkpARyubxKu0Kh0O+vr+joaIOHiPyZUM/nzM+ZMwdhYWEGbadPn0Z4eDi2bt2KXr161TsfGa/Lly9j/Pjx2LlzJ1c9MUPsX/PFvjVf7FvzdfHiRUyaNAne3t5Nfm6zKJKVSmW1l9lLS0v1+8XUvn17tG/fvtp9vXr1Qu/evVs4EbUELy8v9q0ZY/+aL/at+WLfmq/KU26bglHfuFdXj1bBqOxRm6ura0tHIiIiIiITZhZFcr9+/ZCeno6ioiKD9uTkZP1+IiIiIqK6MosieeLEidDpdFi3bp2+TaPRID4+HgEBAfVe2YKIiIiIWjejn5McFxeHgoIC5OTkAAB2796NGzduAADmzZsHOzs7BAQEICwsDAsXLkReXh68vLywceNGZGZmYv369WLGr5GTkxMWL14MJycnsaNQE2Pfmjf2r/li35ov9q35as6+lQj1XaqhhXl6eiIrK6vafVevXoWnpyeAhzfpvfvuu9i0aRPu3bsHX19fLFu2DM8880wLpiUiIiIic2D0RTIRERERUUsziznJRERERERNiUUyEREREVElLJKJiIiIiCphkUxEREREVAmL5Bam0Wjw1ltvwdXVFUqlEgEBAThw4IDYsaiRjhw5AolEUu12/PhxseNRPajVaixevBghISFwdHSERCLBhg0bqj02LS0NISEhsLW1haOjI6ZNm4b8/PyWDUx1Vte+jYiIqHYs9+jRo+VDU61SU1Mxd+5c9O7dGzY2NnB3d8ekSZOQnp5e5ViOWdNS175trjFr9Oskm5uIiAgkJCTg1VdfRbdu3bBhwwaEhobi559/RlBQkNjxqJHmz5+PJ554wqDNy8tLpDTUELdv38bSpUvh7u6Ovn374siRI9Ued+PGDQQHB8POzg4ffPAB1Go1Vq5ciXPnziElJQVWVlYtG5xqVde+BQC5XI4vvvjCoM3Ozq6ZE1JDfPTRRzh69CjCwsLg6+uLmzdvIi4uDn5+fjh+/Dh8fHwAcMyaorr2LdBMY1agFpOcnCwAEFasWKFvKykpEbp27SoMGjRIxGTUWD///LMAQNi2bZvYUaiRSktLhdzcXEEQBCE1NVUAIMTHx1c57uWXXxaUSqWQlZWlbztw4IAAQPj8889bKi7VQ137dvr06YKNjU0Lp6OGOnr0qKDRaAza0tPTBblcLkydOlXfxjFreurat801ZjndogUlJCRAJpMhMjJS36ZQKDBz5kwkJSXh+vXrIqajpnL//n1otVqxY1ADyeVyODs713rcd999h9GjR8Pd3V3fNmLECHh7e2Pr1q3NGZEaqK59+4hOp0NRUVEzJqKmEBgYWOUqcLdu3dC7d2+kpaXp2zhmTU9d+/aRph6zLJJb0KlTp+Dt7Q2VSmXQ7u/vDwA4ffq0CKmoKc2YMQMqlQoKhQLDhg3DiRMnxI5EzSA7Oxt5eXkYOHBglX3+/v44deqUCKmoKT148AAqlQp2dnZwdHREVFQU1Gq12LGojgRBwK1bt9CuXTsAHLPmpHLfPtIcY5ZzkltQbm4uXFxcqrQ/asvJyWnpSNRErKysMGHCBISGhqJdu3a4ePEiVq5ciaeeegrHjh1D//79xY5ITSg3NxcAahzPd+/ehUajgVwub+lo1ARcXFywYMEC+Pn5oaKiAvv27cPatWtx5swZHDlyBBYW/NVp7L7++mtkZ2dj6dKlADhmzUnlvgWab8xypLegkpKSagegQqHQ7yfTFBgYiMDAQP3rsWPHYuLEifD19cXChQuxb98+EdNRU3s0Vmsbz/yFa5piYmIMXk+ePBne3t5YtGgREhISMHnyZJGSUV3897//RVRUFAYNGoTp06cD4Jg1F9X1LdB8Y5bTLVqQUqmERqOp0l5aWqrfT+bDy8sL48aNw88//wydTid2HGpCj8Yqx3Pr8fe//x1SqRQHDx4UOwo9xs2bNzFq1CjY2dnp7wMCOGbNQU19W5OmGLO8ktyCXFxckJ2dXaX90Z+BXF1dWzoSNTM3NzeUlZWhuLi4ylx0Ml2P/mT7aOz+WW5uLhwdHXlFyswolUq0bdsWd+/eFTsK1aCwsBD/8z//g4KCAvz6668Gv1M5Zk3b4/q2Jk0xZnkluQX169cP6enpVe68TE5O1u8n8/L7779DoVDA1tZW7CjUhDp27AgnJ6dqb8xMSUnhWDZD9+/fx+3bt+Hk5CR2FKpGaWkpxowZg/T0dOzZswe9evUy2M8xa7pq69uaNMWYZZHcgiZOnAidTod169bp2zQaDeLj4xEQEAA3NzcR01FjVPfEpjNnzmDXrl0YOXIkpFIONXMzYcIE7Nmzx2DpxkOHDiE9PR1hYWEiJqPGKC0txf3796u0L1u2DIIgICQkRIRU9Dg6nQ7PP/88kpKSsG3bNgwaNKja4zhmTU9d+rY5x6xEEAShwe+meps0aRJ27NiBv//97/Dy8sLGjRuRkpKCQ4cOITg4WOx41EDDhw+HUqlEYGAg2rdvj4sXL2LdunWwtLREUlISevbsKXZEqoe4uDgUFBQgJycHn376KZ577jn9CiXz5s2DnZ0drl+/jv79+8Pe3h6vvPIK1Go1VqxYgU6dOiE1NZV/ujVStfXtvXv30L9/f0yZMkX/SNv9+/dj7969CAkJwQ8//MB/9BqZV199FbGxsRgzZgwmTZpUZX94eDgAcMyaoLr0bWZmZvON2SZ/PAk9VklJifDGG28Izs7OglwuF5544glh3759YseiRoqNjRX8/f0FR0dHwcLCQnBxcRHCw8OFjIwMsaNRA3h4eAgAqt2uXr2qP+78+fPCyJEjBWtra8He3l6YOnWqcPPmTfGCU61q69t79+4J4eHhgpeXl2BtbS3I5XKhd+/ewgcffCCUlZWJHZ+qMWTIkBr7tHKZwzFrWurSt805ZnklmYiIiIioEv7NiIiIiIioEhbJRERERESVsEgmIiIiIqqERTIRERERUSUskomIiIiIKmGRTERERERUCYtkIiIiIqJKWCQTEREREVXCIpmIiIiIqBIWyURERERElbBIJiIycp6enoiIiGj1GYiIWhKLZCKiBrpy5Qpmz56NLl26QKFQQKVSYfDgwYiNjUVJSYnY8Wo0dOhQSCQSSCQSSKVSqFQqdO/eHdOmTcOBAwea7HP27t2L6OjoJjsfEVFLshA7ABGRKfrhhx8QFhYGuVyOF198ET4+PigrK0NiYiLefPNNXLhwAevWrRM7Zo06deqEmJgYAEBxcTEuX76M7du3Y9OmTZg0aRI2bdoES0tL/fGXLl2CVFq/6yp79+7FmjVrWCgTkUlikUxEVE9Xr17F5MmT4eHhgcOHD8PFxUW/LyoqCpcvX8YPP/wgYsLa2dnZITw83KDtww8/xPz587F27Vp4enrio48+0u+Ty+UtHZGISFScbkFEVE///Oc/oVarsX79eoMC+REvLy+88sor+tdarRbLli1D165dIZfL4enpibfffhsajcbgfYIgYPny5ejUqROsra0xbNgwXLhwodoMBQUFePXVV+Hm5ga5XA4vLy989NFHqKioaPDPJZPJ8Mknn6BXr16Ii4tDYWGhfl/lOcnl5eVYsmQJunXrBoVCgbZt2yIoKEg/XSMiIgJr1qwBAP3UDolEon//ypUrERgYiLZt20KpVGLAgAFISEiokkkikWDu3LnYuXMnfHx8IJfL0bt3b+zbt6/KsdnZ2Zg5cyZcXV0hl8vRuXNnvPzyyygrK2vW742IzBOvJBMR1dPu3bvRpUsXBAYG1un4WbNmYePGjZg4cSJef/11JCcnIyYmBmlpadixY4f+uPfeew/Lly9HaGgoQkNDcfLkSYwcOdKgyAOABw8eYMiQIcjOzsbs2bPh7u6OY8eOYeHChcjNzcXHH3/c4J9NJpNhypQpePfdd5GYmIhRo0ZVe1x0dDRiYmIwa9Ys+Pv7o6ioCCdOnMDJkyfx9NNPY/bs2cjJycGBAwfw1VdfVXl/bGwsxo4di6lTp6KsrAxbtmxBWFgY9uzZU+UzExMTsX37dsyZMwdt2rTBJ598ggkTJuDatWto27YtACAnJwf+/v4oKChAZGQkevTogezsbCQkJODBgwewsrJq1u+NiMyQQEREdVZYWCgAEMaNG1en40+fPi0AEGbNmmXQ/sYbbwgAhMOHDwuCIAh5eXmClZWVMGrUKKGiokJ/3Ntvvy0AEKZPn65vW7ZsmWBjYyOkp6cbnPMf//iHIJPJhGvXrj0205AhQ4TevXvXuH/Hjh0CACE2Nlbf5uHhYZChb9++wqhRox77OVFRUUJNv2YePHhg8LqsrEzw8fERhg8fbtAOQLCyshIuX76sbztz5owAQFi9erW+7cUXXxSkUqmQmppa5bMefZ+N/d6IqHXhdAsionooKioCALRp06ZOx+/duxcA8Nprrxm0v/766wCgn7t88OBBlJWVYd68eQbTEl599dUq59y2bRueeuopODg44Pbt2/ptxIgR0Ol0+OWXX+r9c/2Zra0tAOD+/fs1HmNvb48LFy4gIyOjQZ+hVCr1//vevXsoLCzEU089hZMnT1Y5dsSIEejatav+ta+vL1QqFX7//XcAQEVFBXbu3IkxY8Zg4MCBVd7/6Pts7u+NiMwLp1sQEdWDSqUC8PgC8s+ysrIglUrh5eVl0O7s7Ax7e3tkZWXpjwOAbt26GRzn5OQEBwcHg7aMjAycPXsWTk5O1X5mXl5enbLVRK1WA3j8PwSWLl2KcePGwdvbGz4+PggJCcG0adPg6+tbp8/Ys2cPli9fjtOnTxvMzf7zPxAecXd3r9Lm4OCAe/fuAQDy8/NRVFQEHx+fx35mc39vRGReWCQTEdWDSqWCq6srzp8/X6/3VVf8NVRFRQWefvppLFiwoNr93t7ejTr/o5+tcmH/Z8HBwbhy5Qq+//57/PTTT/jiiy/wr3/9C5999hlmzZr12PP/+uuvGDt2LIKDg7F27Vq4uLjA0tIS8fHx2Lx5c5XjZTJZtecRBKEeP1Xzf29EZF5YJBMR1dPo0aOxbt06JCUlYdCgQY891sPDAxUVFcjIyEDPnj317bdu3UJBQQE8PDz0xwEPr3Z26dJFf1x+fr7+iukjXbt2hVqtxogRI5rqR9LT6XTYvHkzrK2tERQU9NhjHR0dMWPGDMyYMQNqtRrBwcGIjo7WF8k1/cPgu+++g0KhwP79+w2WlouPj29QZicnJ6hUqlr/4