From 95b689b1d55936cb9d51bb01672f28f1e05994c4 Mon Sep 17 00:00:00 2001 From: Cameron Steffen Date: Sun, 2 Oct 2022 19:06:14 -0500 Subject: [PATCH] Move utils from rustc_middle to rustc_ty_utils --- Cargo.lock | 4 +- compiler/rustc_middle/Cargo.toml | 2 - compiler/rustc_middle/src/ty/layout.rs | 2339 +---------------- compiler/rustc_middle/src/ty/mod.rs | 2 - compiler/rustc_ty_utils/Cargo.toml | 2 + compiler/rustc_ty_utils/src/abi.rs | 518 ++++ compiler/rustc_ty_utils/src/layout.rs | 1804 +++++++++++++ .../src}/layout_sanity_check.rs | 2 +- compiler/rustc_ty_utils/src/lib.rs | 7 +- 9 files changed, 2337 insertions(+), 2343 deletions(-) create mode 100644 compiler/rustc_ty_utils/src/abi.rs create mode 100644 compiler/rustc_ty_utils/src/layout.rs rename compiler/{rustc_middle/src/ty => rustc_ty_utils/src}/layout_sanity_check.rs (99%) diff --git a/Cargo.lock b/Cargo.lock index 6b2146ad3ed26..20d0a47671970 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -3781,8 +3781,6 @@ dependencies = [ "either", "gsgdt", "polonius-engine", - "rand 0.8.5", - "rand_xoshiro", "rustc-rayon", "rustc-rayon-core", "rustc_apfloat", @@ -4228,6 +4226,8 @@ dependencies = [ name = "rustc_ty_utils" version = "0.0.0" dependencies = [ + "rand 0.8.5", + "rand_xoshiro", "rustc_data_structures", "rustc_errors", "rustc_hir", diff --git a/compiler/rustc_middle/Cargo.toml b/compiler/rustc_middle/Cargo.toml index cca17a4eccd3a..de916ea8c4973 100644 --- a/compiler/rustc_middle/Cargo.toml +++ b/compiler/rustc_middle/Cargo.toml @@ -12,8 +12,6 @@ chalk-ir = "0.80.0" either = "1.5.0" gsgdt = "0.1.2" polonius-engine = "0.13.0" -rand = "0.8.4" -rand_xoshiro = "0.6.0" rustc_apfloat = { path = "../rustc_apfloat" } rustc_arena = { path = "../rustc_arena" } rustc_ast = { path = "../rustc_ast" } diff --git a/compiler/rustc_middle/src/ty/layout.rs b/compiler/rustc_middle/src/ty/layout.rs index 3c523659df74e..4fb4c9b11e7ea 100644 --- a/compiler/rustc_middle/src/ty/layout.rs +++ b/compiler/rustc_middle/src/ty/layout.rs @@ -1,41 +1,23 @@ use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; -use crate::mir::{GeneratorLayout, GeneratorSavedLocal}; use crate::ty::normalize_erasing_regions::NormalizationError; -use crate::ty::{ - self, layout_sanity_check::sanity_check_layout, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, - TyCtxt, TypeVisitable, -}; +use crate::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitable}; use rustc_ast as ast; use rustc_attr as attr; use rustc_errors::{DiagnosticBuilder, Handler, IntoDiagnostic}; use rustc_hir as hir; use rustc_hir::def_id::DefId; -use rustc_hir::lang_items::LangItem; -use rustc_index::bit_set::BitSet; -use rustc_index::vec::{Idx, IndexVec}; -use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo}; -use rustc_span::symbol::Symbol; +use rustc_index::vec::Idx; +use rustc_session::config::OptLevel; use rustc_span::{Span, DUMMY_SP}; -use rustc_target::abi::call::{ - ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, -}; +use rustc_target::abi::call::FnAbi; use rustc_target::abi::*; use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target}; -use std::cmp::{self, Ordering}; +use std::cmp::{self}; use std::fmt; -use std::iter; use std::num::NonZeroUsize; use std::ops::Bound; -use rand::{seq::SliceRandom, SeedableRng}; -use rand_xoshiro::Xoshiro128StarStar; - -pub fn provide(providers: &mut ty::query::Providers) { - *providers = - ty::query::Providers { layout_of, fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers }; -} - pub trait IntegerExt { fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>; fn from_attr(cx: &C, ity: attr::IntType) -> Integer; @@ -230,1814 +212,12 @@ impl<'tcx> fmt::Display for LayoutError<'tcx> { } } -#[instrument(skip(tcx, query), level = "debug")] -fn layout_of<'tcx>( - tcx: TyCtxt<'tcx>, - query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, -) -> Result, LayoutError<'tcx>> { - let (param_env, ty) = query.into_parts(); - debug!(?ty); - - let param_env = param_env.with_reveal_all_normalized(tcx); - let unnormalized_ty = ty; - - // FIXME: We might want to have two different versions of `layout_of`: - // One that can be called after typecheck has completed and can use - // `normalize_erasing_regions` here and another one that can be called - // before typecheck has completed and uses `try_normalize_erasing_regions`. - let ty = match tcx.try_normalize_erasing_regions(param_env, ty) { - Ok(t) => t, - Err(normalization_error) => { - return Err(LayoutError::NormalizationFailure(ty, normalization_error)); - } - }; - - if ty != unnormalized_ty { - // Ensure this layout is also cached for the normalized type. - return tcx.layout_of(param_env.and(ty)); - } - - let cx = LayoutCx { tcx, param_env }; - - let layout = cx.layout_of_uncached(ty)?; - let layout = TyAndLayout { ty, layout }; - - cx.record_layout_for_printing(layout); - - sanity_check_layout(&cx, &layout); - - Ok(layout) -} - #[derive(Clone, Copy)] pub struct LayoutCx<'tcx, C> { pub tcx: C, pub param_env: ty::ParamEnv<'tcx>, } -#[derive(Copy, Clone, Debug)] -enum StructKind { - /// A tuple, closure, or univariant which cannot be coerced to unsized. - AlwaysSized, - /// A univariant, the last field of which may be coerced to unsized. - MaybeUnsized, - /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). - Prefixed(Size, Align), -} - -// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. -// This is used to go between `memory_index` (source field order to memory order) -// and `inverse_memory_index` (memory order to source field order). -// See also `FieldsShape::Arbitrary::memory_index` for more details. -// FIXME(eddyb) build a better abstraction for permutations, if possible. -fn invert_mapping(map: &[u32]) -> Vec { - let mut inverse = vec![0; map.len()]; - for i in 0..map.len() { - inverse[map[i] as usize] = i as u32; - } - inverse -} - -impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { - fn scalar_pair(&self, a: Scalar, b: Scalar) -> LayoutS<'tcx> { - let dl = self.data_layout(); - let b_align = b.align(dl); - let align = a.align(dl).max(b_align).max(dl.aggregate_align); - let b_offset = a.size(dl).align_to(b_align.abi); - let size = (b_offset + b.size(dl)).align_to(align.abi); - - // HACK(nox): We iter on `b` and then `a` because `max_by_key` - // returns the last maximum. - let largest_niche = Niche::from_scalar(dl, b_offset, b) - .into_iter() - .chain(Niche::from_scalar(dl, Size::ZERO, a)) - .max_by_key(|niche| niche.available(dl)); - - LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Arbitrary { - offsets: vec![Size::ZERO, b_offset], - memory_index: vec![0, 1], - }, - abi: Abi::ScalarPair(a, b), - largest_niche, - align, - size, - } - } - - fn univariant_uninterned( - &self, - ty: Ty<'tcx>, - fields: &[TyAndLayout<'_>], - repr: &ReprOptions, - kind: StructKind, - ) -> Result, LayoutError<'tcx>> { - let dl = self.data_layout(); - let pack = repr.pack; - if pack.is_some() && repr.align.is_some() { - self.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned"); - return Err(LayoutError::Unknown(ty)); - } - - let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; - - let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); - - let optimize = !repr.inhibit_struct_field_reordering_opt(); - if optimize { - let end = - if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; - let optimizing = &mut inverse_memory_index[..end]; - let field_align = |f: &TyAndLayout<'_>| { - if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } - }; - - // If `-Z randomize-layout` was enabled for the type definition we can shuffle - // the field ordering to try and catch some code making assumptions about layouts - // we don't guarantee - if repr.can_randomize_type_layout() { - // `ReprOptions.layout_seed` is a deterministic seed that we can use to - // randomize field ordering with - let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed); - - // Shuffle the ordering of the fields - optimizing.shuffle(&mut rng); - - // Otherwise we just leave things alone and actually optimize the type's fields - } else { - match kind { - StructKind::AlwaysSized | StructKind::MaybeUnsized => { - optimizing.sort_by_key(|&x| { - // Place ZSTs first to avoid "interesting offsets", - // especially with only one or two non-ZST fields. - let f = &fields[x as usize]; - (!f.is_zst(), cmp::Reverse(field_align(f))) - }); - } - - StructKind::Prefixed(..) => { - // Sort in ascending alignment so that the layout stays optimal - // regardless of the prefix - optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); - } - } - - // FIXME(Kixiron): We can always shuffle fields within a given alignment class - // regardless of the status of `-Z randomize-layout` - } - } - - // inverse_memory_index holds field indices by increasing memory offset. - // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. - // We now write field offsets to the corresponding offset slot; - // field 5 with offset 0 puts 0 in offsets[5]. - // At the bottom of this function, we invert `inverse_memory_index` to - // produce `memory_index` (see `invert_mapping`). - - let mut sized = true; - let mut offsets = vec![Size::ZERO; fields.len()]; - let mut offset = Size::ZERO; - let mut largest_niche = None; - let mut largest_niche_available = 0; - - if let StructKind::Prefixed(prefix_size, prefix_align) = kind { - let prefix_align = - if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; - align = align.max(AbiAndPrefAlign::new(prefix_align)); - offset = prefix_size.align_to(prefix_align); - } - - for &i in &inverse_memory_index { - let field = fields[i as usize]; - if !sized { - self.tcx.sess.delay_span_bug( - DUMMY_SP, - &format!( - "univariant: field #{} of `{}` comes after unsized field", - offsets.len(), - ty - ), - ); - } - - if field.is_unsized() { - sized = false; - } - - // Invariant: offset < dl.obj_size_bound() <= 1<<61 - let field_align = if let Some(pack) = pack { - field.align.min(AbiAndPrefAlign::new(pack)) - } else { - field.align - }; - offset = offset.align_to(field_align.abi); - align = align.max(field_align); - - debug!("univariant offset: {:?} field: {:#?}", offset, field); - offsets[i as usize] = offset; - - if let Some(mut niche) = field.largest_niche { - let available = niche.available(dl); - if available > largest_niche_available { - largest_niche_available = available; - niche.offset += offset; - largest_niche = Some(niche); - } - } - - offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; - } - - if let Some(repr_align) = repr.align { - align = align.max(AbiAndPrefAlign::new(repr_align)); - } - - debug!("univariant min_size: {:?}", offset); - let min_size = offset; - - // As stated above, inverse_memory_index holds field indices by increasing offset. - // This makes it an already-sorted view of the offsets vec. - // To invert it, consider: - // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. - // Field 5 would be the first element, so memory_index is i: - // Note: if we didn't optimize, it's already right. - - let memory_index = - if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; - - let size = min_size.align_to(align.abi); - let mut abi = Abi::Aggregate { sized }; - - // Unpack newtype ABIs and find scalar pairs. - if sized && size.bytes() > 0 { - // All other fields must be ZSTs. - let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); - - match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { - // We have exactly one non-ZST field. - (Some((i, field)), None, None) => { - // Field fills the struct and it has a scalar or scalar pair ABI. - if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size - { - match field.abi { - // For plain scalars, or vectors of them, we can't unpack - // newtypes for `#[repr(C)]`, as that affects C ABIs. - Abi::Scalar(_) | Abi::Vector { .. } if optimize => { - abi = field.abi; - } - // But scalar pairs are Rust-specific and get - // treated as aggregates by C ABIs anyway. - Abi::ScalarPair(..) => { - abi = field.abi; - } - _ => {} - } - } - } - - // Two non-ZST fields, and they're both scalars. - (Some((i, a)), Some((j, b)), None) => { - match (a.abi, b.abi) { - (Abi::Scalar(a), Abi::Scalar(b)) => { - // Order by the memory placement, not source order. - let ((i, a), (j, b)) = if offsets[i] < offsets[j] { - ((i, a), (j, b)) - } else { - ((j, b), (i, a)) - }; - let pair = self.scalar_pair(a, b); - let pair_offsets = match pair.fields { - FieldsShape::Arbitrary { ref offsets, ref memory_index } => { - assert_eq!(memory_index, &[0, 1]); - offsets - } - _ => bug!(), - }; - if offsets[i] == pair_offsets[0] - && offsets[j] == pair_offsets[1] - && align == pair.align - && size == pair.size - { - // We can use `ScalarPair` only when it matches our - // already computed layout (including `#[repr(C)]`). - abi = pair.abi; - } - } - _ => {} - } - } - - _ => {} - } - } - - if fields.iter().any(|f| f.abi.is_uninhabited()) { - abi = Abi::Uninhabited; - } - - Ok(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Arbitrary { offsets, memory_index }, - abi, - largest_niche, - align, - size, - }) - } - - fn layout_of_uncached(&self, ty: Ty<'tcx>) -> Result, LayoutError<'tcx>> { - let tcx = self.tcx; - let param_env = self.param_env; - let dl = self.data_layout(); - let scalar_unit = |value: Primitive| { - let size = value.size(dl); - assert!(size.bits() <= 128); - Scalar::Initialized { value, valid_range: WrappingRange::full(size) } - }; - let scalar = - |value: Primitive| tcx.intern_layout(LayoutS::scalar(self, scalar_unit(value))); - - let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { - Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?)) - }; - debug_assert!(!ty.has_infer_types_or_consts()); - - Ok(match *ty.kind() { - // Basic scalars. - ty::Bool => tcx.intern_layout(LayoutS::scalar( - self, - Scalar::Initialized { - value: Int(I8, false), - valid_range: WrappingRange { start: 0, end: 1 }, - }, - )), - ty::Char => tcx.intern_layout(LayoutS::scalar( - self, - Scalar::Initialized { - value: Int(I32, false), - valid_range: WrappingRange { start: 0, end: 0x10FFFF }, - }, - )), - ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), - ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), - ty::Float(fty) => scalar(match fty { - ty::FloatTy::F32 => F32, - ty::FloatTy::F64 => F64, - }), - ty::FnPtr(_) => { - let mut ptr = scalar_unit(Pointer); - ptr.valid_range_mut().start = 1; - tcx.intern_layout(LayoutS::scalar(self, ptr)) - } - - // The never type. - ty::Never => tcx.intern_layout(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Primitive, - abi: Abi::Uninhabited, - largest_niche: None, - align: dl.i8_align, - size: Size::ZERO, - }), - - // Potentially-wide pointers. - ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { - let mut data_ptr = scalar_unit(Pointer); - if !ty.is_unsafe_ptr() { - data_ptr.valid_range_mut().start = 1; - } - - let pointee = tcx.normalize_erasing_regions(param_env, pointee); - if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { - return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr))); - } - - let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); - let metadata = match unsized_part.kind() { - ty::Foreign(..) => { - return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr))); - } - ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), - ty::Dynamic(..) => { - let mut vtable = scalar_unit(Pointer); - vtable.valid_range_mut().start = 1; - vtable - } - _ => return Err(LayoutError::Unknown(unsized_part)), - }; - - // Effectively a (ptr, meta) tuple. - tcx.intern_layout(self.scalar_pair(data_ptr, metadata)) - } - - ty::Dynamic(_, _, ty::DynStar) => { - let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false)); - data.valid_range_mut().start = 0; - let mut vtable = scalar_unit(Pointer); - vtable.valid_range_mut().start = 1; - tcx.intern_layout(self.scalar_pair(data, vtable)) - } - - // Arrays and slices. - ty::Array(element, mut count) => { - if count.has_projections() { - count = tcx.normalize_erasing_regions(param_env, count); - if count.has_projections() { - return Err(LayoutError::Unknown(ty)); - } - } - - let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; - let element = self.layout_of(element)?; - let size = - element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; - - let abi = - if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) { - Abi::Uninhabited - } else { - Abi::Aggregate { sized: true } - }; - - let largest_niche = if count != 0 { element.largest_niche } else { None }; - - tcx.intern_layout(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Array { stride: element.size, count }, - abi, - largest_niche, - align: element.align, - size, - }) - } - ty::Slice(element) => { - let element = self.layout_of(element)?; - tcx.intern_layout(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Array { stride: element.size, count: 0 }, - abi: Abi::Aggregate { sized: false }, - largest_niche: None, - align: element.align, - size: Size::ZERO, - }) - } - ty::Str => tcx.intern_layout(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, - abi: Abi::Aggregate { sized: false }, - largest_niche: None, - align: dl.i8_align, - size: Size::ZERO, - }), - - // Odd unit types. - ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, - ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => { - let mut unit = self.univariant_uninterned( - ty, - &[], - &ReprOptions::default(), - StructKind::AlwaysSized, - )?; - match unit.abi { - Abi::Aggregate { ref mut sized } => *sized = false, - _ => bug!