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In the past years the creative industry has made great advancements in the area
of robotics. Accessible robot simulation and control environments based on visual
programming systems such as Grasshopper and Dynamo now allow even novice
users to quickly and intuitively explore the potential of robotic fabrication, while
expert users can use their programming knowledge to create complex, parametric
robotic programs. The great advantage of using visual programming for robot
control lies in the quick iterations that allow the user to change both geometry
and toolpaths as well as machinic parameters and then simulate the results within
a single environment. However, at the end of such an iterative optimization
process the data is condensed into a robot control data file, which is then copied
over to the robot and thus loses its parametric relationship with the code that
generated it. In this research we present a newly developed system that allows a
dynamic link between the robot and the controlling PC for parametrically
adjusting robotic toolpaths and collecting feedback data from the robot itself -
enabling entirely new approaches towards robotic fabrication by even more
closely linking design and fabrication.
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INTRODUCTION
Within a decade, the role of robotic arms in the cre-
ative industry has greatly changed: Once only used
for high-end research in cooperation with mathe-
maticians and mechanical engineers, robots have
nowbecome amuchmore common sight [1]. A large
part of this development is due to new interfaces
that are developed within the creative industry and
build upon visual programming environments to in-

tuitively define the robot's toolpath (Braumann and
Brell-Cokcan, 2014).

Today, industry has taken notice of these new
developments and is beginning to utilize software
such as KUKA|prc to quickly define and prototype
robotic processes. In parallel the creative industry is
looking into automating its robotic processes so that
robotic arms can become creative factories of their
own - towards rapidly fabricating parametrically de-
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fined products.
In this research we present a new and reliable in-

terface that allows the user to stream robot control
data directly from any PC to the robot. While most
workflows result in a robot control data file that has to
be copied to the robot (Brell-Cokcan and Braumann,
2010) - thus losing its parametric relationship with
the code that generated it - we can now bidirection-
ally couple the robotic arm with the visual program-
ming environment, streaming code to the machine
and receiving data back, which can in turn modify
and inform the fabrication process.

EXISTING SYSTEMS
The idea of interactive toolpath planning is well re-
searched and one of the core research areas in the
field of service robotics (Kunz et al., 2010). The cre-
ative industry has alsoput significant effort into inter-
acting with robots in amore direct fashion, for exam-
ple Bot&Dolly (Byrne et al., 2014) and SciArc (Kruys-
man and Proto, 2012) are controlling their robots
via custom network infrastructures, while ETH Zurich
interfaced their Universal Robots with Grasshopper
(Lim et al, 2013).

Research oriented robots such as theURs, KUKA's
iiwa or Schunk's LWA comewith interfaces thatmake
external control from the outside relatively accessi-
ble, as they are often used as parts of larger robotic
setups such as DLR's Justin robot (Ott et al., 2006) or

the Care-o-bot (Graf et al., 2009). For heavy-payload
industrial robots - which are currently more relevant
in the field of architecture - we often have to re-
purpose existing industrial interfaces with their indi-
vidual strengths and weaknesses.

In the case of KUKA industrial robots, until
recently there have been three common ways of
streaming data from a PC to the robot: Via custom
fieldbus systems, by generic communication meth-
ods, and via the Real-time Sensor Interface (RSI).
While custom fieldbus systems offer great flexibility,
they are complex to set up and require additional
costly hardware. On the other side, generic com-
munication systems (e.g. using the RS232 serial port
(Figure 1) or as XML over TCP/IP via the Ethernet.XML
plugin) are primarilymade for exchanging state data,
but not optimized for streaming motion data. In or-
der to achieve a fluent, interpolated movement, the
robot has to know at least one position following the
current movement target - i.e. a custom buffer has
to be implemented, which introduces a significant
amount of complexity.

