From 2c4b152356fb95afb27a101d7df6c8a7ad6ebf5b Mon Sep 17 00:00:00 2001 From: Corey Farwell Date: Sun, 13 May 2018 15:54:40 -0400 Subject: [PATCH] =?UTF-8?q?Add=20=E2=80=9CExamples=E2=80=9D=20section=20he?= =?UTF-8?q?ader=20in=20f32/f64=20doc=20comments.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This is recommend by [RFC 0505] and as far as I know, the only primitive types without this heading. [RFC 0505]: https://github.com/rust-lang/rfcs/blob/c892139be692586e0846fbf934be6fceec17f329/text/0505-api-comment-conventions.md#using-markdown --- src/libstd/f32.rs | 76 +++++++++++++++++++++++++++++++++++++++++++++++ src/libstd/f64.rs | 76 +++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 152 insertions(+) diff --git a/src/libstd/f32.rs b/src/libstd/f32.rs index f849db4ec6027..7314d32b0206a 100644 --- a/src/libstd/f32.rs +++ b/src/libstd/f32.rs @@ -49,6 +49,8 @@ impl f32 { /// Returns the largest integer less than or equal to a number. /// + /// # Examples + /// /// ``` /// let f = 3.99_f32; /// let g = 3.0_f32; @@ -80,6 +82,8 @@ impl f32 { /// Returns the smallest integer greater than or equal to a number. /// + /// # Examples + /// /// ``` /// let f = 3.01_f32; /// let g = 4.0_f32; @@ -100,6 +104,8 @@ impl f32 { /// Returns the nearest integer to a number. Round half-way cases away from /// `0.0`. /// + /// # Examples + /// /// ``` /// let f = 3.3_f32; /// let g = -3.3_f32; @@ -115,6 +121,8 @@ impl f32 { /// Returns the integer part of a number. /// + /// # Examples + /// /// ``` /// let f = 3.3_f32; /// let g = -3.7_f32; @@ -130,6 +138,8 @@ impl f32 { /// Returns the fractional part of a number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -148,6 +158,8 @@ impl f32 { /// Computes the absolute value of `self`. Returns `NAN` if the /// number is `NAN`. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -174,6 +186,8 @@ impl f32 { /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -200,6 +214,8 @@ impl f32 { /// Using `mul_add` can be more performant than an unfused multiply-add if /// the target architecture has a dedicated `fma` CPU instruction. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -225,6 +241,8 @@ impl f32 { /// In other words, the result is `self / rhs` rounded to the integer `n` /// such that `self >= n * rhs`. /// + /// # Examples + /// /// ``` /// #![feature(euclidean_division)] /// let a: f32 = 7.0; @@ -248,6 +266,8 @@ impl f32 { /// /// In particular, the result `n` satisfies `0 <= n < rhs.abs()`. /// + /// # Examples + /// /// ``` /// #![feature(euclidean_division)] /// let a: f32 = 7.0; @@ -273,6 +293,8 @@ impl f32 { /// /// Using this function is generally faster than using `powf` /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -289,6 +311,8 @@ impl f32 { /// Raises a number to a floating point power. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -311,6 +335,8 @@ impl f32 { /// /// Returns NaN if `self` is a negative number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -334,6 +360,8 @@ impl f32 { /// Returns `e^(self)`, (the exponential function). /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -358,6 +386,8 @@ impl f32 { /// Returns `2^(self)`. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -376,6 +406,8 @@ impl f32 { /// Returns the natural logarithm of the number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -404,6 +436,8 @@ impl f32 { /// `self.log2()` can produce more accurate results for base 2, and /// `self.log10()` can produce more accurate results for base 10. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -420,6 +454,8 @@ impl f32 { /// Returns the base 2 logarithm of the number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -441,6 +477,8 @@ impl f32 { /// Returns the base 10 logarithm of the number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -466,6 +504,8 @@ impl f32 { /// * If `self <= other`: `0:0` /// * Else: `self - other` /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -493,6 +533,8 @@ impl f32 { /// Takes the cubic root of a number. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -512,6 +554,8 @@ impl f32 { /// Calculates the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -531,6 +575,8 @@ impl f32 { /// Computes the sine of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -552,6 +598,8 @@ impl f32 { /// Computes the cosine of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -573,6 +621,8 @@ impl f32 { /// Computes the tangent of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -591,6 +641,8 @@ impl f32 { /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -611,6 +663,8 @@ impl f32 { /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -630,6 +684,8 @@ impl f32 { /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -653,6 +709,8 @@ impl f32 { /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -682,6 +740,8 @@ impl f32 { /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -703,6 +763,8 @@ impl f32 { /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -722,6 +784,8 @@ impl f32 { /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -740,6 +804,8 @@ impl f32 { /// Hyperbolic sine function. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -761,6 +827,8 @@ impl f32 { /// Hyperbolic cosine function. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -782,6 +850,8 @@ impl f32 { /// Hyperbolic tangent function. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -803,6 +873,8 @@ impl f32 { /// Inverse hyperbolic sine function. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -825,6 +897,8 @@ impl f32 { /// Inverse hyperbolic cosine function. /// + /// # Examples + /// /// ``` /// use std::f32; /// @@ -846,6 +920,8 @@ impl f32 { /// Inverse hyperbolic tangent function. /// + /// # Examples + /// /// ``` /// use std::f32; /// diff --git a/src/libstd/f64.rs b/src/libstd/f64.rs index 40c3f4d0ef726..75edba8979f9a 100644 --- a/src/libstd/f64.rs +++ b/src/libstd/f64.rs @@ -49,6 +49,8 @@ impl f64 { /// Returns the largest integer less than or equal to a number. /// + /// # Examples + /// /// ``` /// let f = 3.99_f64; /// let g = 3.0_f64; @@ -64,6 +66,8 @@ impl f64 { /// Returns the smallest integer greater than or equal to a number. /// + /// # Examples + /// /// ``` /// let f = 3.01_f64; /// let g = 4.0_f64; @@ -80,6 +84,8 @@ impl f64 { /// Returns the nearest integer to a number. Round half-way cases away from /// `0.0`. /// + /// # Examples + /// /// ``` /// let f = 3.3_f64; /// let g = -3.3_f64; @@ -95,6 +101,8 @@ impl f64 { /// Returns the integer part of a number. /// + /// # Examples + /// /// ``` /// let f = 3.3_f64; /// let g = -3.7_f64; @@ -110,6 +118,8 @@ impl f64 { /// Returns the fractional part of a number. /// + /// # Examples + /// /// ``` /// let x = 3.5_f64; /// let y = -3.5_f64; @@ -126,6 +136,8 @@ impl f64 { /// Computes the absolute value of `self`. Returns `NAN` if the /// number is `NAN`. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -152,6 +164,8 @@ impl f64 { /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -178,6 +192,8 @@ impl f64 { /// Using `mul_add` can be more performant than an unfused multiply-add if /// the target architecture has a dedicated `fma` CPU instruction. /// + /// # Examples + /// /// ``` /// let m = 10.0_f64; /// let x = 4.0_f64; @@ -201,6 +217,8 @@ impl f64 { /// In other words, the result is `self / rhs` rounded to the integer `n` /// such that `self >= n * rhs`. /// + /// # Examples + /// /// ``` /// #![feature(euclidean_division)] /// let a: f64 = 7.0; @@ -224,6 +242,8 @@ impl f64 { /// /// In particular, the result `n` satisfies `0 <= n < rhs.abs()`. /// + /// # Examples + /// /// ``` /// #![feature(euclidean_division)] /// let