-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
mod.rs
2588 lines (2331 loc) · 80.7 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Multi-producer, single-consumer FIFO queue communication primitives.
//!
//! This module provides message-based communication over channels, concretely
//! defined among three types:
//!
//! * `Sender`
//! * `SyncSender`
//! * `Receiver`
//!
//! A `Sender` or `SyncSender` is used to send data to a `Receiver`. Both
//! senders are clone-able (multi-producer) such that many threads can send
//! simultaneously to one receiver (single-consumer).
//!
//! These channels come in two flavors:
//!
//! 1. An asynchronous, infinitely buffered channel. The `channel()` function
//! will return a `(Sender, Receiver)` tuple where all sends will be
//! **asynchronous** (they never block). The channel conceptually has an
//! infinite buffer.
//!
//! 2. A synchronous, bounded channel. The `sync_channel()` function will return
//! a `(SyncSender, Receiver)` tuple where the storage for pending messages
//! is a pre-allocated buffer of a fixed size. All sends will be
//! **synchronous** by blocking until there is buffer space available. Note
//! that a bound of 0 is allowed, causing the channel to become a
//! "rendezvous" channel where each sender atomically hands off a message to
//! a receiver.
//!
//! ## Disconnection
//!
//! The send and receive operations on channels will all return a `Result`
//! indicating whether the operation succeeded or not. An unsuccessful operation
//! is normally indicative of the other half of a channel having "hung up" by
//! being dropped in its corresponding thread.
//!
//! Once half of a channel has been deallocated, most operations can no longer
//! continue to make progress, so `Err` will be returned. Many applications will
//! continue to `unwrap()` the results returned from this module, instigating a
//! propagation of failure among threads if one unexpectedly dies.
//!
//! # Examples
//!
//! Simple usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a simple streaming channel
//! let (tx, rx) = channel();
//! thread::spawn(move|| {
//! tx.send(10).unwrap();
//! });
//! assert_eq!(rx.recv().unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = channel();
//! for i in 0..10 {
//! let tx = tx.clone();
//! thread::spawn(move|| {
//! tx.send(i).unwrap();
//! });
//! }
//!
//! for _ in 0..10 {
//! let j = rx.recv().unwrap();
//! assert!(0 <= j && j < 10);
//! }
//! ```
//!
//! Propagating panics:
//!
//! ```
//! use std::sync::mpsc::channel;
//!
//! // The call to recv() will return an error because the channel has already
//! // hung up (or been deallocated)
//! let (tx, rx) = channel::<i32>();
//! drop(tx);
//! assert!(rx.recv().is_err());
//! ```
//!
//! Synchronous channels:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::sync_channel;
//!
//! let (tx, rx) = sync_channel::<i32>(0);
//! thread::spawn(move|| {
//! // This will wait for the parent thread to start receiving
//! tx.send(53).unwrap();
//! });
//! rx.recv().unwrap();
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
// A description of how Rust's channel implementation works
//
// Channels are supposed to be the basic building block for all other
// concurrent primitives that are used in Rust. As a result, the channel type
// needs to be highly optimized, flexible, and broad enough for use everywhere.
//
// The choice of implementation of all channels is to be built on lock-free data
// structures. The channels themselves are then consequently also lock-free data
// structures. As always with lock-free code, this is a very "here be dragons"
// territory, especially because I'm unaware of any academic papers that have
// gone into great length about channels of these flavors.
//
// ## Flavors of channels
//
// From the perspective of a consumer of this library, there is only one flavor
// of channel. This channel can be used as a stream and cloned to allow multiple
// senders. Under the hood, however, there are actually three flavors of
// channels in play.
//
// * Flavor::Oneshots - these channels are highly optimized for the one-send use
// case. They contain as few atomics as possible and
// involve one and exactly one allocation.
// * Streams - these channels are optimized for the non-shared use case. They
// use a different concurrent queue that is more tailored for this
// use case. The initial allocation of this flavor of channel is not
// optimized.
// * Shared - this is the most general form of channel that this module offers,
// a channel with multiple senders. This type is as optimized as it
// can be, but the previous two types mentioned are much faster for
// their use-cases.
