
KUKA System Technology

CODESYS Library

For KUKA.PLC mxAutomation 2.1

KUKA Roboter GmbH

Issued: 14.12.2015

Version: CODESYS Library mxAutomation 2.1 V2

CODESYS Li-

brary

CODESYS Library

2 / 159 Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

© Copyright 2015

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has
no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software
described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to
guarantee total conformity. The information in this documentation is checked on a regular basis, how-
ever, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Pub CODESYS Library mxAutomation 2.1 (PDF) en

Book structure: CODESYS Library mxAutomation 2.1 V2.1

Version: CODESYS Library mxAutomation 2.1 V2

Contents

Contents
1 Introduction .. 7

1.1 Target group .. 7

1.2 Industrial robot documentation ... 7

1.3 Representation of warnings and notes .. 7

1.4 Terms used .. 8

2 Product description ... 9

2.1 Overview .. 9

2.2 Intended use .. 9

3 Safety .. 11

4 Installation .. 13

4.1 System requirements ... 13

5 Configuration ... 15

5.1 Configuration in WorkVisual – overview .. 15

6 Programming ... 17

6.1 Instructions for programming ... 17

6.2 Overview of function blocks ... 17

6.3 Frequently used input/output signals in the function blocks 20

6.3.1 Input signals .. 20

6.3.2 Output signals ... 20

6.3.3 Signal sequence for execution of ExecuteCmd .. 21

6.4 Frequently used input/output signals in the MC function blocks 22

6.4.1 Input signals .. 22

6.4.2 Output signals ... 22

6.4.3 Signal sequence for execution of Execute .. 23

6.5 Structures for motion programming (STRUCT) ... 23

6.6 Integer variables .. 26

6.7 Data of a Cartesian workspace .. 28

6.8 Data of an axis-specific workspace .. 28

6.9 Programming tips for KUKA.PLC mxAutomation ... 29

6.9.1 Programming example (template MxA_CODESYS_Template_PN) 30

6.10 Administrative functions ... 31

6.10.1 Reading PLC-specific communication into a non-PLC-specific structure 31

6.10.2 Writing a non-PLC-specific structure into PLC-specific communication 32

6.10.3 Initializing the mxA interface ... 32

6.10.4 Setting the program override (POV) ... 33

6.10.5 Activating and reading Automatic External signals from the robot controller 34

6.10.6 Reading the current robot position .. 36

6.10.7 Reading the current axis position ... 37

6.10.8 Reading the current path velocity ... 38

6.10.9 Reading the current axis velocity .. 38

6.10.10 Reading the current robot acceleration ... 39

6.10.11 Reading a digital input .. 40

6.10.12 Reading digital inputs 1 to 8 ... 40
3 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

4 / 159

CODESYS Library
6.10.13 Reading multiple digital inputs .. 41

6.10.14 Reading a digital output .. 42

6.10.15 Writing a digital output .. 42

6.10.16 Writing digital outputs 1 to 8 ... 43

6.10.17 Reading an analog input .. 44

6.10.18 Reading an analog output .. 44

6.10.19 Writing an analog output .. 45

6.10.20 Wait statement (read digital input) .. 46

6.10.21 Selecting the tool, base and interpolation mode ... 46

6.10.22 Reading TOOL data ... 47

6.10.23 Writing TOOL data .. 48

6.10.24 Reading BASE data ... 49

6.10.25 Writing BASE data .. 50

6.10.26 Reading the load data .. 51

6.10.27 Writing load data .. 51

6.10.28 Reading the software limit switches of the robot axes .. 53

6.10.29 Reading the software limit switches of the external axes 53

6.10.30 Writing the software limit switches of the robot axes .. 54

6.10.31 Writing the software limit switches of the external axes 55

6.10.32 Declaring interrupts .. 56

6.10.33 Activating interrupts .. 57

6.10.34 Deactivating interrupts .. 58

6.10.35 Reading the state of an interrupt .. 59

6.10.36 Activating a path-related switching action (TRIGGER WHEN DISTANCE) 60

6.10.37 Activating a path-related switching action (TRIGGER WHEN PATH) 61

6.10.38 Canceling a program .. 63

6.10.39 Stopping the robot .. 64

6.10.40 Continuing a program ... 64

6.10.41 Automatically starting function blocks and signals ... 65

6.11 Functions for activating motions .. 66

6.11.1 Moving to a Cartesian position with a LIN motion .. 66

6.11.2 Moving to a Cartesian position with a LIN_REL motion 67

6.11.3 Moving to a Cartesian position with a PTP motion ... 69

6.11.4 Moving to a Cartesian position with a PTP_REL motion 70

6.11.5 Moving to an axis-specific position with a PTP motion ... 72

6.11.6 Moving to a Cartesian position with a CIRC motion ... 73

6.11.7 Moving to a Cartesian position with a CIRC_REL motion 75

6.11.8 Jogging to a relative end position ... 78

6.11.9 Jogging to a relative end position in the TOOL coordinate system 79

6.11.10 Jogging to an end position ... 80

6.12 Functions for activating motions (PLC OPEN-compliant) .. 83

6.12.1 Moving to a Cartesian position with a LIN motion .. 83

6.12.2 Moving to a Cartesian position with a LIN_REL motion 84

6.12.3 Moving to a Cartesian position with a PTP motion ... 86

6.12.4 Moving to a Cartesian position with a PTP_REL motion 87

6.12.5 Moving to an axis-specific position with a PTP motion ... 89

6.12.6 Moving to a Cartesian position with a CIRC motion ... 90

6.12.7 Moving to a Cartesian position with a CIRC_REL motion 93

6.13 Diagnostic functions .. 95
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

Contents
6.13.1 Reading the current state of the mxA interface .. 95

6.13.2 Reading error messages of the mxA interface ... 96

6.13.3 Resetting error messages of the mxA interface .. 96

6.13.4 Reading error messages of the robot controller ... 96

6.13.5 Reading diagnostic signals ... 97

6.13.6 Reading and acknowledging error states ... 99

6.14 Special functions .. 101

6.14.1 Reading system variables ... 101

6.14.2 Writing system variables ... 101

6.14.3 Calling a brake test ... 103

6.14.4 Calling a mastering test .. 104

6.14.5 Reading the safety controller signals .. 106

6.14.6 Reading the state of the TouchUp status keys ... 107

6.14.7 Teaching points .. 107

6.14.8 Modifying settings for the advance run ... 108

6.14.9 Reading values from KRC_SetAdvance ... 109

6.14.10 Calculating the Cartesian robot position from the axis angles 110

6.14.11 Calculating axis angles from the Cartesian robot position 111

6.14.12 Initializing a conveyor ... 112

6.14.13 Activating a conveyor .. 113

6.14.14 Tracking a workpiece on the conveyor ... 114

6.14.15 Picking up a workpiece from the conveyor ... 115

6.14.16 Activating interrupts for monitoring ... 117

6.14.17 Deactivating interrupts for monitoring ... 118

6.14.18 Activating a motion along a vector .. 119

6.14.19 Deactivating KRC_VectorMoveOn ... 120

6.14.20 Configuring Cartesian workspaces ... 121

6.14.21 Reading the configuration of Cartesian workspaces .. 122

6.14.22 Configuring axis-specific workspaces ... 123

6.14.23 Reading the configuration of axis-specific workspaces .. 124

6.14.24 Reading the status of the workspaces .. 124

7 Messages ... 127

7.1 Error messages of the mxA interface in the robot interpreter 127

7.2 Error messages of the mxA interface in the submit interpreter 131

7.3 Errors in the function block .. 137

7.4 ProConOS errors ... 140

8 KUKA Service .. 147

8.1 Requesting support .. 147

8.2 KUKA Customer Support ... 147

Index ... 155
5 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

1 Introduction
1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:

 Knowledge of the robot controller system

 Advanced PLC programming skills

 Advanced knowledge of field bus interfaces

1.2 Industrial robot documentation

The industrial robot documentation consists of the following parts:

 Documentation for the manipulator

 Documentation for the robot controller

 Operating and programming instructions for the System Software

 Instructions for options and accessories

 Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety These warnings are relevant to safety and must be observed.

This warning draws attention to procedures which serve to prevent or remedy
emergencies or malfunctions:

Notices These notices serve to make your work easier or contain references to further
information.

t

t

For optimal use of our products, we recommend that our customers
take part in a course of training at KUKA College. Information about
the training program can be found at www.kuka.com or can be ob-

tained directly from our subsidiaries.

These warnings mean that it is certain or highly probable
that death or severe injuries will occur, if no precautions

are taken.

These warnings mean that death or severe injuries may
occur, if no precautions are taken.

These warnings mean that minor injuries may occur, if
no precautions are taken.

These warnings mean that damage to property may oc-
cur, if no precautions are taken.

These warnings contain references to safety-relevant information or
general safety measures.
These warnings do not refer to individual hazards or individual pre-

cautionary measures.

Procedures marked with this warning must be followed
exactly.
7 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

8 / 159

CODESYS Library
1.4 Terms used

Tip to make your work easier or reference to further information.

Term Description

Axis group Depending on the machine data configuration, an axis group contains
the following axes:

 Robot axes A1 to A6

 External axes E1 to E6 (synchronous or asynchronous)

FIFO Method used to process a data memory

 First In First Out: the elements saved first are taken first from the
memory.

KR C KUKA Robot Controller

KRL KUKA robot programming language (KUKA Robot Language)

KUKA smartHMI User interface of the KUKA robot controller (KUKA smart Human-
Machine Interface)

KUKA smartPAD Hand-held operating and programming device for the KUKA industrial
robot

mxA interface KUKA.PLC mxAutomation CODESYS technology package on the robot
controller

PROFINET PROFINET is an Ethernet-based field bus.

Robot interpreter The robot interpreter is a process that works synchronously in which the
current robot program is executed.

BCO run The robot is moved to the coordinates of the motion block in which the
block pointer is situated. In this way, the robot position is made to match
the coordinates of the current point.

PLC Programmable Logic Controller

CODESYS V3.5 SP4 Development environment for CODESYS controllers

Submit interpreter The Submit interpreter is a cyclical logic program that runs in parallel
with the motion program on the robot controller.

WorkVisual Engineering environment for KR C4-controlled robot cells
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

2 Product description
2 Product description

2.1 Overview

The CODESYS library contains function blocks for programming automation
tasks with the CODESYS V3.5 SP4 software.

Components The following software components are included in the CODESYS library:

 Function blocks for CODESYS V3.5 SP4 (Library PLC\CODESYS folder)

 Programming templates for CODESYS V3.5 SP4 (Template PLC\CODE-
SYS folder)

 For PROFINET: MxA_CODESYS_Template_PN

 For EtherNet/IP: MxA_CODESYS_Template_EIP

 For EtherCAT bridge: MxA_CODESYS_Template_ECat_Visu

Communication For data exchange between the PLC and the robot controller, PROFINET,
EtherNet/IP or EtherCAT bridge can be used.

WorkVisual The following software is required for configuring the field buses and mapping
the field bus signals:

 WorkVisual 4.0

2.2 Intended use

The online part of KUKA.PLC mxAutomation may only be used on a KR C4
robot controller with the following software:

 KUKA System Software 8.3

 KUKA.PLC ProConOS 4.1

 KUKA.ProfiNet 3.1 or KR C4 EtherNet/IP 2.0 or EtherCAT bridge

 KUKA.ConveyorTech 6.0

 KUKA.VectorMove 1.0

The offline part of KUKA.PLC mxAutomation is intended for use with CODE-
SYS V3.5 SP4 or higher.

Any other or additional use is considered misuse and is not allowed. The man-
ufacturer cannot be held liable for any resulting damage. The risk lies entirely
with the user.

Operation in accordance with the intended use also requires compliance with
the start-up and configuration instructions in this documentation.

Misuse Any use or application deviating from the intended use is deemed to be misuse
and is not allowed. This includes e.g.:

 Incorrect configuration (not in compliance with this documentation). This
might result in the robot executing different actions from those planned by
the PLC programmer.

 Use in a programming environment other than CODESYS V3.5 SP4 or
higher.

2

t

s

9 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

10 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

3 Safety
3 Safety

This documentation contains safety instructions which refer specifically to the
software described here.

The fundamental safety information for the industrial robot can be found in the
“Safety” chapter of the Operating and Programming Instructions for System In-
tegrators or the Operating and Programming Instructions for End Users.

f

t

y

The “Safety” chapter in the operating and programming instructions
of the KUKA System Software (KSS) must be observed. Death to per-
sons, severe injuries or considerable damage to property may other-

wise result.
11 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

12 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

4 Installation
4 Installation

4.1 System requirements

Hardware Robot controller:

 KR C4

 Or KR C4 compact

External PLC:

 CODESYS controller

Software Robot controller:

 KUKA System Software 8.3

The following KRL resources must be free:

 KUKA.PLC ProConOS 4.1

 Software for the field bus used:

 KUKA.ProfiNet 3.1

 Or KR C4 EtherNet/IP 2.0

Option with ConveyorTech:

 KUKA.ConveyorTech 6.0

Option with VectorMove:

 KUKA.VectorMove 1.0

Standard laptop/PC:

 WorkVisual 4.0

 CODESYS V3.5 SP4 or higher

4

s

t

t

The minimum requirements on the external PLC are based on an av-
erage test program that generates about 1024 kB of code which is
saved on the PLC and has to be executed. Larger, more complex ap-

plications may require more performance. It is advisable to contact KUKA
Service in such cases.

KRL resource Number

I/Os 2 049 … 4 080
13 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

14 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

5 Configuration
5 Configuration

5.1 Configuration in WorkVisual – overview

f

t

Step Description

1 Install the mxAutomation option package in WorkVisual.

2 Load the project from the robot controller.

3 Insert PROCONOS in the project.

4 Insert the mxAutomation option package into the project.

5 Insert the catalog element for the field bus used into the project.

Note: WorkVisual regards the catalog element as a device from
an option package. In this catalog element, the I/O mapping is
already preconfigured. The start addresses of the inputs and
outputs must not be modified, as mxAutomation will otherwise
not work.

6 Transfer the project from WorkVisual to the robot controller.

Information about procedures in WorkVisual is contained in the
WorkVisual documentation.
15 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

16 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6 Programming

6.1 Instructions for programming

6.2 Overview of function blocks

Information about programming CODESYS is contained in the docu-
mentation of this software.

Only the function blocks contained in the scope of supply of KU-
KA.PLC mxAutomation may be used in an mxA robot program.

The MxA_CODESYS_Template_PN template supplied on the USB
stick (Template folder) contains all the function blocks and a pro-
gramming example with the fundamental function blocks. It is advis-

able to use this template for creating an mxAutomation robot program.

Administrative functions

KRC_ReadAxisGroup (>>> 6.10.1 "Reading PLC-specific communication into a non-
PLC-specific structure" Page 31)

KRC_WriteAxisGroup (>>> 6.10.2 "Writing a non-PLC-specific structure into PLC-
specific communication" Page 32)

KRC_Initialize (>>> 6.10.3 "Initializing the mxA interface" Page 32)

KRC_SetOverride (>>> 6.10.4 "Setting the program override (POV)" Page 33)

KRC_AutomaticExternal (>>> 6.10.5 "Activating and reading Automatic External signals
from the robot controller" Page 34)

KRC_ReadActualPosition (>>> 6.10.6 "Reading the current robot position" Page 36)

KRC_ReadActualAxisPosition (>>> 6.10.7 "Reading the current axis position" Page 37)

KRC_ReadActualVelocity (>>> 6.10.8 "Reading the current path velocity" Page 38)

KRC_ReadActualAxisVelocity (>>> 6.10.9 "Reading the current axis velocity" Page 38)

KRC_ReadActualAcceleration (>>> 6.10.10 "Reading the current robot acceleration"
Page 39)

KRC_ReadDigitalInput (>>> 6.10.11 "Reading a digital input" Page 40)

KRC_ReadDigitalInput1To8 (>>> 6.10.12 "Reading digital inputs 1 to 8" Page 40)

KRC_ReadDigitalInputArray (>>> 6.10.13 "Reading multiple digital inputs" Page 41)

KRC_ReadDigitalOutput (>>> 6.10.14 "Reading a digital output" Page 42)

KRC_WriteDigitalOutput (>>> 6.10.15 "Writing a digital output" Page 42)

KRC_WriteDigitalOutput1To8 (>>> 6.10.16 "Writing digital outputs 1 to 8" Page 43)

KRC_ReadAnalogInput (>>> 6.10.17 "Reading an analog input" Page 44)

KRC_ReadAnalogOutput (>>> 6.10.18 "Reading an analog output" Page 44)

KRC_WriteAnalogOutput (>>> 6.10.19 "Writing an analog output" Page 45)

KRC_SetCoordSys (>>> 6.10.21 "Selecting the tool, base and interpolation mode"
Page 46)

KRC_ReadToolData (>>> 6.10.22 "Reading TOOL data" Page 47)

KRC_WriteToolData (>>> 6.10.23 "Writing TOOL data" Page 48)

KRC_ReadBaseData (>>> 6.10.24 "Reading BASE data" Page 49)

KRC_WriteBaseData (>>> 6.10.25 "Writing BASE data" Page 50)

KRC_ReadLoadData (>>> 6.10.26 "Reading the load data" Page 51)

KRC_WriteLoadData (>>> 6.10.27 "Writing load data" Page 51)
17 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

18 / 159

CODESYS Library
KRC_ReadSoftEnd (>>> 6.10.28 "Reading the software limit switches of the robot
axes" Page 53)

KRC_ReadSoftEndExt (>>> 6.10.29 "Reading the software limit switches of the exter-
nal axes" Page 53)

KRC_WriteSoftEnd (>>> 6.10.30 "Writing the software limit switches of the robot
axes" Page 54)

KRC_WriteSoftEndExt (>>> 6.10.31 "Writing the software limit switches of the external
axes" Page 55)

KRC_AutoStart (>>> 6.10.41 "Automatically starting function blocks and sig-
nals" Page 65)

Administrative functions

Motion programming

KRC_MoveLinearAbsolute (>>> 6.11.1 "Moving to a Cartesian position with a LIN motion"
Page 66)

KRC_MoveLinearRelative (>>> 6.11.2 "Moving to a Cartesian position with a LIN_REL
motion" Page 67)

KRC_MoveDirectAbsolute (>>> 6.11.3 "Moving to a Cartesian position with a PTP motion"
Page 69)

KRC_MoveDirectRelative (>>> 6.11.4 "Moving to a Cartesian position with a PTP_REL
motion" Page 70)

KRC_MoveAxisAbsolute (>>> 6.11.5 "Moving to an axis-specific position with a PTP
motion" Page 72)

KRC_MoveCircAbsolute (>>> 6.11.6 "Moving to a Cartesian position with a CIRC
motion" Page 73)

KRC_MoveCircRelative (>>> 6.11.7 "Moving to a Cartesian position with a CIRC_REL
motion" Page 75)

KRC_JogLinearRelative (>>> 6.11.8 "Jogging to a relative end position" Page 78)

KRC_JogToolRelative (>>> 6.11.9 "Jogging to a relative end position in the TOOL
coordinate system" Page 79)

KRC_Jog (>>> 6.11.10 "Jogging to an end position" Page 80)

Motion programming (PLC OPEN-compliant)

MC_MoveLinearAbsolute (>>> 6.12.1 "Moving to a Cartesian position with a LIN motion"
Page 83)

MC_MoveLinearRelative (>>> 6.12.2 "Moving to a Cartesian position with a LIN_REL
motion" Page 84)

MC_MoveDirectAbsolute (>>> 6.12.3 "Moving to a Cartesian position with a PTP motion"
Page 86)

MC_MoveDirectRelative (>>> 6.12.4 "Moving to a Cartesian position with a PTP_REL
motion" Page 87)

MC_MoveAxisAbsolute (>>> 6.12.5 "Moving to an axis-specific position with a PTP
motion" Page 89)

MC_MoveCircularAbsolute (>>> 6.12.6 "Moving to a Cartesian position with a CIRC
motion" Page 90)

MC_MoveCircularRelative (>>> 6.12.7 "Moving to a Cartesian position with a CIRC_REL
motion" Page 93)

Program execution control

KRC_Abort (>>> 6.10.38 "Canceling a program" Page 63)

KRC_Interrupt (>>> 6.10.39 "Stopping the robot" Page 64)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
KRC_Continue (>>> 6.10.40 "Continuing a program" Page 64)

KRC_WaitForInput (>>> 6.10.20 "Wait statement (read digital input)" Page 46)

Program execution control

Interrupt programming

KRC_DeclareInterrupt (>>> 6.10.32 "Declaring interrupts" Page 56)

KRC_ActivateInterrupt (>>> 6.10.33 "Activating interrupts" Page 57)

KRC_DeactivateInterrupt (>>> 6.10.34 "Deactivating interrupts" Page 58)

KRC_ReadInterruptState (>>> 6.10.35 "Reading the state of an interrupt" Page 59)

Path-related switching actions (=Trigger)

KRC_SetDistanceTrigger (>>> 6.10.36 "Activating a path-related switching action (TRIG-
GER WHEN DISTANCE)" Page 60)

KRC_SetPathTrigger (>>> 6.10.37 "Activating a path-related switching action (TRIG-
GER WHEN PATH)" Page 61)

Diagnostic functions

KRC_ReadMXAStatus (>>> 6.13.1 "Reading the current state of the mxA interface"
Page 95)

KRC_ReadMXAError (>>> 6.13.2 "Reading error messages of the mxA interface"
Page 96)

KRC_ReadKRCError (>>> 6.13.4 "Reading error messages of the robot controller"
Page 96)

KRC_MessageReset (>>> 6.13.3 "Resetting error messages of the mxA interface"
Page 96)

KRC_Diag (>>> 6.13.5 "Reading diagnostic signals" Page 97)

KRC_Error (>>> 6.13.6 "Reading and acknowledging error states"
Page 99)

Special functions (general)

KRC_ReadSysVar (>>> 6.14.1 "Reading system variables" Page 101)

KRC_WriteSysVar (>>> 6.14.2 "Writing system variables" Page 101)

KRC_BrakeTest (>>> 6.14.3 "Calling a brake test" Page 103)

KRC_MasRef (>>> 6.14.4 "Calling a mastering test" Page 104)

KRC_ReadSafeOPStatus (>>> 6.14.5 "Reading the safety controller signals" Page 106)

KRC_ReadTouchUPState (>>> 6.14.6 "Reading the state of the TouchUp status keys"
Page 107)

KRC_TouchUP (>>> 6.14.7 "Teaching points" Page 107)

KRC_SetAdvance (>>> 6.14.8 "Modifying settings for the advance run" Page 108)

KRC_GetAdvance (>>> 6.14.9 "Reading values from KRC_SetAdvance"
Page 109)

KRC_Forward (>>> 6.14.10 "Calculating the Cartesian robot position from the
axis angles" Page 110)

KRC_Inverse (>>> 6.14.11 "Calculating axis angles from the Cartesian robot
position" Page 111)

Special functions (conveyor)

KRC_ConvIniOff (>>> 6.14.12 "Initializing a conveyor" Page 112)

KRC_ConvOn (>>> 6.14.13 "Activating a conveyor" Page 113)
19 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

20 / 159

CODESYS Library
6.3 Frequently used input/output signals in the function blocks

6.3.1 Input signals

AxisGroupIdx This signal input is used to set the number of the axis group addressed by a
function block.

