-
Notifications
You must be signed in to change notification settings - Fork 0
/
nohup.out
356 lines (325 loc) · 10.5 KB
/
nohup.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
training model for yanshao, tiedemann & nivre...
~/repos/yanshao_tagger ~/repos/chinese_orca
Encoding: utf-8
Reading data......
Reading embeddings...
Using Radical dictionary...
Traceback (most recent call last):
File "tagger.py", line 144, in <module>
train_gram = toolbox.get_gram_vec(path, train_file, gram2idx)
File "/home/rob/repos/yanshao_tagger/toolbox.py", line 735, in get_gram_vec
for line in codecs.open(real_path, 'r', encoding='utf-8'):
File "/usr/lib/python2.7/codecs.py", line 699, in next
return self.reader.next()
File "/usr/lib/python2.7/codecs.py", line 630, in next
line = self.readline()
File "/usr/lib/python2.7/codecs.py", line 532, in readline
if len(self.linebuffer) == 1:
KeyboardInterrupt
training model for yanshao, tiedemann & nivre...
~/repos/yanshao_tagger ~/repos/chinese_orca
WARNING:tensorflow:From /home/rob/repos/yanshao_tagger/layers.py:300: calling reduce_max (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
Encoding: utf-8
Reading data......
Reading embeddings...
Using Radical dictionary...
Longest sentence by character is 418.
Longest sentence by word is 242.
Longest word is 104.
Number of buckets: 39
Training set: 65467 instances; Dev set: 3614 instances.
Initialization....
Bucket 1, 0.568074 seconds
Bucket 2, 0.156680 seconds
Bucket 3, 0.167799 seconds
Bucket 4, 0.162262 seconds
Bucket 5, 0.156511 seconds
Bucket 6, 0.157020 seconds
Bucket 7, 0.156586 seconds
Bucket 8, 0.493624 seconds
Bucket 9, 0.157359 seconds
Bucket 10, 0.156574 seconds
Bucket 11, 0.157094 seconds
Bucket 12, 0.157078 seconds
Bucket 13, 0.158206 seconds
Bucket 14, 0.156789 seconds
Bucket 15, 0.160855 seconds
Bucket 16, 0.198380 seconds
Bucket 17, 0.199453 seconds
Bucket 18, 0.560053 seconds
Bucket 19, 0.157503 seconds
Bucket 20, 0.157713 seconds
Bucket 21, 0.157211 seconds
Bucket 22, 0.157598 seconds
Bucket 23, 0.157249 seconds
Bucket 24, 0.157532 seconds
Bucket 25, 0.157612 seconds
Bucket 26, 0.157350 seconds
Bucket 27, 0.156245 seconds
Bucket 28, 0.156788 seconds
Bucket 29, 0.157501 seconds
Bucket 30, 0.549750 seconds
Bucket 31, 0.164121 seconds
Bucket 32, 0.162001 seconds
Bucket 33, 0.162123 seconds
Bucket 34, 0.158675 seconds
Bucket 35, 0.156947 seconds
Bucket 36, 0.158199 seconds
Bucket 37, 0.157052 seconds
Bucket 38, 0.157740 seconds
Bucket 39, 0.168390 seconds
Training preparation...
Defining loss...
Traceback (most recent call last):
File "tagger.py", line 201, in <module>
clipping=args.clipping)
File "/home/rob/repos/yanshao_tagger/bucket_model.py", line 280, in config
batch_size=self.real_batches[i])
File "/home/rob/repos/yanshao_tagger/losses.py", line 105, in loss_wrapper
total_loss.append(loss_function(sy, sy_, stranstion, snums_tags, batch_size))
File "/home/rob/repos/yanshao_tagger/losses.py", line 93, in crf_loss
total_path_score, _, _ = Forward(tag_scores, transitions, nums_tags, lengths, batch_size)()
File "/home/rob/repos/yanshao_tagger/layers.py", line 321, in __call__
current = tf.reshape(self.observations[t,:, :, :], [-1, 1, self.nums_tags + 1])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 563, in _slice_helper
packed_begin, packed_end, packed_strides = (stack(begin), stack(end),
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 928, in stack
return ops.convert_to_tensor(values, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 946, in convert_to_tensor
as_ref=False)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1036, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 235, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 214, in constant
value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/tensor_util.py", line 492, in make_tensor_proto
tensor_shape=tensor_shape.as_shape(shape).as_proto())
KeyboardInterrupt
~/repos/chinese_orca
training model for yanshao, tiedemann & nivre...
