
5/25/23, 2:30 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 1/636

The Rust Programming Language
by Steve Klabnik and Carol Nichols, with contributions from the Rust Community

This version of the text assumes you’re using Rust 1.67.1 (released 2023-02-09) or later.
See the “Installation” section of Chapter 1 to install or update Rust.

The HTML format is available online at https://doc.rust-lang.org/stable/book/ and offline
with installations of Rust made with rustup ; run rustup docs --book to open.

Several community translations are also available.

This text is available in paperback and ebook format from No Starch Press.

🚨 Want a more interactive learning experience? Try out a different version
of the Rust Book, featuring: quizzes, highlighting, visualizations, and more:
https://rust-book.cs.brown.edu

https://doc.rust-lang.org/book/ch01-01-installation.html
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/book/appendix-06-translation.html
https://nostarch.com/rust-programming-language-2nd-edition
https://rust-book.cs.brown.edu/

5/25/23, 2:30 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 2/636

Foreword
It wasn’t always so clear, but the Rust programming language is fundamentally about
empowerment: no matter what kind of code you are writing now, Rust empowers you to
reach farther, to program with confidence in a wider variety of domains than you did
before.

Take, for example, “systems-level” work that deals with low-level details of memory
management, data representation, and concurrency. Traditionally, this realm of
programming is seen as arcane, accessible only to a select few who have devoted the
necessary years learning to avoid its infamous pitfalls. And even those who practice it do
so with caution, lest their code be open to exploits, crashes, or corruption.

Rust breaks down these barriers by eliminating the old pitfalls and providing a friendly,
polished set of tools to help you along the way. Programmers who need to “dip down”
into lower-level control can do so with Rust, without taking on the customary risk of
crashes or security holes, and without having to learn the fine points of a fickle
toolchain. Better yet, the language is designed to guide you naturally towards reliable
code that is efficient in terms of speed and memory usage.

Programmers who are already working with low-level code can use Rust to raise their
ambitions. For example, introducing parallelism in Rust is a relatively low-risk operation:
the compiler will catch the classical mistakes for you. And you can tackle more
aggressive optimizations in your code with the confidence that you won’t accidentally
introduce crashes or vulnerabilities.

But Rust isn’t limited to low-level systems programming. It’s expressive and ergonomic
enough to make CLI apps, web servers, and many other kinds of code quite pleasant to
write — you’ll find simple examples of both later in the book. Working with Rust allows
you to build skills that transfer from one domain to another; you can learn Rust by
writing a web app, then apply those same skills to target your Raspberry Pi.

This book fully embraces the potential of Rust to empower its users. It’s a friendly and
approachable text intended to help you level up not just your knowledge of Rust, but
also your reach and confidence as a programmer in general. So dive in, get ready to
learn—and welcome to the Rust community!

— Nicholas Matsakis and Aaron Turon

5/25/23, 2:30 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 3/636

Introduction

Note: This edition of the book is the same as The Rust Programming Language
available in print and ebook format from No Starch Press.

Welcome to The Rust Programming Language, an introductory book about Rust. The Rust
programming language helps you write faster, more reliable software. High-level
ergonomics and low-level control are often at odds in programming language design;
Rust challenges that conflict. Through balancing powerful technical capacity and a great
developer experience, Rust gives you the option to control low-level details (such as
memory usage) without all the hassle traditionally associated with such control.

Who Rust Is For

Rust is ideal for many people for a variety of reasons. Let’s look at a few of the most
important groups.

Teams of Developers

Rust is proving to be a productive tool for collaborating among large teams of
developers with varying levels of systems programming knowledge. Low-level code is
prone to various subtle bugs, which in most other languages can be caught only through
extensive testing and careful code review by experienced developers. In Rust, the
compiler plays a gatekeeper role by refusing to compile code with these elusive bugs,
including concurrency bugs. By working alongside the compiler, the team can spend
their time focusing on the program’s logic rather than chasing down bugs.

Rust also brings contemporary developer tools to the systems programming world:

Cargo, the included dependency manager and build tool, makes adding, compiling,
and managing dependencies painless and consistent across the Rust ecosystem.
The Rustfmt formatting tool ensures a consistent coding style across developers.
The Rust Language Server powers Integrated Development Environment (IDE)
integration for code completion and inline error messages.

By using these and other tools in the Rust ecosystem, developers can be productive
while writing systems-level code.

https://nostarch.com/rust-programming-language-2nd-edition
https://nostarch.com/

5/25/23, 2:30 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 4/636

Students

Rust is for students and those who are interested in learning about systems concepts.
Using Rust, many people have learned about topics like operating systems
development. The community is very welcoming and happy to answer student
questions. Through efforts such as this book, the Rust teams want to make systems
concepts more accessible to more people, especially those new to programming.

Companies

Hundreds of companies, large and small, use Rust in production for a variety of tasks,
including command line tools, web services, DevOps tooling, embedded devices, audio
and video analysis and transcoding, cryptocurrencies, bioinformatics, search engines,
Internet of Things applications, machine learning, and even major parts of the Firefox
web browser.

Open Source Developers

Rust is for people who want to build the Rust programming language, community,
developer tools, and libraries. We’d love to have you contribute to the Rust language.

People Who Value Speed and Stability

Rust is for people who crave speed and stability in a language. By speed, we mean both
how quickly Rust code can run and the speed at which Rust lets you write programs. The
Rust compiler’s checks ensure stability through feature additions and refactoring. This is
in contrast to the brittle legacy code in languages without these checks, which
developers are often afraid to modify. By striving for zero-cost abstractions, higher-level
features that compile to lower-level code as fast as code written manually, Rust
endeavors to make safe code be fast code as well.

The Rust language hopes to support many other users as well; those mentioned here
are merely some of the biggest stakeholders. Overall, Rust’s greatest ambition is to
eliminate the trade-offs that programmers have accepted for decades by providing
safety and productivity, speed and ergonomics. Give Rust a try and see if its choices
work for you.

Who This Book Is For

This book assumes that you’ve written code in another programming language but
doesn’t make any assumptions about which one. We’ve tried to make the material

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 5/636

broadly accessible to those from a wide variety of programming backgrounds. We don’t
spend a lot of time talking about what programming is or how to think about it. If you’re
entirely new to programming, you would be better served by reading a book that
specifically provides an introduction to programming.

How to Use This Book

In general, this book assumes that you’re reading it in sequence from front to back.
Later chapters build on concepts in earlier chapters, and earlier chapters might not
delve into details on a particular topic but will revisit the topic in a later chapter.

You’ll find two kinds of chapters in this book: concept chapters and project chapters. In
concept chapters, you’ll learn about an aspect of Rust. In project chapters, we’ll build
small programs together, applying what you’ve learned so far. Chapters 2, 12, and 20
are project chapters; the rest are concept chapters.

Chapter 1 explains how to install Rust, how to write a “Hello, world!” program, and how
to use Cargo, Rust’s package manager and build tool. Chapter 2 is a hands-on
introduction to writing a program in Rust, having you build up a number guessing game.
Here we cover concepts at a high level, and later chapters will provide additional detail.
If you want to get your hands dirty right away, Chapter 2 is the place for that. Chapter 3
covers Rust features that are similar to those of other programming languages, and in
Chapter 4 you’ll learn about Rust’s ownership system. If you’re a particularly meticulous
learner who prefers to learn every detail before moving on to the next, you might want
to skip Chapter 2 and go straight to Chapter 3, returning to Chapter 2 when you’d like to
work on a project applying the details you’ve learned.

Chapter 5 discusses structs and methods, and Chapter 6 covers enums, match
expressions, and the if let control flow construct. You’ll use structs and enums to
make custom types in Rust.

In Chapter 7, you’ll learn about Rust’s module system and about privacy rules for
organizing your code and its public Application Programming Interface (API). Chapter 8
discusses some common collection data structures that the standard library provides,
such as vectors, strings, and hash maps. Chapter 9 explores Rust’s error-handling
philosophy and techniques.

Chapter 10 digs into generics, traits, and lifetimes, which give you the power to define
code that applies to multiple types. Chapter 11 is all about testing, which even with
Rust’s safety guarantees is necessary to ensure your program’s logic is correct. In
Chapter 12, we’ll build our own implementation of a subset of functionality from the
grep command line tool that searches for text within files. For this, we’ll use many of

the concepts we discussed in the previous chapters.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 6/636

Chapter 13 explores closures and iterators: features of Rust that come from functional
programming languages. In Chapter 14, we’ll examine Cargo in more depth and talk
about best practices for sharing your libraries with others. Chapter 15 discusses smart
pointers that the standard library provides and the traits that enable their functionality.

In Chapter 16, we’ll walk through different models of concurrent programming and talk
about how Rust helps you to program in multiple threads fearlessly. Chapter 17 looks at
how Rust idioms compare to object-oriented programming principles you might be
familiar with.

Chapter 18 is a reference on patterns and pattern matching, which are powerful ways of
expressing ideas throughout Rust programs. Chapter 19 contains a smorgasbord of
advanced topics of interest, including unsafe Rust, macros, and more about lifetimes,
traits, types, functions, and closures.

In Chapter 20, we’ll complete a project in which we’ll implement a low-level
multithreaded web server!

Finally, some appendices contain useful information about the language in a more
reference-like format. Appendix A covers Rust’s keywords, Appendix B covers Rust’s
operators and symbols, Appendix C covers derivable traits provided by the standard
library, Appendix D covers some useful development tools, and Appendix E explains
Rust editions. In Appendix F, you can find translations of the book, and in Appendix G
we’ll cover how Rust is made and what nightly Rust is.

There is no wrong way to read this book: if you want to skip ahead, go for it! You might
have to jump back to earlier chapters if you experience any confusion. But do whatever
works for you.

An important part of the process of learning Rust is learning how to read the error
messages the compiler displays: these will guide you toward working code. As such,
we’ll provide many examples that don’t compile along with the error message the
compiler will show you in each situation. Know that if you enter and run a random
example, it may not compile! Make sure you read the surrounding text to see whether
the example you’re trying to run is meant to error. Ferris will also help you distinguish
code that isn’t meant to work:

Ferris Meaning

This code does not compile!

This code panics!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 7/636

Ferris Meaning

This code does not produce the desired behavior.

In most situations, we’ll lead you to the correct version of any code that doesn’t compile.

Source Code

The source files from which this book is generated can be found on GitHub.

https://github.com/rust-lang/book/tree/main/src

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 8/636

Getting Started
Let’s start your Rust journey! There’s a lot to learn, but every journey starts somewhere.
In this chapter, we’ll discuss:

Installing Rust on Linux, macOS, and Windows
Writing a program that prints Hello, world!
Using cargo , Rust’s package manager and build system

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 9/636

Installation

The first step is to install Rust. We’ll download Rust through rustup , a command line
tool for managing Rust versions and associated tools. You’ll need an internet connection
for the download.

Note: If you prefer not to use rustup for some reason, please see the Other Rust
Installation Methods page for more options.

The following steps install the latest stable version of the Rust compiler. Rust’s stability
guarantees ensure that all the examples in the book that compile will continue to
compile with newer Rust versions. The output might differ slightly between versions
because Rust often improves error messages and warnings. In other words, any newer,
stable version of Rust you install using these steps should work as expected with the
content of this book.

Command Line Notation

In this chapter and throughout the book, we’ll show some commands used in the
terminal. Lines that you should enter in a terminal all start with $. You don’t need
to type the $ character; it’s the command line prompt shown to indicate the start
of each command. Lines that don’t start with $ typically show the output of the
previous command. Additionally, PowerShell-specific examples will use > rather
than $.

Installing rustup on Linux or macOS

If you’re using Linux or macOS, open a terminal and enter the following command:

The command downloads a script and starts the installation of the rustup tool, which
installs the latest stable version of Rust. You might be prompted for your password. If
the install is successful, the following line will appear:

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

https://forge.rust-lang.org/infra/other-installation-methods.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 10/636

You will also need a linker, which is a program that Rust uses to join its compiled outputs
into one file. It is likely you already have one. If you get linker errors, you should install a
C compiler, which will typically include a linker. A C compiler is also useful because some
common Rust packages depend on C code and will need a C compiler.

On macOS, you can get a C compiler by running:

Linux users should generally install GCC or Clang, according to their distribution’s
documentation. For example, if you use Ubuntu, you can install the build-essential
package.

Installing rustup on Windows

On Windows, go to https://www.rust-lang.org/tools/install and follow the instructions for
installing Rust. At some point in the installation, you’ll receive a message explaining that
you’ll also need the MSVC build tools for Visual Studio 2013 or later.

To acquire the build tools, you’ll need to install Visual Studio 2022. When asked which
workloads to install, include:

“Desktop Development with C++”
The Windows 10 or 11 SDK
The English language pack component, along with any other language pack of your
choosing

The rest of this book uses commands that work in both cmd.exe and PowerShell. If there
are specific differences, we’ll explain which to use.

Troubleshooting

To check whether you have Rust installed correctly, open a shell and enter this line:

You should see the version number, commit hash, and commit date for the latest stable
version that has been released, in the following format:

Rust is installed now. Great!

$ xcode-select --install

$ rustc --version

rustc x.y.z (abcabcabc yyyy-mm-dd)

https://www.rust-lang.org/tools/install
https://visualstudio.microsoft.com/downloads/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 11/636

If you see this information, you have installed Rust successfully! If you don’t see this
information, check that Rust is in your %PATH% system variable as follows.

In Windows CMD, use:

In PowerShell, use:

In Linux and macOS, use:

If that’s all correct and Rust still isn’t working, there are a number of places you can get
help. Find out how to get in touch with other Rustaceans (a silly nickname we call
ourselves) on the community page.

Updating and Uninstalling

Once Rust is installed via rustup , updating to a newly released version is easy. From
your shell, run the following update script:

To uninstall Rust and rustup , run the following uninstall script from your shell:

Local Documentation

The installation of Rust also includes a local copy of the documentation so that you can
read it offline. Run rustup doc to open the local documentation in your browser.

Any time a type or function is provided by the standard library and you’re not sure what
it does or how to use it, use the application programming interface (API) documentation
to find out!

> echo %PATH%

> echo $env:Path

$ echo $PATH

$ rustup update

$ rustup self uninstall

https://www.rust-lang.org/community

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 12/636

Hello, World!

Now that you’ve installed Rust, it’s time to write your first Rust program. It’s traditional
when learning a new language to write a little program that prints the text Hello,
world! to the screen, so we’ll do the same here!

Note: This book assumes basic familiarity with the command line. Rust makes no
specific demands about your editing or tooling or where your code lives, so if you
prefer to use an integrated development environment (IDE) instead of the
command line, feel free to use your favorite IDE. Many IDEs now have some
degree of Rust support; check the IDE’s documentation for details. The Rust team
has been focusing on enabling great IDE support via rust-analyzer . See
Appendix D for more details.

Creating a Project Directory

You’ll start by making a directory to store your Rust code. It doesn’t matter to Rust
where your code lives, but for the exercises and projects in this book, we suggest
making a projects directory in your home directory and keeping all your projects there.

Open a terminal and enter the following commands to make a projects directory and a
directory for the “Hello, world!” project within the projects directory.

For Linux, macOS, and PowerShell on Windows, enter this:

For Windows CMD, enter this:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

> mkdir "%USERPROFILE%\projects"
> cd /d "%USERPROFILE%\projects"
> mkdir hello_world
> cd hello_world

https://doc.rust-lang.org/book/appendix-04-useful-development-tools.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 13/636

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end with the .rs
extension. If you’re using more than one word in your filename, the convention is to use
an underscore to separate them. For example, use hello_world.rs rather than
helloworld.rs.

Now open the main.rs file you just created and enter the code in Listing 1-1.

Filename: main.rs

Listing 1-1: A program that prints Hello, world!

Save the file and go back to your terminal window in the ~/projects/hello_world directory.
On Linux or macOS, enter the following commands to compile and run the file:

On Windows, enter the command .\main.exe instead of ./main :

Regardless of your operating system, the string Hello, world! should print to the
terminal. If you don’t see this output, refer back to the “Troubleshooting” part of the
Installation section for ways to get help.

If Hello, world! did print, congratulations! You’ve officially written a Rust program.
That makes you a Rust programmer—welcome!

Anatomy of a Rust Program

Let’s review this “Hello, world!” program in detail. Here’s the first piece of the puzzle:

These lines define a function named main . The main function is special: it is always the
first code that runs in every executable Rust program. Here, the first line declares a

fn main() {
 println!("Hello, world!");
}

$ rustc main.rs
$./main
Hello, world!

> rustc main.rs
> .\main.exe
Hello, world!

fn main() {

}

https://doc.rust-lang.org/book/ch01-01-installation.html#troubleshooting

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 14/636

function named main that has no parameters and returns nothing. If there were
parameters, they would go inside the parentheses () .

The function body is wrapped in {} . Rust requires curly brackets around all function
bodies. It’s good style to place the opening curly bracket on the same line as the
function declaration, adding one space in between.

Note: If you want to stick to a standard style across Rust projects, you can use an
automatic formatter tool called rustfmt to format your code in a particular style
(more on rustfmt in Appendix D). The Rust team has included this tool with the
standard Rust distribution, as rustc is, so it should already be installed on your
computer!

The body of the main function holds the following code:

This line does all the work in this little program: it prints text to the screen. There are
four important details to notice here.

First, Rust style is to indent with four spaces, not a tab.

Second, println! calls a Rust macro. If it had called a function instead, it would be
entered as println (without the !). We’ll discuss Rust macros in more detail in
Chapter 19. For now, you just need to know that using a ! means that you’re calling a
macro instead of a normal function and that macros don’t always follow the same rules
as functions.

Third, you see the "Hello, world!" string. We pass this string as an argument to
println! , and the string is printed to the screen.

Fourth, we end the line with a semicolon (;), which indicates that this expression is
over and the next one is ready to begin. Most lines of Rust code end with a semicolon.

Compiling and Running Are Separate Steps

You’ve just run a newly created program, so let’s examine each step in the process.

Before running a Rust program, you must compile it using the Rust compiler by entering
the rustc command and passing it the name of your source file, like this:

 println!("Hello, world!");

$ rustc main.rs

https://doc.rust-lang.org/book/appendix-04-useful-development-tools.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 15/636

If you have a C or C++ background, you’ll notice that this is similar to gcc or clang .
After compiling successfully, Rust outputs a binary executable.

On Linux, macOS, and PowerShell on Windows, you can see the executable by entering
the ls command in your shell:

On Linux and macOS, you’ll see two files. With PowerShell on Windows, you’ll see the
same three files that you would see using CMD. With CMD on Windows, you would enter
the following:

This shows the source code file with the .rs extension, the executable file (main.exe on
Windows, but main on all other platforms), and, when using Windows, a file containing
debugging information with the .pdb extension. From here, you run the main or
main.exe file, like this:

If your main.rs is your “Hello, world!” program, this line prints Hello, world! to your
terminal.

If you’re more familiar with a dynamic language, such as Ruby, Python, or JavaScript, you
might not be used to compiling and running a program as separate steps. Rust is an
ahead-of-time compiled language, meaning you can compile a program and give the
executable to someone else, and they can run it even without having Rust installed. If
you give someone a .rb, .py, or .js file, they need to have a Ruby, Python, or JavaScript
implementation installed (respectively). But in those languages, you only need one
command to compile and run your program. Everything is a trade-off in language
design.

Just compiling with rustc is fine for simple programs, but as your project grows, you’ll
want to manage all the options and make it easy to share your code. Next, we’ll
introduce you to the Cargo tool, which will help you write real-world Rust programs.

$ ls
main main.rs

> dir /B %= the /B option says to only show the file names =%
main.exe
main.pdb
main.rs

$./main # or .\main.exe on Windows

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 16/636

Hello, Cargo!

Cargo is Rust’s build system and package manager. Most Rustaceans use this tool to
manage their Rust projects because Cargo handles a lot of tasks for you, such as
building your code, downloading the libraries your code depends on, and building those
libraries. (We call the libraries that your code needs dependencies.)

The simplest Rust programs, like the one we’ve written so far, don’t have any
dependencies. If we had built the “Hello, world!” project with Cargo, it would only use
the part of Cargo that handles building your code. As you write more complex Rust
programs, you’ll add dependencies, and if you start a project using Cargo, adding
dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of this book assumes that
you’re using Cargo too. Cargo comes installed with Rust if you used the official installers
discussed in the “Installation” section. If you installed Rust through some other means,
check whether Cargo is installed by entering the following in your terminal:

If you see a version number, you have it! If you see an error, such as command not
found , look at the documentation for your method of installation to determine how to
install Cargo separately.

Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it differs from our original “Hello,
world!” project. Navigate back to your projects directory (or wherever you decided to
store your code). Then, on any operating system, run the following:

The first command creates a new directory and project called hello_cargo. We’ve named
our project hello_cargo, and Cargo creates its files in a directory of the same name.

Go into the hello_cargo directory and list the files. You’ll see that Cargo has generated
two files and one directory for us: a Cargo.toml file and a src directory with a main.rs file
inside.

It has also initialized a new Git repository along with a .gitignore file. Git files won’t be
generated if you run cargo new within an existing Git repository; you can override this

$ cargo --version

$ cargo new hello_cargo
$ cd hello_cargo

https://doc.rust-lang.org/book/ch01-01-installation.html#installation

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 17/636

behavior by using cargo new --vcs=git .

Note: Git is a common version control system. You can change cargo new to use a
different version control system or no version control system by using the --vcs
flag. Run cargo new --help to see the available options.

Open Cargo.toml in your text editor of choice. It should look similar to the code in Listing
1-2.

Filename: Cargo.toml

Listing 1-2: Contents of Cargo.toml generated by cargo new

This file is in the TOML (Tom’s Obvious, Minimal Language) format, which is Cargo’s
configuration format.

The first line, [package] , is a section heading that indicates that the following
statements are configuring a package. As we add more information to this file, we’ll add
other sections.

The next three lines set the configuration information Cargo needs to compile your
program: the name, the version, and the edition of Rust to use. We’ll talk about the
edition key in Appendix E.

The last line, [dependencies] , is the start of a section for you to list any of your project’s
dependencies. In Rust, packages of code are referred to as crates. We won’t need any
other crates for this project, but we will in the first project in Chapter 2, so we’ll use this
dependencies section then.

Now open src/main.rs and take a look:

Filename: src/main.rs

[package]
name = "hello_cargo"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

fn main() {
 println!("Hello, world!");
}

https://toml.io/
https://doc.rust-lang.org/book/appendix-05-editions.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 18/636

Cargo has generated a “Hello, world!” program for you, just like the one we wrote in
Listing 1-1! So far, the differences between our project and the project Cargo generated
are that Cargo placed the code in the src directory and we have a Cargo.toml
configuration file in the top directory.

Cargo expects your source files to live inside the src directory. The top-level project
directory is just for README files, license information, configuration files, and anything
else not related to your code. Using Cargo helps you organize your projects. There’s a
place for everything, and everything is in its place.

If you started a project that doesn’t use Cargo, as we did with the “Hello, world!” project,
you can convert it to a project that does use Cargo. Move the project code into the src
directory and create an appropriate Cargo.toml file.

Building and Running a Cargo Project

Now let’s look at what’s different when we build and run the “Hello, world!” program
with Cargo! From your hello_cargo directory, build your project by entering the following
command:

This command creates an executable file in target/debug/hello_cargo (or
target\debug\hello_cargo.exe on Windows) rather than in your current directory. Because
the default build is a debug build, Cargo puts the binary in a directory named debug. You
can run the executable with this command:

If all goes well, Hello, world! should print to the terminal. Running cargo build for
the first time also causes Cargo to create a new file at the top level: Cargo.lock. This file
keeps track of the exact versions of dependencies in your project. This project doesn’t
have dependencies, so the file is a bit sparse. You won’t ever need to change this file
manually; Cargo manages its contents for you.

We just built a project with cargo build and ran it with ./target/debug/hello_cargo ,
but we can also use cargo run to compile the code and then run the resultant
executable all in one command:

$ cargo build
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 2.85 secs

$./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows
Hello, world!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 19/636

Using cargo run is more convenient than having to remember to run cargo build
and then use the whole path to the binary, so most developers use cargo run .

Notice that this time we didn’t see output indicating that Cargo was compiling
hello_cargo . Cargo figured out that the files hadn’t changed, so it didn’t rebuild but

just ran the binary. If you had modified your source code, Cargo would have rebuilt the
project before running it, and you would have seen this output:

Cargo also provides a command called cargo check . This command quickly checks
your code to make sure it compiles but doesn’t produce an executable:

Why would you not want an executable? Often, cargo check is much faster than cargo
build because it skips the step of producing an executable. If you’re continually
checking your work while writing the code, using cargo check will speed up the process
of letting you know if your project is still compiling! As such, many Rustaceans run cargo
check periodically as they write their program to make sure it compiles. Then they run
cargo build when they’re ready to use the executable.

Let’s recap what we’ve learned so far about Cargo:

We can create a project using cargo new .
We can build a project using cargo build .
We can build and run a project in one step using cargo run .
We can build a project without producing a binary to check for errors using cargo
check .
Instead of saving the result of the build in the same directory as our code, Cargo
stores it in the target/debug directory.

An additional advantage of using Cargo is that the commands are the same no matter
which operating system you’re working on. So, at this point, we’ll no longer provide
specific instructions for Linux and macOS versus Windows.

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/hello_cargo`
Hello, world!

$ cargo run
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs
 Running `target/debug/hello_cargo`
Hello, world!

$ cargo check
 Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 20/636

Building for Release

When your project is finally ready for release, you can use cargo build --release to
compile it with optimizations. This command will create an executable in target/release
instead of target/debug. The optimizations make your Rust code run faster, but turning
them on lengthens the time it takes for your program to compile. This is why there are
two different profiles: one for development, when you want to rebuild quickly and often,
and another for building the final program you’ll give to a user that won’t be rebuilt
repeatedly and that will run as fast as possible. If you’re benchmarking your code’s
running time, be sure to run cargo build --release and benchmark with the
executable in target/release.

Cargo as Convention

With simple projects, Cargo doesn’t provide a lot of value over just using rustc , but it
will prove its worth as your programs become more intricate. Once programs grow to
multiple files or need a dependency, it’s much easier to let Cargo coordinate the build.

Even though the hello_cargo project is simple, it now uses much of the real tooling
you’ll use in the rest of your Rust career. In fact, to work on any existing projects, you
can use the following commands to check out the code using Git, change to that
project’s directory, and build:

For more information about Cargo, check out its documentation.

Summary

You’re already off to a great start on your Rust journey! In this chapter, you’ve learned
how to:

Install the latest stable version of Rust using rustup
Update to a newer Rust version
Open locally installed documentation
Write and run a “Hello, world!” program using rustc directly
Create and run a new project using the conventions of Cargo

This is a great time to build a more substantial program to get used to reading and
writing Rust code. So, in Chapter 2, we’ll build a guessing game program. If you would

$ git clone example.org/someproject
$ cd someproject
$ cargo build

https://doc.rust-lang.org/cargo/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 21/636

rather start by learning how common programming concepts work in Rust, see Chapter
3 and then return to Chapter 2.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 22/636

Programming a Guessing Game
Let’s jump into Rust by working through a hands-on project together! This chapter
introduces you to a few common Rust concepts by showing you how to use them in a
real program. You’ll learn about let , match , methods, associated functions, external
crates, and more! In the following chapters, we’ll explore these ideas in more detail. In
this chapter, you’ll just practice the fundamentals.

We’ll implement a classic beginner programming problem: a guessing game. Here’s how
it works: the program will generate a random integer between 1 and 100. It will then
prompt the player to enter a guess. After a guess is entered, the program will indicate
whether the guess is too low or too high. If the guess is correct, the game will print a
congratulatory message and exit.

Setting Up a New Project

To set up a new project, go to the projects directory that you created in Chapter 1 and
make a new project using Cargo, like so:

The first command, cargo new , takes the name of the project (guessing_game) as the
first argument. The second command changes to the new project’s directory.

Look at the generated Cargo.toml file:

Filename: Cargo.toml

As you saw in Chapter 1, cargo new generates a “Hello, world!” program for you. Check
out the src/main.rs file:

Filename: src/main.rs

$ cargo new guessing_game
$ cd guessing_game

[package]
name = "guessing_game"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 23/636

Now let’s compile this “Hello, world!” program and run it in the same step using the
cargo run command:

The run command comes in handy when you need to rapidly iterate on a project, as
we’ll do in this game, quickly testing each iteration before moving on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this file.

Processing a Guess

The first part of the guessing game program will ask for user input, process that input,
and check that the input is in the expected form. To start, we’ll allow the player to input
a guess. Enter the code in Listing 2-1 into src/main.rs.

Filename: src/main.rs

Listing 2-1: Code that gets a guess from the user and prints it

This code contains a lot of information, so let’s go over it line by line. To obtain user
input and then print the result as output, we need to bring the io input/output library
into scope. The io library comes from the standard library, known as std :

fn main() {
 println!("Hello, world!");
}

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 1.50s
 Running `target/debug/guessing_game`
Hello, world!

use std::io;

fn main() {
 println!("Guess the number!");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 println!("You guessed: {guess}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 24/636

By default, Rust has a set of items defined in the standard library that it brings into the
scope of every program. This set is called the prelude, and you can see everything in it in
the standard library documentation.

If a type you want to use isn’t in the prelude, you have to bring that type into scope
explicitly with a use statement. Using the std::io library provides you with a number
of useful features, including the ability to accept user input.

As you saw in Chapter 1, the main function is the entry point into the program:

The fn syntax declares a new function; the parentheses, () , indicate there are no
parameters; and the curly bracket, { , starts the body of the function.

As you also learned in Chapter 1, println! is a macro that prints a string to the screen:

This code is printing a prompt stating what the game is and requesting input from the
user.

Storing Values with Variables

Next, we’ll create a variable to store the user input, like this:

Now the program is getting interesting! There’s a lot going on in this little line. We use
the let statement to create the variable. Here’s another example:

This line creates a new variable named apples and binds it to the value 5. In Rust,
variables are immutable by default, meaning once we give the variable a value, the value
won’t change. We’ll be discussing this concept in detail in the “Variables and Mutability”
section in Chapter 3. To make a variable mutable, we add mut before the variable
name:

use std::io;

fn main() {

 println!("Guess the number!");

 println!("Please input your guess.");

 let mut guess = String::new();

let apples = 5;

https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#variables-and-mutability

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 25/636

Note: The // syntax starts a comment that continues until the end of the line.
Rust ignores everything in comments. We’ll discuss comments in more detail in
Chapter 3.

Returning to the guessing game program, you now know that let mut guess will
introduce a mutable variable named guess . The equal sign (=) tells Rust we want to
bind something to the variable now. On the right of the equal sign is the value that
guess is bound to, which is the result of calling String::new , a function that returns a

new instance of a String . String is a string type provided by the standard library that
is a growable, UTF-8 encoded bit of text.