5 axis groups (robot and external axes) can be controlled by the PLC.

ExecuteCmd If this signal is set, mxAutomation transfers the associated function block to
the robot. The function block is stored in a statement buffer by the robot, pro-
vided there is still sufficient space in the buffer. If the ExecuteCmd input is re-
set, mxAutomation deletes the function block from the buffer again unless
execution of the statement has already begun.

6.3.2 Output signals

Busy This signal output indicates that the associated function block is currently be-
ing transferred to the robot’s statement buffer or has already been transferred.
It is reset when the ExecuteCmd input is reset.

Active This signal output indicates that the associated function block is currently be-
ing executed on the robot. It is reset when the ExecuteCmd input is reset.

KRC_ConvFollow (>>> 6.14.14 "Tracking a workpiece on the conveyor"
Page 114)

KRC_ConvSkip (>>> 6.14.15 "Picking up a workpiece from the conveyor"
Page 115)

KRC_ActivateConvInterrupt (>>> 6.14.16 "Activating interrupts for monitoring" Page 117)

KRC_DeactivateConvInterrupt (>>> 6.14.17 "Deactivating interrupts for monitoring" Page 118)

Special functions (conveyor)

In order to be able to use these function blocks, the KUKA.Conveyor-
Tech technology package must be installed on the robot controller.

Special functions (VectorMove)

KRC_VectorMoveOn (>>> 6.14.18 "Activating a motion along a vector" Page 119)

KRC_VectorMoveOff (>>> 6.14.19 "Deactivating KRC_VectorMoveOn" Page 120)

In order to be able to use these function blocks, the KUKA.Vector-
Move technology package must be installed on the robot controller.

Special functions (workspaces)

KRC_WriteWorkspace (>>> 6.14.20 "Configuring Cartesian workspaces" Page 121)

KRC_ReadWorkspace (>>> 6.14.21 "Reading the configuration of Cartesian work-
spaces" Page 122)

KRC_WriteAxWorkspace (>>> 6.14.22 "Configuring axis-specific workspaces"
Page 123)

KRC_ReadAxWorkspace (>>> 6.14.23 "Reading the configuration of axis-specific work-
spaces" Page 124)

KRC_ReadWorkstates (>>> 6.14.24 "Reading the status of the workspaces"
Page 124)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Approximate positioning is not possible with the active output because the
next motion instruction is not sent until the previous motion has been execut-
ed. Approximate positioning is only possible if the Busy output of the previous
function block is connected to the ExecuteCmd input of the following block.

Done This signal output indicates that the associated function block has been suc-
cessfully executed by the robot. It is reset when the ExecuteCmd input is reset.

Error This signal output indicates that an error has occurred during execution of the
associated function block on the robot. In this case, the signal output ErrorID
contains an error number. It is reset when the ExecuteCmd input is reset.

ErrorID This signal output contains an error number.

The errors and error causes corresponding to the error number are described
here: (>>> 7 "Messages" Page 127)

Aborted This signal output is set either when the function block KRC_Abort is executed
or when a statement is executed in the ABORTING mode. It is reset when the
ExecuteCmd input is reset.

6.3.3 Signal sequence for execution of ExecuteCmd

Example The signal diagram applies in the following case:

 A statement has been transferred by means of ExecuteCmd and success-
fully executed.

Fig. 6-1: Signal diagram – ExecuteCmd successful

Item Description

1 The function block is transferred to the robot (= request to execute
the statement).

2 The statement is transferred.

3 The statement is currently being executed.

4 The statement was completed successfully. Neither has an error
occurred, nor has the statement been aborted, e.g. by
KRC_Abort.

The Error signal would be set instead of the Done signal in the
case of an error, and the Aborted signal would be set instead of
the Done signal if the statement is aborted.

5 If the ExecuteCmd input is reset, the outputs too are reset.
21 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

22 / 159

CODESYS Library
Variations  ExecuteCmd is reset before Done is set. The statement will be executed
in this case but the Done signal will not be set. This means there is no con-
firmation that the statement has been executed.

 ExecuteCmd is reset before Error or Aborted is set. The statement will be
aborted in this case but neither the Error nor the Aborted signal will be set.
This means there is no confirmation that the statement has been aborted.

 ExecuteCmd is reset before Active is set. In this case the function block
will be deleted from the robot’s statement buffer.

 ExecuteCmd is reset before Busy is set. The funcion block will not be
transferred to the robot in this case and the statement will therefore not be
executed.

6.4 Frequently used input/output signals in the MC function blocks

The MC function blocks differ from the KRC function blocks in that they corre-
spond to the PLC OPEN standard or are closer to it. The behavior of the Busy
signal output in particular is different for the MC function blocks. Here, the
ComDone signal output must be used for linking function blocks.

6.4.1 Input signals

AxisGroupIdx This signal input is used to set the number of the robot addressed by a function
block.

Execute If this signal is set, mxAutomation transfers the associated function block to
the robot. The function block is stored in a statement buffer by the robot, pro-
vided there is still sufficient space in the buffer. If the Execute input is reset,
mxAutomation deletes the function block from the buffer again unless execu-
tion of the statement has already begun.

6.4.2 Output signals

ComBusy This signal output indicates that the associated function block has been sent
from the PLC to the robot’s statement buffer and has been correctly trans-
ferred.

ComDone This signal output indicates that the associated function block has been sent
from the PLC to the robot’s statement buffer and has been correctly trans-
ferred. This signal output is identical to the Done signal output of the KRC
function blocks. We recommend using this signal output for the approximation
of motions.

Busy This signal output indicates that execution of the associated function block has
begun. However, it is possible that the function block has not yet been trans-
ferred to the robot’s statement buffer. In this respect, this signal output differs
from the Busy signal output of the KRC function blocks.

Active This signal output indicates that the associated function block is currently be-
ing executed on the robot. It is reset when the Execute input is reset.

Approximation is not possible with the Active output because the next motion
instruction is not sent until the previous one is executed. Approximation is only
possible if the ComDone output of the previous function block is connected to
the Execute input of the subsequent block.

Error This signal output indicates that an error has occurred during execution of the
associated function block on the robot. In this case, the signal output ErrorID
contains an error number. It is reset when the Execute input is reset.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
ErrorID This signal output contains an error number.

The errors and error causes corresponding to the error number are described
here: (>>> 7 "Messages" Page 127)

Command-

Aborted

This signal output indicates that execution of a statement or motion has been
aborted.

6.4.3 Signal sequence for execution of Execute

Example The signal diagram applies in the following case:

 A statement has been transferred by means of Execute and successfully
executed.

6.5 Structures for motion programming (STRUCT)

The data structures used for motion programming are described below.

Fig. 6-2: Signal diagram – Execute successful

Item Description

1 The function block is transferred to the robot (= request to execute
the statement).

2 The statement has been transferred (= is located in the robot’s
statement buffer). The ComDone and ComBusy outputs are set.

3 The statement is currently being executed.

4 The statement was completed successfully. Neither has an error
occurred, nor has the statement been aborted, e.g. by
KRC_Abort.

The Error signal would be set instead of the Done signal in the
case of an error, and the Aborted signal would be set instead of
the Done signal if the statement is aborted.

5 If the Execute input is reset, the outputs too are reset.
23 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

24 / 159

CODESYS Library
APO Approximation parameters for a KRC_Move motion command

PTP_APO (INT) Approximate positioning with PTP motions

CP_APO (INT) Approximate positioning with CP motions (LIN, CIRC)

Element Type Description

PTP_MODE PTP_APO (INT) Specifies whether and how the end point of a PTP motion
is approximated.

 (>>> "PTP_APO (INT)" Page 24)

CP_MODE CP_APO (INT) Specifies whether and how the end point of a CP motion
(LIN, CIRC) is approximated.

 (>>> "CP_APO (INT)" Page 24)

CPTP INT Approximation distance for PTP motions (= furthest dis-
tance before the end point at which approximate position-
ing can begin)

 1 … 100 %

Maximum distance 100 %: half the distance between the
start point and the end point relative to the contour of the
PTP motion without approximate positioning

CDIS REAL Distance parameter (unit: mm)

Approximation starts, at the earliest, when the distance to
the end point falls below the value specified here.

CORI REAL Orientation parameter (unit: °)

Approximation starts, at the earliest, when the dominant
orientation angle (rotation or swiveling of the longitudinal
axis of the tool) falls below the angle distance to the end
point specified here.

CVEL INT Velocity parameter

 1 … 100 %

The approximation parameter specifies the percentage of
the programmed velocity at which the approximate posi-
tioning process is started, at the earliest, in the deceleration
phase towards the end point.

Value Name Description

0 – Without approximate positioning (default)

1 C_PTP Causes the end point to be approximated.

The specification C_PTP is sufficient for PTP-PTP approximate
positioning. In the case of PTP-CP approximation, i.e. if the
approximated PTP block is followed by a LIN or CIRC block,
another approximate positioning parameter must also be speci-
fied.

2 C_PTP, C_DIS PTP-CP approximation with distance parameter

3 C_PTP, C_ORI PTP-CP approximation with orientation parameter

4 C_PTP, C_VEL PTP-CP approximation with velocity parameter

Value Name Description

0 – Without approximate positioning (default)

1 C_DIS Approximate positioning with distance parameter
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
COORDSYS Coordinate system to which the Cartesian coordinates of the end position refer
in a KRC_Move or KRC_Jog motion command

E6AXIS Angular values or translation values of the axes in an axis group for a
KRC_MoveAxis motion command

E6POS Cartesian coordinates of the end position for a KRC_Move or KRC_Jog mo-
tion command

2 C_ORI Approximate positioning with orientation parameter

3 C_VEL Approximate positioning with velocity parameter

Value Name Description

Element Type Description

Tool INT Number of the TOOL coordinate system

 -1: coordinate system is not changed

 0: NULLFRAME

 1 … 16: TOOL_DATA[1 … 16]

Default: -1

Base INT Number of the BASE coordinate system

 -1: coordinate system is not changed

 0: NULLFRAME

 1 … 32: BASE_DATA[1 … 32]

Default: -1

IPO_MODE INT Interpolation mode

 0: The tool is a fixed tool (#BASE).

 1: The tool is mounted on the mounting flange (#TCP).

Default: 0

Element Type Description

A1 REAL Position of robot axis A1 (unit: mm or °)

A2 REAL Position of robot axis A2 (unit: mm or °)

A3 REAL Position of robot axis A3 (unit: mm or °)

A4 REAL Position of robot axis A4 (unit: mm or °)

A5 REAL Position of robot axis A5 (unit: mm or °)

A6 REAL Position of robot axis A6 (unit: mm or °)

E1 REAL Position of external axis E1 (optional), (unit: mm or °)

E2 REAL Position of external axis E2 (optional), (unit: mm or °)

E3 REAL Position of external axis E3 (optional), (unit: mm or °)

E4 REAL Position of external axis E4 (optional), (unit: mm or °)

E5 REAL Position of external axis E5 (optional), (unit: mm or °)

E6 REAL Position of external axis E6 (optional), (unit: mm or °)

Element Type Description

X REAL Offset in X direction (unit: mm)

Y REAL Offset in Y direction (unit: mm)

Z REAL Offset in Z direction (unit: mm)

A REAL Rotation about Z axis

 -180° … +180°
25 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

26 / 159

CODESYS Library
FRAME Space coordinates and orientation for the TOOL or BASE coordinate system

6.6 Integer variables

Some of the integer variables used in the function blocks are described below.

BufferMode Mode in which a statement is executed on the robot controller

B REAL Rotation about Y axis

 -180° … +180°

C REAL Rotation about X axis

 -180° … +180°

S INT Status The position (X, Y, Z) and orientation (A, B, C)
values of the TCP are not sufficient to define
the robot position unambiguously, as different
axis positions are possible for the same TCP.
Status and Turn serve to define an unambigu-
ous position that can be achieved with different
axis positions.

Note: Further information about Status and
Turn is contained in the “Operating and Pro-
gramming Instructions for System Integrators”.

T INT Turn

E1 REAL Position of external axis E1 (optional), (unit: mm or °)

E2 REAL Position of external axis E2 (optional), (unit: mm or °)

E3 REAL Position of external axis E3 (optional), (unit: mm or °)

E4 REAL Position of external axis E4 (optional), (unit: mm or °)

E5 REAL Position of external axis E5 (optional), (unit: mm or °)

E6 REAL Position of external axis E6 (optional), (unit: mm or °)

Element Type Description

Element Type Description

X REAL Offset in X direction (unit: mm)

Y REAL Offset in Y direction (unit: mm)

Z REAL Offset in Z direction (unit: mm)

A REAL Orientation of the Z axis

 -180° … +180°

B REAL Orientation of the Y axis

 -180° … +180°

C REAL Orientation of the X axis

 -180° … +180°

Value Name Description

0 DIRECT The statement is executed directly by the Submit interpreter
(Submit program).

Note: This mode is not available for certain function blocks.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
QueueMode Mode in which a statement is executed on the robot controller

CircType Orientation control for circular motion

OriType Orientation control for the TCP

Status Current state of the mxA interface (function block KRC_ReadMXAStatus)

1 ABORTING The statement is executed immediately by the robot inter-
preter (main program). First, all active motions and buffered
statements are aborted and the robot is braked to a stand-
still.

2 BUFFERED The statement is buffered. Buffered statements are executed
by the robot interpreter (main program) according to the
FIFO principle.

Value Name Description

Value Name Description

0 DIRECT The statement is executed directly by the submit interpreter
(Submit program).

Note: This mode is not available for certain function blocks.

1 ABORTING The statement is executed immediately by the robot inter-
preter (main program). First, all active motions and buffered
statements are aborted and the robot is braked to a stand-
still.

2 BUFFERED The statement is buffered. Buffered statements are executed
by the robot interpreter (main program) according to the
FIFO principle.

Value Name Description

0 BASE Base-related orientation control during a circular motion

1 PATH Path-related orientation control during a circular motion

Value Name Description

0 VAR The orientation of the TCP changes continuously during the
motion.

1 CONSTANT The orientation of the TCP remains constant during the
motion.

2 JOINT The orientation of the TCP changes continuously during the
motion, but not uniformly. This is done by linear transforma-
tion (axis-specific motion) of the wrist axis angles.

Note: This orientation type is not suitable if a specific orienta-
tion must be maintained exactly.
27 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

28 / 159

CODESYS Library
6.7 Data of a Cartesian workspace

The data of a Cartesian workspace which are used in certain function blocks
are described below.

Origin and orien-

tation

The origin and orientation of a Cartesian workspace are specified with the fol-
lowing elements. These are relative to the WORLD coordinate system.

Dimensions The dimensions of a Cartesian workspace are specified with the following el-
ements.

6.8 Data of an axis-specific workspace

The data of an axis-specific workspace which are used in certain function
blocks are described below.

Value Name Description

0 Invalid No function blocks can be processed.

Frequent causes:

 Submit interpreter stopped or deselected

 I/O error due to incorrect bus configuration

 Robot controller not started.

1 Error An mxA error message is active.

The error message must be reset with the function block
KRC_MessageReset.

2 ProgramStopped Robot interpreter is not active (main program has been
stopped or deselected).

3 StandBy Robot interpreter is active and waiting for statements, e.g.
waiting for an input.

4 Executing Robot interpreter is active (main program is being executed).

5 Aborting Robot stopped and all statements aborted.

Element Data type Unit Minimum Maximum

X REAL mm - -

Y REAL mm - -

Z REAL mm - -

A REAL ° -180 180

B REAL ° -180 180

C REAL ° -180 180

Element Data type Unit

X1 REAL mm

X2 REAL mm

Y1 REAL mm

Y2 REAL mm

Z1 REAL mm

Z2 REAL mm
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Robot axes

External axes

6.9 Programming tips for KUKA.PLC mxAutomation

Instancing The following function blocks may only be instanced once per robot. In the
case of multiple instancing, the signals of the most recently called function
block are output.

 KRC_ReadAxisGroup

 KRC_Intialize

 KRC_SetOverride

 KRC_AutomaticExternal

 KRC_AutoStart

 KRC_Diag

 KRC_WriteAxisGroup

All other function blocks used in the mxAutomation robot program can be cre-
ated as a multi-instance call. The advantage of this is that not every function
block requires a data block of its own.

Element Data type Unit Description

A1_N REAL mm/° Lower limit for axis angle

A2_N REAL mm/°

A3_N REAL mm/°

A4_N REAL mm/°

A5_N REAL mm/°

A6_N REAL mm/°

A1_P REAL mm/° Upper limit for axis angle

A2_P REAL mm/°

A3_P REAL mm/°

A4_P REAL mm/°

A5_P REAL mm/°

A6_P REAL mm/°

Element Data type Unit Description

E1_N REAL mm/° Lower limit for axis angle

E2_N REAL mm/°

E3_N REAL mm/°

E4_N REAL mm/°

E5_N REAL mm/°

E6_N REAL mm/°

E1_P REAL mm/° Upper limit for axis angle

E2_P REAL mm/°

E3_P REAL mm/°

E4_P REAL mm/°

E5_P REAL mm/°

E6_P REAL mm/°

The MxA_CODESYS_Template_PN template supplied on the USB
stick (Template folder) contains all the function blocks and a pro-
gramming example with the fundamental function blocks. It is advis-

able to use this template for creating an mxAutomation robot program.
29 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

30 / 159

CODESYS Library
ExecuteCmd  As far as possible, an ExecuteCmd input should only ever be simultane-
ously set for a function block of the same robot.

 After an ExecuteCmd input has been activated, do not reset it again until
the function block has confirmed execution of the statement by means of
the Done signal or indicated by means of the Error or Aborted signal that
the statement has not been executed. If the ExecuteCmd input is reset be-
forehand, there is no confirmation that the statement has been executed.

 By linking the Busy output of a function block to the ExecuteCmd input of
the following block, it is possible to transfer a sequence of consecutive
functions to the statement buffer and to execute them.

 ExecuteCmd should not be used as a start signal for a sequence of state-
ments. This might result in the transfer of the following statements taking
up valuable time.

Execution of a statement sequence should be triggered with
KRC_WaitForInput instead. Linking the Busy and ExecuteCmd signals en-
sures that execution of the planned steps can be started without delay as
soon as the corresponding input signal is received.

Program override  If the mxAutomation robot program is started by a RESET at the function
block KRC_AutomaticExternal, set the program override to a value greater
than zero. Only then is the robot interpreter executed in a loop.

 While the mxAutomation robot program is being executed, the program
override can be set to zero without problems.

Approximate

positioning

Approximate positioning means that the motion does not stop exactly at the
programmed point. Approximate positioning is an option that can be selected
during motion programming.

 Approximate positioning is not possible if the motion instruction is followed
by an instruction that triggers an advance run stop.

 Approximate positioning is only possible if the motion statement is fol-
lowed by a statement that is transferred in BUFFERED mode.

6.9.1 Programming example (template MxA_CODESYS_Template_PN)

Description This example illustrates the basic structure of an mxAutomation robot pro-
gram.

Precondition In order to be able to move the robot using function blocks, the following pre-
conditions must be met:

 Submit interpreter is running.

 Drives are activated.

 Robot is in Automatic External mode.

 mxAutomation robot program is selected and started.

Procedure  Create a simple application program.

Application

program

The robot is to be moved to a position by means of a PTP motion. The follow-
ing function blocks are required for this:

 Function block KRC_Initialize to initialize the mxA interface on the robot
controller

The versions of the PLC library and mxA interface must match. The mxA
interface is initialized when the Done signal on the module is TRUE.

 Function block KRC_Error to read and reset mxA interface errors

If an error is active, the motion enable of the robot is deactivated.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
 Function blocks KRC_AutomaticExternal and KRC_AutoStart to activate
the Automatic External interface (KRC_AutoStart automatically controls
KRC_AutomaticExternal)

Important signals that must be mapped (KRC_AutomaticExternal):

 ENABLE_EXT (Robot may be moved in Automatic External mode.)

 ENABLE_T1 (Robot may be moved in T1 mode.)

 MOVE_ENABLE (Grants the robot motion enable.)

Important signals that must be mapped (KRC_AutoStart):

 AxisGroupIdx

 ExecuteReset

The following signals are set automatically by KRC_AutoStart.

 DRIVES_ON (The drives of the robot are activated by means of a
pulse.)

 CONF_MESS (Resets the error messages of the robot controller.)

 RESET (Selects the mxAutomation robot program and starts it.)

 Function block KRC_SetOverride to set the program override of the robot

 Function block KRC_MoveDirectAbsolute to move to the desired position
by means of a PTP motion

The motion has been executed successfully when the Done signal on the
module is TRUE.

6.10 Administrative functions

6.10.1 Reading PLC-specific communication into a non-PLC-specific structure

Description The function block KRC_ReadAxisGroup translates the CODESYS-specific
interface to the robot controller into the non-PLC-specific structure of an axis
group.

The function block KRC_Error contains the function blocks
KRC_ReadmxAError and KRC_MessageReset, thereby simplifying
the programming. Furthermore, the current state of the mxA interface

can be read with KRC_Error.

If the mxAutomation robot program is started by a RESET at the func-
tion block KRC_AutomaticExternal, the override must be greater than
zero.

The function block KRC_ReadAxisGroup must always be called at
the start of the program. Access to the axis group structure is only
permissible between KRC_ReadAxisGroup and

KRC_WriteAxisGroup.

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.

Fig. 6-3: Function block KRC_ReadAxisGroup
31 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

32 / 159

CODESYS Library
Inputs

Outputs

6.10.2 Writing a non-PLC-specific structure into PLC-specific communication

Description The function block KRC_WriteAxisGroup translates the non-PLC-specific
structure of an axis group into the CODESYS-specific interface to the robot
controller.

Inputs

Outputs

6.10.3 Initializing the mxA interface

Description The function block KRC_Initialize initializes the mxA interface on the robot
controller. Statements cannot be transferred until the interface has been ini-
tialized.

During initialization, the versions of the PLC library and mxA interface are
compared and checked for compatibility. The 1st and 2nd digits of the version
must match.

Parameter Type Description

KRC4_Input POINTER TO
BYTE

Structure map of the input range of the
robot controller

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block

The function block KRC_WriteAxisGroup must always be called at
the end of the program. Access to the axis group structure is only per-
missible between KRC_ReadAxisGroup and KRC_WriteAxisGroup.

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.

Fig. 6-4: Function block KRC_WriteAxisGroup

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

KRC4_Output POINTER
TO BYTE

Structure map of the output range of
the robot controller

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

6.10.4 Setting the program override (POV)

Description The function block KRC_SetOverride sets the program override.

Program override is the velocity of the robot during program execution. The
program override is specified as a percentage of the programmed velocity.
The override setting is transferred to the robot during every PLC cycle. If the
override setting is changed, this change is detected by the robot and applied.

The override is only applied in Automatic External mode so that the override
can be set via the smartPAD in the test modes T1 and T2, e.g. for teaching.

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.

