
CS 269Q Final Project: Inserted Tomography for Breakpoint
Debugging.

Michal Adamkiewicz, Jorge Cueto, Kent Vainio

June 6, 2019

1 Introduction
Our project implements an inserted tomography algorithm for breakpoint debugging, as outlined in the CS
269Q class document "Final Project Guidelines." In this report, we describe the design and implementation
of our inserted tomography algorithm, present the data and analysis methods we leveraged to test our
implementation, and discuss potential future extensions of our work. The code we developed during this
project can be found here:

https://github.com/kenzomenzo/tomography-debugger/

Please follow the README for instructions. We also submitted a pull request so that our code can
become part of the forest-benchmarking library. You can find the pull request here:

https://github.com/rigetti/forest-benchmarking/pull/137

2 Design and Implementation
Our project implements an inserted tomography algorithm for breakpoint debugging. We implement a new
tomographize function. The tomographize method takes in a program, a list of qubit indices to tomo-
graphize, the number of times to run each tomography experiment to get the expected value (num_shots),
the type of the tomography algorithm (e.g. "compressed_sensing" or "lasso"), and the number of pauli
matrices to use in the tomography (pauli_num). The method returns the corresponding density matrix.
The tomographize function works by generating an experiment that holds all 2n possible Pauli matrices
for the given number of qubits and sampling pauli num Pauli matrices without replacement.

In order for our tomographize function to be leveraged by quantum programmers using the Rigetti
Forest platform, we hope to push our function into the tomography.py file in the forest-benchmarking library.
In this way, developers can call the tomographize method at any given point in their program to determine
the state tomography of the program at that specific breakpoint.

The tomographize method returns the density matrix rho, which describes the state of the system
for the specified set of qubits at the specified breakpoint, based on the program that has been passed
in as a parameter. As Vandersypen and Chuang assert in their 2004 publication, "The density matrix
rho completely describes our knowledge of the state of a system. Measurement of the density matrix
is therefore extremely helpful when testing or claiming the preparation of specific quantum states" [1].
Taking into account the reality that different tomography algorithms work better in different scenarios, our
tomographize method allows the user to specify which tomography algorithm they want to use to produce
a density matrix. We allow the user to select from 3 distinct tomography algorithms, each of which have
their own pros and cons. The two distinct tomography algorithms we have implemented for this project are
the "Quantum State Tomography Via Compressed Sensing" algorithm using Pauli measurements for matrix
recovery, described in Gross et al.’s 2010 publication [2] and the "matrix Lasso selector" algorithm described
in Equation 3 of Flammia et al.’s 2012 publication [3]. The third algorithm is the linear inversion method

1

already present in the Forest benchmarking tomography.py file. Users can select the tomography algorithm
that best fits their needs, based on the composition of their program and the key metrics they want to
optimize for (e.g. efficiency of the algorithm vs. accuracy).

We implemented Gross et al.’s algorithm first because we found it to be the most simple tomography
algorithm to understand and implement. According to Gross et al., this approach is specialized for quantum
states that are fairly pure, and it offers a notable performance improvement on large quantum systems. This
algorithm, in other words, offers very efficient performance at the cost of being optimized more narrowly for
relatively pure states, so it may not be as accurate in determining the density matrix of states that are not
very pure. Gross et al.’s approach is able to reconstruct an unknown density matrix of dimension d and rank
r using O(rdlog2d) measurement settings, compared to standard methods that require d2 settings [2]. Their
method proceeds as follows:

Step 1: Measurement - Choose m integers at random in the range [1, d2], corresponding to a choice, Ai,
of one of the d2 Pauli matrices for a system with n qubits (where d = 2n). Then measure the expectation
value trρω(Ai).

Step 2: Optimization - One then solves the following convex optimization problem:

Minimize ||σ||tr subject to tr(σ) = 1 and trω(Ai)σ = trω(Ai)ρ.

Flammia et al.’s method was not a viable starting point because, while it is an efficient algorithm, it
only works for reconstructing low rank density matrices. As Flammia et al. state, their low rank methods
"do not attempt to reconstruct the complete density matrix, but only a rank-r approximation, which is
accurate when the true state is close to low-rank" [3]. Flammia et al.’s "matrix Lasso selector" leverages
least-squares linear regression with trace-norm regularization to reconstruct the density matrix [3]. Flammia
et al.’s method proceeds as follows:

Step 1: Measurement - Same measurement process as in Gross et al.’s algorithm.

Step 2: Optimization - Define the sampling operator to be a linear map A defined for all i. One then
solves the following convex optimization problem:

3 Results
To test the performance of the 3 tomography algorithms we implemented, we compare the results of each
of our algorithms to the true output obtained using pyQuil’s wavefunction method. We compare the
density matrix produced by wavefunction, which will serve as our ground truth matrix, to the density
matrix produced by each of our tomography algorithms, as well as the linear inversion tomography method
implemented in Rigetti’s tomography.py file. We visualize our results using Hinton plots, in which positive
and negative values are represented by green and blue squares, respectively, and the size of each square
represents the magnitude of each value. For each of our tomography algorithms, we also graph the matrix
trace-norm against the number of measurements values taken. We also use vertical error bars to show the
standard deviation of each point in each of our plots. We compare the plots corresponding to each of our
tomography algorithms to the plot corresponding to the ground truth algorithm. After running numerous
tests throughout the project (many of which can be found inside the tomography test iPython notebook
that is included in our GitHub repository), we decided to report our final results on a simple 3 qubit program
both with and without noise. The two programs are:

