|
| 1 | +<!--Copyright 2025 The HuggingFace Team. All rights reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
| 4 | +the License. You may obtain a copy of the License at |
| 5 | +
|
| 6 | +http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +
|
| 8 | +Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
| 9 | +an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
| 10 | +specific language governing permissions and limitations under the License. |
| 11 | +--> |
| 12 | + |
| 13 | +<div style="float: right;"> |
| 14 | + <div class="flex flex-wrap space-x-1"> |
| 15 | + <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white"> |
| 16 | + <img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo="> |
| 17 | + <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat"> |
| 18 | + <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> |
| 19 | + </div> |
| 20 | +</div> |
| 21 | + |
| 22 | + |
| 23 | +# DINOv3 |
| 24 | + |
| 25 | +<TODO: DESCRIPTION> |
| 26 | + |
| 27 | +You can find all the original DINOv3 checkpoints under the [DINOv3](https://huggingface.co/collections/facebook/dinov2-6526c98554b3d2576e071ce3) collection. |
| 28 | + |
| 29 | +> [!TIP] |
| 30 | +> Click on the DINOv3 models in the right sidebar for more examples of how to apply DINOv3 to different vision tasks. |
| 31 | +
|
| 32 | +The example below demonstrates how to obtain an image embedding with [`Pipeline`] or the [`AutoModel`] class. |
| 33 | + |
| 34 | +<hfoptions id="usage"> |
| 35 | +<hfoption id="Pipeline"> |
| 36 | + |
| 37 | +```py |
| 38 | +import torch |
| 39 | +from transformers import pipeline |
| 40 | + |
| 41 | +pipe = pipeline( |
| 42 | + task="image-feature-extraction", |
| 43 | + model="facebook/dinov3-vits16-pretrain-lvd1689m", |
| 44 | + torch_dtype=torch.float16, |
| 45 | + device=0 |
| 46 | +) |
| 47 | + |
| 48 | +pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg") |
| 49 | +``` |
| 50 | + |
| 51 | +</hfoption> |
| 52 | +<hfoption id="AutoModel"> |
| 53 | + |
| 54 | +```py |
| 55 | +import torch |
| 56 | +from transformers import AutoImageProcessor, AutoModel |
| 57 | +from transformers.image_utils import load_image |
| 58 | + |
| 59 | +url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
| 60 | +image = load_image(url) |
| 61 | + |
| 62 | +processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m") |
| 63 | +model = AutoModel.from_pretrained( |
| 64 | + "facebook/dinov3-vits16-pretrain-lvd1689m", |
| 65 | + torch_dtype=torch.float16, |
| 66 | + device_map="auto", |
| 67 | + attn_implementation="sdpa" |
| 68 | +) |
| 69 | + |
| 70 | +inputs = processor(images=image, return_tensors="pt").to(model.device) |
| 71 | +with torch.inference_mode(): |
| 72 | + outputs = model(**inputs) |
| 73 | + |
| 74 | +pooled_output = outputs.pooler_output |
| 75 | +print("Pooled output shape:", pooled_output.shape) |
| 76 | +``` |
| 77 | + |
| 78 | +</hfoption> |
| 79 | +</hfoptions> |
| 80 | + |
| 81 | +Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. |
| 82 | + |
| 83 | +The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4. |
| 84 | + |
| 85 | +```py |
| 86 | +# pip install torchao |
| 87 | +from transformers import TorchAoConfig, AutoImageProcessor, AutoModel |
| 88 | +from torchao.quantization import Int4WeightOnlyConfig |
| 89 | +from transformers.image_utils import load_image |
| 90 | + |
| 91 | + |
| 92 | +url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
| 93 | +image = load_image(url) |
| 94 | + |
| 95 | +processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m") |
| 96 | + |
| 97 | +quant_config = Int4WeightOnlyConfig(group_size=128) |