The :: syntax in the ::new line indicates that new is an associated function of the
String type. An associated function is a function that’s implemented on a type, in this

case String . This new function creates a new, empty string. You’ll find a new function
on many types because it’s a common name for a function that makes a new value of
some kind.

In full, the let mut guess = String::new(); line has created a mutable variable that is
currently bound to a new, empty instance of a String . Whew!

Receiving User Input

Recall that we included the input/output functionality from the standard library with
use std::io; on the first line of the program. Now we’ll call the stdin function from

the io module, which will allow us to handle user input:

If we hadn’t imported the io library with use std::io; at the beginning of the
program, we could still use the function by writing this function call as std::io::stdin .
The stdin function returns an instance of std::io::Stdin , which is a type that
represents a handle to the standard input for your terminal.

Next, the line .read_line(&mut guess) calls the read_line method on the standard
input handle to get input from the user. We’re also passing &mut guess as the
argument to read_line to tell it what string to store the user input in. The full job of
read_line is to take whatever the user types into standard input and append that into

a string (without overwriting its contents), so we therefore pass that string as an

let apples = 5; // immutable
let mut bananas = 5; // mutable

 io::stdin()
 .read_line(&mut guess)

https://doc.rust-lang.org/book/ch03-04-comments.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/io/struct.Stdin.html
https://doc.rust-lang.org/std/io/struct.Stdin.html#method.read_line

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 26/636

argument. The string argument needs to be mutable so the method can change the
string’s content.

The & indicates that this argument is a reference, which gives you a way to let multiple
parts of your code access one piece of data without needing to copy that data into
memory multiple times. References are a complex feature, and one of Rust’s major
advantages is how safe and easy it is to use references. You don’t need to know a lot of
those details to finish this program. For now, all you need to know is that, like variables,
references are immutable by default. Hence, you need to write &mut guess rather than
&guess to make it mutable. (Chapter 4 will explain references more thoroughly.)

Handling Potential Failure with Result

We’re still working on this line of code. We’re now discussing a third line of text, but note
that it’s still part of a single logical line of code. The next part is this method:

We could have written this code as:

However, one long line is difficult to read, so it’s best to divide it. It’s often wise to
introduce a newline and other whitespace to help break up long lines when you call a
method with the .method_name() syntax. Now let’s discuss what this line does.

As mentioned earlier, read_line puts whatever the user enters into the string we pass
to it, but it also returns a Result value. Result is an enumeration, often called an enum,
which is a type that can be in one of multiple possible states. We call each possible state
a variant.

Chapter 6 will cover enums in more detail. The purpose of these Result types is to
encode error-handling information.

Result ’s variants are Ok and Err . The Ok variant indicates the operation was
successful, and inside Ok is the successfully generated value. The Err variant means
the operation failed, and Err contains information about how or why the operation
failed.

Values of the Result type, like values of any type, have methods defined on them. An
instance of Result has an expect method that you can call. If this instance of Result
is an Err value, expect will cause the program to crash and display the message that
you passed as an argument to expect . If the read_line method returns an Err , it
would likely be the result of an error coming from the underlying operating system. If
this instance of Result is an Ok value, expect will take the return value that Ok is

 .expect("Failed to read line");

io::stdin().read_line(&mut guess).expect("Failed to read line");

https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/book/ch06-00-enums.html
https://doc.rust-lang.org/book/ch06-00-enums.html
https://doc.rust-lang.org/std/result/enum.Result.html#method.expect

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 27/636

holding and return just that value to you so you can use it. In this case, that value is the
number of bytes in the user’s input.

If you don’t call expect , the program will compile, but you’ll get a warning:

Rust warns that you haven’t used the Result value returned from read_line ,
indicating that the program hasn’t handled a possible error.

The right way to suppress the warning is to actually write error-handling code, but in our
case we just want to crash this program when a problem occurs, so we can use expect .
You’ll learn about recovering from errors in Chapter 9.

Printing Values with println! Placeholders

Aside from the closing curly bracket, there’s only one more line to discuss in the code so
far:

This line prints the string that now contains the user’s input. The {} set of curly
brackets is a placeholder: think of {} as little crab pincers that hold a value in place.
When printing the value of a variable, the variable name can go inside the curly
brackets. When printing the result of evaluating an expression, place empty curly
brackets in the format string, then follow the format string with a comma-separated list
of expressions to print in each empty curly bracket placeholder in the same order.
Printing a variable and the result of an expression in one call to println! would look
like this:

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
warning: unused `Result` that must be used
 --> src/main.rs:10:5
 |
10 | io::stdin().read_line(&mut guess);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: this `Result` may be an `Err` variant, which should be handled
 = note: `#[warn(unused_must_use)]` on by default

warning: `guessing_game` (bin "guessing_game") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.59s

 println!("You guessed: {guess}");

let x = 5;
let y = 10;

println!("x = {x} and y + 2 = {}", y + 2);

https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 28/636

This code would print x = 5 and y + 2 = 12 .

Testing the First Part

Let’s test the first part of the guessing game. Run it using cargo run :

At this point, the first part of the game is done: we’re getting input from the keyboard
and then printing it.

Generating a Secret Number

Next, we need to generate a secret number that the user will try to guess. The secret
number should be different every time so the game is fun to play more than once. We’ll
use a random number between 1 and 100 so the game isn’t too difficult. Rust doesn’t
yet include random number functionality in its standard library. However, the Rust team
does provide a rand crate with said functionality.

Using a Crate to Get More Functionality

Remember that a crate is a collection of Rust source code files. The project we’ve been
building is a binary crate, which is an executable. The rand crate is a library crate, which
contains code that is intended to be used in other programs and can’t be executed on
its own.

Cargo’s coordination of external crates is where Cargo really shines. Before we can write
code that uses rand , we need to modify the Cargo.toml file to include the rand crate as
a dependency. Open that file now and add the following line to the bottom, beneath the
[dependencies] section header that Cargo created for you. Be sure to specify rand

exactly as we have here, with this version number, or the code examples in this tutorial
may not work:

Filename: Cargo.toml

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 6.44s
 Running `target/debug/guessing_game`
Guess the number!
Please input your guess.
6
You guessed: 6

https://crates.io/crates/rand

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 29/636

In the Cargo.toml file, everything that follows a header is part of that section that
continues until another section starts. In [dependencies] you tell Cargo which external
crates your project depends on and which versions of those crates you require. In this
case, we specify the rand crate with the semantic version specifier 0.8.5 . Cargo
understands Semantic Versioning (sometimes called SemVer), which is a standard for
writing version numbers. The specifier 0.8.5 is actually shorthand for ^0.8.5 , which
means any version that is at least 0.8.5 but below 0.9.0.

Cargo considers these versions to have public APIs compatible with version 0.8.5, and
this specification ensures you’ll get the latest patch release that will still compile with the
code in this chapter. Any version 0.9.0 or greater is not guaranteed to have the same API
as what the following examples use.

Now, without changing any of the code, let’s build the project, as shown in Listing 2-2.

Listing 2-2: The output from running cargo build after adding the rand crate as a dependency

You may see different version numbers (but they will all be compatible with the code,
thanks to SemVer!) and different lines (depending on the operating system), and the
lines may be in a different order.

When we include an external dependency, Cargo fetches the latest versions of
everything that dependency needs from the registry, which is a copy of data from
Crates.io. Crates.io is where people in the Rust ecosystem post their open source Rust
projects for others to use.

After updating the registry, Cargo checks the [dependencies] section and downloads
any crates listed that aren’t already downloaded. In this case, although we only listed

[dependencies]
rand = "0.8.5"

$ cargo build
 Updating crates.io index
 Downloaded rand v0.8.5
 Downloaded libc v0.2.127
 Downloaded getrandom v0.2.7
 Downloaded cfg-if v1.0.0
 Downloaded ppv-lite86 v0.2.16
 Downloaded rand_chacha v0.3.1
 Downloaded rand_core v0.6.3
 Compiling libc v0.2.127
 Compiling getrandom v0.2.7
 Compiling cfg-if v1.0.0
 Compiling ppv-lite86 v0.2.16
 Compiling rand_core v0.6.3
 Compiling rand_chacha v0.3.1
 Compiling rand v0.8.5
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53s

http://semver.org/
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 30/636

rand as a dependency, Cargo also grabbed other crates that rand depends on to work.
After downloading the crates, Rust compiles them and then compiles the project with
the dependencies available.

If you immediately run cargo build again without making any changes, you won’t get
any output aside from the Finished line. Cargo knows it has already downloaded and
compiled the dependencies, and you haven’t changed anything about them in your
Cargo.toml file. Cargo also knows that you haven’t changed anything about your code, so
it doesn’t recompile that either. With nothing to do, it simply exits.

If you open the src/main.rs file, make a trivial change, and then save it and build again,
you’ll only see two lines of output:

These lines show that Cargo only updates the build with your tiny change to the
src/main.rs file. Your dependencies haven’t changed, so Cargo knows it can reuse what it
has already downloaded and compiled for those.

Ensuring Reproducible Builds with the Cargo.lock File

Cargo has a mechanism that ensures you can rebuild the same artifact every time you
or anyone else builds your code: Cargo will use only the versions of the dependencies
you specified until you indicate otherwise. For example, say that next week version 0.8.6
of the rand crate comes out, and that version contains an important bug fix, but it also
contains a regression that will break your code. To handle this, Rust creates the
Cargo.lock file the first time you run cargo build , so we now have this in the
guessing_game directory.

When you build a project for the first time, Cargo figures out all the versions of the
dependencies that fit the criteria and then writes them to the Cargo.lock file. When you
build your project in the future, Cargo will see that the Cargo.lock file exists and will use
the versions specified there rather than doing all the work of figuring out versions again.
This lets you have a reproducible build automatically. In other words, your project will
remain at 0.8.5 until you explicitly upgrade, thanks to the Cargo.lock file. Because the
Cargo.lock file is important for reproducible builds, it’s often checked into source control
with the rest of the code in your project.

Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides the command update , which will
ignore the Cargo.lock file and figure out all the latest versions that fit your specifications
in Cargo.toml. Cargo will then write those versions to the Cargo.lock file. Otherwise, by

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53 secs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 31/636

default, Cargo will only look for versions greater than 0.8.5 and less than 0.9.0. If the
rand crate has released the two new versions 0.8.6 and 0.9.0, you would see the

following if you ran cargo update :

Cargo ignores the 0.9.0 release. At this point, you would also notice a change in your
Cargo.lock file noting that the version of the rand crate you are now using is 0.8.6. To
use rand version 0.9.0 or any version in the 0.9.x series, you’d have to update the
Cargo.toml file to look like this instead:

The next time you run cargo build , Cargo will update the registry of crates available
and reevaluate your rand requirements according to the new version you have
specified.

There’s a lot more to say about Cargo and its ecosystem, which we’ll discuss in Chapter
14, but for now, that’s all you need to know. Cargo makes it very easy to reuse libraries,
so Rustaceans are able to write smaller projects that are assembled from a number of
packages.

Generating a Random Number

Let’s start using rand to generate a number to guess. The next step is to update
src/main.rs, as shown in Listing 2-3.

Filename: src/main.rs

$ cargo update
 Updating crates.io index
 Updating rand v0.8.5 -> v0.8.6

[dependencies]
rand = "0.9.0"

http://doc.crates.io/
http://doc.crates.io/crates-io.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 32/636

Listing 2-3: Adding code to generate a random number

First we add the line use rand::Rng; . The Rng trait defines methods that random
number generators implement, and this trait must be in scope for us to use those
methods. Chapter 10 will cover traits in detail.

Next, we’re adding two lines in the middle. In the first line, we call the
rand::thread_rng function that gives us the particular random number generator

we’re going to use: one that is local to the current thread of execution and is seeded by
the operating system. Then we call the gen_range method on the random number
generator. This method is defined by the Rng trait that we brought into scope with the
use rand::Rng; statement. The gen_range method takes a range expression as an

argument and generates a random number in the range. The kind of range expression
we’re using here takes the form start..=end and is inclusive on the lower and upper
bounds, so we need to specify 1..=100 to request a number between 1 and 100.

Note: You won’t just know which traits to use and which methods and functions to
call from a crate, so each crate has documentation with instructions for using it.
Another neat feature of Cargo is that running the cargo doc --open command
will build documentation provided by all your dependencies locally and open it in
your browser. If you’re interested in other functionality in the rand crate, for
example, run cargo doc --open and click rand in the sidebar on the left.

The second new line prints the secret number. This is useful while we’re developing the
program to be able to test it, but we’ll delete it from the final version. It’s not much of a
game if the program prints the answer as soon as it starts!

use std::io;
use rand::Rng;

fn main() {
 println!("Guess the number!");

 let secret_number = rand::thread_rng().gen_range(1..=100);

 println!("The secret number is: {secret_number}");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 println!("You guessed: {guess}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 33/636

Try running the program a few times:

You should get different random numbers, and they should all be numbers between 1
and 100. Great job!

Comparing the Guess to the Secret Number

Now that we have user input and a random number, we can compare them. That step is
shown in Listing 2-4. Note that this code won’t compile just yet, as we will explain.

Filename: src/main.rs

Listing 2-4: Handling the possible return values of comparing two numbers

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 2.53s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
 // --snip--

 println!("You guessed: {guess}");

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 34/636

First we add another use statement, bringing a type called std::cmp::Ordering into
scope from the standard library. The Ordering type is another enum and has the
variants Less , Greater , and Equal . These are the three outcomes that are possible
when you compare two values.

Then we add five new lines at the bottom that use the Ordering type. The cmp method
compares two values and can be called on anything that can be compared. It takes a
reference to whatever you want to compare with: here it’s comparing guess to
secret_number . Then it returns a variant of the Ordering enum we brought into scope

with the use statement. We use a match expression to decide what to do next based
on which variant of Ordering was returned from the call to cmp with the values in
guess and secret_number .

A match expression is made up of arms. An arm consists of a pattern to match against,
and the code that should be run if the value given to match fits that arm’s pattern. Rust
takes the value given to match and looks through each arm’s pattern in turn. Patterns
and the match construct are powerful Rust features: they let you express a variety of
situations your code might encounter and they make sure you handle them all. These
features will be covered in detail in Chapter 6 and Chapter 18, respectively.

Let’s walk through an example with the match expression we use here. Say that the
user has guessed 50 and the randomly generated secret number this time is 38.

When the code compares 50 to 38, the cmp method will return Ordering::Greater
because 50 is greater than 38. The match expression gets the Ordering::Greater
value and starts checking each arm’s pattern. It looks at the first arm’s pattern,
Ordering::Less , and sees that the value Ordering::Greater does not match
Ordering::Less , so it ignores the code in that arm and moves to the next arm. The

next arm’s pattern is Ordering::Greater , which does match Ordering::Greater ! The
associated code in that arm will execute and print Too big! to the screen. The match
expression ends after the first successful match, so it won’t look at the last arm in this
scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

https://doc.rust-lang.org/book/ch06-02-match.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 35/636

The core of the error states that there are mismatched types. Rust has a strong, static
type system. However, it also has type inference. When we wrote let mut guess =
String::new() , Rust was able to infer that guess should be a String and didn’t make
us write the type. The secret_number , on the other hand, is a number type. A few of
Rust’s number types can have a value between 1 and 100: i32 , a 32-bit number; u32 ,
an unsigned 32-bit number; i64 , a 64-bit number; as well as others. Unless otherwise
specified, Rust defaults to an i32 , which is the type of secret_number unless you add
type information elsewhere that would cause Rust to infer a different numerical type.
The reason for the error is that Rust cannot compare a string and a number type.

Ultimately, we want to convert the String the program reads as input into a real
number type so we can compare it numerically to the secret number. We do so by
adding this line to the main function body:

Filename: src/main.rs

$ cargo build
 Compiling libc v0.2.86
 Compiling getrandom v0.2.2
 Compiling cfg-if v1.0.0
 Compiling ppv-lite86 v0.2.10
 Compiling rand_core v0.6.2
 Compiling rand_chacha v0.3.0
 Compiling rand v0.8.5
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
error[E0308]: mismatched types
 --> src/main.rs:22:21
 |
22 | match guess.cmp(&secret_number) {
 | --- ^^^^^^^^^^^^^^ expected struct `String`, found
integer
 | |
 | arguments to this function are incorrect
 |
 = note: expected reference `&String`
 found reference `&{integer}`
note: associated function defined here
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/core/src/cmp.rs:783
:8

For more information about this error, try `rustc --explain E0308`.
error: could not compile `guessing_game` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 36/636

The line is:

We create a variable named guess . But wait, doesn’t the program already have a
variable named guess ? It does, but helpfully Rust allows us to shadow the previous
value of guess with a new one. Shadowing lets us reuse the guess variable name
rather than forcing us to create two unique variables, such as guess_str and guess ,
for example. We’ll cover this in more detail in Chapter 3, but for now, know that this
feature is often used when you want to convert a value from one type to another type.

We bind this new variable to the expression guess.trim().parse() . The guess in the
expression refers to the original guess variable that contained the input as a string. The
trim method on a String instance will eliminate any whitespace at the beginning and

end, which we must do to be able to compare the string to the u32 , which can only
contain numerical data. The user must press enter to satisfy read_line and input their
guess, which adds a newline character to the string. For example, if the user types 5 and
presses enter, guess looks like this: 5\n . The \n represents “newline.” (On Windows,
pressing enter results in a carriage return and a newline, \r\n .) The trim method
eliminates \n or \r\n , resulting in just 5 .

The parse method on strings converts a string to another type. Here, we use it to
convert from a string to a number. We need to tell Rust the exact number type we want
by using let guess: u32 . The colon (:) after guess tells Rust we’ll annotate the
variable’s type. Rust has a few built-in number types; the u32 seen here is an unsigned,
32-bit integer. It’s a good default choice for a small positive number. You’ll learn about
other number types in Chapter 3.

Additionally, the u32 annotation in this example program and the comparison with
secret_number means Rust will infer that secret_number should be a u32 as well. So

 // --snip--

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 let guess: u32 = guess.trim().parse().expect("Please type a number!");

 println!("You guessed: {guess}");

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }

let guess: u32 = guess.trim().parse().expect("Please type a number!");

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#shadowing
https://doc.rust-lang.org/std/primitive.str.html#method.parse
https://doc.rust-lang.org/book/ch03-02-data-types.html#integer-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 37/636

now the comparison will be between two values of the same type!

The parse method will only work on characters that can logically be converted into
numbers and so can easily cause errors. If, for example, the string contained A👍 % ,
there would be no way to convert that to a number. Because it might fail, the parse
method returns a Result type, much as the read_line method does (discussed earlier
in “Handling Potential Failure with Result ”). We’ll treat this Result the same way by
using the expect method again. If parse returns an Err Result variant because it
couldn’t create a number from the string, the expect call will crash the game and print
the message we give it. If parse can successfully convert the string to a number, it will
return the Ok variant of Result , and expect will return the number that we want from
the Ok value.

Let’s run the program now:

Nice! Even though spaces were added before the guess, the program still figured out
that the user guessed 76. Run the program a few times to verify the different behavior
with different kinds of input: guess the number correctly, guess a number that is too
high, and guess a number that is too low.

We have most of the game working now, but the user can make only one guess. Let’s
change that by adding a loop!

Allowing Multiple Guesses with Looping

The loop keyword creates an infinite loop. We’ll add a loop to give users more chances
at guessing the number:

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 58
Please input your guess.
 76
You guessed: 76
Too big!

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#handling-potential-failure-with-result

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 38/636

As you can see, we’ve moved everything from the guess input prompt onward into a
loop. Be sure to indent the lines inside the loop another four spaces each and run the
program again. The program will now ask for another guess forever, which actually
introduces a new problem. It doesn’t seem like the user can quit!

The user could always interrupt the program by using the keyboard shortcut ctrl-c. But
there’s another way to escape this insatiable monster, as mentioned in the parse
discussion in “Comparing the Guess to the Secret Number”: if the user enters a non-
number answer, the program will crash. We can take advantage of that to allow the user
to quit, as shown here:

 // --snip--

 println!("The secret number is: {secret_number}");

 loop {
 println!("Please input your guess.");

 // --snip--

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
 }
}

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#comparing-the-guess-to-the-secret-number

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 39/636

Typing quit will quit the game, but as you’ll notice, so will entering any other non-
number input. This is suboptimal, to say the least; we want the game to also stop when
the correct number is guessed.

Quitting After a Correct Guess

Let’s program the game to quit when the user wins by adding a break statement:

Filename: src/main.rs

Adding the break line after You win! makes the program exit the loop when the user
guesses the secret number correctly. Exiting the loop also means exiting the program,
because the loop is the last part of main .

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 1.50s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45
Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!: ParseIntError { kind:
InvalidDigit }', src/main.rs:28:47
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

 // --snip--

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => {
 println!("You win!");
 break;
 }
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 40/636

Handling Invalid Input

To further refine the game’s behavior, rather than crashing the program when the user
inputs a non-number, let’s make the game ignore a non-number so the user can
continue guessing. We can do that by altering the line where guess is converted from a
String to a u32 , as shown in Listing 2-5.

Filename: src/main.rs

Listing 2-5: Ignoring a non-number guess and asking for another guess instead of crashing the program

We switch from an expect call to a match expression to move from crashing on an
error to handling the error. Remember that parse returns a Result type and Result
is an enum that has the variants Ok and Err . We’re using a match expression here, as
we did with the Ordering result of the cmp method.

If parse is able to successfully turn the string into a number, it will return an Ok value
that contains the resultant number. That Ok value will match the first arm’s pattern,
and the match expression will just return the num value that parse produced and put
inside the Ok value. That number will end up right where we want it in the new guess
variable we’re creating.

If parse is not able to turn the string into a number, it will return an Err value that
contains more information about the error. The Err value does not match the Ok(num)
pattern in the first match arm, but it does match the Err(_) pattern in the second arm.
The underscore, _ , is a catchall value; in this example, we’re saying we want to match
all Err values, no matter what information they have inside them. So the program will
execute the second arm’s code, continue , which tells the program to go to the next
iteration of the loop and ask for another guess. So, effectively, the program ignores all
errors that parse might encounter!

Now everything in the program should work as expected. Let’s try it:

 // --snip--

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 };

 println!("You guessed: {guess}");

 // --snip--

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 41/636

Awesome! With one tiny final tweak, we will finish the guessing game. Recall that the
program is still printing the secret number. That worked well for testing, but it ruins the
game. Let’s delete the println! that outputs the secret number. Listing 2-6 shows the
final code.

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished dev [unoptimized + debuginfo] target(s) in 4.45s
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61
You guessed: 61
You win!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 42/636

Listing 2-6: Complete guessing game code

At this point, you’ve successfully built the guessing game. Congratulations!

Summary

This project was a hands-on way to introduce you to many new Rust concepts: let ,
match , functions, the use of external crates, and more. In the next few chapters, you’ll

learn about these concepts in more detail. Chapter 3 covers concepts that most
programming languages have, such as variables, data types, and functions, and shows
how to use them in Rust. Chapter 4 explores ownership, a feature that makes Rust
different from other languages. Chapter 5 discusses structs and method syntax, and
Chapter 6 explains how enums work.

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
 println!("Guess the number!");

 let secret_number = rand::thread_rng().gen_range(1..=100);

 loop {
 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin()
 .read_line(&mut guess)
 .expect("Failed to read line");

 let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 };

 println!("You guessed: {guess}");

 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => {
 println!("You win!");
 break;
 }
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 43/636

Common Programming Concepts
This chapter covers concepts that appear in almost every programming language and
how they work in Rust. Many programming languages have much in common at their
core. None of the concepts presented in this chapter are unique to Rust, but we’ll
discuss them in the context of Rust and explain the conventions around using these
concepts.

Specifically, you’ll learn about variables, basic types, functions, comments, and control
flow. These foundations will be in every Rust program, and learning them early will give
you a strong core to start from.

Keywords

The Rust language has a set of keywords that are reserved for use by the language
only, much as in other languages. Keep in mind that you cannot use these words
as names of variables or functions. Most of the keywords have special meanings,
and you’ll be using them to do various tasks in your Rust programs; a few have no
current functionality associated with them but have been reserved for functionality
that might be added to Rust in the future. You can find a list of the keywords in
Appendix A.

https://doc.rust-lang.org/book/appendix-01-keywords.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 44/636

Variables and Mutability

As mentioned in the “Storing Values with Variables” section, by default, variables are
immutable. This is one of many nudges Rust gives you to write your code in a way that
takes advantage of the safety and easy concurrency that Rust offers. However, you still
have the option to make your variables mutable. Let’s explore how and why Rust
encourages you to favor immutability and why sometimes you might want to opt out.

When a variable is immutable, once a value is bound to a name, you can’t change that
value. To illustrate this, generate a new project called variables in your projects directory
by using cargo new variables .

Then, in your new variables directory, open src/main.rs and replace its code with the
following code, which won’t compile just yet:

Filename: src/main.rs

Save and run the program using cargo run . You should receive an error message
regarding an immutability error, as shown in this output:

This example shows how the compiler helps you find errors in your programs. Compiler
errors can be frustrating, but really they only mean your program isn’t safely doing what

fn main() {
 let x = 5;
 println!("The value of x is: {x}");
 x = 6;
 println!("The value of x is: {x}");
}

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
3 | println!("The value of x is: {x}");
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable

For more information about this error, try `rustc --explain E0384`.
error: could not compile `variables` due to previous error

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#storing-values-with-variables
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 45/636

you want it to do yet; they do not mean that you’re not a good programmer!
Experienced Rustaceans still get compiler errors.

You received the error message cannot assign twice to immutable variable `x`
because you tried to assign a second value to the immutable x variable.

It’s important that we get compile-time errors when we attempt to change a value that’s
designated as immutable because this very situation can lead to bugs. If one part of our
code operates on the assumption that a value will never change and another part of our
code changes that value, it’s possible that the first part of the code won’t do what it was
designed to do. The cause of this kind of bug can be difficult to track down after the fact,
especially when the second piece of code changes the value only sometimes. The Rust
compiler guarantees that when you state that a value won’t change, it really won’t
change, so you don’t have to keep track of it yourself. Your code is thus easier to reason
through.

But mutability can be very useful, and can make code more convenient to write.
Although variables are immutable by default, you can make them mutable by adding
mut in front of the variable name as you did in Chapter 2. Adding mut also conveys

intent to future readers of the code by indicating that other parts of the code will be
changing this variable’s value.

For example, let’s change src/main.rs to the following:

Filename: src/main.rs

When we run the program now, we get this:

We’re allowed to change the value bound to x from 5 to 6 when mut is used.
Ultimately, deciding whether to use mutability or not is up to you and depends on what
you think is clearest in that particular situation.

fn main() {
 let mut x = 5;
 println!("The value of x is: {x}");
 x = 6;
 println!("The value of x is: {x}");
}

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev [unoptimized + debuginfo] target(s) in 0.30s
 Running `target/debug/variables`
The value of x is: 5
The value of x is: 6

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#storing-values-with-variables

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 46/636

Constants

Like immutable variables, constants are values that are bound to a name and are not
allowed to change, but there are a few differences between constants and variables.

First, you aren’t allowed to use mut with constants. Constants aren’t just immutable by
default—they’re always immutable. You declare constants using the const keyword
instead of the let keyword, and the type of the value must be annotated. We’ll cover
types and type annotations in the next section, “Data Types”, so don’t worry about the
details right now. Just know that you must always annotate the type.

Constants can be declared in any scope, including the global scope, which makes them
useful for values that many parts of code need to know about.

The last difference is that constants may be set only to a constant expression, not the
result of a value that could only be computed at runtime.

Here’s an example of a constant declaration:

The constant’s name is THREE_HOURS_IN_SECONDS and its value is set to the result of
multiplying 60 (the number of seconds in a minute) by 60 (the number of minutes in an
hour) by 3 (the number of hours we want to count in this program). Rust’s naming
convention for constants is to use all uppercase with underscores between words. The
compiler is able to evaluate a limited set of operations at compile time, which lets us
choose to write out this value in a way that’s easier to understand and verify, rather
than setting this constant to the value 10,800. See the Rust Reference’s section on
constant evaluation for more information on what operations can be used when
declaring constants.

Constants are valid for the entire time a program runs, within the scope in which they
were declared. This property makes constants useful for values in your application
domain that multiple parts of the program might need to know about, such as the
maximum number of points any player of a game is allowed to earn, or the speed of
light.

Naming hardcoded values used throughout your program as constants is useful in
conveying the meaning of that value to future maintainers of the code. It also helps to
have only one place in your code you would need to change if the hardcoded value
needed to be updated in the future.

Shadowing

As you saw in the guessing game tutorial in Chapter 2, you can declare a new variable
with the same name as a previous variable. Rustaceans say that the first variable is

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

https://doc.rust-lang.org/book/ch03-02-data-types.html#data-types
https://doc.rust-lang.org/reference/const_eval.html
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#comparing-the-guess-to-the-secret-number

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 47/636

shadowed by the second, which means that the second variable is what the compiler will
see when you use the name of the variable. In effect, the second variable overshadows
the first, taking any uses of the variable name to itself until either it itself is shadowed or
the scope ends. We can shadow a variable by using the same variable’s name and
repeating the use of the let keyword as follows:

Filename: src/main.rs

This program first binds x to a value of 5 . Then it creates a new variable x by
repeating let x = , taking the original value and adding 1 so the value of x is then 6 .
Then, within an inner scope created with the curly brackets, the third let statement
also shadows x and creates a new variable, multiplying the previous value by 2 to give
x a value of 12 . When that scope is over, the inner shadowing ends and x returns to

being 6 . When we run this program, it will output the following:

Shadowing is different from marking a variable as mut because we’ll get a compile-time
error if we accidentally try to reassign to this variable without using the let keyword.
By using let , we can perform a few transformations on a value but have the variable
be immutable after those transformations have been completed.

The other difference between mut and shadowing is that because we’re effectively
creating a new variable when we use the let keyword again, we can change the type of
the value but reuse the same name. For example, say our program asks a user to show
how many spaces they want between some text by inputting space characters, and then
we want to store that input as a number:

fn main() {
 let x = 5;

 let x = x + 1;

 {
 let x = x * 2;
 println!("The value of x in the inner scope is: {x}");
 }

 println!("The value of x is: {x}");
}

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/variables`
The value of x in the inner scope is: 12
The value of x is: 6

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 48/636

The first spaces variable is a string type and the second spaces variable is a number
type. Shadowing thus spares us from having to come up with different names, such as
spaces_str and spaces_num ; instead, we can reuse the simpler spaces name.

However, if we try to use mut for this, as shown here, we’ll get a compile-time error:

The error says we’re not allowed to mutate a variable’s type:

Now that we’ve explored how variables work, let’s look at more data types they can
have.

 let spaces = " ";
 let spaces = spaces.len();

 let mut spaces = " ";
 spaces = spaces.len();

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
error[E0308]: mismatched types
 --> src/main.rs:3:14
 |
2 | let mut spaces = " ";
 | ----- expected due to this value
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected `&str`, found `usize`

For more information about this error, try `rustc --explain E0308`.
error: could not compile `variables` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 49/636

Data Types

Every value in Rust is of a certain data type, which tells Rust what kind of data is being
specified so it knows how to work with that data. We’ll look at two data type subsets:
scalar and compound.