dKc3xsRmR/OSSYiqqcFCxbAxsYGs2bNwq1bt6rsv3LlCmJjYwEAoaGhAFBl5YRVq1YBgH4lhxEjRsDS0hKrV682uEJa3YoLkyZNQlJSEvbv319lX0FBAbRabYN+Lp1Oh/nz5yMtLQ3z58/XTy2pzp07dwxe29rawsvLy2DqhI2NjT7Tn8lkMkgkEuh0On1bZmYmdu7c2aDcUqkU48ePx+7du3HixIkq+x99n831vRGReeKVZCKieuratSs2b96M559/Hj179jR44t6xY8ewbds2/ZrCffv2xfTp07Fu3ToUFBRgyJAhSElJwcaNGzF+/HgMGzYMwMOroW+88QZiYmIwevRohIaG4tSpU/jxxx/Rrl07g89/8803sWvXLowePRoREREYMGAAiouLce7cOSQkJCAzM7PKeyorLCzEpk2bADxcUu7RE/euXLmCyZMnY9myZY99f69evTB06FAMGDAAjo6OOHHiBBISEjB37lz9MQMGDAAAzJ8/H8888wxkMhkmT56MUaNGYdWqVQgJCcELL7yAvLw8rFmzBl5eXjh79my9+uKRDz74AD/99BOGDBmCyMhI9OzZE7m5udi2bRsSExNhb2/fJN8bEbUiIq+uQURkstLT04WXXnpJ8PT0FKysrIQ2bdoIgwcPFlavXi2UlpbqjysvLxeWLFkidO7cWbC0tBTc3NyEhQsXGhwjCIKg0+mEJUuWCC4uLoJSqRSGDh0qnD9/vsrya4IgCPfv3xcWLlwoeHl5CVZWVkK7du2EwMBAYeXKlUJZWdljcw8ZMkQAoN9sbW2Fbt26CeHh4cJPP/1U7XsqZ1i+fLng7+8v2NvbC0qlUujRo4fw/vvvG3y2VqsV5s2bJzg5OQkSicRgObj169cL3bp1E+RyudCjRw8hPj5eWLx4cZUl4wAIUVFRteYRBEHIysoSXnzxRcHJyUmQy+VCly5dhKioKEGj0TTJ90ZErYtEEOp55wMRERERkZnjnGQiIiIiokpYJBMRERERVcIimYiIiIioEhbJRERERESVsEgmIiIiIqqERTIRERERUSUskomIiIiIKmGRTERERERUCYtkIiIiIqJKWCQTEREREVXCIpmIiIiIqBIWyURERERElbBIJiIiIiKqhEUyEREREVEl/weBJe7PcnyBoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1)\n", + "ax.scatter(xs, ys, label=f\"sampled logical error rate at p={noise}\")\n", + "ax.plot([0, 25],\n", + " [np.exp(fit.intercept), np.exp(fit.intercept + fit.slope * 25)],\n", + " linestyle='--',\n", + " label='least squares line fit')\n", + "ax.set_ylim(1e-12, 1e-0)\n", + "ax.set_xlim(0, 25)\n", + "ax.semilogy()\n", + "ax.set_title(\"Projecting distance needed to survive a trillion rounds\")\n", + "ax.set_xlabel(\"Code Distance\")\n", + "ax.set_ylabel(\"Logical Error Rate per Round\")\n", + "ax.grid(which='major')\n", + "ax.grid(which='minor')\n", + "ax.legend()\n", + "fig.set_dpi(120) # Show it bigger" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F7fFfO-akgqF" + }, + "source": [ + "Based on this data, it looks like a distance 20 patch would be sufficient to survive a trillion rounds.\n", + "That's a surface code with around 800 physical qubits.\n", + "\n", + "Beware that this line fit is being extrapolated quite far. It would be wise to sample a few more code distances. Also, keep in mind that the footprint you just estimated is for a **specific realization of the surface code circuit**, using a **specific choice of circuit level noise**, and using **a specific kind of decoder**. Also, you only estimated the error of memory in one basis (Z); to be thorough you have to also check the X basis." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lYPJMxqyEQvy" + }, + "source": [ + "\n", + "# 11. Conclusion\n", + "\n", + "Congratulations for making it this far! Historically, estimating the threshold of a quantum error-correcting code under circuit noise would have taken weeks or months of work.\n", + "By leveraging open-source tools, you just did it in a single sitting.\n", + "Nicely done!\n", + "\n", + "\n", + "# 12. Additional resources\n", + "\n", + "## Getting help\n", + "\n", + "- You can ask questions about quantum circuits, Stim, error correction, and related topics on the [Quantum Computing Stack Exchange](https://quantumcomputing.stackexchange.com/).\n", + "Use the tag `stim`.\n", + "\n", + "## Stim reference material\n", + "\n", + "- [Stim Python API Reference](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md)\n", + "- [Stim Supported Gates Reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md)\n", + "- [Stim Command Line Reference](https://github.com/quantumlib/Stim/blob/main/doc/usage_command_line.md)\n", + "- [Stim Circuit File Format (.stim)](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md)\n", + "- [Stim Detector Error model Format (.dem)](https://github.com/quantumlib/Stim/blob/main/doc/file_format_dem_detector_error_model.md)\n", + "- [Stim Results Format Reference](https://github.com/quantumlib/Stim/blob/main/doc/result_formats.md)\n", + "\n", + "## Talks and videos\n", + "\n", + "- [\"Software and the Honeycomb Code\"](https://www.youtube.com/watch?v=O3NaTGmY0Rw) by Craig Gidney at the weekly Duke/Pratt quantum computing seminar\n", + "- [\"Estimating overheads for quantum fault-tolerance in the honeycomb code\"](https://www.youtube.com/watch?v=ND9OoqJ0NMw) by Mike Newman at the [APS March Meeting 2022](https://web.archive.org/web/20240716155117/https://meetings.aps.org/Meeting/MAR22/Content/4178)\n", + "- [\"(Demo/Tutorial) Estimating the threshold of a new quantum code using Stim and PyMatching\"](https://www.youtube.com/watch?v=E9yj0o1LGII) by Craig Gidney\n", + "- [\"Relaxing Hardware Requirements for Surface Code Circuits using Time Dynamics\"](https://www.youtube.com/watch?v=FuP1exdZJkg) by Matt McEwen at [QEC 2023](https://web.archive.org/web/20241013042627/https://quantum.sydney.edu.au/qec23)\n", + "\n", + "## Papers with Stim circuits\n", + "\n", + "- A list of papers known to have included downloadable Stim circuits is available from the [doc/circuit_data_references.md](circuit_data_references.md) file in the [Stim repository on GitHub](https://github.com/quantumlib/stim).