//
// ## Concurrent queues
//
// The basic idea of Rust's Sender/Receiver types is that send() never blocks,
// but recv() obviously blocks. This means that under the hood there must be
// some shared and concurrent queue holding all of the actual data.
//
// With two flavors of channels, two flavors of queues are also used. We have
// chosen to use queues from a well-known author that are abbreviated as SPSC
// and MPSC (single producer, single consumer and multiple producer, single
// consumer). SPSC queues are used for streams while MPSC queues are used for
// shared channels.
//
// ### SPSC optimizations
//
// The SPSC queue found online is essentially a linked list of nodes where one
// half of the nodes are the "queue of data" and the other half of nodes are a
// cache of unused nodes. The unused nodes are used such that an allocation is
// not required on every push() and a free doesn't need to happen on every
// pop().
//
// As found online, however, the cache of nodes is of an infinite size. This
// means that if a channel at one point in its life had 50k items in the queue,
// then the queue will always have the capacity for 50k items. I believed that
// this was an unnecessary limitation of the implementation, so I have altered
// the queue to optionally have a bound on the cache size.
//
// By default, streams will have an unbounded SPSC queue with a small-ish cache
// size. The hope is that the cache is still large enough to have very fast
// send() operations while not too large such that millions of channels can
// coexist at once.
//
// ### MPSC optimizations
//
// Right now the MPSC queue has not been optimized. Like the SPSC queue, it uses
// a linked list under the hood to earn its unboundedness, but I have not put
// forth much effort into having a cache of nodes similar to the SPSC queue.
//
// For now, I believe that this is "ok" because shared channels are not the most
// common type, but soon we may wish to revisit this queue choice and determine
// another candidate for backend storage of shared channels.
//
// ## Overview of the Implementation
//
// Now that there's a little background on the concurrent queues used, it's
// worth going into much more detail about the channels themselves. The basic
// pseudocode for a send/recv are:
//
//
// send(t) recv()
// queue.push(t) return if queue.pop()
// if increment() == -1 deschedule {
// wakeup() if decrement() > 0
// cancel_deschedule()
// }
// queue.pop()
//
// As mentioned before, there are no locks in this implementation, only atomic
// instructions are used.
//
// ### The internal atomic counter
//
// Every channel has a shared counter with each half to keep track of the size
// of the queue. This counter is used to abort descheduling by the receiver and
// to know when to wake up on the sending side.
//
// As seen in the pseudocode, senders will increment this count and receivers
// will decrement the count. The theory behind this is that if a sender sees a
// -1 count, it will wake up the receiver, and if the receiver sees a 1+ count,
// then it doesn't need to block.
//
// The recv() method has a beginning call to pop(), and if successful, it needs
// to decrement the count. It is a crucial implementation detail that this
// decrement does *not* happen to the shared counter. If this were the case,
// then it would be possible for the counter to be very negative when there were
// no receivers waiting, in which case the senders would have to determine when
// it was actually appropriate to wake up a receiver.
//
// Instead, the "steal count" is kept track of separately (not atomically
// because it's only used by receivers), and then the decrement() call when
// descheduling will lump in all of the recent steals into one large decrement.
//
// The implication of this is that if a sender sees a -1 count, then there's
// guaranteed to be a waiter waiting!
//
// ## Native Implementation
//
// A major goal of these channels is to work seamlessly on and off the runtime.
// All of the previous race conditions have been worded in terms of
// scheduler-isms (which is obviously not available without the runtime).
//
// For now, native usage of channels (off the runtime) will fall back onto
// mutexes/cond vars for descheduling/atomic decisions. The no-contention path
// is still entirely lock-free, the "deschedule" blocks above are surrounded by
// a mutex and the "wakeup" blocks involve grabbing a mutex and signaling on a
// condition variable.
//
// ## Select
//
// Being able to support selection over channels has greatly influenced this
// design, and not only does selection need to work inside the runtime, but also
// outside the runtime.