Fig. 6-5: Function block KRC_Initialize

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

ErrorID DINT Error number

KRC_Serial DINT Serial number of the robot controller

KRC_Major DINT Version identifier of the mxA interface (1st digit)

KRC_Minor DINT Version identifier of the mxA interface (2nd digit)

KRC_Revision DINT Version identifier of the mxA interface (3rd digit)

PLC_Major DINT Version identifier of the PLC library (1st digit)

PLC_Minor DINT Version identifier of the PLC library (2nd digit)

PLC_Revision DINT Version identifier of the PLC library (3rd digit)

Done BOOL TRUE = initialization successfully completed

Error BOOL TRUE = error in function block

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.
33 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

34 / 159

CODESYS Library
Inputs

Outputs

6.10.5 Activating and reading Automatic External signals from the robot controller

Description The function block KRC_AutomaticExternal activates the Automatic External
interface and reads the interface signals.

Inputs

Fig. 6-6: Function block KRC_SetOverride

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Override INT Set the program override.

 0 … 100 %

Parameter Type Description

ActualOver-
ride

INT Current override setting

 0 … 100%

ErrorID DINT Error number

Valid BOOL TRUE = data are valid

Error BOOL TRUE = error in function block

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.

Fig. 6-7: Function block KRC_AutomaticExternal
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

Parameter Type
Signal name

(KRL)
Description

AxisGroupIdx INT — Index of axis group

 1 … 5

MOVE_ENABLE BOOL $MOVE_ENABLE TRUE = motion enable for the robot

Note: This system variable is monitored
by the robot controller in all operating
modes.

CONF_MESS BOOL $CONF_MESS TRUE = acknowledgement of error mes-
sages

DRIVES_ON BOOL $DRIVES_ON TRUE = activation of the robot drives

DRIVES_OFF BOOL $DRIVES_OFF TRUE = deactivation of the robot drives

EXT_START BOOL $EXT_START TRUE = start or continuation of robot pro-
gram execution

RESET BOOL — Selects the mxAutomation robot program
in the case of a rising edge of the signal
and starts it. First, all buffered statements
are aborted.

ENABLE_T1 BOOL — TRUE = enabling of T1 mode

The signal $MOVE_ENABLE is sup-
pressed in the absence of enabling. The
robot cannot be moved.

ENABLE_T2 BOOL — TRUE = enabling of T2 mode

The signal $MOVE_ENABLE is sup-
pressed in the absence of enabling. The
robot cannot be moved.

ENABLE_AUT BOOL — TRUE = enabling of Automatic mode

The signal $MOVE_ENABLE is sup-
pressed in the absence of enabling. The
robot cannot be moved.

ENABLE_EXT BOOL — TRUE = enabling of Automatic External
mode

The signal $MOVE_ENABLE is sup-
pressed in the absence of enabling. The
robot cannot be moved.

Parameter Type
Signal name

(KRL)
Description

Valid BOOL — TRUE = data are valid

RC_RDY1 BOOL $RC_RDY1 TRUE = robot controller ready for pro-
gram start

ALARM_STOP BOOL $ALARM_STOP FALSE = robot stop by EMERGENCY
STOP

USER_SAFE BOOL $USER_SAF FALSE = operator safety violated

PERI_RDY BOOL $PERI_RDY TRUE = robot drives activated

ROB_CAL BOOL $ROB_CAL TRUE = robot axes mastered

IO_ACTCONF BOOL $IO_ACTCONF TRUE = Automatic External interface
active
35 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

36 / 159

CODESYS Library
6.10.6 Reading the current robot position

Description The function block KRC_ReadActualPosition reads the current Cartesian ac-
tual position of the robot $POS_ACT. This is updated cyclically.

Inputs

STOPMESS BOOL $STOPMESS TRUE = safety circuit interrupted (robot
fault)

INT_E_STOP BOOL Int. E-Stop TRUE = external EMERGENCY STOP

FALSE = EMERGENCY STOP device
pressed on the smartPAD

PRO_ACT BOOL $PRO_ACT TRUE = process active at robot level

APPL_RUN BOOL APPL_RUN TRUE = robot program running

PRO_MOVE BOOL $PRO_MOVE TRUE = synchronous robot motion active

ON_PATH BOOL $ON_PATH TRUE = robot on programmed path

NEAR_POSRET BOOL $NEAR_POSRET TRUE = robot near most recently saved
position on the programmed path (after
leaving path)

ROB_STOPPED BOOL $ROB_STOPPED TRUE = robot is at standstill

T1 BOOL $T1 TRUE = operating mode T1 selected

T2 BOOL $T2 TRUE = operating mode T2 selected

AUT BOOL $AUT TRUE = operating mode Automatic
selected

EXT BOOL $EXT TRUE = operating mode Automatic
External selected

Parameter Type
Signal name

(KRL)
Description

Fig. 6-8: Function block KRC_ReadActualPosition

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.7 Reading the current axis position

Description The function block KRC_ReadActualAxisPosition reads the current axis-spe-
cific robot position $AXIS_ACT. This is updated cyclically.

Inputs

Outputs

Parameter Type Description

Valid BOOL TRUE = data are valid

Position E6POS Current Cartesian actual position $POS_ACT

The data structure E6POS contains all compo-
nents of the Cartesian actual position (= posi-
tion of the TCP relative to the origin of the
BASE coordinate system).

X, Y, Z REAL Current actual position in the X, Y, Z directions

A, B, C REAL Orientation A, B, C in the current actual posi-
tion

Status INT Status of the current actual position

Turn INT Turn of the current actual position

Tool INT Number of the currently used TOOL coordinate
system $ACT_TOOL

Base INT Number of the currently used BASE coordinate
system $ACT_BASE

IPOMode INT Current interpolation mode in the main run
$IPO_MODE_C

Fig. 6-9: Function block KRC_ReadActualAxisPosition

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Valid BOOL TRUE = data are valid

AxisPosition E6AXIS Current axis-specific robot position
$AXIS_ACT

The data structure E6AXIS contains all the axis
positions of the axis group.

A1 … A6 REAL Current position of robot axes A1 to A6

E1 … E6 REAL Current position of external axes E1 to E6
37 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

38 / 159

CODESYS Library
6.10.8 Reading the current path velocity

Description The function block KRC_ReadActualVelocity reads the current actual velocity
at the TCP of the robot $VEL_ACT.

Inputs

Outputs

6.10.9 Reading the current axis velocity

Description The function block KRC_ReadActualAxisVelocity reads the current axis-spe-
cific velocity of the robot $VEL_AXIS_ACT.

Inputs

The current path velocity can only be read for CP motions in program
mode.

Fig. 6-10: Function block KRC_ReadActualVelocity

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Valid BOOL TRUE = data are valid

Value REAL Current path velocity $VEL_ACT (unit: m/s)

Fig. 6-11: Function block KRC_ReadActualAxisVelocity

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.10 Reading the current robot acceleration

Description The function block KRC_ReadActualAcceleration reads the current Cartesian
acceleration at the TCP of the robot $ACC_CAR_ACT.

Inputs

Outputs

Parameter Type Description

ErrorID DINT Error number

A1 … A6 INT Current motor speed (-100% … +100%) of
A1 … A6 in the main run, relative to the maxi-
mum motor speed ($VEL_AXIS_MA)

Note: The actual resulting speed of the robot
axis is dependent on the gear ratio.

E1 … E6 INT Current motor speed (-100% … +100%) of
E1 … E6 in the main run, relative to the maxi-
mum motor speed ($VEL_AXIS_MA)

Note: The actual resulting speed of the exter-
nal axis is dependent on the gear ratio.

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

The current Cartesian acceleration about angles A, B, C is not evalu-
ated.

Fig. 6-12: Function block KRC_ReadActualAcceleration

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Parameter Type Description

ErrorID DINT Error number

ACC_ABS REAL Current Cartesian acceleration relative to the
absolute value of the overall acceleration lX +

Y +Zl (unit: m/s2)

X, Y, Z REAL Current Cartesian acceleration in the X, Y, Z

direction (unit: m/s2)
39 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

40 / 159

CODESYS Library
6.10.11 Reading a digital input

Description The function block KRC_ReadDigitalInput polls and reads a digital input of the
robot controller. This function is executed in the Submit interpreter.

Inputs

Outputs

6.10.12 Reading digital inputs 1 to 8

Description The function block KRC_ReadDigitalInput1To8 polls and reads the digital in-
puts 1 to 8 of the robot controller. This function is executed in the Submit in-
terpreter. The input values can be read continuously without triggering a
blockade.

A, B, C REAL Current Cartesian acceleration about angles A,
B, C

0 m/s2 (not calculated)

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Parameter Type Description

Fig. 6-13: Function block KRC_ReadDigitalInput

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Number INT Number of the digital input

 1 … 2 048

Parameter Type Description

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Value BOOL Value of the digital input

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

6.10.13 Reading multiple digital inputs

Description The function block KRC_ReadDigitalInputArray polls and reads multiple digital
inputs of the robot controller. This function is executed in the Submit interpret-
er.

Inputs

Fig. 6-14: Function block KRC_ReadDigitalInput1To8

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Valid BOOL TRUE = data are valid

IN1 … IN8 BOOL Actual value of the digital input $IN[1] … $IN[8]

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-15: Function block KRC_ReadDigitalInputArray

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Startnumber INT Number of the first digital output that is polled

 1 … 2 048

Length INT Number of inputs that are polled

 1 … 2 00

Note: If the number of inputs to be read
exceeds the 1 … 2048 range, no error mes-
sage is generated. Inputs outside of this range
are not read.
41 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

42 / 159

CODESYS Library
Outputs

6.10.14 Reading a digital output

Description The function block KRC_ReadDigitalOutput polls and reads a digital output of
the robot controller. This function is executed in the Submit interpreter.

Inputs

Outputs

6.10.15 Writing a digital output

Description The function block KRC_WriteDigitalOutput writes a digital output or a pulse
output on the robot controller. This function is executed in the Submit interpret-
er.

Inputs

Parameter Type Description

Done BOOL TRUE = statement has been executed

Values BOOL[200] Values of the digital inputs

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-16: Function block KRC_ReadDigitalOutput

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Number INT Number of the digital output

 1 … 2 048

Parameter Type Description

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Value BOOL Value of the digital output

Error BOOL TRUE = error in function block

Fig. 6-17: Function block KRC_WriteDigitalOutput
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.16 Writing digital outputs 1 to 8

Description The function block KRC_WriteDigitalOutput1To8 writes the digital outputs 1 to
8 on the robot controller. This function is executed in the Submit interpreter.
The output values can be written continuously without triggering a blockade.

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

Number INT Number of the digital output

 1 … 2 048

Note: It must be ensured that no outputs are used that are
already assigned by the system. Example: $OUT[1025] is
always TRUE.

Value BOOL Value of the digital output

Pulse REAL Length of the pulse

 0.0 s

No pulse active

 0.1 … 3.0 s

Pulse interval = 0.1 s; pulse durations outside this range
of values trigger a program stop.

_Continue BOOL TRUE = output written in advance run

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-18: Function block KRC_WriteDigitalOutput1To8
43 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

44 / 159

CODESYS Library
Inputs

Outputs

6.10.17 Reading an analog input

Description The function block KRC_ReadAnalogInput polls and reads an analog input of
the robot controller. This function is executed in the Submit interpreter.

Inputs

Outputs

6.10.18 Reading an analog output

Description The function block KRC_ReadAnalogOutput polls and reads an analog output
of the robot controller. This function is executed in the Submit interpreter.

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

OUT1 … OUT8 BOOL Setpoint value of the output
$OUT[1] … $OUT[8]

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block

Fig. 6-19: Function block KRC_ReadAnalogInput

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Number INT Number of the analog input

 1 … 32

Parameter Type Description

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Value REAL Value of the analog input

Error BOOL TRUE = error in function block

Fig. 6-20: Function block KRC_ReadAnalogOutput
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

6.10.19 Writing an analog output

Description The function block KRC_WriteAnalogOutput polls and writes an analog output
of the robot controller. This function is executed in the Submit interpreter.

Inputs

Outputs

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Number INT Number of the analog output

 1 … 32

Parameter Type Description

Value REAL Value of the analog output

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Fig. 6-21: Function block KRC_WriteAnalogOutput

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

Number INT Number of the analog output

 1 … 32

Value REAL Value of the analog output

_Continue BOOL TRUE = output written in advance run

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred
45 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

46 / 159

CODESYS Library
6.10.20 Wait statement (read digital input)

Description The function block KRC_WaitForInput stops the program until a digital input
takes the defined value. Program execution is then resumed.

Inputs

Outputs

6.10.21 Selecting the tool, base and interpolation mode

Description The function block KRC_SetCoordSys can be used to set the tool, base and
interpolation mode without having to execute a motion at the same time. This

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Parameter Type Description

Fig. 6-22: Function block KRC_WaitForInput

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

Number INT Number of the digital input

 1 … 2 048

Value BOOL Setpoint value of the digital input

iContinue BOOL TRUE = poll input in advance run

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = statement is currently being executed
(robot is waiting for an input)

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement has been aborted

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
function is required, for example, to read the current position in different coor-
dinate systems.

Inputs

Outputs

6.10.22 Reading TOOL data

Description The function block KRC_ReadToolData reads the TOOL data of the robot.

Inputs

Fig. 6-23: Function block KRC_SetCoordSys

Parameter Type Description

CoordinateSys-
tem

COORDSYS Coordinate system to which the specified values refer

 (>>> "COORDSYS" Page 25)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of
the signal.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-24: Function block KRC_ReadToolData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5
47 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

48 / 159

CODESYS Library
Outputs

6.10.23 Writing TOOL data

Description The function block KRC_WriteToolData writes the TOOL data of the robot.

Inputs

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

ToolNo INT Number of the TOOL coordinate system

 1 … 16: TOOL_DATA[1 … 16]

Parameter Type Description

Parameter Type Description

ToolData FRAME The data structure FRAME contains the follow-
ing TOOL data:

 X, Y, Z: Origin of the TOOL coordinate sys-
tem relative to the FLANGE coordinate sys-
tem

 A, B, C: Orientation of the TOOL coordinate
system relative to the FLANGE coordinate
system

 (>>> "FRAME" Page 26)

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Fig. 6-25: Function block KRC_WriteToolData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

ToolData FRAME The data structure FRAME contains the following TOOL data:

 X, Y, Z: Origin of the TOOL coordinate system relative to
the FLANGE coordinate system

 A, B, C: Orientation of the TOOL coordinate system rela-
tive to the FLANGE coordinate system

 (>>> "FRAME" Page 26)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.24 Reading BASE data

Description The function block KRC_ReadBaseData reads the BASE data of the robot.

Inputs

Outputs

ToolNo INT Number of the TOOL coordinate system

 1 … 16: TOOL_DATA[1 … 16]

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-26: Function block KRC_ReadBaseData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

BaseNo INT Number of the BASE coordinate system

 1 … 32: BASE_DATA[1 … 32]

Parameter Type Description

BaseData FRAME The data structure FRAME contains the follow-
ing BASE data:

 X, Y, Z: Origin of the BASE coordinate sys-
tem relative to the WORLD coordinate sys-
tem

 A, B, C: Orientation of the BASE coordinate
system relative to the WORLD coordinate
system

 (>>> "FRAME" Page 26)

ErrorID DINT Error number
49 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

50 / 159

CODESYS Library
6.10.25 Writing BASE data

Description The function block KRC_WriteBaseData writes the BASE data of the robot.

Inputs

Outputs

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Parameter Type Description

Fig. 6-27: Function block KRC_WriteBaseData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

BaseData FRAME The data structure FRAME contains the following BASE data:

 X, Y, Z: Origin of the BASE coordinate system relative to
the WORLD coordinate system

 A, B, C: Orientation of the BASE coordinate system rela-
tive to the WORLD coordinate system

 (>>> "FRAME" Page 26)

BaseNo INT Number of the BASE coordinate system

 1 … 32: BASE_DATA[1 … 32]

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.10.26 Reading the load data

Description The function block KRC_ReadLoadData reads the load data of the robot (pay-
load data or supplementary load data). This function is executed in the Submit
interpreter.

Inputs

Outputs

6.10.27 Writing load data

Description The function block KRC_WriteLoadData writes the load data of the robot (pay-
load data or supplementary load data).

Fig. 6-28: Function block KRC_ReadLoadData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Tool INT Number of the TOOL coordinate system for
reading the payload data or number for reading
the supplementary load data

 1 … 16: TOOL_DATA[1 … 16]

 -1: Supplementary load A1

 -2: Supplementary load A2

 -3: Supplementary load A3

Parameter Type Description

M REAL Mass

X, Y, Z REAL Position of the center of gravity relative to the
flange

A, B, C REAL Orientation of the principal inertia axes relative
to the flange

JX, JY, JZ REAL Mass moments of inertia

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block
51 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

52 / 159

CODESYS Library
Inputs

Outputs

Fig. 6-29: Function block KRC_WriteLoadData

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

Tool INT Number of the TOOL coordinate system for writing the pay-
load data or number for writing the supplementary load data

 1 … 16: TOOL_DATA[1 … 16]

 -1: Supplementary load A1

 -2: Supplementary load A2

 -3: Supplementary load A3

M REAL Mass

X, Y, Z REAL Position of the center of gravity relative to the flange

A, B, C REAL Orientation of the principal inertia axes relative to the flange

JX, JY, JZ REAL Mass moments of inertia

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.10.28 Reading the software limit switches of the robot axes

Description The function block KRC_ReadSoftEnd reads the software limit switches of the
robot axes. This function is executed in the Submit interpreter.

Inputs

Outputs

6.10.29 Reading the software limit switches of the external axes

Description The function block KRC_ReadSoftEndExt reads the software limit switches of
the external axes. This function is executed in the Submit interpreter.

Fig. 6-30: Function block KRC_ReadSoftEnd

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Parameter Type Description

A1_Min …
A6_Min

REAL Negative software limit switch of axis A1 … A6

A1_Max …
A6_Max

REAL Positive software limit switch of axis A1 … A6

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block
53 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

54 / 159

CODESYS Library
Inputs

Outputs

6.10.30 Writing the software limit switches of the robot axes

Description The function block KRC_WriteSoftEnd writes the software limit switches of the
robot axes.

Fig. 6-31: Function block KRC_ReadSoftEndExt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Parameter Type Description

E1_Min …
E6_Min

REAL Negative software limit switch of axis E1 … E6

E1_Max …
E6_Max

REAL Positive software limit switch of axis E1 … E6

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Fig. 6-32: Function block KRC_WriteSoftEnd
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

6.10.31 Writing the software limit switches of the external axes

Description The function block KRC_WriteSoftEndExt writes the software limit switches of
the external axes.

Inputs

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

A1_Min …
A6_Min

REAL Negative software limit switch of axis A1 … A6

(Unit: mm or °)

A1_Max …
A6_Max

REAL Positive software limit switch of axis A1 … A6

(Unit: mm or °)

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-33: Function block KRC_WriteSoftEndExt
55 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

56 / 159

CODESYS Library
Outputs

6.10.32 Declaring interrupts

Description The function block KRC_DeclareInterrupt declares an interrupt to a digital in-
put. There are 8 predefined interrupts available for this.

Syntax GLOBAL INTERRUPT DECL 90+Interrupt WHEN $IN[Input] == InputValue
DO Subprogram

Inputs

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

E1_Min …
E6_Min

REAL Negative software limit switch of axis E1 … E6

(Unit: mm or °)

E1_Max …
E6_Max

REAL Positive software limit switch of axis E1 … E6

(Unit: mm or °)

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-34: Function block KRC_DeclareInterrupt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.33 Activating interrupts

Description The function block KRC_ActivateInterrupt activates a previously declared in-
terrupt. There are 8 predefined interrupts available for this.

An interrupt cannot be processed until the interrupt has been activated by the
main run of the robot interpreter. The function block KRC_WaitForInput can be
used to monitor and check whether an interrupt is active.

Interrupt INT Number of the interrupt

 1 … 8

Input INT Number of the digital input to which the interrupt is declared

 1 … 2 048

Note: It must be ensured that no inputs are used that are
already assigned by the system. Example: $IN[1025] is
always TRUE.

InputValue BOOL TRUE = statement is executed in the case of a rising edge of
the signal.

FALSE = statement is executed in the case of a falling edge
of the signal.

Reaction INT Reaction to the interrupt

 0: BRAKE F + HALT

 1: BRAKE + HALT

 2: BRAKE F + WAIT FOR $IN[Input]<>InputValue

 3: BRAKE + WAIT FOR $IN[Input]<>InputValue

 4: BRAKE F + WAIT FOR KRC_Continue

 5: BRAKE + WAIT FOR KRC_Continue

 6: BRAKE F + WAIT FOR $IN[Input]<>InputValue AND
KRC_Continue

 7: BRAKE + WAIT FOR $IN[Input]<>InputValue AND
KRC_Continue

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Done BOOL TRUE = statement has been processed in the advance run

Note: The statement can no longer be aborted. Exception:
Program is deselected or reset.

Aborted BOOL TRUE = statement was aborted before it was processed in
the advance run

Error BOOL TRUE = error in function block
57 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

58 / 159

CODESYS Library
Inputs

Outputs

6.10.34 Deactivating interrupts

Description The function block KRC_DeactivateInterrupt deactivates a previously de-
clared interrupt. There are 8 predefined interrupts available for this.

Syntax INTERRUPT OFF 90+Interrupt

Inputs

Fig. 6-35: Function block KRC_ActivateInterrupt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.

Interrupt INT Number of the interrupt

 1 … 8

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Done BOOL TRUE = statement has been processed in the advance run

Note: The signal does not indicate whether the interrupt has
really been triggered or activated by the main run.

Aborted BOOL TRUE = statement was aborted before it was processed in
the advance run

Error BOOL TRUE = error in function block

Fig. 6-36: Function block KRC_DeactivateInterrupt
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.35 Reading the state of an interrupt

Description The function block KRC_ReadInterruptState reads the state of an interrupt in
the advance run. This is updated cyclically.

A distinction can be made between the state of the interrupt in the advance run
and the state in the main run.

Inputs

Outputs

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.

Interrupt INT Number of the interrupt

 1 … 8

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-37: Function block KRC_ReadInterruptState

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Interrupt INT Number of the interrupt

 1 … 8
59 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

60 / 159

CODESYS Library
6.10.36 Activating a path-related switching action (TRIGGER WHEN DISTANCE)

Description The function block KRC_SetDistanceTrigger triggers a path-related switching
action in the case of PTP or LIN motions.

The Trigger triggers a defined statement. The statement refers to the start
point or end point of the motion block in which the Trigger is situated in the pro-
gram. The statement is executed parallel to the robot motion.

The statement can be shifted in time. It is then not triggered exactly at the start
or end point, but brought forward or delayed.

Inputs

Parameter Type Description

ErrorID DINT Error number

Value INT State of specified interrupt

 0: Interrupt has not been declared.

 1: Interrupt has been declared, but not activated.

 2: Interrupt has been declared and activated in the ad-
vance run.

 3: Interrupt has been declared and deactivated while still
in the advance run.

 4: Interrupt has been triggered and is active.