(), - } - tcx.intern_layout(unit) - } - - ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?, - - ty::Closure(_, ref substs) => { - let tys = substs.as_closure().upvar_tys(); - univariant( - &tys.map(|ty| self.layout_of(ty)).collect::, _>>()?, - &ReprOptions::default(), - StructKind::AlwaysSized, - )? - } - - ty::Tuple(tys) => { - let kind = - if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; - - univariant( - &tys.iter().map(|k| self.layout_of(k)).collect::, _>>()?, - &ReprOptions::default(), - kind, - )? - } - - // SIMD vector types. - ty::Adt(def, substs) if def.repr().simd() => { - if !def.is_struct() { - // Should have yielded E0517 by now. - tcx.sess.delay_span_bug( - DUMMY_SP, - "#[repr(simd)] was applied to an ADT that is not a struct", - ); - return Err(LayoutError::Unknown(ty)); - } - - // Supported SIMD vectors are homogeneous ADTs with at least one field: - // - // * #[repr(simd)] struct S(T, T, T, T); - // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } - // * #[repr(simd)] struct S([T; 4]) - // - // where T is a primitive scalar (integer/float/pointer). - - // SIMD vectors with zero fields are not supported. - // (should be caught by typeck) - if def.non_enum_variant().fields.is_empty() { - tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); - } - - // Type of the first ADT field: - let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); - - // Heterogeneous SIMD vectors are not supported: - // (should be caught by typeck) - for fi in &def.non_enum_variant().fields { - if fi.ty(tcx, substs) != f0_ty { - tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); - } - } - - // The element type and number of elements of the SIMD vector - // are obtained from: - // - // * the element type and length of the single array field, if - // the first field is of array type, or - // - // * the homogeneous field type and the number of fields. - let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { - // First ADT field is an array: - - // SIMD vectors with multiple array fields are not supported: - // (should be caught by typeck) - if def.non_enum_variant().fields.len() != 1 { - tcx.sess.fatal(&format!( - "monomorphising SIMD type `{}` with more than one array field", - ty - )); - } - - // Extract the number of elements from the layout of the array field: - let FieldsShape::Array { count, .. } = self.layout_of(f0_ty)?.layout.fields() else { - return Err(LayoutError::Unknown(ty)); - }; - - (*e_ty, *count, true) - } else { - // First ADT field is not an array: - (f0_ty, def.non_enum_variant().fields.len() as _, false) - }; - - // SIMD vectors of zero length are not supported. - // Additionally, lengths are capped at 2^16 as a fixed maximum backends must - // support. - // - // Can't be caught in typeck if the array length is generic. - if e_len == 0 { - tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); - } else if e_len > MAX_SIMD_LANES { - tcx.sess.fatal(&format!( - "monomorphising SIMD type `{}` of length greater than {}", - ty, MAX_SIMD_LANES, - )); - } - - // Compute the ABI of the element type: - let e_ly = self.layout_of(e_ty)?; - let Abi::Scalar(e_abi) = e_ly.abi else { - // This error isn't caught in typeck, e.g., if - // the element type of the vector is generic. - tcx.sess.fatal(&format!( - "monomorphising SIMD type `{}` with a non-primitive-scalar \ - (integer/float/pointer) element type `{}`", - ty, e_ty - )) - }; - - // Compute the size and alignment of the vector: - let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; - let align = dl.vector_align(size); - let size = size.align_to(align.abi); - - // Compute the placement of the vector fields: - let fields = if is_array { - FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } - } else { - FieldsShape::Array { stride: e_ly.size, count: e_len } - }; - - tcx.intern_layout(LayoutS { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields, - abi: Abi::Vector { element: e_abi, count: e_len }, - largest_niche: e_ly.largest_niche, - size, - align, - }) - } - - // ADTs. - ty::Adt(def, substs) => { - // Cache the field layouts. - let variants = def - .variants() - .iter() - .map(|v| { - v.fields - .iter() - .map(|field| self.layout_of(field.ty(tcx, substs))) - .collect::, _>>() - }) - .collect::, _>>()?; - - if def.is_union() { - if def.repr().pack.is_some() && def.repr().align.is_some() { - self.tcx.sess.delay_span_bug( - tcx.def_span(def.did()), - "union cannot be packed and aligned", - ); - return Err(LayoutError::Unknown(ty)); - } - - let mut align = - if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align }; - - if let Some(repr_align) = def.repr().align { - align = align.max(AbiAndPrefAlign::new(repr_align)); - } - - let optimize = !def.repr().inhibit_union_abi_opt(); - let mut size = Size::ZERO; - let mut abi = Abi::Aggregate { sized: true }; - let index = VariantIdx::new(0); - for field in &variants[index] { - assert!(!field.is_unsized()); - align = align.max(field.align); - - // If all non-ZST fields have the same ABI, forward this ABI - if optimize && !field.is_zst() { - // Discard valid range information and allow undef - let field_abi = match field.abi { - Abi::Scalar(x) => Abi::Scalar(x.to_union()), - Abi::ScalarPair(x, y) => { - Abi::ScalarPair(x.to_union(), y.to_union()) - } - Abi::Vector { element: x, count } => { - Abi::Vector { element: x.to_union(), count } - } - Abi::Uninhabited | Abi::Aggregate { .. } => { - Abi::Aggregate { sized: true } - } - }; - - if size == Size::ZERO { - // first non ZST: initialize 'abi' - abi = field_abi; - } else if abi != field_abi { - // different fields have different ABI: reset to Aggregate - abi = Abi::Aggregate { sized: true }; - } - } - - size = cmp::max(size, field.size); - } - - if let Some(pack) = def.repr().pack { - align = align.min(AbiAndPrefAlign::new(pack)); - } - - return Ok(tcx.intern_layout(LayoutS { - variants: Variants::Single { index }, - fields: FieldsShape::Union( - NonZeroUsize::new(variants[index].len()) - .ok_or(LayoutError::Unknown(ty))?, - ), - abi, - largest_niche: None, - align, - size: size.align_to(align.abi), - })); - } - - // A variant is absent if it's uninhabited and only has ZST fields. - // Present uninhabited variants only require space for their fields, - // but *not* an encoding of the discriminant (e.g., a tag value). - // See issue #49298 for more details on the need to leave space - // for non-ZST uninhabited data (mostly partial initialization). - let absent = |fields: &[TyAndLayout<'_>]| { - let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); - let is_zst = fields.iter().all(|f| f.is_zst()); - uninhabited && is_zst - }; - let (present_first, present_second) = { - let mut present_variants = variants - .iter_enumerated() - .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); - (present_variants.next(), present_variants.next()) - }; - let present_first = match present_first { - Some(present_first) => present_first, - // Uninhabited because it has no variants, or only absent ones. - None if def.is_enum() => { - return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout); - } - // If it's a struct, still compute a layout so that we can still compute the - // field offsets. - None => VariantIdx::new(0), - }; - - let is_struct = !def.is_enum() || - // Only one variant is present. - (present_second.is_none() && - // Representation optimizations are allowed. - !def.repr().inhibit_enum_layout_opt()); - if is_struct { - // Struct, or univariant enum equivalent to a struct. - // (Typechecking will reject discriminant-sizing attrs.) - - let v = present_first; - let kind = if def.is_enum() || variants[v].is_empty() { - StructKind::AlwaysSized - } else { - let param_env = tcx.param_env(def.did()); - let last_field = def.variant(v).fields.last().unwrap(); - let always_sized = - tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env); - if !always_sized { - StructKind::MaybeUnsized - } else { - StructKind::AlwaysSized - } - }; - - let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr(), kind)?; - st.variants = Variants::Single { index: v }; - - if def.is_unsafe_cell() { - let hide_niches = |scalar: &mut _| match scalar { - Scalar::Initialized { value, valid_range } => { - *valid_range = WrappingRange::full(value.size(dl)) - } - // Already doesn't have any niches - Scalar::Union { .. } => {} - }; - match &mut st.abi { - Abi::Uninhabited => {} - Abi::Scalar(scalar) => hide_niches(scalar), - Abi::ScalarPair(a, b) => { - hide_niches(a); - hide_niches(b); - } - Abi::Vector { element, count: _ } => hide_niches(element), - Abi::Aggregate { sized: _ } => {} - } - st.largest_niche = None; - return Ok(tcx.intern_layout(st)); - } - - let (start, end) = self.tcx.layout_scalar_valid_range(def.did()); - match st.abi { - Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { - // the asserts ensure that we are not using the - // `#[rustc_layout_scalar_valid_range(n)]` - // attribute to widen the range of anything as that would probably - // result in UB somewhere - // FIXME(eddyb) the asserts are probably not needed, - // as larger validity ranges would result in missed - // optimizations, *not* wrongly assuming the inner - // value is valid. e.g. unions enlarge validity ranges, - // because the values may be uninitialized. - if let Bound::Included(start) = start { - // FIXME(eddyb) this might be incorrect - it doesn't - // account for wrap-around (end < start) ranges. - let valid_range = scalar.valid_range_mut(); - assert!(valid_range.start <= start); - valid_range.start = start; - } - if let Bound::Included(end) = end { - // FIXME(eddyb) this might be incorrect - it doesn't - // account for wrap-around (end < start) ranges. - let valid_range = scalar.valid_range_mut(); - assert!(valid_range.end >= end); - valid_range.end = end; - } - - // Update `largest_niche` if we have introduced a larger niche. - let niche = Niche::from_scalar(dl, Size::ZERO, *scalar); - if let Some(niche) = niche { - match st.largest_niche { - Some(largest_niche) => { - // Replace the existing niche even if they're equal, - // because this one is at a lower offset. - if largest_niche.available(dl) <= niche.available(dl) { - st.largest_niche = Some(niche); - } - } - None => st.largest_niche = Some(niche), - } - } - } - _ => assert!( - start == Bound::Unbounded && end == Bound::Unbounded, - "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", - def, - st, - ), - } - - return Ok(tcx.intern_layout(st)); - } - - // At this point, we have handled all unions and - // structs. (We have also handled univariant enums - // that allow representation optimization.) - assert!(def.is_enum()); - - // Until we've decided whether to use the tagged or - // niche filling LayoutS, we don't want to intern the - // variant layouts, so we can't store them in the - // overall LayoutS. Store the overall LayoutS - // and the variant LayoutSs here until then. - struct TmpLayout<'tcx> { - layout: LayoutS<'tcx>, - variants: IndexVec>, - } - - let calculate_niche_filling_layout = - || -> Result>, LayoutError<'tcx>> { - // The current code for niche-filling relies on variant indices - // instead of actual discriminants, so enums with - // explicit discriminants (RFC #2363) would misbehave. - if def.repr().inhibit_enum_layout_opt() - || def - .variants() - .iter_enumerated() - .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())) - { - return Ok(None); - } - - if variants.len() < 2 { - return Ok(None); - } - - let mut align = dl.aggregate_align; - let mut variant_layouts = variants - .iter_enumerated() - .map(|(j, v)| { - let mut st = self.univariant_uninterned( - ty, - v, - &def.repr(), - StructKind::AlwaysSized, - )?; - st.variants = Variants::Single { index: j }; - - align = align.max(st.align); - - Ok(st) - }) - .collect::, _>>()?; - - let largest_variant_index = match variant_layouts - .iter_enumerated() - .max_by_key(|(_i, layout)| layout.size.bytes()) - .map(|(i, _layout)| i) - { - None => return Ok(None), - Some(i) => i, - }; - - let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1); - let needs_disc = |index: VariantIdx| { - index != largest_variant_index && !absent(&variants[index]) - }; - let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap() - ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap(); - - let count = niche_variants.size_hint().1.unwrap() as u128; - - // Find the field with the largest niche - let (field_index, niche, (niche_start, niche_scalar)) = match variants - [largest_variant_index] - .iter() - .enumerate() - .filter_map(|(j, field)| Some((j, field.largest_niche?))) - .max_by_key(|(_, niche)| niche.available(dl)) - .and_then(|(j, niche)| Some((j, niche, niche.reserve(self, count)?))) - { - None => return Ok(None), - Some(x) => x, - }; - - let niche_offset = niche.offset - + variant_layouts[largest_variant_index].fields.offset(field_index); - let niche_size = niche.value.size(dl); - let size = variant_layouts[largest_variant_index].size.align_to(align.abi); - - let all_variants_fit = - variant_layouts.iter_enumerated_mut().all(|(i, layout)| { - if i == largest_variant_index { - return true; - } - - layout.largest_niche = None; - - if layout.size <= niche_offset { - // This variant will fit before the niche. - return true; - } - - // Determine if it'll fit after the niche. - let this_align = layout.align.abi; - let this_offset = (niche_offset + niche_size).align_to(this_align); - - if this_offset + layout.size > size { - return false; - } - - // It'll fit, but we need to make some adjustments. - match layout.fields { - FieldsShape::Arbitrary { ref mut offsets, .. } => { - for (j, offset) in offsets.iter_mut().enumerate() { - if !variants[i][j].is_zst() { - *offset += this_offset; - } - } - } - _ => { - panic!("Layout of fields should be Arbitrary for variants") - } - } - - // It can't be a Scalar or ScalarPair because the offset isn't 0. - if !layout.abi.is_uninhabited() { - layout.abi = Abi::Aggregate { sized: true }; - } - layout.size += this_offset; - - true - }); - - if !all_variants_fit { - return Ok(None); - } - - let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar); - - let others_zst = variant_layouts.iter_enumerated().all(|(i, layout)| { - i == largest_variant_index || layout.size == Size::ZERO - }); - let same_size = size == variant_layouts[largest_variant_index].size; - let same_align = align == variant_layouts[largest_variant_index].align; - - let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) { - Abi::Uninhabited - } else if same_size && same_align && others_zst { - match variant_layouts[largest_variant_index].abi { - // When the total alignment and size match, we can use the - // same ABI as the scalar variant with the reserved niche. - Abi::Scalar(_) => Abi::Scalar(niche_scalar), - Abi::ScalarPair(first, second) => { - // Only the niche is guaranteed to be initialised, - // so use union layouts for the other primitive. - if niche_offset == Size::ZERO { - Abi::ScalarPair(niche_scalar, second.to_union()) - } else { - Abi::ScalarPair(first.to_union(), niche_scalar) - } - } - _ => Abi::Aggregate { sized: true }, - } - } else { - Abi::Aggregate { sized: true } - }; - - let layout = LayoutS { - variants: Variants::Multiple { - tag: niche_scalar, - tag_encoding: TagEncoding::Niche { - untagged_variant: largest_variant_index, - niche_variants, - niche_start, - }, - tag_field: 0, - variants: IndexVec::new(), - }, - fields: FieldsShape::Arbitrary { - offsets: vec![niche_offset], - memory_index: vec![0], - }, - abi, - largest_niche, - size, - align, - }; - - Ok(Some(TmpLayout { layout, variants: variant_layouts })) - }; - - let niche_filling_layout = calculate_niche_filling_layout()?; - - let (mut min, mut max) = (i128::MAX, i128::MIN); - let discr_type = def.repr().discr_type(); - let bits = Integer::from_attr(self, discr_type).size().bits(); - for (i, discr) in def.discriminants(tcx) { - if variants[i].iter().any(|f| f.abi.is_uninhabited()) { - continue; - } - let mut x = discr.val as i128; - if discr_type.is_signed() { - // sign extend the raw representation to be an i128 - x = (x << (128 - bits)) >> (128 - bits); - } - if x < min { - min = x; - } - if x > max { - max = x; - } - } - // We might have no inhabited variants, so pretend there's at least one. - if (min, max) == (i128::MAX, i128::MIN) { - min = 0; - max = 0; - } - assert!(min <= max, "discriminant range is {}...{}", min, max); - let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max); - - let mut align = dl.aggregate_align; - let mut size = Size::ZERO; - - // We're interested in the smallest alignment, so start large. - let mut start_align = Align::from_bytes(256).unwrap(); - assert_eq!(Integer::for_align(dl, start_align), None); - - // repr(C) on an enum tells us to make a (tag, union) layout, - // so we need to grow the prefix alignment to be at least - // the alignment of the union. (This value is used both for - // determining the alignment of the overall enum, and the - // determining the alignment of the payload after the tag.) - let mut prefix_align = min_ity.align(dl).abi; - if def.repr().c() { - for fields in &variants { - for field in fields { - prefix_align = prefix_align.max(field.align.abi); - } - } - } - - // Create the set of structs that represent each variant. - let mut layout_variants = variants - .iter_enumerated() - .map(|(i, field_layouts)| { - let mut st = self.univariant_uninterned( - ty, - &field_layouts, - &def.repr(), - StructKind::Prefixed(min_ity.size(), prefix_align), - )?; - st.variants = Variants::Single { index: i }; - // Find the first field we can't move later - // to make room for a larger discriminant. - for field in - st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) - { - if !field.is_zst() || field.align.abi.bytes() != 1 { - start_align = start_align.min(field.align.abi); - break; - } - } - size = cmp::max(size, st.size); - align = align.max(st.align); - Ok(st) - }) - .collect::, _>>()?; - - // Align the maximum variant size to the largest alignment. - size = size.align_to(align.abi); - - if size.bytes() >= dl.obj_size_bound() { - return Err(LayoutError::SizeOverflow(ty)); - } - - let typeck_ity = Integer::from_attr(dl, def.repr().discr_type()); - if typeck_ity < min_ity { - // It is a bug if Layout decided on a greater discriminant size than typeck for - // some reason at this point (based on values discriminant can take on). Mostly - // because this discriminant will be loaded, and then stored into variable of - // type calculated by typeck. Consider such case (a bug): typeck decided on - // byte-sized discriminant, but layout thinks we need a 16-bit to store all - // discriminant values. That would be a bug, because then, in codegen, in order - // to store this 16-bit discriminant into 8-bit sized temporary some of the - // space necessary to represent would have to be discarded (or layout is wrong - // on thinking it needs 16 bits) - bug!