//
// The implementation is fairly straightforward. The goal of select() is not to
// return some data, but only to return which channel can receive data without
// blocking. The implementation is essentially the entire blocking procedure
// followed by an increment as soon as its woken up. The cancellation procedure
// involves an increment and swapping out of to_wake to acquire ownership of the
// thread to unblock.
//
// Sadly this current implementation requires multiple allocations, so I have
// seen the throughput of select() be much worse than it should be. I do not
// believe that there is anything fundamental that needs to change about these
// channels, however, in order to support a more efficient select().
//
// # Conclusion
//
// And now that you've seen all the races that I found and attempted to fix,
// here's the code for you to find some more!
use sync::Arc;
use error;
use fmt;
use mem;
use cell::UnsafeCell;
use marker::Reflect;
use time::{Duration, Instant};
#[unstable(feature = "mpsc_select", issue = "27800")]
pub use self::select::{Select, Handle};
use self::select::StartResult;
use self::select::StartResult::*;
use self::blocking::SignalToken;
mod blocking;
mod oneshot;
mod select;
mod shared;
mod stream;
mod sync;
mod mpsc_queue;
mod spsc_queue;
/// The receiving-half of Rust's channel type. This half can only be owned by
/// one thread
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Receiver<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The receiver port can be sent from place to place, so long as it
// is not used to receive non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Receiver<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Receiver<T> { }
/// An iterator over messages on a receiver, this iterator will block
/// whenever `next` is called, waiting for a new message, and `None` will be
/// returned when the corresponding channel has hung up.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An iterator that attempts to yield all pending values for a receiver.
/// `None` will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This Iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return `None`.
#[unstable(feature = "receiver_try_iter", issue = "34931")]
pub struct TryIter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An owning iterator over messages on a receiver, this iterator will block
/// whenever `next` is called, waiting for a new message, and `None` will be
/// returned when the corresponding channel has hung up.
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
pub struct IntoIter<T> {
rx: Receiver<T>
}
/// The sending-half of Rust's asynchronous channel type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sender<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The send port can be sent from place to place, so long as it
// is not used to send non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Sender<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Sender<T> { }
/// The sending-half of Rust's synchronous channel type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SyncSender<T> {
inner: Arc<UnsafeCell<sync::Packet<T>>>,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for SyncSender<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for SyncSender<T> {}
/// An error returned from the `send` function on channels.
///
/// A `send` operation can only fail if the receiving end of a channel is
/// disconnected, implying that the data could never be received. The error
/// contains the data being sent as a payload so it can be recovered.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub struct SendError<T>(#[stable(feature = "rust1", since = "1.0.0")] pub T);
/// An error returned from the `recv` function on a `Receiver`.
///
/// The `recv` operation can only fail if the sending half of a channel is
/// disconnected, implying that no further messages will ever be received.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RecvError;
/// This enumeration is the list of the possible reasons that `try_recv` could
/// not return data when called.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum TryRecvError {
/// This channel is currently empty, but the sender(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "rust1", since = "1.0.0")]
Empty,
/// This channel's sending half has become disconnected, and there will
/// never be any more data received on this channel
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected,
}
/// This enumeration is the list of possible errors that `recv_timeout` could
/// not return data when called.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub enum RecvTimeoutError {
/// This channel is currently empty, but the sender(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Timeout,
/// This channel's sending half has become disconnected, and there will
/// never be any more data received on this channel
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Disconnected,
}
/// This enumeration is the list of the possible error outcomes for the
/// `SyncSender::try_send` method.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TrySendError<T> {
/// The data could not be sent on the channel because it would require that
/// the callee block to send the data.
///
/// If this is a buffered channel, then the buffer is full at this time. If
/// this is not a buffered channel, then there is no receiver available to
/// acquire the data.
#[stable(feature = "rust1", since = "1.0.0")]
Full(#[stable(feature = "rust1", since = "1.0.0")] T),
/// This channel's receiving half has disconnected, so the data could not be
/// sent. The data is returned back to the callee in this case.
