diff --git a/chatlab/views/tools.py b/chatlab/views/tools.py index 348d75c..5f630ef 100644 --- a/chatlab/views/tools.py +++ b/chatlab/views/tools.py @@ -18,27 +18,6 @@ from instructor.dsl.partialjson import JSONParser -class ToolCalled(AutoUpdate): - """Once a tool has finished up, this is the view.""" - - id: str - name: str - arguments: str = "" - verbage: str = "Called" - result: str = "" - - def render(self): - return ChatFunctionComponent(name=self.name, verbage=self.verbage, input=self.arguments, output=self.result) - - # TODO: This is only here for legacy function calling - def get_function_called_message(self): - return function_result(self.name, self.result) - - def get_tool_called_message(self): - # NOTE: OpenAI has mismatched types where it doesn't include the `name` - # xref: https://github.com/openai/openai-python/issues/1078 - return tool_result(tool_call_id=self.id, content=self.result, name=self.name) - class ToolArguments(AutoUpdate): id: str @@ -130,11 +109,13 @@ def append_arguments(self, arguments: str): def apply_result(self, result: str): """Replaces the existing display with a new one that shows the result of the tool being called.""" - return ToolCalled( + tc = ToolCalled( id=self.id, name=self.name, arguments=self.arguments, result=result, display_id=self.display_id ) + tc.update() + return tc - async def call(self, function_registry: FunctionRegistry) -> ToolCalled: + async def call(self, function_registry: FunctionRegistry) -> 'ToolCalled': """Call the function and return a stack of messages for LLM and human consumption.""" function_name = self.name function_args = self.arguments @@ -188,3 +169,53 @@ async def call(self, function_registry: FunctionRegistry) -> ToolCalled: self.verbage = "Ran" return self.apply_result(repr_llm) + + +class ToolCalled(ToolArguments): + """Once a tool has finished up, this is the view.""" + + id: str + name: str + arguments: str = "" + verbage: str = "Called" + result: str = "" + + def render(self): + if self.custom_render is not None: + # We use the same definition as was in the original function + try: + parser = JSONParser() + possible_args = parser.parse(self.arguments) + + Model = extract_model_from_function(self.name, self.custom_render) + # model = Model.model_validate(possible_args) + model = Model(**possible_args) + + # Pluck the kwargs out from the crafted model, as we can't pass the pydantic model as the arguments + # However any "inner" models should retain their pydantic Model nature + kwargs = {k: getattr(model, k) for k in model.__dict__.keys()} + + except FunctionArgumentError: + return None + except ValidationError: + return None + + try: + return self.custom_render(**kwargs) + except Exception as e: + # Exception in userland code + # Would be preferable to bubble up, however + # it might be due to us passing a not-quite model + warnings.warn_explicit(f"Exception in userland code: {e}", UserWarning, "chatlab", 0) + raise + + return ChatFunctionComponent(name=self.name, verbage=self.verbage, input=self.arguments, output=self.result) + + # TODO: This is only here for legacy function calling + def get_function_called_message(self): + return function_result(self.name, self.result) + + def get_tool_called_message(self): + # NOTE: OpenAI has mismatched types where it doesn't include the `name` + # xref: https://github.com/openai/openai-python/issues/1078 + return tool_result(tool_call_id=self.id, content=self.result, name=self.name)