( - "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", - min_ity, - typeck_ity - ); - // However, it is fine to make discr type however large (as an optimisation) - // after this point – we’ll just truncate the value we load in codegen. - } - - // Check to see if we should use a different type for the - // discriminant. We can safely use a type with the same size - // as the alignment of the first field of each variant. - // We increase the size of the discriminant to avoid LLVM copying - // padding when it doesn't need to. This normally causes unaligned - // load/stores and excessive memcpy/memset operations. By using a - // bigger integer size, LLVM can be sure about its contents and - // won't be so conservative. - - // Use the initial field alignment - let mut ity = if def.repr().c() || def.repr().int.is_some() { - min_ity - } else { - Integer::for_align(dl, start_align).unwrap_or(min_ity) - }; - - // If the alignment is not larger than the chosen discriminant size, - // don't use the alignment as the final size. - if ity <= min_ity { - ity = min_ity; - } else { - // Patch up the variants' first few fields. - let old_ity_size = min_ity.size(); - let new_ity_size = ity.size(); - for variant in &mut layout_variants { - match variant.fields { - FieldsShape::Arbitrary { ref mut offsets, .. } => { - for i in offsets { - if *i <= old_ity_size { - assert_eq!(*i, old_ity_size); - *i = new_ity_size; - } - } - // We might be making the struct larger. - if variant.size <= old_ity_size { - variant.size = new_ity_size; - } - } - _ => bug!(), - } - } - } - - let tag_mask = ity.size().unsigned_int_max(); - let tag = Scalar::Initialized { - value: Int(ity, signed), - valid_range: WrappingRange { - start: (min as u128 & tag_mask), - end: (max as u128 & tag_mask), - }, - }; - let mut abi = Abi::Aggregate { sized: true }; - - if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { - abi = Abi::Uninhabited; - } else if tag.size(dl) == size { - // Make sure we only use scalar layout when the enum is entirely its - // own tag (i.e. it has no padding nor any non-ZST variant fields). - abi = Abi::Scalar(tag); - } else { - // Try to use a ScalarPair for all tagged enums. - let mut common_prim = None; - let mut common_prim_initialized_in_all_variants = true; - for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { - let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else { - bug!(); - }; - let mut fields = - iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); - let (field, offset) = match (fields.next(), fields.next()) { - (None, None) => { - common_prim_initialized_in_all_variants = false; - continue; - } - (Some(pair), None) => pair, - _ => { - common_prim = None; - break; - } - }; - let prim = match field.abi { - Abi::Scalar(scalar) => { - common_prim_initialized_in_all_variants &= - matches!(scalar, Scalar::Initialized { .. }); - scalar.primitive() - } - _ => { - common_prim = None; - break; - } - }; - if let Some(pair) = common_prim { - // This is pretty conservative. We could go fancier - // by conflating things like i32 and u32, or even - // realising that (u8, u8) could just cohabit with - // u16 or even u32. - if pair != (prim, offset) { - common_prim = None; - break; - } - } else { - common_prim = Some((prim, offset)); - } - } - if let Some((prim, offset)) = common_prim { - let prim_scalar = if common_prim_initialized_in_all_variants { - scalar_unit(prim) - } else { - // Common prim might be uninit. - Scalar::Union { value: prim } - }; - let pair = self.scalar_pair(tag, prim_scalar); - let pair_offsets = match pair.fields { - FieldsShape::Arbitrary { ref offsets, ref memory_index } => { - assert_eq!(memory_index, &[0, 1]); - offsets - } - _ => bug!(), - }; - if pair_offsets[0] == Size::ZERO - && pair_offsets[1] == *offset - && align == pair.align - && size == pair.size - { - // We can use `ScalarPair` only when it matches our - // already computed layout (including `#[repr(C)]`). - abi = pair.abi; - } - } - } - - // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the - // variants to ensure they are consistent. This is because a downcast is - // semantically a NOP, and thus should not affect layout. - if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { - for variant in &mut layout_variants { - // We only do this for variants with fields; the others are not accessed anyway. - // Also do not overwrite any already existing "clever" ABIs. - if variant.fields.count() > 0 - && matches!(variant.abi, Abi::Aggregate { .. }) - { - variant.abi = abi; - // Also need to bump up the size and alignment, so that the entire value fits in here. - variant.size = cmp::max(variant.size, size); - variant.align.abi = cmp::max(variant.align.abi, align.abi); - } - } - } - - let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag); - - let tagged_layout = LayoutS { - variants: Variants::Multiple { - tag, - tag_encoding: TagEncoding::Direct, - tag_field: 0, - variants: IndexVec::new(), - }, - fields: FieldsShape::Arbitrary { - offsets: vec![Size::ZERO], - memory_index: vec![0], - }, - largest_niche, - abi, - align, - size, - }; - - let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants }; - - let mut best_layout = match (tagged_layout, niche_filling_layout) { - (tl, Some(nl)) => { - // Pick the smaller layout; otherwise, - // pick the layout with the larger niche; otherwise, - // pick tagged as it has simpler codegen. - use Ordering::*; - let niche_size = |tmp_l: &TmpLayout<'_>| { - tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl)) - }; - match ( - tl.layout.size.cmp(&nl.layout.size), - niche_size(&tl).cmp(&niche_size(&nl)), - ) { - (Greater, _) => nl, - (Equal, Less) => nl, - _ => tl, - } - } - (tl, None) => tl, - }; - - // Now we can intern the variant layouts and store them in the enum layout. - best_layout.layout.variants = match best_layout.layout.variants { - Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple { - tag, - tag_encoding, - tag_field, - variants: best_layout - .variants - .into_iter() - .map(|layout| tcx.intern_layout(layout)) - .collect(), - }, - _ => bug!(), - }; - - tcx.intern_layout(best_layout.layout) - } - - // Types with no meaningful known layout. - ty::Projection(_) | ty::Opaque(..) => { - // NOTE(eddyb) `layout_of` query should've normalized these away, - // if that was possible, so there's no reason to try again here. - return Err(LayoutError::Unknown(ty)); - } - - ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { - bug!("Layout::compute: unexpected type `{}`", ty) - } - - ty::Bound(..) | ty::Param(_) | ty::Error(_) => { - return Err(LayoutError::Unknown(ty)); - } - }) - } -} - -/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. -#[derive(Clone, Debug, PartialEq)] -enum SavedLocalEligibility { - Unassigned, - Assigned(VariantIdx), - // FIXME: Use newtype_index so we aren't wasting bytes - Ineligible(Option), -} - -// When laying out generators, we divide our saved local fields into two -// categories: overlap-eligible and overlap-ineligible. -// -// Those fields which are ineligible for overlap go in a "prefix" at the -// beginning of the layout, and always have space reserved for them. -// -// Overlap-eligible fields are only assigned to one variant, so we lay -// those fields out for each variant and put them right after the -// prefix. -// -// Finally, in the layout details, we point to the fields from the -// variants they are assigned to. It is possible for some fields to be -// included in multiple variants. No field ever "moves around" in the -// layout; its offset is always the same. -// -// Also included in the layout are the upvars and the discriminant. -// These are included as fields on the "outer" layout; they are not part -// of any variant. -impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { - /// Compute the eligibility and assignment of each local. - fn generator_saved_local_eligibility( - &self, - info: &GeneratorLayout<'tcx>, - ) -> (BitSet, IndexVec) { - use SavedLocalEligibility::*; - - let mut assignments: IndexVec = - IndexVec::from_elem_n(Unassigned, info.field_tys.len()); - - // The saved locals not eligible for overlap. These will get - // "promoted" to the prefix of our generator. - let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); - - // Figure out which of our saved locals are fields in only - // one variant. The rest are deemed ineligible for overlap. - for (variant_index, fields) in info.variant_fields.iter_enumerated() { - for local in fields { - match assignments[*local] { - Unassigned => { - assignments[*local] = Assigned(variant_index); - } - Assigned(idx) => { - // We've already seen this local at another suspension - // point, so it is no longer a candidate. - trace!( - "removing local {:?} in >1 variant ({:?}, {:?})", - local, - variant_index, - idx - ); - ineligible_locals.insert(*local); - assignments[*local] = Ineligible(None); - } - Ineligible(_) => {} - } - } - } - - // Next, check every pair of eligible locals to see if they - // conflict. - for local_a in info.storage_conflicts.rows() { - let conflicts_a = info.storage_conflicts.count(local_a); - if ineligible_locals.contains(local_a) { - continue; - } - - for local_b in info.storage_conflicts.iter(local_a) { - // local_a and local_b are storage live at the same time, therefore they - // cannot overlap in the generator layout. The only way to guarantee - // this is if they are in the same variant, or one is ineligible - // (which means it is stored in every variant). - if ineligible_locals.contains(local_b) - || assignments[local_a] == assignments[local_b] - { - continue; - } - - // If they conflict, we will choose one to make ineligible. - // This is not always optimal; it's just a greedy heuristic that - // seems to produce good results most of the time. - let conflicts_b = info.storage_conflicts.count(local_b); - let (remove, other) = - if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; - ineligible_locals.insert(remove); - assignments[remove] = Ineligible(None); - trace!("removing local {:?} due to conflict with {:?}", remove, other); - } - } - - // Count the number of variants in use. If only one of them, then it is - // impossible to overlap any locals in our layout. In this case it's - // always better to make the remaining locals ineligible, so we can - // lay them out with the other locals in the prefix and eliminate - // unnecessary padding bytes. - { - let mut used_variants = BitSet::new_empty(info.variant_fields.len()); - for assignment in &assignments { - if let Assigned(idx) = assignment { - used_variants.insert(*idx); - } - } - if used_variants.count() < 2 { - for assignment in assignments.iter_mut() { - *assignment = Ineligible(None); - } - ineligible_locals.insert_all(); - } - } - - // Write down the order of our locals that will be promoted to the prefix. - { - for (idx, local) in ineligible_locals.iter().enumerate() { - assignments[local] = Ineligible(Some(idx as u32)); - } - } - debug!("generator saved local assignments: {:?}", assignments); - - (ineligible_locals, assignments) - } - - /// Compute the full generator layout. - fn generator_layout( - &self, - ty: Ty<'tcx>, - def_id: hir::def_id::DefId, - substs: SubstsRef<'tcx>, - ) -> Result, LayoutError<'tcx>> { - use SavedLocalEligibility::*; - let tcx = self.tcx; - let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs); - - let Some(info) = tcx.generator_layout(def_id) else { - return Err(LayoutError::Unknown(ty)); - }; - let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info); - - // Build a prefix layout, including "promoting" all ineligible - // locals as part of the prefix. We compute the layout of all of - // these fields at once to get optimal packing. - let tag_index = substs.as_generator().prefix_tys().count(); - - // `info.variant_fields` already accounts for the reserved variants, so no need to add them. - let max_discr = (info.variant_fields.len() - 1) as u128; - let discr_int = Integer::fit_unsigned(max_discr); - let discr_int_ty = discr_int.to_ty(tcx, false); - let tag = Scalar::Initialized { - value: Primitive::Int(discr_int, false), - valid_range: WrappingRange { start: 0, end: max_discr }, - }; - let tag_layout = self.tcx.intern_layout(LayoutS::scalar(self, tag)); - let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; - - let promoted_layouts = ineligible_locals - .iter() - .map(|local| subst_field(info.field_tys[local])) - .map(|ty| tcx.mk_maybe_uninit(ty)) - .map(|ty| self.layout_of(ty)); - let prefix_layouts = substs - .as_generator() - .prefix_tys() - .map(|ty| self.layout_of(ty)) - .chain(iter::once(Ok(tag_layout))) - .chain(promoted_layouts) - .collect::, _>>()?; - let prefix = self.univariant_uninterned( - ty, - &prefix_layouts, - &ReprOptions::default(), - StructKind::AlwaysSized, - )?; - - let (prefix_size, prefix_align) = (prefix.size, prefix.align); - - // Split the prefix layout into the "outer" fields (upvars and - // discriminant) and the "promoted" fields. Promoted fields will - // get included in each variant that requested them in - // GeneratorLayout. - debug!("prefix = {:#?}", prefix); - let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { - FieldsShape::Arbitrary { mut offsets, memory_index } => { - let mut inverse_memory_index = invert_mapping(&memory_index); - - // "a" (`0..b_start`) and "b" (`b_start..`) correspond to - // "outer" and "promoted" fields respectively. - let b_start = (tag_index + 1) as u32; - let offsets_b = offsets.split_off(b_start as usize); - let offsets_a = offsets; - - // Disentangle the "a" and "b" components of `inverse_memory_index` - // by preserving the order but keeping only one disjoint "half" each. - // FIXME(eddyb) build a better abstraction for permutations, if possible. - let inverse_memory_index_b: Vec<_> = - inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); - inverse_memory_index.retain(|&i| i < b_start); - let inverse_memory_index_a = inverse_memory_index; - - // Since `inverse_memory_index_{a,b}` each only refer to their - // respective fields, they can be safely inverted - let memory_index_a = invert_mapping(&inverse_memory_index_a); - let memory_index_b = invert_mapping(&inverse_memory_index_b); - - let outer_fields = - FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; - (outer_fields, offsets_b, memory_index_b) - } - _ => bug!(), - }; - - let mut size = prefix.size; - let mut align = prefix.align; - let variants = info - .variant_fields - .iter_enumerated() - .map(|(index, variant_fields)| { - // Only include overlap-eligible fields when we compute our variant layout. - let variant_only_tys = variant_fields - .iter() - .filter(|local| match assignments[**local] { - Unassigned => bug!(), - Assigned(v) if v == index => true, - Assigned(_) => bug!("assignment does not match variant"), - Ineligible(_) => false, - }) - .map(|local| subst_field(info.field_tys[*local])); - - let mut variant = self.univariant_uninterned( - ty, - &variant_only_tys - .map(|ty| self.layout_of(ty)) - .collect::, _>>()?, - &ReprOptions::default(), - StructKind::Prefixed(prefix_size, prefix_align.abi), - )?; - variant.variants = Variants::Single { index }; - - let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else { - bug!(); - }; - - // Now, stitch the promoted and variant-only fields back together in - // the order they are mentioned by our GeneratorLayout. - // Because we only use some subset (that can differ between variants) - // of the promoted fields, we can't just pick those elements of the - // `promoted_memory_index` (as we'd end up with gaps). - // So instead, we build an "inverse memory_index", as if all of the - // promoted fields were being used, but leave the elements not in the - // subset as `INVALID_FIELD_IDX`, which we can filter out later to - // obtain a valid (bijective) mapping. - const INVALID_FIELD_IDX: u32 = !0; - let mut combined_inverse_memory_index = - vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; - let mut offsets_and_memory_index = iter::zip(offsets, memory_index); - let combined_offsets = variant_fields - .iter() - .enumerate() - .map(|(i, local)| { - let (offset, memory_index) = match assignments[*local] { - Unassigned => bug!(), - Assigned(_) => { - let (offset, memory_index) = - offsets_and_memory_index.next().unwrap(); - (offset, promoted_memory_index.len() as u32 + memory_index) - } - Ineligible(field_idx) => { - let field_idx = field_idx.unwrap() as usize; - (promoted_offsets[field_idx], promoted_memory_index[field_idx]) - } - }; - combined_inverse_memory_index[memory_index as usize] = i as u32; - offset - }) - .collect(); - - // Remove the unused slots and invert the mapping to obtain the - // combined `memory_index` (also see previous comment). - combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); - let combined_memory_index = invert_mapping(&combined_inverse_memory_index); - - variant.fields = FieldsShape::Arbitrary { - offsets: combined_offsets, - memory_index: combined_memory_index, - }; - - size = size.max(variant.size); - align = align.max(variant.align); - Ok(tcx.intern_layout(variant)) - }) - .collect::, _>>()?; - - size = size.align_to(align.abi); - - let abi = - if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) { - Abi::Uninhabited - } else { - Abi::Aggregate { sized: true } - }; - - let layout = tcx.intern_layout(LayoutS { - variants: Variants::Multiple { - tag, - tag_encoding: TagEncoding::Direct, - tag_field: tag_index, - variants, - }, - fields: outer_fields, - abi, - largest_niche: prefix.largest_niche, - size, - align, - }); - debug!("generator layout ({:?}): {:#?}", ty, layout); - Ok(layout) - } - - /// This is invoked by the `layout_of` query to record the final - /// layout of each type. - #[inline(always)] - fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) { - // If we are running with `-Zprint-type-sizes`, maybe record layouts - // for dumping later. - if self.tcx.sess.opts.unstable_opts.print_type_sizes { - self.record_layout_for_printing_outlined(layout) - } - } - - fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) { - // Ignore layouts that are done with non-empty environments or - // non-monomorphic layouts, as the user only wants to see the stuff - // resulting from the final codegen session. - if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() { - return; - } - - // (delay format until we actually need it) - let record = |kind, packed, opt_discr_size, variants| { - let type_desc = format!