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected(#[stable(feature = "rust1", since = "1.0.0")] T),
}
enum Flavor<T> {
Oneshot(Arc<UnsafeCell<oneshot::Packet<T>>>),
Stream(Arc<UnsafeCell<stream::Packet<T>>>),
Shared(Arc<UnsafeCell<shared::Packet<T>>>),
Sync(Arc<UnsafeCell<sync::Packet<T>>>),
}
#[doc(hidden)]
trait UnsafeFlavor<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>>;
unsafe fn inner_mut(&self) -> &mut Flavor<T> {
&mut *self.inner_unsafe().get()
}
unsafe fn inner(&self) -> &Flavor<T> {
&*self.inner_unsafe().get()
}
}
impl<T> UnsafeFlavor<T> for Sender<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
impl<T> UnsafeFlavor<T> for Receiver<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
/// Creates a new asynchronous channel, returning the sender/receiver halves.
///
/// All data sent on the sender will become available on the receiver, and no
/// send will block the calling thread (this channel has an "infinite buffer").
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// // tx is the sending half (tx for transmission), and rx is the receiving
/// // half (rx for receiving).
/// let (tx, rx) = channel();
///
/// // Spawn off an expensive computation
/// thread::spawn(move|| {
/// # fn expensive_computation() {}
/// tx.send(expensive_computation()).unwrap();
/// });
///
/// // Do some useful work for awhile
///
/// // Let's see what that answer was
/// println!("{:?}", rx.recv().unwrap());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
let a = Arc::new(UnsafeCell::new(oneshot::Packet::new()));
(Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a)))
}
/// Creates a new synchronous, bounded channel.
///
/// Like asynchronous channels, the `Receiver` will block until a message
/// becomes available. These channels differ greatly in the semantics of the
/// sender from asynchronous channels, however.
///
/// This channel has an internal buffer on which messages will be queued. When
/// the internal buffer becomes full, future sends will *block* waiting for the
/// buffer to open up. Note that a buffer size of 0 is valid, in which case this
/// becomes "rendezvous channel" where each send will not return until a recv
/// is paired with it.
///
/// As with asynchronous channels, all senders will panic in `send` if the
/// `Receiver` has been destroyed.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// let (tx, rx) = sync_channel(1);
///
/// // this returns immediately
/// tx.send(1).unwrap();
///
/// thread::spawn(move|| {
/// // this will block until the previous message has been received
/// tx.send(2).unwrap();
/// });
///
/// assert_eq!(rx.recv().unwrap(), 1);
/// assert_eq!(rx.recv().unwrap(), 2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>) {
let a = Arc::new(UnsafeCell::new(sync::Packet::new(bound)));
(SyncSender::new(a.clone()), Receiver::new(Flavor::Sync(a)))
}
////////////////////////////////////////////////////////////////////////////////
// Sender
////////////////////////////////////////////////////////////////////////////////
impl<T> Sender<T> {
fn new(inner: Flavor<T>) -> Sender<T> {
Sender {
inner: UnsafeCell::new(inner),
}
}
/// Attempts to send a value on this channel, returning it back if it could
/// not be sent.
///
/// A successful send occurs when it is determined that the other end of
/// the channel has not hung up already. An unsuccessful send would be one
/// where the corresponding receiver has already been deallocated. Note
/// that a return value of `Err` means that the data will never be
/// received, but a return value of `Ok` does *not* mean that the data
/// will be received. It is possible for the corresponding receiver to
/// hang up immediately after this function returns `Ok`.
///
/// This method will never block the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
///
/// // This send is always successful
/// tx.send(1).unwrap();
///
/// // This send will fail because the receiver is gone
/// drop(rx);
/// assert_eq!(tx.send(1).unwrap_err().0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
let (new_inner, ret) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
unsafe {
let p = p.get();
if !(*p).sent() {
return (*p).send(t).map_err(SendError);
} else {
let a =
Arc::new(UnsafeCell::new(stream::Packet::new()));
let rx = Receiver::new(Flavor::Stream(a.clone()));
match (*p).upgrade(rx) {
oneshot::UpSuccess => {
let ret = (*a.get()).send(t);
(a, ret)
}
oneshot::UpDisconnected => (a, Err(t)),
oneshot::UpWoke(token) => {
// This send cannot panic because the thread is
// asleep (we're looking at it), so the receiver
// can't go away.
