


Direct Robot Control with mxAutomation:
A New Approach to Simple Software
Integration of Robots in Production
Machinery, Automation Systems, and New
Parametric Environments

Heinrich Munz, Johannes Braumann and Sigrid Brell-Cokcan

Abstract The industry-crises of the past have made it clear how existentially
important it is to have flexible, “living” production facilities. Automation by means
of industrial robotics has proven to be a key technology in this regard. However,
truly dynamic processes can only be achieved when the robots and the environment
to be automated—machines, handling equipment, etc.—are perfectly integrated,
both operationally as well as from the operator’s perspective. KUKA’s
mxAutomation interface now allows a granular remote operation of the robot in
interaction with modern industrial real-time communication—and beyond that also
entirely new, flexible workflows from design to production towards fabricating
highly customizable products in the creative industry.

Keywords KUKA �Direct robot control �Remote operation �Mass-customization �
Robotic arms

1 Introduction

Robots are not an end in themselves but fulfill a wide variety of tasks that contribute
to an overall automation solution. In industry they are used e.g. for the preparation
or post-processing of tools or work pieces of a production machine, or for handling
tasks, such as loading and unloading.

H. Munz (&)
KUKA Roboter GmbH, Augsburg, Germany
e-mail: Heinrich.Munz@kuka.com

J. Braumann
Association for Robots in Architecture, University for Arts and Design Linz, Linz, Austria
e-mail: johannes@robotsinarchitecture.org

S. Brell-Cokcan
Association for Robots in Architecture, RWTH Aachen University, Aachen, Germany
e-mail: sigrid@robotsinarchitecture.org

© Springer International Publishing Switzerland 2016
D. Reinhardt et al. (eds.), Robotic Fabrication in Architecture,
Art and Design 2016, DOI 10.1007/978-3-319-26378-6_35

441



While robots have been used for such purposes for decades, it has only been a
few years that accessible visual-programming environments coupled with dynamic
components for robot control have also opened up the use of robotic arms to the
creative industry where they are now being utilized for a huge variety of tasks, from
fabrication and assembly to interactive installations and performance art (Fig. 1).

Today, plugins such as KUKA|prc (Braumann and Brell-Cokcan 2014) allow
architects, artists, and designers to work from design to fabrication within a single
visual programming environment, where they can not only define an object’s shape
and form, but also visually assemble robotic processes and immediately simulate
the robot’s movements, automatically checking for singularities and unreachable
positions. Rather than dealing with the intricacies of a robot control data file,
movements and other commands are assembled in a visual system that allows
fine-grained control over most properties such as speed and interpolation. The
automatically generated KRL (KUKA Robot Language) code can then be imme-
diately copied to the robot, enabling a rapid turnaround time as well as an efficient
feedback loop. Today, also users of other industries use KUKA|prc to quickly
prototype processes, e.g. in the aeronautical industry.

However, an issue with such a file-based workflow is the delay between writing
the file and executing it. While KRL files representing hundreds of design varia-
tions can be generated within a fraction of a second, they have to be manually
copied onto the robot’s command execution memory before they can be executed.

Ideally, to fully utilize the potential of accessible visual programming environ-
ments, we would need a direct link between PC and robot, through which we can
then dynamically “stream” commands to the robot. A similar challenge can be
observed within the context of Industry 4.0, where one of the main ideas is to
enable machines to communicate with each other in order to form smaller, func-
tional units, rather than just hierarchical structures with a central control unit.

Fig. 1 KUKA KR16 use-cases in the creative industry: Tripod-mounted as part of an
art-installation by Conrad Shawcross (left), milling wooden elements with an entry-level spindle
(right)

442 H. Munz et al.



New industrial solutions and interfaces by KUKA thus enable communication
between automation machines or external controllers of any kind and robots. We
expect that building upon these interfaces will also lead to entirely new and flexible
workflows for direct robot control in the creative industry.

2 Control Systems and Communication in Industry

In order to coordinate the operation of external controllers and robots, communi-
cation is necessary between their control systems. Originally such tasks were ful-
filled by signals wired in parallel, until conventional field buses took over these
functions.

With the emergence of modern Ethernet-based real-time field buses and Time
Sensitive Ethernet Networks (IEEE 802.1 TSN), the technological basis for efficient
communication between external controllers and robots was established. An
important characteristic of such new communication means is their ability to run
several protocols and thus services via the same Ethernet cable or to operate
multiple buses at the same time. In addition to the standard field buses EtherCAT,
Profinet and Ethernet/IP, the new KUKA KR C4 robot controller also optionally
supports standard UDP communication over Ethernet.