 5: Interrupt has been triggered and the main program has
already been resumed with KRC_Continue.

Error BOOL TRUE = error in function block

Valid BOOL TRUE = data are valid

If a trigger calls a subprogram, it counts as an active interrupt until the
subprogram has been executed. Up to 16 interrupts may be active at
any one time.

Further information on triggers, on offsetting the switching point and
on the offset limits can be found in the Operating and Programming
Instructions for System Integrators.

Fig. 6-38: Function block KRC_SetDistanceTrigger

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.37 Activating a path-related switching action (TRIGGER WHEN PATH)

Description The function block KRC_SetPathTrigger triggers a path-related switching ac-
tion in the case of CP motions.

The Trigger triggers a defined statement. The statement refers to the end point
of the motion block in which the Trigger is situated in the program. The state-
ment is executed parallel to the robot motion.

Distance INT Switching point of the trigger

 0: Switching action at the start point

 1: Switching action at the end point

Delay INT Statement delay

 Delay = 0 ms: no delay

The statement cannot be shifted freely in time. The shifts that
are available depend on the value selected for Distance. Fur-
ther information about this is contained in the Operating and
Programming Instructions for System Integrators.

Output INT Number of the digital output

 1 … 2 048

Note: It must be ensured that no outputs are used that are
already assigned by the system. Example: $OUT[1025] is
always TRUE.

Value BOOL TRUE = activate output

FALSE = deactivate output

Pulse REAL Length of the pulse

 0.0 s

No pulse active

 0.1 … 3.0 s

Pulse interval = 0.1 s; pulse durations outside this range
of values trigger a program stop.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Done BOOL TRUE = statement has been processed in the advance run

Note: The statement can no longer be aborted. Exception:
Program is deselected or reset. The signal does not indicate
whether the switching action has really been triggered.

Aborted BOOL TRUE = statement was aborted before it was processed in
the advance run

Error BOOL TRUE = error in function block
61 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

62 / 159

CODESYS Library
The statement can be shifted in time and/or space. It is then not triggered ex-
actly at the end point, but beforehand or afterwards.

Inputs

Path triggers can only be activated before CP motions. If the subse-
quent motion is not a CP motion, the robot controller issues an error
message.

If a trigger calls a subprogram, it counts as an active interrupt until the
subprogram has been executed. Up to 16 interrupts may be active at
any one time.

Further information on triggers, on offsetting the switching point and
on the offset limits can be found in the Operating and Programming
Instructions for System Integrators.

Fig. 6-39: Function block KRC_SetPathTrigger

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.

Path REAL Statement offset

If the statement is to be shifted in space, the desired distance
from the end point must be specified here. If this end point is
approximated, Path is the distance to the position on the
approximate positioning arc closest to the end point.

 Delay = 0.0 mm: no offset

 Delay > 0.0 mm: shifts the statement towards the end of
the motion.

 Delay < 0.0 mm: shifts the statement towards the start of
the motion.

Delay INT Statement delay

 Delay = 0 ms: no delay

The statement cannot be shifted freely in time. The offsets
that are possible depend on the value selected for Path. Fur-
ther information about this is contained in the Operating and
Programming Instructions for System Integrators.

Output INT Number of the digital output

 1 … 2 048

Note: It must be ensured that no outputs are used that are
already assigned by the system. Example: $OUT[1025] is
always TRUE.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.10.38 Canceling a program

Description The function block KRC_Abort cancels all active and buffered statements and
motions.

Inputs

Outputs

Value BOOL TRUE = activate output

FALSE = deactivate output

Pulse REAL Length of the pulse

 0.0 s

No pulse active

 0.1 … 3.0 s

Pulse interval = 0.1 s; pulse durations outside this range
of values trigger a program stop.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Done BOOL TRUE = statement has been processed in the advance run

Note: The statement can no longer be aborted. Exception:
Program is deselected or reset. The signal does not indicate
whether the switching action has really been triggered.

Aborted BOOL TRUE = statement was aborted before it was processed in
the advance run

Error BOOL TRUE = error in function block

Fig. 6-40: Function block KRC_Abort

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred
63 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

64 / 159

CODESYS Library
6.10.39 Stopping the robot

Description The function block KRC_Interrupt triggers an interrupt with a BRAKE or
BRAKE F statement.

Inputs

Outputs

6.10.40 Continuing a program

Description The function block KRC_Continue can be used to resume execution of a pro-
gram that has been stopped by means of an interrupt.

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

Parameter Type Description

If a BRAKE statement is active, no more statements are processed
via the mxA interface.
The function block KRC_Abort is also no longer processed.

KRC_Abort cannot cancel the program until it has been resumed with
KRC_Continue, i.e. the BRAKE statement is no longer active.
While the BRAKE statement is active, the program can only be canceled by
means of a RESET of the function block KRC_AutomaticExternal.

Fig. 6-41: Function block KRC_Interrupt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL The statement is executed in the case of a rising edge of the
signal.

The robot program is interrupted for as long as the input Exe-
cute is set to TRUE.

Fast BOOL TRUE = robot stops with a STOP 1 (BRAKE F statement).

FALSE = robot stops with a STOP 2 (BRAKE statement).

Parameter Type Description

ErrorID DINT Error number

BrakeActive BOOL TRUE = statement is active and robot is waiting for enabling

Error BOOL TRUE = error in function block

Fig. 6-42: Function block KRC_Continue
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

6.10.41 Automatically starting function blocks and signals

Description The function block KRC_AutoStart controls the existing signals and function
blocks in a typical sequence of statements. The signals for activating the Au-
tomatic External interface are checked prior to starting. If one or more signals
is missing, corresponding error numbers are displayed.

Inputs

Outputs

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Enable BOOL The statement is executed in the case of a ris-
ing edge of the signal.

In the case of an interrupt triggered by a
BRAKE or BRAKE F statement, the program
can only be resumed when the interrupt is no
longer active and the input Enable is set to
TRUE.

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block

The drives are activated with an edge. For this reason, the
DRIVES_ON input on the function block KRC_AutomaticExternal
should not be permanently activated.

Fig. 6-43: Function block KRC_AutoStart

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteRe-
set

BOOL Selects the mxAutomation robot program in
the case of a rising edge of the signal and
starts it. The program is reset beforehand and
all buffered statements are aborted.

Parameter Type Description

Busy BOOL The sequence is active but not yet completed.

Done BOOL The sequence is completed.

DispActive BOOL TRUE = robot program is active

ResetValid BOOL TRUE = conditions for a RESET at the function
block KRC_AutomaticExternal are met

Error BOOL TRUE = error in function block

ErrorID DINT Error number
65 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

66 / 159

CODESYS Library
6.11 Functions for activating motions

6.11.1 Moving to a Cartesian position with a LIN motion

Description The function block KRC_MoveLinearAbsolute executes a linear motion to a
Cartesian end position. The coordinates of the end position are absolute.

Inputs

Motion instructions can only be executed in ABORTING or BUFF-
ERED mode. If a motion is to be approximated, the following motion
must be transferred in BUFFERED mode.

Further information about the basics of motion programming – motion
types, orientation control, and approximate positioning – is contained
in the operating and programming instructions for the KUKA System

Software.

Fig. 6-44: Function block KRC_MoveLinearAbsolute

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a LIN motion, the Cartesian coordi-
nates always refer to the BASE coordinate system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.11.2 Moving to a Cartesian position with a LIN_REL motion

Description The function block KRC_MoveLinearRelative executes a linear motion to a
Cartesian end position. The coordinates of the end position are relative to the
current position.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.
67 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

68 / 159

CODESYS Library
Inputs

Fig. 6-45: Function block KRC_MoveLinearRelative

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a LIN_REL motion, the Cartesian
coordinates can refer to the BASE or TOOL coordinate
system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.11.3 Moving to a Cartesian position with a PTP motion

Description The function block KRC_MoveDirectAbsolute executes a point-to-point motion
to a Cartesian end position. The coordinates of the end position are absolute.

Inputs

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

Fig. 6-46: Function block KRC_MoveDirectAbsolute

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a PTP motion, the Cartesian coordi-
nates always refer to the BASE coordinate system.
69 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

70 / 159

CODESYS Library
Outputs

6.11.4 Moving to a Cartesian position with a PTP_REL motion

Description The function block KRC_MoveDirectRelative executes a point-to-point motion
to a Cartesian end position. The coordinates of the end position are relative to
the current position.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0 %

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Fig. 6-47: Function block KRC_MoveDirectRelative

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a PTP_REL motion, the Cartesian
coordinates always refer to the BASE coordinate system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
71 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

72 / 159

CODESYS Library
Outputs

6.11.5 Moving to an axis-specific position with a PTP motion

Description The function block KRC_MoveAxisAbsolute executes a point-to-point motion
to an axis-specific end position. The axis positions are absolute.

Inputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

Fig. 6-48: Function block KRC_MoveAxisAbsolute

Parameter Type Description

AxisPosition E6AXIS Axis-specific end position

 (>>> "E6AXIS" Page 25)

The data structure E6Axis contains the angle values or trans-
lation values for all axes of the axis group in the end position.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of the
signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine data.
The maximum value depends on the robot type and the
selected operating mode.

Default: 0% (= velocity is not changed)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.11.6 Moving to a Cartesian position with a CIRC motion

Description The function block KRC_MoveCircAbsolute executes a circular motion to a
Cartesian end position. In order for the robot controller to be able to calculate
the circular motion, an auxiliary position must be specified in addition to the
end position.

The coordinates of the auxiliary position and end position are absolute. The
auxiliary position cannot be approximated. The motion always stops exactly at
this point.

Inputs

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine data.
The maximum value depends on the robot type and the
selected operating mode.

Default: 0% (= acceleration is not changed)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

Fig. 6-49: Function block KRC_MoveCircAbsolute
73 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

74 / 159

CODESYS Library
Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CircHP E6POS Coordinates of the Cartesian auxiliary position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the auxiliary position (= position of the TCP relative to the
origin of the BASE coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the auxiliary or end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a CIRC motion, the Cartesian coor-
dinates always refer to the BASE coordinate system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Angle REAL Circular angle (= overall angle of the circular motion)

The circular angle makes it possible to extend the motion
beyond the programmed end point or to shorten it. The
actual end point thus no longer corresponds to the pro-
grammed end point.

The circular angle is not limited, i.e. a circular angle
greater than ±360° can be specified:

 > 0.0°: In the case of a positive angle, the motion is
carried out from the start point via CircHP towards
Position.

 < 0.0°: In the case of a negative angle, the motion is
carried out from the start point via Position towards
CircHP.

 = 0.0°: The circular angle is ignored. End position is
Position. The radius of the circle is calculated on the
basis of the start position, CircHP and Position.

Default: 0.0°

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.11.7 Moving to a Cartesian position with a CIRC_REL motion

Description The function block KRC_MoveCircRelative executes a circular motion to a
Cartesian end position. In order for the robot controller to be able to calculate
the circular motion, an auxiliary position must be specified in addition to the
end position.

The coordinates of the auxiliary position and end position are relative to the
current position (= start position of the circular motion). The auxiliary position
cannot be approximated. The motion always stops exactly at this point.

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

CircType INT Orientation control during the circular motion

 0: BASE

 1: PATH

 (>>> "CircType" Page 27)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.
75 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

76 / 159

CODESYS Library
Inputs

Fig. 6-50: Function block KRC_MoveCircRelative

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CircHP E6POS Coordinates of the Cartesian auxiliary position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the auxiliary position (= position of the TCP relative to the
origin of the BASE coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the auxiliary or end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a CIRC_REL motion, the Cartesian
coordinates always refer to the BASE coordinate system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

Angle REAL Circular angle (= overall angle of the circular motion)

The circular angle makes it possible to extend the motion
beyond the programmed end point or to shorten it. The
actual end point thus no longer corresponds to the pro-
grammed end point.

The circular angle is not limited, i.e. a circular angle
greater than ±360° can be specified:

 > 0.0°: In the case of a positive angle, the motion is
carried out from the start point via CircHP towards
Position.

 < 0.0°: In the case of a negative angle, the motion is
carried out from the start point via Position towards
CircHP.

 = 0.0°: The circular angle is ignored. End position is
Position. The radius of the circle is calculated on the
basis of the start position, CircHP and Position.

Default: 0.0°

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

CircType INT Orientation control during the circular motion

 0: BASE

 1: PATH

 (>>> "CircType" Page 27)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred
77 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

78 / 159

CODESYS Library
6.11.8 Jogging to a relative end position

Description The function block KRC_JogLinearRelative can be used to move to a Carte-
sian end position with a linear motion. The coordinates of the end position are
relative to the current position. Status and Turn of the end position are ignored,
i.e. the axis positions at the end position are not unambiguously defined.

The function is always executed in ABORTING mode, i.e. all active motions
and buffered statements are canceled, the robot is braked and the linear mo-
tion is then executed.

Inputs

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

Parameter Type Description

Fig. 6-51: Function block KRC_JogLinearRelative

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.11.9 Jogging to a relative end position in the TOOL coordinate system

Description The function block KRC_JogToolRelative can be used to move to a Cartesian
end position in the TOOL coordinate system with a linear motion. The coordi-
nates of the end position are relative to the current position. Status and Turn
of the end position are ignored, i.e. the axis positions at the end position are
not unambiguously defined.

The function is always executed in ABORTING mode, i.e. all active motions
and buffered statements are canceled, the robot is braked and the linear mo-
tion is then executed.

Inputs

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

Fig. 6-52: Function block KRC_JogToolRelative
79 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

80 / 159

CODESYS Library
Outputs

6.11.10 Jogging to an end position

Description The function block KRC_Jog can be used to move to an end position with a
linear motion or a point-to-point motion.

The function is always executed in ABORTING mode, i.e. all active motions
and buffered statements are canceled, the robot is braked and the motion is
then executed.

Parameter Type Description

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Fig. 6-53: Function block KRC_Jog

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

MoveType INT Motion type for Cartesian or axis-specific jogging

 0: Motion type PTP (axis-specific)

 1: Motion type LIN (Cartesian)

 2: Motion type SPTP (axis-specific)

 3: Motion type SLIN (Cartesian)

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default value: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default value: 0% (= acceleration is not changed)
81 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

82 / 159

CODESYS Library
Outputs

CoordinateSys-
tem

COORDSYS Coordinate system to which the coordinates of the end
position refer.

 (>>> "COORDSYS" Page 25)

Increment REAL Incremental jogging

 >0.0: The robot moves no more than the specified dis-
tance. For axis-specific jogging, the maximum dis-
tance is automatically limited to the software limit
switches. For Cartesian jogging in the A, B or C direc-
tion, the maximum distance is limited to 90°. If the in-
put signal is reset before the robot has reached the
end position, the robot stops immediately.

 ≤ 0.0: For Cartesian jogging in the X, Y or Z direction,
the maximum distance is limited to 100000 mm.

The robot motion restarts each time the input signals are
changed.

A1_X_P BOOL Motion instruction

The motion is started at a rising edge of the signal and
stopped at a falling edge of the signal.

In motion type PTP, the robot axes can be moved as far
as 0.1 mm before the software limit switches. For this,
the software limit switch values are read once when the
PLC is started. During operation, the software limit
switches can be updated via the input UpdateSoftEnd.

Several robot axes can be moved simultaneously. The
TCP can be moved along the axes of several coordinate
systems.

If the input signals are changed, the motion is stopped
and then resumed with the modified configuration. If the
positive and negative motion directions are activated
simultaneously, an error number is displayed.

The inputs for axes A1 … A6 have a dual assignment
with the coordinates, e.g. A1 with X, A2 with Y, etc..

The inputs that end in "P" (e.g. A2_Y_P) move in the
positive direction. The inputs that end in "M" (e.g.
A3_Z_M) move in the negative direction.

A1_X_M BOOL

A2_Y_P BOOL

A2_Y_M BOOL

A3_Z_P BOOL

A3_Z_M BOOL

A4_A_P BOOL

A4_A_M BOOL

A5_B_P BOOL

A5_B_M BOOL

A6_C_P BOOL

A6_C_M BOOL

E1_P BOOL

E1_M BOOL

E2_P BOOL

E2_M BOOL

E3_P BOOL

E3_M BOOL

E4_P BOOL

E4_M BOOL

E5_P BOOL

E5_M BOOL

E6_P BOOL

E6_M BOOL

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.12 Functions for activating motions (PLC OPEN-compliant)

The MC function blocks described below differ from the KRC function blocks
in that they correspond to the PLC OPEN standard or are closer to it.

6.12.1 Moving to a Cartesian position with a LIN motion

Description The function block MC_MoveLinearAbsolute is used to execute a linear mo-
tion to a Cartesian end position. The coordinates of the end position are abso-
lute.

Inputs

For information on the frequently used signals in the MC function
blocks, see (>>> 6.4 "Frequently used input/output signals in the MC
function blocks" Page 22).

Fig. 6-54: Function block MC_MoveLinearAbsolute

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)
83 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

84 / 159

CODESYS Library
Outputs

6.12.2 Moving to a Cartesian position with a LIN_REL motion

Description The function block MC_MoveLinearRelative is used to execute a linear motion
to a Cartesian end position. The coordinates of the end position are relative to
the current position.

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a LIN motion, the Cartesian coordi-
nates always refer to the BASE coordinate system.

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Fig. 6-55: Function block MC_MoveLinearRelative

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a LIN_REL motion, the Cartesian
coordinates can refer to the BASE or TOOL coordinate
system.

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)
85 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

86 / 159

CODESYS Library
Outputs

6.12.3 Moving to a Cartesian position with a PTP motion

Description The function block MC_MoveDirectAbsolute executes a point-to-point motion
to a Cartesian end position. The coordinates of the end position are absolute.

Inputs

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-56: Function block MC_MoveDirectAbsolute

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.12.4 Moving to a Cartesian position with a PTP_REL motion

Description The function block MC_MoveDirectRelative executes a point-to-point motion
to a Cartesian end position. The coordinates of the end position are relative to
the current position.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0 %

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a PTP motion, the Cartesian coordi-
nates always refer to the BASE coordinate system.

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number
87 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

88 / 159

CODESYS Library
Inputs

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.

Fig. 6-57: Function block MC_MoveDirectRelative

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the selected coordinate system).

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a PTP_REL motion, the Cartesian
coordinates always refer to the BASE coordinate system.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.12.5 Moving to an axis-specific position with a PTP motion

Description The function block MC_MoveAxisAbsolute is used to execute a point-to-point
motion to an axis-specific end position. The axis positions are absolute.

Inputs

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-58: Function block MC_MoveAxisAbsolute

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of the
signal.

AxisPosition E6AXIS Axis-specific end position

 (>>> "E6AXIS" Page 25)

The data structure E6Axis contains the angle values or trans-
lation values for all axes of the axis group in the end position.
89 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

90 / 159

CODESYS Library
Outputs

6.12.6 Moving to a Cartesian position with a CIRC motion

Description The function block MC_MoveCircularAbsolute executes a circular motion to a
Cartesian end position. In order for the robot controller to be able to calculate
the circular motion, an auxiliary position must be specified in addition to the
end position.

The coordinates of the auxiliary position and end position are absolute. The
auxiliary position cannot be approximated. The motion always stops exactly at
this point.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine data.
The maximum value depends on the robot type and the
selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine data.
The maximum value depends on the robot type and the
selected operating mode.

Default: 0% (= acceleration is not changed)

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Fig. 6-59: Function block MC_MoveCircularAbsolute

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CircHP E6POS Coordinates of the Cartesian auxiliary position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the auxiliary position (= position of the TCP relative to the
origin of the BASE coordinate system).

Angle REAL Circular angle (= overall angle of the circular motion)

The circular angle makes it possible to extend the motion
beyond the programmed end point or to shorten it. The
actual end point thus no longer corresponds to the pro-
grammed end point.

The circular angle is not limited, i.e. a circular angle
greater than ±360° can be specified:

 > 0.0°: In the case of a positive angle, the motion is
carried out from the start point via CircHP towards
Position.

 < 0.0°: In the case of a negative angle, the motion is
carried out from the start point via Position towards
CircHP.

 = 0.0°: The circular angle is ignored. End position is
Position. The radius of the circle is calculated on the
basis of the start position, CircHP and Position.

Default: 0.0°
91 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

92 / 159

CODESYS Library
Outputs

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the auxiliary or end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a CIRC motion, the Cartesian coor-
dinates always refer to the BASE coordinate system.

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

CircType INT Orientation control during the circular motion

 0: BASE

 1: PATH

 (>>> "CircType" Page 27)

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.12.7 Moving to a Cartesian position with a CIRC_REL motion

Description The function block MC_MoveCircularRelative executes a circular motion to a
Cartesian end position. In order for the robot controller to be able to calculate
the circular motion, an auxiliary position must be specified in addition to the
end position.

The coordinates of the auxiliary position and end position are relative to the
current position (= start position of the circular motion). The auxiliary position
cannot be approximated. The motion always stops exactly at this point.

Inputs

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Parameter Type Description

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.

Fig. 6-60: Function block MC_MoveCircularRelative

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Execute BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Position E6POS Coordinates of the Cartesian end position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the end position (= position of the TCP relative to the ori-
gin of the BASE coordinate system).

CircHP E6POS Coordinates of the Cartesian auxiliary position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the auxiliary position (= position of the TCP relative to the
origin of the BASE coordinate system).
93 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

94 / 159

CODESYS Library
Angle REAL Circular angle (= overall angle of the circular motion)

The circular angle makes it possible to extend the motion
beyond the programmed end point or to shorten it. The
actual end point thus no longer corresponds to the pro-
grammed end point.

The circular angle is not limited, i.e. a circular angle
greater than ±360° can be specified:

 > 0.0°: In the case of a positive angle, the motion is
carried out from the start point via CircHP towards
Position.

 < 0.0°: In the case of a negative angle, the motion is
carried out from the start point via Position towards
CircHP.

 = 0.0°: The circular angle is ignored. End position is
Position. The radius of the circle is calculated on the
basis of the start position, CircHP and Position.

Default: 0.0°

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the auxiliary or end position refer

 (>>> "COORDSYS" Page 25)

Note: In the case of a CIRC_REL motion, the Cartesian
coordinates always refer to the BASE coordinate system.

OriType INT Orientation control of the TCP

 0: VAR

 1: CONSTANT

 2: JOINT

 (>>> "OriType" Page 27)

CircType INT Orientation control during the circular motion

 0: BASE

 1: PATH

 (>>> "CircType" Page 27)

Parameter Type Description
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.13 Diagnostic functions

6.13.1 Reading the current state of the mxA interface

Description The function block KRC_ReadMXAStatus reads the current state of the mxA
interface.

Inputs

Outputs

Approximate APO Approximation parameter

 (>>> "APO" Page 24)

QueueMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "QueueMode" Page 27)

Parameter Type Description

Parameter Type Description

ComDone BOOL TRUE = statement was completely transferred
and confirmed by the robot controller.

ComBusy BOOL TRUE = statement is currently being trans-
ferred and has not yet been confirmed by the
robot controller.

Busy BOOL TRUE = function block has not yet been exe-
cuted completely.