~/repos/yanshao_tagger ~/repos/chinese_orca
WARNING:tensorflow:From /home/rob/repos/yanshao_tagger/layers.py:300: calling reduce_max (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
2018-03-26 15:05:31.144496: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA
Encoding: utf-8
Reading data......
Reading embeddings...
Using Radical dictionary...
Longest sentence by character is 418.
Longest sentence by word is 242.
Longest word is 104.
Number of buckets: 39
Training set: 65467 instances; Dev set: 3614 instances.
Initialization....
Bucket 1, 0.550416 seconds
Bucket 2, 0.168652 seconds
Bucket 3, 0.161346 seconds
Bucket 4, 0.160681 seconds
Bucket 5, 0.157532 seconds
Bucket 6, 0.162069 seconds
Bucket 7, 0.158297 seconds
Bucket 8, 0.502789 seconds
Bucket 9, 0.184769 seconds
Bucket 10, 0.170335 seconds
Bucket 11, 0.170497 seconds
Bucket 12, 0.170908 seconds
Bucket 13, 0.160382 seconds
Bucket 14, 0.156919 seconds
Bucket 15, 0.165783 seconds
Bucket 16, 0.160574 seconds
Bucket 17, 0.157988 seconds
Bucket 18, 0.539743 seconds
Bucket 19, 0.161247 seconds
Bucket 20, 0.157858 seconds
Bucket 21, 0.158109 seconds
Bucket 22, 0.157653 seconds
Bucket 23, 0.162453 seconds
Bucket 24, 0.159979 seconds
Bucket 25, 0.160345 seconds
Bucket 26, 0.159107 seconds
Bucket 27, 0.157024 seconds
Bucket 28, 0.163711 seconds
Bucket 29, 0.166551 seconds
Bucket 30, 0.566433 seconds
Bucket 31, 0.170970 seconds
Bucket 32, 0.161497 seconds
Bucket 33, 0.161153 seconds
Bucket 34, 0.160404 seconds
Bucket 35, 0.158395 seconds
Bucket 36, 0.157466 seconds
Bucket 37, 0.157951 seconds
Bucket 38, 0.158092 seconds
Bucket 39, 0.161362 seconds
Training preparation...
Defining loss...
Computing gradients...
Bucket 1, 1.392454 seconds
Bucket 2, 1.747467 seconds
Bucket 3, 2.167475 seconds
Bucket 4, 2.559225 seconds
Bucket 5, 2.957130 seconds
Bucket 6, 3.779853 seconds
Bucket 7, 6.464422 seconds
Bucket 8, 4.260952 seconds
Bucket 9, 4.711302 seconds
Bucket 10, 5.025151 seconds
Bucket 11, 5.500359 seconds
Bucket 12, 5.914242 seconds
Bucket 13, 6.332796 seconds
Bucket 14, 9.682850 seconds
Bucket 15, 7.098299 seconds
Bucket 16, 7.518259 seconds
Bucket 17, 7.948305 seconds
Bucket 18, 8.351705 seconds
Bucket 19, 8.862128 seconds
Bucket 20, 13.295040 seconds
Bucket 21, 9.842445 seconds
Bucket 22, 10.198705 seconds
Bucket 23, 10.793105 seconds
Bucket 24, 11.225740 seconds
Bucket 25, 11.591411 seconds
Bucket 26, 17.541041 seconds
Bucket 27, 12.941267 seconds
Bucket 28, 12.878641 seconds
Bucket 29, 13.260415 seconds
Bucket 30, 13.689006 seconds
Bucket 31, 14.604815 seconds
Bucket 32, 23.207380 seconds
Bucket 33, 15.517427 seconds
Bucket 34, 15.755663 seconds
Bucket 35, 16.178133 seconds
Bucket 36, 16.554654 seconds
Bucket 37, 17.493666 seconds
Bucket 38, 31.131514 seconds
Bucket 39, 20.406225 seconds
Done. Time consumed: 690 seconds
epoch: 1
Segmentation F1-score: 0.946775
POS Tagging F1-score: 0.890895
Time consumed: 3331 seconds
epoch: 2
Segmentation F1-score: 0.954062
POS Tagging F1-score: 0.903157