Keep in mind that Rust is a statically typed language, which means that it must know the
types of all variables at compile time. The compiler can usually infer what type we want
to use based on the value and how we use it. In cases when many types are possible,
such as when we converted a String to a numeric type using parse in the “Comparing
the Guess to the Secret Number” section in Chapter 2, we must add a type annotation,
like this:

If we don’t add the : u32 type annotation shown in the preceding code, Rust will
display the following error, which means the compiler needs more information from us
to know which type we want to use:

You’ll see different type annotations for other data types.

Scalar Types

A scalar type represents a single value. Rust has four primary scalar types: integers,
floating-point numbers, Booleans, and characters. You may recognize these from other
programming languages. Let’s jump into how they work in Rust.

let guess: u32 = "42".parse().expect("Not a number!");

$ cargo build
 Compiling no_type_annotations v0.1.0
(file:///projects/no_type_annotations)
error[E0282]: type annotations needed
 --> src/main.rs:2:9
 |
2 | let guess = "42".parse().expect("Not a number!");
 | ^^^^^
 |
help: consider giving `guess` an explicit type
 |
2 | let guess: _ = "42".parse().expect("Not a number!");
 | +++

For more information about this error, try `rustc --explain E0282`.
error: could not compile `no_type_annotations` due to previous error

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#comparing-the-guess-to-the-secret-number

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 50/636

Integer Types

An integer is a number without a fractional component. We used one integer type in
Chapter 2, the u32 type. This type declaration indicates that the value it’s associated
with should be an unsigned integer (signed integer types start with i instead of u) that
takes up 32 bits of space. Table 3-1 shows the built-in integer types in Rust. We can use
any of these variants to declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

128-bit i128 u128

arch isize usize

Each variant can be either signed or unsigned and has an explicit size. Signed and
unsigned refer to whether it’s possible for the number to be negative—in other words,
whether the number needs to have a sign with it (signed) or whether it will only ever be
positive and can therefore be represented without a sign (unsigned). It’s like writing
numbers on paper: when the sign matters, a number is shown with a plus sign or a
minus sign; however, when it’s safe to assume the number is positive, it’s shown with no
sign. Signed numbers are stored using two’s complement representation.

Each signed variant can store numbers from -(2n - 1) to 2n - 1 - 1 inclusive, where n is the

number of bits that variant uses. So an i8 can store numbers from -(27) to 27 - 1, which

equals -128 to 127. Unsigned variants can store numbers from 0 to 2n - 1, so a u8 can

store numbers from 0 to 28 - 1, which equals 0 to 255.

Additionally, the isize and usize types depend on the architecture of the computer
your program is running on, which is denoted in the table as “arch”: 64 bits if you’re on a
64-bit architecture and 32 bits if you’re on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2. Note that number
literals that can be multiple numeric types allow a type suffix, such as 57u8 , to
designate the type. Number literals can also use _ as a visual separator to make the
number easier to read, such as 1_000 , which will have the same value as if you had
specified 1000 .

Table 3-2: Integer Literals in Rust

https://en.wikipedia.org/wiki/Two%27s_complement

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 51/636

Number literals Example

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte (u8 only) b'A'

So how do you know which type of integer to use? If you’re unsure, Rust’s defaults are
generally good places to start: integer types default to i32 . The primary situation in
which you’d use isize or usize is when indexing some sort of collection.

Integer Overflow

Let’s say you have a variable of type u8 that can hold values between 0 and 255. If
you try to change the variable to a value outside that range, such as 256, integer
overflow will occur, which can result in one of two behaviors. When you’re
compiling in debug mode, Rust includes checks for integer overflow that cause
your program to panic at runtime if this behavior occurs. Rust uses the term
panicking when a program exits with an error; we’ll discuss panics in more depth in
the “Unrecoverable Errors with panic! ” section in Chapter 9.

When you’re compiling in release mode with the --release flag, Rust does not
include checks for integer overflow that cause panics. Instead, if overflow occurs,
Rust performs two’s complement wrapping. In short, values greater than the
maximum value the type can hold “wrap around” to the minimum of the values the
type can hold. In the case of a u8 , the value 256 becomes 0, the value 257
becomes 1, and so on. The program won’t panic, but the variable will have a value
that probably isn’t what you were expecting it to have. Relying on integer
overflow’s wrapping behavior is considered an error.

To explicitly handle the possibility of overflow, you can use these families of
methods provided by the standard library for primitive numeric types:

Wrap in all modes with the wrapping_* methods, such as wrapping_add .
Return the None value if there is overflow with the checked_* methods.
Return the value and a boolean indicating whether there was overflow with
the overflowing_* methods.
Saturate at the value’s minimum or maximum values with the saturating_*
methods.

https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 52/636

Floating-Point Types

Rust also has two primitive types for floating-point numbers, which are numbers with
decimal points. Rust’s floating-point types are f32 and f64 , which are 32 bits and 64
bits in size, respectively. The default type is f64 because on modern CPUs, it’s roughly
the same speed as f32 but is capable of more precision. All floating-point types are
signed.

Here’s an example that shows floating-point numbers in action:

Filename: src/main.rs

Floating-point numbers are represented according to the IEEE-754 standard. The f32
type is a single-precision float, and f64 has double precision.

Numeric Operations

Rust supports the basic mathematical operations you’d expect for all the number types:
addition, subtraction, multiplication, division, and remainder. Integer division truncates
toward zero to the nearest integer. The following code shows how you’d use each
numeric operation in a let statement:

Filename: src/main.rs

Each expression in these statements uses a mathematical operator and evaluates to a
single value, which is then bound to a variable. Appendix B contains a list of all

fn main() {
 let x = 2.0; // f64

 let y: f32 = 3.0; // f32
}

fn main() {
 // addition
 let sum = 5 + 10;

 // subtraction
 let difference = 95.5 - 4.3;

 // multiplication
 let product = 4 * 30;

 // division
 let quotient = 56.7 / 32.2;
 let truncated = -5 / 3; // Results in -1

 // remainder
 let remainder = 43 % 5;
}

https://doc.rust-lang.org/book/appendix-02-operators.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 53/636

operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has two possible
values: true and false . Booleans are one byte in size. The Boolean type in Rust is
specified using bool . For example:

Filename: src/main.rs

The main way to use Boolean values is through conditionals, such as an if expression.
We’ll cover how if expressions work in Rust in the “Control Flow” section.

The Character Type

Rust’s char type is the language’s most primitive alphabetic type. Here are some
examples of declaring char values:

Filename: src/main.rs

Note that we specify char literals with single quotes, as opposed to string literals, which
use double quotes. Rust’s char type is four bytes in size and represents a Unicode
Scalar Value, which means it can represent a lot more than just ASCII. Accented letters;
Chinese, Japanese, and Korean characters; emoji; and zero-width spaces are all valid
char values in Rust. Unicode Scalar Values range from U+0000 to U+D7FF and U+E000

to U+10FFFF inclusive. However, a “character” isn’t really a concept in Unicode, so your
human intuition for what a “character” is may not match up with what a char is in Rust.
We’ll discuss this topic in detail in “Storing UTF-8 Encoded Text with Strings” in Chapter
8.

fn main() {
 let t = true;

 let f: bool = false; // with explicit type annotation
}

fn main() {
 let c = 'z';
 let z: char = 'ℤ'; // with explicit type annotation
 let heart_eyed_cat = '😻 ';
}

https://doc.rust-lang.org/book/ch03-05-control-flow.html#control-flow
https://doc.rust-lang.org/book/ch08-02-strings.html#storing-utf-8-encoded-text-with-strings

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 54/636

Compound Types

Compound types can group multiple values into one type. Rust has two primitive
compound types: tuples and arrays.

The Tuple Type

A tuple is a general way of grouping together a number of values with a variety of types
into one compound type. Tuples have a fixed length: once declared, they cannot grow or
shrink in size.

We create a tuple by writing a comma-separated list of values inside parentheses. Each
position in the tuple has a type, and the types of the different values in the tuple don’t
have to be the same. We’ve added optional type annotations in this example:

Filename: src/main.rs

The variable tup binds to the entire tuple because a tuple is considered a single
compound element. To get the individual values out of a tuple, we can use pattern
matching to destructure a tuple value, like this:

Filename: src/main.rs

This program first creates a tuple and binds it to the variable tup . It then uses a pattern
with let to take tup and turn it into three separate variables, x , y , and z . This is
called destructuring because it breaks the single tuple into three parts. Finally, the
program prints the value of y , which is 6.4 .

We can also access a tuple element directly by using a period (.) followed by the index
of the value we want to access. For example:

Filename: src/main.rs

fn main() {
 let tup: (i32, f64, u8) = (500, 6.4, 1);
}

fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

 println!("The value of y is: {y}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 55/636

This program creates the tuple x and then accesses each element of the tuple using
their respective indices. As with most programming languages, the first index in a tuple
is 0.

The tuple without any values has a special name, unit. This value and its corresponding
type are both written () and represent an empty value or an empty return type.
Expressions implicitly return the unit value if they don’t return any other value.

The Array Type

Another way to have a collection of multiple values is with an array. Unlike a tuple, every
element of an array must have the same type. Unlike arrays in some other languages,
arrays in Rust have a fixed length.

We write the values in an array as a comma-separated list inside square brackets:

Filename: src/main.rs

Arrays are useful when you want your data allocated on the stack rather than the heap
(we will discuss the stack and the heap more in Chapter 4) or when you want to ensure
you always have a fixed number of elements. An array isn’t as flexible as the vector type,
though. A vector is a similar collection type provided by the standard library that is
allowed to grow or shrink in size. If you’re unsure whether to use an array or a vector,
chances are you should use a vector. Chapter 8 discusses vectors in more detail.

However, arrays are more useful when you know the number of elements will not need
to change. For example, if you were using the names of the month in a program, you
would probably use an array rather than a vector because you know it will always
contain 12 elements:

fn main() {
 let x: (i32, f64, u8) = (500, 6.4, 1);

 let five_hundred = x.0;

 let six_point_four = x.1;

 let one = x.2;
}

fn main() {
 let a = [1, 2, 3, 4, 5];
}

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html#the-stack-and-the-heap
https://doc.rust-lang.org/book/ch08-01-vectors.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 56/636

You write an array’s type using square brackets with the type of each element, a
semicolon, and then the number of elements in the array, like so:

Here, i32 is the type of each element. After the semicolon, the number 5 indicates the
array contains five elements.

You can also initialize an array to contain the same value for each element by specifying
the initial value, followed by a semicolon, and then the length of the array in square
brackets, as shown here:

The array named a will contain 5 elements that will all be set to the value 3 initially.
This is the same as writing let a = [3, 3, 3, 3, 3]; but in a more concise way.

Accessing Array Elements

An array is a single chunk of memory of a known, fixed size that can be allocated on the
stack. You can access elements of an array using indexing, like this:

Filename: src/main.rs

In this example, the variable named first will get the value 1 because that is the
value at index [0] in the array. The variable named second will get the value 2 from
index [1] in the array.

Invalid Array Element Access

Let’s see what happens if you try to access an element of an array that is past the end of
the array. Say you run this code, similar to the guessing game in Chapter 2, to get an
array index from the user:

Filename: src/main.rs

let months = ["January", "February", "March", "April", "May", "June",
"July",
 "August", "September", "October", "November", "December"];

let a: [i32; 5] = [1, 2, 3, 4, 5];

let a = [3; 5];

fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 57/636

This code compiles successfully. If you run this code using cargo run and enter 0 , 1 ,
2 , 3 , or 4 , the program will print out the corresponding value at that index in the

array. If you instead enter a number past the end of the array, such as 10 , you’ll see
output like this:

The program resulted in a runtime error at the point of using an invalid value in the
indexing operation. The program exited with an error message and didn’t execute the
final println! statement. When you attempt to access an element using indexing, Rust
will check that the index you’ve specified is less than the array length. If the index is
greater than or equal to the length, Rust will panic. This check has to happen at runtime,
especially in this case, because the compiler can’t possibly know what value a user will
enter when they run the code later.

This is an example of Rust’s memory safety principles in action. In many low-level
languages, this kind of check is not done, and when you provide an incorrect index,
invalid memory can be accessed. Rust protects you against this kind of error by
immediately exiting instead of allowing the memory access and continuing. Chapter 9
discusses more of Rust’s error handling and how you can write readable, safe code that
neither panics nor allows invalid memory access.

use std::io;

fn main() {
 let a = [1, 2, 3, 4, 5];

 println!("Please enter an array index.");

 let mut index = String::new();

 io::stdin()
 .read_line(&mut index)
 .expect("Failed to read line");

 let index: usize = index
 .trim()
 .parse()
 .expect("Index entered was not a number");

 let element = a[index];

 println!("The value of the element at index {index} is: {element}");
}

thread 'main' panicked at 'index out of bounds: the len is 5 but the index
is 10', src/main.rs:19:19
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 58/636

Functions

Functions are prevalent in Rust code. You’ve already seen one of the most important
functions in the language: the main function, which is the entry point of many
programs. You’ve also seen the fn keyword, which allows you to declare new functions.

Rust code uses snake case as the conventional style for function and variable names, in
which all letters are lowercase and underscores separate words. Here’s a program that
contains an example function definition:

Filename: src/main.rs

We define a function in Rust by entering fn followed by a function name and a set of
parentheses. The curly brackets tell the compiler where the function body begins and
ends.

We can call any function we’ve defined by entering its name followed by a set of
parentheses. Because another_function is defined in the program, it can be called
from inside the main function. Note that we defined another_function after the main
function in the source code; we could have defined it before as well. Rust doesn’t care
where you define your functions, only that they’re defined somewhere in a scope that
can be seen by the caller.

Let’s start a new binary project named functions to explore functions further. Place the
another_function example in src/main.rs and run it. You should see the following

output:

The lines execute in the order in which they appear in the main function. First the
“Hello, world!” message prints, and then another_function is called and its message is

fn main() {
 println!("Hello, world!");

 another_function();
}

fn another_function() {
 println!("Another function.");
}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.28s
 Running `target/debug/functions`
Hello, world!
Another function.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 59/636

printed.

Parameters

We can define functions to have parameters, which are special variables that are part of
a function’s signature. When a function has parameters, you can provide it with concrete
values for those parameters. Technically, the concrete values are called arguments, but
in casual conversation, people tend to use the words parameter and argument
interchangeably for either the variables in a function’s definition or the concrete values
passed in when you call a function.

In this version of another_function we add a parameter:

Filename: src/main.rs

Try running this program; you should get the following output:

The declaration of another_function has one parameter named x . The type of x is
specified as i32 . When we pass 5 in to another_function , the println! macro puts
5 where the pair of curly brackets containing x was in the format string.

In function signatures, you must declare the type of each parameter. This is a deliberate
decision in Rust’s design: requiring type annotations in function definitions means the
compiler almost never needs you to use them elsewhere in the code to figure out what
type you mean. The compiler is also able to give more helpful error messages if it knows
what types the function expects.

When defining multiple parameters, separate the parameter declarations with commas,
like this:

Filename: src/main.rs

fn main() {
 another_function(5);
}

fn another_function(x: i32) {
 println!("The value of x is: {x}");
}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 1.21s
 Running `target/debug/functions`
The value of x is: 5

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 60/636

This example creates a function named print_labeled_measurement with two
parameters. The first parameter is named value and is an i32 . The second is named
unit_label and is type char . The function then prints text containing both the value

and the unit_label .

Let’s try running this code. Replace the program currently in your functions project’s
src/main.rs file with the preceding example and run it using cargo run :

Because we called the function with 5 as the value for value and 'h' as the value for
unit_label , the program output contains those values.

Statements and Expressions

Function bodies are made up of a series of statements optionally ending in an
expression. So far, the functions we’ve covered haven’t included an ending expression,
but you have seen an expression as part of a statement. Because Rust is an expression-
based language, this is an important distinction to understand. Other languages don’t
have the same distinctions, so let’s look at what statements and expressions are and
how their differences affect the bodies of functions.

Statements are instructions that perform some action and do not return a value.
Expressions evaluate to a resultant value. Let’s look at some examples.

We’ve actually already used statements and expressions. Creating a variable and
assigning a value to it with the let keyword is a statement. In Listing 3-1, let y = 6;
is a statement.

Filename: src/main.rs

fn main() {
 print_labeled_measurement(5, 'h');
}

fn print_labeled_measurement(value: i32, unit_label: char) {
 println!("The measurement is: {value}{unit_label}");
}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/functions`
The measurement is: 5h

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 61/636

Listing 3-1: A main function declaration containing one statement

Function definitions are also statements; the entire preceding example is a statement in
itself.

Statements do not return values. Therefore, you can’t assign a let statement to
another variable, as the following code tries to do; you’ll get an error:

Filename: src/main.rs

When you run this program, the error you’ll get looks like this:

fn main() {
 let y = 6;
}

fn main() {
 let x = (let y = 6);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 62/636

The let y = 6 statement does not return a value, so there isn’t anything for x to bind
to. This is different from what happens in other languages, such as C and Ruby, where
the assignment returns the value of the assignment. In those languages, you can write x
= y = 6 and have both x and y have the value 6 ; that is not the case in Rust.

Expressions evaluate to a value and make up most of the rest of the code that you’ll
write in Rust. Consider a math operation, such as 5 + 6 , which is an expression that
evaluates to the value 11 . Expressions can be part of statements: in Listing 3-1, the 6
in the statement let y = 6; is an expression that evaluates to the value 6 . Calling a
function is an expression. Calling a macro is an expression. A new scope block created
with curly brackets is an expression, for example:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
error: expected expression, found `let` statement
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^

error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^^^^^^^
 |
 = note: variable declaration using `let` is a statement

error[E0658]: `let` expressions in this position are unstable
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^^^^^^^
 |
 = note: see issue #53667 <https://github.com/rust-lang/rust/issues/53667>
for more information

warning: unnecessary parentheses around assigned value
 --> src/main.rs:2:13
 |
2 | let x = (let y = 6);
 | ^ ^
 |
 = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
 |
2 - let x = (let y = 6);
2 + let x = let y = 6;
 |

For more information about this error, try `rustc --explain E0658`.
warning: `functions` (bin "functions") generated 1 warning
error: could not compile `functions` due to 3 previous errors; 1 warning
emitted

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 63/636

Filename: src/main.rs

This expression:

is a block that, in this case, evaluates to 4 . That value gets bound to y as part of the
let statement. Note that the x + 1 line doesn’t have a semicolon at the end, which is

unlike most of the lines you’ve seen so far. Expressions do not include ending
semicolons. If you add a semicolon to the end of an expression, you turn it into a
statement, and it will then not return a value. Keep this in mind as you explore function
return values and expressions next.

Functions with Return Values

Functions can return values to the code that calls them. We don’t name return values,
but we must declare their type after an arrow (->). In Rust, the return value of the
function is synonymous with the value of the final expression in the block of the body of
a function. You can return early from a function by using the return keyword and
specifying a value, but most functions return the last expression implicitly. Here’s an
example of a function that returns a value:

Filename: src/main.rs

There are no function calls, macros, or even let statements in the five function—just
the number 5 by itself. That’s a perfectly valid function in Rust. Note that the function’s

fn main() {
 let y = {
 let x = 3;
 x + 1
 };

 println!("The value of y is: {y}");
}

{
 let x = 3;
 x + 1
}

fn five() -> i32 {
 5
}

fn main() {
 let x = five();

 println!("The value of x is: {x}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 64/636

return type is specified too, as -> i32 . Try running this code; the output should look
like this:

The 5 in five is the function’s return value, which is why the return type is i32 . Let’s
examine this in more detail. There are two important bits: first, the line let x =
five(); shows that we’re using the return value of a function to initialize a variable.
Because the function five returns a 5 , that line is the same as the following:

Second, the five function has no parameters and defines the type of the return value,
but the body of the function is a lonely 5 with no semicolon because it’s an expression
whose value we want to return.

Let’s look at another example:

Filename: src/main.rs

Running this code will print The value of x is: 6 . But if we place a semicolon at the
end of the line containing x + 1 , changing it from an expression to a statement, we’ll
get an error:

Filename: src/main.rs

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.30s
 Running `target/debug/functions`
The value of x is: 5

let x = 5;

fn main() {
 let x = plus_one(5);

 println!("The value of x is: {x}");
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 65/636

Compiling this code produces an error, as follows:

The main error message, mismatched types , reveals the core issue with this code. The
definition of the function plus_one says that it will return an i32 , but statements don’t
evaluate to a value, which is expressed by () , the unit type. Therefore, nothing is
returned, which contradicts the function definition and results in an error. In this output,
Rust provides a message to possibly help rectify this issue: it suggests removing the
semicolon, which would fix the error.

fn main() {
 let x = plus_one(5);

 println!("The value of x is: {x}");
}

fn plus_one(x: i32) -> i32 {
 x + 1;
}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
error[E0308]: mismatched types
 --> src/main.rs:7:24
 |
7 | fn plus_one(x: i32) -> i32 {
 | -------- ^^^ expected `i32`, found `()`
 | |
 | implicitly returns `()` as its body has no tail or `return`
expression
8 | x + 1;
 | - help: remove this semicolon to return this value

For more information about this error, try `rustc --explain E0308`.
error: could not compile `functions` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 66/636

Comments

All programmers strive to make their code easy to understand, but sometimes extra
explanation is warranted. In these cases, programmers leave comments in their source
code that the compiler will ignore but people reading the source code may find useful.

Here’s a simple comment:

In Rust, the idiomatic comment style starts a comment with two slashes, and the
comment continues until the end of the line. For comments that extend beyond a single
line, you’ll need to include // on each line, like this:

Comments can also be placed at the end of lines containing code:

Filename: src/main.rs

But you’ll more often see them used in this format, with the comment on a separate line
above the code it’s annotating:

Filename: src/main.rs

Rust also has another kind of comment, documentation comments, which we’ll discuss
in the “Publishing a Crate to Crates.io” section of Chapter 14.

// hello, world

// So we’re doing something complicated here, long enough that we need
// multiple lines of comments to do it! Whew! Hopefully, this comment will
// explain what’s going on.

fn main() {
 let lucky_number = 7; // I’m feeling lucky today
}

fn main() {
 // I’m feeling lucky today
 let lucky_number = 7;
}

https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 67/636

Control Flow

The ability to run some code depending on whether a condition is true and to run
some code repeatedly while a condition is true are basic building blocks in most
programming languages. The most common constructs that let you control the flow of
execution of Rust code are if expressions and loops.

if Expressions

An if expression allows you to branch your code depending on conditions. You
provide a condition and then state, “If this condition is met, run this block of code. If the
condition is not met, do not run this block of code.”

Create a new project called branches in your projects directory to explore the if
expression. In the src/main.rs file, input the following:

Filename: src/main.rs

All if expressions start with the keyword if , followed by a condition. In this case, the
condition checks whether or not the variable number has a value less than 5. We place
the block of code to execute if the condition is true immediately after the condition
inside curly brackets. Blocks of code associated with the conditions in if expressions
are sometimes called arms, just like the arms in match expressions that we discussed in
the “Comparing the Guess to the Secret Number” section of Chapter 2.

Optionally, we can also include an else expression, which we chose to do here, to give
the program an alternative block of code to execute should the condition evaluate to
false . If you don’t provide an else expression and the condition is false , the

program will just skip the if block and move on to the next bit of code.

Try running this code; you should see the following output:

fn main() {
 let number = 3;

 if number < 5 {
 println!("condition was true");
 } else {
 println!("condition was false");
 }
}

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#comparing-the-guess-to-the-secret-number

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 68/636

Let’s try changing the value of number to a value that makes the condition false to see
what happens:

Run the program again, and look at the output:

It’s also worth noting that the condition in this code must be a bool . If the condition
isn’t a bool , we’ll get an error. For example, try running the following code:

Filename: src/main.rs

The if condition evaluates to a value of 3 this time, and Rust throws an error:

The error indicates that Rust expected a bool but got an integer. Unlike languages such
as Ruby and JavaScript, Rust will not automatically try to convert non-Boolean types to a
Boolean. You must be explicit and always provide if with a Boolean as its condition. If

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/branches`
condition was true

 let number = 7;

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/branches`
condition was false

fn main() {
 let number = 3;

 if number {
 println!("number was three");
 }
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected `bool`, found integer

For more information about this error, try `rustc --explain E0308`.
error: could not compile `branches` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 69/636

we want the if code block to run only when a number is not equal to 0 , for example,
we can change the if expression to the following:

Filename: src/main.rs

Running this code will print number was something other than zero .

Handling Multiple Conditions with else if

You can use multiple conditions by combining if and else in an else if expression.
For example:

Filename: src/main.rs

This program has four possible paths it can take. After running it, you should see the
following output:

When this program executes, it checks each if expression in turn and executes the
first body for which the condition evaluates to true . Note that even though 6 is
divisible by 2, we don’t see the output number is divisible by 2 , nor do we see the
number is not divisible by 4, 3, or 2 text from the else block. That’s because

fn main() {
 let number = 3;

 if number != 0 {
 println!("number was something other than zero");
 }
}

fn main() {
 let number = 6;

 if number % 4 == 0 {
 println!("number is divisible by 4");
 } else if number % 3 == 0 {
 println!("number is divisible by 3");
 } else if number % 2 == 0 {
 println!("number is divisible by 2");
 } else {
 println!("number is not divisible by 4, 3, or 2");
 }
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/branches`
number is divisible by 3

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 70/636

Rust only executes the block for the first true condition, and once it finds one, it
doesn’t even check the rest.

Using too many else if expressions can clutter your code, so if you have more than
one, you might want to refactor your code. Chapter 6 describes a powerful Rust
branching construct called match for these cases.

Using if in a let Statement

Because if is an expression, we can use it on the right side of a let statement to
assign the outcome to a variable, as in Listing 3-2.

Filename: src/main.rs

Listing 3-2: Assigning the result of an if expression to a variable

The number variable will be bound to a value based on the outcome of the if
expression. Run this code to see what happens:

Remember that blocks of code evaluate to the last expression in them, and numbers by
themselves are also expressions. In this case, the value of the whole if expression
depends on which block of code executes. This means the values that have the potential
to be results from each arm of the if must be the same type; in Listing 3-2, the results
of both the if arm and the else arm were i32 integers. If the types are mismatched,
as in the following example, we’ll get an error:

Filename: src/main.rs

fn main() {
 let condition = true;
 let number = if condition { 5 } else { 6 };

 println!("The value of number is: {number}");
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.30s
 Running `target/debug/branches`
The value of number is: 5

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 71/636

When we try to compile this code, we’ll get an error. The if and else arms have value
types that are incompatible, and Rust indicates exactly where to find the problem in the
program:

The expression in the if block evaluates to an integer, and the expression in the else
block evaluates to a string. This won’t work because variables must have a single type,
and Rust needs to know at compile time what type the number variable is, definitively.
Knowing the type of number lets the compiler verify the type is valid everywhere we use
number . Rust wouldn’t be able to do that if the type of number was only determined at

runtime; the compiler would be more complex and would make fewer guarantees about
the code if it had to keep track of multiple hypothetical types for any variable.

Repetition with Loops

It’s often useful to execute a block of code more than once. For this task, Rust provides
several loops, which will run through the code inside the loop body to the end and then
start immediately back at the beginning. To experiment with loops, let’s make a new
project called loops.

Rust has three kinds of loops: loop , while , and for . Let’s try each one.

Repeating Code with loop

The loop keyword tells Rust to execute a block of code over and over again forever or
until you explicitly tell it to stop.

fn main() {
 let condition = true;

 let number = if condition { 5 } else { "six" };

 println!("The value of number is: {number}");
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
error[E0308]: `if` and `else` have incompatible types
 --> src/main.rs:4:44
 |
4 | let number = if condition { 5 } else { "six" };
 | - ^^^^^ expected integer,
found `&str`
 | |
 | expected because of this

For more information about this error, try `rustc --explain E0308`.
error: could not compile `branches` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 72/636

As an example, change the src/main.rs file in your loops directory to look like this:

Filename: src/main.rs

When we run this program, we’ll see again! printed over and over continuously until
we stop the program manually. Most terminals support the keyboard shortcut ctrl-c to
interrupt a program that is stuck in a continual loop. Give it a try:

The symbol ^C represents where you pressed ctrl-c. You may or may not see the word
again! printed after the ^C , depending on where the code was in the loop when it

received the interrupt signal.

Fortunately, Rust also provides a way to break out of a loop using code. You can place
the break keyword within the loop to tell the program when to stop executing the loop.
Recall that we did this in the guessing game in the “Quitting After a Correct Guess”
section of Chapter 2 to exit the program when the user won the game by guessing the
correct number.

We also used continue in the guessing game, which in a loop tells the program to skip
over any remaining code in this iteration of the loop and go to the next iteration.

Returning Values from Loops

One of the uses of a loop is to retry an operation you know might fail, such as checking
whether a thread has completed its job. You might also need to pass the result of that
operation out of the loop to the rest of your code. To do this, you can add the value you
want returned after the break expression you use to stop the loop; that value will be
returned out of the loop so you can use it, as shown here:

fn main() {
 loop {
 println!("again!");
 }
}

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev [unoptimized + debuginfo] target(s) in 0.29s
 Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#quitting-after-a-correct-guess

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 73/636

Before the loop, we declare a variable named counter and initialize it to 0 . Then we
declare a variable named result to hold the value returned from the loop. On every
iteration of the loop, we add 1 to the counter variable, and then check whether the
counter is equal to 10 . When it is, we use the break keyword with the value counter
* 2 . After the loop, we use a semicolon to end the statement that assigns the value to
result . Finally, we print the value in result , which in this case is 20 .

Loop Labels to Disambiguate Between Multiple Loops

If you have loops within loops, break and continue apply to the innermost loop at that
point. You can optionally specify a loop label on a loop that you can then use with break
or continue to specify that those keywords apply to the labeled loop instead of the
innermost loop. Loop labels must begin with a single quote. Here’s an example with two
nested loops:

fn main() {
 let mut counter = 0;

 let result = loop {
 counter += 1;

 if counter == 10 {
 break counter * 2;
 }
 };

 println!("The result is {result}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 74/636

The outer loop has the label 'counting_up , and it will count up from 0 to 2. The inner
loop without a label counts down from 10 to 9. The first break that doesn’t specify a
label will exit the inner loop only. The break 'counting_up; statement will exit the
outer loop. This code prints:

Conditional Loops with while

A program will often need to evaluate a condition within a loop. While the condition is
true , the loop runs. When the condition ceases to be true , the program calls break ,

stopping the loop. It’s possible to implement behavior like this using a combination of
loop , if , else , and break ; you could try that now in a program, if you’d like.