The Real-time Sensor Interface's main purpose
is to offset toolpaths in real-time, e.g. by reacting
to data from a force/moment sensor in order to en-
sure that neither workpiece nor robot are damaged.
By enlarging the maximum allowed positional offset
and replacing the sensor with a custom server appli-
cation, position information can be streamed at the

Figure 1
Robot
programming
through
Grasshopper via the
robot’s serial port.
Early approaches
towards direct
robot control
(Braumann and
Brell-Cokcan, 2012)
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robot's cycle time, i.e. 4ms (250Hz) or 12ms (80Hz).
Unlike other systems that basically transfer only the
basic geometric data and toolpath parameters (e.g.
target position as XYZABC, speed in m/s, accelera-
tion in percentage, and interpolation strategies) and
leave the interpolation and interpretation of these
values to the robot, RSI requires the user to take care
of all these parameters. Therefore, at every cycle a
newoffset value is sent that has to have these param-
eters "baked in" - i.e. a higher speed is represented
by a larger distance over the same cycle time. This
allows fine-grained control and extremely quick re-
action times, but by doing that makes the user re-
sponsible for even minute details that can possibly
damage the mechanics and endanger the user. Ini-
tial experiments with non-optimized code led to os-
cillations around the robot's target and significant is-
sues with latency spikes exceeding the robot's cycle
time on non-real-time systems such asWindows (and
by extension Grasshopper), causing vibrations in the
robot's movements.

A middle-ground between the aforementioned
interfaces can be found in KUKA mxAutomation,
which makes it possible for external controllers with
an embedded PLC (programmable logic device) to
command KUKA robots on the basis of regular mo-
tion instructions. So rather than having to define a
custom interface between the robot and a controller,
mxAutomation provides a link to several brands of
controllers such as Siemens Sinumerik, Rockwell, and
CODESYS-based systems.

On the robot side, mxAutomation acts as an in-
terpreter that accepts, buffers, and executes com-
mands and then returns data on the success of that
operation. Interestingly, for example CODESYS uses a
visual programming approach that is somehow simi-
lar to Grasshopper, where components provide cer-
tain inputs and outputs, with editable code work-
ing in the background. However, where Grasshop-
per code is generally run once, providing a certain re-
sult at the end(s) of the directed, acyclic graph, the
CODESYS graph is called at every cycle and move-
ment sequences are definedby e.g. linking theDONE

output of a component with the EXECUTECMD in-
put of the next component, so that onemovement is
called once thepreviousmovement has finished (Fig-
ure 2).

Figure 2
mxAutomation
structure (above),
PLC function block
for a linear
movement in
accordance with IEC
61131 (below).
(KUKA, 2014)

APPLYING INDUSTRIAL INTERFACES IN
THE CREATIVE INDUSTRY
Aspart of a research projectwe are currently building
upon an as of yet unnamed interface from KUKA that
utilizes generic UDP packets to communicate with
and control KUKA robots. So instead of having to
build up an expensive fieldbus infrastructure, it en-
ables us to basically use every network-capable de-
vice to stream information to the robot and process
the returned data, from regular Windows PCs and
laptops to smartphones and tablets, and even tiny
ARM-based microcontrollers such as the Raspberry
Pi.

Using an early version of this communication
library, we created a custom "soft-PLC" that runs
as a separate high-performance thread on a reg-
ular Windows-PC and directly communicates with
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Grasshopper. The interpreter on the robot side ac-
cepts commands and queues them inside a buffer
to execute them in sequence. At every cycle, these
commands are refreshed and values from the robot,
such as all axis positions, velocity, etc. are returned to
the server program. Internally, all robot commands
are executed exactly as if theywerewritten into a KRL
file, with all safety and interpolation options intact.

This gives us a great number of advantages over
custom-developed generic interfaces: First of all, as
an interface marketed to industry it is highly stable
and well tested. It can be deployed without requir-
ing any additional hardware on either robot or PC
side andworks bi-directionally so that e.g. sensor val-
ues or robot parameters can be returned to the con-
troller. While the problem of Windows (by default)
not being a real-time capable operating system per-
sists, the integrated buffer gives us amuch larger lee-
way so that brief communication issues do not have
an impact on the robot's toolpath or the stability of
the communication. However, the buffer also pro-
hibits any hard-real-time applications, i.e. processes
where millisecond reaction times are needed.

Webelieve one of themain reasons for the popu-
larity of robots in the creative industry to be their ro-
bustness: Instead of having to focus on the mechan-
ics of themachine, the creativeuser can focus entirely
on the application and rely on the robot to follow the

instructions as well as possible. Similarly, this new in-
terface opens up new possibilities without requiring
us to control every finest robot detail in real time (Fig-
ure 3).

Having a capable interface is only one step to-
wards enabling adaptive and dynamic robotic pro-
cesses. The main question remains on how dynamic
processes can be controlled by the user and how the
flows of data are laid out between the robot and the
external controller.