Time consumed: 2517 seconds
epoch: 3
Segmentation F1-score: 0.953157
POS Tagging F1-score: 0.903702
Time consumed: 2828 seconds
epoch: 4
Segmentation F1-score: 0.952779
POS Tagging F1-score: 0.902025
Time consumed: 2560 seconds
epoch: 5
Segmentation F1-score: 0.953005
POS Tagging F1-score: 0.901854
Time consumed: 2564 seconds
epoch: 6
Segmentation F1-score: 0.953154
POS Tagging F1-score: 0.902916
Time consumed: 2577 seconds
epoch: 7
Segmentation F1-score: 0.952056
POS Tagging F1-score: 0.900956
Time consumed: 2702 seconds
epoch: 8
Segmentation F1-score: 0.952503
POS Tagging F1-score: 0.900880
Time consumed: 2648 seconds
epoch: 9
Segmentation F1-score: 0.952822
POS Tagging F1-score: 0.901481
Time consumed: 2571 seconds
epoch: 10
Segmentation F1-score: 0.953109
POS Tagging F1-score: 0.901661
Time consumed: 2652 seconds
epoch: 11
Segmentation F1-score: 0.953096
POS Tagging F1-score: 0.902533
Time consumed: 2566 seconds
epoch: 12
Segmentation F1-score: 0.953250
POS Tagging F1-score: 0.902063
Time consumed: 2567 seconds
epoch: 13
Segmentation F1-score: 0.953606
POS Tagging F1-score: 0.901709
Time consumed: 2566 seconds
epoch: 14
Segmentation F1-score: 0.953180
POS Tagging F1-score: 0.902263
Time consumed: 2572 seconds
epoch: 15
Segmentation F1-score: 0.953232
POS Tagging F1-score: 0.902191
Time consumed: 2567 seconds
epoch: 16
Segmentation F1-score: 0.953600
POS Tagging F1-score: 0.902703
Time consumed: 2568 seconds
epoch: 17
Segmentation F1-score: 0.953683
POS Tagging F1-score: 0.902042
Time consumed: 2567 seconds
epoch: 18
Segmentation F1-score: 0.953847
POS Tagging F1-score: 0.902572
Time consumed: 2561 seconds
epoch: 19
Segmentation F1-score: 0.954067
POS Tagging F1-score: 0.902715
Time consumed: 2574 seconds
epoch: 20
Segmentation F1-score: 0.953508
POS Tagging F1-score: 0.902519
Time consumed: 2575 seconds
epoch: 21
Segmentation F1-score: 0.953929
POS Tagging F1-score: 0.902564
Time consumed: 2575 seconds
epoch: 22
Segmentation F1-score: 0.953955
POS Tagging F1-score: 0.902651
Time consumed: 2571 seconds
epoch: 23
Segmentation F1-score: 0.953802
POS Tagging F1-score: 0.902159
Time consumed: 2569 seconds
epoch: 24
Segmentation F1-score: 0.953588
POS Tagging F1-score: 0.902498
Time consumed: 2430 seconds
epoch: 25
Segmentation F1-score: 0.953646
POS Tagging F1-score: 0.902635
Time consumed: 2426 seconds
epoch: 26
Segmentation F1-score: 0.953572
POS Tagging F1-score: 0.902192
Time consumed: 2428 seconds
epoch: 27
Segmentation F1-score: 0.953659
POS Tagging F1-score: 0.902185
Time consumed: 2420 seconds
epoch: 28
Segmentation F1-score: 0.953399
POS Tagging F1-score: 0.901987
Time consumed: 2427 seconds
epoch: 29
Segmentation F1-score: 0.953807
POS Tagging F1-score: 0.902405
Time consumed: 2410 seconds
epoch: 30
Segmentation F1-score: 0.953448
POS Tagging F1-score: 0.902083
Time consumed: 2384 seconds
Training is finished!
Best segmentation F1-score: 0.954067
Best POS Tagging F1-score: 0.902715
Best epoch: 19
Done. Time consumed: 77286 seconds
~/repos/chinese_orca