However, this pattern is so common that Rust has a built-in language construct for it,
called a while loop. In Listing 3-3, we use while to loop the program three times,
counting down each time, and then, after the loop, print a message and exit.

fn main() {
 let mut count = 0;
 'counting_up: loop {
 println!("count = {count}");
 let mut remaining = 10;

 loop {
 println!("remaining = {remaining}");
 if remaining == 9 {
 break;
 }
 if count == 2 {
 break 'counting_up;
 }
 remaining -= 1;
 }

 count += 1;
 }
 println!("End count = {count}");
}

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev [unoptimized + debuginfo] target(s) in 0.58s
 Running `target/debug/loops`
count = 0
remaining = 10
remaining = 9
count = 1
remaining = 10
remaining = 9
count = 2
remaining = 10
End count = 2

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 75/636

Filename: src/main.rs

Listing 3-3: Using a while loop to run code while a condition holds true

This construct eliminates a lot of nesting that would be necessary if you used loop , if ,
else , and break , and it’s clearer. While a condition evaluates to true , the code runs;

otherwise, it exits the loop.

Looping Through a Collection with for

You can choose to use the while construct to loop over the elements of a collection,
such as an array. For example, the loop in Listing 3-4 prints each element in the array a .

Filename: src/main.rs

Listing 3-4: Looping through each element of a collection using a while loop

Here, the code counts up through the elements in the array. It starts at index 0 , and
then loops until it reaches the final index in the array (that is, when index < 5 is no
longer true). Running this code will print every element in the array:

fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{number}!");

 number -= 1;
 }

 println!("LIFTOFF!!!");
}

fn main() {
 let a = [10, 20, 30, 40, 50];
 let mut index = 0;

 while index < 5 {
 println!("the value is: {}", a[index]);

 index += 1;
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 76/636

All five array values appear in the terminal, as expected. Even though index will reach a
value of 5 at some point, the loop stops executing before trying to fetch a sixth value
from the array.

However, this approach is error prone; we could cause the program to panic if the index
value or test condition is incorrect. For example, if you changed the definition of the a
array to have four elements but forgot to update the condition to while index < 4 , the
code would panic. It’s also slow, because the compiler adds runtime code to perform
the conditional check of whether the index is within the bounds of the array on every
iteration through the loop.

As a more concise alternative, you can use a for loop and execute some code for each
item in a collection. A for loop looks like the code in Listing 3-5.

Filename: src/main.rs

Listing 3-5: Looping through each element of a collection using a for loop

When we run this code, we’ll see the same output as in Listing 3-4. More importantly,
we’ve now increased the safety of the code and eliminated the chance of bugs that
might result from going beyond the end of the array or not going far enough and
missing some items.

Using the for loop, you wouldn’t need to remember to change any other code if you
changed the number of values in the array, as you would with the method used in
Listing 3-4.

The safety and conciseness of for loops make them the most commonly used loop
construct in Rust. Even in situations in which you want to run some code a certain
number of times, as in the countdown example that used a while loop in Listing 3-3,
most Rustaceans would use a for loop. The way to do that would be to use a Range ,

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32s
 Running `target/debug/loops`
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

fn main() {
 let a = [10, 20, 30, 40, 50];

 for element in a {
 println!("the value is: {element}");
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 77/636

provided by the standard library, which generates all numbers in sequence starting
from one number and ending before another number.

Here’s what the countdown would look like using a for loop and another method we’ve
not yet talked about, rev , to reverse the range:

Filename: src/main.rs

This code is a bit nicer, isn’t it?

Summary

You made it! This was a sizable chapter: you learned about variables, scalar and
compound data types, functions, comments, if expressions, and loops! To practice
with the concepts discussed in this chapter, try building programs to do the following:

Convert temperatures between Fahrenheit and Celsius.
Generate the nth Fibonacci number.
Print the lyrics to the Christmas carol “The Twelve Days of Christmas,” taking
advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that doesn’t commonly
exist in other programming languages: ownership.

fn main() {
 for number in (1..4).rev() {
 println!("{number}!");
 }
 println!("LIFTOFF!!!");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 78/636

Understanding Ownership
Ownership is Rust’s most unique feature and has deep implications for the rest of the
language. It enables Rust to make memory safety guarantees without needing a
garbage collector, so it’s important to understand how ownership works. In this chapter,
we’ll talk about ownership as well as several related features: borrowing, slices, and how
Rust lays data out in memory.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 79/636

What Is Ownership?

Ownership is a set of rules that govern how a Rust program manages memory. All
programs have to manage the way they use a computer’s memory while running. Some
languages have garbage collection that regularly looks for no-longer-used memory as
the program runs; in other languages, the programmer must explicitly allocate and free
the memory. Rust uses a third approach: memory is managed through a system of
ownership with a set of rules that the compiler checks. If any of the rules are violated,
the program won’t compile. None of the features of ownership will slow down your
program while it’s running.

Because ownership is a new concept for many programmers, it does take some time to
get used to. The good news is that the more experienced you become with Rust and the
rules of the ownership system, the easier you’ll find it to naturally develop code that is
safe and efficient. Keep at it!

When you understand ownership, you’ll have a solid foundation for understanding the
features that make Rust unique. In this chapter, you’ll learn ownership by working
through some examples that focus on a very common data structure: strings.

The Stack and the Heap

Many programming languages don’t require you to think about the stack and the
heap very often. But in a systems programming language like Rust, whether a
value is on the stack or the heap affects how the language behaves and why you
have to make certain decisions. Parts of ownership will be described in relation to
the stack and the heap later in this chapter, so here is a brief explanation in
preparation.

Both the stack and the heap are parts of memory available to your code to use at
runtime, but they are structured in different ways. The stack stores values in the
order it gets them and removes the values in the opposite order. This is referred to
as last in, first out. Think of a stack of plates: when you add more plates, you put
them on top of the pile, and when you need a plate, you take one off the top.
Adding or removing plates from the middle or bottom wouldn’t work as well!
Adding data is called pushing onto the stack, and removing data is called popping off
the stack. All data stored on the stack must have a known, fixed size. Data with an
unknown size at compile time or a size that might change must be stored on the
heap instead.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 80/636

The heap is less organized: when you put data on the heap, you request a certain
amount of space. The memory allocator finds an empty spot in the heap that is big
enough, marks it as being in use, and returns a pointer, which is the address of that
location. This process is called allocating on the heap and is sometimes abbreviated
as just allocating (pushing values onto the stack is not considered allocating).
Because the pointer to the heap is a known, fixed size, you can store the pointer
on the stack, but when you want the actual data, you must follow the pointer.
Think of being seated at a restaurant. When you enter, you state the number of
people in your group, and the host finds an empty table that fits everyone and
leads you there. If someone in your group comes late, they can ask where you’ve
been seated to find you.

Pushing to the stack is faster than allocating on the heap because the allocator
never has to search for a place to store new data; that location is always at the top
of the stack. Comparatively, allocating space on the heap requires more work
because the allocator must first find a big enough space to hold the data and then
perform bookkeeping to prepare for the next allocation.

Accessing data in the heap is slower than accessing data on the stack because you
have to follow a pointer to get there. Contemporary processors are faster if they
jump around less in memory. Continuing the analogy, consider a server at a
restaurant taking orders from many tables. It’s most efficient to get all the orders
at one table before moving on to the next table. Taking an order from table A, then
an order from table B, then one from A again, and then one from B again would be
a much slower process. By the same token, a processor can do its job better if it
works on data that’s close to other data (as it is on the stack) rather than farther
away (as it can be on the heap).

When your code calls a function, the values passed into the function (including,
potentially, pointers to data on the heap) and the function’s local variables get
pushed onto the stack. When the function is over, those values get popped off the
stack.

Keeping track of what parts of code are using what data on the heap, minimizing
the amount of duplicate data on the heap, and cleaning up unused data on the
heap so you don’t run out of space are all problems that ownership addresses.
Once you understand ownership, you won’t need to think about the stack and the
heap very often, but knowing that the main purpose of ownership is to manage
heap data can help explain why it works the way it does.

Ownership Rules

First, let’s take a look at the ownership rules. Keep these rules in mind as we work
through the examples that illustrate them:

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 81/636

Each value in Rust has an owner.
There can only be one owner at a time.
When the owner goes out of scope, the value will be dropped.

Variable Scope

Now that we’re past basic Rust syntax, we won’t include all the fn main() { code in
examples, so if you’re following along, make sure to put the following examples inside a
main function manually. As a result, our examples will be a bit more concise, letting us

focus on the actual details rather than boilerplate code.

As a first example of ownership, we’ll look at the scope of some variables. A scope is the
range within a program for which an item is valid. Take the following variable:

The variable s refers to a string literal, where the value of the string is hardcoded into
the text of our program. The variable is valid from the point at which it’s declared until
the end of the current scope. Listing 4-1 shows a program with comments annotating
where the variable s would be valid.

Listing 4-1: A variable and the scope in which it is valid

In other words, there are two important points in time here:

When s comes into scope, it is valid.
It remains valid until it goes out of scope.

At this point, the relationship between scopes and when variables are valid is similar to
that in other programming languages. Now we’ll build on top of this understanding by
introducing the String type.

The String Type

To illustrate the rules of ownership, we need a data type that is more complex than
those we covered in the “Data Types” section of Chapter 3. The types covered previously
are of a known size, can be stored on the stack and popped off the stack when their
scope is over, and can be quickly and trivially copied to make a new, independent

let s = "hello";

 { // s is not valid here, it’s not yet declared
 let s = "hello"; // s is valid from this point forward

 // do stuff with s
 } // this scope is now over, and s is no longer
valid

https://doc.rust-lang.org/book/ch03-02-data-types.html#data-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 82/636

instance if another part of code needs to use the same value in a different scope. But
we want to look at data that is stored on the heap and explore how Rust knows when to
clean up that data, and the String type is a great example.

We’ll concentrate on the parts of String that relate to ownership. These aspects also
apply to other complex data types, whether they are provided by the standard library or
created by you. We’ll discuss String in more depth in Chapter 8.

We’ve already seen string literals, where a string value is hardcoded into our program.
String literals are convenient, but they aren’t suitable for every situation in which we
may want to use text. One reason is that they’re immutable. Another is that not every
string value can be known when we write our code: for example, what if we want to take
user input and store it? For these situations, Rust has a second string type, String . This
type manages data allocated on the heap and as such is able to store an amount of text
that is unknown to us at compile time. You can create a String from a string literal
using the from function, like so:

The double colon :: operator allows us to namespace this particular from function
under the String type rather than using some sort of name like string_from . We’ll
discuss this syntax more in the “Method Syntax” section of Chapter 5, and when we talk
about namespacing with modules in “Paths for Referring to an Item in the Module Tree”
in Chapter 7.

This kind of string can be mutated:

So, what’s the difference here? Why can String be mutated but literals cannot? The
difference is in how these two types deal with memory.

Memory and Allocation

In the case of a string literal, we know the contents at compile time, so the text is
hardcoded directly into the final executable. This is why string literals are fast and
efficient. But these properties only come from the string literal’s immutability.
Unfortunately, we can’t put a blob of memory into the binary for each piece of text
whose size is unknown at compile time and whose size might change while running the
program.

let s = String::from("hello");

 let mut s = String::from("hello");

 s.push_str(", world!"); // push_str() appends a literal to a String

 println!("{}", s); // This will print `hello, world!`

https://doc.rust-lang.org/book/ch08-02-strings.html
https://doc.rust-lang.org/book/ch05-03-method-syntax.html#method-syntax
https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 83/636

With the String type, in order to support a mutable, growable piece of text, we need to
allocate an amount of memory on the heap, unknown at compile time, to hold the
contents. This means:

The memory must be requested from the memory allocator at runtime.
We need a way of returning this memory to the allocator when we’re done with
our String .

That first part is done by us: when we call String::from , its implementation requests
the memory it needs. This is pretty much universal in programming languages.

However, the second part is different. In languages with a garbage collector (GC), the GC
keeps track of and cleans up memory that isn’t being used anymore, and we don’t need
to think about it. In most languages without a GC, it’s our responsibility to identify when
memory is no longer being used and to call code to explicitly free it, just as we did to
request it. Doing this correctly has historically been a difficult programming problem. If
we forget, we’ll waste memory. If we do it too early, we’ll have an invalid variable. If we
do it twice, that’s a bug too. We need to pair exactly one allocate with exactly one
free .

Rust takes a different path: the memory is automatically returned once the variable that
owns it goes out of scope. Here’s a version of our scope example from Listing 4-1 using
a String instead of a string literal:

There is a natural point at which we can return the memory our String needs to the
allocator: when s goes out of scope. When a variable goes out of scope, Rust calls a
special function for us. This function is called drop , and it’s where the author of String
can put the code to return the memory. Rust calls drop automatically at the closing
curly bracket.

Note: In C++, this pattern of deallocating resources at the end of an item’s lifetime
is sometimes called Resource Acquisition Is Initialization (RAII). The drop function in
Rust will be familiar to you if you’ve used RAII patterns.

This pattern has a profound impact on the way Rust code is written. It may seem simple
right now, but the behavior of code can be unexpected in more complicated situations

 {
 let s = String::from("hello"); // s is valid from this point
forward

 // do stuff with s
 } // this scope is now over, and s is
no
 // longer valid

https://doc.rust-lang.org/std/ops/trait.Drop.html#tymethod.drop

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 84/636

when we want to have multiple variables use the data we’ve allocated on the heap. Let’s
explore some of those situations now.

Variables and Data Interacting with Move

Multiple variables can interact with the same data in different ways in Rust. Let’s look at
an example using an integer in Listing 4-2.

Listing 4-2: Assigning the integer value of variable x to y

We can probably guess what this is doing: “bind the value 5 to x ; then make a copy of
the value in x and bind it to y .” We now have two variables, x and y , and both equal
5 . This is indeed what is happening, because integers are simple values with a known,

fixed size, and these two 5 values are pushed onto the stack.

Now let’s look at the String version:

This looks very similar, so we might assume that the way it works would be the same:
that is, the second line would make a copy of the value in s1 and bind it to s2 . But this
isn’t quite what happens.

Take a look at Figure 4-1 to see what is happening to String under the covers. A
String is made up of three parts, shown on the left: a pointer to the memory that

holds the contents of the string, a length, and a capacity. This group of data is stored on
the stack. On the right is the memory on the heap that holds the contents.

s1
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

Figure 4-1: Representation in memory of a String holding the value "hello" bound to s1

 let x = 5;
 let y = x;

 let s1 = String::from("hello");
 let s2 = s1;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 85/636

The length is how much memory, in bytes, the contents of the String are currently
using. The capacity is the total amount of memory, in bytes, that the String has
received from the allocator. The difference between length and capacity matters, but
not in this context, so for now, it’s fine to ignore the capacity.

When we assign s1 to s2 , the String data is copied, meaning we copy the pointer,
the length, and the capacity that are on the stack. We do not copy the data on the heap
that the pointer refers to. In other words, the data representation in memory looks like
Figure 4-2.

s1
name value
ptr
len 5

capacity 5 index value
0 h
1 e
2 l
3 l
4 o

s2
name value
ptr
len 5

capacity 5

Figure 4-2: Representation in memory of the variable s2 that has a copy of the pointer, length, and

capacity of s1

The representation does not look like Figure 4-3, which is what memory would look like
if Rust instead copied the heap data as well. If Rust did this, the operation s2 = s1
could be very expensive in terms of runtime performance if the data on the heap were
large.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 86/636

s2
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

s1
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

Figure 4-3: Another possibility for what s2 = s1 might do if Rust copied the heap data as well

Earlier, we said that when a variable goes out of scope, Rust automatically calls the
drop function and cleans up the heap memory for that variable. But Figure 4-2 shows

both data pointers pointing to the same location. This is a problem: when s2 and s1
go out of scope, they will both try to free the same memory. This is known as a double
free error and is one of the memory safety bugs we mentioned previously. Freeing
memory twice can lead to memory corruption, which can potentially lead to security
vulnerabilities.

To ensure memory safety, after the line let s2 = s1; , Rust considers s1 as no longer
valid. Therefore, Rust doesn’t need to free anything when s1 goes out of scope. Check
out what happens when you try to use s1 after s2 is created; it won’t work:

You’ll get an error like this because Rust prevents you from using the invalidated
reference:

 let s1 = String::from("hello");
 let s2 = s1;

 println!("{}, world!", s1);

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 87/636

If you’ve heard the terms shallow copy and deep copy while working with other
languages, the concept of copying the pointer, length, and capacity without copying the
data probably sounds like making a shallow copy. But because Rust also invalidates the
first variable, instead of being called a shallow copy, it’s known as a move. In this
example, we would say that s1 was moved into s2 . So, what actually happens is shown
in Figure 4-4.

s1
name value
ptr
len 5

capacity 5 index value
0 h
1 e
2 l
3 l
4 o

s2
name value
ptr
len 5

capacity 5

Figure 4-4: Representation in memory after s1 has been invalidated

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0382]: borrow of moved value: `s1`
 --> src/main.rs:5:28
 |
2 | let s1 = String::from("hello");
 | -- move occurs because `s1` has type `String`, which does not
implement the `Copy` trait
3 | let s2 = s1;
 | -- value moved here
4 |
5 | println!("{}, world!", s1);
 | ^^ value borrowed here after move
 |
 = note: this error originates in the macro `$crate::format_args_nl` which
comes from the expansion of the macro `println` (in Nightly builds, run
with -Z macro-backtrace for more info)
help: consider cloning the value if the performance cost is acceptable
 |
3 | let s2 = s1.clone();
 | ++++++++

For more information about this error, try `rustc --explain E0382`.
error: could not compile `ownership` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 88/636

That solves our problem! With only s2 valid, when it goes out of scope it alone will free
the memory, and we’re done.

In addition, there’s a design choice that’s implied by this: Rust will never automatically
create “deep” copies of your data. Therefore, any automatic copying can be assumed to
be inexpensive in terms of runtime performance.

Variables and Data Interacting with Clone

If we do want to deeply copy the heap data of the String , not just the stack data, we
can use a common method called clone . We’ll discuss method syntax in Chapter 5, but
because methods are a common feature in many programming languages, you’ve
probably seen them before.

Here’s an example of the clone method in action:

This works just fine and explicitly produces the behavior shown in Figure 4-3, where the
heap data does get copied.

When you see a call to clone , you know that some arbitrary code is being executed and
that code may be expensive. It’s a visual indicator that something different is going on.

Stack-Only Data: Copy

There’s another wrinkle we haven’t talked about yet. This code using integers—part of
which was shown in Listing 4-2—works and is valid:

But this code seems to contradict what we just learned: we don’t have a call to clone ,
but x is still valid and wasn’t moved into y .

The reason is that types such as integers that have a known size at compile time are
stored entirely on the stack, so copies of the actual values are quick to make. That
means there’s no reason we would want to prevent x from being valid after we create
the variable y . In other words, there’s no difference between deep and shallow copying
here, so calling clone wouldn’t do anything different from the usual shallow copying,
and we can leave it out.

 let s1 = String::from("hello");
 let s2 = s1.clone();

 println!("s1 = {}, s2 = {}", s1, s2);

 let x = 5;
 let y = x;

 println!("x = {}, y = {}", x, y);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 89/636

Rust has a special annotation called the Copy trait that we can place on types that are
stored on the stack, as integers are (we’ll talk more about traits in Chapter 10). If a type
implements the Copy trait, variables that use it do not move, but rather are trivially
copied, making them still valid after assignment to another variable.

Rust won’t let us annotate a type with Copy if the type, or any of its parts, has
implemented the Drop trait. If the type needs something special to happen when the
value goes out of scope and we add the Copy annotation to that type, we’ll get a
compile-time error. To learn about how to add the Copy annotation to your type to
implement the trait, see “Derivable Traits” in Appendix C.

So, what types implement the Copy trait? You can check the documentation for the
given type to be sure, but as a general rule, any group of simple scalar values can
implement Copy , and nothing that requires allocation or is some form of resource can
implement Copy . Here are some of the types that implement Copy :

All the integer types, such as u32 .
The Boolean type, bool , with values true and false .
All the floating-point types, such as f64 .
The character type, char .
Tuples, if they only contain types that also implement Copy . For example, (i32,
i32) implements Copy , but (i32, String) does not.

Ownership and Functions

The mechanics of passing a value to a function are similar to those when assigning a
value to a variable. Passing a variable to a function will move or copy, just as assignment
does. Listing 4-3 has an example with some annotations showing where variables go
into and out of scope.

Filename: src/main.rs

https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/appendix-03-derivable-traits.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 90/636

Listing 4-3: Functions with ownership and scope annotated

If we tried to use s after the call to takes_ownership , Rust would throw a compile-time
error. These static checks protect us from mistakes. Try adding code to main that uses
s and x to see where you can use them and where the ownership rules prevent you

from doing so.

Return Values and Scope

Returning values can also transfer ownership. Listing 4-4 shows an example of a
function that returns some value, with similar annotations as those in Listing 4-3.

Filename: src/main.rs

fn main() {
 let s = String::from("hello"); // s comes into scope

 takes_ownership(s); // s's value moves into the function...
 // ... and so is no longer valid here

 let x = 5; // x comes into scope

 makes_copy(x); // x would move into the function,
 // but i32 is Copy, so it's okay to
still
 // use x afterward

} // Here, x goes out of scope, then s. But because s's value was moved,
nothing
 // special happens.

fn takes_ownership(some_string: String) { // some_string comes into scope
 println!("{}", some_string);
} // Here, some_string goes out of scope and `drop` is called. The backing
 // memory is freed.

fn makes_copy(some_integer: i32) { // some_integer comes into scope
 println!("{}", some_integer);
} // Here, some_integer goes out of scope. Nothing special happens.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 91/636

Listing 4-4: Transferring ownership of return values

The ownership of a variable follows the same pattern every time: assigning a value to
another variable moves it. When a variable that includes data on the heap goes out of
scope, the value will be cleaned up by drop unless ownership of the data has been
moved to another variable.

While this works, taking ownership and then returning ownership with every function is
a bit tedious. What if we want to let a function use a value but not take ownership? It’s
quite annoying that anything we pass in also needs to be passed back if we want to use
it again, in addition to any data resulting from the body of the function that we might
want to return as well.

Rust does let us return multiple values using a tuple, as shown in Listing 4-5.

Filename: src/main.rs

fn main() {
 let s1 = gives_ownership(); // gives_ownership moves its return
 // value into s1

 let s2 = String::from("hello"); // s2 comes into scope

 let s3 = takes_and_gives_back(s2); // s2 is moved into
 // takes_and_gives_back, which also
 // moves its return value into s3
} // Here, s3 goes out of scope and is dropped. s2 was moved, so nothing
 // happens. s1 goes out of scope and is dropped.

fn gives_ownership() -> String { // gives_ownership will move
its
 // return value into the
function
 // that calls it

 let some_string = String::from("yours"); // some_string comes into
scope

 some_string // some_string is returned and
 // moves out to the calling
 // function
}

// This function takes a String and returns one
fn takes_and_gives_back(a_string: String) -> String { // a_string comes
into
 // scope

 a_string // a_string is returned and moves out to the calling function
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 92/636

Listing 4-5: Returning ownership of parameters

But this is too much ceremony and a lot of work for a concept that should be common.
Luckily for us, Rust has a feature for using a value without transferring ownership, called
references.

fn main() {
 let s1 = String::from("hello");

 let (s2, len) = calculate_length(s1);

 println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
 let length = s.len(); // len() returns the length of a String

 (s, length)
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 93/636

References and Borrowing

The issue with the tuple code in Listing 4-5 is that we have to return the String to the
calling function so we can still use the String after the call to calculate_length ,
because the String was moved into calculate_length . Instead, we can provide a
reference to the String value. A reference is like a pointer in that it’s an address we can
follow to access the data stored at that address; that data is owned by some other
variable. Unlike a pointer, a reference is guaranteed to point to a valid value of a
particular type for the life of that reference.

Here is how you would define and use a calculate_length function that has a
reference to an object as a parameter instead of taking ownership of the value:

Filename: src/main.rs

First, notice that all the tuple code in the variable declaration and the function return
value is gone. Second, note that we pass &s1 into calculate_length and, in its
definition, we take &String rather than String . These ampersands represent
references, and they allow you to refer to some value without taking ownership of it.
Figure 4-5 depicts this concept.

fn main() {
 let s1 = String::from("hello");

 let len = calculate_length(&s1);

 println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
 s.len()
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 94/636

s
name value
ptr

s1
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

Figure 4-5: A diagram of &String s pointing at String s1

Note: The opposite of referencing by using & is dereferencing, which is
accomplished with the dereference operator, * . We’ll see some uses of the
dereference operator in Chapter 8 and discuss details of dereferencing in Chapter
15.

Let’s take a closer look at the function call here:

The &s1 syntax lets us create a reference that refers to the value of s1 but does not
own it. Because it does not own it, the value it points to will not be dropped when the
reference stops being used.

Likewise, the signature of the function uses & to indicate that the type of the parameter
s is a reference. Let’s add some explanatory annotations:

The scope in which the variable s is valid is the same as any function parameter’s
scope, but the value pointed to by the reference is not dropped when s stops being
used, because s doesn’t have ownership. When functions have references as
parameters instead of the actual values, we won’t need to return the values in order to
give back ownership, because we never had ownership.

 let s1 = String::from("hello");

 let len = calculate_length(&s1);

fn calculate_length(s: &String) -> usize { // s is a reference to a String
 s.len()
} // Here, s goes out of scope. But because it does not have ownership of
what
 // it refers to, it is not dropped.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 95/636

We call the action of creating a reference borrowing. As in real life, if a person owns
something, you can borrow it from them. When you’re done, you have to give it back.
You don’t own it.

So, what happens if we try to modify something we’re borrowing? Try the code in Listing
4-6. Spoiler alert: it doesn’t work!

Filename: src/main.rs

Listing 4-6: Attempting to modify a borrowed value

Here’s the error:

Just as variables are immutable by default, so are references. We’re not allowed to
modify something we have a reference to.

Mutable References

We can fix the code from Listing 4-6 to allow us to modify a borrowed value with just a
few small tweaks that use, instead, a mutable reference:

Filename: src/main.rs

fn main() {
 let s = String::from("hello");

 change(&s);
}

fn change(some_string: &String) {
 some_string.push_str(", world");
}

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a
`&` reference
 --> src/main.rs:8:5
 |
7 | fn change(some_string: &String) {
 | ------- help: consider changing this to be a
mutable reference: `&mut String`
8 | some_string.push_str(", world");
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `some_string` is a `&` reference,
so the data it refers to cannot be borrowed as mutable

For more information about this error, try `rustc --explain E0596`.
error: could not compile `ownership` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 96/636

First we change s to be mut . Then we create a mutable reference with &mut s where
we call the change function, and update the function signature to accept a mutable
reference with some_string: &mut String . This makes it very clear that the change
function will mutate the value it borrows.

Mutable references have one big restriction: if you have a mutable reference to a value,
you can have no other references to that value. This code that attempts to create two
mutable references to s will fail:

Filename: src/main.rs

Here’s the error:

This error says that this code is invalid because we cannot borrow s as mutable more
than once at a time. The first mutable borrow is in r1 and must last until it’s used in the
println! , but between the creation of that mutable reference and its usage, we tried to

create another mutable reference in r2 that borrows the same data as r1 .

fn main() {
 let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

 let mut s = String::from("hello");

 let r1 = &mut s;
 let r2 = &mut s;

 println!("{}, {}", r1, r2);

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0499]: cannot borrow `s` as mutable more than once at a time
 --> src/main.rs:5:14
 |
4 | let r1 = &mut s;
 | ------ first mutable borrow occurs here
5 | let r2 = &mut s;
 | ^^^^^^ second mutable borrow occurs here
6 |
7 | println!("{}, {}", r1, r2);
 | -- first borrow later used here

For more information about this error, try `rustc --explain E0499`.
error: could not compile `ownership` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 97/636

The restriction preventing multiple mutable references to the same data at the same
time allows for mutation but in a very controlled fashion. It’s something that new
Rustaceans struggle with because most languages let you mutate whenever you’d like.
The benefit of having this restriction is that Rust can prevent data races at compile time.
A data race is similar to a race condition and happens when these three behaviors occur:

Two or more pointers access the same data at the same time.
At least one of the pointers is being used to write to the data.
There’s no mechanism being used to synchronize access to the data.

Data races cause undefined behavior and can be difficult to diagnose and fix when
you’re trying to track them down at runtime; Rust prevents this problem by refusing to
compile code with data races!

As always, we can use curly brackets to create a new scope, allowing for multiple
mutable references, just not simultaneous ones:

Rust enforces a similar rule for combining mutable and immutable references. This code
results in an error:

Here’s the error:

 let mut s = String::from("hello");

 {
 let r1 = &mut s;
 } // r1 goes out of scope here, so we can make a new reference with no
problems.

 let r2 = &mut s;

 let mut s = String::from("hello");

 let r1 = &s; // no problem
 let r2 = &s; // no problem
 let r3 = &mut s; // BIG PROBLEM

 println!("{}, {}, and {}", r1, r2, r3);

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 98/636

Whew! We also cannot have a mutable reference while we have an immutable one to
the same value.

Users of an immutable reference don’t expect the value to suddenly change out from
under them! However, multiple immutable references are allowed because no one who
is just reading the data has the ability to affect anyone else’s reading of the data.

Note that a reference’s scope starts from where it is introduced and continues through
the last time that reference is used. For instance, this code will compile because the last
usage of the immutable references, the println! , occurs before the mutable reference
is introduced:

The scopes of the immutable references r1 and r2 end after the println! where
they are last used, which is before the mutable reference r3 is created. These scopes
don’t overlap, so this code is allowed: the compiler can tell that the reference is no
longer being used at a point before the end of the scope.

Even though borrowing errors may be frustrating at times, remember that it’s the Rust
compiler pointing out a potential bug early (at compile time rather than at runtime) and
showing you exactly where the problem is. Then you don’t have to track down why your
data isn’t what you thought it was.

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as
immutable
 --> src/main.rs:6:14
 |
4 | let r1 = &s; // no problem
 | -- immutable borrow occurs here
5 | let r2 = &s; // no problem
6 | let r3 = &mut s; // BIG PROBLEM
 | ^^^^^^ mutable borrow occurs here
7 |
8 | println!("{}, {}, and {}", r1, r2, r3);
 | -- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `ownership` due to previous error

 let mut s = String::from("hello");

 let r1 = &s; // no problem
 let r2 = &s; // no problem
 println!("{} and {}", r1, r2);
 // variables r1 and r2 will not be used after this point

 let r3 = &mut s; // no problem
 println!("{}", r3);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 99/636

Dangling References

In languages with pointers, it’s easy to erroneously create a dangling pointer—a pointer
that references a location in memory that may have been given to someone else—by
freeing some memory while preserving a pointer to that memory. In Rust, by contrast,
the compiler guarantees that references will never be dangling references: if you have a
reference to some data, the compiler will ensure that the data will not go out of scope
before the reference to the data does.