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Command-
Aborted

BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-61: Function block KRC_ReadMXAStatus

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Status INT Current state of the mxA interface

 (>>> "Status" Page 27)

ErrorID DINT Error number

Error BOOL TRUE = error in function block
95 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

96 / 159

CODESYS Library
6.13.2 Reading error messages of the mxA interface

Description The function block KRC_ReadMXAError is used to read the current error state
of an axis group. Only error messages generated by the mxA interface are dis-
played.

Inputs

Outputs

6.13.3 Resetting error messages of the mxA interface

Description The function block KRC_MessageReset resets the current error state of an
axis group. Only error messages generated by the mxA interface are reset.

Error messages from the robot controller are reset by means of the function
block KRC_AutomaticExternal (input CONF_MESS).

Inputs

Outputs

6.13.4 Reading error messages of the robot controller

Description The function block KRC_ReadKRCError reads the current error state of the ro-
bot controller. Only error messages generated by the robot controller are dis-
played.

Fig. 6-62: Function block KRC_ReadMXAError

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block

Messages can only be reset if the robot is stationary.

Fig. 6-63: Function block KRC_MessageReset

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

MessageRe-
set

BOOL TRUE = reset message

Parameter Type Description

ErrorID DINT Error number

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Error messages from the robot controller are reset by means of the function
block KRC_AutomaticExternal (input CONF_MESS).

Inputs

Outputs

6.13.5 Reading diagnostic signals

Description The function block KRC_Diag reads the diagnostic signals of the robot control-
ler.

Messages can only be reset if the robot is stationary.

Fig. 6-64: Function block KRC_ReadKRCError

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the sig-
nal.

Offset INT If there are more than 10 messages in the message buffer, the
desired start index of the message buffer can be selected using
the offset.

Example: If there are 15 messages in the message buffer, the
offset must be 6 in order to read messages 6 to 15.

Parameter Type Description

ErrorID DINT Error number

MessageCount INT Number of messages in the message buffer

Message1 …
Message10

DINT The numbers of up to 10 messages in the message buffer can be
output.

Done BOOL TRUE = data are valid

Error BOOL TRUE = error in function block

STOPMESS BOOL TRUE = safety circuit is interrupted (robot fault)

The function block may only be instanced once per axis group. In the
case of multiple instancing, the signals of the most recently called
function block are output.
97 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

98 / 159

CODESYS Library
Inputs

Outputs

Fig. 6-65: Function block KRC_Diag

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ShowTrace BOOL TRUE = activate display of the active function blocks in the mes-
sage window of the KUKA smartHMI.

FALSE = deactivate display of the active function blocks in the
message window of the KUKA smartHMI.

Note: Only activate the display for test and diagnostic purposes.
If the display is active, approximate positioning is no longer pos-
sible and the cycle time of the submit interpreter is adversely
affected.

MaxSubmitCycle INT Maximum cycle time of the submit interpreter

Default: 1 000 ms

Note: If the maximum cycle time is exceeded, the
$MOVE_ENABLE signal for motion enable is reset.

Parameter Type Description

QueueCount INT Number of buffered statements

 1 … 90

SubmitHeartbeat INT Heartbeat signal of the submit interpreter (counter is incre-
mented by 1 every Submit cycle)

 1 … 245

SubmitCyc_Act REAL Current cycle time of the submit interpreter; unit: ms

Mean value over 1,000 ms = 1/number of cycles per second
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.13.6 Reading and acknowledging error states

Description The function block KRC_Error collectively reads and acknowledges the cur-
rent error state of the mxA interface, the error state of the robot controller and
the error state of the function blocks.

If more than one error has occurred in the function block at the same time, only
the error number of the most recent error is displayed. Errors in a function
block cause the motion enable to be canceled.

If more than one error has occurred at the same time, these errors are dis-
played with the following priority ranking:

1. Errors of the mxA interface in the robot interpreter

2. Errors of the mxA interface in the submit interpreter

3. ProConOS errors

4. Errors in the PLC

5. Errors in a function block of the local PLC

6. Errors in the robot controller

SubmitCyc_Min REAL Shortest cycle time of the submit interpreter since the last bro-
ken connection; unit: ms

SubmitCyc_Max REAL Longest cycle time of the submit interpreter since the last bro-
ken connection; unit: ms

SubmitCyc_Avg INT Mean value of the cycle time of the submit interpreter during
the calculation period Avg_Duration; unit: ms

Avg_Duration DINT Duration of the current calculation period for the mean value of
the cycle time; unit: ms

The calculation period is restarted after a break in the connec-
tion to the submit interpreter or, at the latest, after 60 minutes.

ProconosHeartbeat INT Life sign from ProConOS (counter is incremented by 1 every
ProConOS cycle)

ProconosCyc_Act INT Current cycle time of ProConOS; unit: ms

Mean value over 1,000 ms = 1/number of cycles per second

ProconosCyc_Min INT Shortest cycle time of ProConOS since the last broken con-
nection; unit: ms

ProconosCyc_Max INT Longest cycle time of ProConOS since the last broken connec-
tion; unit: ms

ProconosCyc_Avg INT Mean value of the cycle time of ProConOS during the calcula-
tion period Avg_Duration; unit: ms

ActivePosOrderID DINT Order ID of the KRC_Move motion command that is currently
being executed

ActiveOrderIDB DINT Order ID of the current KRC_Move motion command in the
advance run

ErrorID_RI DINT Robot interpreter error number

ErrorID_SI DINT Submit interpreter error number

ErrorID_PLC DINT PLC error number

ErrorID_PCOS DINT ProConOS error number

ErrorID DINT Error number

Valid BOOL TRUE = data are valid

PosActValid BOOL TRUE = position data are valid (BCO)

BrakeActive BOOL TRUE = robot is stopped by means of a BRAKE statement

Error BOOL TRUE = error in function block

Parameter Type Description
99 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

100 / 159

CODESYS Library
The function block KRC_Error contains all diagnostic function blocks, which
means that this block displays all important diagnostic data.

Inputs

Outputs

The $STOPMESS signal can only be reset if there is no error and the
drives are switched on. The drives must therefore be activated with
the DRIVES_ON signal via the function block KRC_Error. The drives

are activated with an edge. For this reason, the DRIVES_ON input on the
function block KRC_AutomaticExternal should not be permanently activated.

Fig. 6-66: Function block KRC_Error

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

MessageReset BOOL Resets error messages of the mxA interface and the robot
controller via the function block KRC_AutomaticExternal
(input CONF_MESS). Activates the drives.

TRUE = reset message

Note: The messages can only be reset if the robot is station-
ary.

Parameter Type Description

Error BOOL TRUE = error in function block

ErrorID INT Error number

NoHeartbeatKRC BOOL The submit interpreter is not sending a life sign

NoHeartbeatP-
COS

BOOL ProConOS is not sending a life sign

NotOnline BOOL No connection to robot controller

NotInitialized BOOL No statements can be executed, as the connection has not
been initialized.

NoOpModeExt BOOL Robot is not in Automatic External mode

NoMoveEnable BOOL No motion enable present.

UserSafeNotOK BOOL The operator safety is violated. The $USER_SAF signal of
the Automatic External interface is not active.

KrcErrorActive BOOL Error messages of the robot controller are active. The
$STOPMESS signal of the Automatic External interface is
active.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.14 Special functions

6.14.1 Reading system variables

Description The function block KRC_ReadSysVar reads a system variable. This function
is executed in the Submit interpreter.

Inputs

Outputs

6.14.2 Writing system variables

Description The function block KRC_WriteSysVar writes a system variable.

DrivesNotReady BOOL The drives are not ready. The $PERI_RDY signal of the Auto-
matic External interface is not active.

NoProgActive BOOL The robot program is not active. The $PRO_ACT signal of
the Automatic External interface is not active.

Parameter Type Description

Fig. 6-67: Function block KRC_ReadSysVar

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.

Index INT Index of the system variable

 1: $ADVANCE

So far, only the system variable $ADVANCE can be read. If required
for the customer-specific application, the list of readable system vari-
ables can be expanded by KUKA.

Parameter Type Description

Value1 …
Value10

REAL Value of the system variable

If the system variable is a structure type, up to
10 components of the structure can be read.

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block
101 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

102 / 159

CODESYS Library
Inputs

Outputs

Fig. 6-68: Function block KRC_WriteSysVar

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a rising edge of the
signal.

Index INT Index of the system variable

 1: $ADVANCE

Value1 … Value10 REAL Value of the system variable

If the system variable is a structure type, up to 10 compo-
nents of the structure can be written.

Continue BOOL TRUE = write to system variable without advance run stop

Note: Only possible for specific system variables.

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

So far, only the system variable $ADVANCE can be written. If re-
quired for the customer-specific application, the list of writable system
variables can be expanded by KUKA.

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.14.3 Calling a brake test

Description The function block KRC_BrakeTest calls the program for the brake test. The
brake test is started at the position at which the robot is located when the pro-
gram is called.

During the brake test, all brakes are checked to see whether the wear limit has
been reached. For this purpose, the robot accelerates to a defined velocity lim-
it. Once the robot has reached the velocity, the brake is applied and the result
for this braking operation is displayed.

If the brake test is successful, the robot is located back at the start position at
the end of the measurement.

If the brake test fails, i.e. a brake has been identified as being defective, the
robot moves directly to a parking position. The coordinates of the parking po-
sition must be specified in the function block.

Parking position The parking position must be selected in a position where no persons are en-
dangered if the robot sags because of the defective brake. The transport po-
sition, for example, can be selected as the parking position.

Inputs

The brake test must be performed with a program override of 100%
(function block KRC_SetOverride).

Further information about the transport position is contained in the ro-
bot operating or assembly instructions.

Detailed information about the brake test is contained in the Operat-
ing and Programming Instructions for System Integrators.

Fig. 6-69: Function block KRC_BrakeTest

Parameter Type Description

ParkPosition E6POS Coordinates of the Cartesian parking position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the parking position (= position of the TCP relative to the
origin of the selected coordinate system).

ParkCoordinate-
System

COORDSYS Coordinate system to which the Cartesian coordinates of
the parking position refer

 (>>> "COORDSYS" Page 25)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.
103 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

104 / 159

CODESYS Library
Outputs

6.14.4 Calling a mastering test

Description The function block KRC_MasRef is used to execute the mastering test.

After the function block has been called, the robot moves in a linear direction
from the current position to the reference position. Once the robot has reached
the reference position, the current axis values are compared with the axis val-
ues which have been saved in KUKA.SafeOperation. The robot then moves
back to the start position (= position before the function block was called).

If the deviation between the current position and the reference position is too
great, the mastering test has failed.

ParkVelocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

ParkAcceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

Result DINT Result of the brake test

 0: brake test failed (brake identified as defective or no con-
nection to robot controller)

 1: brake test successful (no brake defective, but at least
one brake has reached the wear limit)

 2: brake test successful (no brake defective or reached
wear limit)

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

The reference position is defined in the function block with the input
parameter Position and corresponds to the reference position de-
fined with KUKA.SafeOperation.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

Detailed information about the mastering test can be found in the doc-
umentation KUKA.SafeOperation.

Fig. 6-70: Function block KRC_MasRef

Parameter Type Description

Position E6POS Coordinates of the Cartesian reference position

 (>>> "E6POS" Page 25)

The data structure E6POS contains all components of
the reference position (= position of the TCP relative to
the origin of the selected coordinate system).

CoordinateSys-
tem

COORDSYS Coordinate system to which the Cartesian coordinates of
the reference position refer

 (>>> "COORDSYS" Page 25)

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising edge of
the signal.

Velocity INT Velocity

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= velocity is not changed)

Acceleration INT Acceleration

 0 … 100 %

Refers to the maximum value specified in the machine
data. The maximum value depends on the robot type and
the selected operating mode.

Default: 0% (= acceleration is not changed)

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
105 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

106 / 159

CODESYS Library
6.14.5 Reading the safety controller signals

Description The function block KRC_ReadSafeOPStatus reads signals of the safety con-
troller. (Only relevant if KUKA.SafeOperation is installed.)

Inputs

Outputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being transferred or has
already been transferred

Active BOOL TRUE = motion is currently being executed

Done BOOL TRUE = motion has stopped

Aborted BOOL TRUE = statement/motion has been aborted

Error BOOL TRUE = error in function block

MasRefRequest BOOL TRUE = mastering test has been requested internally by the
robot controller.

Fig. 6-71: Function block KRC_ReadSafeOPStatus

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

MASTERINGTEST_REQ_EXT BOOL TRUE = mastering test requested by the PLC.

BRAKETEST_REQ_EXT BOOL TRUE = brake test requested by the PLC.

Parameter Type Description

ErrorID DINT Error number

Valid BOOL TRUE = data are valid

BRAKETEST_REQ_INT BOOL TRUE = brake test requested by the safety con-
troller.

MASTERINGTEST_REQ_INT BOOL TRUE = mastering test requested by the safety
controller.

BRAKETEST_MONTIME BOOL TRUE = robot was stopped due to elapsed brake
test monitoring time.

BRAKETEST_WORK BOOL TRUE = brake test is currently being performed

BRAKES_OK BOOL Edge TRUE --> FALSE: A brake has been identi-
fied as defective.

BRAKETEST_WARN BOOL Edge FALSE --> TRUE: At least 1 brake has been
detected as having reached the wear limit.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.14.6 Reading the state of the TouchUp status keys

Description The function block KRC_ReadTouchUPState reads the current state of the
TouchUp status keys on the smartPAD. In order to be able to teach points us-
ing the status keys on the smartPAD, the function block must be linked to the
function block KRC_TouchUP.

Inputs

Outputs

6.14.7 Teaching points

Description The function block KRC_TouchUP can be used to teach a point directly in the
PLC. Tool, base and interpolation mode of this point are automatically set by
the function block.

Memory

MASTERINGTESTSWITCH_O
K

BOOL TRUE = reference switch is OK.

Error BOOL TRUE = error in function block

Parameter Type Description

Fig. 6-72: Function block KRC_ReadTouchUPState

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Index INT Number selected using the status key on the
smartPAD to teach a position

 1 … 100

ErrorID DINT Error number

Valid BOOL TRUE = data are valid

TouchUP BOOL State of the TouchUp status key on the smart-
PAD

TRUE = TouchUp status key has been
pressed.

Error BOOL TRUE = error in function block

Fig. 6-73: Function block KRC_TouchUP
107 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

108 / 159

CODESYS Library
Inputs

Outputs

6.14.8 Modifying settings for the advance run

Description The settings for the advance run are modified using the function block
KRC_SetAdvance.

The advance run is the maximum number of motion blocks that the robot con-
troller calculates and plans in advance during program execution. The actual
number is dependent on the capacity of the computer. The advance run is re-
quired, for example, in order to be able to calculate approximate positioning
motions.

Inputs

Parameter Type Description

PositionArray Array[100] List of the taught positions

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL TRUE = the point is taught.

Index INT Number under which the taught point is saved
in the PLC

 1 … 100

Parameter Type Description

ErrorID DINT Error number

Done BOOL TRUE = statement has been executed

Error BOOL TRUE = error in function block

If the program execution is reset, the set values are reset to the de-
fault values.

Fig. 6-74: Function block KRC_SetAdvance

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is buffered in the case of a rising edge of the
signal.

Count INT Number of functions to be transferred before the first robot
motion

 1 … 50

Default value: 2
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.9 Reading values from KRC_SetAdvance

Description Function block KRC_GetAdvance reads the values that have been set in the
function block KRC_SetAdvance.

Inputs

Outputs

MaxWaitTime INT Maximum wait time before the beginning of program execu-
tion if the set number of functions is not reached in the
parameter count.

 1 … 60 000 ms

Default value: 300 ms

Mode INT Wait mode

 0: The currently set mode is not changed.

 1: If the first instruction is an approximated motion instruc-
tion, the system waits for further instructions.

 2: The system always waits for the number of set functions
or for the maximum wait time to elapse.

Default value: 1

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

Busy BOOL TRUE = statement has been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement has been aborted

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-75: Function block KRC_GetAdvance

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL The statement is executed in the case of a ris-
ing edge of the signal.
109 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

110 / 159

CODESYS Library
6.14.10 Calculating the Cartesian robot position from the axis angles

Description The function block KRC_Forward uses specified axis angles to calculate the
Cartesian robot position. The function block can only be executed by the robot
interpreter.

Inputs

Parameter Type Description

Done BOOL TRUE = statement has been executed

Count INT Number of functions to be transferred before the first robot motion

 1 … 50

Default value: 2

MaxWaitTime INT Maximum wait time before the beginning of program execution if
the set number of functions is not reached in the parameter count.

 1 … 60 000 ms

Default value: 300 ms

Mode INT Wait mode

 0: The currently set mode is not changed.

 1: If the first instruction is an approximated motion instruction,
the system waits for further instructions.

 2: The system always waits for the number of set functions or
for the maximum wait time to elapse.

Default value: 1

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-76: Function block KRC_Forward

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the statement at a rising edge of
the signal.

Axis_Values E6AXIS Axis-specific values that are to be converted to
Cartesian coordinates

The data structure E6AXIS contains the angle
values or translation values for all axes of the
axis group in this position.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.11 Calculating axis angles from the Cartesian robot position

Description The function block KRC_Inverse uses a specified Cartesian robot position to
calculate the axis angles. The function block can only be executed by the robot
interpreter.

Inputs

Check-
SoftEnd

BOOL Checks whether the specified axis angles lie
within the software limit switches. If not, an
error number is displayed.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Position E6POS Cartesian robot position calculated from the
specified axis angles

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-77: Function block KRC_Inverse

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the statement at a rising edge of
the signal.

Position E6POS Cartesian robot position

PosValidS BOOL TRUE = The Status value contained in the
Position parameter is valid.

FALSE = The Status value is unknown.

PosValidT BOOL TRUE = The Turn value contained in the Posi-
tion parameter is valid.

FALSE = The Turn value is unknown.
111 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

112 / 159

CODESYS Library
Outputs

6.14.12 Initializing a conveyor

Description The function block KRC_ConvIniOff is used to initialize a conveyor. The AMI
is set to the state #INITIALIZED and the conveyor distance to 0.

Inputs

Start_Axis E6Axis Axis-specific values at the start point of the
motion

The start point is the axis-specific position from
which the robot moves to the position that is to
be calculated.

Check-
SoftEnd

BOOL Checks whether the values from the Start_Axis
parameter lie within the software limit switches.
If not, an error number is displayed.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

AxisPosition E6AXIS Axis angles that have been calculated from the
specified Cartesian robot position

The data structure E6AXIS contains all the axis
positions of the axis group.

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-78: Function block KRC_ConvIniOff

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.13 Activating a conveyor

Description The function block KRC_ConvOn activates the AMI, i.e. sets it to the #ACTIVE
state. If the AMI is activated, the synchronization signals at the input of inter-
face X33 (Fast Measurement) are evaluated.

The conveyor offset can be detected out in the background leaving the robot
controller free to perform other tasks. This allows the robot to carry out on-the-
fly tracking of a part on the conveyor.

Inputs

Conveyor-
Number

INT Number of the conveyor

 1 … 3

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-79: Function block KRC_ConvOn

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Conveyor-
Number

INT Number of the conveyor

 1 … 3

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
113 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

114 / 159

CODESYS Library
Outputs

6.14.14 Tracking a workpiece on the conveyor

Description The function block KRC_ConvFollow enables the robot to follow a workpiece
on the conveyor. KRC_ConvFollow can be used to define a range on the con-
veyor in which the robot starts to track the workpiece.

If the workpiece has already exceeded the maximum conveyor distance (input
MaxDistance) when the function block is called, the output MaxDistance-
Reached is set.

Inputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

This function block can only be executed if the AMI has been activat-
ed using KRC_ConvOn.

Fig. 6-80: Function block KRC_ConvFollow

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Conveyor-
Number

INT Number of the conveyor

 1 … 3

StartDistance REAL Distance traveled by the workpiece while the
robot waits before starting to track the work-
piece on the conveyor.

 In the case of a linear conveyor: Specifica-
tion in millimeters

 In the case of a circular conveyor: Specifi-
cation in degrees
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.15 Picking up a workpiece from the conveyor

Description The function block KRC_ConvSkip is used to determine which workpieces are
to be picked up, e.g. every second workpiece, every third workpiece, etc. A to-
tal of up to 1024 workpieces can be monitored in the background.

If the workpiece has already exceeded the maximum conveyor distance (input
MaxDistance) when the function block is called, the output MaxDistance-
Reached is set.

MaxDistance REAL Maximum distance traveled by the workpiece
before the robot starts to synchronize itself with
the workpiece.

 In the case of a linear conveyor: Specifica-
tion in millimeters

 In the case of a circular conveyor: Specifi-
cation in degrees

Note: This input is not monitored during syn-
chronized motions of the conveyor. The dis-
tance covered by the workpiece is monitored
by an interrupt. The corresponding settings are
made in WorkVisual.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement has been aborted

MaxDistan-
ceReached

BOOL TRUE = the maximum distance traveled by the
workpiece (input MaxDistance) was already
exceeded at the time of execution. The state-
ment was not executed. Execution of the pro-
gram is stopped (WAIT FOR FALSE) and is
waiting for the program to be aborted.

Error BOOL TRUE = error in function block

ErrorID DINT Error number

This function block can only be executed if the AMI has been activat-
ed using KRC_ConvOn.
115 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

116 / 159

CODESYS Library
Inputs

Fig. 6-81: Function block KRC_ConvSkip

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Conveyor-
Number

INT Number of the conveyor

 1 … 3

PieceNumber INT The number entered specifies which work-
pieces are to be picked up.

Examples:

 1: Every workpiece is picked up.

 3: Every 3rd workpiece is picked up.

 5: Every 5th workpiece is picked up.

StartDistance REAL Distance traveled by the workpiece while the
robot waits before starting to track the work-
piece on the conveyor.

 In the case of a linear conveyor: Specifica-
tion in millimeters

 In the case of a circular conveyor: Specifi-
cation in degrees

MaxDistance REAL Maximum distance traveled by the workpiece
before the robot starts to synchronize itself with
the workpiece.

 In the case of a linear conveyor: Specifica-
tion in millimeters

 In the case of a circular conveyor: Specifi-
cation in degrees

Note: This input is not monitored during syn-
chronized motions of the conveyor. The dis-
tance covered by the workpiece is monitored
by an interrupt. The corresponding settings are
made in WorkVisual.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.16 Activating interrupts for monitoring

Description The function block KRC_ActivateConvInterrupt activates the following inter-
rupts:

 Alarm distance monitoring

 Maximum distance monitoring

 $STOPMESS error monitoring

An interrupt cannot be processed until the interrupt has been activated by the
main run of the robot interpreter.

The monitoring functions are activated by the function blocks
KRC_ConvFollow and KRC_ConvSkip insofar as these have been success-
fully synchronized with a workpiece. Calling this function block is only neces-
sary if the monitoring function is to be ended and reactivated.

Inputs

Parameter Type Description

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement has been aborted

MaxDistan-
ceReached

BOOL TRUE = the maximum distance traveled by the
workpiece (input MaxDistance) was already
exceeded at the time of execution. The state-
ment was not executed. Execution of the pro-
gram is stopped (WAIT FOR FALSE) and is
waiting for the program to be aborted.

