-
Notifications
You must be signed in to change notification settings - Fork 69
/
elbo_decomposition.py
234 lines (190 loc) · 8.11 KB
/
elbo_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import math
from numbers import Number
from tqdm import tqdm
import torch
from torch.autograd import Variable
import lib.dist as dist
import lib.flows as flows
def estimate_entropies(qz_samples, qz_params, q_dist):
"""Computes the term:
E_{p(x)} E_{q(z|x)} [-log q(z)]
and
E_{p(x)} E_{q(z_j|x)} [-log q(z_j)]
where q(z) = 1/N sum_n=1^N q(z|x_n).
Assumes samples are from q(z|x) for *all* x in the dataset.
Assumes that q(z|x) is factorial ie. q(z|x) = prod_j q(z_j|x).
Computes numerically stable NLL:
- log q(z) = log N - logsumexp_n=1^N log q(z|x_n)
Inputs:
-------
qz_samples (K, S) Variable
qz_params (N, K, nparams) Variable
"""
# Only take a sample subset of the samples
qz_samples = qz_samples.index_select(1, Variable(torch.randperm(qz_samples.size(1))[:10000].cuda()))
K, S = qz_samples.size()
N, _, nparams = qz_params.size()
assert(nparams == q_dist.nparams)
assert(K == qz_params.size(1))
marginal_entropies = torch.zeros(K).cuda()
joint_entropy = torch.zeros(1).cuda()
pbar = tqdm(total=S)
k = 0
while k < S:
batch_size = min(10, S - k)
logqz_i = q_dist.log_density(
qz_samples.view(1, K, S).expand(N, K, S)[:, :, k:k + batch_size],
qz_params.view(N, K, 1, nparams).expand(N, K, S, nparams)[:, :, k:k + batch_size])
k += batch_size
# computes - log q(z_i) summed over minibatch
marginal_entropies += (math.log(N) - logsumexp(logqz_i, dim=0, keepdim=False).data).sum(1)
# computes - log q(z) summed over minibatch
logqz = logqz_i.sum(1) # (N, S)
joint_entropy += (math.log(N) - logsumexp(logqz, dim=0, keepdim=False).data).sum(0)
pbar.update(batch_size)
pbar.close()
marginal_entropies /= S
joint_entropy /= S
return marginal_entropies, joint_entropy
def logsumexp(value, dim=None, keepdim=False):
"""Numerically stable implementation of the operation
value.exp().sum(dim, keepdim).log()
"""
if dim is not None:
m, _ = torch.max(value, dim=dim, keepdim=True)
value0 = value - m
if keepdim is False:
m = m.squeeze(dim)
return m + torch.log(torch.sum(torch.exp(value0),
dim=dim, keepdim=keepdim))
else:
m = torch.max(value)
sum_exp = torch.sum(torch.exp(value - m))
if isinstance(sum_exp, Number):
return m + math.log(sum_exp)
else:
return m + torch.log(sum_exp)
def analytical_NLL(qz_params, q_dist, prior_dist, qz_samples=None):
"""Computes the quantities
1/N sum_n=1^N E_{q(z|x)} [ - log q(z|x) ]
and
1/N sum_n=1^N E_{q(z_j|x)} [ - log p(z_j) ]
Inputs:
-------
qz_params (N, K, nparams) Variable
Returns:
--------
nlogqz_condx (K,) Variable
nlogpz (K,) Variable
"""
pz_params = Variable(torch.zeros(1).type_as(qz_params.data).expand(qz_params.size()), volatile=True)
nlogqz_condx = q_dist.NLL(qz_params).mean(0)
nlogpz = prior_dist.NLL(pz_params, qz_params).mean(0)
return nlogqz_condx, nlogpz
def elbo_decomposition(vae, dataset_loader):
N = len(dataset_loader.dataset) # number of data samples
K = vae.z_dim # number of latent variables
S = 1 # number of latent variable samples
nparams = vae.q_dist.nparams
print('Computing q(z|x) distributions.')
# compute the marginal q(z_j|x_n) distributions
qz_params = torch.Tensor(N, K, nparams)
n = 0
logpx = 0
for xs in dataset_loader:
batch_size = xs.size(0)
xs = Variable(xs.view(batch_size, -1, 64, 64).cuda(), volatile=True)
z_params = vae.encoder.forward(xs).view(batch_size, K, nparams)
qz_params[n:n + batch_size] = z_params.data
n += batch_size
# estimate reconstruction term
for _ in range(S):
z = vae.q_dist.sample(params=z_params)
x_params = vae.decoder.forward(z)
logpx += vae.x_dist.log_density(xs, params=x_params).view(batch_size, -1).data.sum()
# Reconstruction term
logpx = logpx / (N * S)
qz_params = Variable(qz_params.cuda(), volatile=True)
print('Sampling from q(z).')