Let’s try to create a dangling reference to see how Rust prevents them with a compile-
time error:

Filename: src/main.rs

Here’s the error:

This error message refers to a feature we haven’t covered yet: lifetimes. We’ll discuss
lifetimes in detail in Chapter 10. But, if you disregard the parts about lifetimes, the
message does contain the key to why this code is a problem:

fn main() {
 let reference_to_nothing = dangle();
}

fn dangle() -> &String {
 let s = String::from("hello");

 &s
}

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0106]: missing lifetime specifier
 --> src/main.rs:5:16
 |
5 | fn dangle() -> &String {
 | ^ expected named lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but there
is no value for it to be borrowed from
help: consider using the `'static` lifetime
 |
5 | fn dangle() -> &'static String {
 | +++++++

For more information about this error, try `rustc --explain E0106`.
error: could not compile `ownership` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 100/636

Let’s take a closer look at exactly what’s happening at each stage of our dangle code:

Filename: src/main.rs

Because s is created inside dangle , when the code of dangle is finished, s will be
deallocated. But we tried to return a reference to it. That means this reference would be
pointing to an invalid String . That’s no good! Rust won’t let us do this.

The solution here is to return the String directly:

This works without any problems. Ownership is moved out, and nothing is deallocated.

The Rules of References

Let’s recap what we’ve discussed about references:

At any given time, you can have either one mutable reference or any number of
immutable references.
References must always be valid.

Next, we’ll look at a different kind of reference: slices.

this function's return type contains a borrowed value, but there is no
value
for it to be borrowed from

fn dangle() -> &String { // dangle returns a reference to a String

 let s = String::from("hello"); // s is a new String

 &s // we return a reference to the String, s
} // Here, s goes out of scope, and is dropped. Its memory goes away.
 // Danger!

fn no_dangle() -> String {
 let s = String::from("hello");

 s
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 101/636

The Slice Type

Slices let you reference a contiguous sequence of elements in a collection rather than
the whole collection. A slice is a kind of reference, so it does not have ownership.

Here’s a small programming problem: write a function that takes a string of words
separated by spaces and returns the first word it finds in that string. If the function
doesn’t find a space in the string, the whole string must be one word, so the entire
string should be returned.

Let’s work through how we’d write the signature of this function without using slices, to
understand the problem that slices will solve:

The first_word function has a &String as a parameter. We don’t want ownership, so
this is fine. But what should we return? We don’t really have a way to talk about part of a
string. However, we could return the index of the end of the word, indicated by a space.
Let’s try that, as shown in Listing 4-7.

Filename: src/main.rs

Listing 4-7: The first_word function that returns a byte index value into the String parameter

Because we need to go through the String element by element and check whether a
value is a space, we’ll convert our String to an array of bytes using the as_bytes
method.

Next, we create an iterator over the array of bytes using the iter method:

fn first_word(s: &String) -> ?

fn first_word(s: &String) -> usize {
 let bytes = s.as_bytes();

 for (i, &item) in bytes.iter().enumerate() {
 if item == b' ' {
 return i;
 }
 }

 s.len()
}

 let bytes = s.as_bytes();

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 102/636

We’ll discuss iterators in more detail in Chapter 13. For now, know that iter is a
method that returns each element in a collection and that enumerate wraps the result
of iter and returns each element as part of a tuple instead. The first element of the
tuple returned from enumerate is the index, and the second element is a reference to
the element. This is a bit more convenient than calculating the index ourselves.

Because the enumerate method returns a tuple, we can use patterns to destructure
that tuple. We’ll be discussing patterns more in Chapter 6. In the for loop, we specify a
pattern that has i for the index in the tuple and &item for the single byte in the tuple.
Because we get a reference to the element from .iter().enumerate() , we use & in
the pattern.

Inside the for loop, we search for the byte that represents the space by using the byte
literal syntax. If we find a space, we return the position. Otherwise, we return the length
of the string by using s.len() .

We now have a way to find out the index of the end of the first word in the string, but
there’s a problem. We’re returning a usize on its own, but it’s only a meaningful
number in the context of the &String . In other words, because it’s a separate value
from the String , there’s no guarantee that it will still be valid in the future. Consider
the program in Listing 4-8 that uses the first_word function from Listing 4-7.

Filename: src/main.rs

Listing 4-8: Storing the result from calling the first_word function and then changing the String

contents

 for (i, &item) in bytes.iter().enumerate() {

 if item == b' ' {
 return i;
 }
 }

 s.len()

fn main() {
 let mut s = String::from("hello world");

 let word = first_word(&s); // word will get the value 5

 s.clear(); // this empties the String, making it equal to ""

 // word still has the value 5 here, but there's no more string that
 // we could meaningfully use the value 5 with. word is now totally
invalid!
}

https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/book/ch06-02-match.html#patterns-that-bind-to-values

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 103/636

This program compiles without any errors and would also do so if we used word after
calling s.clear() . Because word isn’t connected to the state of s at all, word still
contains the value 5 . We could use that value 5 with the variable s to try to extract
the first word out, but this would be a bug because the contents of s have changed
since we saved 5 in word .

Having to worry about the index in word getting out of sync with the data in s is
tedious and error prone! Managing these indices is even more brittle if we write a
second_word function. Its signature would have to look like this:

Now we’re tracking a starting and an ending index, and we have even more values that
were calculated from data in a particular state but aren’t tied to that state at all. We have
three unrelated variables floating around that need to be kept in sync.

Luckily, Rust has a solution to this problem: string slices.

String Slices

A string slice is a reference to part of a String , and it looks like this:

Rather than a reference to the entire String , hello is a reference to a portion of the
String , specified in the extra [0..5] bit. We create slices using a range within

brackets by specifying [starting_index..ending_index] , where starting_index is the
first position in the slice and ending_index is one more than the last position in the
slice. Internally, the slice data structure stores the starting position and the length of the
slice, which corresponds to ending_index minus starting_index . So, in the case of
let world = &s[6..11]; , world would be a slice that contains a pointer to the byte at

index 6 of s with a length value of 5 .

Figure 4-6 shows this in a diagram.

fn second_word(s: &String) -> (usize, usize) {

 let s = String::from("hello world");

 let hello = &s[0..5];
 let world = &s[6..11];

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 104/636

world
name value
ptr
len 5

index value
0 h
1 e
2 l
3 l
4 o
5
6 w
7 o
8 r
9 l
10 d

s
name value
ptr
len 11

capacity 11

Figure 4-6: String slice referring to part of a String

With Rust’s .. range syntax, if you want to start at index 0, you can drop the value
before the two periods. In other words, these are equal:

By the same token, if your slice includes the last byte of the String , you can drop the
trailing number. That means these are equal:

You can also drop both values to take a slice of the entire string. So these are equal:

let s = String::from("hello");

let slice = &s[0..2];
let slice = &s[..2];

let s = String::from("hello");

let len = s.len();

let slice = &s[3..len];
let slice = &s[3..];

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 105/636

Note: String slice range indices must occur at valid UTF-8 character boundaries. If
you attempt to create a string slice in the middle of a multibyte character, your
program will exit with an error. For the purposes of introducing string slices, we
are assuming ASCII only in this section; a more thorough discussion of UTF-8
handling is in the “Storing UTF-8 Encoded Text with Strings” section of Chapter 8.

With all this information in mind, let’s rewrite first_word to return a slice. The type
that signifies “string slice” is written as &str :

Filename: src/main.rs

We get the index for the end of the word the same way we did in Listing 4-7, by looking
for the first occurrence of a space. When we find a space, we return a string slice using
the start of the string and the index of the space as the starting and ending indices.

Now when we call first_word , we get back a single value that is tied to the underlying
data. The value is made up of a reference to the starting point of the slice and the
number of elements in the slice.

Returning a slice would also work for a second_word function:

We now have a straightforward API that’s much harder to mess up because the compiler
will ensure the references into the String remain valid. Remember the bug in the
program in Listing 4-8, when we got the index to the end of the first word but then
cleared the string so our index was invalid? That code was logically incorrect but didn’t
show any immediate errors. The problems would show up later if we kept trying to use

let s = String::from("hello");

let len = s.len();

let slice = &s[0..len];
let slice = &s[..];

fn first_word(s: &String) -> &str {
 let bytes = s.as_bytes();

 for (i, &item) in bytes.iter().enumerate() {
 if item == b' ' {
 return &s[0..i];
 }
 }

 &s[..]
}

fn second_word(s: &String) -> &str {

https://doc.rust-lang.org/book/ch08-02-strings.html#storing-utf-8-encoded-text-with-strings

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 106/636

the first word index with an emptied string. Slices make this bug impossible and let us
know we have a problem with our code much sooner. Using the slice version of
first_word will throw a compile-time error:

Filename: src/main.rs

Here’s the compiler error:

Recall from the borrowing rules that if we have an immutable reference to something,
we cannot also take a mutable reference. Because clear needs to truncate the
String , it needs to get a mutable reference. The println! after the call to clear uses

the reference in word , so the immutable reference must still be active at that point.
Rust disallows the mutable reference in clear and the immutable reference in word
from existing at the same time, and compilation fails. Not only has Rust made our API
easier to use, but it has also eliminated an entire class of errors at compile time!

String Literals as Slices

Recall that we talked about string literals being stored inside the binary. Now that we
know about slices, we can properly understand string literals:

fn main() {
 let mut s = String::from("hello world");

 let word = first_word(&s);

 s.clear(); // error!

 println!("the first word is: {}", word);
}

$ cargo run
 Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as
immutable
 --> src/main.rs:18:5
 |
16 | let word = first_word(&s);
 | -- immutable borrow occurs here
17 |
18 | s.clear(); // error!
 | ^^^^^^^^^ mutable borrow occurs here
19 |
20 | println!("the first word is: {}", word);
 | ---- immutable borrow later used
here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `ownership` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 107/636

The type of s here is &str : it’s a slice pointing to that specific point of the binary. This
is also why string literals are immutable; &str is an immutable reference.

String Slices as Parameters

Knowing that you can take slices of literals and String values leads us to one more
improvement on first_word , and that’s its signature:

A more experienced Rustacean would write the signature shown in Listing 4-9 instead
because it allows us to use the same function on both &String values and &str values.

Listing 4-9: Improving the first_word function by using a string slice for the type of the s parameter

If we have a string slice, we can pass that directly. If we have a String , we can pass a
slice of the String or a reference to the String . This flexibility takes advantage of
deref coercions, a feature we will cover in “Implicit Deref Coercions with Functions and
Methods” section of Chapter 15.

Defining a function to take a string slice instead of a reference to a String makes our
API more general and useful without losing any functionality:

Filename: src/main.rs

let s = "Hello, world!";

fn first_word(s: &String) -> &str {

fn first_word(s: &str) -> &str {

https://doc.rust-lang.org/book/ch15-02-deref.html#implicit-deref-coercions-with-functions-and-methods

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 108/636

Other Slices

String slices, as you might imagine, are specific to strings. But there’s a more general
slice type too. Consider this array:

Just as we might want to refer to part of a string, we might want to refer to part of an
array. We’d do so like this:

This slice has the type &[i32] . It works the same way as string slices do, by storing a
reference to the first element and a length. You’ll use this kind of slice for all sorts of
other collections. We’ll discuss these collections in detail when we talk about vectors in
Chapter 8.

fn main() {
 let my_string = String::from("hello world");

 // `first_word` works on slices of `String`s, whether partial or whole
 let word = first_word(&my_string[0..6]);
 let word = first_word(&my_string[..]);
 // `first_word` also works on references to `String`s, which are
equivalent
 // to whole slices of `String`s
 let word = first_word(&my_string);

 let my_string_literal = "hello world";

 // `first_word` works on slices of string literals, whether partial or
whole
 let word = first_word(&my_string_literal[0..6]);
 let word = first_word(&my_string_literal[..]);

 // Because string literals *are* string slices already,
 // this works too, without the slice syntax!
 let word = first_word(my_string_literal);
}

let a = [1, 2, 3, 4, 5];

let a = [1, 2, 3, 4, 5];

let slice = &a[1..3];

assert_eq!(slice, &[2, 3]);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 109/636

Summary

The concepts of ownership, borrowing, and slices ensure memory safety in Rust
programs at compile time. The Rust language gives you control over your memory
usage in the same way as other systems programming languages, but having the owner
of data automatically clean up that data when the owner goes out of scope means you
don’t have to write and debug extra code to get this control.

Ownership affects how lots of other parts of Rust work, so we’ll talk about these
concepts further throughout the rest of the book. Let’s move on to Chapter 5 and look
at grouping pieces of data together in a struct .

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 110/636

Using Structs to Structure Related Data
A struct, or structure, is a custom data type that lets you package together and name
multiple related values that make up a meaningful group. If you’re familiar with an
object-oriented language, a struct is like an object’s data attributes. In this chapter, we’ll
compare and contrast tuples with structs to build on what you already know and
demonstrate when structs are a better way to group data.

We’ll demonstrate how to define and instantiate structs. We’ll discuss how to define
associated functions, especially the kind of associated functions called methods, to
specify behavior associated with a struct type. Structs and enums (discussed in Chapter
6) are the building blocks for creating new types in your program’s domain to take full
advantage of Rust’s compile-time type checking.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 111/636

Defining and Instantiating Structs

Structs are similar to tuples, discussed in “The Tuple Type” section, in that both hold
multiple related values. Like tuples, the pieces of a struct can be different types. Unlike
with tuples, in a struct you’ll name each piece of data so it’s clear what the values mean.
Adding these names means that structs are more flexible than tuples: you don’t have to
rely on the order of the data to specify or access the values of an instance.

To define a struct, we enter the keyword struct and name the entire struct. A struct’s
name should describe the significance of the pieces of data being grouped together.
Then, inside curly brackets, we define the names and types of the pieces of data, which
we call fields. For example, Listing 5-1 shows a struct that stores information about a
user account.

Filename: src/main.rs

Listing 5-1: A User struct definition

To use a struct after we’ve defined it, we create an instance of that struct by specifying
concrete values for each of the fields. We create an instance by stating the name of the
struct and then add curly brackets containing key: value pairs, where the keys are the
names of the fields and the values are the data we want to store in those fields. We
don’t have to specify the fields in the same order in which we declared them in the
struct. In other words, the struct definition is like a general template for the type, and
instances fill in that template with particular data to create values of the type. For
example, we can declare a particular user as shown in Listing 5-2.

Filename: src/main.rs

Listing 5-2: Creating an instance of the User struct

struct User {
 active: bool,
 username: String,
 email: String,
 sign_in_count: u64,
}

fn main() {
 let user1 = User {
 active: true,
 username: String::from("someusername123"),
 email: String::from("someone@example.com"),
 sign_in_count: 1,
 };
}

https://doc.rust-lang.org/book/ch03-02-data-types.html#the-tuple-type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 112/636

To get a specific value from a struct, we use dot notation. For example, to access this
user’s email address, we use user1.email . If the instance is mutable, we can change a
value by using the dot notation and assigning into a particular field. Listing 5-3 shows
how to change the value in the email field of a mutable User instance.

Filename: src/main.rs

Listing 5-3: Changing the value in the email field of a User instance

Note that the entire instance must be mutable; Rust doesn’t allow us to mark only
certain fields as mutable. As with any expression, we can construct a new instance of
the struct as the last expression in the function body to implicitly return that new
instance.

Listing 5-4 shows a build_user function that returns a User instance with the given
email and username. The active field gets the value of true , and the sign_in_count
gets a value of 1 .

Filename: src/main.rs

Listing 5-4: A build_user function that takes an email and username and returns a User instance

It makes sense to name the function parameters with the same name as the struct
fields, but having to repeat the email and username field names and variables is a bit
tedious. If the struct had more fields, repeating each name would get even more
annoying. Luckily, there’s a convenient shorthand!

fn main() {
 let mut user1 = User {
 active: true,
 username: String::from("someusername123"),
 email: String::from("someone@example.com"),
 sign_in_count: 1,
 };

 user1.email = String::from("anotheremail@example.com");
}

fn build_user(email: String, username: String) -> User {
 User {
 active: true,
 username: username,
 email: email,
 sign_in_count: 1,
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 113/636

Using the Field Init Shorthand

Because the parameter names and the struct field names are exactly the same in Listing
5-4, we can use the field init shorthand syntax to rewrite build_user so it behaves
exactly the same but doesn’t have the repetition of username and email , as shown in
Listing 5-5.

Filename: src/main.rs

Listing 5-5: A build_user function that uses field init shorthand because the username and email

parameters have the same name as struct fields

Here, we’re creating a new instance of the User struct, which has a field named email .
We want to set the email field’s value to the value in the email parameter of the
build_user function. Because the email field and the email parameter have the

same name, we only need to write email rather than email: email .

Creating Instances from Other Instances with Struct Update Syntax

It’s often useful to create a new instance of a struct that includes most of the values
from another instance, but changes some. You can do this using struct update syntax.

First, in Listing 5-6 we show how to create a new User instance in user2 regularly,
without the update syntax. We set a new value for email but otherwise use the same
values from user1 that we created in Listing 5-2.

Filename: src/main.rs

fn build_user(email: String, username: String) -> User {
 User {
 active: true,
 username,
 email,
 sign_in_count: 1,
 }
}

fn main() {
 // --snip--

 let user2 = User {
 active: user1.active,
 username: user1.username,
 email: String::from("another@example.com"),
 sign_in_count: user1.sign_in_count,
 };
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 114/636

Listing 5-6: Creating a new User instance using one of the values from user1

Using struct update syntax, we can achieve the same effect with less code, as shown in
Listing 5-7. The syntax .. specifies that the remaining fields not explicitly set should
have the same value as the fields in the given instance.

Filename: src/main.rs

Listing 5-7: Using struct update syntax to set a new email value for a User instance but to use the rest of

the values from user1

The code in Listing 5-7 also creates an instance in user2 that has a different value for
email but has the same values for the username , active , and sign_in_count fields

from user1 . The ..user1 must come last to specify that any remaining fields should
get their values from the corresponding fields in user1 , but we can choose to specify
values for as many fields as we want in any order, regardless of the order of the fields in
the struct’s definition.

Note that the struct update syntax uses = like an assignment; this is because it moves
the data, just as we saw in the “Variables and Data Interacting with Move” section. In this
example, we can no longer use user1 as a whole after creating user2 because the
String in the username field of user1 was moved into user2 . If we had given user2

new String values for both email and username , and thus only used the active and
sign_in_count values from user1 , then user1 would still be valid after creating
user2 . Both active and sign_in_count are types that implement the Copy trait, so

the behavior we discussed in the “Stack-Only Data: Copy” section would apply.

Using Tuple Structs Without Named Fields to Create Different Types

Rust also supports structs that look similar to tuples, called tuple structs. Tuple structs
have the added meaning the struct name provides but don’t have names associated
with their fields; rather, they just have the types of the fields. Tuple structs are useful
when you want to give the whole tuple a name and make the tuple a different type from
other tuples, and when naming each field as in a regular struct would be verbose or
redundant.

fn main() {
 // --snip--

 let user2 = User {
 email: String::from("another@example.com"),
 ..user1
 };
}

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html#variables-and-data-interacting-with-move
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html#stack-only-data-copy

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 115/636

To define a tuple struct, start with the struct keyword and the struct name followed by
the types in the tuple. For example, here we define and use two tuple structs named
Color and Point :

Filename: src/main.rs

Note that the black and origin values are different types because they’re instances of
different tuple structs. Each struct you define is its own type, even though the fields
within the struct might have the same types. For example, a function that takes a
parameter of type Color cannot take a Point as an argument, even though both types
are made up of three i32 values. Otherwise, tuple struct instances are similar to tuples
in that you can destructure them into their individual pieces, and you can use a .
followed by the index to access an individual value.

Unit-Like Structs Without Any Fields

You can also define structs that don’t have any fields! These are called unit-like structs
because they behave similarly to () , the unit type that we mentioned in “The Tuple
Type” section. Unit-like structs can be useful when you need to implement a trait on
some type but don’t have any data that you want to store in the type itself. We’ll discuss
traits in Chapter 10. Here’s an example of declaring and instantiating a unit struct
named AlwaysEqual :

Filename: src/main.rs

To define AlwaysEqual , we use the struct keyword, the name we want, and then a
semicolon. No need for curly brackets or parentheses! Then we can get an instance of
AlwaysEqual in the subject variable in a similar way: using the name we defined,

without any curly brackets or parentheses. Imagine that later we’ll implement behavior
for this type such that every instance of AlwaysEqual is always equal to every instance
of any other type, perhaps to have a known result for testing purposes. We wouldn’t

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

fn main() {
 let black = Color(0, 0, 0);
 let origin = Point(0, 0, 0);
}

struct AlwaysEqual;

fn main() {
 let subject = AlwaysEqual;
}

https://doc.rust-lang.org/book/ch03-02-data-types.html#the-tuple-type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 116/636

need any data to implement that behavior! You’ll see in Chapter 10 how to define traits
and implement them on any type, including unit-like structs.

Ownership of Struct Data

In the User struct definition in Listing 5-1, we used the owned String type rather
than the &str string slice type. This is a deliberate choice because we want each
instance of this struct to own all of its data and for that data to be valid for as long
as the entire struct is valid.

It’s also possible for structs to store references to data owned by something else,
but to do so requires the use of lifetimes, a Rust feature that we’ll discuss in
Chapter 10. Lifetimes ensure that the data referenced by a struct is valid for as
long as the struct is. Let’s say you try to store a reference in a struct without
specifying lifetimes, like the following; this won’t work:

Filename: src/main.rs

The compiler will complain that it needs lifetime specifiers:

struct User {
 active: bool,
 username: &str,
 email: &str,
 sign_in_count: u64,
}

fn main() {
 let user1 = User {
 active: true,
 username: "someusername123",
 email: "someone@example.com",
 sign_in_count: 1,
 };
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 117/636

In Chapter 10, we’ll discuss how to fix these errors so you can store references in
structs, but for now, we’ll fix errors like these using owned types like String
instead of references like &str .

$ cargo run
 Compiling structs v0.1.0 (file:///projects/structs)
error[E0106]: missing lifetime specifier
 --> src/main.rs:3:15
 |
3 | username: &str,
 | ^ expected named lifetime parameter
 |
help: consider introducing a named lifetime parameter
 |
1 ~ struct User<'a> {
2 | active: bool,
3 ~ username: &'a str,
 |

error[E0106]: missing lifetime specifier
 --> src/main.rs:4:12
 |
4 | email: &str,
 | ^ expected named lifetime parameter
 |
help: consider introducing a named lifetime parameter
 |
1 ~ struct User<'a> {
2 | active: bool,
3 | username: &str,
4 ~ email: &'a str,
 |

For more information about this error, try `rustc --explain E0106`.
error: could not compile `structs` due to 2 previous errors

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 118/636

An Example Program Using Structs

To understand when we might want to use structs, let’s write a program that calculates
the area of a rectangle. We’ll start by using single variables, and then refactor the
program until we’re using structs instead.

Let’s make a new binary project with Cargo called rectangles that will take the width and
height of a rectangle specified in pixels and calculate the area of the rectangle. Listing 5-
8 shows a short program with one way of doing exactly that in our project’s src/main.rs.

Filename: src/main.rs

Listing 5-8: Calculating the area of a rectangle specified by separate width and height variables

Now, run this program using cargo run :

This code succeeds in figuring out the area of the rectangle by calling the area function
with each dimension, but we can do more to make this code clear and readable.

The issue with this code is evident in the signature of area :

The area function is supposed to calculate the area of one rectangle, but the function
we wrote has two parameters, and it’s not clear anywhere in our program that the
parameters are related. It would be more readable and more manageable to group

fn main() {
 let width1 = 30;
 let height1 = 50;

 println!(
 "The area of the rectangle is {} square pixels.",
 area(width1, height1)
);
}

fn area(width: u32, height: u32) -> u32 {
 width * height
}

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s
 Running `target/debug/rectangles`
The area of the rectangle is 1500 square pixels.

fn area(width: u32, height: u32) -> u32 {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 119/636

width and height together. We’ve already discussed one way we might do that in “The
Tuple Type” section of Chapter 3: by using tuples.

Refactoring with Tuples

Listing 5-9 shows another version of our program that uses tuples.

Filename: src/main.rs

Listing 5-9: Specifying the width and height of the rectangle with a tuple

In one way, this program is better. Tuples let us add a bit of structure, and we’re now
passing just one argument. But in another way, this version is less clear: tuples don’t
name their elements, so we have to index into the parts of the tuple, making our
calculation less obvious.

Mixing up the width and height wouldn’t matter for the area calculation, but if we want
to draw the rectangle on the screen, it would matter! We would have to keep in mind
that width is the tuple index 0 and height is the tuple index 1 . This would be even
harder for someone else to figure out and keep in mind if they were to use our code.
Because we haven’t conveyed the meaning of our data in our code, it’s now easier to
introduce errors.

Refactoring with Structs: Adding More Meaning

We use structs to add meaning by labeling the data. We can transform the tuple we’re
using into a struct with a name for the whole as well as names for the parts, as shown in
Listing 5-10.

Filename: src/main.rs

fn main() {
 let rect1 = (30, 50);

 println!(
 "The area of the rectangle is {} square pixels.",
 area(rect1)
);
}

fn area(dimensions: (u32, u32)) -> u32 {
 dimensions.0 * dimensions.1
}

https://doc.rust-lang.org/book/ch03-02-data-types.html#the-tuple-type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 120/636

Listing 5-10: Defining a Rectangle struct

Here we’ve defined a struct and named it Rectangle . Inside the curly brackets, we
defined the fields as width and height , both of which have type u32 . Then, in main ,
we created a particular instance of Rectangle that has a width of 30 and a height of
50 .

Our area function is now defined with one parameter, which we’ve named rectangle ,
whose type is an immutable borrow of a struct Rectangle instance. As mentioned in
Chapter 4, we want to borrow the struct rather than take ownership of it. This way,
main retains its ownership and can continue using rect1 , which is the reason we use

the & in the function signature and where we call the function.

The area function accesses the width and height fields of the Rectangle instance
(note that accessing fields of a borrowed struct instance does not move the field values,
which is why you often see borrows of structs). Our function signature for area now
says exactly what we mean: calculate the area of Rectangle , using its width and
height fields. This conveys that the width and height are related to each other, and it

gives descriptive names to the values rather than using the tuple index values of 0 and
1 . This is a win for clarity.

Adding Useful Functionality with Derived Traits

It’d be useful to be able to print an instance of Rectangle while we’re debugging our
program and see the values for all its fields. Listing 5-11 tries using the println! macro
as we have used in previous chapters. This won’t work, however.

struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };

 println!(
 "The area of the rectangle is {} square pixels.",
 area(&rect1)
);
}

fn area(rectangle: &Rectangle) -> u32 {
 rectangle.width * rectangle.height
}

https://doc.rust-lang.org/std/macro.println.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 121/636

Filename: src/main.rs

Listing 5-11: Attempting to print a Rectangle instance

When we compile this code, we get an error with this core message:

The println! macro can do many kinds of formatting, and by default, the curly
brackets tell println! to use formatting known as Display : output intended for direct
end user consumption. The primitive types we’ve seen so far implement Display by
default because there’s only one way you’d want to show a 1 or any other primitive
type to a user. But with structs, the way println! should format the output is less clear
because there are more display possibilities: Do you want commas or not? Do you want
to print the curly brackets? Should all the fields be shown? Due to this ambiguity, Rust
doesn’t try to guess what we want, and structs don’t have a provided implementation of
Display to use with println! and the {} placeholder.

If we continue reading the errors, we’ll find this helpful note:

Let’s try it! The println! macro call will now look like println!("rect1 is {:?}",
rect1); . Putting the specifier :? inside the curly brackets tells println! we want to
use an output format called Debug . The Debug trait enables us to print our struct in a
way that is useful for developers so we can see its value while we’re debugging our
code.

Compile the code with this change. Drat! We still get an error:

struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };

 println!("rect1 is {}", rect1);
}

error[E0277]: `Rectangle` doesn't implement `std::fmt::Display`

 = help: the trait `std::fmt::Display` is not implemented for `Rectangle`
 = note: in format strings you may be able to use `{:?}` (or {:#?} for
pretty-print) instead

error[E0277]: `Rectangle` doesn't implement `Debug`

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 122/636

But again, the compiler gives us a helpful note:

Rust does include functionality to print out debugging information, but we have to
explicitly opt in to make that functionality available for our struct. To do that, we add the
outer attribute #[derive(Debug)] just before the struct definition, as shown in Listing
5-12.

Filename: src/main.rs

Listing 5-12: Adding the attribute to derive the Debug trait and printing the Rectangle instance using

debug formatting

Now when we run the program, we won’t get any errors, and we’ll see the following
output:

Nice! It’s not the prettiest output, but it shows the values of all the fields for this
instance, which would definitely help during debugging. When we have larger structs, it’s
useful to have output that’s a bit easier to read; in those cases, we can use {:#?}
instead of {:?} in the println! string. In this example, using the {:#?} style will
output the following:

 = help: the trait `Debug` is not implemented for `Rectangle`
 = note: add `#[derive(Debug)]` to `Rectangle` or manually `impl Debug
for Rectangle`

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };

 println!("rect1 is {:?}", rect1);
}

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48s
 Running `target/debug/rectangles`
rect1 is Rectangle { width: 30, height: 50 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 123/636

Another way to print out a value using the Debug format is to use the dbg! macro,
which takes ownership of an expression (as opposed to println! , which takes a
reference), prints the file and line number of where that dbg! macro call occurs in your
code along with the resultant value of that expression, and returns ownership of the
value.

Note: Calling the dbg! macro prints to the standard error console stream
(stderr), as opposed to println! , which prints to the standard output console
stream (stdout). We’ll talk more about stderr and stdout in the “Writing Error
Messages to Standard Error Instead of Standard Output” section in Chapter 12.

Here’s an example where we’re interested in the value that gets assigned to the width
field, as well as the value of the whole struct in rect1 :

We can put dbg! around the expression 30 * scale and, because dbg! returns
ownership of the expression’s value, the width field will get the same value as if we
didn’t have the dbg! call there. We don’t want dbg! to take ownership of rect1 , so we
use a reference to rect1 in the next call. Here’s what the output of this example looks
like:

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48s
 Running `target/debug/rectangles`
rect1 is Rectangle {
 width: 30,
 height: 50,
}

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let scale = 2;
 let rect1 = Rectangle {
 width: dbg!(30 * scale),
 height: 50,
 };

 dbg!(&rect1);
}

https://doc.rust-lang.org/std/macro.dbg.html
https://doc.rust-lang.org/book/ch12-06-writing-to-stderr-instead-of-stdout.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 124/636

We can see the first bit of output came from src/main.rs line 10 where we’re debugging
the expression 30 * scale , and its resultant value is 60 (the Debug formatting
implemented for integers is to print only their value). The dbg! call on line 14 of
src/main.rs outputs the value of &rect1 , which is the Rectangle struct. This output
uses the pretty Debug formatting of the Rectangle type. The dbg! macro can be really
helpful when you’re trying to figure out what your code is doing!