(*a.get()).send(t).ok().unwrap();
token.signal();
(a, Ok(()))
}
}
}
}
}
Flavor::Stream(ref p) => return unsafe {
(*p.get()).send(t).map_err(SendError)
},
Flavor::Shared(ref p) => return unsafe {
(*p.get()).send(t).map_err(SendError)
},
Flavor::Sync(..) => unreachable!(),
};
unsafe {
let tmp = Sender::new(Flavor::Stream(new_inner));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
ret.map_err(SendError)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Sender<T> {
fn clone(&self) -> Sender<T> {
let (packet, sleeper, guard) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
let a = Arc::new(UnsafeCell::new(shared::Packet::new()));
unsafe {
let guard = (*a.get()).postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
match (*p.get()).upgrade(rx) {
oneshot::UpSuccess |
oneshot::UpDisconnected => (a, None, guard),
oneshot::UpWoke(task) => (a, Some(task), guard)
}
}
}
Flavor::Stream(ref p) => {
let a = Arc::new(UnsafeCell::new(shared::Packet::new()));
unsafe {
let guard = (*a.get()).postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
match (*p.get()).upgrade(rx) {
stream::UpSuccess |
stream::UpDisconnected => (a, None, guard),
stream::UpWoke(task) => (a, Some(task), guard),
}
}
}
Flavor::Shared(ref p) => {
unsafe { (*p.get()).clone_chan(); }
return Sender::new(Flavor::Shared(p.clone()));
}
Flavor::Sync(..) => unreachable!(),
};
unsafe {
(*packet.get()).inherit_blocker(sleeper, guard);
let tmp = Sender::new(Flavor::Shared(packet.clone()));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
Sender::new(Flavor::Shared(packet))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
match *unsafe { self.inner_mut() } {
Flavor::Oneshot(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Stream(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Shared(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Sync(..) => unreachable!(),
}
}
}
#[stable(feature = "mpsc_debug", since = "1.7.0")]
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Sender {{ .. }}")
}
}
////////////////////////////////////////////////////////////////////////////////
// SyncSender
////////////////////////////////////////////////////////////////////////////////
impl<T> SyncSender<T> {
fn new(inner: Arc<UnsafeCell<sync::Packet<T>>>) -> SyncSender<T> {
SyncSender { inner: inner }
}
/// Sends a value on this synchronous channel.
///
/// This function will *block* until space in the internal buffer becomes
/// available or a receiver is available to hand off the message to.
///
/// Note that a successful send does *not* guarantee that the receiver will
/// ever see the data if there is a buffer on this channel. Items may be
/// enqueued in the internal buffer for the receiver to receive at a later
/// time. If the buffer size is 0, however, it can be guaranteed that the
/// receiver has indeed received the data if this function returns success.
///
/// This function will never panic, but it may return `Err` if the
/// `Receiver` has disconnected and is no longer able to receive
/// information.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
unsafe { (*self.inner.get()).send(t).map_err(SendError) }
}
/// Attempts to send a value on this channel without blocking.
///
/// This method differs from `send` by returning immediately if the
/// channel's buffer is full or no receiver is waiting to acquire some
/// data. Compared with `send`, this function has two failure cases
/// instead of one (one for disconnection, one for a full buffer).
///
/// See `SyncSender::send` for notes about guarantees of whether the
/// receiver has received the data or not if this function is successful.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
unsafe { (*self.inner.get()).try_send(t) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for SyncSender<T> {
fn clone(&self) -> SyncSender<T> {
unsafe { (*self.inner.get()).clone_chan(); }
SyncSender::new(self.inner.clone())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for SyncSender<T> {
fn drop(&mut self) {
unsafe { (*self.inner.get()).drop_chan(); }
}
}
#[stable(feature = "mpsc_debug", since = "1.7.0")]
impl<T> fmt::Debug for SyncSender<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SyncSender {{ .. }}")
}
}
////////////////////////////////////////////////////////////////////////////////
// Receiver
////////////////////////////////////////////////////////////////////////////////
impl<T> Receiver<T> {
fn new(inner: Flavor<T>) -> Receiver<T> {
Receiver { inner: UnsafeCell::new(inner) }
}
/// Attempts to return a pending value on this receiver without blocking
///
/// This method will never block the caller in order to wait for data to
/// become available. Instead, this will always return immediately with a
/// possible option of pending data on the channel.