\n", + "\n", + "## Learning Python\n", + "\n", + "- [Google's Python class](https://developers.google.com/edu/python)\n", + "- [Google's Crash Course on Python](https://www.coursera.org/learn/python-crash-course) at Coursera\n", + "- University of Michigan's [Python for Everybody](https://www.coursera.org/specializations/python) at Coursera\n", + "- Python.org's [Python Tutorial](https://docs.python.org/3/tutorial/)\n", + "\n", + "## Learning quantum computing\n", + "\n", + "- [Building Google's quantum computer]() by Marissa Giustina (2018)\n", + "- MIT's [Quantum Information Science I](https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.1x+1T2018/about)\n", + "- John Preskill's [Ph/CS 219A Quantum Computation](https://www.youtube.com/playlist?list=PL0ojjrEqIyPy-1RRD8cTD_lF1hflo89Iu) on YouTube\n", + "- Quantum AI's YouTube content:\n", + " - [Quantum Programming with Cirq](https://www.youtube.com/playlist?list=PLpO2pyKisOjLVt_tDJ2K6ZTapZtHXPLB4)\n", + " - [QuantumCasts](https://www.youtube.com/playlist?list=PLQY2H8rRoyvwcpm6Nf-fL4sIYQUXtq3HR)\n", + "\n", + "## Learning quantum error correction\n", + "\n", + "- Quantum AI's [quantum computing journey](https://quantumai.google/learn/map)\n", + "- Coursera course [Hands-on quantum error correction with Google Quantum AI](https://www.coursera.org/learn/quantum-error-correction) by Austin Fowler" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.scatter(xs, ys, label=f\"sampled logical error rate at p={noise}\")\n", - "ax.plot([0, 25],\n", - " [np.exp(fit.intercept), np.exp(fit.intercept + fit.slope * 25)],\n", - " linestyle='--',\n", - " label='least squares line fit')\n", - "ax.set_ylim(1e-12, 1e-0)\n", - "ax.set_xlim(0, 25)\n", - "ax.semilogy()\n", - "ax.set_title(\"Projecting distance needed to survive a trillion rounds\")\n", - "ax.set_xlabel(\"Code Distance\")\n", - "ax.set_ylabel(\"Logical Error Rate per Round\")\n", - "ax.grid(which='major')\n", - "ax.grid(which='minor')\n", - "ax.legend()\n", - "fig.set_dpi(120) # Show it bigger" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "F7fFfO-akgqF" - }, - "source": [ - "Based on this data, it looks like a distance 20 patch would be sufficient to survive a trillion rounds.\n", - "That's a surface code with around 800 physical qubits.\n", - "\n", - "Beware that this line fit is being extrapolated quite far. It would be wise to sample a few more code distances. Also, keep in mind that the footprint you just estimated is for a **specific realization of the surface code circuit**, using a **specific choice of circuit level noise**, and using **a specific kind of decoder**. Also, you only estimated the error of memory in one basis (Z); to be thorough you have to also check the X basis." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lYPJMxqyEQvy" - }, - "source": [ - "# End of Tutorial\n", - "\n", - "Congratulations for making it this far! Historically, estimating the threshold of a quantum error correcting code under circuit noise would have taken weeks or months of work.\n", - "By leveraging open source tools, you just did it in a single sitting.\n", - "Nicely done!\n", - "\n", - "\n", - "# Additional Resources\n", - "\n", - "### Q&A\n", - "\n", - "To get answers to your questions, ask them on [the quantum computing stack exchange](https://quantumcomputing.stackexchange.com/).\n", - "Use the tag `stim`.\n", - "\n", - "### Reference Material\n", - "\n", - "- [Stim Python API Reference](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md)\n", - "- [Stim Supported Gates Reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md)\n", - "- [Stim Command Line Reference](https://github.com/quantumlib/Stim/blob/main/doc/usage_command_line.md)\n", - "- [Stim Circuit File Format (.stim)](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md)\n", - "- [Stim Detector Error model Format (.dem)](https://github.com/quantumlib/Stim/blob/main/doc/file_format_dem_detector_error_model.md)\n", - "- [Stim Results Format Reference](https://github.com/quantumlib/Stim/blob/main/doc/result_formats.md)\n", - "\n", - "### Talks / Videos\n", - "\n", - "- [\"Software and the Honeycomb Code\" by Craig Gidney at the weekly Duke/Pratt quantum computing seminar](https://www.youtube.com/watch?v=O3NaTGmY0Rw)\n", - "- [\"Estimating overheads for quantum fault-tolerance in the honeycomb code\" by Mike Newman at March Meeting 2022](https://www.youtube.com/watch?v=ND9OoqJ0NMw)\n", - "- [\"(Demo/Tutorial) Estimating the threshold of a new quantum code using stim and pymatching\" by Craig Gidney](https://www.youtube.com/watch?v=E9yj0o1LGII)\n", - "- [\"Relaxing Hardware Requirements for Surface Code Circuits using Time Dynamics\" by Matt McEwen at QEC 2023](https://www.youtube.com/watch?v=FuP1exdZJkg)\n", - "\n", - "### Papers with Circuits\n", - "\n", - "A list of papers known to have included downloadable stim circuits is available from the [doc/circuit_data_references.md](circuit_data_references.md) file in the stim repository." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [], - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.0" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From e54904a7d773bbc8ea0e9f67358ccf3f96d80ab5 Mon Sep 17 00:00:00 2001 From: mhucka Date: Mon, 16 Dec 2024 10:58:13 -0800 Subject: [PATCH 2/3] Fix broken link --- doc/getting_started.