2

Listing 1: Program without noise

H 0
H 1
H 2
CZ 0 2
RX(pi /2) 1
RX(−pi /2) 2
CZ 1 2
X 2
CNOT 1 2

Listing 2: Program with noise

H 0
H 1
H 2
NOISY−CZ 0 2
NOISY−RX−PLUS−90 1
NOISY−RX−MINUS−90 2
NOISY−CZ 1 2
X 2
CNOT 1 2

We obtained our first set of results by running all three tomography algorithms on both the noisy and
noiseless programs, using 32 Pauli matrices for the measuring expectation values. Each measurement loop was
performed 1000 times. Below are the matrix norm results (calculated using np.linalg.norm between the
ground truth density matrix produced by PyQuil’s Wavefuction class and the density matrices produced
by our tomography algorithms):

Tomography Algorithm Noisy Program Noiseless Program
Linear 0.80 0.71
Compressed 0.14 0.078
Lasso 0.074 0.047

We also produced Hinton plots for each experiment (where darker values indicate more negative entries
in the matrix):

Figure 1: Noisy Hinton Diagram Figure 2: Noiseless Hinton Diagram

As can be seen from the table, the lasso method does the best in both cases, followed by compressed and
then linear, which is very far behind the other two. We expect linear to not perform as well since it is a very
simple algorithm, however it is important to include it for the sake of comparison. These results can also be
seen in the Hinton diagram if you look at the overall distribution of colors (Lasso has the closest distribution
to the ground truth in both cases).

What is interesting to note here is that the relative gap between compressed and lasso is larger for noisy
images, indicating that lasso does better in noisy contexts. This is indeed what we expected from Gross
et al.’s algorithm, as the authors claim that their approach only works well on states that are especially
pure. This hypothesis was confirmed by our second experiment in which we ran each of the three algorithms
for multiple Pauli measurement numbers, and then plotted a graph (following the graphs in [3]). The two
graphs we produced are shown below

As you can see, is both the noisy and noiseless cases lasso does at least as well as compressed, if mot
better. The really striking result is that for the noisy program lasso’s matrix norm goes down to almost 0
after 30 Pauli measurements, whereas both the compressed and linear methods remain at a high matrix norm,
indicating significant deviation from the ground-truth density matrix. The experiments used to generate the
graph ran multiple trials of each tomography algorithm per Pauli measurement number, and then took the
mean and standard deviation of those values to produce the final output. We ran 5 trails for the noiseless
program and 2 trails for the noisy program, given the extra time it took to compute the density matrices for
the noisy program. From our results we can conclude that lasso is the best performing method out of the

3

Figure 3: Noisy Program Graph Figure 4: Noiseless Program Graph

three, however we still provide both compressed and lasso (and linear inversion, which is already contained
in tomography.py) for the user to decide between.

4 Future Work
While our the tomography algorithms we implemented produced insightful results, there are several addi-
tional extensions we hope to implement in the future. For example, we would like to explore testing our
algorithms on a greater number of qubits. Due to constraints related to time and computational power, we
only tested our tomography algorithms on up to 3 qubits. With access to more time and more powerful
computational resources, we would like to test our tomography algorithms on a greater number of qubits.
We have designed our algorithms to work on an arbitray number of qubits, but in practice we are constrained
by time and computational power.

In our future work, we would also like to expand the range of tomography algorithms for our tomogra-
phize function that we make available for users to use to determine the quantum state of their programs. For
example, we can implement the "matrix Dantzig selector" algorithm described in Equation 3 in Flammia
et al.’s 2012 publication. In this algorithm, the density matrix is reconstructed using constrained trace-
minimization [3]. Like Flammia et al.’s "matrix Lasso selector" algorithm, the "matrix Dantzig selector"
algorithm is an efficient algorithm, but it only works for reconstructing low rank density matrices. We
actually started implementing the "matrix Dantzig selector" algorithm while working on our project, but
we ran into problems calculating the convex optimization of complex numbers using the abs function. We
would like to revisit implementing this algorithm in our future work. We can also implement the tomography
algorithm illustrated by Cramer et al. in their 2010 publication. Cramer et al.’s approach is a very efficient
tomography algorithm, but it assumes that the qubits in the system are laid out in a one-dimensional, linear
formation, so it would not work on qubit infrastructures that are organized in a lattice formation [4]. Addi-
tionally, we can implement the standard, inefficient tomography algorithm outlined in CS 269Q Lecture 6.
While this tomography algorithm is slow to run, we believe it is a good starting point because it covers a
wide variety of real-world use cases [5], while many of the other tomography algorithms are more limited in
scope. Ultimately, we hope to implement a wide variety of tomography algorithms in order to make it easier
for the user to find a tomography algorithm that closely matches their specific debugging needs and goals.

5 References
[1] https://arxiv.org/pdf/quant-ph/0404064.pdf
[2] https://arxiv.org/pdf/0909.3304.pdf
[3] https://arxiv.org/pdf/1205.2300.pdf
[4] https://www.nature.com/articles/ncomms1147.pdf
[5] https://cs269q.stanford.edu/lectures/lecture6.pdf

4

	Introduction
	Design and Implementation
	Results
	Future Work
	References