("{:?}", layout.ty); - self.tcx.sess.code_stats.record_type_size( - kind, - type_desc, - layout.align.abi, - layout.size, - packed, - opt_discr_size, - variants, - ); - }; - - let adt_def = match *layout.ty.kind() { - ty::Adt(ref adt_def, _) => { - debug!("print-type-size t: `{:?}` process adt", layout.ty); - adt_def - } - - ty::Closure(..) => { - debug!("print-type-size t: `{:?}` record closure", layout.ty); - record(DataTypeKind::Closure, false, None, vec![]); - return; - } - - _ => { - debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); - return; - } - }; - - let adt_kind = adt_def.adt_kind(); - let adt_packed = adt_def.repr().pack.is_some(); - - let build_variant_info = |n: Option, flds: &[Symbol], layout: TyAndLayout<'tcx>| { - let mut min_size = Size::ZERO; - let field_info: Vec<_> = flds - .iter() - .enumerate() - .map(|(i, &name)| { - let field_layout = layout.field(self, i); - let offset = layout.fields.offset(i); - let field_end = offset + field_layout.size; - if min_size < field_end { - min_size = field_end; - } - FieldInfo { - name, - offset: offset.bytes(), - size: field_layout.size.bytes(), - align: field_layout.align.abi.bytes(), - } - }) - .collect(); - - VariantInfo { - name: n, - kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, - align: layout.align.abi.bytes(), - size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, - fields: field_info, - } - }; - - match layout.variants { - Variants::Single { index } => { - if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive { - debug!( - "print-type-size `{:#?}` variant {}", - layout, - adt_def.variant(index).name - ); - let variant_def = &adt_def.variant(index); - let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); - record( - adt_kind.into(), - adt_packed, - None, - vec![build_variant_info(Some(variant_def.name), &fields, layout)], - ); - } else { - // (This case arises for *empty* enums; so give it - // zero variants.) - record(adt_kind.into(), adt_packed, None, vec![]); - } - } - - Variants::Multiple { tag, ref tag_encoding, .. } => { - debug!( - "print-type-size `{:#?}` adt general variants def {}", - layout.ty, - adt_def.variants().len() - ); - let variant_infos: Vec<_> = adt_def - .variants() - .iter_enumerated() - .map(|(i, variant_def)| { - let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); - build_variant_info( - Some(variant_def.name), - &fields, - layout.for_variant(self, i), - ) - }) - .collect(); - record( - adt_kind.into(), - adt_packed, - match tag_encoding { - TagEncoding::Direct => Some(tag.size(self)), - _ => None, - }, - variant_infos, - ); - } - } - } -} - /// Type size "skeleton", i.e., the only information determining a type's size. /// While this is conservative, (aside from constant sizes, only pointers, /// newtypes thereof and null pointer optimized enums are allowed), it is @@ -2754,117 +934,6 @@ where } } -impl<'tcx> ty::Instance<'tcx> { - // NOTE(eddyb) this is private to avoid using it from outside of - // `fn_abi_of_instance` - any other uses are either too high-level - // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), - // or should go through `FnAbi` instead, to avoid losing any - // adjustments `fn_abi_of_instance` might be performing. - #[tracing::instrument(level = "debug", skip(tcx, param_env))] - fn fn_sig_for_fn_abi( - &self, - tcx: TyCtxt<'tcx>, - param_env: ty::ParamEnv<'tcx>, - ) -> ty::PolyFnSig<'tcx> { - let ty = self.ty(tcx, param_env); - match *ty.kind() { - ty::FnDef(..) => { - // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering - // parameters unused if they show up in the signature, but not in the `mir::Body` - // (i.e. due to being inside a projection that got normalized, see - // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping - // track of a polymorphization `ParamEnv` to allow normalizing later. - // - // We normalize the `fn_sig` again after substituting at a later point. - let mut sig = match *ty.kind() { - ty::FnDef(def_id, substs) => tcx - .bound_fn_sig(def_id) - .map_bound(|fn_sig| { - tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig) - }) - .subst(tcx, substs), - _ => unreachable!(), - }; - - if let ty::InstanceDef::VTableShim(..) = self.def { - // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. - sig = sig.map_bound(|mut sig| { - let mut inputs_and_output = sig.inputs_and_output.to_vec(); - inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); - sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); - sig - }); - } - sig - } - ty::Closure(def_id, substs) => { - let sig = substs.as_closure().sig(); - - let bound_vars = tcx.mk_bound_variable_kinds( - sig.bound_vars() - .iter() - .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), - ); - let br = ty::BoundRegion { - var: ty::BoundVar::from_usize(bound_vars.len() - 1), - kind: ty::BoundRegionKind::BrEnv, - }; - let env_region = ty::ReLateBound(ty::INNERMOST, br); - let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap(); - - let sig = sig.skip_binder(); - ty::Binder::bind_with_vars( - tcx.mk_fn_sig( - iter::once(env_ty).chain(sig.inputs().iter().cloned()), - sig.output(), - sig.c_variadic, - sig.unsafety, - sig.abi, - ), - bound_vars, - ) - } - ty::Generator(_, substs, _) => { - let sig = substs.as_generator().poly_sig(); - - let bound_vars = tcx.mk_bound_variable_kinds( - sig.bound_vars() - .iter() - .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), - ); - let br = ty::BoundRegion { - var: ty::BoundVar::from_usize(bound_vars.len() - 1), - kind: ty::BoundRegionKind::BrEnv, - }; - let env_region = ty::ReLateBound(ty::INNERMOST, br); - let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); - - let pin_did = tcx.require_lang_item(LangItem::Pin, None); - let pin_adt_ref = tcx.adt_def(pin_did); - let pin_substs = tcx.intern_substs(&[env_ty.into()]); - let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); - - let sig = sig.skip_binder(); - let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); - let state_adt_ref = tcx.adt_def(state_did); - let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); - let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); - ty::Binder::bind_with_vars( - tcx.mk_fn_sig( - [env_ty, sig.resume_ty].iter(), - &ret_ty, - false, - hir::Unsafety::Normal, - rustc_target::spec::abi::Abi::Rust, - ), - bound_vars, - ) - } - _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), - } - } -} - /// Calculates whether a function's ABI can unwind or not. /// /// This takes two primary parameters: @@ -3007,40 +1076,6 @@ pub fn fn_can_unwind<'tcx>(tcx: TyCtxt<'tcx>, fn_def_id: Option, abi: Spe } } -#[inline] -pub fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv { - use rustc_target::spec::abi::Abi::*; - match tcx.sess.target.adjust_abi(abi) { - RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, - RustCold => Conv::RustCold, - - // It's the ABI's job to select this, not ours. - System { .. } => bug!("system abi should be selected elsewhere"), - EfiApi => bug!("eficall abi should be selected elsewhere"), - - Stdcall { .. } => Conv::X86Stdcall, - Fastcall { .. } => Conv::X86Fastcall, - Vectorcall { .. } => Conv::X86VectorCall, - Thiscall { .. } => Conv::X86ThisCall, - C { .. } => Conv::C, - Unadjusted => Conv::C, - Win64 { .. } => Conv::X86_64Win64, - SysV64 { .. } => Conv::X86_64SysV, - Aapcs { .. } => Conv::ArmAapcs, - CCmseNonSecureCall => Conv::CCmseNonSecureCall, - PtxKernel => Conv::PtxKernel, - Msp430Interrupt => Conv::Msp430Intr, - X86Interrupt => Conv::X86Intr, - AmdGpuKernel => Conv::AmdGpuKernel, - AvrInterrupt => Conv::AvrInterrupt, - AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, - Wasm => Conv::C, - - // These API constants ought to be more specific... - Cdecl { .. } => Conv::C, - } -} - /// Error produced by attempting to compute or adjust a `FnAbi`. #[derive(Copy, Clone, Debug, HashStable)] pub enum FnAbiError<'tcx> { @@ -3159,367 +1194,3 @@ pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> { } impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {} - -fn fn_abi_of_fn_ptr<'tcx>( - tcx: TyCtxt<'tcx>, - query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List>)>, -) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { - let (param_env, (sig, extra_args)) = query.into_parts(); - - LayoutCx { tcx, param_env }.fn_abi_new_uncached(sig, extra_args, None, None, false) -} - -fn fn_abi_of_instance<'tcx>( - tcx: TyCtxt<'tcx>, - query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List>)>, -) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { - let (param_env, (instance, extra_args)) = query.into_parts(); - - let sig = instance.fn_sig_for_fn_abi(tcx, param_env); - - let caller_location = if instance.def.requires_caller_location(tcx) { - Some(tcx.caller_location_ty()) - } else { - None - }; - - LayoutCx { tcx, param_env }.fn_abi_new_uncached( - sig, - extra_args, - caller_location, - Some(instance.def_id()), - matches!(instance.def, ty::InstanceDef::Virtual(..)), - ) -} - -// Handle safe Rust thin and fat pointers. -pub fn adjust_for_rust_scalar<'tcx>( - cx: LayoutCx<'tcx, TyCtxt<'tcx>>, - attrs: &mut ArgAttributes, - scalar: Scalar, - layout: TyAndLayout<'tcx>, - offset: Size, - is_return: bool, -) { - // Booleans are always a noundef i1 that needs to be zero-extended. - if scalar.is_bool() { - attrs.ext(ArgExtension::Zext); - attrs.set(ArgAttribute::NoUndef); - return; - } - - // Scalars which have invalid values cannot be undef. - if !scalar.is_always_valid(&cx) { - attrs.set(ArgAttribute::NoUndef); - } - - // Only pointer types handled below. - let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return }; - - if !valid_range.contains(0) { - attrs.set(ArgAttribute::NonNull); - } - - if let Some(pointee) = layout.pointee_info_at(&cx, offset) { - if let Some(kind) = pointee.safe { - attrs.pointee_align = Some(pointee.align); - - // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable - // for the entire duration of the function as they can be deallocated - // at any time. Same for shared mutable references. If LLVM had a - // way to say "dereferenceable on entry" we could use it here. - attrs.pointee_size = match kind { - PointerKind::UniqueBorrowed - | PointerKind::UniqueBorrowedPinned - | PointerKind::Frozen => pointee.size, - PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO, - }; - - // `Box`, `&T`, and `&mut T` cannot be undef. - // Note that this only applies to the value of the pointer itself; - // this attribute doesn't make it UB for the pointed-to data to be undef. - attrs.set(ArgAttribute::NoUndef); - - // The aliasing rules for `Box` are still not decided, but currently we emit - // `noalias` for it. This can be turned off using an unstable flag. - // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326 - let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true); - - // `&mut` pointer parameters never alias other parameters, - // or mutable global data - // - // `&T` where `T` contains no `UnsafeCell` is immutable, - // and can be marked as both `readonly` and `noalias`, as - // LLVM's definition of `noalias` is based solely on memory - // dependencies rather than pointer equality - // - // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute - // for UniqueBorrowed arguments, so that the codegen backend can decide whether - // or not to actually emit the attribute. It can also be controlled with the - // `-Zmutable-noalias` debugging option. - let no_alias = match kind { - PointerKind::SharedMutable - | PointerKind::UniqueBorrowed - | PointerKind::UniqueBorrowedPinned => false, - PointerKind::UniqueOwned => noalias_for_box, - PointerKind::Frozen => !is_return, - }; - if no_alias { - attrs.set(ArgAttribute::NoAlias); - } - - if kind == PointerKind::Frozen && !is_return { - attrs.set(ArgAttribute::ReadOnly); - } - - if kind == PointerKind::UniqueBorrowed && !is_return { - attrs.set(ArgAttribute::NoAliasMutRef); - } - } - } -} - -impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { - // FIXME(eddyb) perhaps group the signature/type-containing (or all of them?) - // arguments of this method, into a separate `struct`. - #[tracing::instrument( - level = "debug", - skip(self, caller_location, fn_def_id, force_thin_self_ptr) - )] - fn fn_abi_new_uncached( - &self, - sig: ty::PolyFnSig<'tcx>, - extra_args: &[Ty<'tcx>], - caller_location: Option>, - fn_def_id: Option, - // FIXME(eddyb) replace this with something typed, like an `enum`. - force_thin_self_ptr: bool, - ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { - let sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, sig); - - let conv = conv_from_spec_abi(self.tcx(), sig.abi); - - let mut inputs = sig.inputs(); - let extra_args = if sig.abi == RustCall { - assert!(!sig.c_variadic && extra_args.is_empty()); - - if let Some(input) = sig.inputs().last() { - if let ty::Tuple(tupled_arguments) = input.kind() { - inputs = &sig.inputs()[0..sig.inputs().len() - 1]; - tupled_arguments - } else { - bug!( - "argument to function with \"rust-call\" ABI \ - is not a tuple" - ); - } - } else { - bug!( - "argument to function with \"rust-call\" ABI \ - is not a tuple" - ); - } - } else { - assert!(sig.c_variadic || extra_args.is_empty()); - extra_args - }; - - let target = &self.tcx.sess.target; - let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc"); - let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu"; - let linux_s390x_gnu_like = - target.os == "linux" && target.arch == "s390x" && target_env_gnu_like; - let linux_sparc64_gnu_like = - target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like; - let linux_powerpc_gnu_like = - target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like; - use SpecAbi::*; - let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall); - - let arg_of = |ty: Ty<'tcx>, arg_idx: Option| -> Result<_, FnAbiError<'tcx>> { - let span = tracing::debug_span!("arg_of"); - let _entered = span.enter(); - let is_return = arg_idx.is_none(); - - let layout = self.layout_of(ty)?; - let layout = if force_thin_self_ptr && arg_idx == Some(0) { - // Don't pass the vtable, it's not an argument of the virtual fn. - // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` - // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen - make_thin_self_ptr(self, layout) - } else { - layout - }; - - let mut arg = ArgAbi::new(self, layout, |layout, scalar, offset| { - let mut attrs = ArgAttributes::new(); - adjust_for_rust_scalar(*self, &mut attrs, scalar, *layout, offset, is_return); - attrs - }); - - if arg.layout.is_zst() { - // For some forsaken reason, x86_64-pc-windows-gnu - // doesn't ignore zero-sized struct arguments. - // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}. - if is_return - || rust_abi - || (!win_x64_gnu - && !linux_s390x_gnu_like - && !linux_sparc64_gnu_like - && !linux_powerpc_gnu_like) - { - arg.mode = PassMode::Ignore; - } - } - - Ok(arg) - }; - - let mut fn_abi = FnAbi { - ret: arg_of(sig.output(), None)?, - args: inputs - .iter() - .copied() - .chain(extra_args.iter().copied()) - .chain(caller_location) - .enumerate() - .map(|(i, ty)| arg_of(ty, Some(i))) - .collect::>()?, - c_variadic: sig.c_variadic, - fixed_count: inputs.len() as u32, - conv, - can_unwind: fn_can_unwind(self.tcx(), fn_def_id, sig.abi), - }; - self.fn_abi_adjust_for_abi(&mut fn_abi, sig.abi)?; - debug!("fn_abi_new_uncached = {:?}", fn_abi); - Ok(self.tcx.arena.alloc(fn_abi)) - } - - #[tracing::instrument(level = "trace", skip(self))] - fn fn_abi_adjust_for_abi( - &self, - fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>, - abi: SpecAbi, - ) -> Result<(), FnAbiError<'tcx>> { - if abi == SpecAbi::Unadjusted { - return Ok(()); - } - - if abi == SpecAbi::Rust - || abi == SpecAbi::RustCall - || abi == SpecAbi::RustIntrinsic - || abi == SpecAbi::PlatformIntrinsic - { - let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| { - if arg.is_ignore() { - return; - } - - match arg.layout.abi { - Abi::Aggregate { .. } => {} - - // This is a fun case! The gist of what this is doing is - // that we want callers and callees to always agree on the - // ABI of how they pass SIMD arguments. If we were to *not* - // make these arguments indirect then they'd be immediates - // in LLVM, which means that they'd used whatever the - // appropriate ABI is for the callee and the caller. That - // means, for example, if the caller doesn't have AVX - // enabled but the callee does, then passing an AVX argument - // across this boundary would cause corrupt data to show up. - // - // This problem is fixed by unconditionally passing SIMD - // arguments through memory between callers and callees - // which should get them all to agree on ABI regardless of - // target feature sets. Some more information about this - // issue can be found in #44367. - // - // Note that the platform intrinsic ABI is exempt here as - // that's how we connect up to LLVM and it's unstable - // anyway, we control all calls to it in libstd. - Abi::Vector { .. } - if abi != SpecAbi::PlatformIntrinsic - && self.tcx.sess.target.simd_types_indirect => - { - arg.make_indirect(); - return; - } - - _ => return, - } - - let size = arg.layout.size; - if arg.layout.is_unsized() || size > Pointer.size(self) { - arg.make_indirect(); - } else { - // We want to pass small aggregates as immediates, but using - // a LLVM aggregate type for this leads to bad optimizations, - // so we pick an appropriately sized integer type instead. - arg.cast_to(Reg { kind: RegKind::Integer, size }); - } - }; - fixup(&mut fn_abi.ret); - for arg in fn_abi.args.iter_mut() { - fixup(arg); - } - } else { - fn_abi.adjust_for_foreign_abi(self, abi)?; - } - - Ok(()) - } -} - -#[tracing::instrument(level = "debug", skip(cx))] -fn make_thin_self_ptr<'tcx>( - cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>), - layout: TyAndLayout<'tcx>, -) -> TyAndLayout<'tcx> { - let tcx = cx.tcx(); - let fat_pointer_ty = if layout.is_unsized() { - // unsized `self` is passed as a pointer to `self` - // FIXME (mikeyhew) change this to use &own if it is ever added to the language - tcx.mk_mut_ptr(layout.ty) - } else { - match layout.abi { - Abi::ScalarPair(..) | Abi::Scalar(..) => (), - _ => bug!