In addition to the Debug trait, Rust has provided a number of traits for us to use with
the derive attribute that can add useful behavior to our custom types. Those traits and
their behaviors are listed in Appendix C. We’ll cover how to implement these traits with
custom behavior as well as how to create your own traits in Chapter 10. There are also
many attributes other than derive ; for more information, see the “Attributes” section
of the Rust Reference.

Our area function is very specific: it only computes the area of rectangles. It would be
helpful to tie this behavior more closely to our Rectangle struct because it won’t work
with any other type. Let’s look at how we can continue to refactor this code by turning
the area function into an area method defined on our Rectangle type.

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
 Finished dev [unoptimized + debuginfo] target(s) in 0.61s
 Running `target/debug/rectangles`
[src/main.rs:10] 30 * scale = 60
[src/main.rs:14] &rect1 = Rectangle {
 width: 60,
 height: 50,
}

https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
https://doc.rust-lang.org/reference/attributes.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 125/636

Method Syntax

Methods are similar to functions: we declare them with the fn keyword and a name,
they can have parameters and a return value, and they contain some code that’s run
when the method is called from somewhere else. Unlike functions, methods are defined
within the context of a struct (or an enum or a trait object, which we cover in Chapter 6
and Chapter 17, respectively), and their first parameter is always self , which
represents the instance of the struct the method is being called on.

Defining Methods

Let’s change the area function that has a Rectangle instance as a parameter and
instead make an area method defined on the Rectangle struct, as shown in Listing 5-
13.

Filename: src/main.rs

Listing 5-13: Defining an area method on the Rectangle struct

To define the function within the context of Rectangle , we start an impl
(implementation) block for Rectangle . Everything within this impl block will be
associated with the Rectangle type. Then we move the area function within the impl

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };

 println!(
 "The area of the rectangle is {} square pixels.",
 rect1.area()
);
}

https://doc.rust-lang.org/book/ch06-00-enums.html
https://doc.rust-lang.org/book/ch17-02-trait-objects.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 126/636

curly brackets and change the first (and in this case, only) parameter to be self in the
signature and everywhere within the body. In main , where we called the area function
and passed rect1 as an argument, we can instead use method syntax to call the area
method on our Rectangle instance. The method syntax goes after an instance: we add
a dot followed by the method name, parentheses, and any arguments.

In the signature for area , we use &self instead of rectangle: &Rectangle . The
&self is actually short for self: &Self . Within an impl block, the type Self is an

alias for the type that the impl block is for. Methods must have a parameter named
self of type Self for their first parameter, so Rust lets you abbreviate this with only

the name self in the first parameter spot. Note that we still need to use the & in front
of the self shorthand to indicate that this method borrows the Self instance, just as
we did in rectangle: &Rectangle . Methods can take ownership of self , borrow self
immutably, as we’ve done here, or borrow self mutably, just as they can any other
parameter.

We chose &self here for the same reason we used &Rectangle in the function version:
we don’t want to take ownership, and we just want to read the data in the struct, not
write to it. If we wanted to change the instance that we’ve called the method on as part
of what the method does, we’d use &mut self as the first parameter. Having a method
that takes ownership of the instance by using just self as the first parameter is rare;
this technique is usually used when the method transforms self into something else
and you want to prevent the caller from using the original instance after the
transformation.

The main reason for using methods instead of functions, in addition to providing
method syntax and not having to repeat the type of self in every method’s signature,
is for organization. We’ve put all the things we can do with an instance of a type in one
impl block rather than making future users of our code search for capabilities of
Rectangle in various places in the library we provide.

Note that we can choose to give a method the same name as one of the struct’s fields.
For example, we can define a method on Rectangle that is also named width :

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 127/636

Here, we’re choosing to make the width method return true if the value in the
instance’s width field is greater than 0 and false if the value is 0 : we can use a field
within a method of the same name for any purpose. In main , when we follow
rect1.width with parentheses, Rust knows we mean the method width . When we

don’t use parentheses, Rust knows we mean the field width .

Often, but not always, when we give a method the same name as a field we want it to
only return the value in the field and do nothing else. Methods like this are called getters,
and Rust does not implement them automatically for struct fields as some other
languages do. Getters are useful because you can make the field private but the method
public, and thus enable read-only access to that field as part of the type’s public API. We
will discuss what public and private are and how to designate a field or method as
public or private in Chapter 7.

Where’s the -> Operator?

In C and C++, two different operators are used for calling methods: you use . if
you’re calling a method on the object directly and -> if you’re calling the method
on a pointer to the object and need to dereference the pointer first. In other
words, if object is a pointer, object->something() is similar to
(*object).something() .

Rust doesn’t have an equivalent to the -> operator; instead, Rust has a feature
called automatic referencing and dereferencing. Calling methods is one of the few
places in Rust that has this behavior.

Here’s how it works: when you call a method with object.something() , Rust
automatically adds in & , &mut , or * so object matches the signature of the
method. In other words, the following are the same:

impl Rectangle {
 fn width(&self) -> bool {
 self.width > 0
 }
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };

 if rect1.width() {
 println!("The rectangle has a nonzero width; it is {}",
rect1.width);
 }
}

https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html#exposing-paths-with-the-pub-keyword

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 128/636

The first one looks much cleaner. This automatic referencing behavior works
because methods have a clear receiver—the type of self . Given the receiver and
name of a method, Rust can figure out definitively whether the method is reading
(&self), mutating (&mut self), or consuming (self). The fact that Rust makes
borrowing implicit for method receivers is a big part of making ownership
ergonomic in practice.

Methods with More Parameters

Let’s practice using methods by implementing a second method on the Rectangle
struct. This time we want an instance of Rectangle to take another instance of
Rectangle and return true if the second Rectangle can fit completely within self

(the first Rectangle); otherwise, it should return false . That is, once we’ve defined the
can_hold method, we want to be able to write the program shown in Listing 5-14.

Filename: src/main.rs

Listing 5-14: Using the as-yet-unwritten can_hold method

The expected output would look like the following because both dimensions of rect2
are smaller than the dimensions of rect1 , but rect3 is wider than rect1 :

p1.distance(&p2);
(&p1).distance(&p2);

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };
 let rect2 = Rectangle {
 width: 10,
 height: 40,
 };
 let rect3 = Rectangle {
 width: 60,
 height: 45,
 };

 println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
 println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}

Can rect1 hold rect2? true
Can rect1 hold rect3? false

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 129/636

We know we want to define a method, so it will be within the impl Rectangle block.
The method name will be can_hold , and it will take an immutable borrow of another
Rectangle as a parameter. We can tell what the type of the parameter will be by

looking at the code that calls the method: rect1.can_hold(&rect2) passes in &rect2 ,
which is an immutable borrow to rect2 , an instance of Rectangle . This makes sense
because we only need to read rect2 (rather than write, which would mean we’d need a
mutable borrow), and we want main to retain ownership of rect2 so we can use it
again after calling the can_hold method. The return value of can_hold will be a
Boolean, and the implementation will check whether the width and height of self are
greater than the width and height of the other Rectangle , respectively. Let’s add the
new can_hold method to the impl block from Listing 5-13, shown in Listing 5-15.

Filename: src/main.rs

Listing 5-15: Implementing the can_hold method on Rectangle that takes another Rectangle instance as

a parameter

When we run this code with the main function in Listing 5-14, we’ll get our desired
output. Methods can take multiple parameters that we add to the signature after the
self parameter, and those parameters work just like parameters in functions.

Associated Functions

All functions defined within an impl block are called associated functions because
they’re associated with the type named after the impl . We can define associated
functions that don’t have self as their first parameter (and thus are not methods)
because they don’t need an instance of the type to work with. We’ve already used one
function like this: the String::from function that’s defined on the String type.

Associated functions that aren’t methods are often used for constructors that will return
a new instance of the struct. These are often called new , but new isn’t a special name
and isn’t built into the language. For example, we could choose to provide an associated
function named square that would have one dimension parameter and use that as
both width and height, thus making it easier to create a square Rectangle rather than
having to specify the same value twice:

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }

 fn can_hold(&self, other: &Rectangle) -> bool {
 self.width > other.width && self.height > other.height
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 130/636

Filename: src/main.rs

The Self keywords in the return type and in the body of the function are aliases for the
type that appears after the impl keyword, which in this case is Rectangle .

To call this associated function, we use the :: syntax with the struct name; let sq =
Rectangle::square(3); is an example. This function is namespaced by the struct: the
:: syntax is used for both associated functions and namespaces created by modules.

We’ll discuss modules in Chapter 7.

Multiple impl Blocks

Each struct is allowed to have multiple impl blocks. For example, Listing 5-15 is
equivalent to the code shown in Listing 5-16, which has each method in its own impl
block.

Listing 5-16: Rewriting Listing 5-15 using multiple impl blocks

There’s no reason to separate these methods into multiple impl blocks here, but this is
valid syntax. We’ll see a case in which multiple impl blocks are useful in Chapter 10,
where we discuss generic types and traits.

impl Rectangle {
 fn square(size: u32) -> Self {
 Self {
 width: size,
 height: size,
 }
 }
}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

impl Rectangle {
 fn can_hold(&self, other: &Rectangle) -> bool {
 self.width > other.width && self.height > other.height
 }
}

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 131/636

Summary

Structs let you create custom types that are meaningful for your domain. By using
structs, you can keep associated pieces of data connected to each other and name each
piece to make your code clear. In impl blocks, you can define functions that are
associated with your type, and methods are a kind of associated function that let you
specify the behavior that instances of your structs have.

But structs aren’t the only way you can create custom types: let’s turn to Rust’s enum
feature to add another tool to your toolbox.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 132/636

Enums and Pattern Matching
In this chapter, we’ll look at enumerations, also referred to as enums. Enums allow you to
define a type by enumerating its possible variants. First we’ll define and use an enum to
show how an enum can encode meaning along with data. Next, we’ll explore a
particularly useful enum, called Option , which expresses that a value can be either
something or nothing. Then we’ll look at how pattern matching in the match expression
makes it easy to run different code for different values of an enum. Finally, we’ll cover
how the if let construct is another convenient and concise idiom available to handle
enums in your code.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 133/636

Defining an Enum

Where structs give you a way of grouping together related fields and data, like a
Rectangle with its width and height , enums give you a way of saying a value is one

of a possible set of values. For example, we may want to say that Rectangle is one of a
set of possible shapes that also includes Circle and Triangle . To do this, Rust allows
us to encode these possibilities as an enum.

Let’s look at a situation we might want to express in code and see why enums are useful
and more appropriate than structs in this case. Say we need to work with IP addresses.
Currently, two major standards are used for IP addresses: version four and version six.
Because these are the only possibilities for an IP address that our program will come
across, we can enumerate all possible variants, which is where enumeration gets its
name.

Any IP address can be either a version four or a version six address, but not both at the
same time. That property of IP addresses makes the enum data structure appropriate
because an enum value can only be one of its variants. Both version four and version six
addresses are still fundamentally IP addresses, so they should be treated as the same
type when the code is handling situations that apply to any kind of IP address.

We can express this concept in code by defining an IpAddrKind enumeration and listing
the possible kinds an IP address can be, V4 and V6 . These are the variants of the
enum:

IpAddrKind is now a custom data type that we can use elsewhere in our code.

Enum Values

We can create instances of each of the two variants of IpAddrKind like this:

Note that the variants of the enum are namespaced under its identifier, and we use a
double colon to separate the two. This is useful because now both values

enum IpAddrKind {
 V4,
 V6,
}

 let four = IpAddrKind::V4;
 let six = IpAddrKind::V6;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 134/636

IpAddrKind::V4 and IpAddrKind::V6 are of the same type: IpAddrKind . We can then,
for instance, define a function that takes any IpAddrKind :

And we can call this function with either variant:

Using enums has even more advantages. Thinking more about our IP address type, at
the moment we don’t have a way to store the actual IP address data; we only know what
kind it is. Given that you just learned about structs in Chapter 5, you might be tempted
to tackle this problem with structs as shown in Listing 6-1.

Listing 6-1: Storing the data and IpAddrKind variant of an IP address using a struct

Here, we’ve defined a struct IpAddr that has two fields: a kind field that is of type
IpAddrKind (the enum we defined previously) and an address field of type String .

We have two instances of this struct. The first is home , and it has the value
IpAddrKind::V4 as its kind with associated address data of 127.0.0.1 . The second

instance is loopback . It has the other variant of IpAddrKind as its kind value, V6 , and
has address ::1 associated with it. We’ve used a struct to bundle the kind and
address values together, so now the variant is associated with the value.

However, representing the same concept using just an enum is more concise: rather
than an enum inside a struct, we can put data directly into each enum variant. This new
definition of the IpAddr enum says that both V4 and V6 variants will have associated
String values:

fn route(ip_kind: IpAddrKind) {}

 route(IpAddrKind::V4);
 route(IpAddrKind::V6);

 enum IpAddrKind {
 V4,
 V6,
 }

 struct IpAddr {
 kind: IpAddrKind,
 address: String,
 }

 let home = IpAddr {
 kind: IpAddrKind::V4,
 address: String::from("127.0.0.1"),
 };

 let loopback = IpAddr {
 kind: IpAddrKind::V6,
 address: String::from("::1"),
 };

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 135/636

We attach data to each variant of the enum directly, so there is no need for an extra
struct. Here, it’s also easier to see another detail of how enums work: the name of each
enum variant that we define also becomes a function that constructs an instance of the
enum. That is, IpAddr::V4() is a function call that takes a String argument and
returns an instance of the IpAddr type. We automatically get this constructor function
defined as a result of defining the enum.

There’s another advantage to using an enum rather than a struct: each variant can have
different types and amounts of associated data. Version four IP addresses will always
have four numeric components that will have values between 0 and 255. If we wanted
to store V4 addresses as four u8 values but still express V6 addresses as one String
value, we wouldn’t be able to with a struct. Enums handle this case with ease:

We’ve shown several different ways to define data structures to store version four and
version six IP addresses. However, as it turns out, wanting to store IP addresses and
encode which kind they are is so common that the standard library has a definition we
can use! Let’s look at how the standard library defines IpAddr : it has the exact enum
and variants that we’ve defined and used, but it embeds the address data inside the
variants in the form of two different structs, which are defined differently for each
variant:

 enum IpAddr {
 V4(String),
 V6(String),
 }

 let home = IpAddr::V4(String::from("127.0.0.1"));

 let loopback = IpAddr::V6(String::from("::1"));

 enum IpAddr {
 V4(u8, u8, u8, u8),
 V6(String),
 }

 let home = IpAddr::V4(127, 0, 0, 1);

 let loopback = IpAddr::V6(String::from("::1"));

https://doc.rust-lang.org/std/net/enum.IpAddr.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 136/636

This code illustrates that you can put any kind of data inside an enum variant: strings,
numeric types, or structs, for example. You can even include another enum! Also,
standard library types are often not much more complicated than what you might come
up with.

Note that even though the standard library contains a definition for IpAddr , we can still
create and use our own definition without conflict because we haven’t brought the
standard library’s definition into our scope. We’ll talk more about bringing types into
scope in Chapter 7.

Let’s look at another example of an enum in Listing 6-2: this one has a wide variety of
types embedded in its variants.

Listing 6-2: A Message enum whose variants each store different amounts and types of values

This enum has four variants with different types:

Quit has no data associated with it at all.
Move has named fields, like a struct does.
Write includes a single String .
ChangeColor includes three i32 values.

Defining an enum with variants such as the ones in Listing 6-2 is similar to defining
different kinds of struct definitions, except the enum doesn’t use the struct keyword
and all the variants are grouped together under the Message type. The following structs
could hold the same data that the preceding enum variants hold:

struct Ipv4Addr {
 // --snip--
}

struct Ipv6Addr {
 // --snip--
}

enum IpAddr {
 V4(Ipv4Addr),
 V6(Ipv6Addr),
}

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 137/636

But if we used the different structs, each of which has its own type, we couldn’t as easily
define a function to take any of these kinds of messages as we could with the Message
enum defined in Listing 6-2, which is a single type.

There is one more similarity between enums and structs: just as we’re able to define
methods on structs using impl , we’re also able to define methods on enums. Here’s a
method named call that we could define on our Message enum:

The body of the method would use self to get the value that we called the method on.
In this example, we’ve created a variable m that has the value
Message::Write(String::from("hello")) , and that is what self will be in the body of

the call method when m.call() runs.

Let’s look at another enum in the standard library that is very common and useful:
Option .

The Option Enum and Its Advantages Over Null Values

This section explores a case study of Option , which is another enum defined by the
standard library. The Option type encodes the very common scenario in which a value
could be something or it could be nothing.

For example, if you request the first item in a non-empty list, you would get a value. If
you request the first item in an empty list, you would get nothing. Expressing this
concept in terms of the type system means the compiler can check whether you’ve
handled all the cases you should be handling; this functionality can prevent bugs that
are extremely common in other programming languages.

Programming language design is often thought of in terms of which features you
include, but the features you exclude are important too. Rust doesn’t have the null

struct QuitMessage; // unit struct
struct MoveMessage {
 x: i32,
 y: i32,
}
struct WriteMessage(String); // tuple struct
struct ChangeColorMessage(i32, i32, i32); // tuple struct

 impl Message {
 fn call(&self) {
 // method body would be defined here
 }
 }

 let m = Message::Write(String::from("hello"));
 m.call();

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 138/636

feature that many other languages have. Null is a value that means there is no value
there. In languages with null, variables can always be in one of two states: null or not-
null.

In his 2009 presentation “Null References: The Billion Dollar Mistake,” Tony Hoare, the
inventor of null, has this to say:

I call it my billion-dollar mistake. At that time, I was designing the first
comprehensive type system for references in an object-oriented language. My goal
was to ensure that all use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t resist the temptation to
put in a null reference, simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

The problem with null values is that if you try to use a null value as a not-null value,
you’ll get an error of some kind. Because this null or not-null property is pervasive, it’s
extremely easy to make this kind of error.

However, the concept that null is trying to express is still a useful one: a null is a value
that is currently invalid or absent for some reason.

The problem isn’t really with the concept but with the particular implementation. As
such, Rust does not have nulls, but it does have an enum that can encode the concept of
a value being present or absent. This enum is Option<T> , and it is defined by the
standard library as follows:

The Option<T> enum is so useful that it’s even included in the prelude; you don’t need
to bring it into scope explicitly. Its variants are also included in the prelude: you can use
Some and None directly without the Option:: prefix. The Option<T> enum is still just

a regular enum, and Some(T) and None are still variants of type Option<T> .

The <T> syntax is a feature of Rust we haven’t talked about yet. It’s a generic type
parameter, and we’ll cover generics in more detail in Chapter 10. For now, all you need
to know is that <T> means that the Some variant of the Option enum can hold one
piece of data of any type, and that each concrete type that gets used in place of T
makes the overall Option<T> type a different type. Here are some examples of using
Option values to hold number types and string types:

enum Option<T> {
 None,
 Some(T),
}

https://doc.rust-lang.org/std/option/enum.Option.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 139/636

The type of some_number is Option<i32> . The type of some_char is Option<char> ,
which is a different type. Rust can infer these types because we’ve specified a value
inside the Some variant. For absent_number , Rust requires us to annotate the overall
Option type: the compiler can’t infer the type that the corresponding Some variant will

hold by looking only at a None value. Here, we tell Rust that we mean for
absent_number to be of type Option<i32> .

When we have a Some value, we know that a value is present and the value is held
within the Some . When we have a None value, in some sense it means the same thing
as null: we don’t have a valid value. So why is having Option<T> any better than having
null?

In short, because Option<T> and T (where T can be any type) are different types, the
compiler won’t let us use an Option<T> value as if it were definitely a valid value. For
example, this code won’t compile, because it’s trying to add an i8 to an Option<i8> :

If we run this code, we get an error message like this one:

Intense! In effect, this error message means that Rust doesn’t understand how to add an
i8 and an Option<i8> , because they’re different types. When we have a value of a

type like i8 in Rust, the compiler will ensure that we always have a valid value. We can

 let some_number = Some(5);
 let some_char = Some('e');

 let absent_number: Option<i32> = None;

 let x: i8 = 5;
 let y: Option<i8> = Some(5);

 let sum = x + y;

$ cargo run
 Compiling enums v0.1.0 (file:///projects/enums)
error[E0277]: cannot add `Option<i8>` to `i8`
 --> src/main.rs:5:17
 |
5 | let sum = x + y;
 | ^ no implementation for `i8 + Option<i8>`
 |
 = help: the trait `Add<Option<i8>>` is not implemented for `i8`
 = help: the following other types implement trait `Add<Rhs>`:
 <&'a i8 as Add<i8>>
 <&i8 as Add<&i8>>
 <i8 as Add<&i8>>
 <i8 as Add>

For more information about this error, try `rustc --explain E0277`.
error: could not compile `enums` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 140/636

proceed confidently without having to check for null before using that value. Only when
we have an Option<i8> (or whatever type of value we’re working with) do we have to
worry about possibly not having a value, and the compiler will make sure we handle that
case before using the value.

In other words, you have to convert an Option<T> to a T before you can perform T
operations with it. Generally, this helps catch one of the most common issues with null:
assuming that something isn’t null when it actually is.

Eliminating the risk of incorrectly assuming a not-null value helps you to be more
confident in your code. In order to have a value that can possibly be null, you must
explicitly opt in by making the type of that value Option<T> . Then, when you use that
value, you are required to explicitly handle the case when the value is null. Everywhere
that a value has a type that isn’t an Option<T> , you can safely assume that the value
isn’t null. This was a deliberate design decision for Rust to limit null’s pervasiveness and
increase the safety of Rust code.

So how do you get the T value out of a Some variant when you have a value of type
Option<T> so that you can use that value? The Option<T> enum has a large number of

methods that are useful in a variety of situations; you can check them out in its
documentation. Becoming familiar with the methods on Option<T> will be extremely
useful in your journey with Rust.

In general, in order to use an Option<T> value, you want to have code that will handle
each variant. You want some code that will run only when you have a Some(T) value,
and this code is allowed to use the inner T . You want some other code to run only if
you have a None value, and that code doesn’t have a T value available. The match
expression is a control flow construct that does just this when used with enums: it will
run different code depending on which variant of the enum it has, and that code can
use the data inside the matching value.

https://doc.rust-lang.org/std/option/enum.Option.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 141/636

The match Control Flow Construct

Rust has an extremely powerful control flow construct called match that allows you to
compare a value against a series of patterns and then execute code based on which
pattern matches. Patterns can be made up of literal values, variable names, wildcards,
and many other things; Chapter 18 covers all the different kinds of patterns and what
they do. The power of match comes from the expressiveness of the patterns and the
fact that the compiler confirms that all possible cases are handled.

Think of a match expression as being like a coin-sorting machine: coins slide down a
track with variously sized holes along it, and each coin falls through the first hole it
encounters that it fits into. In the same way, values go through each pattern in a match ,
and at the first pattern the value “fits,” the value falls into the associated code block to
be used during execution.

Speaking of coins, let’s use them as an example using match ! We can write a function
that takes an unknown US coin and, in a similar way as the counting machine,
determines which coin it is and returns its value in cents, as shown in Listing 6-3.

Listing 6-3: An enum and a match expression that has the variants of the enum as its patterns

Let’s break down the match in the value_in_cents function. First we list the match
keyword followed by an expression, which in this case is the value coin . This seems
very similar to a conditional expression used with if , but there’s a big difference: with
if , the condition needs to evaluate to a Boolean value, but here it can be any type. The

type of coin in this example is the Coin enum that we defined on the first line.

Next are the match arms. An arm has two parts: a pattern and some code. The first arm
here has a pattern that is the value Coin::Penny and then the => operator that

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter,
}

fn value_in_cents(coin: Coin) -> u8 {
 match coin {
 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 }
}

https://doc.rust-lang.org/book/ch18-00-patterns.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 142/636

separates the pattern and the code to run. The code in this case is just the value 1 .
Each arm is separated from the next with a comma.

When the match expression executes, it compares the resultant value against the
pattern of each arm, in order. If a pattern matches the value, the code associated with
that pattern is executed. If that pattern doesn’t match the value, execution continues to
the next arm, much as in a coin-sorting machine. We can have as many arms as we
need: in Listing 6-3, our match has four arms.

The code associated with each arm is an expression, and the resultant value of the
expression in the matching arm is the value that gets returned for the entire match
expression.

We don’t typically use curly brackets if the match arm code is short, as it is in Listing 6-3
where each arm just returns a value. If you want to run multiple lines of code in a match
arm, you must use curly brackets, and the comma following the arm is then optional.
For example, the following code prints “Lucky penny!” every time the method is called
with a Coin::Penny , but still returns the last value of the block, 1 :

Patterns That Bind to Values

Another useful feature of match arms is that they can bind to the parts of the values
that match the pattern. This is how we can extract values out of enum variants.

As an example, let’s change one of our enum variants to hold data inside it. From 1999
through 2008, the United States minted quarters with different designs for each of the
50 states on one side. No other coins got state designs, so only quarters have this extra
value. We can add this information to our enum by changing the Quarter variant to
include a UsState value stored inside it, which we’ve done in Listing 6-4.

fn value_in_cents(coin: Coin) -> u8 {
 match coin {
 Coin::Penny => {
 println!("Lucky penny!");
 1
 }
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 143/636

Listing 6-4: A Coin enum in which the Quarter variant also holds a UsState value

Let’s imagine that a friend is trying to collect all 50 state quarters. While we sort our
loose change by coin type, we’ll also call out the name of the state associated with each
quarter so that if it’s one our friend doesn’t have, they can add it to their collection.

In the match expression for this code, we add a variable called state to the pattern
that matches values of the variant Coin::Quarter . When a Coin::Quarter matches,
the state variable will bind to the value of that quarter’s state. Then we can use state
in the code for that arm, like so:

If we were to call value_in_cents(Coin::Quarter(UsState::Alaska)) , coin would be
Coin::Quarter(UsState::Alaska) . When we compare that value with each of the

match arms, none of them match until we reach Coin::Quarter(state) . At that point,
the binding for state will be the value UsState::Alaska . We can then use that binding
in the println! expression, thus getting the inner state value out of the Coin enum
variant for Quarter .

Matching with Option<T>

In the previous section, we wanted to get the inner T value out of the Some case when
using Option<T> ; we can also handle Option<T> using match , as we did with the Coin

#[derive(Debug)] // so we can inspect the state in a minute
enum UsState {
 Alabama,
 Alaska,
 // --snip--
}

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter(UsState),
}

fn value_in_cents(coin: Coin) -> u8 {
 match coin {
 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter(state) => {
 println!("State quarter from {:?}!", state);
 25
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 144/636

enum! Instead of comparing coins, we’ll compare the variants of Option<T> , but the
way the match expression works remains the same.

Let’s say we want to write a function that takes an Option<i32> and, if there’s a value
inside, adds 1 to that value. If there isn’t a value inside, the function should return the
None value and not attempt to perform any operations.

This function is very easy to write, thanks to match , and will look like Listing 6-5.

Listing 6-5: A function that uses a match expression on an Option<i32>

Let’s examine the first execution of plus_one in more detail. When we call
plus_one(five) , the variable x in the body of plus_one will have the value Some(5) .

We then compare that against each match arm:

The Some(5) value doesn’t match the pattern None , so we continue to the next arm:

Does Some(5) match Some(i) ? It does! We have the same variant. The i binds to the
value contained in Some , so i takes the value 5 . The code in the match arm is then
executed, so we add 1 to the value of i and create a new Some value with our total 6
inside.

Now let’s consider the second call of plus_one in Listing 6-5, where x is None . We
enter the match and compare to the first arm:

It matches! There’s no value to add to, so the program stops and returns the None value
on the right side of => . Because the first arm matched, no other arms are compared.

Combining match and enums is useful in many situations. You’ll see this pattern a lot in
Rust code: match against an enum, bind a variable to the data inside, and then execute

 fn plus_one(x: Option<i32>) -> Option<i32> {
 match x {
 None => None,
 Some(i) => Some(i + 1),
 }
 }

 let five = Some(5);
 let six = plus_one(five);
 let none = plus_one(None);

 None => None,

 Some(i) => Some(i + 1),

 None => None,

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 145/636

code based on it. It’s a bit tricky at first, but once you get used to it, you’ll wish you had it
in all languages. It’s consistently a user favorite.

Matches Are Exhaustive

There’s one other aspect of match we need to discuss: the arms’ patterns must cover all
possibilities. Consider this version of our plus_one function, which has a bug and won’t
compile:

We didn’t handle the None case, so this code will cause a bug. Luckily, it’s a bug Rust
knows how to catch. If we try to compile this code, we’ll get this error:

Rust knows that we didn’t cover every possible case, and even knows which pattern we
forgot! Matches in Rust are exhaustive: we must exhaust every last possibility in order for
the code to be valid. Especially in the case of Option<T> , when Rust prevents us from
forgetting to explicitly handle the None case, it protects us from assuming that we have

 fn plus_one(x: Option<i32>) -> Option<i32> {
 match x {
 Some(i) => Some(i + 1),
 }
 }

$ cargo run
 Compiling enums v0.1.0 (file:///projects/enums)
error[E0004]: non-exhaustive patterns: `None` not covered
 --> src/main.rs:3:15
 |
3 | match x {
 | ^ pattern `None` not covered
 |
note: `Option<i32>` defined here
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/core/src/option.rs:
518:1
 |
 = note:
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/core/src/option.rs:
522:5: not covered
 = note: the matched value is of type `Option<i32>`
help: ensure that all possible cases are being handled by adding a match
arm with a wildcard pattern or an explicit pattern as shown
 |
4 ~ Some(i) => Some(i + 1),
5 ~ None => todo!(),
 |

For more information about this error, try `rustc --explain E0004`.
error: could not compile `enums` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 146/636

a value when we might have null, thus making the billion-dollar mistake discussed
earlier impossible.

Catch-all Patterns and the _ Placeholder

Using enums, we can also take special actions for a few particular values, but for all
other values take one default action. Imagine we’re implementing a game where, if you
roll a 3 on a dice roll, your player doesn’t move, but instead gets a new fancy hat. If you
roll a 7, your player loses a fancy hat. For all other values, your player moves that
number of spaces on the game board. Here’s a match that implements that logic, with
the result of the dice roll hardcoded rather than a random value, and all other logic
represented by functions without bodies because actually implementing them is out of
scope for this example:

For the first two arms, the patterns are the literal values 3 and 7 . For the last arm that
covers every other possible value, the pattern is the variable we’ve chosen to name
other . The code that runs for the other arm uses the variable by passing it to the
move_player function.

This code compiles, even though we haven’t listed all the possible values a u8 can have,
because the last pattern will match all values not specifically listed. This catch-all pattern
meets the requirement that match must be exhaustive. Note that we have to put the
catch-all arm last because the patterns are evaluated in order. If we put the catch-all
arm earlier, the other arms would never run, so Rust will warn us if we add arms after a
catch-all!

Rust also has a pattern we can use when we want a catch-all but don’t want to use the
value in the catch-all pattern: _ is a special pattern that matches any value and does
not bind to that value. This tells Rust we aren’t going to use the value, so Rust won’t
warn us about an unused variable.