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/getting_started.ipynb b/doc/getting_started.ipynb index 6c423f93..4bd015a6 100644 --- a/doc/getting_started.ipynb +++ b/doc/getting_started.ipynb @@ -17,7 +17,7 @@ "source": [ "# Table of contents\n", "\n", - "0. [Prerequisites]((#prerequisites)\n", + "0. [Prerequisites](#prerequisites)\n", "1. [What is Stim?](#what-is-stim)\n", "2. [Copy and use this Jupyter/Colab notebook](#using-this-notebook)\n", "3. [Install the `stim` Python package](#install-stim)\n", From 4aceb88b6bb5775295ebd9e3e1377edee81b4591 Mon Sep 17 00:00:00 2001 From: Michael Hucka Date: Mon, 16 Dec 2024 16:57:32 -0800 Subject: [PATCH 3/3] Fix typos, add more links and resources This fixes some more typos and other minor problems, as well as links many more Stim and Sinter references to the API docs, and finally, adds some more links to resources such as Mike & Ike's book. --- doc/getting_started.ipynb | 102 ++++++++++++++++++++++---------------- 1 file changed, 58 insertions(+), 44 deletions(-) diff --git a/doc/getting_started.ipynb b/doc/getting_started.ipynb index 4bd015a6..1e8d625e 100644 --- a/doc/getting_started.ipynb +++ b/doc/getting_started.ipynb @@ -45,7 +45,7 @@ "\n", "- Familiarity with basic Python syntax, and having a working Python 3.7+ environment. (Perhaps you are reading this notebook in such an environment.)\n", "\n", - "- Familiarity with the basic concepts of *quantum circuits*, such as qubits and common quantum gates like Hadamard and CNOT.\n", + "- Familiarity with the basic concepts of *quantum circuits*, such as qubits and common quantum gates like [Hadamard](https://en.wikipedia.org/wiki/Quantum_logic_gate#Hadamard_gate) and [CNOT](https://en.wikipedia.org/wiki/Quantum_logic_gate#Controlled_gates).\n", "\n", "- A basic understanding of stabilizer circuits. For example, this tutorial assumes you've heard that they can be simulated cheaply and that they can represent protocols such as quantum error correction.\n", "\n", @@ -87,7 +87,7 @@ "\n", "The first thing to do is to install and import Stim.\n", "Thanks to the Python ecosystem, this is easy to do!\n", - "Stim is available as a [PyPI](https://pypi.org/project/stim/) package, and can be installed using `pip install stim` and then imported with `import stim` (just like any other python package)." + "Stim is available as a [PyPI](https://pypi.org/project/stim/) package, and can be installed using `pip install stim` and then imported with `import stim` (just like any other Python package)." ] }, { @@ -133,9 +133,9 @@ "\n", "# 3. Create a simple circuit, and sample from it\n", "\n", - "In Stim, circuits are instances of the `stim.Circuit` class. You create a new empty circuit with `stim.Circuit()`, and add operations to it by calling `circuit.append(name_of_gate, list_of_targets)`.\n", + "In Stim, circuits are instances of the [`stim.Circuit`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit) class. You create a new empty circuit with `stim.Circuit()`, and add operations to it by calling `circuit.append(name_of_gate, list_of_targets)`.\n", "\n", - "You can find the name of the gate you want from the [Stim gates reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md). Most of them are straightforward, like \"H\" for the Hadamard gate. Targets are just a number indicating a qubit. There's a qubit `0`, a qubit `1`, etc.\n", + "You can find the name of the gate you want from the [Stim gates reference](https://github.com/quantumlib/Stim/blob/main/doc/gates.md). Most of the names are straightforward, like \"H\" for the Hadamard gate. A *target* is just a number representing the identity of a qubit. There's a qubit `0`, a qubit `1`, etc.\n", "\n", "The first circuit you'll make is a circuit that prepares a [Bell pair](https://en.wikipedia.org/wiki/Bell_state) and then measures it:" ] @@ -164,7 +164,7 @@ "id": "ySG_dqfQ-qOQ" }, "source": [ - "Stim has a few ways to look at the circuits you've made. The circuit's `repr` is an expression that recreates the circuit using [Stim's circuit file syntax](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md):" + "Stim has a few ways to let you look at the circuits you've made. The circuit's `repr` is an expression that recreates the circuit using [Stim's circuit file syntax](https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md):" ] }, { @@ -203,7 +203,7 @@ "id": "D-RpRUTw-qOQ" }, "source": [ - "You can also use the `circuit.diagram` method to get an annotated text diagram of the circuit:" + "You can also use the [`circuit.diagram`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.diagram) method to get an annotated text diagram of the circuit:" ] }, { @@ -245,7 +245,7 @@ "id": "XKnYuBEB-qOQ" }, "source": [ - "There are also other types of diagrams. For example, specifying `timeline-svg` will return a Scalable Vector Graphics picture of the circuit instead of a text diagram:" + "There are also other types of diagrams. For example, specifying `timeline-svg` will return a Scalable Vector Graphics ([SVG](https://en.wikipedia.org/wiki/SVG)) picture of the circuit instead of a text diagram:" ] }, { @@ -321,7 +321,7 @@ "id": "5dRl_-WZHDP2" }, "source": [ - "Anyways, let's stop looking at your circuit and start using it. You can sample from the circuit by using the `circuit.compile_sampler()` method to get a sampler object, and then calling `sample` on that object.