("receiver type has unsupported layout: {:?}", layout), - } - - // In the case of Rc, we need to explicitly pass a *mut RcBox - // with a Scalar (not ScalarPair) ABI. This is a hack that is understood - // elsewhere in the compiler as a method on a `dyn Trait`. - // To get the type `*mut RcBox`, we just keep unwrapping newtypes until we - // get a built-in pointer type - let mut fat_pointer_layout = layout; - 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() - && !fat_pointer_layout.ty.is_region_ptr() - { - for i in 0..fat_pointer_layout.fields.count() { - let field_layout = fat_pointer_layout.field(cx, i); - - if !field_layout.is_zst() { - fat_pointer_layout = field_layout; - continue 'descend_newtypes; - } - } - - bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); - } - - fat_pointer_layout.ty - }; - - // we now have a type like `*mut RcBox` - // change its layout to that of `*mut ()`, a thin pointer, but keep the same type - // this is understood as a special case elsewhere in the compiler - let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit()); - - TyAndLayout { - ty: fat_pointer_ty, - - // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result` - // should always work because the type is always `*mut ()`. - ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap() - } -} diff --git a/compiler/rustc_middle/src/ty/mod.rs b/compiler/rustc_middle/src/ty/mod.rs index 63dd213a0854f..753d7bffe84c2 100644 --- a/compiler/rustc_middle/src/ty/mod.rs +++ b/compiler/rustc_middle/src/ty/mod.rs @@ -130,7 +130,6 @@ mod erase_regions; mod generics; mod impls_ty; mod instance; -mod layout_sanity_check; mod list; mod parameterized; mod rvalue_scopes; @@ -2593,7 +2592,6 @@ pub fn provide(providers: &mut ty::query::Providers) { closure::provide(providers); context::provide(providers); erase_regions::provide(providers); - layout::provide(providers); util::provide(providers); print::provide(providers); super::util::bug::provide(providers); diff --git a/compiler/rustc_ty_utils/Cargo.toml b/compiler/rustc_ty_utils/Cargo.toml index 52fbd3ae04773..5e4ba47306192 100644 --- a/compiler/rustc_ty_utils/Cargo.toml +++ b/compiler/rustc_ty_utils/Cargo.toml @@ -4,6 +4,8 @@ version = "0.0.0" edition = "2021" [dependencies] +rand = "0.8.4" +rand_xoshiro = "0.6.0" tracing = "0.1" rustc_middle = { path = "../rustc_middle" } rustc_data_structures = { path = "../rustc_data_structures" } diff --git a/compiler/rustc_ty_utils/src/abi.rs b/compiler/rustc_ty_utils/src/abi.rs new file mode 100644 index 0000000000000..6e34ee21082ea --- /dev/null +++ b/compiler/rustc_ty_utils/src/abi.rs @@ -0,0 +1,518 @@ +use rustc_hir as hir; +use rustc_hir::lang_items::LangItem; +use rustc_middle::ty::layout::{ + fn_can_unwind, FnAbiError, HasParamEnv, HasTyCtxt, LayoutCx, LayoutOf, TyAndLayout, +}; +use rustc_middle::ty::{self, Ty, TyCtxt}; +use rustc_span::def_id::DefId; +use rustc_target::abi::call::{ + ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, +}; +use rustc_target::abi::*; +use rustc_target::spec::abi::Abi as SpecAbi; + +use std::iter; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers }; +} + +// NOTE(eddyb) this is private to avoid using it from outside of +// `fn_abi_of_instance` - any other uses are either too high-level +// for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), +// or should go through `FnAbi` instead, to avoid losing any +// adjustments `fn_abi_of_instance` might be performing. +#[tracing::instrument(level = "debug", skip(tcx, param_env))] +fn fn_sig_for_fn_abi<'tcx>( + tcx: TyCtxt<'tcx>, + instance: ty::Instance<'tcx>, + param_env: ty::ParamEnv<'tcx>, +) -> ty::PolyFnSig<'tcx> { + let ty = instance.ty(tcx, param_env); + match *ty.kind() { + ty::FnDef(..) => { + // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering + // parameters unused if they show up in the signature, but not in the `mir::Body` + // (i.e. due to being inside a projection that got normalized, see + // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping + // track of a polymorphization `ParamEnv` to allow normalizing later. + // + // We normalize the `fn_sig` again after substituting at a later point. + let mut sig = match *ty.kind() { + ty::FnDef(def_id, substs) => tcx + .bound_fn_sig(def_id) + .map_bound(|fn_sig| { + tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig) + }) + .subst(tcx, substs), + _ => unreachable!(), + }; + + if let ty::InstanceDef::VTableShim(..) = instance.def { + // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. + sig = sig.map_bound(|mut sig| { + let mut inputs_and_output = sig.inputs_and_output.to_vec(); + inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); + sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); + sig + }); + } + sig + } + ty::Closure(def_id, substs) => { + let sig = substs.as_closure().sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap(); + + let sig = sig.skip_binder(); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + iter::once(env_ty).chain(sig.inputs().iter().cloned()), + sig.output(), + sig.c_variadic, + sig.unsafety, + sig.abi, + ), + bound_vars, + ) + } + ty::Generator(_, substs, _) => { + let sig = substs.as_generator().poly_sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); + + let pin_did = tcx.require_lang_item(LangItem::Pin, None); + let pin_adt_ref = tcx.adt_def(pin_did); + let pin_substs = tcx.intern_substs(&[env_ty.into()]); + let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); + + let sig = sig.skip_binder(); + let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); + let state_adt_ref = tcx.adt_def(state_did); + let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); + let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + [env_ty, sig.resume_ty].iter(), + &ret_ty, + false, + hir::Unsafety::Normal, + rustc_target::spec::abi::Abi::Rust, + ), + bound_vars, + ) + } + _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), + } +} + +#[inline] +fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv { + use rustc_target::spec::abi::Abi::*; + match tcx.sess.target.adjust_abi(abi) { + RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, + RustCold => Conv::RustCold, + + // It's the ABI's job to select this, not ours. + System { .. } => bug!("system abi should be selected elsewhere"), + EfiApi => bug!("eficall abi should be selected elsewhere"), + + Stdcall { .. } => Conv::X86Stdcall, + Fastcall { .. } => Conv::X86Fastcall, + Vectorcall { .. } => Conv::X86VectorCall, + Thiscall { .. } => Conv::X86ThisCall, + C { .. } => Conv::C, + Unadjusted => Conv::C, + Win64 { .. } => Conv::X86_64Win64, + SysV64 { .. } => Conv::X86_64SysV, + Aapcs { .. } => Conv::ArmAapcs, + CCmseNonSecureCall => Conv::CCmseNonSecureCall, + PtxKernel => Conv::PtxKernel, + Msp430Interrupt => Conv::Msp430Intr, + X86Interrupt => Conv::X86Intr, + AmdGpuKernel => Conv::AmdGpuKernel, + AvrInterrupt => Conv::AvrInterrupt, + AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, + Wasm => Conv::C, + + // These API constants ought to be more specific... + Cdecl { .. } => Conv::C, + } +} + +fn fn_abi_of_fn_ptr<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (sig, extra_args)) = query.into_parts(); + + let cx = LayoutCx { tcx, param_env }; + fn_abi_new_uncached(&cx, sig, extra_args, None, None, false) +} + +fn fn_abi_of_instance<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (instance, extra_args)) = query.into_parts(); + + let sig = fn_sig_for_fn_abi(tcx, instance, param_env); + + let caller_location = if instance.def.requires_caller_location(tcx) { + Some(tcx.caller_location_ty()) + } else { + None + }; + + fn_abi_new_uncached( + &LayoutCx { tcx, param_env }, + sig, + extra_args, + caller_location, + Some(instance.def_id()), + matches!(instance.def, ty::InstanceDef::Virtual(..)), + ) +} + +// Handle safe Rust thin and fat pointers. +fn adjust_for_rust_scalar<'tcx>( + cx: LayoutCx<'tcx, TyCtxt<'tcx>>, + attrs: &mut ArgAttributes, + scalar: Scalar, + layout: TyAndLayout<'tcx>, + offset: Size, + is_return: bool, +) { + // Booleans are always a noundef i1 that needs to be zero-extended. + if scalar.is_bool() { + attrs.ext(ArgExtension::Zext); + attrs.set(ArgAttribute::NoUndef); + return; + } + + // Scalars which have invalid values cannot be undef. + if !scalar.is_always_valid(&cx) { + attrs.set(ArgAttribute::NoUndef); + } + + // Only pointer types handled below. + let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return }; + + if !valid_range.contains(0) { + attrs.set(ArgAttribute::NonNull); + } + + if let Some(pointee) = layout.pointee_info_at(&cx, offset) { + if let Some(kind) = pointee.safe { + attrs.pointee_align = Some(pointee.align); + + // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable + // for the entire duration of the function as they can be deallocated + // at any time. Same for shared mutable references. If LLVM had a + // way to say "dereferenceable on entry" we could use it here. + attrs.pointee_size = match kind { + PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned + | PointerKind::Frozen => pointee.size, + PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO, + }; + + // `Box`, `&T`, and `&mut T` cannot be undef. + // Note that this only applies to the value of the pointer itself; + // this attribute doesn't make it UB for the pointed-to data to be undef. + attrs.set(ArgAttribute::NoUndef); + + // The aliasing rules for `Box` are still not decided, but currently we emit + // `noalias` for it. This can be turned off using an unstable flag. + // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326 + let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true); + + // `&mut` pointer parameters never alias other parameters, + // or mutable global data + // + // `&T` where `T` contains no `UnsafeCell` is immutable, + // and can be marked as both `readonly` and `noalias`, as + // LLVM's definition of `noalias` is based solely on memory + // dependencies rather than pointer equality + // + // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute + // for UniqueBorrowed arguments, so that the codegen backend can decide whether + // or not to actually emit the attribute. It can also be controlled with the + // `-Zmutable-noalias` debugging option. + let no_alias = match kind { + PointerKind::SharedMutable + | PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned => false, + PointerKind::UniqueOwned => noalias_for_box, + PointerKind::Frozen => !is_return, + }; + if no_alias { + attrs.set(ArgAttribute::NoAlias); + } + + if kind == PointerKind::Frozen && !is_return { + attrs.set(ArgAttribute::ReadOnly); + } + + if kind == PointerKind::UniqueBorrowed && !is_return { + attrs.set(ArgAttribute::NoAliasMutRef); + } + } + } +} + +// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?) +// arguments of this method, into a separate `struct`. +#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))] +fn fn_abi_new_uncached<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + sig: ty::PolyFnSig<'tcx>, + extra_args: &[Ty<'tcx>], + caller_location: Option>, + fn_def_id: Option, + // FIXME(eddyb) replace this with something typed, like an `enum`. + force_thin_self_ptr: bool, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let sig = cx.tcx.normalize_erasing_late_bound_regions(cx.param_env, sig); + + let conv = conv_from_spec_abi(cx.tcx(), sig.abi); + + let mut inputs = sig.inputs(); + let extra_args = if sig.abi == RustCall { + assert!(!sig.c_variadic && extra_args.is_empty()); + + if let Some(input) = sig.inputs().last() { + if let ty::Tuple(tupled_arguments) = input.kind() { + inputs = &sig.inputs()[0..sig.inputs().len() - 1]; + tupled_arguments + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + assert!(sig.c_variadic || extra_args.is_empty()); + extra_args + }; + + let target = &cx.tcx.sess.target; + let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc"); + let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu"; + let linux_s390x_gnu_like = + target.os == "linux" && target.arch == "s390x" && target_env_gnu_like; + let linux_sparc64_gnu_like = + target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like; + let linux_powerpc_gnu_like = + target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like; + use SpecAbi::*; + let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall); + + let arg_of = |ty: Ty<'tcx>, arg_idx: Option| -> Result<_, FnAbiError<'tcx>> { + let span = tracing::debug_span!("arg_of"); + let _entered = span.enter(); + let is_return = arg_idx.is_none(); + + let layout = cx.layout_of(ty)?; + let layout = if force_thin_self_ptr && arg_idx == Some(0) { + // Don't pass the vtable, it's not an argument of the virtual fn. + // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` + // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen + make_thin_self_ptr(cx, layout) + } else { + layout + }; + + let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| { + let mut attrs = ArgAttributes::new(); + adjust_for_rust_scalar(*cx, &mut attrs, scalar, *layout, offset, is_return); + attrs + }); + + if arg.layout.is_zst() { + // For some forsaken reason, x86_64-pc-windows-gnu + // doesn't ignore zero-sized struct arguments. + // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}. + if is_return + || rust_abi + || (!win_x64_gnu + && !linux_s390x_gnu_like + && !linux_sparc64_gnu_like + && !linux_powerpc_gnu_like) + { + arg.mode = PassMode::Ignore; + } + } + + Ok(arg) + }; + + let mut fn_abi = FnAbi { + ret: arg_of(sig.output(), None)?, + args: inputs + .iter() + .copied() + .chain(extra_args.iter().copied()) + .chain(caller_location) + .enumerate() + .map(|(i, ty)| arg_of(ty, Some(i))) + .collect::>()?, + c_variadic: sig.c_variadic, + fixed_count: inputs.len() as u32, + conv, + can_unwind: fn_can_unwind(cx.tcx(), fn_def_id, sig.abi), + }; + fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi)?; + debug!("fn_abi_new_uncached = {:?}", fn_abi); + Ok(cx.tcx.arena.alloc(fn_abi)) +} + +#[tracing::instrument(level = "trace", skip(cx))] +fn fn_abi_adjust_for_abi<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>, + abi: SpecAbi, +) -> Result<(), FnAbiError<'tcx>> { + if abi == SpecAbi::Unadjusted { + return Ok(()); + } + + if abi == SpecAbi::Rust + || abi == SpecAbi::RustCall + || abi == SpecAbi::RustIntrinsic + || abi == SpecAbi::PlatformIntrinsic + { + let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| { + if arg.is_ignore() { + return; + } + + match arg.layout.abi { + Abi::Aggregate { .. } => {} + + // This is a fun case! The gist of what this is doing is + // that we want callers and callees to always agree on the + // ABI of how they pass SIMD arguments. If we were to *not* + // make these arguments indirect then they'd be immediates + // in LLVM, which means that they'd used whatever the + // appropriate ABI is for the callee and the caller. That + // means, for example, if the caller doesn't have AVX + // enabled but the callee does, then passing an AVX argument + // across this boundary would cause corrupt data to show up. + // + // This problem is fixed by unconditionally passing SIMD + // arguments through memory between callers and callees + // which should get them all to agree on ABI regardless of + // target feature sets. Some more information about this + // issue can be found in #44367. + // + // Note that the platform intrinsic ABI is exempt here as + // that's how we connect up to LLVM and it's unstable + // anyway, we control all calls to it in libstd. + Abi::Vector { .. } + if abi != SpecAbi::PlatformIntrinsic + && cx.tcx.sess.target.simd_types_indirect => + { + arg.make_indirect(); + return; + } + + _ => return, + } + + let size = arg.layout.size; + if arg.layout.is_unsized() || size > Pointer.size(cx) { + arg.make_indirect(); + } else { + // We want to pass small aggregates as immediates, but using + // a LLVM aggregate type for this leads to bad optimizations, + // so we pick an appropriately sized integer type instead. + arg.cast_to(Reg { kind: RegKind::Integer, size }); + } + }; + fixup(&mut fn_abi.ret); + for arg in fn_abi.args.iter_mut() { + fixup(arg); + } + } else { + fn_abi.adjust_for_foreign_abi(cx, abi)?; + } + + Ok(()) +} + +#[tracing::instrument(level = "debug", skip(cx))] +fn make_thin_self_ptr<'tcx>( + cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>), + layout: TyAndLayout<'tcx>, +) -> TyAndLayout<'tcx> { + let tcx = cx.tcx(); + let fat_pointer_ty = if layout.is_unsized() { + // unsized `self` is passed as a pointer to `self` + // FIXME (mikeyhew) change this to use &own if it is ever added to the language + tcx.mk_mut_ptr(layout.ty) + } else { + match layout.abi { + Abi::ScalarPair(..) | Abi::Scalar(..) => (), + _ => bug!("receiver type has unsupported layout: {:?