Error BOOL TRUE = error in function block

ErrorID DINT Error number

Fig. 6-82: Function block KRC_ActivateConvInterrupt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Conveyor-
Number

INT Number of the conveyor

 1 … 3

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
117 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

118 / 159

CODESYS Library
Outputs

6.14.17 Deactivating interrupts for monitoring

Description The function block KRC_DeactivateConvInterrupt deactivates the following in-
terrupts:

 Alarm distance monitoring

 Maximum distance monitoring

 $STOPMESS error monitoring

Inputs

Outputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

It is advisable to call this function block if leaving the conveyor area,
or if monitoring is not desired.

Fig. 6-83: Function block KRC_DeactivateConvInterrupt

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Conveyor-
Number

INT Number of the conveyor

 1 … 3

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.14.18 Activating a motion along a vector

Description The function block KRC_VectorMoveOn is used to move a robot along a de-
fined vector in Cartesian space. Here, the robot is moved by an external force.

Inputs

Fig. 6-84: Function block KRC_VectorMoveOn

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

X REAL Defines the direction of the vector

The vector must be specified in relation to the
TCP of the TOOL coordinate system. The last
taught point before the function block is the
root point of the vector.

Limits:

 Translational motion (X, Y, Z): max.
200 mm in the positive and negative direc-
tion

 Rotational motion (A, B, C): max. 30° in the
positive and negative direction

Y REAL

Z REAL

A REAL

B REAL

C REAL

VectorLimit REAL Permissible vector length limit; unit: %

If this value is exceeded, the robot is brought
to a halt with ramp-down braking.

MaxDuration REAL Length of time after which VectorMove is deac-
tivated if an error has occurred
119 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

120 / 159

CODESYS Library
Outputs

6.14.19 Deactivating KRC_VectorMoveOn

Description The function block KRC_VectorMoveOff is used to deactivate the function
block KRC_VectorMoveOn.

Inputs

TorqueOffset-
Value

REAL Defines the resistance torque of the robot

The resistance torque is the torque with which
the robot acts against the external force. It has
the effect that the robot only begins to move
when a specific amount of force is exerted.

The resistance torque can be defined in addi-
tion to the holding torque. The holding torque
depends on the robot position, type, size and
additional load.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-85: Function block KRC_VectorMoveOff

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

BufferMode INT Mode in which the statement is executed

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Outputs

6.14.20 Configuring Cartesian workspaces

Description The function block KRC_WriteWorkspace is used to configure Cartesian (=
cubic) workspaces for the robot. Workspaces serve to protect the system. A
maximum of 8 Cartesian workspaces can be configured at any one time. The
workspaces may overlap.

Inputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-86: Function block KRC_WriteWorkspace

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Work-
spaceNo

INT Number of workspace

 1 … 8

Workspace-
Mode

INT Mode for workspaces

 0: #OFF

 1: #INSIDE

 2: #OUTSIDE

 3: #INSIDE_STOP

 4: #OUTSIDE_STOP

Note: Further information about the mode for
workspaces is contained in the operating and
programming instructions for the KUKA Sys-
tem Software (KSS).

Workspace-
Data

BOX Data of the workspace

 (>>> 6.7 "Data of a Cartesian workspace"
Page 28)

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)
121 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

122 / 159

CODESYS Library
Outputs

6.14.21 Reading the configuration of Cartesian workspaces

Description The function block KRC_ReadWorkspace reads the configuration of the Car-
tesian workspaces for the robot.

Inputs

Outputs

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block

Fig. 6-87: Function block KRC_ReadWorkspace

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Work-
spaceNo

INT Number of workspace

 1 … 8

Parameter Type Description

Done BOOL TRUE = statement has been executed

Workspace-
Mode

INT Mode for workspaces

 0: #OFF

 1: #INSIDE

 2: #OUTSIDE

 3: #INSIDE_STOP

 4: #OUTSIDE_STOP

Note: Further information about the mode for
workspaces is contained in the operating and
programming instructions for the KUKA Sys-
tem Software (KSS).

Workspace-
Data

BOX Data of the workspace

 (>>> 6.7 "Data of a Cartesian workspace"
Page 28)

Error BOOL TRUE = error in function block

ErrorID DINT Error number
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
6.14.22 Configuring axis-specific workspaces

Description The function block KRC_WriteAxWorkspace is used to configure axis-specific
workspaces for the robot. These serve to protect the system. A maximum of 8
axis-specific workspaces can be configured at any one time. The workspaces
may overlap.

Inputs

Outputs

Fig. 6-88: Function block KRC_WriteAxWorkspace

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Work-
spaceNo

INT Number of workspace

 1 … 8

Workspace-
Mode

INT Mode for workspaces

 0: #OFF

 1: #INSIDE

 2: #OUTSIDE

 3: #INSIDE_STOP

 4: #OUTSIDE_STOP

Note: Further information about the mode for
workspaces is contained in the operating and
programming instructions for the KUKA Sys-
tem Software (KSS).

Workspace-
Data

AXBOX Data of the workspace

 (>>> 6.8 "Data of an axis-specific workspace"
Page 28)

BufferMode INT Mode in which the statement is executed

 0: DIRECT

 1: ABORTING

 2: BUFFERED

 (>>> "BufferMode" Page 26)

Parameter Type Description

ErrorID DINT Error number

Busy BOOL TRUE = statement is currently being trans-
ferred or has already been transferred

Done BOOL TRUE = statement has been executed

Aborted BOOL TRUE = statement was aborted before it was
processed in the advance run

Error BOOL TRUE = error in function block
123 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

124 / 159

CODESYS Library
6.14.23 Reading the configuration of axis-specific workspaces

Description The function block KRC_ReadAxWorkspace reads the configuration of the
axis-specific workspaces for the robot.

Inputs

Outputs

6.14.24 Reading the status of the workspaces

Description The function block KRC_ReadWorkstates reads the current status of the
workspaces. The status of the workspaces is updated cyclically.

Fig. 6-89: Function block KRC_ReadAxWorkspace

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

ExecuteCmd BOOL Starts/buffers the motion in the case of a rising
edge of the signal.

Work-
spaceNo

INT Number of workspace

 1 … 8

Parameter Type Description

Done BOOL TRUE = statement has been executed

Workspace-
Mode

INT Mode for workspaces

 0: #OFF

 1: #INSIDE

 2: #OUTSIDE

 3: #INSIDE_STOP

 4: #OUTSIDE_STOP

Note: Further information about the mode for
workspaces is contained in the operating and
programming instructions for the KUKA Sys-
tem Software (KSS).

Workspace-
Data

AXBOX Data of the workspace

 (>>> 6.8 "Data of an axis-specific workspace"
Page 28)

Error BOOL TRUE = error in function block

ErrorID DINT Error number
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

6 Programming
Inputs

Outputs

Fig. 6-90: Function block KRC_ReadWorkstates

Parameter Type Description

AxisGroupIdx INT Index of axis group

 1 … 5

Parameter Type Description

Valid BOOL TRUE = data are valid

WORKSTATE1 BOOL Status of the workspaces

WORKSTATE2 BOOL

WORKSTATE3 BOOL

WORKSTATE4 BOOL

WORKSTATE5 BOOL

WORKSTATE6 BOOL

WORKSTATE7 BOOL

WORKSTATE8 BOOL

AXWORKSTATE1 BOOL

AXWORKSTATE2 BOOL

AXWORKSTATE3 BOOL

AXWORKSTATE4 BOOL

AXWORKSTATE5 BOOL

AXWORKSTATE6 BOOL

AXWORKSTATE7 BOOL

AXWORKSTATE8 BOOL

Error BOOL TRUE = error in function block

ErrorID DINT Error number
125 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

126 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
7 Messages

7.1 Error messages of the mxA interface in the robot interpreter

s

s

s

No. Message text Cause Remedy

0 — — —

1 INTERNAL ERROR Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

2 ASSERT FAILED Internal exceptional error

3 OVERFLOW STA-
TUS RETURN
QUEUE (MAIN)

There are more than 100
checkback signals relating to
status changes waiting to be
transferred from the robot con-
troller to the PLC.

The transmission rate is consid-
erably lower than the process-
ing speed.

Reduce the number of state-
ments to be buffered simultane-
ously.

If this is not possible, contact
KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

4 OVERFLOW STA-
TUS RETURN
QUEUE (TRIG-
GER)

5 INVALID COM-
MAND QUEUE
INDEX

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

6 INVALID COM-
MAND STATE

Internal exceptional error

7 INVALID COM-
MAND ID

Internal exceptional error

8 INVALID MOVE
TYPE

Internal exceptional error

9 OVERFLOW TRIG-
GER FIFO

Internal exceptional error

10 UNDERFLOW
TRIGGER FIFO

Internal exceptional error

11 INVALID TRIGGER
FIFO INDEX

Internal exceptional error

12 EXECUTION OF
T_AFTER MISSING

Internal exceptional error

13 EXECUTION OF
T_START MISSING

Internal exceptional error

14 INVALID
ADVANCE_ACT

Internal exceptional error

16 TIMEOUT HEART-
BEAT FROM PLC

Connection to PLC interrupted: Restore connection, then
acknowledge error:

PLC program stopped Restart the PLC program.

Connecting cable defective or
not correctly connected

Exchange connecting cable or
connect it correctly.

17 INVALID ORDERID
(INVERSE)

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

30 INVALID PTP APO An invalid approximation
parameter has been transferred
for a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
31 INVALID CP APO An invalid approximation

parameter has been transferred
for a CP motion (LIN, CIRC).
127 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

128 / 159

CODESYS Library
32 INVALID BASE
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadBaseData or
KRC_WriteBaseData for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
BaseNo).

 1 … 32

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Base).

 (>>> "COORDSYS" Page 25)

33 INVALID TOOL
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadToolData or
KRC_WriteToolData for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
ToolNo).

 1 … 16

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Tool).

 (>>> "COORDSYS" Page 25)

34 INVALID VELOC-
ITY

An invalid value has been pro-
grammed in a function block for
the velocity.

Program a valid value (parame-
ter Velocity):

 0 … 100 %

35 INVALID ACCEL-
ERATION

An invalid value has been pro-
grammed in a function block for
the acceleration.

Program a valid value (parame-
ter Acceleration):

 0 … 100 %

36 INVALID C_PTP An invalid approximation dis-
tance has been transferred for
a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
37 INVALID C_DIS An invalid distance parameter

has been transferred for an
approximated motion.

38 INVALID C_VEL An invalid velocity parameter
has been transferred for an
approximated motion.

39 INVALID C_ORI An invalid orientation parameter
has been transferred for an
approximated motion.

40 INVALID
ORI_TYPE

An invalid value has been pro-
grammed in a KRC_Move or
KRC_Jog function block for the
orientation control of the TCP.

Program a valid value (parame-
ter OriType).

 (>>> "OriType" Page 27)

41 POSITION DATA
NOT INITIALIZED

No end position transferred
when calling a KRC_Move
function block.

Define at least 1 element of the
end position (parameter Posi-
tion).

 (>>> "E6POS" Page 25)

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
42 AXISPOSITION
DATA NOT INITIAL-
IZED

No axis position transferred
when calling a KRC_MoveAxis
function block.

Define at least 1 axis position
(parameter AxisPosition).

 (>>> "E6AXIS" Page 25)

43 INVALID TRIGGER
DISTANCE

An invalid value has been pro-
grammed in a
KRC_SetDistanceTrigger func-
tion block for the switching
point of the trigger.

Program a valid value (parame-
ter Distance):

 0: Switching action at the
start point

 1: Switching action at the
end point

44 INVALID TRIGGER
IO

An invalid output has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block.

Program a valid value (parame-
ter Output):

 1 … 2 048

45 INVALID TRIGGER
PULSE

An invalid value has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block for the length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

46 INVALID CIRC_HP No auxiliary position transferred
when calling a KRC_MoveCirc
function block.

Define at least 1 element of the
auxiliary position (parameter
CircHP).

 (>>> "E6AXIS" Page 25)

47 INVALID INTER-
RUPT IO

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

48 INVALID INTER-
RUPT PRIORITY

An invalid number was trans-
ferred when calling a
KRC_…Interrupt function block.

Program a valid value (parame-
ter Interrupt):

 1 … 8

49 INTERRUPT NOT
DECLARED

Interrupt has not been
declared.

Declare interrupt.

 (>>> 6.10.32 "Declaring inter-
rupts" Page 56)

50 INVALID INTER-
RUPT ACTION

The interrupt reaction pro-
grammed when the the inter-
rupt was declared is invalid.

Program a valid reaction
(parameter Reaction).

 (>>> 6.10.32 "Declaring inter-
rupts" Page 56)

51 INVALID IO NUM-
BER

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

52 INVALID PULSE
DURATION

An invalid value has been pro-
grammed in the function block
KRC_WriteDigitalOutput for the
length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

53 INVALID
BUFFER_MODE

An invalid BufferMode has
been programmed in a function
block, e.g. DIRECT mode is not
available for certain function
blocks.

Program a valid BufferMode.

 (>>> "BufferMode" Page 26)

No. Message text Cause Remedy
129 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

130 / 159

CODESYS Library
54 INVALID TOOL
NUMBER FOR
LOAD_DATA

An invalid number has been
programmed in the function
block KRC_ReadLoadData or
KRC_WriteLoadData for read-
ing or writing the load data or
supplementary load data.

Program a valid value (parame-
ter Tool).

 (>>> 6.10.26 "Reading the
load data" Page 51)

 (>>> 6.10.27 "Writing load
data" Page 51)

55 INVALID ANALOG
IO NUMBER

An invalid value has been pro-
grammed in a function block for
the analog input or output.

Program a valid value (parame-
ter Number):

 1 … 32

56 INVALID
IPO_MODE

An invalid value has been pro-
grammed in a function block for
the interpolation mode, e.g. in a
KRC_Move function block.

Program a valid value (parame-
ter CoordinateSystem –
COORDSYS.IPO_MODE).

 (>>> "COORDSYS" Page 25)

57 INVALID
CIRC_TYPE

An invalid value has been pro-
grammed in a KRC_MoveCirc
function block for the orienta-
tion control during the circular
motion.

Program a valid value (parame-
ter CircType).

 (>>> "CircType" Page 27)

58 INVALID FRAME
DATA

Invalid TOOL or BASE data
have been programmed in a
KRC_WriteToolData or
KRC_WriteBaseData function
block.

Program valid data (parameter
ToolData or BaseData).

 (>>> 6.10.23 "Writing TOOL
data" Page 48)

 (>>> 6.10.25 "Writing BASE
data" Page 50)

59 INVALID LOAD
DATA

Invalid load data have been
programmed in a
KRC_WriteLoadData function
block.

Program valid data.

 (>>> 6.10.27 "Writing load
data" Page 51)

60 INVALID
SOFT_END
(REVERSED)

Error writing the software limit
switches: positive software limit
switch < negative software limit
switch (function block
KRC_WriteSoftEnd or
KRC_WriteSoftEndEx)

Program lower values for the
negative software limit switch
than for the positive software
limit switch.

61 INVALID INTER-
RUPT STATE

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

62 INVALID SYS VAR
INDEX

An index for which no system
variable is stored has been
transferred in a
KRC_ReadSysVar or
KRC_WriteSysVar function
block.

Program a valid value (parame-
ter Index).

63 INVALID SYS VAR
VALUE

An invalid value has been pro-
grammed in a
KRC_WriteSysVar function
block for the system variable.

Program a valid value (parame-
ter Value1 … Value10).

64 SYS VAR NOT
WRITEABLE

An error occurred when writing a system variable.

The specified system variable does not exist or may not be written
in the current operating state.

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
7.2 Error messages of the mxA interface in the submit interpreter

65 INVALID REAL
VALUE

The programmed Real value is
invalid.

Program a valid value:

 -2,147,483,500 …
+2,147,483,500

66 ERROR SETTING
OUTPUT

Error writing a digital output.
The output may already be
assigned by the system.

Use a different digital output
(parameter Number):

 1 … 2 048

67 ERROR SETTING
SOFTEND

Error writing the software limit
switches: One possible error,
for example, is writing a rota-
tional axis with a value outside
the range +/-360°.

Program valid values for the
software limit switches (see
machine data).

68 INVALID TECH
FUNCTION INDEX

A TechFunctionID for which no
technology function is stored
has been transferred in a
KRC_TechFunction function
block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

69 INVALID TECH
FUNCTION
PARAMETER

An invalid value has been pro-
grammed in a
KRC_TechFunction function
block for a parameter.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

70 INVALID PARAME-
TER VALUE

An invalid value has been pro-
grammed in the called function
block for one or more parame-
ters.

Program valid values for the
parameters.

No. Message text Cause Remedy

No. Message text Cause Remedy

401 INTERNAL ERROR Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

402 ASSERT FAILED Internal exceptional error

403 INVALID COM-
MAND ID

Internal exceptional error

404 INVALID COM-
MAND STATE

Internal exceptional error

405 OVERFLOW COM-
MAND QUEUE

Internal exceptional error

406 INVALID COM-
MAND QUEUE
INDEX

Internal exceptional error

407 INVALID COM-
MAND (PRE)
QUEUE INDEX

Internal exceptional error

408 INVALID
WRITE_Q_IDX
AND
WRITE_PRE_Q_ID
X

Internal exceptional error
131 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

132 / 159

CODESYS Library
409 OVERFLOW STA-
TUS RETURN
QUEUE (SUBMIT)

There are more than 100
checkback signals relating to
status changes waiting to be
transferred from the robot con-
troller to the PLC.

The transmission rate is consid-
erably lower than the process-
ing speed.

Reduce the number of state-
ments to be buffered simultane-
ously.

If this is not possible, contact
KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

410 INVALID FIELD-
BUS TELEGRAMM
LENGTH

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

411 TIMEOUT
ABORT_REQUEST

Internal exceptional error

412 INVALID CHECK-
SUM PLC -> KRC

The checksum for data transmission from the PLC to the robot
controller is invalid:

Error during start-up:

 PROFINET configuration in
WorkVisual or CODESYS
faulty

Check configuration in WorkVi-
sual and CODESYS and con-
figure PROFINET correctly.

Error during operation:

 Bit error during data transfer

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

413 INVALID MOVE
TYPE

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

414 TIMEOUT HEART-
BEAT FROM PLC

Connection to PLC interrupted: Restore connection, then
acknowledge error:

PLC program stopped Restart the PLC program.

Submit interpreter deselected
or stopped

Restart submit interpreter.

Connecting cable defective or
not correctly connected

Exchange connecting cable or
connect it correctly.

416 SYS VAR NOT INI-
TIALIZED

An error occurred when reading a system variable.

The specified system variable does not exist or may not be read in
the current operating state.

Example: $POS_ACT cannot be accessed until a BCO run has
been carried out.

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
417 UNDERFLOW OF
NIBBLE

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)418 OVERFLOW OF

NIBBLE
Internal exceptional error

419 UNDERFLOW OF
BYTE

Internal exceptional error

420 OVERFLOW OF
BYTE

Internal exceptional error

421 UNDERFLOW OF
INT16

Internal exceptional error

422 OVERFLOW OF
INT16

Internal exceptional error

423 UNDERFLOW OF
INT32

Internal exceptional error

424 OVERFLOW OF
INT32

Internal exceptional error

425 UNDERFLOW OF
REAL

Internal exceptional error

426 OVERFLOW OF
REAL

Internal exceptional error

430 INVALID PTP APO An invalid approximation
parameter has been transferred
for a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
431 INVALID CP APO An invalid approximation

parameter has been transferred
for a CP motion (LIN, CIRC).

432 INVALID BASE
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadBaseData or
KRC_WriteBaseData for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
BaseNo).

 1 … 32

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Base).

 (>>> "COORDSYS" Page 25)

433 INVALID TOOL
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadToolData or
KRC_WriteToolData for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
ToolNo).

 1 … 16

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Tool).

 (>>> "COORDSYS" Page 25)

No. Message text Cause Remedy
133 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

134 / 159

CODESYS Library
434 INVALID VELOC-
ITY

An invalid value has been pro-
grammed in a function block for
the velocity.

Program a valid value (parame-
ter Velocity):

 0 … 100 %

435 INVALID ACCEL-
ERATION

An invalid value has been pro-
grammed in a function block for
the acceleration.

Program a valid value (parame-
ter Acceleration):

 0 … 100 %

436 INVALID C_PTP An invalid approximation dis-
tance has been transferred for
a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
437 INVALID C_DIS An invalid distance parameter

has been transferred for an
approximated motion.

438 INVALID C_VEL An invalid velocity parameter
has been transferred for an
approximated motion.

439 INVALID C_ORI An invalid orientation parameter
has been transferred for an
approximated motion.

440 INVALID
ORI_TYPE

An invalid value has been pro-
grammed in a KRC_Move or
KRC_Jog function block for the
orientation control of the TCP.

Program a valid value (parame-
ter OriType).

 (>>> "OriType" Page 27)

441 POSITION DATA
NOT INITIALIZED

No end position transferred
when calling a KRC_Move
function block.

Define at least 1 element of the
end position (parameter Posi-
tion).

 (>>> "E6POS" Page 25)

442 AXISPOSITION
DATA NOT INITIAL-
IZED

No axis position transferred
when calling a KRC_MoveAxis
function block.

Define at least 1 axis position
(parameter AxisPosition).

 (>>> "E6AXIS" Page 25)

443 INVALID TRIGGER
DISTANCE

An invalid value has been pro-
grammed in the
KRC_SetDistanceTrigger func-
tion block for the switching
point of the trigger.

Program a valid value (parame-
ter Distance):

 0: Switching action at the
start point

 1: Switching action at the
end point

444 INVALID TRIGGER
IO

An invalid output has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block.

Program a valid value (parame-
ter Output):

 1 … 2 048

445 INVALID TRIGGER
PULSE

An invalid value has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block for the length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

446 INVALID CIRC_HP No auxiliary position transferred
when calling a KRC_MoveCirc
function block.

Define at least 1 element of the
auxiliary position (parameter
CircHP).

 (>>> "E6AXIS" Page 25)

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
447 INVALID INTER-
RUPT IO

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

448 INVALID INTER-
RUPT NUMBER/
PRIORITY

An invalid number was trans-
ferred when calling a
KRC_…Interrupt function block.

Program a valid value (parame-
ter Interrupt):

 1 … 8

449 INTERRUPT NOT
DECLARED

Interrupt has not been
declared.

Declare interrupt.

 (>>> 6.10.32 "Declaring inter-
rupts" Page 56)

450 INVALID INTER-
RUPT ACTION

The interrupt reaction pro-
grammed when the the inter-
rupt was declared is invalid.

Program a valid reaction
(parameter Reaction).

 (>>> 6.10.32 "Declaring inter-
rupts" Page 56)

451 INVALID IO NUM-
BER

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

452 INVALID PULSE
DURATION

An invalid value has been pro-
grammed in the function block
KRC_WriteDigitalOutput for the
length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

 (>>> 6.10.15 "Writing a digital
output" Page 42)

453 INVALID
BUFFER_MODE

An invalid BufferMode has
been programmed in a function
block, e.g. DIRECT mode is not
available for certain function
blocks.