\n", + "Anyways, let's stop looking at your circuit and start using it. You can sample from the circuit by using the [`circuit.compile_sampler()`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.compile_sampler) method to get a sampler object, and then calling `sample` on that object.\n", "\n", "Try taking 10 shots from the circuit:" ] @@ -384,7 +384,7 @@ "For example, in the circuit you created above, the two measurement results should always be equal.\n", "You can tell Stim you care about that by adding a `DETECTOR` annotation to the circuit.\n", "\n", - "The `DETECTOR` annotation will take two targets: the two measurements whose parity you are asserting should be consistent from run to run. You point at the measurements by using the `stim.target_rec` method (short for \"target measurement record\"). The most recent measurement is `stim.target_rec(-1)` (also known as `rec[-1]` in stim's circuit language), and the second most recent measurement is `stim.target_rec(-2)`:" + "The `DETECTOR` annotation will take two targets: the two measurements whose parity you are asserting should be consistent from run to run. You point at the measurements by using the [`stim.target_rec`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.target_rec) method (short for \"target measurement record\"). The most recent measurement is `stim.target_rec(-1)` (also known as `rec[-1]` in Stim's circuit language), and the second most recent measurement is `stim.target_rec(-2)`:" ] }, { @@ -427,8 +427,8 @@ "A detector doesn't say whether the parity should be even or should be odd, only that it should always be the same.\n", "You annotate that a pair of measurements is always different in the same way that you annotate that a pair of measurements is always the same; it's the *consistency* that's key.\n", "\n", - "Anyways, now that you've annotated the circuit with a detector, you can sample from the circuit's detectors instead of sampling from its measurements.\n", - "You do that by creating a detector sampler, using the `compile_detector_sampler` method, and then calling `sample` on it." + "Moving on, now that you've annotated the circuit with a detector, you can sample from the circuit's detectors instead of sampling from its measurements.\n", + "You do that by creating a detector sampler, using the [`compile_detector_sampler`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.compile_detector_sampler) method, and then calling [`sample`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.CompiledDetectorSampler.sample) on it." ] }, { @@ -469,7 +469,7 @@ "There's one entry per row, because you put one detector in the circuit.\n", "\n", "Notice how the results are always `False`.\n", - "The detector is never producing a detection event.\n", + "This means the detector is never producing a detection event.\n", "That's because there's no noise in the circuit; nothing to disturb the peace and quiet of a perfectly working machine.\n", "Well... time to fix that!\n", "\n", @@ -707,9 +707,9 @@ "Well... a classical error-correcting circuit:\n", "the *repetition* code.\n", "\n", - "You could generate a repetition code circuit for yourself, but for the purposes of this tutorial it's easiest to use the example one included with Stim.\n", - "You can do this by calling `stim.Circuit.generated` with an argument of `\"repetition_code:memory\"`.\n", - "(You can find other valid arguments in the method's doc string, or just by passing in a bad one and looking at the exception message that comes out.)\n", + "You could generate a repetition code circuit for yourself, but for the purposes of this tutorial it's easiest to use the example included with Stim.\n", + "You can do this by calling [`stim.Circuit.generated`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.generated) with an argument of `\"repetition_code:memory\"`.\n", + "(You can find out about other valid arguments in the method's doc string, or just by passing in a bad one and looking at the exception message that comes out.)\n", "\n", "Stim takes a few different parameters when generating circuits.\n", "You have to decide how many times the stabilizers of the code are measured by specifying `rounds`, you have to decide on the size of the code by specifying `distance`, and you can specify what kind of noise to include using a few optional parameters.\n", @@ -1998,7 +1998,7 @@ "Stim has a key feature that makes it easier to use a decoder: converting a circuit into a detector error model.\n", "A detector error model is just a list of all the independent error mechanisms in a circuit, as well as their symptoms (which detectors they set off) and frame changes (which logical observables they flip).