}", layout), + } + + // In the case of Rc, we need to explicitly pass a *mut RcBox + // with a Scalar (not ScalarPair) ABI. This is a hack that is understood + // elsewhere in the compiler as a method on a `dyn Trait`. + // To get the type `*mut RcBox`, we just keep unwrapping newtypes until we + // get a built-in pointer type + let mut fat_pointer_layout = layout; + 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() + && !fat_pointer_layout.ty.is_region_ptr() + { + for i in 0..fat_pointer_layout.fields.count() { + let field_layout = fat_pointer_layout.field(cx, i); + + if !field_layout.is_zst() { + fat_pointer_layout = field_layout; + continue 'descend_newtypes; + } + } + + bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); + } + + fat_pointer_layout.ty + }; + + // we now have a type like `*mut RcBox` + // change its layout to that of `*mut ()`, a thin pointer, but keep the same type + // this is understood as a special case elsewhere in the compiler + let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit()); + + TyAndLayout { + ty: fat_pointer_ty, + + // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result` + // should always work because the type is always `*mut ()`. + ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap() + } +} diff --git a/compiler/rustc_ty_utils/src/layout.rs b/compiler/rustc_ty_utils/src/layout.rs new file mode 100644 index 0000000000000..9e4dc26bfd4d2 --- /dev/null +++ b/compiler/rustc_ty_utils/src/layout.rs @@ -0,0 +1,1804 @@ +use rustc_hir as hir; +use rustc_index::bit_set::BitSet; +use rustc_index::vec::{Idx, IndexVec}; +use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal}; +use rustc_middle::ty::layout::{ + IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES, +}; +use rustc_middle::ty::{ + self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable, +}; +use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo}; +use rustc_span::symbol::Symbol; +use rustc_span::DUMMY_SP; +use rustc_target::abi::*; + +use std::cmp::{self, Ordering}; +use std::iter; +use std::num::NonZeroUsize; +use std::ops::Bound; + +use rand::{seq::SliceRandom, SeedableRng}; +use rand_xoshiro::Xoshiro128StarStar; + +use crate::layout_sanity_check::sanity_check_layout; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { layout_of, ..*providers }; +} + +#[instrument(skip(tcx, query), level = "debug")] +fn layout_of<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, +) -> Result, LayoutError<'tcx>> { + let (param_env, ty) = query.into_parts(); + debug!(?ty); + + let param_env = param_env.with_reveal_all_normalized(tcx); + let unnormalized_ty = ty; + + // FIXME: We might want to have two different versions of `layout_of`: + // One that can be called after typecheck has completed and can use + // `normalize_erasing_regions` here and another one that can be called + // before typecheck has completed and uses `try_normalize_erasing_regions`. + let ty = match tcx.try_normalize_erasing_regions(param_env, ty) { + Ok(t) => t, + Err(normalization_error) => { + return Err(LayoutError::NormalizationFailure(ty, normalization_error)); + } + }; + + if ty != unnormalized_ty { + // Ensure this layout is also cached for the normalized type. + return tcx.layout_of(param_env.and(ty)); + } + + let cx = LayoutCx { tcx, param_env }; + + let layout = layout_of_uncached(&cx, ty)?; + let layout = TyAndLayout { ty, layout }; + + record_layout_for_printing(&cx, layout); + + sanity_check_layout(&cx, &layout); + + Ok(layout) +} + +#[derive(Copy, Clone, Debug)] +enum StructKind { + /// A tuple, closure, or univariant which cannot be coerced to unsized. + AlwaysSized, + /// A univariant, the last field of which may be coerced to unsized. + MaybeUnsized, + /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). + Prefixed(Size, Align), +} + +// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. +// This is used to go between `memory_index` (source field order to memory order) +// and `inverse_memory_index` (memory order to source field order). +// See also `FieldsShape::Arbitrary::memory_index` for more details. +// FIXME(eddyb) build a better abstraction for permutations, if possible. +fn invert_mapping(map: &[u32]) -> Vec { + let mut inverse = vec![0; map.len()]; + for i in 0..map.len() { + inverse[map[i] as usize] = i as u32; + } + inverse +} + +fn scalar_pair<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, a: Scalar, b: Scalar) -> LayoutS<'tcx> { + let dl = cx.data_layout(); + let b_align = b.align(dl); + let align = a.align(dl).max(b_align).max(dl.aggregate_align); + let b_offset = a.size(dl).align_to(b_align.abi); + let size = (b_offset + b.size(dl)).align_to(align.abi); + + // HACK(nox): We iter on `b` and then `a` because `max_by_key` + // returns the last maximum. + let largest_niche = Niche::from_scalar(dl, b_offset, b) + .into_iter() + .chain(Niche::from_scalar(dl, Size::ZERO, a)) + .max_by_key(|niche| niche.available(dl)); + + LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO, b_offset], + memory_index: vec![0, 1], + }, + abi: Abi::ScalarPair(a, b), + largest_niche, + align, + size, + } +} + +fn univariant_uninterned<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, + fields: &[TyAndLayout<'_>], + repr: &ReprOptions, + kind: StructKind, +) -> Result, LayoutError<'tcx>> { + let dl = cx.data_layout(); + let pack = repr.pack; + if pack.is_some() && repr.align.is_some() { + cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned"); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); + + let optimize = !repr.inhibit_struct_field_reordering_opt(); + if optimize { + let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; + let optimizing = &mut inverse_memory_index[..end]; + let field_align = |f: &TyAndLayout<'_>| { + if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } + }; + + // If `-Z randomize-layout` was enabled for the type definition we can shuffle + // the field ordering to try and catch some code making assumptions about layouts + // we don't guarantee + if repr.can_randomize_type_layout() { + // `ReprOptions.layout_seed` is a deterministic seed that we can use to + // randomize field ordering with + let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed); + + // Shuffle the ordering of the fields + optimizing.shuffle(&mut rng); + + // Otherwise we just leave things alone and actually optimize the type's fields + } else { + match kind { + StructKind::AlwaysSized | StructKind::MaybeUnsized => { + optimizing.sort_by_key(|&x| { + // Place ZSTs first to avoid "interesting offsets", + // especially with only one or two non-ZST fields. + let f = &fields[x as usize]; + (!f.is_zst(), cmp::Reverse(field_align(f))) + }); + } + + StructKind::Prefixed(..) => { + // Sort in ascending alignment so that the layout stays optimal + // regardless of the prefix + optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); + } + } + + // FIXME(Kixiron): We can always shuffle fields within a given alignment class + // regardless of the status of `-Z randomize-layout` + } + } + + // inverse_memory_index holds field indices by increasing memory offset. + // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. + // We now write field offsets to the corresponding offset slot; + // field 5 with offset 0 puts 0 in offsets[5]. + // At the bottom of this function, we invert `inverse_memory_index` to + // produce `memory_index` (see `invert_mapping`). + + let mut sized = true; + let mut offsets = vec![Size::ZERO; fields.len()]; + let mut offset = Size::ZERO; + let mut largest_niche = None; + let mut largest_niche_available = 0; + + if let StructKind::Prefixed(prefix_size, prefix_align) = kind { + let prefix_align = + if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; + align = align.max(AbiAndPrefAlign::new(prefix_align)); + offset = prefix_size.align_to(prefix_align); + } + + for &i in &inverse_memory_index { + let field = fields[i as usize]; + if !sized { + cx.tcx.sess.delay_span_bug( + DUMMY_SP, + &format!( + "univariant: field #{} of `{}` comes after unsized field", + offsets.len(), + ty + ), + ); + } + + if field.is_unsized() { + sized = false; + } + + // Invariant: offset < dl.obj_size_bound() <= 1<<61 + let field_align = if let Some(pack) = pack { + field.align.min(AbiAndPrefAlign::new(pack)) + } else { + field.align + }; + offset = offset.align_to(field_align.abi); + align = align.max(field_align); + + debug!("univariant offset: {:?} field: {:#?}", offset, field); + offsets[i as usize] = offset; + + if let Some(mut niche) = field.largest_niche { + let available = niche.available(dl); + if available > largest_niche_available { + largest_niche_available = available; + niche.offset += offset; + largest_niche = Some(niche); + } + } + + offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; + } + + if let Some(repr_align) = repr.align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + debug!("univariant min_size: {:?}", offset); + let min_size = offset; + + // As stated above, inverse_memory_index holds field indices by increasing offset. + // This makes it an already-sorted view of the offsets vec. + // To invert it, consider: + // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. + // Field 5 would be the first element, so memory_index is i: + // Note: if we didn't optimize, it's already right. + + let memory_index = + if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; + + let size = min_size.align_to(align.abi); + let mut abi = Abi::Aggregate { sized }; + + // Unpack newtype ABIs and find scalar pairs. + if sized && size.bytes() > 0 { + // All other fields must be ZSTs. + let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); + + match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { + // We have exactly one non-ZST field. + (Some((i, field)), None, None) => { + // Field fills the struct and it has a scalar or scalar pair ABI. + if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size { + match field.abi { + // For plain scalars, or vectors of them, we can't unpack + // newtypes for `#[repr(C)]`, as that affects C ABIs. + Abi::Scalar(_) | Abi::Vector { .. } if optimize => { + abi = field.abi; + } + // But scalar pairs are Rust-specific and get + // treated as aggregates by C ABIs anyway. + Abi::ScalarPair(..) => { + abi = field.abi; + } + _ => {} + } + } + } + + // Two non-ZST fields, and they're both scalars. + (Some((i, a)), Some((j, b)), None) => { + match (a.abi, b.abi) { + (Abi::Scalar(a), Abi::Scalar(b)) => { + // Order by the memory placement, not source order. + let ((i, a), (j, b)) = if offsets[i] < offsets[j] { + ((i, a), (j, b)) + } else { + ((j, b), (i, a)) + }; + let pair = scalar_pair(cx, a, b); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if offsets[i] == pair_offsets[0] + && offsets[j] == pair_offsets[1] + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + _ => {} + } + } + + _ => {} + } + } + + if fields.iter().any(|f| f.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } + + Ok(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { offsets, memory_index }, + abi, + largest_niche, + align, + size, + }) +} + +fn layout_of_uncached<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, +) -> Result, LayoutError<'tcx>> { + let tcx = cx.tcx; + let param_env = cx.param_env; + let dl = cx.data_layout(); + let scalar_unit = |value: Primitive| { + let size = value.size(dl); + assert!(size.bits() <= 128); + Scalar::Initialized { value, valid_range: WrappingRange::full(size) } + }; + let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value))); + + let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { + Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?)) + }; + debug_assert!(!ty.has_infer_types_or_consts()); + + Ok(match *ty.kind() { + // Basic scalars. + ty::Bool => tcx.intern_layout(LayoutS::scalar( + cx, + Scalar::Initialized { + value: Int(I8, false), + valid_range: WrappingRange { start: 0, end: 1 }, + }, + )), + ty::Char => tcx.intern_layout(LayoutS::scalar( + cx, + Scalar::Initialized { + value: Int(I32, false), + valid_range: WrappingRange { start: 0, end: 0x10FFFF }, + }, + )), + ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), + ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), + ty::Float(fty) => scalar(match fty { + ty::FloatTy::F32 => F32, + ty::FloatTy::F64 => F64, + }), + ty::FnPtr(_) => { + let mut ptr = scalar_unit(Pointer); + ptr.valid_range_mut().start = 1; + tcx.intern_layout(LayoutS::scalar(cx, ptr)) + } + + // The never type. + ty::Never => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Primitive, + abi: Abi::Uninhabited, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Potentially-wide pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let mut data_ptr = scalar_unit(Pointer); + if !ty.is_unsafe_ptr() { + data_ptr.valid_range_mut().start = 1; + } + + let pointee = tcx.normalize_erasing_regions(param_env, pointee); + if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { + return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); + } + + let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + let metadata = match unsized_part.kind() { + ty::Foreign(..) => { + return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); + } + ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), + ty::Dynamic(..) => { + let mut vtable = scalar_unit(Pointer); + vtable.valid_range_mut().start = 1; + vtable + } + _ => return Err(LayoutError::Unknown(unsized_part)), + }; + + // Effectively a (ptr, meta) tuple. + tcx.intern_layout(scalar_pair(cx, data_ptr, metadata)) + } + + ty::Dynamic(_, _, ty::DynStar) => { + let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false)); + data.valid_range_mut().start = 0; + let mut vtable = scalar_unit(Pointer); + vtable.valid_range_mut().start = 1; + tcx.intern_layout(scalar_pair(cx, data, vtable)) + } + + // Arrays and slices. + ty::Array(element, mut count) => { + if count.has_projections() { + count = tcx.normalize_erasing_regions(param_env, count); + if count.has_projections() { + return Err(LayoutError::Unknown(ty)); + } + } + + let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; + let element = cx.layout_of(element)?; + let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; + + let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) + { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let largest_niche = if count != 0 { element.largest_niche } else { None }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count }, + abi, + largest_niche, + align: element.align, + size, + }) + } + ty::Slice(element) => { + let element = cx.layout_of(element)?; + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: element.align, + size: Size::ZERO, + }) + } + ty::Str => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Odd unit types. + ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, + ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => { + let mut unit = univariant_uninterned( + cx, + ty, + &[], + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + match unit.abi { + Abi::Aggregate { ref mut sized } => *sized = false, + _ => bug!(), + } + tcx.intern_layout(unit) + } + + ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?, + + ty::Closure(_, ref substs) => { + let tys = substs.as_closure().upvar_tys(); + univariant( + &tys.map(|ty| cx.layout_of(ty)).collect::, _>>()?, + &ReprOptions::default(), + StructKind::AlwaysSized, + )? + } + + ty::Tuple(tys) => { + let kind = + if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; + + univariant( + &tys.iter().map(|k| cx.layout_of(k)).collect::, _>>()?, + &ReprOptions::default(), + kind, + )? + } + + // SIMD vector types. + ty::Adt(def, substs) if def.repr().simd() => { + if !def.is_struct() { + // Should have yielded E0517 by now. + tcx.sess.delay_span_bug( + DUMMY_SP, + "#[repr(simd)] was applied to an ADT that is not a struct", + ); + return Err(LayoutError::Unknown(ty)); + } + + // Supported SIMD vectors are homogeneous ADTs with at least one field: + // + // * #[repr(simd)] struct S(T, T, T, T); + // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } + // * #[repr(simd)] struct S([T; 4]) + // + // where T is a primitive scalar (integer/float/pointer). + + // SIMD vectors with zero fields are not supported. + // (should be caught by typeck) + if def.non_enum_variant().fields.is_empty() { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } + + // Type of the first ADT field: + let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); + + // Heterogeneous SIMD vectors are not supported: + // (should be caught by typeck) + for fi in &def.non_enum_variant().fields { + if fi.ty(tcx, substs) != f0_ty { + tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); + } + } + + // The element type and number of elements of the SIMD vector + // are obtained from: + // + // * the element type and length of the single array field, if + // the first field is of array type, or + // + // * the homogeneous field type and the number of fields. + let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { + // First ADT field is an array: + + // SIMD vectors with multiple array fields are not supported: + // (should be caught by typeck) + if def.non_enum_variant().fields.len() != 1 { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with more than one array field", + ty + )); + } + + // Extract the number of elements from the layout of the array field: + let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else { + return Err(LayoutError::Unknown(ty)); + }; + + (*e_ty, *count, true) + } else { + // First ADT field is not an array: + (f0_ty, def.non_enum_variant().fields.len() as _, false) + }; + + // SIMD vectors of zero length are not supported. + // Additionally, lengths are capped at 2^16 as a fixed maximum backends must + // support. + // + // Can't be caught in typeck if the array length is generic. + if e_len == 0 { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } else if e_len > MAX_SIMD_LANES { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` of length greater than {}", + ty, MAX_SIMD_LANES, + )); + } + + // Compute the ABI of the element type: + let e_ly = cx.layout_of(e_ty)?; + let Abi::Scalar(e_abi) = e_ly.abi else { + // This error isn't caught in typeck, e.g., if + // the element type of the vector is generic. + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with a non-primitive-scalar \ + (integer/float/pointer) element type `{}`", + ty, e_ty + )) + }; + + // Compute the size and alignment of the vector: + let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; + let align = dl.vector_align(size); + let size = size.align_to(align.abi); + + // Compute the placement of the vector fields: + let fields = if is_array { + FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } + } else { + FieldsShape::Array { stride: e_ly.size, count: e_len } + }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields, + abi: Abi::Vector { element: e_abi, count: e_len }, + largest_niche: e_ly.largest_niche, + size, + align, + }) + } + + // ADTs. + ty::Adt(def, substs) => { + // Cache the field layouts. + let variants = def + .variants() + .iter() + .map(|v| { + v.fields + .iter() + .map(|field| cx.layout_of(field.ty(tcx, substs))) + .collect::, _>>() + }) + .collect::, _>>()?; + + if def.is_union() { + if def.repr().pack.is_some() && def.repr().align.is_some() { + cx.tcx.sess.delay_span_bug( + tcx.def_span(def.did()), + "union cannot be packed and aligned", + ); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = + if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + if let Some(repr_align) = def.repr().align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + let optimize = !def.repr().inhibit_union_abi_opt(); + let mut size = Size::ZERO; + let mut abi = Abi::Aggregate { sized: true }; + let index = VariantIdx::new(0); + for field in &variants[index] { + assert!