Let’s change the rules of the game: now, if you roll anything other than a 3 or a 7, you
must roll again. We no longer need to use the catch-all value, so we can change our
code to use _ instead of the variable named other :

 let dice_roll = 9;
 match dice_roll {
 3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 other => move_player(other),
 }

 fn add_fancy_hat() {}
 fn remove_fancy_hat() {}
 fn move_player(num_spaces: u8) {}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 147/636

This example also meets the exhaustiveness requirement because we’re explicitly
ignoring all other values in the last arm; we haven’t forgotten anything.

Finally, we’ll change the rules of the game one more time so that nothing else happens
on your turn if you roll anything other than a 3 or a 7. We can express that by using the
unit value (the empty tuple type we mentioned in “The Tuple Type” section) as the code
that goes with the _ arm:

Here, we’re telling Rust explicitly that we aren’t going to use any other value that doesn’t
match a pattern in an earlier arm, and we don’t want to run any code in this case.

There’s more about patterns and matching that we’ll cover in Chapter 18. For now, we’re
going to move on to the if let syntax, which can be useful in situations where the
match expression is a bit wordy.

 let dice_roll = 9;
 match dice_roll {
 3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 _ => reroll(),
 }

 fn add_fancy_hat() {}
 fn remove_fancy_hat() {}
 fn reroll() {}

 let dice_roll = 9;
 match dice_roll {
 3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 _ => (),
 }

 fn add_fancy_hat() {}
 fn remove_fancy_hat() {}

https://doc.rust-lang.org/book/ch03-02-data-types.html#the-tuple-type
https://doc.rust-lang.org/book/ch18-00-patterns.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 148/636

Concise Control Flow with if let

The if let syntax lets you combine if and let into a less verbose way to handle
values that match one pattern while ignoring the rest. Consider the program in Listing 6-
6 that matches on an Option<u8> value in the config_max variable but only wants to
execute code if the value is the Some variant.

Listing 6-6: A match that only cares about executing code when the value is Some

If the value is Some , we print out the value in the Some variant by binding the value to
the variable max in the pattern. We don’t want to do anything with the None value. To
satisfy the match expression, we have to add _ => () after processing just one variant,
which is annoying boilerplate code to add.

Instead, we could write this in a shorter way using if let . The following code behaves
the same as the match in Listing 6-6:

The syntax if let takes a pattern and an expression separated by an equal sign. It
works the same way as a match , where the expression is given to the match and the
pattern is its first arm. In this case, the pattern is Some(max) , and the max binds to the
value inside the Some . We can then use max in the body of the if let block in the
same way we used max in the corresponding match arm. The code in the if let block
isn’t run if the value doesn’t match the pattern.

Using if let means less typing, less indentation, and less boilerplate code. However,
you lose the exhaustive checking that match enforces. Choosing between match and
if let depends on what you’re doing in your particular situation and whether gaining

conciseness is an appropriate trade-off for losing exhaustive checking.

In other words, you can think of if let as syntax sugar for a match that runs code
when the value matches one pattern and then ignores all other values.

 let config_max = Some(3u8);
 match config_max {
 Some(max) => println!("The maximum is configured to be {}", max),
 _ => (),
 }

 let config_max = Some(3u8);
 if let Some(max) = config_max {
 println!("The maximum is configured to be {}", max);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 149/636

We can include an else with an if let . The block of code that goes with the else is
the same as the block of code that would go with the _ case in the match expression
that is equivalent to the if let and else . Recall the Coin enum definition in Listing 6-
4, where the Quarter variant also held a UsState value. If we wanted to count all non-
quarter coins we see while also announcing the state of the quarters, we could do that
with a match expression, like this:

Or we could use an if let and else expression, like this:

If you have a situation in which your program has logic that is too verbose to express
using a match , remember that if let is in your Rust toolbox as well.

Summary

We’ve now covered how to use enums to create custom types that can be one of a set of
enumerated values. We’ve shown how the standard library’s Option<T> type helps you
use the type system to prevent errors. When enum values have data inside them, you
can use match or if let to extract and use those values, depending on how many
cases you need to handle.

Your Rust programs can now express concepts in your domain using structs and enums.
Creating custom types to use in your API ensures type safety: the compiler will make
certain your functions only get values of the type each function expects.

In order to provide a well-organized API to your users that is straightforward to use and
only exposes exactly what your users will need, let’s now turn to Rust’s modules.

 let mut count = 0;
 match coin {
 Coin::Quarter(state) => println!("State quarter from {:?}!",
state),
 _ => count += 1,
 }

 let mut count = 0;
 if let Coin::Quarter(state) = coin {
 println!("State quarter from {:?}!", state);
 } else {
 count += 1;
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 150/636

Managing Growing Projects with
Packages, Crates, and Modules
As you write large programs, organizing your code will become increasingly important.
By grouping related functionality and separating code with distinct features, you’ll clarify
where to find code that implements a particular feature and where to go to change how
a feature works.

The programs we’ve written so far have been in one module in one file. As a project
grows, you should organize code by splitting it into multiple modules and then multiple
files. A package can contain multiple binary crates and optionally one library crate. As a
package grows, you can extract parts into separate crates that become external
dependencies. This chapter covers all these techniques. For very large projects
comprising a set of interrelated packages that evolve together, Cargo provides
workspaces, which we’ll cover in the “Cargo Workspaces” section in Chapter 14.

We’ll also discuss encapsulating implementation details, which lets you reuse code at a
higher level: once you’ve implemented an operation, other code can call your code via
its public interface without having to know how the implementation works. The way you
write code defines which parts are public for other code to use and which parts are
private implementation details that you reserve the right to change. This is another way
to limit the amount of detail you have to keep in your head.

A related concept is scope: the nested context in which code is written has a set of
names that are defined as “in scope.” When reading, writing, and compiling code,
programmers and compilers need to know whether a particular name at a particular
spot refers to a variable, function, struct, enum, module, constant, or other item and
what that item means. You can create scopes and change which names are in or out of
scope. You can’t have two items with the same name in the same scope; tools are
available to resolve name conflicts.

Rust has a number of features that allow you to manage your code’s organization,
including which details are exposed, which details are private, and what names are in
each scope in your programs. These features, sometimes collectively referred to as the
module system, include:

Packages: A Cargo feature that lets you build, test, and share crates
Crates: A tree of modules that produces a library or executable
Modules and use: Let you control the organization, scope, and privacy of paths
Paths: A way of naming an item, such as a struct, function, or module

In this chapter, we’ll cover all these features, discuss how they interact, and explain how
to use them to manage scope. By the end, you should have a solid understanding of the
module system and be able to work with scopes like a pro!

https://doc.rust-lang.org/book/ch14-03-cargo-workspaces.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 151/636

Packages and Crates

The first parts of the module system we’ll cover are packages and crates.

A crate is the smallest amount of code that the Rust compiler considers at a time. Even if
you run rustc rather than cargo and pass a single source code file (as we did all the
way back in the “Writing and Running a Rust Program” section of Chapter 1), the
compiler considers that file to be a crate. Crates can contain modules, and the modules
may be defined in other files that get compiled with the crate, as we’ll see in the coming
sections.

A crate can come in one of two forms: a binary crate or a library crate. Binary crates are
programs you can compile to an executable that you can run, such as a command-line
program or a server. Each must have a function called main that defines what happens
when the executable runs. All the crates we’ve created so far have been binary crates.

Library crates don’t have a main function, and they don’t compile to an executable.
Instead, they define functionality intended to be shared with multiple projects. For
example, the rand crate we used in Chapter 2 provides functionality that generates
random numbers. Most of the time when Rustaceans say “crate”, they mean library
crate, and they use “crate” interchangeably with the general programming concept of a
“library".

The crate root is a source file that the Rust compiler starts from and makes up the root
module of your crate (we’ll explain modules in depth in the “Defining Modules to Control
Scope and Privacy” section).

A package is a bundle of one or more crates that provides a set of functionality. A
package contains a Cargo.toml file that describes how to build those crates. Cargo is
actually a package that contains the binary crate for the command-line tool you’ve been
using to build your code. The Cargo package also contains a library crate that the binary
crate depends on. Other projects can depend on the Cargo library crate to use the same
logic the Cargo command-line tool uses.

A package can contain as many binary crates as you like, but at most only one library
crate. A package must contain at least one crate, whether that’s a library or binary crate.

Let’s walk through what happens when we create a package. First, we enter the
command cargo new :

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#generating-a-random-number
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 152/636

After we run cargo new , we use ls to see what Cargo creates. In the project directory,
there’s a Cargo.toml file, giving us a package. There’s also a src directory that contains
main.rs. Open Cargo.toml in your text editor, and note there’s no mention of src/main.rs.
Cargo follows a convention that src/main.rs is the crate root of a binary crate with the
same name as the package. Likewise, Cargo knows that if the package directory contains
src/lib.rs, the package contains a library crate with the same name as the package, and
src/lib.rs is its crate root. Cargo passes the crate root files to rustc to build the library
or binary.

Here, we have a package that only contains src/main.rs, meaning it only contains a
binary crate named my-project . If a package contains src/main.rs and src/lib.rs, it has
two crates: a binary and a library, both with the same name as the package. A package
can have multiple binary crates by placing files in the src/bin directory: each file will be a
separate binary crate.

$ cargo new my-project
 Created binary (application) `my-project` package
$ ls my-project
Cargo.toml
src
$ ls my-project/src
main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 153/636

Defining Modules to Control Scope and Privacy

In this section, we’ll talk about modules and other parts of the module system, namely
paths that allow you to name items; the use keyword that brings a path into scope; and
the pub keyword to make items public. We’ll also discuss the as keyword, external
packages, and the glob operator.

First, we’re going to start with a list of rules for easy reference when you’re organizing
your code in the future. Then we’ll explain each of the rules in detail.

Modules Cheat Sheet

Here we provide a quick reference on how modules, paths, the use keyword, and the
pub keyword work in the compiler, and how most developers organize their code. We’ll

be going through examples of each of these rules throughout this chapter, but this is a
great place to refer to as a reminder of how modules work.

Start from the crate root: When compiling a crate, the compiler first looks in the
crate root file (usually src/lib.rs for a library crate or src/main.rs for a binary crate)
for code to compile.
Declaring modules: In the crate root file, you can declare new modules; say, you
declare a “garden” module with mod garden; . The compiler will look for the
module’s code in these places:

Inline, within curly brackets that replace the semicolon following mod garden
In the file src/garden.rs
In the file src/garden/mod.rs

Declaring submodules: In any file other than the crate root, you can declare
submodules. For example, you might declare mod vegetables; in src/garden.rs.
The compiler will look for the submodule’s code within the directory named for the
parent module in these places:

Inline, directly following mod vegetables , within curly brackets instead of the
semicolon
In the file src/garden/vegetables.rs
In the file src/garden/vegetables/mod.rs

Paths to code in modules: Once a module is part of your crate, you can refer to
code in that module from anywhere else in that same crate, as long as the privacy
rules allow, using the path to the code. For example, an Asparagus type in the
garden vegetables module would be found at
crate::garden::vegetables::Asparagus .

Private vs public: Code within a module is private from its parent modules by
default. To make a module public, declare it with pub mod instead of mod . To

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 154/636

make items within a public module public as well, use pub before their
declarations.
The use keyword: Within a scope, the use keyword creates shortcuts to items to
reduce repetition of long paths. In any scope that can refer to
crate::garden::vegetables::Asparagus , you can create a shortcut with use
crate::garden::vegetables::Asparagus; and from then on you only need to
write Asparagus to make use of that type in the scope.

Here we create a binary crate named backyard that illustrates these rules. The crate’s
directory, also named backyard , contains these files and directories:

The crate root file in this case is src/main.rs, and it contains:

Filename: src/main.rs

The pub mod garden; line tells the compiler to include the code it finds in src/garden.rs,
which is:

Filename: src/garden.rs

Here, pub mod vegetables; means the code in src/garden/vegetables.rs is included too.
That code is:

Now let’s get into the details of these rules and demonstrate them in action!

backyard
├── Cargo.lock
├── Cargo.toml
└── src
 ├── garden
 │ └── vegetables.rs
 ├── garden.rs
 └── main.rs

use crate::garden::vegetables::Asparagus;

pub mod garden;

fn main() {
 let plant = Asparagus {};
 println!("I'm growing {:?}!", plant);
}

pub mod vegetables;

#[derive(Debug)]
pub struct Asparagus {}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 155/636

Grouping Related Code in Modules

Modules let us organize code within a crate for readability and easy reuse. Modules also
allow us to control the privacy of items, because code within a module is private by
default. Private items are internal implementation details not available for outside use.
We can choose to make modules and the items within them public, which exposes them
to allow external code to use and depend on them.

As an example, let’s write a library crate that provides the functionality of a restaurant.
We’ll define the signatures of functions but leave their bodies empty to concentrate on
the organization of the code, rather than the implementation of a restaurant.

In the restaurant industry, some parts of a restaurant are referred to as front of house
and others as back of house. Front of house is where customers are; this encompasses
where the hosts seat customers, servers take orders and payment, and bartenders
make drinks. Back of house is where the chefs and cooks work in the kitchen,
dishwashers clean up, and managers do administrative work.

To structure our crate in this way, we can organize its functions into nested modules.
Create a new library named restaurant by running cargo new restaurant --lib ;
then enter the code in Listing 7-1 into src/lib.rs to define some modules and function
signatures. Here’s the front of house section:

Filename: src/lib.rs

Listing 7-1: A front_of_house module containing other modules that then contain functions

We define a module with the mod keyword followed by the name of the module (in this
case, front_of_house). The body of the module then goes inside curly brackets. Inside
modules, we can place other modules, as in this case with the modules hosting and
serving . Modules can also hold definitions for other items, such as structs, enums,

constants, traits, and—as in Listing 7-1—functions.

mod front_of_house {
 mod hosting {
 fn add_to_waitlist() {}

 fn seat_at_table() {}
 }

 mod serving {
 fn take_order() {}

 fn serve_order() {}

 fn take_payment() {}
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 156/636

By using modules, we can group related definitions together and name why they’re
related. Programmers using this code can navigate the code based on the groups rather
than having to read through all the definitions, making it easier to find the definitions
relevant to them. Programmers adding new functionality to this code would know
where to place the code to keep the program organized.

Earlier, we mentioned that src/main.rs and src/lib.rs are called crate roots. The reason for
their name is that the contents of either of these two files form a module named crate
at the root of the crate’s module structure, known as the module tree.

Listing 7-2 shows the module tree for the structure in Listing 7-1.

Listing 7-2: The module tree for the code in Listing 7-1

This tree shows how some of the modules nest inside one another; for example,
hosting nests inside front_of_house . The tree also shows that some modules are

siblings to each other, meaning they’re defined in the same module; hosting and
serving are siblings defined within front_of_house . If module A is contained inside

module B, we say that module A is the child of module B and that module B is the parent
of module A. Notice that the entire module tree is rooted under the implicit module
named crate .

The module tree might remind you of the filesystem’s directory tree on your computer;
this is a very apt comparison! Just like directories in a filesystem, you use modules to
organize your code. And just like files in a directory, we need a way to find our modules.

crate
 └── front_of_house
 ├── hosting
 │ ├── add_to_waitlist
 │ └── seat_at_table
 └── serving
 ├── take_order
 ├── serve_order
 └── take_payment

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 157/636

Paths for Referring to an Item in the Module Tree

To show Rust where to find an item in a module tree, we use a path in the same way we
use a path when navigating a filesystem. To call a function, we need to know its path.

A path can take two forms:

An absolute path is the full path starting from a crate root; for code from an
external crate, the absolute path begins with the crate name, and for code from
the current crate, it starts with the literal crate .
A relative path starts from the current module and uses self , super , or an
identifier in the current module.

Both absolute and relative paths are followed by one or more identifiers separated by
double colons (::).

Returning to Listing 7-1, say we want to call the add_to_waitlist function. This is the
same as asking: what’s the path of the add_to_waitlist function? Listing 7-3 contains
Listing 7-1 with some of the modules and functions removed.

We’ll show two ways to call the add_to_waitlist function from a new function
eat_at_restaurant defined in the crate root. These paths are correct, but there’s

another problem remaining that will prevent this example from compiling as-is. We’ll
explain why in a bit.

The eat_at_restaurant function is part of our library crate’s public API, so we mark it
with the pub keyword. In the “Exposing Paths with the pub Keyword” section, we’ll go
into more detail about pub .

Filename: src/lib.rs

Listing 7-3: Calling the add_to_waitlist function using absolute and relative paths

mod front_of_house {
 mod hosting {
 fn add_to_waitlist() {}
 }
}

pub fn eat_at_restaurant() {
 // Absolute path
 crate::front_of_house::hosting::add_to_waitlist();

 // Relative path
 front_of_house::hosting::add_to_waitlist();
}

https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html#exposing-paths-with-the-pub-keyword
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 158/636

The first time we call the add_to_waitlist function in eat_at_restaurant , we use an
absolute path. The add_to_waitlist function is defined in the same crate as
eat_at_restaurant , which means we can use the crate keyword to start an absolute

path. We then include each of the successive modules until we make our way to
add_to_waitlist . You can imagine a filesystem with the same structure: we’d specify

the path /front_of_house/hosting/add_to_waitlist to run the add_to_waitlist
program; using the crate name to start from the crate root is like using / to start from
the filesystem root in your shell.

The second time we call add_to_waitlist in eat_at_restaurant , we use a relative
path. The path starts with front_of_house , the name of the module defined at the
same level of the module tree as eat_at_restaurant . Here the filesystem equivalent
would be using the path front_of_house/hosting/add_to_waitlist . Starting with a
module name means that the path is relative.

Choosing whether to use a relative or absolute path is a decision you’ll make based on
your project, and depends on whether you’re more likely to move item definition code
separately from or together with the code that uses the item. For example, if we move
the front_of_house module and the eat_at_restaurant function into a module
named customer_experience , we’d need to update the absolute path to
add_to_waitlist , but the relative path would still be valid. However, if we moved the
eat_at_restaurant function separately into a module named dining , the absolute

path to the add_to_waitlist call would stay the same, but the relative path would
need to be updated. Our preference in general is to specify absolute paths because it’s
more likely we’ll want to move code definitions and item calls independently of each
other.

Let’s try to compile Listing 7-3 and find out why it won’t compile yet! The error we get is
shown in Listing 7-4.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 159/636

Listing 7-4: Compiler errors from building the code in Listing 7-3

The error messages say that module hosting is private. In other words, we have the
correct paths for the hosting module and the add_to_waitlist function, but Rust
won’t let us use them because it doesn’t have access to the private sections. In Rust, all
items (functions, methods, structs, enums, modules, and constants) are private to
parent modules by default. If you want to make an item like a function or struct private,
you put it in a module.

Items in a parent module can’t use the private items inside child modules, but items in
child modules can use the items in their ancestor modules. This is because child
modules wrap and hide their implementation details, but the child modules can see the
context in which they’re defined. To continue with our metaphor, think of the privacy
rules as being like the back office of a restaurant: what goes on in there is private to
restaurant customers, but office managers can see and do everything in the restaurant
they operate.

Rust chose to have the module system function this way so that hiding inner
implementation details is the default. That way, you know which parts of the inner code
you can change without breaking outer code. However, Rust does give you the option to
expose inner parts of child modules’ code to outer ancestor modules by using the pub
keyword to make an item public.

$ cargo build
 Compiling restaurant v0.1.0 (file:///projects/restaurant)
error[E0603]: module `hosting` is private
 --> src/lib.rs:9:28
 |
9 | crate::front_of_house::hosting::add_to_waitlist();
 | ^^^^^^^ private module
 |
note: the module `hosting` is defined here
 --> src/lib.rs:2:5
 |
2 | mod hosting {
 | ^^^^^^^^^^^

error[E0603]: module `hosting` is private
 --> src/lib.rs:12:21
 |
12 | front_of_house::hosting::add_to_waitlist();
 | ^^^^^^^ private module
 |
note: the module `hosting` is defined here
 --> src/lib.rs:2:5
 |
2 | mod hosting {
 | ^^^^^^^^^^^

For more information about this error, try `rustc --explain E0603`.
error: could not compile `restaurant` due to 2 previous errors

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 160/636

Exposing Paths with the pub Keyword

Let’s return to the error in Listing 7-4 that told us the hosting module is private. We
want the eat_at_restaurant function in the parent module to have access to the
add_to_waitlist function in the child module, so we mark the hosting module with

the pub keyword, as shown in Listing 7-5.

Filename: src/lib.rs

Listing 7-5: Declaring the hosting module as pub to use it from eat_at_restaurant

Unfortunately, the code in Listing 7-5 still results in an error, as shown in Listing 7-6.

mod front_of_house {
 pub mod hosting {
 fn add_to_waitlist() {}
 }
}

pub fn eat_at_restaurant() {
 // Absolute path
 crate::front_of_house::hosting::add_to_waitlist();

 // Relative path
 front_of_house::hosting::add_to_waitlist();
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 161/636

Listing 7-6: Compiler errors from building the code in Listing 7-5

What happened? Adding the pub keyword in front of mod hosting makes the module
public. With this change, if we can access front_of_house , we can access hosting . But
the contents of hosting are still private; making the module public doesn’t make its
contents public. The pub keyword on a module only lets code in its ancestor modules
refer to it, not access its inner code. Because modules are containers, there’s not much
we can do by only making the module public; we need to go further and choose to make
one or more of the items within the module public as well.

The errors in Listing 7-6 say that the add_to_waitlist function is private. The privacy
rules apply to structs, enums, functions, and methods as well as modules.

Let’s also make the add_to_waitlist function public by adding the pub keyword
before its definition, as in Listing 7-7.

Filename: src/lib.rs

$ cargo build
 Compiling restaurant v0.1.0 (file:///projects/restaurant)
error[E0603]: function `add_to_waitlist` is private
 --> src/lib.rs:9:37
 |
9 | crate::front_of_house::hosting::add_to_waitlist();
 | ^^^^^^^^^^^^^^^ private function
 |
note: the function `add_to_waitlist` is defined here
 --> src/lib.rs:3:9
 |
3 | fn add_to_waitlist() {}
 | ^^^^^^^^^^^^^^^^^^^^

error[E0603]: function `add_to_waitlist` is private
 --> src/lib.rs:12:30
 |
12 | front_of_house::hosting::add_to_waitlist();
 | ^^^^^^^^^^^^^^^ private function
 |
note: the function `add_to_waitlist` is defined here
 --> src/lib.rs:3:9
 |
3 | fn add_to_waitlist() {}
 | ^^^^^^^^^^^^^^^^^^^^

For more information about this error, try `rustc --explain E0603`.
error: could not compile `restaurant` due to 2 previous errors

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 162/636

Listing 7-7: Adding the pub keyword to mod hosting and fn add_to_waitlist lets us call the function

from eat_at_restaurant

Now the code will compile! To see why adding the pub keyword lets us use these paths
in add_to_waitlist with respect to the privacy rules, let’s look at the absolute and the
relative paths.

In the absolute path, we start with crate , the root of our crate’s module tree. The
front_of_house module is defined in the crate root. While front_of_house isn’t public,

because the eat_at_restaurant function is defined in the same module as
front_of_house (that is, eat_at_restaurant and front_of_house are siblings), we can

refer to front_of_house from eat_at_restaurant . Next is the hosting module
marked with pub . We can access the parent module of hosting , so we can access
hosting . Finally, the add_to_waitlist function is marked with pub and we can access

its parent module, so this function call works!

In the relative path, the logic is the same as the absolute path except for the first step:
rather than starting from the crate root, the path starts from front_of_house . The
front_of_house module is defined within the same module as eat_at_restaurant , so

the relative path starting from the module in which eat_at_restaurant is defined
works. Then, because hosting and add_to_waitlist are marked with pub , the rest of
the path works, and this function call is valid!

If you plan on sharing your library crate so other projects can use your code, your public
API is your contract with users of your crate that determines how they can interact with
your code. There are many considerations around managing changes to your public API
to make it easier for people to depend on your crate. These considerations are out of
the scope of this book; if you’re interested in this topic, see The Rust API Guidelines.

mod front_of_house {
 pub mod hosting {
 pub fn add_to_waitlist() {}
 }
}

pub fn eat_at_restaurant() {
 // Absolute path
 crate::front_of_house::hosting::add_to_waitlist();

 // Relative path
 front_of_house::hosting::add_to_waitlist();
}

https://rust-lang.github.io/api-guidelines/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 163/636

Best Practices for Packages with a Binary and a Library

We mentioned a package can contain both a src/main.rs binary crate root as well as
a src/lib.rs library crate root, and both crates will have the package name by
default. Typically, packages with this pattern of containing both a library and a
binary crate will have just enough code in the binary crate to start an executable
that calls code with the library crate. This lets other projects benefit from the most
functionality that the package provides, because the library crate’s code can be
shared.

The module tree should be defined in src/lib.rs. Then, any public items can be used
in the binary crate by starting paths with the name of the package. The binary
crate becomes a user of the library crate just like a completely external crate
would use the library crate: it can only use the public API. This helps you design a
good API; not only are you the author, you’re also a client!

In Chapter 12, we’ll demonstrate this organizational practice with a command-line
program that will contain both a binary crate and a library crate.

Starting Relative Paths with super

We can construct relative paths that begin in the parent module, rather than the current
module or the crate root, by using super at the start of the path. This is like starting a
filesystem path with the .. syntax. Using super allows us to reference an item that we
know is in the parent module, which can make rearranging the module tree easier when
the module is closely related to the parent, but the parent might be moved elsewhere in
the module tree someday.

Consider the code in Listing 7-8 that models the situation in which a chef fixes an
incorrect order and personally brings it out to the customer. The function
fix_incorrect_order defined in the back_of_house module calls the function
deliver_order defined in the parent module by specifying the path to deliver_order

starting with super :

Filename: src/lib.rs

https://doc.rust-lang.org/book/ch12-00-an-io-project.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 164/636

Listing 7-8: Calling a function using a relative path starting with super

The fix_incorrect_order function is in the back_of_house module, so we can use
super to go to the parent module of back_of_house , which in this case is crate , the

root. From there, we look for deliver_order and find it. Success! We think the
back_of_house module and the deliver_order function are likely to stay in the same

relationship to each other and get moved together should we decide to reorganize the
crate’s module tree. Therefore, we used super so we’ll have fewer places to update
code in the future if this code gets moved to a different module.

Making Structs and Enums Public

We can also use pub to designate structs and enums as public, but there are a few
details extra to the usage of pub with structs and enums. If we use pub before a struct
definition, we make the struct public, but the struct’s fields will still be private. We can
make each field public or not on a case-by-case basis. In Listing 7-9, we’ve defined a
public back_of_house::Breakfast struct with a public toast field but a private
seasonal_fruit field. This models the case in a restaurant where the customer can

pick the type of bread that comes with a meal, but the chef decides which fruit
accompanies the meal based on what’s in season and in stock. The available fruit
changes quickly, so customers can’t choose the fruit or even see which fruit they’ll get.

Filename: src/lib.rs

fn deliver_order() {}

mod back_of_house {
 fn fix_incorrect_order() {
 cook_order();
 super::deliver_order();
 }

 fn cook_order() {}
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 165/636

Listing 7-9: A struct with some public fields and some private fields

Because the toast field in the back_of_house::Breakfast struct is public, in
eat_at_restaurant we can write and read to the toast field using dot notation. Notice

that we can’t use the seasonal_fruit field in eat_at_restaurant because
seasonal_fruit is private. Try uncommenting the line modifying the seasonal_fruit

field value to see what error you get!

Also, note that because back_of_house::Breakfast has a private field, the struct needs
to provide a public associated function that constructs an instance of Breakfast (we’ve
named it summer here). If Breakfast didn’t have such a function, we couldn’t create an
instance of Breakfast in eat_at_restaurant because we couldn’t set the value of the
private seasonal_fruit field in eat_at_restaurant .

In contrast, if we make an enum public, all of its variants are then public. We only need
the pub before the enum keyword, as shown in Listing 7-10.

Filename: src/lib.rs

mod back_of_house {
 pub struct Breakfast {
 pub toast: String,
 seasonal_fruit: String,
 }

 impl Breakfast {
 pub fn summer(toast: &str) -> Breakfast {
 Breakfast {
 toast: String::from(toast),
 seasonal_fruit: String::from("peaches"),
 }
 }
 }
}

pub fn eat_at_restaurant() {
 // Order a breakfast in the summer with Rye toast
 let mut meal = back_of_house::Breakfast::summer("Rye");
 // Change our mind about what bread we'd like
 meal.toast = String::from("Wheat");
 println!("I'd like {} toast please", meal.toast);

 // The next line won't compile if we uncomment it; we're not allowed
 // to see or modify the seasonal fruit that comes with the meal
 // meal.seasonal_fruit = String::from("blueberries");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 166/636

Listing 7-10: Designating an enum as public makes all its variants public

Because we made the Appetizer enum public, we can use the Soup and Salad
variants in eat_at_restaurant .

Enums aren’t very useful unless their variants are public; it would be annoying to have
to annotate all enum variants with pub in every case, so the default for enum variants is
to be public. Structs are often useful without their fields being public, so struct fields
follow the general rule of everything being private by default unless annotated with
pub .

There’s one more situation involving pub that we haven’t covered, and that is our last
module system feature: the use keyword. We’ll cover use by itself first, and then we’ll
show how to combine pub and use .

mod back_of_house {
 pub enum Appetizer {
 Soup,
 Salad,
 }
}

pub fn eat_at_restaurant() {
 let order1 = back_of_house::Appetizer::Soup;
 let order2 = back_of_house::Appetizer::Salad;
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 167/636

Bringing Paths into Scope with the use Keyword

Having to write out the paths to call functions can feel inconvenient and repetitive. In
Listing 7-7, whether we chose the absolute or relative path to the add_to_waitlist
function, every time we wanted to call add_to_waitlist we had to specify
front_of_house and hosting too. Fortunately, there’s a way to simplify this process:

we can create a shortcut to a path with the use keyword once, and then use the shorter
name everywhere else in the scope.

In Listing 7-11, we bring the crate::front_of_house::hosting module into the scope
of the eat_at_restaurant function so we only have to specify
hosting::add_to_waitlist to call the add_to_waitlist function in
eat_at_restaurant .

Filename: src/lib.rs

Listing 7-11: Bringing a module into scope with use

Adding use and a path in a scope is similar to creating a symbolic link in the filesystem.
By adding use crate::front_of_house::hosting in the crate root, hosting is now a
valid name in that scope, just as though the hosting module had been defined in the
crate root. Paths brought into scope with use also check privacy, like any other paths.