\n", "\n", - "You can get the detector error mode for a circuit by calling `circuit.detector_error_model()`:" + "You can get the detector error mode for a circuit by calling [`circuit.detector_error_model()`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.detector_error_model):" ] }, { @@ -2123,13 +2123,22 @@ "print(repr(dem))" ] }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "QgqQ90GlBcB_" + }, + "execution_count": null, + "outputs": [] + }, { "cell_type": "markdown", "metadata": { "id": "2NpcBtBM-qOS" }, "source": [ - "You can view the detector error model as a graph by using the `matchgraph-svg` diagram. Note that this diagram looking good is relying heavily on the circuit specifying coordinate data for its detectors. Fortunately, the circuit you generated includes good coordinate data:" + "You can view the detector error model as a graph by using the `matchgraph-svg` diagram. Note that this diagram looking good relies heavily on the circuit specifying coordinate data for its detectors. Fortunately, the circuit you generated includes good coordinate data:" ] }, { @@ -2586,15 +2595,15 @@ "id": "fLY3a5w9PT1L" }, "source": [ - "In the above diagram, each node is a detector and each edge is an error mechanism. The matcher is going to decode errors by trying to match each excited node to another nearby excited node, or to the side boundaries, which minimizing the number of edges that were used.\n", + "In the diagram above, each node is a detector and each edge is an error mechanism. The matcher is going to decode errors by trying to match each excited node to another nearby excited node, or to the side boundaries, which minimizes the number of edges that were used.\n", "\n", - "The detector error model format is easier for decoders to consume than a raw circuit, because everything is explained in terms of observable symptoms and hidden symptoms, which is how decoders usually conceptualize of the problem space.\n", - "For example, some decoders can be configured using a weighted graph, and `stim.DetectorErrorModel` is effectively just a weighted graph.\n", - "It might be a pain to write the glue code that converts the `stim.DetectorErrorModel` into exactly the right kind of graph expected by the decoder, but it's much easier than starting from the circuit or generating the graph from scratch and you only have to write that code once instead of once per circuit.\n", + "The detector error model format is easier for decoders to consume than a raw circuit, because everything is explained in terms of observable symptoms and hidden symptoms, which is how decoders usually conceptualize the problem space.\n", + "For example, some decoders can be configured using a weighted graph, and [`stim.DetectorErrorModel`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.DetectorErrorModel) is effectively just a weighted graph.\n", + "It might be a pain to write the glue code that converts the [`stim.DetectorErrorModel`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.DetectorErrorModel) into exactly the right kind of graph expected by the decoder, but it's much easier than starting from the circuit or generating the graph from scratch – and you only have to write that code once instead of once per circuit.\n", "\n", - "For this tutorial you'll use existing packages instead of writing your own glue code.\n", - "Specifically, you'll use [`pymatching`](https://github.com/oscarhiggott/PyMatching) as your decoder.\n", - "PyMatching is an open-source minimum weight perfect matching decoder written by Oscar Higgott.\n", + "For this tutorial, you'll use existing packages instead of writing your own glue code.\n", + "Specifically, you'll use the open-source package [PyMatching](https://github.com/oscarhiggott/PyMatching) as your decoder.\n", + "PyMatching is a minimum-weight perfect matching decoder written by Oscar Higgott.\n", "You can install it using `pip install pymatching`:" ] }, @@ -2626,18 +2635,18 @@ "id": "ewrxiwXMQ-Yz" }, "source": [ - "Now you're going to write a method for sampling a circuit using stim, then decoding it using pymatching, and counting how often it gets the answer right.\n", + "Now you're going to write a method that will sample a circuit using Stim, decode it using PyMatching, and count how often it gets the right answer.\n", "\n", "First, you sample detection events and observable flips from the circuit.\n", - "You do this by creating a sampler with `circuit.compile_detector_sampler()` and then calling `sampler.sample(shots, separate_observables=True)`.\n", + "You do this by creating a sampler with [`circuit.compile_detector_sampler()`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.compile_detector_sampler) and then calling [`sampler.sample(shots, separate_observables=True)`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.CompiledDetectorSampler.sample).\n", "The `separate_observables=True` argument is saying that you want the result of the method to be a tuple where the first entry is detection event data to give to the decoder and the second entry is the observable flip data the decoder is supposed to predict.\n", "\n", - "Second, you extract decoder information by using `stim.Circuit.detector_error_model(...)` and create a decoder from this information using `pymatching.Matching.from_detector_error_model`.