(!field.is_unsized()); + align = align.max(field.align); + + // If all non-ZST fields have the same ABI, forward this ABI + if optimize && !field.is_zst() { + // Discard valid range information and allow undef + let field_abi = match field.abi { + Abi::Scalar(x) => Abi::Scalar(x.to_union()), + Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()), + Abi::Vector { element: x, count } => { + Abi::Vector { element: x.to_union(), count } + } + Abi::Uninhabited | Abi::Aggregate { .. } => { + Abi::Aggregate { sized: true } + } + }; + + if size == Size::ZERO { + // first non ZST: initialize 'abi' + abi = field_abi; + } else if abi != field_abi { + // different fields have different ABI: reset to Aggregate + abi = Abi::Aggregate { sized: true }; + } + } + + size = cmp::max(size, field.size); + } + + if let Some(pack) = def.repr().pack { + align = align.min(AbiAndPrefAlign::new(pack)); + } + + return Ok(tcx.intern_layout(LayoutS { + variants: Variants::Single { index }, + fields: FieldsShape::Union( + NonZeroUsize::new(variants[index].len()).ok_or(LayoutError::Unknown(ty))?, + ), + abi, + largest_niche: None, + align, + size: size.align_to(align.abi), + })); + } + + // A variant is absent if it's uninhabited and only has ZST fields. + // Present uninhabited variants only require space for their fields, + // but *not* an encoding of the discriminant (e.g., a tag value). + // See issue #49298 for more details on the need to leave space + // for non-ZST uninhabited data (mostly partial initialization). + let absent = |fields: &[TyAndLayout<'_>]| { + let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); + let is_zst = fields.iter().all(|f| f.is_zst()); + uninhabited && is_zst + }; + let (present_first, present_second) = { + let mut present_variants = variants + .iter_enumerated() + .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); + (present_variants.next(), present_variants.next()) + }; + let present_first = match present_first { + Some(present_first) => present_first, + // Uninhabited because it has no variants, or only absent ones. + None if def.is_enum() => { + return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout); + } + // If it's a struct, still compute a layout so that we can still compute the + // field offsets. + None => VariantIdx::new(0), + }; + + let is_struct = !def.is_enum() || + // Only one variant is present. + (present_second.is_none() && + // Representation optimizations are allowed. + !def.repr().inhibit_enum_layout_opt()); + if is_struct { + // Struct, or univariant enum equivalent to a struct. + // (Typechecking will reject discriminant-sizing attrs.) + + let v = present_first; + let kind = if def.is_enum() || variants[v].is_empty() { + StructKind::AlwaysSized + } else { + let param_env = tcx.param_env(def.did()); + let last_field = def.variant(v).fields.last().unwrap(); + let always_sized = + tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env); + if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized } + }; + + let mut st = univariant_uninterned(cx, ty, &variants[v], &def.repr(), kind)?; + st.variants = Variants::Single { index: v }; + + if def.is_unsafe_cell() { + let hide_niches = |scalar: &mut _| match scalar { + Scalar::Initialized { value, valid_range } => { + *valid_range = WrappingRange::full(value.size(dl)) + } + // Already doesn't have any niches + Scalar::Union { .. } => {} + }; + match &mut st.abi { + Abi::Uninhabited => {} + Abi::Scalar(scalar) => hide_niches(scalar), + Abi::ScalarPair(a, b) => { + hide_niches(a); + hide_niches(b); + } + Abi::Vector { element, count: _ } => hide_niches(element), + Abi::Aggregate { sized: _ } => {} + } + st.largest_niche = None; + return Ok(tcx.intern_layout(st)); + } + + let (start, end) = cx.tcx.layout_scalar_valid_range(def.did()); + match st.abi { + Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { + // the asserts ensure that we are not using the + // `#[rustc_layout_scalar_valid_range(n)]` + // attribute to widen the range of anything as that would probably + // result in UB somewhere + // FIXME(eddyb) the asserts are probably not needed, + // as larger validity ranges would result in missed + // optimizations, *not* wrongly assuming the inner + // value is valid. e.g. unions enlarge validity ranges, + // because the values may be uninitialized. + if let Bound::Included(start) = start { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.start <= start); + valid_range.start = start; + } + if let Bound::Included(end) = end { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.end >= end); + valid_range.end = end; + } + + // Update `largest_niche` if we have introduced a larger niche. + let niche = Niche::from_scalar(dl, Size::ZERO, *scalar); + if let Some(niche) = niche { + match st.largest_niche { + Some(largest_niche) => { + // Replace the existing niche even if they're equal, + // because this one is at a lower offset. + if largest_niche.available(dl) <= niche.available(dl) { + st.largest_niche = Some(niche); + } + } + None => st.largest_niche = Some(niche), + } + } + } + _ => assert!( + start == Bound::Unbounded && end == Bound::Unbounded, + "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", + def, + st, + ), + } + + return Ok(tcx.intern_layout(st)); + } + + // At this point, we have handled all unions and + // structs. (We have also handled univariant enums + // that allow representation optimization.) + assert!(def.is_enum()); + + // Until we've decided whether to use the tagged or + // niche filling LayoutS, we don't want to intern the + // variant layouts, so we can't store them in the + // overall LayoutS. Store the overall LayoutS + // and the variant LayoutSs here until then. + struct TmpLayout<'tcx> { + layout: LayoutS<'tcx>, + variants: IndexVec>, + } + + let calculate_niche_filling_layout = + || -> Result>, LayoutError<'tcx>> { + // The current code for niche-filling relies on variant indices + // instead of actual discriminants, so enums with + // explicit discriminants (RFC #2363) would misbehave. + if def.repr().inhibit_enum_layout_opt() + || def + .variants() + .iter_enumerated() + .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())) + { + return Ok(None); + } + + if variants.len() < 2 { + return Ok(None); + } + + let mut align = dl.aggregate_align; + let mut variant_layouts = variants + .iter_enumerated() + .map(|(j, v)| { + let mut st = univariant_uninterned( + cx, + ty, + v, + &def.repr(), + StructKind::AlwaysSized, + )?; + st.variants = Variants::Single { index: j }; + + align = align.max(st.align); + + Ok(st) + }) + .collect::, _>>()?; + + let largest_variant_index = match variant_layouts + .iter_enumerated() + .max_by_key(|(_i, layout)| layout.size.bytes()) + .map(|(i, _layout)| i) + { + None => return Ok(None), + Some(i) => i, + }; + + let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1); + let needs_disc = |index: VariantIdx| { + index != largest_variant_index && !absent(&variants[index]) + }; + let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap() + ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap(); + + let count = niche_variants.size_hint().1.unwrap() as u128; + + // Find the field with the largest niche + let (field_index, niche, (niche_start, niche_scalar)) = match variants + [largest_variant_index] + .iter() + .enumerate() + .filter_map(|(j, field)| Some((j, field.largest_niche?))) + .max_by_key(|(_, niche)| niche.available(dl)) + .and_then(|(j, niche)| Some((j, niche, niche.reserve(cx, count)?))) + { + None => return Ok(None), + Some(x) => x, + }; + + let niche_offset = niche.offset + + variant_layouts[largest_variant_index].fields.offset(field_index); + let niche_size = niche.value.size(dl); + let size = variant_layouts[largest_variant_index].size.align_to(align.abi); + + let all_variants_fit = + variant_layouts.iter_enumerated_mut().all(|(i, layout)| { + if i == largest_variant_index { + return true; + } + + layout.largest_niche = None; + + if layout.size <= niche_offset { + // This variant will fit before the niche. + return true; + } + + // Determine if it'll fit after the niche. + let this_align = layout.align.abi; + let this_offset = (niche_offset + niche_size).align_to(this_align); + + if this_offset + layout.size > size { + return false; + } + + // It'll fit, but we need to make some adjustments. + match layout.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for (j, offset) in offsets.iter_mut().enumerate() { + if !variants[i][j].is_zst() { + *offset += this_offset; + } + } + } + _ => { + panic!("Layout of fields should be Arbitrary for variants") + } + } + + // It can't be a Scalar or ScalarPair because the offset isn't 0. + if !layout.abi.is_uninhabited() { + layout.abi = Abi::Aggregate { sized: true }; + } + layout.size += this_offset; + + true + }); + + if !all_variants_fit { + return Ok(None); + } + + let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar); + + let others_zst = variant_layouts + .iter_enumerated() + .all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO); + let same_size = size == variant_layouts[largest_variant_index].size; + let same_align = align == variant_layouts[largest_variant_index].align; + + let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) { + Abi::Uninhabited + } else if same_size && same_align && others_zst { + match variant_layouts[largest_variant_index].abi { + // When the total alignment and size match, we can use the + // same ABI as the scalar variant with the reserved niche. + Abi::Scalar(_) => Abi::Scalar(niche_scalar), + Abi::ScalarPair(first, second) => { + // Only the niche is guaranteed to be initialised, + // so use union layouts for the other primitive. + if niche_offset == Size::ZERO { + Abi::ScalarPair(niche_scalar, second.to_union()) + } else { + Abi::ScalarPair(first.to_union(), niche_scalar) + } + } + _ => Abi::Aggregate { sized: true }, + } + } else { + Abi::Aggregate { sized: true } + }; + + let layout = LayoutS { + variants: Variants::Multiple { + tag: niche_scalar, + tag_encoding: TagEncoding::Niche { + untagged_variant: largest_variant_index, + niche_variants, + niche_start, + }, + tag_field: 0, + variants: IndexVec::new(), + }, + fields: FieldsShape::Arbitrary { + offsets: vec![niche_offset], + memory_index: vec![0], + }, + abi, + largest_niche, + size, + align, + }; + + Ok(Some(TmpLayout { layout, variants: variant_layouts })) + }; + + let niche_filling_layout = calculate_niche_filling_layout()?; + + let (mut min, mut max) = (i128::MAX, i128::MIN); + let discr_type = def.repr().discr_type(); + let bits = Integer::from_attr(cx, discr_type).size().bits(); + for (i, discr) in def.discriminants(tcx) { + if variants[i].iter().any(|f| f.abi.is_uninhabited()) { + continue; + } + let mut x = discr.val as i128; + if discr_type.is_signed() { + // sign extend the raw representation to be an i128 + x = (x << (128 - bits)) >> (128 - bits); + } + if x < min { + min = x; + } + if x > max { + max = x; + } + } + // We might have no inhabited variants, so pretend there's at least one. + if (min, max) == (i128::MAX, i128::MIN) { + min = 0; + max = 0; + } + assert!(min <= max, "discriminant range is {}...{}", min, max); + let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max); + + let mut align = dl.aggregate_align; + let mut size = Size::ZERO; + + // We're interested in the smallest alignment, so start large. + let mut start_align = Align::from_bytes(256).unwrap(); + assert_eq!(Integer::for_align(dl, start_align), None); + + // repr(C) on an enum tells us to make a (tag, union) layout, + // so we need to grow the prefix alignment to be at least + // the alignment of the union. (This value is used both for + // determining the alignment of the overall enum, and the + // determining the alignment of the payload after the tag.) + let mut prefix_align = min_ity.align(dl).abi; + if def.repr().c() { + for fields in &variants { + for field in fields { + prefix_align = prefix_align.max(field.align.abi); + } + } + } + + // Create the set of structs that represent each variant. + let mut layout_variants = variants + .iter_enumerated() + .map(|(i, field_layouts)| { + let mut st = univariant_uninterned( + cx, + ty, + &field_layouts, + &def.repr(), + StructKind::Prefixed(min_ity.size(), prefix_align), + )?; + st.variants = Variants::Single { index: i }; + // Find the first field we can't move later + // to make room for a larger discriminant. + for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) { + if !field.is_zst() || field.align.abi.bytes() != 1 { + start_align = start_align.min(field.align.abi); + break; + } + } + size = cmp::max(size, st.size); + align = align.max(st.align); + Ok(st) + }) + .collect::, _>>()?; + + // Align the maximum variant size to the largest alignment. + size = size.align_to(align.abi); + + if size.bytes() >= dl.obj_size_bound() { + return Err(LayoutError::SizeOverflow(ty)); + } + + let typeck_ity = Integer::from_attr(dl, def.repr().discr_type()); + if typeck_ity < min_ity { + // It is a bug if Layout decided on a greater discriminant size than typeck for + // some reason at this point (based on values discriminant can take on). Mostly + // because this discriminant will be loaded, and then stored into variable of + // type calculated by typeck. Consider such case (a bug): typeck decided on + // byte-sized discriminant, but layout thinks we need a 16-bit to store all + // discriminant values. That would be a bug, because then, in codegen, in order + // to store this 16-bit discriminant into 8-bit sized temporary some of the + // space necessary to represent would have to be discarded (or layout is wrong + // on thinking it needs 16 bits) + bug!( + "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", + min_ity, + typeck_ity + ); + // However, it is fine to make discr type however large (as an optimisation) + // after this point – we’ll just truncate the value we load in codegen. + } + + // Check to see if we should use a different type for the + // discriminant. We can safely use a type with the same size + // as the alignment of the first field of each variant. + // We increase the size of the discriminant to avoid LLVM copying + // padding when it doesn't need to. This normally causes unaligned + // load/stores and excessive memcpy/memset operations. By using a + // bigger integer size, LLVM can be sure about its contents and + // won't be so conservative. + + // Use the initial field alignment + let mut ity = if def.repr().c() || def.repr().int.is_some() { + min_ity + } else { + Integer::for_align(dl, start_align).unwrap_or(min_ity) + }; + + // If the alignment is not larger than the chosen discriminant size, + // don't use the alignment as the final size. + if ity <= min_ity { + ity = min_ity; + } else { + // Patch up the variants' first few fields. + let old_ity_size = min_ity.size(); + let new_ity_size = ity.size(); + for variant in &mut layout_variants { + match variant.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for i in offsets { + if *i <= old_ity_size { + assert_eq!(*i, old_ity_size); + *i = new_ity_size; + } + } + // We might be making the struct larger. + if variant.size <= old_ity_size { + variant.size = new_ity_size; + } + } + _ => bug!(), + } + } + } + + let tag_mask = ity.size().unsigned_int_max(); + let tag = Scalar::Initialized { + value: Int(ity, signed), + valid_range: WrappingRange { + start: (min as u128 & tag_mask), + end: (max as u128 & tag_mask), + }, + }; + let mut abi = Abi::Aggregate { sized: true }; + + if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } else if tag.size(dl) == size { + // Make sure we only use scalar layout when the enum is entirely its + // own tag (i.e. it has no padding nor any non-ZST variant fields). + abi = Abi::Scalar(tag); + } else { + // Try to use a ScalarPair for all tagged enums. + let mut common_prim = None; + let mut common_prim_initialized_in_all_variants = true; + for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { + let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else { + bug!(); + }; + let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); + let (field, offset) = match (fields.next(), fields.next()) { + (None, None) => { + common_prim_initialized_in_all_variants = false; + continue; + } + (Some(pair), None) => pair, + _ => { + common_prim = None; + break; + } + }; + let prim = match field.abi { + Abi::Scalar(scalar) => { + common_prim_initialized_in_all_variants &= + matches!