| 98 | +quantization_config = TorchAoConfig(quant_type=quant_config) |
| 99 | + |
| 100 | +model = AutoModelForImageClassification.from_pretrained( |
| 101 | + "facebook/dinov3-vits16-pretrain-lvd1689m", |
| 102 | + torch_dtype=torch.bfloat16, |
| 103 | + device_map="auto", |
| 104 | + quantization_config=quantization_config |
| 105 | +) |
| 106 | + |
| 107 | +inputs = processor(images=image, return_tensors="pt") |
| 108 | +with torch.inference_mode(): |
| 109 | + outputs = model(**inputs) |
| 110 | + |
| 111 | +pooled_output = outputs.pooler_output |
| 112 | +print("Pooled output shape:", pooled_output.shape) |
| 113 | +``` |
| 114 | + |
| 115 | +## Notes |
| 116 | + |
| 117 | +- The example below shows how to split the output tensor into: |
| 118 | + - one embedding for the whole image, commonly referred to as a `CLS` token, |
| 119 | + useful for classification and retrieval |
| 120 | + - register tokens - learnable embeddings that act as dedicated “memory slots” for global information, |
| 121 | + they reduce high-norm artifacts in patch tokens, yielding cleaner attention maps and better |
| 122 | + performance on dense prediction tasks. |
| 123 | + - a set of local embeddings, one for each `16x16` patch of the input image, |
| 124 | + useful for dense tasks, such as semantic segmentation |
| 125 | + |
| 126 | + ```py |
| 127 | + import torch |
| 128 | + from transformers import AutoImageProcessor, AutoModel |
| 129 | + from transformers.image_utils import load_image |
| 130 | + |
| 131 | + url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
| 132 | + image = load_image(url) |
| 133 | + print("Image size:", image.height, image.width) # [480, 640] |
| 134 | + |
| 135 | + processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m") |
| 136 | + model = AutoModel.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m") |
| 137 | + patch_size = model.config.patch_size |
| 138 | + print("Patch size:", patch_size) # 16 |
| 139 | + print("Num register tokens:", model.config.num_register_tokens) # 4 |
| 140 | + |
| 141 | + inputs = processor(images=image, return_tensors="pt") |
| 142 | + print("Preprocessed image size:", inputs.pixel_values.shape) # [1, 3, 224, 224] |
| 143 | + |
| 144 | + batch_size, _, img_height, img_width = inputs.pixel_values.shape |
| 145 | + num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size |
| 146 | + num_patches_flat = num_patches_height * num_patches_width |
| 147 | + |
| 148 | + with torch.inference_mode(): |
| 149 | + outputs = model(**inputs) |
| 150 | + |
| 151 | + last_hidden_states = outputs.last_hidden_state |
| 152 | + print(last_hidden_states.shape) # [1, 1 + 4 + 256, 384] |
| 153 | + assert last_hidden_states.shape == (batch_size, 1 + model.config.num_register_tokens + num_patches_flat, model.config.hidden_size) |
| 154 | + |
| 155 | + cls_token = last_hidden_states[:, 0, :] |
| 156 | + patch_features_flat = last_hidden_states[:, 1 + model.config.num_register_tokens:, :] |
| 157 | + patch_features = patch_features_flat.unflatten(1, (num_patches_height, num_patches_width)) |
| 158 | + ``` |
| 159 | + |
| 160 | +## DINOv3ViTConfig |
| 161 | + |
| 162 | +[[autodoc]] DINOv3ViTConfig |
| 163 | + |
| 164 | +## DINOv3ConvNeXtConfig |
| 165 | + |
| 166 | +[[autodoc]] DINOv3ConvNextConfig |
| 167 | + |
| 168 | +## DINOv3ViTModel |
| 169 | + |
| 170 | +[[autodoc]] DINOv3ViTModel |
| 171 | + - forward |
| 172 | + |
| 173 | +## DINOv3ConvNextModel |
| 174 | + |
| 175 | +[[autodoc]] DINOv3ConvNextModel |
| 176 | + - forward |
| 177 | + |
| 178 | +## DINOv3ViTImageProcessorFast |
| 179 | + |
| 180 | +[[autodoc]] DINOv3ViTImageProcessorFast |
| 181 | + - preprocess |
0 commit comments