\n", + "Second, you extract decoder information by using [`stim.Circuit.detector_error_model(...)`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.detector_error_model) and create a decoder from this information using [`pymatching.Matching.from_detector_error_model`](https://pymatching.readthedocs.io/en/latest/api.html#pymatching.matching.Matching.from_detector_error_model).\n", "\n", "Third, you run `matching.predict` to get the predicted observable flips.\n", "\n", - "Fourth, you compare the predictions made by pymatching to the actual observable flip data that was sampled.\n", - "Anytime the prediction differs, that's a logical error." + "Fourth, you compare the predictions made by PyMatching to the actual observable flip data that was sampled.\n", + "Anytime the prediction differs, it indicates a logical error." ] }, { @@ -2825,7 +2834,7 @@ "id": "J5TZ-AlJVGmk" }, "source": [ - "From the results here you can see that the repetition code has amazingly good performance! Well... it's not *quite* so amazing when you remember that you're using a phenomenological noise model (instead of a circuit level noise model) and also that you're inserting depolarizing errors instead of bit flip errors (the repetition code is immune to Z errors, and when a depolarizing error occurs it's a Z error one third of the time).\n", + "From the results here you can see that the repetition code has amazingly good performance! Well... it's not *quite* so amazing when you remember that you're using a phenomenological noise model (instead of a circuit-level noise model) and also that you're inserting depolarizing errors instead of bit-flip errors (the repetition code is immune to Z errors, and when a depolarizing error occurs it's a Z error one third of the time).\n", "\n", "Still, you can see that it's not so hard to run a few different cases and plot them out. A bit tedious, maybe." ] @@ -2841,7 +2850,7 @@ "\n", "Now that you understand the basic workflow of sampling from a circuit, making a decoder predict the observable flips, and plotting out the result, you probably never want to do that by hand ever again. And that's without even getting into dividing work into batches, or across multiple CPU cores!\n", "\n", - "Fortunately, you can use `sinter` to do almost the entire thing for you. Install sinter using `pip install sinter`:" + "Fortunately, you can use [Sinter](https://pypi.org/project/sinter/) to do almost the entire thing for you. Install Sinter using `pip install sinter`:" ] }, { @@ -2873,9 +2882,9 @@ "id": "dxTADjNX-qOW" }, "source": [ - "Wrap your circuits into `sinter.Task` instances, and give those tasks to `sinter.collect`.\n", + "Wrap your circuits into [`sinter.Task`](https://github.com/quantumlib/Stim/blob/main/doc/sinter_api.md#sinter.Task) instances, and give those tasks to [`sinter.collect`](https://github.com/quantumlib/Stim/blob/main/doc/sinter_api.md#sinter.collect).\n", "Sinter will spin up multiple worker processes to sample from and decode these circuits.\n", - "`sinter.collect` takes a variety of useful options, such as the maximum number of shots or errors to take from each task, as well as the number of workers to use:" + "[`sinter.collect`](https://github.com/quantumlib/Stim/blob/main/doc/sinter_api.md#sinter.collect) takes a variety of useful options, such as the maximum number of shots or errors to take from each task, as well as the number of workers to use:" ] }, { @@ -2915,7 +2924,7 @@ "id": "mVDInHcUbAc0" }, "source": [ - "Sinter also has a `sinter.plot_error_rate` method which can be used to plot the logical error rates. This method automatically adds highlighted regions quantifying uncertainty in the estimates." + "Sinter also has a [`sinter.plot_error_rate`](https://github.com/quantumlib/Stim/blob/main/doc/sinter_api.md#sinter.plot_error_rate) method which can be used to plot the logical error rates. This method automatically adds highlighted regions quantifying uncertainty in the estimates." ] }, { @@ -2982,12 +2991,12 @@ "Estimating the threshold of a repetition code under phenomenelogical noise is one thing.\n", "Estimating the threshold of a true quantum code, such as a surface code, under circuit noise, is...\n", "well, historically, it would be a whole other thing.\n", - "But when using stim, and pymatching, and sinter, the workflow is exactly identical.\n", + "But when using Stim, and PyMatching, and Sinter, the workflow is exactly identical.\n", "The only thing that changes are the circuits input into the process.\n", "\n", "The hard part is making the circuits in the first place.\n", "So, for this tutorial, you'll continue to lean on Stim's example circuits.