# sample S times from each marginal q(z_j|x_n)
qz_params_expanded = qz_params.view(N, K, 1, nparams).expand(N, K, S, nparams)
qz_samples = vae.q_dist.sample(params=qz_params_expanded)
qz_samples = qz_samples.transpose(0, 1).contiguous().view(K, N * S)
print('Estimating entropies.')
marginal_entropies, joint_entropy = estimate_entropies(qz_samples, qz_params, vae.q_dist)
if hasattr(vae.q_dist, 'NLL'):
nlogqz_condx = vae.q_dist.NLL(qz_params).mean(0)
else:
nlogqz_condx = - vae.q_dist.log_density(qz_samples,
qz_params_expanded.transpose(0, 1).contiguous().view(K, N * S)).mean(1)
if hasattr(vae.prior_dist, 'NLL'):
pz_params = vae._get_prior_params(N * K).contiguous().view(N, K, -1)
nlogpz = vae.prior_dist.NLL(pz_params, qz_params).mean(0)
else:
nlogpz = - vae.prior_dist.log_density(qz_samples.transpose(0, 1)).mean(0)
# nlogqz_condx, nlogpz = analytical_NLL(qz_params, vae.q_dist, vae.prior_dist)
nlogqz_condx = nlogqz_condx.data
nlogpz = nlogpz.data
# Independence term
# KL(q(z)||prod_j q(z_j)) = log q(z) - sum_j log q(z_j)
dependence = (- joint_entropy + marginal_entropies.sum())[0]
# Information term
# KL(q(z|x)||q(z)) = log q(z|x) - log q(z)
information = (- nlogqz_condx.sum() + joint_entropy)[0]
# Dimension-wise KL term
# sum_j KL(q(z_j)||p(z_j)) = sum_j (log q(z_j) - log p(z_j))
dimwise_kl = (- marginal_entropies + nlogpz).sum()
# Compute sum of terms analytically
# KL(q(z|x)||p(z)) = log q(z|x) - log p(z)
analytical_cond_kl = (- nlogqz_condx + nlogpz).sum()
print('Dependence: {}'.format(dependence))
print('Information: {}'.format(information))
print('Dimension-wise KL: {}'.format(dimwise_kl))
print('Analytical E_p(x)[ KL(q(z|x)||p(z)) ]: {}'.format(analytical_cond_kl))
print('Estimated ELBO: {}'.format(logpx - analytical_cond_kl))
return logpx, dependence, information, dimwise_kl, analytical_cond_kl, marginal_entropies, joint_entropy
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-checkpt', required=True)
parser.add_argument('-save', type=str, default='.')
parser.add_argument('-gpu', type=int, default=0)
args = parser.parse_args()
def load_model_and_dataset(checkpt_filename):
checkpt = torch.load(checkpt_filename)
args = checkpt['args']
state_dict = checkpt['state_dict']
# backwards compatibility
if not hasattr(args, 'conv'):
args.conv = False
from vae_quant import VAE, setup_data_loaders
# model
if args.dist == 'normal':
prior_dist = dist.Normal()
q_dist = dist.Normal()
elif args.dist == 'laplace':
prior_dist = dist.Laplace()
q_dist = dist.Laplace()
elif args.dist == 'flow':
prior_dist = flows.FactorialNormalizingFlow(dim=args.latent_dim, nsteps=32)
q_dist = dist.Normal()
vae = VAE(z_dim=args.latent_dim, use_cuda=True, prior_dist=prior_dist, q_dist=q_dist, conv=args.conv)
vae.load_state_dict(state_dict, strict=False)
vae.eval()
# dataset loader
loader = setup_data_loaders(args, use_cuda=True)
return vae, loader
torch.cuda.set_device(args.gpu)
vae, dataset_loader = load_model_and_dataset(args.checkpt)
logpx, dependence, information, dimwise_kl, analytical_cond_kl, marginal_entropies, joint_entropy = \
elbo_decomposition(vae, dataset_loader)
torch.save({
'logpx': logpx,
'dependence': dependence,
'information': information,
'dimwise_kl': dimwise_kl,
'analytical_cond_kl': analytical_cond_kl,
'marginal_entropies': marginal_entropies,
'joint_entropy': joint_entropy
}, os.path.join(args.save, 'elbo_decomposition.pth'))