
12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 1 von 6https://undo.io/resources/debugging-fortran-code-gdb/

How to Debug Fortran Code with
GDB
Jonathan Laver (engineer-in-training) and Mark Williamson (senior
software engineer at Undo) write:

We are used to using GDB for debugging C and C++ but it can also be
used to debug other languages including Fortran, D, Go and Ada. Debug
info formats like DWARF, along with some language-specific extensions,
allow GDB to support most of the commonly-used compiled languages.
Today we’ll see a simple example of how we can debug Fortran programs,
using features provided by GDB and gfortran.

Our program

Here we have some Fortran code. It’s supposed to calculate the ratios
between successive integers but it contains a bug:

program bugs
 implicit none
 real last
 real c(10)
 integer p

 ! Initialise c with successive integer values.
 do p=1,10
 c(p)=p
 enddo

 ! Calculate and print ratios of successive integers.
 last = 0.0
 do p=1,10
 call divide(last, c(p))
 last = c(p)

https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://sourceware.org/gdb/onlinedocs/gdb/Supported-Languages.html
http://www.dwarfstd.org/
https://en.wikipedia.org/wiki/Fortran
https://gcc.gnu.org/fortran/

12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 2 von 6https://undo.io/resources/debugging-fortran-code-gdb/

If we compile and run this code, we see the output contains unexpected
text – the Infinity printed on the first line:

Building for debug

To diagnose this fault, we’re going to run the program under GDB. As with
other compilers from the gcc family, we need to supply the -g flag to
generate debug information.

The Infinity output suggests that we have an error in our floating point
maths, most likely a divide by zero. The gfortran debug options can help
us here. The -ffpe-trap compilation flag enables exception traps for the
various floating point errors; we can catch these with GDB to find the

 enddo
end program bugs

subroutine divide(d,e)
 implicit none
 real d,e
 print *,e/d
end subroutine divid

 $> gfortran bugs.f90
 $> ./a.out
 Infinity
 2.00000000
 1.50000000
 1.33333337
 1.25000000
 1.20000005
 1.16666663
 1.14285719
 1.12500000
 1.11111116

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html#Debugging-Options
https://en.wikipedia.org/wiki/Division_by_zero
https://gcc.gnu.org/onlinedocs/gfortran/Debugging-Options.html

12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 3 von 6https://undo.io/resources/debugging-fortran-code-gdb/

exact cause of our bug.

Lets build our executable with these new options:

Debugging in GDB

Just as for a C program, we start our Fortran executable under control of
the debugger. To start debugging our program we invoke gdb PROGRAM.
To stop execution on the first line of our program we use b MAIN__. The
reason we need to use MAIN__ instead of main (as we would usually use
with C) is that main actually runs some startup code to set up the
enviroment.

Lets start our debug session:

Now we can step through each line of Fortran source code by pressing n:

$> gfortran -g -ffpe-trap=zero,invalid,overflow,underflow bugs.f90

 $> gdb ./a.out
 [... GDB start-up messages ...]
 (gdb) break MAIN__
 Breakpoint 1 at 0x4008c4: file bugs.f90, line 8.
 (gdb) run
 Starting program: /home/blog_posts/a.out

 Breakpoint 1, bugs () at bugs.f90:8
 8 do p=1,10

 (gdb) n
 9 c(p)=p
 (gdb) n
 8 do p=1,10
 (gdb) n

https://sourceware.org/gdb/onlinedocs/gdb/Invoking-GDB.html#Invoking-GDB
https://gcc.gnu.org/wiki/GfortranFAQ
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html#Continuing-and-Stepping

12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 4 von 6https://undo.io/resources/debugging-fortran-code-gdb/

This is just as we’d expect from our C / C++ debugging experience – GDB
is using the debug information from gfortran to step through lines of
source code, so we can see how the state is changing.

We could just do that until the error occurs – but it would be nice to jump
to the exact moment of the floating point error we’re expecting. Now
we’ve recompiled to trap on floating point exceptions we will receive a
SIGFPE if a floating point error happens. By default, GDB will stop when it
sees signals that indicate errors – in C code we often we see this when a
SIGSEGV occurs due to a pointer-related bug.

If we simply continue with execution, GDB will stop the program when a
floating-point error occurs:

The debugger has now stopped on a floating point arithmetic exception –
this is likely to be the source of our maths error. We can use the debugger
to find out where we are:

 9 c(p)=p

 (gdb) cont
 Continuing.

 Program received signal SIGFPE, Arithmetic exception.
 0x0000000000400887 in divide (d=0, e=1) at bugs.f90:24
 24 print *,e/d

 (gdb) bt
 #0 0x0000000000400887 in divide (d=0, e=1) at bugs.f90:24
 #1 0x0000000000400932 in bugs () at bugs.f90:15
 #2 0x0000000000400996 in main (argc=1, argv=0x7fffffffe811) at bugs.f90:19
 #3 0x00000034ff821d65 in __libc_start_main ([...]) at libc-start.c:285
 #4 0x0000000000400759 in _start ()

https://en.wikipedia.org/wiki/Unix_signal#SIGFPE
https://sourceware.org/gdb/onlinedocs/gdb/Signals.html#Signals
https://en.wikipedia.org/wiki/Segmentation_fault
https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html#Backtrace

12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 5 von 6https://undo.io/resources/debugging-fortran-code-gdb/

(arguments to __libc_start_main are omitted for brevity)

We’re in our divide function, called from our bugs routine. In an interactive
session, we might use the list command to check on the surrounding
code. For the purposes of this example, lets just inspect the values of the
variables for mathematical errors:

Given the values of d and e, it looks like we are dividing by zero by mistake
– GDB confirms that e/d gives the result inf, or infinity. The order of the
variables in the division (see line 23) is wrong – we should be dividing d by
e and not the other way around. If we fix this bug and re-run then we’ll see
the following output:

We’ve fixed our unwanted Infinity message! We’re now seeing the ratios of
successive integers trending progressively closer to 1.0, as we would

 (gdb) p d
 $1 = 0
 (gdb) p e
 $2 = 1
 (gdb) p e/d
 $3 = inf

 $> ./a.out
 0.00000000
 0.500000000
 0.666666687
 0.750000000
 0.800000012
 0.833333313
 0.857142866
 0.875000000
 0.888888896
 0.899999976

https://sourceware.org/gdb/onlinedocs/gdb/Data.html#Data

12.02.21, 09:20How to Debug Fortran code with GDB - Fortran Debugging - Undo.io

Seite 6 von 6https://undo.io/resources/debugging-fortran-code-gdb/

expect.

Summary

This was a quick intro into how to debug a less common (though still very
popular) programming language. By compiling the programs with debug
info, GDB is able to work correctly and, apart from a few differences in
how to breakpoint at startup, the process is largely the same as we’re
used to. By switching on traps for floating point exceptions we were able
to stop the program just as the bug occurred. Once there, we could
inspect the source code, show the state of program variables and try out
arithmetic expressions in order to understand our bug.

In the future I plan to look at how to use GDB with Rust, Ada, D and Go and
to explore the additional error checking capabilities provided by each
language.

https://www.rust-lang.org/
http://dlang.org/
https://golang.org/