Based on these improved communication mechanisms, the machine builder or
system integrator can solve automation tasks as usual by creating separate machine
programs, robot programs and the corresponding operator screens for the machine
and the robot separately and putting them into operation by using self-defined bits
and bytes on the communication means. For this the builder or integrator, and any
other participants, such as service personnel, require detailed knowledge of robot
programming.

In order to keep this learning curve lower, and to be able to program the
movements of the robot and the machine at just one location, KUKA has created
mxAutomation (KUKA Robotics 2014) so that machine builders or system inte-
grators can integrate the KUKA robot controller into their remote machine con-
troller. All programming and operator tasks for the robot can then be done
exclusively from the machine controller and its operator panel. Special knowledge
of robot programming is no longer necessary.

mxAutomation consists conceptionally of two main parts (Fig. 2). A server
program created by KUKA runs on the robot controller, which waits for commands
to arrive via one of the field buses or UDP-Ethernet mentioned above. The actual
robot control program runs on the machine controller; this program is created in the
programming language and with the programming methods of the machine con-
troller. In order to make this possible, KUKA provides the mxAutomation client
library for several controllers, which is integrated by the machine firmware pro-
grammer into the firmware. The programmed robot commands and their parameters
are put into the defined data format and finally streamed via the communication
means to the mxAutomation server running on the robot controller. The server

Direct Robot Control with mxAutomation … 443



interprets the data, executes the desired robot commands and sends return param-
eters, status messages, etc. back to the mxAutomation library on the machine
controller. In order for the data transfer of the robot commands and their return
values to take place as quickly as possible and deterministically, cyclical process
data of the particular field bus are used exclusively for this. Several robots can be
simultaneously remotely controlled by a single machine controller.

The mxAutomation library has been created in portable Structured Text and is
available in adapted form for Siemens Simatic, and based on that for Sinumerik
840d, as well as for Rockwell PLCs and CodeSys or ProConOS systems, with more
to be added in the near future. Through an adaptation kit other controller manu-
facturers can integrate the mxAutomation library into their controllers themselves
after concluding a cooperation agreement with KUKA.

The Application Programming Interface (API) of the mxAutomation library is
based on the programming paradigm of PLCOpen’s Motion Control Function
Blocks (MCFBs) Part 4 and has been specifically expanded for KUKA robots.
Virtually all functions which can be directly programmed on the robot are also
available via the mxAutomation library. This includes general functions, such as
reading of the current robot position, speed and acceleration, and also functions
such as reading and writing local robot I/Os and variables. An application example
for the advantageous use of system variables is sensitive gripping of work pieces or
packaged goods, where the use of axis-specific torque limitation is a proven means.
Within mxAutomation, the system variable TORQMON_DEF like several other
robot system variables can be assigned to an mxAutomation variable, which can
then be written via the KRC_SetSysVar function.

Corresponding blocks are of course also available for the axis-specific or
Cartesian motion of the robot with LIN, PTP or CIRC. Approximate positioning is
also possible, as are exact time-distance functions or interrupts.

Fig. 2 mxAutomation
control concept. Software
components provided by
KUKA are marked orange

444 H. Munz et al.



3 Building upon mxAutomation

In fall 2015, the client library in the “adaptation kit” (see Sect. 2) has been enhanced
by additional programming languages such as C#, and C++. As such,
mxAutomation is no longer depending on a particular brand of controller, but could
be run on basically any computer, from an embedded controller, a compact SoC, a
smart device to a regular laptop or PC, even from the cloud.

Building upon KUKA’s mxAutomation C# client sample library as well as
Robots in Architecture’s KUKA|prc framework we created a custom client software
that communicates with one or more connected KUKA robots running the
mxAutomation server software. First, the native KUKA|prc commands are pro-
cessed, and—rather than being written into a *.src file—mapped to their corre-
sponding C# classes in the mxAutomation library, so that e.g. a KUKA|prc LINear
Movement becomes a KRC_MoveLinear-Absolute object.

Once the server is up and running on the robot controller, data are continuously
exchanged as UDP datagrams between the PC running KUKA|prc and the robot
controller at the robot’s sub cycle time of 4 ms. Command blocks such as the
aforementioned KRC_MoveLinearAbsolute are executed in sequence and either put
into the robot’s command buffer, or immediately return status values from the robot,
such as current robot positions, the read of variables or I/Os.