KUKA|PRC: A LIBRARY FOR ROBOT SIMU-
LATION
Currently the most common workflow for interact-
ing with a KUKA robot in the creative industry is split
into twoparts - programming and execution: First, the
robot's movements are visually programmed within
Grasshopper and then simulated via the according
robot control plugins. Once the simulation is work-
ing, a control data file is written and then copied via
Ethernet to the robot where it has to be manually
executed. Similar to Grasshopper's process of "bak-
ing" geometry, which turns parametric objects into
static geometry that can be exported and rendered,
the parametric robot control data is condensed into
a static text file.

This process is also the default workflow of
KUKA|prc, which we developed as an interface for

Figure 3
Location of
command logic:
Entirely on the
robot controller for
regular control data
files (SRC), entirely
on the external
controller for
real-time
controllers (RSI),
distributed
command logic
(NEW).
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controlling KUKA robots through the visual program-
ming environment Grasshopper. In the 6 years since
the first approaches were shown at eCAADe 2009
(Brell-Cokcan et al., 2009), the software has evolved
from simple code generation to a full robotic sim-
ulation environment, building upon a custom kine-
matic solver that can simulate 6 and 7 axis robots,
supports up to 4 external axes and plots the entire
axis movements of a robotic program in advance so
that it can be immediately - either visually or auto-
matically - checked for unreachable points or singu-
larities. As such, KUKA|prc is nowbeing used not only
at many universities worldwide, but also at global
leaders in the aeronautical industry, in the film indus-
try, at high-end fabrication companies, architectural
and industrial design offices as well as FabLabs and
enthusiasts.

Figure 4
KUKA|prc structure:
Underlying custom
CORE library
providing all
mathematical and
geometric
calculations
building upon
OpenNURBS. The
Grasshopper
component
exposes these
functions and
provides an asset
library. ARC utilizes
the GH interface as
well as core
functions.

It is built upon a fully original core library that de-
fines the robot-specific classes and performs all core
operations such as inverse and forward kinematics,

collision checking, automated calculation of exter-
nal axes, etc. and can be built to work either with
RhinoCommon for applicationswithinRhinoceros 3D
or openNURBS for external usage (Figure 4).

For our new interactive workflows we can there-
fore use the stable and tested infrastructure of
KUKA|prc, with the library of robot commands, robot
models, toolmodels and robot specific functions and
expand it towards adaptive workflows.

INTERACTIVE ROBOT PROGRAMMING
Interactive toolpath planning is a highly complex
topic, with topics such as bin picking having been re-
searched formore than 30 years (Siciliano andKhatib,
2008) without arriving at some kind of universal for-
mula. Themain challenge of bin picking is that a sys-
tem has to identify the countless objects in a box,
grab the right one with the right strategy, and at
the same time avoid collisions with e.g. the sides
of the bin. To do so, the system has to evaluate
countless possible approach-strategies towards dif-
ferent objects and even simulate their physical be-
havior (Schyja and Kuhlenkötter, 2015).

However, we believe that most possible applica-
tionwithin the creative industrydonotpose this level
of complexity, but instead can be tackled with exist-
ing tools and workflows, such as the visual program-
ming environment Grasshopper.

As such we built our range of tools for adaptive
robot programming, referred to as ARC, on top of
theexistingKUKA|prc library and components, allow-
ing us to re-use the different assets as well as en-
tire parametric definitions. Therefore, the user can
first simulate and evaluate the entire process "offline"
using KUKA|prc and then connect to the robot and
go "online" to stream the commands. ARC there-
fore does not have to offer any simulation capabili-
ties by itself, but only accepts data, interfaces with
the robot, and visualizes the position data that gets
sent back from the robot - keeping the software slim
andhighlyperformantwhile allowing theuser to sim-
ulate other projects in KUKA|prc without disturbing
the dataflow.
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Figure 5
The four developed
Interaction modes
for ARC: Default,
adaptive, real-time,
and iterative.

Through analyzing our past robot projects, we
have identified four distinctive interaction strategies
that should cover most current requirements for in-
teractive toolpaths within the creative industry (Fig-
ure 5). These strategies can be switched within the
Grasshopper component depending on the prefer-
ence of the user.