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// block on a receiver.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_recv(&self) -> Result<T, TryRecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(oneshot::Empty) => return Err(TryRecvError::Empty),
Err(oneshot::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
Err(oneshot::Upgraded(rx)) => rx,
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(stream::Empty) => return Err(TryRecvError::Empty),
Err(stream::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
Err(stream::Upgraded(rx)) => rx,
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(shared::Empty) => return Err(TryRecvError::Empty),
Err(shared::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
}
}
Flavor::Sync(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(sync::Empty) => return Err(TryRecvError::Empty),
Err(sync::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
}
}
};
unsafe {
mem::swap(self.inner_mut(),
new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding `Sender`, then this receiver will wake up and
/// return that message.
///
/// If the corresponding `Sender` has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return `Err` to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// ```
///
/// Buffering behavior:
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
/// use std::sync::mpsc::RecvError;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// drop(send);
/// });
///
/// // wait for the thread to join so we ensure the sender is dropped
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// assert_eq!(Ok(2), recv.recv());
/// assert_eq!(Ok(3), recv.recv());
/// assert_eq!(Err(RecvError), recv.recv());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn recv(&self) -> Result<T, RecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(RecvError),
Err(oneshot::Upgraded(rx)) => rx,
Err(oneshot::Empty) => unreachable!(),
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(RecvError),
Err(stream::Upgraded(rx)) => rx,
Err(stream::Empty) => unreachable!(),
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(RecvError),
Err(shared::Empty) => unreachable!(),
}
}
Flavor::Sync(ref p) => return unsafe {
(*p.get()).recv(None).map_err(|_| RecvError)
}
};
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if it waits more than `timeout`.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding `Sender`, then this receiver will wake up and
/// return that message.
///
/// If the corresponding `Sender` has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return `Err` to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```no_run
/// use std::sync::mpsc::{self, RecvTimeoutError};
/// use std::time::Duration;
///
/// let (send, recv) = mpsc::channel::<()>();
///
/// let timeout = Duration::from_millis(100);
/// assert_eq!(Err(RecvTimeoutError::Timeout), recv.recv_timeout(timeout));
/// ```
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
// Do an optimistic try_recv to avoid the performance impact of
// Instant::now() in the full-channel case.
match self.try_recv() {
Ok(result)
=> Ok(result),
Err(TryRecvError::Disconnected)
=> Err(RecvTimeoutError::Disconnected),
Err(TryRecvError::Empty)
=> self.recv_max_until(Instant::now() + timeout)
}
}
fn recv_max_until(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
use self::RecvTimeoutError::*;
loop {
let port_or_empty = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(Disconnected),
Err(oneshot::Upgraded(rx)) => Some(rx),
Err(oneshot::Empty) => None,
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(Disconnected),
Err(stream::Upgraded(rx)) => Some(rx),
Err(stream::Empty) => None,
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(Disconnected),
Err(shared::Empty) => None,
}
}
Flavor::Sync(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(sync::Disconnected) => return Err(Disconnected),
Err(sync::Empty) => None,
}
}
};
if let Some(new_port) = port_or_empty {
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
// If we're already passed the deadline, and we're here without
// data, return a timeout, else try again.
if Instant::now() >= deadline {
return Err(Timeout);
}
}
}
/// Returns an iterator that will block waiting for messages, but never
/// `panic!`. It will return `None` when the channel has hung up.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter { rx: self }
}
/// Returns an iterator that will attempt to yield all pending values.
/// It will return `None` if there are no more pending values or if the
/// channel has hung up. The iterator will never `panic!` or block the
/// user by waiting for values.