By design, the presence of a buffer makes mxAutomation usable even for non
“hard” real-time applications running i.e. on Microsoft Windows, while at the same
time making it highly resistant against communication timeouts as long as the
buffer is sufficiently filled. This is especially important for regular PCs, where
Windows is not real-time capable and processes such as garbage collection may
cause timeouts of more than several 10 s of milliseconds.

Fig. 3 Dynamic stone surface structuring utilizing the mxAutomation interface to allow dynamic
adjustments of angle and force during the structuring process

Direct Robot Control with mxAutomation … 445



Using task-based programming via async/await we created a resilient,
high-performance mxAutomation controller and implemented it into Grasshopper.
Thus, the user can first simulate a robot program via KUKA|prc and then simply
reconnect the commands to the mxAutomation component in order to stream them
to the robot. The interface is already utilized within the scope of the AROSU
research project (Fig. 3) (Brell-Cokcan and Braumann 2015).

4 New Interaction Strategies

A communication process between an automation machine and an industrial robot
is usually quite straightforward, with the machine instructing the robotic arm to
perform a certain task and waiting upon its completion. However, in the context of
the creative industry one of the main appeals of direct robot control is to utilize the
feedback of the robot to inform the process. As such, we have identified and
implemented four different dataflow-modes for mxAutomation (Fig. 4):

• Default Mode uses a rather large buffer to store and process commands. When
the input data of the mxAutomation component changes, the robot’s buffer is
wiped and the new commands are streamed for immediate execution.

• Adaptive Mode relies on a much smaller buffer with the goal of keeping data
parametric as long as possible. New data does not cause the process to restart,
but rather adapts the existing commands, which only become static once they
are placed in the robot’s buffer.

• Iterative Mode waits for the completion of a set of commands before accepting
new inputs, so that the returned data can be used to inform the next fabrication
step.

Fig. 4 mxAutomation data flow strategies (Braumann and Brell-Cokcan 2015)

446 H. Munz et al.



• Real-time Mode does not achieve hard real-time, but rather uses a shallow
buffer. Commands are streamed stepwise towards the given (and possibly
moving) target position.

Together, these four modes enable a wide range of applications, from straight-
forward fabrication, to iterative assembly processes that are continuously evaluated
and fully interactive installations.

5 Analysis and Outlook

mxAutomation’s approach provides several advantages over other solutions, where
the machine controller completely takes over control of the robot’s drives or
motors. Most importantly, mxAutomation works straight away with all KR
C4-based industrial KUKA robot types—from KR AGILUS to the KR 1000 Titan.
There is no risk that the machine controller, due to lack of knowledge of the
mechanical limits of robot motors, gear units and mechanical components, will
exceed these load limits, resulting in mechanical damage to the robot. Additionally,
the machine controller retains all advantages and features of the KUKA robot
controller, such as energy-efficient motion algorithms adapted for the specific robot
arms, loads and moments of inertia, sophisticated exception handling routines or the
entire safety functions.

mxAutomation has proven itself to be a simple and efficient tool and an
end-user-friendly robot integration system within a wide variety of different envi-
ronments. Its open approach and the availability of the mxAutomation library in
many programming languages enable completely new applications, as demon-
strated by its quick integration into KUKA|prc, where it now provides a direct and
immediate interface between design and fabrication.

mxAutomation enables a new way of system thinking as it is necessary for
Industry 4.0 or the Internet of Things: not only the robot arm (a component) should
be in the focus of the user but the whole and integrated system (the solution).

References

Braumann, J and Brell-Cokcan, S 2014, ‘Visual Robot Programming—Linking Design,
Simulation, and Fabrication’ Proceedings of the 5th Annual Symposium on Simulation for
Architecture and Urban Design (SimAUD).

Braumann, J and Brell-Cokcan, S 2015, ‘Adaptive Robot Control’, Proceedings of the 33rd
eCAADe Conference, Vienna, Austria.

Brell-Cokcan, S and Braumann, J 2015, ‘Towards Adaptive Robot Control Strategies’,
Proceedings of the 35th ACADIA Conference, Cincinnati, USA.

KUKA Robotics, 2014, CODESYS Library for KUKA.PLC mxAutomation 2.0.

Direct Robot Control with mxAutomation … 447


	35 Direct Robot Control with mxAutomation: A New Approach to Simple Software Integration of Robots in Production Machinery, Automation Systems, and New Parametric Environments
	Abstract
	1 Introduction
	2 Control Systems and Communication in Industry
	3 Building upon mxAutomation
	4 New Interaction Strategies
	5 Analysis and Outlook
	References