Default Mode: This is the most basic mode
whosepurpose is simply to transfer commands to the
robot. Once commands are connected to the ARC
component they are immediately processedand sent
to the robot. While the robot is alreadymoving, addi-
tional commands are streamed until the interpreter's
buffer has reached its defined capacity. From then
on, executed commands are culled from the buffer
and replaced with new commands. If the input data
from the ARC component is changed, it immediately
wipes the robot's buffer and starts streaming new
commands.

Adaptive Mode: In comparison with default
mode, adaptive mode users a much shallower buffer
that contains only the bare minimum of commands
to cover brief lags in the Ethernet communication.

While usually robot programs only allow the user
to set a speed override, adaptive mode attempts to
keep the entire robot job completely parametric for
as long as possible. Only when a command is com-
mitted to the robot's buffer it cannot be changed
anymore. This allows us to incorporate sensoric feed-
back to continuously inform the fabrication process
and all its parameters

A current application of the adaptive mode is
AROSU, an EU-funded research project that explores
the structuring of natural stone (Figure 6). The new
"adaptive" toolpath capabilities are used to adjust
toolpathparameters andgeometry in real-time, com-
pensating e.g. for the non-homogeneous structure
of natural stone.

Iterative Mode: In interactive mode, the ARC
behaves mostly like default mode with a similarly
large buffer, but does not accept any new commands
until the robot signals that it is ready for the next it-
eration, i.e. when the previous commands have been
processed and an optional timeout has passed. The
main applications is therefore to switch between fab-
rication and evaluation. Essentially, the user only has

248 | eCAADe 33 - Fabrication - Robots - Volume 2



Figure 6
Early, mechanical
prototype for the
structuring of
natural stone (left),
sensor analysis and
output (right).

to define a single operation such as "pick up here and
drop off there" and a set of global rules regarding the
placement. Then the robot performs an operation,
sensor data - e.g. from a 3D camera - is processed,
and the next iteration adjusted according to the cap-
tured data. Refer e.g. to Dörfler et al., 2012.

Real-time Mode: Similar to the adaptive mode,
real-time mode uses a shallow buffer to reduce the
reaction time to aminimumwithin ARC's framework.
However, while adaptive mode works with the en-
tire parametric toolpath, real-time mode generates
each commandon theflyby taking the current robot-
position, calculating the difference to the target po-
sition and then adjusting it according to the pre-set
step-values. So if the target, e.g. based on live mo-
tion capture data, were to move, with a step size set
to 5mm and a buffer of 5 positions, the robot would
continue for 25mm before reacting to the change.

CHALLENGES ANDOUTLOOK
This research marks our initial steps towards even
more integrated design and production workflows
that allow us to directly apply the flexibility of vi-
sual programming in thephysicalworldusing robotic
arms.

With its large user-base, powerful geometric
functions and accessible layout, Grasshopper marks

a very suitable platform for defining such flexible
robotic processes. However, in more in-depth anal-
ysis we observed some issues when e.g. frequent re-
draws are issued. Finally we implemented our own
display pipeline to Rhino and spun out all interfac-
ing operations into highest-priority threads that run
in parallel to Grasshopper for a minimum of inter-
ference. While this still does not make Windows a
real-time operating system, most multi-core proces-
sors have enough processing power to stream even
dense position data to the robot with a minimum of
lag. The combination of a simulation frameworkwith
a new data-streaming interface is highly synergetic,
as e.g. jobs can be automatically simulated without
user-interaction and are only queued for fabrication
once all performance criteria such as avoiding colli-
sions and ensuring reachability are met.

While similar robot control solutions exist, this
new interface offers the advantage that the robot re-
acts in exactly the same way as if it was processing a
regular robot control data file. Furthermore, it is ex-
tremely easy to install and maintain, requiring only
a regular Ethernet cable, the range of Grasshopper
components, and the relevant KUKA software on the
robot. Once the IP of the robot has been set, com-
mands can be immediately streamed to themachine.

We believe that adaptive robot control marks a
very important step for the creative industry as it can
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be used for dynamic processes aswell as automation.
Rather than having to set up complex communica-
tion infrastructures, a single robot connected to a sin-
gle PC can become a powerful creative factory, inter-
facing e.g. with a web-server to receive data from
users around the world. Through this ease of use
we hope to enable customized and reactive fabrica-
tion processes for highly individualized products on
all scales, from industrial design to architecture and
beyond.
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