(scalar, Scalar::Initialized { .. }); + scalar.primitive() + } + _ => { + common_prim = None; + break; + } + }; + if let Some(pair) = common_prim { + // This is pretty conservative. We could go fancier + // by conflating things like i32 and u32, or even + // realising that (u8, u8) could just cohabit with + // u16 or even u32. + if pair != (prim, offset) { + common_prim = None; + break; + } + } else { + common_prim = Some((prim, offset)); + } + } + if let Some((prim, offset)) = common_prim { + let prim_scalar = if common_prim_initialized_in_all_variants { + scalar_unit(prim) + } else { + // Common prim might be uninit. + Scalar::Union { value: prim } + }; + let pair = scalar_pair(cx, tag, prim_scalar); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if pair_offsets[0] == Size::ZERO + && pair_offsets[1] == *offset + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + } + + // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the + // variants to ensure they are consistent. This is because a downcast is + // semantically a NOP, and thus should not affect layout. + if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { + for variant in &mut layout_variants { + // We only do this for variants with fields; the others are not accessed anyway. + // Also do not overwrite any already existing "clever" ABIs. + if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) { + variant.abi = abi; + // Also need to bump up the size and alignment, so that the entire value fits in here. + variant.size = cmp::max(variant.size, size); + variant.align.abi = cmp::max(variant.align.abi, align.abi); + } + } + } + + let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag); + + let tagged_layout = LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: 0, + variants: IndexVec::new(), + }, + fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }, + largest_niche, + abi, + align, + size, + }; + + let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants }; + + let mut best_layout = match (tagged_layout, niche_filling_layout) { + (tl, Some(nl)) => { + // Pick the smaller layout; otherwise, + // pick the layout with the larger niche; otherwise, + // pick tagged as it has simpler codegen. + use Ordering::*; + let niche_size = |tmp_l: &TmpLayout<'_>| { + tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl)) + }; + match ( + tl.layout.size.cmp(&nl.layout.size), + niche_size(&tl).cmp(&niche_size(&nl)), + ) { + (Greater, _) => nl, + (Equal, Less) => nl, + _ => tl, + } + } + (tl, None) => tl, + }; + + // Now we can intern the variant layouts and store them in the enum layout. + best_layout.layout.variants = match best_layout.layout.variants { + Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple { + tag, + tag_encoding, + tag_field, + variants: best_layout + .variants + .into_iter() + .map(|layout| tcx.intern_layout(layout)) + .collect(), + }, + _ => bug!(), + }; + + tcx.intern_layout(best_layout.layout) + } + + // Types with no meaningful known layout. + ty::Projection(_) | ty::Opaque(..) => { + // NOTE(eddyb) `layout_of` query should've normalized these away, + // if that was possible, so there's no reason to try again here. + return Err(LayoutError::Unknown(ty)); + } + + ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { + bug!("Layout::compute: unexpected type `{}`", ty) + } + + ty::Bound(..) | ty::Param(_) | ty::Error(_) => { + return Err(LayoutError::Unknown(ty)); + } + }) +} + +/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. +#[derive(Clone, Debug, PartialEq)] +enum SavedLocalEligibility { + Unassigned, + Assigned(VariantIdx), + // FIXME: Use newtype_index so we aren't wasting bytes + Ineligible(Option), +} + +// When laying out generators, we divide our saved local fields into two +// categories: overlap-eligible and overlap-ineligible. +// +// Those fields which are ineligible for overlap go in a "prefix" at the +// beginning of the layout, and always have space reserved for them. +// +// Overlap-eligible fields are only assigned to one variant, so we lay +// those fields out for each variant and put them right after the +// prefix. +// +// Finally, in the layout details, we point to the fields from the +// variants they are assigned to. It is possible for some fields to be +// included in multiple variants. No field ever "moves around" in the +// layout; its offset is always the same. +// +// Also included in the layout are the upvars and the discriminant. +// These are included as fields on the "outer" layout; they are not part +// of any variant. + +/// Compute the eligibility and assignment of each local. +fn generator_saved_local_eligibility<'tcx>( + info: &GeneratorLayout<'tcx>, +) -> (BitSet, IndexVec) { + use SavedLocalEligibility::*; + + let mut assignments: IndexVec = + IndexVec::from_elem_n(Unassigned, info.field_tys.len()); + + // The saved locals not eligible for overlap. These will get + // "promoted" to the prefix of our generator. + let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); + + // Figure out which of our saved locals are fields in only + // one variant. The rest are deemed ineligible for overlap. + for (variant_index, fields) in info.variant_fields.iter_enumerated() { + for local in fields { + match assignments[*local] { + Unassigned => { + assignments[*local] = Assigned(variant_index); + } + Assigned(idx) => { + // We've already seen this local at another suspension + // point, so it is no longer a candidate. + trace!( + "removing local {:?} in >1 variant ({:?}, {:?})", + local, + variant_index, + idx + ); + ineligible_locals.insert(*local); + assignments[*local] = Ineligible(None); + } + Ineligible(_) => {} + } + } + } + + // Next, check every pair of eligible locals to see if they + // conflict. + for local_a in info.storage_conflicts.rows() { + let conflicts_a = info.storage_conflicts.count(local_a); + if ineligible_locals.contains(local_a) { + continue; + } + + for local_b in info.storage_conflicts.iter(local_a) { + // local_a and local_b are storage live at the same time, therefore they + // cannot overlap in the generator layout. The only way to guarantee + // this is if they are in the same variant, or one is ineligible + // (which means it is stored in every variant). + if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] { + continue; + } + + // If they conflict, we will choose one to make ineligible. + // This is not always optimal; it's just a greedy heuristic that + // seems to produce good results most of the time. + let conflicts_b = info.storage_conflicts.count(local_b); + let (remove, other) = + if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; + ineligible_locals.insert(remove); + assignments[remove] = Ineligible(None); + trace!("removing local {:?} due to conflict with {:?}", remove, other); + } + } + + // Count the number of variants in use. If only one of them, then it is + // impossible to overlap any locals in our layout. In this case it's + // always better to make the remaining locals ineligible, so we can + // lay them out with the other locals in the prefix and eliminate + // unnecessary padding bytes. + { + let mut used_variants = BitSet::new_empty(info.variant_fields.len()); + for assignment in &assignments { + if let Assigned(idx) = assignment { + used_variants.insert(*idx); + } + } + if used_variants.count() < 2 { + for assignment in assignments.iter_mut() { + *assignment = Ineligible(None); + } + ineligible_locals.insert_all(); + } + } + + // Write down the order of our locals that will be promoted to the prefix. + { + for (idx, local) in ineligible_locals.iter().enumerate() { + assignments[local] = Ineligible(Some(idx as u32)); + } + } + debug!("generator saved local assignments: {:?}", assignments); + + (ineligible_locals, assignments) +} + +/// Compute the full generator layout. +fn generator_layout<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, + def_id: hir::def_id::DefId, + substs: SubstsRef<'tcx>, +) -> Result, LayoutError<'tcx>> { + use SavedLocalEligibility::*; + let tcx = cx.tcx; + let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs); + + let Some(info) = tcx.generator_layout(def_id) else { + return Err(LayoutError::Unknown(ty)); + }; + let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info); + + // Build a prefix layout, including "promoting" all ineligible + // locals as part of the prefix. We compute the layout of all of + // these fields at once to get optimal packing. + let tag_index = substs.as_generator().prefix_tys().count(); + + // `info.variant_fields` already accounts for the reserved variants, so no need to add them. + let max_discr = (info.variant_fields.len() - 1) as u128; + let discr_int = Integer::fit_unsigned(max_discr); + let discr_int_ty = discr_int.to_ty(tcx, false); + let tag = Scalar::Initialized { + value: Primitive::Int(discr_int, false), + valid_range: WrappingRange { start: 0, end: max_discr }, + }; + let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag)); + let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; + + let promoted_layouts = ineligible_locals + .iter() + .map(|local| subst_field(info.field_tys[local])) + .map(|ty| tcx.mk_maybe_uninit(ty)) + .map(|ty| cx.layout_of(ty)); + let prefix_layouts = substs + .as_generator() + .prefix_tys() + .map(|ty| cx.layout_of(ty)) + .chain(iter::once(Ok(tag_layout))) + .chain(promoted_layouts) + .collect::, _>>()?; + let prefix = univariant_uninterned( + cx, + ty, + &prefix_layouts, + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + + let (prefix_size, prefix_align) = (prefix.size, prefix.align); + + // Split the prefix layout into the "outer" fields (upvars and + // discriminant) and the "promoted" fields. Promoted fields will + // get included in each variant that requested them in + // GeneratorLayout. + debug!("prefix = {:#?}", prefix); + let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { + FieldsShape::Arbitrary { mut offsets, memory_index } => { + let mut inverse_memory_index = invert_mapping(&memory_index); + + // "a" (`0..b_start`) and "b" (`b_start..`) correspond to + // "outer" and "promoted" fields respectively. + let b_start = (tag_index + 1) as u32; + let offsets_b = offsets.split_off(b_start as usize); + let offsets_a = offsets; + + // Disentangle the "a" and "b" components of `inverse_memory_index` + // by preserving the order but keeping only one disjoint "half" each. + // FIXME(eddyb) build a better abstraction for permutations, if possible. + let inverse_memory_index_b: Vec<_> = + inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); + inverse_memory_index.retain(|&i| i < b_start); + let inverse_memory_index_a = inverse_memory_index; + + // Since `inverse_memory_index_{a,b}` each only refer to their + // respective fields, they can be safely inverted + let memory_index_a = invert_mapping(&inverse_memory_index_a); + let memory_index_b = invert_mapping(&inverse_memory_index_b); + + let outer_fields = + FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; + (outer_fields, offsets_b, memory_index_b) + } + _ => bug!(), + }; + + let mut size = prefix.size; + let mut align = prefix.align; + let variants = info + .variant_fields + .iter_enumerated() + .map(|(index, variant_fields)| { + // Only include overlap-eligible fields when we compute our variant layout. + let variant_only_tys = variant_fields + .iter() + .filter(|local| match assignments[**local] { + Unassigned => bug!(), + Assigned(v) if v == index => true, + Assigned(_) => bug!("assignment does not match variant"), + Ineligible(_) => false, + }) + .map(|local| subst_field(info.field_tys[*local])); + + let mut variant = univariant_uninterned( + cx, + ty, + &variant_only_tys.map(|ty| cx.layout_of(ty)).collect::, _>>()?, + &ReprOptions::default(), + StructKind::Prefixed(prefix_size, prefix_align.abi), + )?; + variant.variants = Variants::Single { index }; + + let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else { + bug!(); + }; + + // Now, stitch the promoted and variant-only fields back together in + // the order they are mentioned by our GeneratorLayout. + // Because we only use some subset (that can differ between variants) + // of the promoted fields, we can't just pick those elements of the + // `promoted_memory_index` (as we'd end up with gaps). + // So instead, we build an "inverse memory_index", as if all of the + // promoted fields were being used, but leave the elements not in the + // subset as `INVALID_FIELD_IDX`, which we can filter out later to + // obtain a valid (bijective) mapping. + const INVALID_FIELD_IDX: u32 = !0; + let mut combined_inverse_memory_index = + vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; + let mut offsets_and_memory_index = iter::zip(offsets, memory_index); + let combined_offsets = variant_fields + .iter() + .enumerate() + .map(|(i, local)| { + let (offset, memory_index) = match assignments[*local] { + Unassigned => bug!(), + Assigned(_) => { + let (offset, memory_index) = offsets_and_memory_index.next().unwrap(); + (offset, promoted_memory_index.len() as u32 + memory_index) + } + Ineligible(field_idx) => { + let field_idx = field_idx.unwrap() as usize; + (promoted_offsets[field_idx], promoted_memory_index[field_idx]) + } + }; + combined_inverse_memory_index[memory_index as usize] = i as u32; + offset + }) + .collect(); + + // Remove the unused slots and invert the mapping to obtain the + // combined `memory_index` (also see previous comment). + combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); + let combined_memory_index = invert_mapping(&combined_inverse_memory_index); + + variant.fields = FieldsShape::Arbitrary { + offsets: combined_offsets, + memory_index: combined_memory_index, + }; + + size = size.max(variant.size); + align = align.max(variant.align); + Ok(tcx.intern_layout(variant)) + }) + .collect::, _>>()?; + + size = size.align_to(align.abi); + + let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let layout = tcx.intern_layout(LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: tag_index, + variants, + }, + fields: outer_fields, + abi, + largest_niche: prefix.largest_niche, + size, + align, + }); + debug!("generator layout ({:?}): {:#?}", ty, layout); + Ok(layout) +} + +/// This is invoked by the `layout_of` query to record the final +/// layout of each type. +#[inline(always)] +fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) { + // If we are running with `-Zprint-type-sizes`, maybe record layouts + // for dumping later. + if cx.tcx.sess.opts.unstable_opts.print_type_sizes { + record_layout_for_printing_outlined(cx, layout) + } +} + +fn record_layout_for_printing_outlined<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + layout: TyAndLayout<'tcx>, +) { + // Ignore layouts that are done with non-empty environments or + // non-monomorphic layouts, as the user only wants to see the stuff + // resulting from the final codegen session. + if layout.ty.has_param_types_or_consts() || !cx.param_env.caller_bounds().is_empty() { + return; + } + + // (delay format until we actually need it) + let record = |kind, packed, opt_discr_size, variants| { + let type_desc = format!("{:?}", layout.ty); + cx.tcx.sess.code_stats.record_type_size( + kind, + type_desc, + layout.align.abi, + layout.size, + packed, + opt_discr_size, + variants, + ); + }; + + let adt_def = match *layout.ty.kind() { + ty::Adt(ref adt_def, _) => { + debug!("print-type-size t: `{:?}` process adt", layout.ty); + adt_def + } + + ty::Closure(..) => { + debug!("print-type-size t: `{:?}` record closure", layout.ty); + record(DataTypeKind::Closure, false, None, vec![]); + return; + } + + _ => { + debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); + return; + } + }; + + let adt_kind = adt_def.adt_kind(); + let adt_packed = adt_def.repr().pack.is_some(); + + let build_variant_info = |n: Option, flds: &[Symbol], layout: TyAndLayout<'tcx>| { + let mut min_size = Size::ZERO; + let field_info: Vec<_> = flds + .iter() + .enumerate() + .map(|(i, &name)| { + let field_layout = layout.field(cx, i); + let offset = layout.fields.offset(i); + let field_end = offset + field_layout.size; + if min_size < field_end { + min_size = field_end; + } + FieldInfo { + name, + offset: offset.bytes(), + size: field_layout.size.bytes(), + align: field_layout.align.abi.bytes(), + } + }) + .collect(); + + VariantInfo { + name: n, + kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, + align: layout.align.abi.bytes(), + size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, + fields: field_info, + } + }; + + match layout.variants { + Variants::Single { index } => { + if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive { + debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name); + let variant_def = &adt_def.variant(index); + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + record( + adt_kind.into(), + adt_packed, + None, + vec![build_variant_info(Some(variant_def.name), &fields, layout)], + ); + } else { + // (This case arises for *empty* enums; so give it + // zero variants.) + record(adt_kind.into(), adt_packed, None, vec![]); + } + } + + Variants::Multiple { tag, ref tag_encoding, .. } => { + debug!( + "print-type-size `{:#?}` adt general variants def {}", + layout.ty, + adt_def.variants().len() + ); + let variant_infos: Vec<_> = adt_def + .variants() + .iter_enumerated() + .map(|(i, variant_def)| { + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i)) + }) + .collect(); + record( + adt_kind.into(), + adt_packed, + match tag_encoding { + TagEncoding::Direct => Some(tag.size(cx)), + _ => None, + }, + variant_infos, + ); + } + } +} diff --git a/compiler/rustc_middle/src/ty/layout_sanity_check.rs b/compiler/rustc_ty_utils/src/layout_sanity_check.rs similarity index 99% rename from compiler/rustc_middle/src/ty/layout_sanity_check.rs rename to compiler/rustc_ty_utils/src/layout_sanity_check.rs index 87c85dcfff34a..100926ad44685 100644 --- a/compiler/rustc_middle/src/ty/layout_sanity_check.rs +++ b/compiler/rustc_ty_utils/src/layout_sanity_check.rs @@ -1,4 +1,4 @@ -use crate::ty::{ +use rustc_middle::ty::{ layout::{LayoutCx, TyAndLayout}, TyCtxt, }; diff --git a/compiler/rustc_ty_utils/src/lib.rs b/compiler/rustc_ty_utils/src/lib.rs index 10c18789f7476..f97fc4c199dd9 100644 --- a/compiler/rustc_ty_utils/src/lib.rs +++ b/compiler/rustc_ty_utils/src/lib.rs @@ -9,8 +9,6 @@ #![feature(never_type)] #![feature(box_patterns)] #![recursion_limit = "256"] -#![deny(rustc::untranslatable_diagnostic)] -#![deny(rustc::diagnostic_outside_of_impl)] #[macro_use] extern crate rustc_middle; @@ -19,21 +17,26 @@ extern crate tracing; use rustc_middle::ty::query::Providers; +mod abi; mod assoc; mod common_traits; mod consts; mod errors; mod implied_bounds; pub mod instance; +mod layout; +mod layout_sanity_check; mod needs_drop; pub mod representability; mod ty; pub fn provide(providers: &mut Providers) { + abi::provide(providers); assoc::provide(providers); common_traits::provide(providers); consts::provide(providers); implied_bounds::provide(providers); + layout::provide(providers); needs_drop::provide(providers); ty::provide(providers); instance::provide(providers);