Program a valid BufferMode.

 (>>> "BufferMode" Page 26)

454 INVALID TOOL
NUMBER FOR
LOAD_DATA

An invalid number has been
programmed in the function
block KRC_ReadLoadData or
KRC_WriteLoadData for read-
ing or writing the load data or
supplementary load data.

Program a valid value (parame-
ter Tool).

 (>>> 6.10.26 "Reading the
load data" Page 51)

 (>>> 6.10.27 "Writing load
data" Page 51)

455 INVALID ANALOG
IO NUMBER

An invalid number has been
programmed for the analog
input or output in a function
block.

Program a valid number
(parameter Number):

 1 … 32

456 INVALID
IPO_MODE

An invalid value has been pro-
grammed in a function block for
the interpolation mode, e.g. in a
KRC_Move function block.

Program a valid value (parame-
ter CoordinateSystem –
COORDSYS.IPO_MODE).

 (>>> "COORDSYS" Page 25)

457 INVALID
CIRC_TYPE

An invalid value has been pro-
grammed in a KRC_MoveCirc
function block for the orienta-
tion control during the circular
motion.

Program a valid value (parame-
ter CircType).

 (>>> "CircType" Page 27)

No. Message text Cause Remedy
135 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

136 / 159

CODESYS Library
458 INVALID FRAME
DATA

Invalid TOOL or BASE data
have been programmed in a
KRC_WriteToolData or
KRC_WriteBaseData function
block.

Program valid data (parameter
ToolData or BaseData).

 (>>> 6.10.23 "Writing TOOL
data" Page 48)

 (>>> 6.10.25 "Writing BASE
data" Page 50)

459 INVALID LOAD
DATA

Invalid load data have been
programmed in a
KRC_WriteLoadData function
block.

Program valid data.

 (>>> 6.10.27 "Writing load
data" Page 51)

460 INVALID
SOFT_END
(REVERSED)

Error writing the software limit
switches: Positive software limit
switch < negative software limit
switch

Program lower values for the
negative software limit switch
than for the positive software
limit switch.

461 INVALID INTER-
RUPT STATE

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

462 INVALID SYS VAR
INDEX

An index for which no system
variable is stored has been
transferred in a
KRC_ReadSysVar or
KRC_WriteSysVar function
block.

Program a valid value (parame-
ter Index).

463 INVALID SYS VAR
VALUE

An invalid value has been pro-
grammed in a
KRC_WriteSysVar function
block for the system variable.

Program a valid value (parame-
ter Value1 … Value10).

464 SYS VAR NOT
WRITEABLE

An error occurred when writing a system variable.

The specified system variable does not exist or may not be written
in the current operating state.

465 INVALID REAL
VALUE

The programmed Real value is
invalid.

Program a valid value:

 -2,147,483,500 …
+2,147,483,500

466 ERROR SETTING
OUTPUT

Error writing an output. The out-
put may already be assigned by
the system.

Use a different digital output
(parameter Number):

 1 … 2 048

467 ERROR SETTING
SOFTEND

An error occurred when writing
a software limit switch.

One possible error, for exam-
ple, is writing a rotational axis
with a value outside the range
+/-360°.

Program valid values for the
software limit switches (see
machine data).

468 INVALID TECH
FUNCTION INDEX

A TechFunctionID for which no
technology function is stored
has been transferred in a
KRC_TechFunction function
block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
7.3 Errors in the function block

469 INVALID TECH
FUNCTION
PARAMETER

An invalid value has been pro-
grammed in a
KRC_TechFunction function
block for a parameter.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

470 INVALID PARAME-
TER VALUE

An invalid value has been pro-
grammed in the called function
block for one or more parame-
ters.

Program valid values for the
parameters.

No. Message text Cause Remedy

No. Message text Cause Remedy

501 INTERNAL ERROR Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

502 INVALID
BUFFER_MODE

BufferMode 0: DIRECT is not
permissible for this function
block.

Program the correct mode:

 1: ABORTING

 2: BUFFERED

503 INVALID MXA VER-
SION

The software versions of the
mxA interface and PLC library
are not compatible.

Install compatible software ver-
sions on the robot controller
and PLC.

 (>>> 6.10.3 "Initializing the
mxA interface" Page 32)

504 INVALID OVER-
RIDE

Invalid override value in the
function block
KRC_SetOverride

Program a valid value (parame-
ter Override).

 0 … 100 %

505 MAX GROUP REF
IDX REACHED

The axis group index specified
in the function block
KRC_ReadAxisGroup is
already assigned.

Only instance the
KRC_ReadAxisGroup function
block once in a program.

506 INVALID GROU-
PREFIDX

The axis group index specified
in the function block is invalid.

Specify a valid index for the
axis group (parameter Axis-
GroupIdx).

507 INVALID FB
ORDER

The order in which the function
blocks were called is invalid.

Program the function blocks in
the correct order.

508 CONNECTION
NOT INITIALIZED

No statements can be trans-
ferred, as the mxA interface
has not been initialized.

Initialize the mxA interface.

 (>>> 6.10.3 "Initializing the
mxA interface" Page 32)

509

510

NO CONNECTION
TO KRC

TIMEOUT HEART-
BEAT FROM KRC

Connection to robot controller
interrupted:

Restore connection, then
acknowledge error:

Robot controller is switched off Reboot the robot controller.

Submit interpreter deselected
or stopped

Restart submit interpreter.

Bus error or I/O configuration
faulty

Check I/O configuration.

Connecting cable defective or
not correctly connected

Exchange connecting cable or
connect it correctly.

Maximum cycle time of the sub-
mit interpreter is too short (only
for message no. 510)

Increase the value for MaxSub-
mitCycle in the function block
KRC_DIAG.
137 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

138 / 159

CODESYS Library
511 TIMEOUT CMD
INTERFACE
BLOCKED

The ExecuteCmd input was
reset before the Busy signal
was set.

Acknowledge the message and
in future do not reset the Exe-
cuteCmd input until the Done,
Error or Aborted signal has
been set.

512 INVALID CHECK-
SUM KRC -> PLC

The checksum for data transmission from the robot controller to
the PLC is invalid.

Error during start-up:

 PROFINET configuration in
WorkVisual or CODESYS
faulty

Check configuration in WorkVi-
sual and CODESYS and con-
figure PROFINET correctly.

Error during operation:

 Bit error during data transfer

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

513 INVALID POSI-
TION INDEX

An invalid number for the posi-
tion to be taught was trans-
ferred in the function block
KRC_TouchUP.

Program a valid value (parame-
ter Index):

 1 … 100

514 POS_ACT INVALID The current position cannot be
taught, as the position data are
invalid (no BCO).

Establish BCO with a RESET at
the function block
KRC_AutomaticExternal.

517 INVALID COM-
MAND SIZE

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

518 KRC STOPMESS
ACTIVE

Group error which prevents
motion enable

Check how the error was trig-
gered and eliminate the error.

 Analyze the messages in
the message window of the
KUKA smartHMI.

 Read the current error state
of the robot controller with
the function block
KRC_ReadKRCError.

519 INVALID ABSO-
LUTE VELOCITY

An invalid value has been pro-
grammed for the parameter
AbsoluteVelocity in a
KRC_Move function block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

520 VELOCITY CON-
FLICT

More than one value has been
programmed for the velocity in
a KRC_Move function block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

521 INVALID PARAME-
TER COUNT

An invalid value has been pro-
grammed for the parameter
ParameterCount in a
KRC_TechFunction function
block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

522 INVALID PARAME-
TER USAGE

The parameter Parameter-
Count has been incorrectly
configured in the
KRC_TechFunction function
block.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

523 INVALID OPERA-
TION MODE

The robot is in the incorrect
operating mode.

Select Automatic External
mode.

524 USER_SAF SIG-
NAL NOT ACTIVE

The operator safety is violated. Close the safeguard and
acknowledge the closed state.

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
525 ALARM_STOP
SIGNAL NOT
ACTIVE

The safety configuration is
incorrect and an EMER-
GENCY STOP has been trig-
gered.

Check and modify the safety
configuration of the system
(robot controller and PLC).

No connection to the EMER-
GENCY STOP of the system

Check the EMERGENCY
STOP of the system and rees-
tablish the connection.

The inputs and outputs of the
Automatic External interface
are incorrectly configured.

1. In the main menu, select
Display > Inputs/outputs >
Automatic External.

2. Check and modify the con-
figuration of the inputs and
outputs.

526 APPL_RUN SIG-
NAL ACTIVE

RESET cannot be carried out
because a robot program is
running.

1. Wait until the robot program
has been executed.

2. Execute the statement
again.

527 TIMEOUT MES-
SAGE CONFIRM

The message cannot be
acknowledged by the PLC.

Acknowledge the message on
the robot controller.

528 TIMEOUT MXA
MESSAGE CON-
FIRM

An error cannot be acknowl-
edged in the function block
KRC_AutoStart.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

529 TIMEOUT
SWITCHING
DRIVES ON

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

530 TIMEOUT PRO-
GRAM SELECTION

Internal exceptional error

531 TIMEOUT PRO-
GRAM START

Internal exceptional error

532 MOVE_ENABLE
SIGNAL NOT
ACTIVE

The robot does not have motion
enable

Issue motion enable with the
parameter MOVE_ENABLE.

533 INVALID
AXIS_VALUES

In the function block
KRC_Forward, not all axis
angles required for execution
are defined.

Define the missing axis angles
in the function block
KRC_Forward.

534 INVALID $BASE Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

535 INVALID $TOOL Internal exceptional error

536 INVALID SOFTEND Error in the function block
KRC_Forward:

The specified axis angles lie
outside of the software limit
switches.

Enter axis angles that lie within
the software limit switches
(parameter Axis_Values).

or: Modify the software limit
switches.

537 ERR MATH TRAFO Error in the function block
KRC_Forward:

The robot cannot reach the
specified axis angles.

Enter axis angles that the robot
can reach (parameter
Axis_Values).

No. Message text Cause Remedy
139 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

140 / 159

CODESYS Library
7.4 ProConOS errors

538 INVALID
AXIS_VALUES

Error in the function block
KRC_Inverse:

 The Cartesian robot posi-
tion has not been fully spec-
ified.

 The axis-specific values at
the start point of the motion
have not been fully speci-
fied.

 Fully specify the Cartesian
robot position (parameter
Position).

 Fully specify the axis-specif-
ic values at the start point of
the motion (parameter
Start_Axis).

539 INVALID $BASE Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

540 INVALID $TOOL Internal exceptional error

541 INVALID SOFTEND Error in the function block
KRC_Inverse:

The specified axis-specific val-
ues at the start point of the
motion lie outside of the soft-
ware limit switches.

Enter values that lie within the
software limit switches (param-
eter Start_Axis).

or: Modify the software limit
switches.

542 ERR MATH TRAFO Error in the function block
KRC_Inverse:

The robot cannot reach the
specified axis-specific values at
the start point of the motion.

Enter values that the robot can
reach (parameter Start_Axis).

543 INVALID EXECUTE During a linked motion capable
of being approximated, the
Execute input was reset before
the ComDone signal was set by
the function block.

Acknowledge the message and
in the future do not reset the
Execute input until the Com-
Done signal has been set by
the function block.

544 INVALID
DEV_VEL_CP

Initialization of the mxA inter-
face on the robot controller has
not yet been completed or has
an error.

Check whether the Done out-
put on the function block
KRC_Initialize is active.

No. Message text Cause Remedy

No. Message text Cause Remedy

701 INTERNAL ERROR Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

702 ASSERT FAILED Internal exceptional error

703 INVALID COM-
MAND ID

Internal exceptional error

704 INVALID HEADER
DATA

Internal exceptional error

709 ERROR READING
SOFTPLC

Internal exceptional error

710 ERROR FROM
KRC SUBMIT

Internal exceptional error

712 INVALID CHECK-
SUM PLC -> KRC

The checksum for data trans-
mission from the PLC to the
robot controller is invalid.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
713 INVALID MOVE
TYPE

An invalid value has been pro-
grammed in a KRC_Move func-
tion block for the parameter
MoveType.

Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

730 INVALID PTP APO An invalid approximation
parameter has been transferred
for a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
731 INVALID CP APO An invalid approximation

parameter has been transferred
for a CP motion (LIN, CIRC).

732 INVALID BASE
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadBaseData or
KRC_WriteBaseData for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
BaseNo).

 1 … 32

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
BASE coordinate system.

Specify the number of the
BASE coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Base).

 (>>> "COORDSYS" Page 25)

733 INVALID TOOL
NUMBER

An invalid number has been
programmed in the function
block KRC_ReadToolData or
KRC_WriteToolData for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
ToolNo).

 1 … 16

An invalid number has been
programmed in a KRC_Move or
KRC_Jog function block for the
TOOL coordinate system.

Specify the number of the
TOOL coordinate system that is
currently being used in the
robot controller (parameter
CoordinateSystem – COORD-
SYS.Tool).

 (>>> "COORDSYS" Page 25)

734 INVALID VELOC-
ITY

An invalid value has been pro-
grammed in a function block for
the velocity.

Program a valid value (parame-
ter Velocity):

 0 … 100 %

735 INVALID ACCEL-
ERATION

An invalid value has been pro-
grammed in a function block for
the acceleration.

Program a valid value (parame-
ter Acceleration):

 0 … 100 %

No. Message text Cause Remedy
141 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

142 / 159

CODESYS Library
736 INVALID C_PTP An invalid approximation dis-
tance has been transferred for
a PTP motion.

Program a valid value (parame-
ter Approximate).

 (>>> "APO" Page 24)
737 INVALID C_DIS An invalid distance parameter

has been transferred for an
approximated motion.

738 INVALID C_VEL An invalid velocity parameter
has been transferred for an
approximated motion.

739 INVALID C_ORI An invalid orientation parameter
has been transferred for an
approximated motion.

740 INVALID
ORI_TYPE

An invalid value has been pro-
grammed in a KRC_Move or
KRC_Jog function block for the
orientation control of the TCP.

Program a valid value (parame-
ter OriType).

 (>>> "OriType" Page 27)

741 POSITION DATA
NOT INITIALIZED

No end position transferred
when calling a KRC_Move
function block.

Define at least 1 element of the
end position (parameter Posi-
tion).

 (>>> "E6POS" Page 25)

742 AXISPOSITION
DATA NOT INITIAL-
IZED

No axis position transferred
when calling a KRC_MoveAxis
function block.

Define at least 1 axis position
(parameter AxisPosition).

 (>>> "E6AXIS" Page 25)

743 INVALID TRIGGER
DISTANCE

An invalid value has been pro-
grammed in a
KRC_SetDistanceTrigger func-
tion block for the switching
point of the trigger.

Program a valid value (parame-
ter Distance):

 0: Switching action at the
start point

 1: Switching action at the
end point

744 INVALID TRIGGER
IO

An invalid output has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block.

Program a valid value (parame-
ter Output):

 1 … 2 048

745 INVALID TRIGGER
PULSE

An invalid value has been pro-
grammed in a
KRC_SetDistanceTrigger or
KRC_SetPathTrigger function
block for the length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

746 INVALID CIRC_HP No auxiliary position transferred
when calling a KRC_MoveCirc
function block.

Define at least 1 element of the
auxiliary position (parameter
CircHP).

 (>>> "E6AXIS" Page 25)

747 INVALID INTER-
RUPT IO

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

748 INVALID INTER-
RUPT PRIORITY

An invalid number was trans-
ferred when calling a
KRC_…Interrupt function block.

Program a valid value (parame-
ter Interrupt):

 1 … 8

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
750 INVALID INTER-
RUPT ACTION

The interrupt reaction pro-
grammed when the the inter-
rupt was declared is invalid.

Program a valid reaction
(parameter Reaction).

 (>>> 6.10.32 "Declaring inter-
rupts" Page 56)

751 INVALID IO NUM-
BER

The number of the digital input
to which the interrupt is
declared is invalid (function
block KRC_DeclareInterrupt).

Program a valid value (parame-
ter Input):

 1 … 2 048

752 INVALID PULSE
DURATION

An invalid value has been pro-
grammed in the function block
KRC_WriteDigitalOutput for the
length of the pulse.

Program a valid value (parame-
ter Pulse):

 0.1 … 3.0 s

 0.0 s (No pulse active)

753 INVALID
BUFFER_MODE

An invalid BufferMode has
been programmed in a function
block, e.g. DIRECT mode is not
available for certain function
blocks.

Program a valid BufferMode.

 (>>> "BufferMode" Page 26)

754 INVALID TOOL
NUMBER FOR
LOAD_DATA

An invalid number has been
programmed in the function
block KRC_ReadLoadData or
KRC_WriteLoadData for read-
ing or writing the load data or
supplementary load data.

Program a valid value (parame-
ter Tool).

 (>>> 6.10.26 "Reading the
load data" Page 51)

 (>>> 6.10.27 "Writing load
data" Page 51)

755 INVALID ANALOG
IO NUMBER

An invalid value has been pro-
grammed in a function block for
the analog input or output.

Program a valid value (parame-
ter Number):

 1 … 32

756 INVALID
IPO_MODE

An invalid value has been pro-
grammed in a function block for
the interpolation mode, e.g. in a
KRC_Move function block.

Program a valid value (parame-
ter CoordinateSystem –
COORDSYS.IPO_MODE).

 (>>> "COORDSYS" Page 25)

757 INVALID
CIRC_TYPE

An invalid value has been pro-
grammed in a KRC_MoveCirc
function block for the orienta-
tion control during the circular
motion.

Program a valid value (parame-
ter CircType).

 (>>> "CircType" Page 27)

758 INVALID FRAME
DATA

Invalid TOOL or BASE data
have been programmed in a
KRC_WriteToolData or
KRC_WriteBaseData function
block.

Program valid data (parameter
ToolData or BaseData).

 (>>> 6.10.23 "Writing TOOL
data" Page 48)

 (>>> 6.10.25 "Writing BASE
data" Page 50)

759 INVALID LOAD
DATA

Invalid load data have been
programmed in a
KRC_WriteLoadData function
block.

Program valid data.

 (>>> 6.10.27 "Writing load
data" Page 51)

760 INVALID
SOFT_END
(REVERSED)

Error writing the software limit
switches: positive software limit
switch < negative software limit
switch (function block
KRC_WriteSoftEnd or
KRC_WriteSoftEndEx)

Program lower values for the
negative software limit switch
than for the positive software
limit switch.

No. Message text Cause Remedy
143 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

144 / 159

CODESYS Library
765 INVALID REAL
VALUE

The programmed Real value is
invalid.

 -2,147,483,500 …
+2,147,483,500

770 INVALID PARAME-
TER VALUE

An invalid value has been pro-
grammed in the called function
block for one or more parame-
ters.

Program valid values for the
parameters.

771 INVALID ADVANCE
COUNT

In the function block
KRC_SetAdvance, an invalid
value has been programmed
for the number of functions
which are to be transferred
prior to the first robot motion.

Program a valid value (parame-
ter Count):

 1 … 50

772 INVALID MAX-
WAITTIME

In the function block
KRC_SetAdvance, an invalid
value has been programmed
for the maximum wait time
before the start of program exe-
cution if the set number of func-
tions in the parameter Count is
not reached.

Program a valid value (parame-
ter MaxWaitTime):

 1 … 60 000 ms

773 INVALID ADVANCE
MODE

In the function block
KRC_SetAdvance, an invalid
value has been programmed
for Wait mode.

Program a valid value (parame-
ter Mode):

 0 … 2

774 INVALID DI START-
NUMBER

In the function block
KRC_ReadDigitalInputArray, an
invalid value has been pro-
grammed for the number of the
first digital input that is called.

Program a valid value (parame-
ter Startnumber):

 1 … 2 048

775 INVALID DI
LENGTH

In the function block
KRC_ReadDigitalInputArray, an
invalid value has been pro-
grammed for the number of
inputs that are polled.

Program a valid value (parame-
ter Length):

 1 … 2 00

776 INVALID CON-
VEYOR NUMBER

In the called function block, an
invalid number has been pro-
grammed for the number of the
conveyor.

Program a valid value (parame-
ter ConveyorNumber):

 1 … 3

777 INVALID CON-
VEYOR STARTDIS-
TANCE

In the function block
KRC_ConvFollow or
KRC_ConvSkip, an invalid
value has been programmed
for the distance traveled by the
workpiece while the robot waits
before starting to track the
workpiece on the conveyor.

Program a valid value (parame-
ter StartDistance):

 In the case of a linear con-
veyor: Specification in milli-
meters

 In the case of a circular con-
veyor: Specification in de-
grees

778 INVALID CON-
VEYOR MAXDIS-
TANCE

In the function block
KRC_ConvFollow or
KRC_ConvSkip, an invalid
value has been programmed
for the maximum distance trav-
eled by the workpiece before
the robot starts to synchronize
itself with the workpiece.

Program a valid value (parame-
ter MaxDistance):

 In the case of a linear con-
veyor: Specification in milli-
meters

 In the case of a circular con-
veyor: Specification in de-
grees

No. Message text Cause Remedy
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

7 Messages
779 INVALID CON-
VEYOR PIECE-
NUMBER

In the function block
KRC_ConvSkip, an invalid
value has been programmed
for the number specifying which
workpieces are to be picked up.

Program a valid value (parame-
ter PieceNumber).

Examples:

 1: Every workpiece is
picked up.

 3: Every 3rd workpiece is
picked up.

780 INVALID WORK-
SPACENO

In the called function block, an
invalid number has been pro-
grammed for the number of the
workspace.

Program a valid value (parame-
ter WorkspaceNo):

 1 … 8

781 INVALID WORK-
SPACEMODE

In the called function block, an
invalid number has been pro-
grammed for the mode for
workspaces.

Program a valid value (parame-
ter WorkspaceMode):

 0 … 4

782 INVALID WORK-
SPACEPART

Internal exceptional error Contact KUKA Roboter GmbH.
(>>> 8 "KUKA Service"
Page 147)

801 STOPMESS
ACTIVE

Group error which prevents
motion enable

Check how the error was trig-
gered and eliminate the error.

 Analyze the messages in
the message window of the
KUKA smartHMI.

 Read the current error state
of the robot controller with
the function block
KRC_ReadKRCError.

No. Message text Cause Remedy
145 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

146 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

8 KUKA Service
8 KUKA Service

8.1 Requesting support

Introduction This documentation provides information on operation and operator control,
and provides assistance with troubleshooting. For further assistance, please
contact your local KUKA subsidiary.

Information The following information is required for processing a support request:

 Description of the problem, including information about the duration and
frequency of the fault

 As comprehensive information as possible about the hardware and soft-
ware components of the overall system

The following list gives an indication of the information which is relevant in
many cases:

 Model and serial number of the kinematic system, e.g. the manipulator

 Model and serial number of the controller

 Model and serial number of the energy supply system

 Designation and version of the system software

 Designations and versions of other software components or modifica-
tions

 Diagnostic package KrcDiag:

Additionally for KUKA Sunrise: Existing projects including applications

For versions of KUKA System Software older than V8: Archive of the
software (KrcDiag is not yet available here.)

 Application used

 External axes used

8.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesi-
tate to contact us if you have any questions.