a: f64 = 7.0; @@ -248,6 +268,8 @@ impl f64 { /// /// Using this function is generally faster than using `powf` /// + /// # Examples + /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.powi(2) - x*x).abs(); @@ -262,6 +284,8 @@ impl f64 { /// Raises a number to a floating point power. /// + /// # Examples + /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.powf(2.0) - x*x).abs(); @@ -278,6 +302,8 @@ impl f64 { /// /// Returns NaN if `self` is a negative number. /// + /// # Examples + /// /// ``` /// let positive = 4.0_f64; /// let negative = -4.0_f64; @@ -299,6 +325,8 @@ impl f64 { /// Returns `e^(self)`, (the exponential function). /// + /// # Examples + /// /// ``` /// let one = 1.0_f64; /// // e^1 @@ -317,6 +345,8 @@ impl f64 { /// Returns `2^(self)`. /// + /// # Examples + /// /// ``` /// let f = 2.0_f64; /// @@ -333,6 +363,8 @@ impl f64 { /// Returns the natural logarithm of the number. /// + /// # Examples + /// /// ``` /// let one = 1.0_f64; /// // e^1 @@ -355,6 +387,8 @@ impl f64 { /// `self.log2()` can produce more accurate results for base 2, and /// `self.log10()` can produce more accurate results for base 10. /// + /// # Examples + /// /// ``` /// let five = 5.0_f64; /// @@ -369,6 +403,8 @@ impl f64 { /// Returns the base 2 logarithm of the number. /// + /// # Examples + /// /// ``` /// let two = 2.0_f64; /// @@ -390,6 +426,8 @@ impl f64 { /// Returns the base 10 logarithm of the number. /// + /// # Examples + /// /// ``` /// let ten = 10.0_f64; /// @@ -409,6 +447,8 @@ impl f64 { /// * If `self <= other`: `0:0` /// * Else: `self - other` /// + /// # Examples + /// /// ``` /// let x = 3.0_f64; /// let y = -3.0_f64; @@ -434,6 +474,8 @@ impl f64 { /// Takes the cubic root of a number. /// + /// # Examples + /// /// ``` /// let x = 8.0_f64; /// @@ -451,6 +493,8 @@ impl f64 { /// Calculates the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// + /// # Examples + /// /// ``` /// let x = 2.0_f64; /// let y = 3.0_f64; @@ -468,6 +512,8 @@ impl f64 { /// Computes the sine of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -485,6 +531,8 @@ impl f64 { /// Computes the cosine of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -502,6 +550,8 @@ impl f64 { /// Computes the tangent of a number (in radians). /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -520,6 +570,8 @@ impl f64 { /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -540,6 +592,8 @@ impl f64 { /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -559,6 +613,8 @@ impl f64 { /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// + /// # Examples + /// /// ``` /// let f = 1.0_f64; /// @@ -580,6 +636,8 @@ impl f64 { /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -609,6 +667,8 @@ impl f64 { /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -630,6 +690,8 @@ impl f64 { /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// + /// # Examples + /// /// ``` /// let x = 7.0_f64; /// @@ -647,6 +709,8 @@ impl f64 { /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -665,6 +729,8 @@ impl f64 { /// Hyperbolic sine function. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -686,6 +752,8 @@ impl f64 { /// Hyperbolic cosine function. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -707,6 +775,8 @@ impl f64 { /// Hyperbolic tangent function. /// + /// # Examples + /// /// ``` /// use std::f64; /// @@ -728,6 +798,8 @@ impl f64 { /// Inverse hyperbolic sine function. /// + /// # Examples + /// /// ``` /// let x = 1.0_f64; /// let f = x.sinh().asinh(); @@ -748,6 +820,8 @@ impl f64 { /// Inverse hyperbolic cosine function. /// + /// # Examples + /// /// ``` /// let x = 1.0_f64; /// let f = x.cosh().acosh(); @@ -767,6 +841,8 @@ impl f64 { /// Inverse hyperbolic tangent function. /// + /// # Examples + /// /// ``` /// use std::f64; ///