\n", - "You can make simple surface code circuits using `stim.Circuit.generated`." + "You can make simple surface code circuits using [`stim.Circuit.generated`](https://github.com/quantumlib/Stim/blob/main/doc/python_api_reference_vDev.md#stim.Circuit.generated)." ] }, { @@ -3014,7 +3023,7 @@ "id": "huyjsuMBfSP9" }, "source": [ - "Surface code circuits have a much more complex structure than repetition codes, because they are laid out in a 2d grid instead of a 1d line. A time slice diagram of the circuit without noise will be much clearer than a timeline diagram:" + "Surface code circuits have a much more complex structure than repetition codes, because they are laid out in a 2-D grid instead of a 1-D line. A time slice diagram of the circuit without noise will be much clearer than a timeline diagram:" ] }, { @@ -7903,7 +7912,7 @@ "id": "fPOBAR4T-qOW" }, "source": [ - "You can also make 3d diagrams of the circuit, using `timeline-3d`." + "You can also make 3-D diagrams of the circuit, using `timeline-3d`." ] }, { @@ -8087,8 +8096,8 @@ }, "source": [ "Yet another useful type of diagram, for understanding the structure of this circuit, is a \"detector slice diagram\".\n", - "A detslice diagram shows how the stabilizers checked by the circuit's detectors are changing over time.\n", - "If you look carefully you can see the stabilizers establspot that, halfway through the measurement cycle of the surface code, its state is actually temporarily an even larger surface code!\n", + "A detslice diagram shows how the stabilizers checked by the circuit's detectors change over time.\n", + "If you look carefully, you can see that, halfway through the measurement cycle of the surface code, its state is actually temporarily an even larger surface code!\n", "You can also see the stabilizers establish themselves at the beginning of the circuit, and drain away at the end." ] }, @@ -18708,7 +18717,7 @@ "id": "pWcO6j68-qOW" }, "source": [ - "There is also the diagram type `detslice-with-ops-svg`, which is a overlays the time slice and detslice diagrams. For example, `detslice-with-ops-svg` shows how the first round gradually projects the system into the surface code state." + "There is also the diagram type `detslice-with-ops-svg`, which overlays the time slice and detslice diagrams. For example, `detslice-with-ops-svg` shows how the first round gradually projects the system into the surface code state." ] }, { @@ -20642,7 +20651,7 @@ "source": [ "Okay, enough looking at the circuits, time to collect.\n", "\n", - "Collecting data using `sinter.collect` will take a bit longer this time.\n", + "Collecting data using [`sinter.collect`](https://github.com/quantumlib/Stim/blob/main/doc/sinter_api.md#sinter.collect) will take a bit longer this time.\n", "You can specify `print_progress=True` to get progress updates while the collection runs.\n", "Another useful argument (not used here) is `save_resume_filepath`, which allows you to cancel and restart collection without losing the work that was done." ] @@ -20800,7 +20809,7 @@ }, "source": [ "To a good first approximation, logical error rates decrease exponentially with code distance.\n", - "Use scipy's linear regression to get a line fit of code distance versus log error rate." + "Use [SciPy](https://scipy.org/)'s [linear regression facilities](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html) to get a line fit of code distance versus log error rate." ] }, { @@ -20903,7 +20912,7 @@ "Based on this data, it looks like a distance 20 patch would be sufficient to survive a trillion rounds.\n", "That's a surface code with around 800 physical qubits.\n", "\n", - "Beware that this line fit is being extrapolated quite far. It would be wise to sample a few more code distances. Also, keep in mind that the footprint you just estimated is for a **specific realization of the surface code circuit**, using a **specific choice of circuit level noise**, and using **a specific kind of decoder**. Also, you only estimated the error of memory in one basis (Z); to be thorough you have to also check the X basis." + "Beware that this line fit is being extrapolated quite far. It would be wise to sample a few more code distances. Also, keep in mind that the footprint you just estimated is for a **specific realization of the surface code circuit**, using a **specific choice of circuit-level noise**, and using **a specific kind of decoder**. Also, you only estimated the error of memory in one basis (Z); to be thorough you have to also check the X basis." ] }, { @@ -20956,12 +20965,17 @@ "\n", "## Learning quantum computing\n", "\n", + "\n", + "- [Quantum computing for the very curious](https://quantum.country/qcvc) by Andy Matuschak and Michael Nielsen\n", "- [Building Google's quantum computer]() by Marissa Giustina (2018)\n", "- MIT's [Quantum Information Science I](https://openlearninglibrary.mit.edu/courses/course-v1:MITx+8.370.1x+1T2018/about)\n", "- John Preskill's [Ph/CS 219A Quantum Computation](https://www.youtube.com/playlist?list=PL0ojjrEqIyPy-1RRD8cTD_lF1hflo89Iu) on YouTube\n", "- Quantum AI's YouTube content:\n", " - [Quantum Programming with Cirq](https://www.youtube.com/playlist?list=PLpO2pyKisOjLVt_tDJ2K6ZTapZtHXPLB4)\n", " - [QuantumCasts](https://www.youtube.com/playlist?list=PLQY2H8rRoyvwcpm6Nf-fL4sIYQUXtq3HR)\n", + "- [Quantum computing for the determined](https://michaelnielsen.org/blog/quantum-computing-for-the-determined/) by Michael Nielsen\n", + "- Michael Nielsen and Isaac Chuang's [Quantum Computation And Quantum Information](https://archive.org/embed/QuantumComputationAndQuantumInformation10thAnniversaryEdition)\n", + "\n", "\n", "## Learning quantum error correction\n", "\n",