Argentina Ruben Costantini S.A. (Agency)

Luis Angel Huergo 13 20

Parque Industrial

2400 San Francisco (CBA)

Argentina

Tel. +54 3564 421033

Fax +54 3564 428877

ventas@costantini-sa.com

Australia KUKA Robotics Australia Pty Ltd

45 Fennell Street

Port Melbourne VIC 3207

Australia

Tel. +61 3 9939 9656

info@kuka-robotics.com.au

www.kuka-robotics.com.au

A

v

147 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

148 / 159

CODESYS Library
Belgium KUKA Automatisering + Robots N.V.

Centrum Zuid 1031

3530 Houthalen

Belgium

Tel. +32 11 516160

Fax +32 11 526794

info@kuka.be

www.kuka.be

Brazil KUKA Roboter do Brasil Ltda.

Travessa Claudio Armando, nº 171

Bloco 5 - Galpões 51/52

Bairro Assunção

CEP 09861-7630 São Bernardo do Campo - SP

Brazil

Tel. +55 11 4942-8299

Fax +55 11 2201-7883

info@kuka-roboter.com.br

www.kuka-roboter.com.br

Chile Robotec S.A. (Agency)

Santiago de Chile

Chile

Tel. +56 2 331-5951

Fax +56 2 331-5952

robotec@robotec.cl

www.robotec.cl

China KUKA Robotics China Co., Ltd.

No. 889 Kungang Road

Xiaokunshan Town

Songjiang District

201614 Shanghai

P. R. China

Tel. +86 21 5707 2688

Fax +86 21 5707 2603

info@kuka-robotics.cn

www.kuka-robotics.com

Germany KUKA Roboter GmbH

Zugspitzstr. 140

86165 Augsburg

Germany

Tel. +49 821 797-4000

Fax +49 821 797-1616

info@kuka-roboter.de

www.kuka-roboter.de
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

8 KUKA Service
France KUKA Automatisme + Robotique SAS

Techvallée

6, Avenue du Parc

91140 Villebon S/Yvette

France

Tel. +33 1 6931660-0

Fax +33 1 6931660-1

commercial@kuka.fr

www.kuka.fr

India KUKA Robotics India Pvt. Ltd.

Office Number-7, German Centre,

Level 12, Building No. - 9B

DLF Cyber City Phase III

122 002 Gurgaon

Haryana

India

Tel. +91 124 4635774

Fax +91 124 4635773

info@kuka.in

www.kuka.in

Italy KUKA Roboter Italia S.p.A.

Via Pavia 9/a - int.6

10098 Rivoli (TO)

Italy

Tel. +39 011 959-5013

Fax +39 011 959-5141

kuka@kuka.it

www.kuka.it

Japan KUKA Robotics Japan K.K.

YBP Technical Center

134 Godo-cho, Hodogaya-ku

Yokohama, Kanagawa

240 0005

Japan

Tel. +81 45 744 7691

Fax +81 45 744 7696

info@kuka.co.jp

Canada KUKA Robotics Canada Ltd.

6710 Maritz Drive - Unit 4

Mississauga

L5W 0A1

Ontario

Canada

Tel. +1 905 670-8600

Fax +1 905 670-8604

info@kukarobotics.com

www.kuka-robotics.com/canada
149 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

150 / 159

CODESYS Library
Korea KUKA Robotics Korea Co. Ltd.

RIT Center 306, Gyeonggi Technopark

1271-11 Sa 3-dong, Sangnok-gu

Ansan City, Gyeonggi Do

426-901

Korea

Tel. +82 31 501-1451

Fax +82 31 501-1461

info@kukakorea.com

Malaysia KUKA Robot Automation (M) Sdn Bhd

South East Asia Regional Office

No. 7, Jalan TPP 6/6

Taman Perindustrian Puchong

47100 Puchong

Selangor

Malaysia

Tel. +60 (03) 8063-1792

Fax +60 (03) 8060-7386

info@kuka.com.my

Mexico KUKA de México S. de R.L. de C.V.

Progreso #8

Col. Centro Industrial Puente de Vigas

Tlalnepantla de Baz

54020 Estado de México

Mexico

Tel. +52 55 5203-8407

Fax +52 55 5203-8148

info@kuka.com.mx

www.kuka-robotics.com/mexico

Norway KUKA Sveiseanlegg + Roboter

Sentrumsvegen 5

2867 Hov

Norway

Tel. +47 61 18 91 30

Fax +47 61 18 62 00

info@kuka.no

Austria KUKA Roboter CEE GmbH

Gruberstraße 2-4

4020 Linz

Austria

Tel. +43 7 32 78 47 52

Fax +43 7 32 79 38 80

office@kuka-roboter.at

www.kuka.at
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

8 KUKA Service
Poland KUKA Roboter Austria GmbH

Spółka z ograniczoną odpowiedzialnością

Oddział w Polsce

Ul. Porcelanowa 10

40-246 Katowice

Poland

Tel. +48 327 30 32 13 or -14

Fax +48 327 30 32 26

ServicePL@kuka-roboter.de

Portugal KUKA Robots IBÉRICA, S.A.

Rua do Alto da Guerra n° 50

Armazém 04

2910 011 Setúbal

Portugal

Tel. +351 265 729 780

Fax +351 265 729 782

info.portugal@kukapt.com

www.kuka.com

Russia KUKA Robotics RUS

Werbnaja ul. 8A

107143 Moskau

Russia

Tel. +7 495 781-31-20

Fax +7 495 781-31-19

info@kuka-robotics.ru

www.kuka-robotics.ru

Sweden KUKA Svetsanläggningar + Robotar AB

A. Odhners gata 15

421 30 Västra Frölunda

Sweden

Tel. +46 31 7266-200

Fax +46 31 7266-201

info@kuka.se

Switzerland KUKA Roboter Schweiz AG

Industriestr. 9

5432 Neuenhof

Switzerland

Tel. +41 44 74490-90

Fax +41 44 74490-91

info@kuka-roboter.ch

www.kuka-roboter.ch
151 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

152 / 159

CODESYS Library
Spain KUKA Robots IBÉRICA, S.A.

Pol. Industrial

Torrent de la Pastera

Carrer del Bages s/n

08800 Vilanova i la Geltrú (Barcelona)

Spain

Tel. +34 93 8142-353

Fax +34 93 8142-950

comercial@kukarob.es

www.kuka.es

South Africa Jendamark Automation LTD (Agency)

76a York Road

North End

6000 Port Elizabeth

South Africa

Tel. +27 41 391 4700

Fax +27 41 373 3869

www.jendamark.co.za

Taiwan KUKA Robot Automation Taiwan Co., Ltd.

No. 249 Pujong Road

Jungli City, Taoyuan County 320

Taiwan, R. O. C.

Tel. +886 3 4331988

Fax +886 3 4331948

info@kuka.com.tw

www.kuka.com.tw

Thailand KUKA Robot Automation (M)SdnBhd

Thailand Office

c/o Maccall System Co. Ltd.

49/9-10 Soi Kingkaew 30 Kingkaew Road

Tt. Rachatheva, A. Bangpli

Samutprakarn

10540 Thailand

Tel. +66 2 7502737

Fax +66 2 6612355

atika@ji-net.com

www.kuka-roboter.de

Czech Republic KUKA Roboter Austria GmbH

Organisation Tschechien und Slowakei

Sezemická 2757/2

193 00 Praha

Horní Počernice

Czech Republic

Tel. +420 22 62 12 27 2

Fax +420 22 62 12 27 0

support@kuka.cz
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

8 KUKA Service
Hungary KUKA Robotics Hungaria Kft.

Fö út 140

2335 Taksony

Hungary

Tel. +36 24 501609

Fax +36 24 477031

info@kuka-robotics.hu

USA KUKA Robotics Corporation

51870 Shelby Parkway

Shelby Township

48315-1787

Michigan

USA

Tel. +1 866 873-5852

Fax +1 866 329-5852

info@kukarobotics.com

www.kukarobotics.com

UK KUKA Robotics UK Ltd

Great Western Street

Wednesbury West Midlands

WS10 7LL

UK

Tel. +44 121 505 9970

Fax +44 121 505 6589

service@kuka-robotics.co.uk

www.kuka-robotics.co.uk
153 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

154 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

Index
Index

Symbols
$ACC_CAR_ACT 39
$ACT_BASE 37
$ACT_TOOL 37
$AXIS_ACT 37
$IPO_MODE_C 37
$POS_ACT 36, 37
$VEL_ACT 38
$VEL_AXIS_ACT 38

A
Aborted, signal output 21
Active, signal output 20
Active, signal output (PLC OPEN) 22
Advance run, modifying settings 108
APO (STRUCT) 24
Approximate positioning 30
Approximate positioning, CP motion 24
Approximate positioning, PTP motion 24
Automatic External, signals 34
Axis angles, calculating 111
Axis group 8
Axis position, reading 37
Axis velocity, reading 38
AxisGroupIdx, signal input 20
AxisGroupIdx, signal input (PLC OPEN) 22

B
BASE data, reading 49
BASE data, writing 50
Base, selecting 46
BCO 8
Brake test, calling 103
BufferMode (variable) 26
Busy, signal output 20
Busy, signal output (PLC OPEN) 22

C
Cartesian robot position, calculating 110
CIRC motion 73, 90
CIRC_REL motion 75, 93
CircType (variable) 27
Circular motion 73, 75, 90, 93
Circular motion, orientation control 27
CODESYS V3.5 SP4 8
ComBusy, signal output (PLC OPEN) 22
ComDone, signal output (PLC OPEN) 22
CommandAborted, signal output (PLC OPEN)
23
Communication 9
Components 9
Configuration 15
Conveyor, activating 113
Conveyor, initializing 112
COORDSYS (STRUCT) 25
CP motion, approximate positioning 24
CP_APO (INT) 24

D
Diagnostic signals, reading 97
Documentation, industrial robot 7
Done, signal output 21

E
E6AXIS (STRUCT) 25
E6POS (STRUCT) 25
Error states, acknowledging 99
Error states, reading 99
Error, signal output 21
Error, signal output (PLC OPEN) 22
ErrorID, signal output 21
ErrorID, signal output (PLC OPEN) 23
Errors, reading 96
Errors, resetting 96
Example, programming 30
Execute, signal input (PLC OPEN) 22
ExecuteCmd, signal input 20, 30

F
FIFO 8
FRAME (STRUCT) 26
Function blocks, overview 17
Function blocks, starting automatically 65

H
Hardware 13

I
I/Os 13
Input signals 20
Input signals (PLC OPEN) 22
Inputs 13
Inputs 1 to 8, digital 40
Inputs, analog 44
Inputs, digital 40
Installation 13
Instancing 29
Intended use 9
Interpolation mode, selecting 46
Interrupts for monitoring, activating 117
Interrupts for monitoring, deactivating 118
Interrupts, activating 57
Interrupts, deactivating 58
Interrupts, declaring 56
Introduction 7

J
Jogging 78, 79, 80

K
Knowledge, required 7
KR C 8
KRC_Abort 63
KRC_ActivateConvInterrupt 117
KRC_ActivateInterrupt 57
KRC_AutomaticExternal 34
155 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

156 / 159

CODESYS Library
KRC_AutoStart 65
KRC_BrakeTest 103
KRC_Continue 64
KRC_ConvFollow 114
KRC_ConvIniOff 112
KRC_ConvOn 113
KRC_ConvSkip 115
KRC_DeactivateConvInterrupt 118
KRC_DeactivateInterrupt 58
KRC_DeclareInterrupt 56
KRC_Diag 97
KRC_Error 99
KRC_Forward 110
KRC_GetAdvance 109
KRC_Initialize 32
KRC_Interrupt 64
KRC_Inverse 111
KRC_Jog 80
KRC_JogLinearRelative 78
KRC_JogToolRelative 79
KRC_MasRef 104
KRC_MessageReset 96
KRC_MoveAxisAbsolute 72
KRC_MoveCircAbsolute 73
KRC_MoveCircRelative 75
KRC_MoveDirectAbsolute 69
KRC_MoveDirectRelative 70
KRC_MoveLinearAbsolute 66
KRC_MoveLinearRelative 67
KRC_ReadActualAcceleration 39
KRC_ReadActualAxisPosition 37
KRC_ReadActualAxisVelocity 38
KRC_ReadActualPosition 36
KRC_ReadActualVelocity 38
KRC_ReadAnalogInput 44
KRC_ReadAnalogOutput 44
KRC_ReadAxisGroup 31
KRC_ReadAxWorkspace 124
KRC_ReadBaseData 49
KRC_ReadDigitalInput 40
KRC_ReadDigitalInput1To8 40
KRC_ReadDigitalInputArray 41
KRC_ReadDigitalOutput 42
KRC_ReadInterruptState 59
KRC_ReadKRCError 96
KRC_ReadLoadData 51
KRC_ReadMXAError 96
KRC_ReadMXAStatus 95
KRC_ReadSafeOPStatus 106
KRC_ReadSoftEnd 53
KRC_ReadSoftEndExt 53
KRC_ReadSysVar 101
KRC_ReadToolData 47
KRC_ReadTouchUPState 107
KRC_ReadWorkspace 122
KRC_ReadWorkstates 124
KRC_SetAdvance 108
KRC_SetCoordSys 46
KRC_SetDistanceTrigger 60
KRC_SetOverride 33
KRC_SetPathTrigger 61

KRC_TouchUP 107
KRC_VectorMoveOff 120
KRC_VectorMoveOn 119
KRC_VectorMoveOn, deactivating 120
KRC_WaitForInput 46
KRC_WriteAnalogOutput 45
KRC_WriteAxisGroup 32
KRC_WriteAxWorkspace 123
KRC_WriteBaseData 50
KRC_WriteDigitalOutput 42
KRC_WriteDigitalOutput1To8 43
KRC_WriteLoadData 51
KRC_WriteSoftEnd 54
KRC_WriteSoftEndExt 55
KRC_WriteSysVar 101
KRC_WriteToolData 48
KRC_WriteWorkspace 121
KRL 8
KRL resources 13
KUKA Customer Support 147
KUKA smartHMI 8
KUKA smartPAD 8

L
LIN motion 66, 83
LIN_REL motion 67, 84
Linear motion 66, 67, 78, 79, 80, 83, 84
Load data, reading 51
Load data, writing 51

M
Mastering test, calling 104
MC_MoveAxisAbsolute 89
MC_MoveCircularAbsolute 90
MC_MoveCircularRelative 93
MC_MoveDirectAbsolute 86
MC_MoveDirectRelative 87
MC_MoveLinearAbsolute 83
MC_MoveLinearRelative 84
Messages 127
Motion along vector, activating 119
Multi-instance call 29
Multiple inputs, digital 41
mxA interface 8
mxA interface, error messages 96
mxA interface, initializing 32

O
Orientation control, circular motion 27
Orientation control, TCP 27
OriType (variable) 27
Output signals 20
Output signals (PLC OPEN) 22
Outputs 13
Outputs 1 to 8, digital 43
Outputs, analog 44, 45
Outputs, digital 42
Overview 9
Overview, function blocks 17
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

Index
P
Path velocity, reading 38
Path-related switching action 60, 61
PLC 8
Point-to-point motion 69, 70, 72, 80, 86, 87, 89
Points, teaching 107
Product description 9
PROFINET 8
Program override 30
Program override, setting 33
Program, canceling 63
Program, continuing 64
Programming 17
Programming tips 29
Programming, example 30
Programming, instructions 17
PTP motion 69, 72, 86, 89
PTP motion, approximate positioning 24
PTP_APO (INT) 24
PTP_REL motion 70, 87

Q
QueueMode (variable) 27

R
Robot acceleration, reading 39
Robot interpreter 8
Robot position, reading 36
Robot, stopping 64

S
Safety 11
Safety controller, reading signals 106
Safety instructions 7
Service, KUKA Roboter GmbH 147
Signal sequence, Execute PLC (PLC OPEN) 23
Signal sequence, ExecuteCmd 21
Signals, frequently used 20
Signals, frequently used (PLC OPEN) 22
smartHMI 8
smartPAD 8
Software 13
Software limit switches, reading 53
Software limit switches, writing 54, 55
State of an interrupt, reading 59
State of mxA interface, reading 95
Status, mxA interface 27
Structures (STRUCT) 23
Submit interpreter 8
Support request 147
System requirements 13
System variables, reading 101
System variables, writing 101

T
Target group 7
TCP, orientation control 27
Template, program 9, 17, 29, 30
Terms used 8
Terms, used 8
TOOL data, reading 47

TOOL data, writing 48
Tool, selecting 46
TouchUp status keys 107
Training 7
TRIGGER 60, 61

U
Use, intended 9

V
Values, reading 109

W
Wait statement 46
Warnings 7
Workpiece, picking up 115
Workpiece, tracking 114
Workspaces, configuring (axes) 123
Workspaces, configuring (Cartesian) 121
Workspaces, reading configuration (axes) 124
Workspaces, reading configuration (Cartesian)
122
Workspaces, reading status 124
WorkVisual 8, 9
157 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

158 / 159

CODESYS Library
Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

159 / 159Issued: 14.12.2015 Version: CODESYS Library mxAutomation 2.1 V2

CODESYS Library

	CODESYS Library
	1 Introduction
	1.1 Target group
	1.2 Industrial robot documentation
	1.3 Representation of warnings and notes
	1.4 Terms used

	2 Product description
	2.1 Overview
	2.2 Intended use

	3 Safety
	4 Installation
	4.1 System requirements

	5 Configuration
	5.1 Configuration in WorkVisual – overview

	6 Programming
	6.1 Instructions for programming
	6.2 Overview of function blocks
	6.3 Frequently used input/output signals in the function blocks
	6.3.1 Input signals
	6.3.2 Output signals
	6.3.3 Signal sequence for execution of ExecuteCmd

	6.4 Frequently used input/output signals in the MC function blocks
	6.4.1 Input signals
	6.4.2 Output signals
	6.4.3 Signal sequence for execution of Execute

	6.5 Structures for motion programming (STRUCT)
	6.6 Integer variables
	6.7 Data of a Cartesian workspace
	6.8 Data of an axis-specific workspace
	6.9 Programming tips for KUKA.PLC mxAutomation
	6.9.1 Programming example (template MxA_CODESYS_Template_PN)

	6.10 Administrative functions
	6.10.1 Reading PLC-specific communication into a non-PLC-specific structure
	6.10.2 Writing a non-PLC-specific structure into PLC-specific communication
	6.10.3 Initializing the mxA interface
	6.10.4 Setting the program override (POV)
	6.10.5 Activating and reading Automatic External signals from the robot controller
	6.10.6 Reading the current robot position
	6.10.7 Reading the current axis position
	6.10.8 Reading the current path velocity
	6.10.9 Reading the current axis velocity
	6.10.10 Reading the current robot acceleration
	6.10.11 Reading a digital input
	6.10.12 Reading digital inputs 1 to 8
	6.10.13 Reading multiple digital inputs
	6.10.14 Reading a digital output
	6.10.15 Writing a digital output
	6.10.16 Writing digital outputs 1 to 8
	6.10.17 Reading an analog input
	6.10.18 Reading an analog output
	6.10.19 Writing an analog output
	6.10.20 Wait statement (read digital input)
	6.10.21 Selecting the tool, base and interpolation mode
	6.10.22 Reading TOOL data
	6.10.23 Writing TOOL data
	6.10.24 Reading BASE data
	6.10.25 Writing BASE data
	6.10.26 Reading the load data
	6.10.27 Writing load data
	6.10.28 Reading the software limit switches of the robot axes
	6.10.29 Reading the software limit switches of the external axes
	6.10.30 Writing the software limit switches of the robot axes
	6.10.31 Writing the software limit switches of the external axes
	6.10.32 Declaring interrupts
	6.10.33 Activating interrupts
	6.10.34 Deactivating interrupts
	6.10.35 Reading the state of an interrupt
	6.10.36 Activating a path-related switching action (TRIGGER WHEN DISTANCE)
	6.10.37 Activating a path-related switching action (TRIGGER WHEN PATH)
	6.10.38 Canceling a program
	6.10.39 Stopping the robot
	6.10.40 Continuing a program
	6.10.41 Automatically starting function blocks and signals

	6.11 Functions for activating motions
	6.11.1 Moving to a Cartesian position with a LIN motion
	6.11.2 Moving to a Cartesian position with a LIN_REL motion
	6.11.3 Moving to a Cartesian position with a PTP motion
	6.11.4 Moving to a Cartesian position with a PTP_REL motion
	6.11.5 Moving to an axis-specific position with a PTP motion
	6.11.6 Moving to a Cartesian position with a CIRC motion
	6.11.7 Moving to a Cartesian position with a CIRC_REL motion
	6.11.8 Jogging to a relative end position
	6.11.9 Jogging to a relative end position in the TOOL coordinate system
	6.11.10 Jogging to an end position

	6.12 Functions for activating motions (PLC OPEN-compliant)
	6.12.1 Moving to a Cartesian position with a LIN motion
	6.12.2 Moving to a Cartesian position with a LIN_REL motion
	6.12.3 Moving to a Cartesian position with a PTP motion
	6.12.4 Moving to a Cartesian position with a PTP_REL motion
	6.12.5 Moving to an axis-specific position with a PTP motion
	6.12.6 Moving to a Cartesian position with a CIRC motion
	6.12.7 Moving to a Cartesian position with a CIRC_REL motion

	6.13 Diagnostic functions
	6.13.1 Reading the current state of the mxA interface
	6.13.2 Reading error messages of the mxA interface
	6.13.3 Resetting error messages of the mxA interface
	6.13.4 Reading error messages of the robot controller
	6.13.5 Reading diagnostic signals
	6.13.6 Reading and acknowledging error states

	6.14 Special functions
	6.14.1 Reading system variables
	6.14.2 Writing system variables
	6.14.3 Calling a brake test
	6.14.4 Calling a mastering test
	6.14.5 Reading the safety controller signals
	6.14.6 Reading the state of the TouchUp status keys
	6.14.7 Teaching points
	6.14.8 Modifying settings for the advance run
	6.14.9 Reading values from KRC_SetAdvance
	6.14.10 Calculating the Cartesian robot position from the axis angles
	6.14.11 Calculating axis angles from the Cartesian robot position
	6.14.12 Initializing a conveyor
	6.14.13 Activating a conveyor
	6.14.14 Tracking a workpiece on the conveyor
	6.14.15 Picking up a workpiece from the conveyor
	6.14.16 Activating interrupts for monitoring
	6.14.17 Deactivating interrupts for monitoring
	6.14.18 Activating a motion along a vector
	6.14.19 Deactivating KRC_VectorMoveOn
	6.14.20 Configuring Cartesian workspaces
	6.14.21 Reading the configuration of Cartesian workspaces
	6.14.22 Configuring axis-specific workspaces
	6.14.23 Reading the configuration of axis-specific workspaces
	6.14.24 Reading the status of the workspaces

	7 Messages
	7.1 Error messages of the mxA interface in the robot interpreter
	7.2 Error messages of the mxA interface in the submit interpreter
	7.3 Errors in the function block
	7.4 ProConOS errors

	8 KUKA Service
	8.1 Requesting support
	8.2 KUKA Customer Support

	Index