Note that use only creates the shortcut for the particular scope in which the use
occurs. Listing 7-12 moves the eat_at_restaurant function into a new child module
named customer , which is then a different scope than the use statement, so the
function body won’t compile:

Filename: src/lib.rs

mod front_of_house {
 pub mod hosting {
 pub fn add_to_waitlist() {}
 }
}

use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
 hosting::add_to_waitlist();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 168/636

Listing 7-12: A use statement only applies in the scope it’s in

The compiler error shows that the shortcut no longer applies within the customer
module:

Notice there’s also a warning that the use is no longer used in its scope! To fix this
problem, move the use within the customer module too, or reference the shortcut in
the parent module with super::hosting within the child customer module.

Creating Idiomatic use Paths

In Listing 7-11, you might have wondered why we specified use
crate::front_of_house::hosting and then called hosting::add_to_waitlist in
eat_at_restaurant rather than specifying the use path all the way out to the
add_to_waitlist function to achieve the same result, as in Listing 7-13.

mod front_of_house {
 pub mod hosting {
 pub fn add_to_waitlist() {}
 }
}

use crate::front_of_house::hosting;

mod customer {
 pub fn eat_at_restaurant() {
 hosting::add_to_waitlist();
 }
}

$ cargo build
 Compiling restaurant v0.1.0 (file:///projects/restaurant)
warning: unused import: `crate::front_of_house::hosting`
 --> src/lib.rs:7:5
 |
7 | use crate::front_of_house::hosting;
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: `#[warn(unused_imports)]` on by default

error[E0433]: failed to resolve: use of undeclared crate or module
`hosting`
 --> src/lib.rs:11:9
 |
11 | hosting::add_to_waitlist();
 | ^^^^^^^ use of undeclared crate or module `hosting`

For more information about this error, try `rustc --explain E0433`.
warning: `restaurant` (lib) generated 1 warning
error: could not compile `restaurant` due to previous error; 1 warning
emitted

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 169/636

Filename: src/lib.rs

Listing 7-13: Bringing the add_to_waitlist function into scope with use , which is unidiomatic

Although both Listing 7-11 and 7-13 accomplish the same task, Listing 7-11 is the
idiomatic way to bring a function into scope with use . Bringing the function’s parent
module into scope with use means we have to specify the parent module when calling
the function. Specifying the parent module when calling the function makes it clear that
the function isn’t locally defined while still minimizing repetition of the full path. The
code in Listing 7-13 is unclear as to where add_to_waitlist is defined.

On the other hand, when bringing in structs, enums, and other items with use , it’s
idiomatic to specify the full path. Listing 7-14 shows the idiomatic way to bring the
standard library’s HashMap struct into the scope of a binary crate.

Filename: src/main.rs

Listing 7-14: Bringing HashMap into scope in an idiomatic way

There’s no strong reason behind this idiom: it’s just the convention that has emerged,
and folks have gotten used to reading and writing Rust code this way.

The exception to this idiom is if we’re bringing two items with the same name into scope
with use statements, because Rust doesn’t allow that. Listing 7-15 shows how to bring
two Result types into scope that have the same name but different parent modules
and how to refer to them.

Filename: src/lib.rs

mod front_of_house {
 pub mod hosting {
 pub fn add_to_waitlist() {}
 }
}

use crate::front_of_house::hosting::add_to_waitlist;

pub fn eat_at_restaurant() {
 add_to_waitlist();
}

use std::collections::HashMap;

fn main() {
 let mut map = HashMap::new();
 map.insert(1, 2);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 170/636

Listing 7-15: Bringing two types with the same name into the same scope requires using their parent

modules.

As you can see, using the parent modules distinguishes the two Result types. If instead
we specified use std::fmt::Result and use std::io::Result , we’d have two Result
types in the same scope and Rust wouldn’t know which one we meant when we used
Result .

Providing New Names with the as Keyword

There’s another solution to the problem of bringing two types of the same name into
the same scope with use : after the path, we can specify as and a new local name, or
alias, for the type. Listing 7-16 shows another way to write the code in Listing 7-15 by
renaming one of the two Result types using as .

Filename: src/lib.rs

Listing 7-16: Renaming a type when it’s brought into scope with the as keyword

In the second use statement, we chose the new name IoResult for the
std::io::Result type, which won’t conflict with the Result from std::fmt that we’ve

also brought into scope. Listing 7-15 and Listing 7-16 are considered idiomatic, so the
choice is up to you!

use std::fmt;
use std::io;

fn function1() -> fmt::Result {
 // --snip--
}

fn function2() -> io::Result<()> {
 // --snip--
}

use std::fmt::Result;
use std::io::Result as IoResult;

fn function1() -> Result {
 // --snip--
}

fn function2() -> IoResult<()> {
 // --snip--
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 171/636

Re-exporting Names with pub use

When we bring a name into scope with the use keyword, the name available in the new
scope is private. To enable the code that calls our code to refer to that name as if it had
been defined in that code’s scope, we can combine pub and use . This technique is
called re-exporting because we’re bringing an item into scope but also making that item
available for others to bring into their scope.

Listing 7-17 shows the code in Listing 7-11 with use in the root module changed to pub
use .

Filename: src/lib.rs

Listing 7-17: Making a name available for any code to use from a new scope with pub use

Before this change, external code would have to call the add_to_waitlist function by
using the path restaurant::front_of_house::hosting::add_to_waitlist() . Now that
this pub use has re-exported the hosting module from the root module, external
code can now use the path restaurant::hosting::add_to_waitlist() instead.

Re-exporting is useful when the internal structure of your code is different from how
programmers calling your code would think about the domain. For example, in this
restaurant metaphor, the people running the restaurant think about “front of house”
and “back of house.” But customers visiting a restaurant probably won’t think about the
parts of the restaurant in those terms. With pub use , we can write our code with one
structure but expose a different structure. Doing so makes our library well organized for
programmers working on the library and programmers calling the library. We’ll look at
another example of pub use and how it affects your crate’s documentation in the
“Exporting a Convenient Public API with pub use ” section of Chapter 14.

Using External Packages

In Chapter 2, we programmed a guessing game project that used an external package
called rand to get random numbers. To use rand in our project, we added this line to
Cargo.toml:

mod front_of_house {
 pub mod hosting {
 pub fn add_to_waitlist() {}
 }
}

pub use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
 hosting::add_to_waitlist();
}

https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#exporting-a-convenient-public-api-with-pub-use

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 172/636

Filename: Cargo.toml

Adding rand as a dependency in Cargo.toml tells Cargo to download the rand package
and any dependencies from crates.io and make rand available to our project.

Then, to bring rand definitions into the scope of our package, we added a use line
starting with the name of the crate, rand , and listed the items we wanted to bring into
scope. Recall that in the “Generating a Random Number” section in Chapter 2, we
brought the Rng trait into scope and called the rand::thread_rng function:

Members of the Rust community have made many packages available at crates.io, and
pulling any of them into your package involves these same steps: listing them in your
package’s Cargo.toml file and using use to bring items from their crates into scope.

Note that the standard std library is also a crate that’s external to our package.
Because the standard library is shipped with the Rust language, we don’t need to
change Cargo.toml to include std . But we do need to refer to it with use to bring items
from there into our package’s scope. For example, with HashMap we would use this line:

This is an absolute path starting with std , the name of the standard library crate.

Using Nested Paths to Clean Up Large use Lists

If we’re using multiple items defined in the same crate or same module, listing each
item on its own line can take up a lot of vertical space in our files. For example, these
two use statements we had in the Guessing Game in Listing 2-4 bring items from std
into scope:

Filename: src/main.rs

rand = "0.8.5"

use rand::Rng;

fn main() {
 let secret_number = rand::thread_rng().gen_range(1..=100);
}

use std::collections::HashMap;

// --snip--
use std::cmp::Ordering;
use std::io;
// --snip--

https://crates.io/
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#generating-a-random-number
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 173/636

Instead, we can use nested paths to bring the same items into scope in one line. We do
this by specifying the common part of the path, followed by two colons, and then curly
brackets around a list of the parts of the paths that differ, as shown in Listing 7-18.

Filename: src/main.rs

Listing 7-18: Specifying a nested path to bring multiple items with the same prefix into scope

In bigger programs, bringing many items into scope from the same crate or module
using nested paths can reduce the number of separate use statements needed by a lot!

We can use a nested path at any level in a path, which is useful when combining two
use statements that share a subpath. For example, Listing 7-19 shows two use

statements: one that brings std::io into scope and one that brings std::io::Write
into scope.

Filename: src/lib.rs

Listing 7-19: Two use statements where one is a subpath of the other

The common part of these two paths is std::io , and that’s the complete first path. To
merge these two paths into one use statement, we can use self in the nested path, as
shown in Listing 7-20.

Filename: src/lib.rs

Listing 7-20: Combining the paths in Listing 7-19 into one use statement

This line brings std::io and std::io::Write into scope.

The Glob Operator

If we want to bring all public items defined in a path into scope, we can specify that path
followed by the * glob operator:

// --snip--
use std::{cmp::Ordering, io};
// --snip--

use std::io;
use std::io::Write;

use std::io::{self, Write};

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 174/636

This use statement brings all public items defined in std::collections into the
current scope. Be careful when using the glob operator! Glob can make it harder to tell
what names are in scope and where a name used in your program was defined.

The glob operator is often used when testing to bring everything under test into the
tests module; we’ll talk about that in the “How to Write Tests” section in Chapter 11.

The glob operator is also sometimes used as part of the prelude pattern: see the
standard library documentation for more information on that pattern.

use std::collections::*;

https://doc.rust-lang.org/book/ch11-01-writing-tests.html#how-to-write-tests
https://doc.rust-lang.org/std/prelude/index.html#other-preludes

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 175/636

Separating Modules into Different Files

So far, all the examples in this chapter defined multiple modules in one file. When
modules get large, you might want to move their definitions to a separate file to make
the code easier to navigate.

For example, let’s start from the code in Listing 7-17 that had multiple restaurant
modules. We’ll extract modules into files instead of having all the modules defined in
the crate root file. In this case, the crate root file is src/lib.rs, but this procedure also
works with binary crates whose crate root file is src/main.rs.

First, we’ll extract the front_of_house module to its own file. Remove the code inside
the curly brackets for the front_of_house module, leaving only the mod
front_of_house; declaration, so that src/lib.rs contains the code shown in Listing 7-21.
Note that this won’t compile until we create the src/front_of_house.rs file in Listing 7-22.

Filename: src/lib.rs

Listing 7-21: Declaring the front_of_house module whose body will be in src/front_of_house.rs

Next, place the code that was in the curly brackets into a new file named
src/front_of_house.rs, as shown in Listing 7-22. The compiler knows to look in this file
because it came across the module declaration in the crate root with the name
front_of_house .

Filename: src/front_of_house.rs

Listing 7-22: Definitions inside the front_of_house module in src/front_of_house.rs

Note that you only need to load a file using a mod declaration once in your module tree.
Once the compiler knows the file is part of the project (and knows where in the module
tree the code resides because of where you’ve put the mod statement), other files in
your project should refer to the loaded file’s code using a path to where it was declared,

mod front_of_house;

pub use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
 hosting::add_to_waitlist();
}

pub mod hosting {
 pub fn add_to_waitlist() {}
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 176/636

as covered in the “Paths for Referring to an Item in the Module Tree” section. In other
words, mod is not an “include” operation that you may have seen in other programming
languages.

Next, we’ll extract the hosting module to its own file. The process is a bit different
because hosting is a child module of front_of_house , not of the root module. We’ll
place the file for hosting in a new directory that will be named for its ancestors in the
module tree, in this case src/front_of_house/.

To start moving hosting , we change src/front_of_house.rs to contain only the declaration
of the hosting module:

Filename: src/front_of_house.rs

Then we create a src/front_of_house directory and a file hosting.rs to contain the
definitions made in the hosting module:

Filename: src/front_of_house/hosting.rs

If we instead put hosting.rs in the src directory, the compiler would expect the hosting.rs
code to be in a hosting module declared in the crate root, and not declared as a child
of the front_of_house module. The compiler’s rules for which files to check for which
modules’ code means the directories and files more closely match the module tree.

Alternate File Paths

So far we’ve covered the most idiomatic file paths the Rust compiler uses, but Rust
also supports an older style of file path. For a module named front_of_house
declared in the crate root, the compiler will look for the module’s code in:

src/front_of_house.rs (what we covered)
src/front_of_house/mod.rs (older style, still supported path)

For a module named hosting that is a submodule of front_of_house , the
compiler will look for the module’s code in:

src/front_of_house/hosting.rs (what we covered)
src/front_of_house/hosting/mod.rs (older style, still supported path)

If you use both styles for the same module, you’ll get a compiler error. Using a mix
of both styles for different modules in the same project is allowed, but might be

pub mod hosting;

pub fn add_to_waitlist() {}

https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 177/636

confusing for people navigating your project.

The main downside to the style that uses files named mod.rs is that your project
can end up with many files named mod.rs, which can get confusing when you have
them open in your editor at the same time.

We’ve moved each module’s code to a separate file, and the module tree remains the
same. The function calls in eat_at_restaurant will work without any modification, even
though the definitions live in different files. This technique lets you move modules to
new files as they grow in size.

Note that the pub use crate::front_of_house::hosting statement in src/lib.rs also
hasn’t changed, nor does use have any impact on what files are compiled as part of the
crate. The mod keyword declares modules, and Rust looks in a file with the same name
as the module for the code that goes into that module.

Summary

Rust lets you split a package into multiple crates and a crate into modules so you can
refer to items defined in one module from another module. You can do this by
specifying absolute or relative paths. These paths can be brought into scope with a use
statement so you can use a shorter path for multiple uses of the item in that scope.
Module code is private by default, but you can make definitions public by adding the
pub keyword.

In the next chapter, we’ll look at some collection data structures in the standard library
that you can use in your neatly organized code.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 178/636

Common Collections
Rust’s standard library includes a number of very useful data structures called
collections. Most other data types represent one specific value, but collections can
contain multiple values. Unlike the built-in array and tuple types, the data these
collections point to is stored on the heap, which means the amount of data does not
need to be known at compile time and can grow or shrink as the program runs. Each
kind of collection has different capabilities and costs, and choosing an appropriate one
for your current situation is a skill you’ll develop over time. In this chapter, we’ll discuss
three collections that are used very often in Rust programs:

A vector allows you to store a variable number of values next to each other.
A string is a collection of characters. We’ve mentioned the String type previously,
but in this chapter we’ll talk about it in depth.
A hash map allows you to associate a value with a particular key. It’s a particular
implementation of the more general data structure called a map.

To learn about the other kinds of collections provided by the standard library, see the
documentation.

We’ll discuss how to create and update vectors, strings, and hash maps, as well as what
makes each special.

https://doc.rust-lang.org/std/collections/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 179/636

Storing Lists of Values with Vectors

The first collection type we’ll look at is Vec<T> , also known as a vector. Vectors allow you
to store more than one value in a single data structure that puts all the values next to
each other in memory. Vectors can only store values of the same type. They are useful
when you have a list of items, such as the lines of text in a file or the prices of items in a
shopping cart.

Creating a New Vector

To create a new empty vector, we call the Vec::new function, as shown in Listing 8-1.

Listing 8-1: Creating a new, empty vector to hold values of type i32

Note that we added a type annotation here. Because we aren’t inserting any values into
this vector, Rust doesn’t know what kind of elements we intend to store. This is an
important point. Vectors are implemented using generics; we’ll cover how to use
generics with your own types in Chapter 10. For now, know that the Vec<T> type
provided by the standard library can hold any type. When we create a vector to hold a
specific type, we can specify the type within angle brackets. In Listing 8-1, we’ve told Rust
that the Vec<T> in v will hold elements of the i32 type.

More often, you’ll create a Vec<T> with initial values and Rust will infer the type of value
you want to store, so you rarely need to do this type annotation. Rust conveniently
provides the vec! macro, which will create a new vector that holds the values you give
it. Listing 8-2 creates a new Vec<i32> that holds the values 1 , 2 , and 3 . The integer
type is i32 because that’s the default integer type, as we discussed in the “Data Types”
section of Chapter 3.

Listing 8-2: Creating a new vector containing values

Because we’ve given initial i32 values, Rust can infer that the type of v is Vec<i32> ,
and the type annotation isn’t necessary. Next, we’ll look at how to modify a vector.

 let v: Vec<i32> = Vec::new();

 let v = vec![1, 2, 3];

https://doc.rust-lang.org/book/ch03-02-data-types.html#data-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 180/636

Updating a Vector

To create a vector and then add elements to it, we can use the push method, as shown
in Listing 8-3.

Listing 8-3: Using the push method to add values to a vector

As with any variable, if we want to be able to change its value, we need to make it
mutable using the mut keyword, as discussed in Chapter 3. The numbers we place
inside are all of type i32 , and Rust infers this from the data, so we don’t need the
Vec<i32> annotation.

Reading Elements of Vectors

There are two ways to reference a value stored in a vector: via indexing or using the
get method. In the following examples, we’ve annotated the types of the values that

are returned from these functions for extra clarity.

Listing 8-4 shows both methods of accessing a value in a vector, with indexing syntax
and the get method.

Listing 8-4: Using indexing syntax or the get method to access an item in a vector

Note a few details here. We use the index value of 2 to get the third element because
vectors are indexed by number, starting at zero. Using & and [] gives us a reference
to the element at the index value. When we use the get method with the index passed
as an argument, we get an Option<&T> that we can use with match .

The reason Rust provides these two ways to reference an element is so you can choose
how the program behaves when you try to use an index value outside the range of

 let mut v = Vec::new();

 v.push(5);
 v.push(6);
 v.push(7);
 v.push(8);

 let v = vec![1, 2, 3, 4, 5];

 let third: &i32 = &v[2];
 println!("The third element is {third}");

 let third: Option<&i32> = v.get(2);
 match third {
 Some(third) => println!("The third element is {third}"),
 None => println!("There is no third element."),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 181/636

existing elements. As an example, let’s see what happens when we have a vector of five
elements and then we try to access an element at index 100 with each technique, as
shown in Listing 8-5.

Listing 8-5: Attempting to access the element at index 100 in a vector containing five elements

When we run this code, the first [] method will cause the program to panic because it
references a nonexistent element. This method is best used when you want your
program to crash if there’s an attempt to access an element past the end of the vector.

When the get method is passed an index that is outside the vector, it returns None
without panicking. You would use this method if accessing an element beyond the range
of the vector may happen occasionally under normal circumstances. Your code will then
have logic to handle having either Some(&element) or None , as discussed in Chapter 6.
For example, the index could be coming from a person entering a number. If they
accidentally enter a number that’s too large and the program gets a None value, you
could tell the user how many items are in the current vector and give them another
chance to enter a valid value. That would be more user-friendly than crashing the
program due to a typo!

When the program has a valid reference, the borrow checker enforces the ownership
and borrowing rules (covered in Chapter 4) to ensure this reference and any other
references to the contents of the vector remain valid. Recall the rule that states you
can’t have mutable and immutable references in the same scope. That rule applies in
Listing 8-6, where we hold an immutable reference to the first element in a vector and
try to add an element to the end. This program won’t work if we also try to refer to that
element later in the function:

Listing 8-6: Attempting to add an element to a vector while holding a reference to an item

Compiling this code will result in this error:

 let v = vec![1, 2, 3, 4, 5];

 let does_not_exist = &v[100];
 let does_not_exist = v.get(100);

 let mut v = vec![1, 2, 3, 4, 5];

 let first = &v[0];

 v.push(6);

 println!("The first element is: {first}");

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 182/636

The code in Listing 8-6 might look like it should work: why should a reference to the first
element care about changes at the end of the vector? This error is due to the way
vectors work: because vectors put the values next to each other in memory, adding a
new element onto the end of the vector might require allocating new memory and
copying the old elements to the new space, if there isn’t enough room to put all the
elements next to each other where the vector is currently stored. In that case, the
reference to the first element would be pointing to deallocated memory. The borrowing
rules prevent programs from ending up in that situation.

Note: For more on the implementation details of the Vec<T> type, see “The
Rustonomicon”.

Iterating over the Values in a Vector

To access each element in a vector in turn, we would iterate through all of the elements
rather than use indices to access one at a time. Listing 8-7 shows how to use a for loop
to get immutable references to each element in a vector of i32 values and print them.

Listing 8-7: Printing each element in a vector by iterating over the elements using a for loop

We can also iterate over mutable references to each element in a mutable vector in
order to make changes to all the elements. The for loop in Listing 8-8 will add 50 to
each element.

$ cargo run
 Compiling collections v0.1.0 (file:///projects/collections)
error[E0502]: cannot borrow `v` as mutable because it is also borrowed as
immutable
 --> src/main.rs:6:5
 |
4 | let first = &v[0];
 | - immutable borrow occurs here
5 |
6 | v.push(6);
 | ^^^^^^^^^ mutable borrow occurs here
7 |
8 | println!("The first element is: {first}");
 | ----- immutable borrow later used
here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `collections` due to previous error

 let v = vec![100, 32, 57];
 for i in &v {
 println!("{i}");
 }

https://doc.rust-lang.org/nomicon/vec/vec.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 183/636

Listing 8-8: Iterating over mutable references to elements in a vector

To change the value that the mutable reference refers to, we have to use the *
dereference operator to get to the value in i before we can use the += operator. We’ll
talk more about the dereference operator in the “Following the Pointer to the Value with
the Dereference Operator” section of Chapter 15.

Iterating over a vector, whether immutably or mutably, is safe because of the borrow
checker's rules. If we attempted to insert or remove items in the for loop bodies in
Listing 8-7 and Listing 8-8, we would get a compiler error similar to the one we got with
the code in Listing 8-6. The reference to the vector that the for loop holds prevents
simultaneous modification of the whole vector.

Using an Enum to Store Multiple Types

Vectors can only store values that are the same type. This can be inconvenient; there
are definitely use cases for needing to store a list of items of different types.
Fortunately, the variants of an enum are defined under the same enum type, so when
we need one type to represent elements of different types, we can define and use an
enum!

For example, say we want to get values from a row in a spreadsheet in which some of
the columns in the row contain integers, some floating-point numbers, and some
strings. We can define an enum whose variants will hold the different value types, and
all the enum variants will be considered the same type: that of the enum. Then we can
create a vector to hold that enum and so, ultimately, holds different types. We’ve
demonstrated this in Listing 8-9.

Listing 8-9: Defining an enum to store values of different types in one vector

 let mut v = vec![100, 32, 57];
 for i in &mut v {
 *i += 50;
 }

 enum SpreadsheetCell {
 Int(i32),
 Float(f64),
 Text(String),
 }

 let row = vec![
 SpreadsheetCell::Int(3),
 SpreadsheetCell::Text(String::from("blue")),
 SpreadsheetCell::Float(10.12),
];

https://doc.rust-lang.org/book/ch15-02-deref.html#following-the-pointer-to-the-value-with-the-dereference-operator

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 184/636

Rust needs to know what types will be in the vector at compile time so it knows exactly
how much memory on the heap will be needed to store each element. We must also be
explicit about what types are allowed in this vector. If Rust allowed a vector to hold any
type, there would be a chance that one or more of the types would cause errors with
the operations performed on the elements of the vector. Using an enum plus a match
expression means that Rust will ensure at compile time that every possible case is
handled, as discussed in Chapter 6.

If you don’t know the exhaustive set of types a program will get at runtime to store in a
vector, the enum technique won’t work. Instead, you can use a trait object, which we’ll
cover in Chapter 17.

Now that we’ve discussed some of the most common ways to use vectors, be sure to
review the API documentation for all the many useful methods defined on Vec<T> by
the standard library. For example, in addition to push , a pop method removes and
returns the last element.

Dropping a Vector Drops Its Elements

Like any other struct , a vector is freed when it goes out of scope, as annotated in
Listing 8-10.

Listing 8-10: Showing where the vector and its elements are dropped

When the vector gets dropped, all of its contents are also dropped, meaning the
integers it holds will be cleaned up. The borrow checker ensures that any references to
contents of a vector are only used while the vector itself is valid.

Let’s move on to the next collection type: String !

 {
 let v = vec![1, 2, 3, 4];

 // do stuff with v
 } // <- v goes out of scope and is freed here

https://doc.rust-lang.org/std/vec/struct.Vec.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 185/636

Storing UTF-8 Encoded Text with Strings

We talked about strings in Chapter 4, but we’ll look at them in more depth now. New
Rustaceans commonly get stuck on strings for a combination of three reasons: Rust’s
propensity for exposing possible errors, strings being a more complicated data
structure than many programmers give them credit for, and UTF-8. These factors
combine in a way that can seem difficult when you’re coming from other programming
languages.

We discuss strings in the context of collections because strings are implemented as a
collection of bytes, plus some methods to provide useful functionality when those bytes
are interpreted as text. In this section, we’ll talk about the operations on String that
every collection type has, such as creating, updating, and reading. We’ll also discuss the
ways in which String is different from the other collections, namely how indexing into
a String is complicated by the differences between how people and computers
interpret String data.

What Is a String?

We’ll first define what we mean by the term string. Rust has only one string type in the
core language, which is the string slice str that is usually seen in its borrowed form
&str . In Chapter 4, we talked about string slices, which are references to some UTF-8

encoded string data stored elsewhere. String literals, for example, are stored in the
program’s binary and are therefore string slices.

The String type, which is provided by Rust’s standard library rather than coded into
the core language, is a growable, mutable, owned, UTF-8 encoded string type. When
Rustaceans refer to “strings” in Rust, they might be referring to either the String or the
string slice &str types, not just one of those types. Although this section is largely
about String , both types are used heavily in Rust’s standard library, and both String
and string slices are UTF-8 encoded.

Creating a New String

Many of the same operations available with Vec<T> are available with String as well,
because String is actually implemented as a wrapper around a vector of bytes with
some extra guarantees, restrictions, and capabilities. An example of a function that
works the same way with Vec<T> and String is the new function to create an instance,
shown in Listing 8-11.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 186/636

Listing 8-11: Creating a new, empty String

This line creates a new empty string called s , which we can then load data into. Often,
we’ll have some initial data that we want to start the string with. For that, we use the
to_string method, which is available on any type that implements the Display trait,

as string literals do. Listing 8-12 shows two examples.

Listing 8-12: Using the to_string method to create a String from a string literal

This code creates a string containing initial contents .

We can also use the function String::from to create a String from a string literal. The
code in Listing 8-13 is equivalent to the code from Listing 8-12 that uses to_string .

Listing 8-13: Using the String::from function to create a String from a string literal

Because strings are used for so many things, we can use many different generic APIs for
strings, providing us with a lot of options. Some of them can seem redundant, but they
all have their place! In this case, String::from and to_string do the same thing, so
which you choose is a matter of style and readability.

Remember that strings are UTF-8 encoded, so we can include any properly encoded
data in them, as shown in Listing 8-14.

Listing 8-14: Storing greetings in different languages in strings

 let mut s = String::new();

 let data = "initial contents";

 let s = data.to_string();

 // the method also works on a literal directly:
 let s = "initial contents".to_string();

 let s = String::from("initial contents");

 let hello = String::from("السلام علیكم");
 let hello = String::from("Dobrý den");
 let hello = String::from("Hello");
 let hello = String::from("שָׁלוֹם");
 let hello = String::from("नम�े");
 let hello = String::from("こんにちは");
 let hello = String::from("안녕하세요");
 let hello = String::from("你好");
 let hello = String::from("Olá");
 let hello = String::from("Здравствуйте");
 let hello = String::from("Hola");

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 187/636

All of these are valid String values.

Updating a String

A String can grow in size and its contents can change, just like the contents of a
Vec<T> , if you push more data into it. In addition, you can conveniently use the +

operator or the format! macro to concatenate String values.

Appending to a String with push_str and push

We can grow a String by using the push_str method to append a string slice, as
shown in Listing 8-15.

Listing 8-15: Appending a string slice to a String using the push_str method

After these two lines, s will contain foobar . The push_str method takes a string slice
because we don’t necessarily want to take ownership of the parameter. For example, in
the code in Listing 8-16, we want to be able to use s2 after appending its contents to
s1 .

Listing 8-16: Using a string slice after appending its contents to a String

If the push_str method took ownership of s2 , we wouldn’t be able to print its value on
the last line. However, this code works as we’d expect!

The push method takes a single character as a parameter and adds it to the String .
Listing 8-17 adds the letter “l” to a String using the push method.

Listing 8-17: Adding one character to a String value using push

As a result, s will contain lol .

 let mut s = String::from("foo");
 s.push_str("bar");

 let mut s1 = String::from("foo");
 let s2 = "bar";
 s1.push_str(s2);
 println!("s2 is {s2}");

 let mut s = String::from("lo");
 s.push('l');

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 188/636

Concatenation with the + Operator or the format! Macro

Often, you’ll want to combine two existing strings. One way to do so is to use the +
operator, as shown in Listing 8-18.

Listing 8-18: Using the + operator to combine two String values into a new String value

The string s3 will contain Hello, world! . The reason s1 is no longer valid after the
addition, and the reason we used a reference to s2 , has to do with the signature of the
method that’s called when we use the + operator. The + operator uses the add
method, whose signature looks something like this:

In the standard library, you'll see add defined using generics and associated types.
Here, we’ve substituted in concrete types, which is what happens when we call this
method with String values. We’ll discuss generics in Chapter 10. This signature gives us
the clues we need to understand the tricky bits of the + operator.

First, s2 has an & , meaning that we’re adding a reference of the second string to the
first string. This is because of the s parameter in the add function: we can only add a
&str to a String ; we can’t add two String values together. But wait—the type of &s2

is &String , not &str , as specified in the second parameter to add . So why does Listing
8-18 compile?

The reason we’re able to use &s2 in the call to add is that the compiler can coerce the
&String argument into a &str . When we call the add method, Rust uses a deref

coercion, which here turns &s2 into &s2[..] . We’ll discuss deref coercion in more
depth in Chapter 15. Because add does not take ownership of the s parameter, s2
will still be a valid String after this operation.

Second, we can see in the signature that add takes ownership of self , because self
does not have an & . This means s1 in Listing 8-18 will be moved into the add call and
will no longer be valid after that. So although let s3 = s1 + &s2; looks like it will copy
both strings and create a new one, this statement actually takes ownership of s1 ,
appends a copy of the contents of s2 , and then returns ownership of the result. In
other words, it looks like it’s making a lot of copies but isn’t; the implementation is more
efficient than copying.

If we need to concatenate multiple strings, the behavior of the + operator gets
unwieldy:

 let s1 = String::from("Hello, ");
 let s2 = String::from("world!");
 let s3 = s1 + &s2; // note s1 has been moved here and can no longer be
used

fn add(self, s: &str) -> String {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 189/636

At this point, s will be tic-tac-toe . With all of the + and " characters, it’s difficult to
see what’s going on. For more complicated string combining, we can instead use the
format! macro:

This code also sets s to tic-tac-toe . The format! macro works like println! , but
instead of printing the output to the screen, it returns a String with the contents. The
version of the code using format! is much easier to read, and the code generated by
the format! macro uses references so that this call doesn’t take ownership of any of its
parameters.

Indexing into Strings

In many other programming languages, accessing individual characters in a string by
referencing them by index is a valid and common operation. However, if you try to
access parts of a String using indexing syntax in Rust, you’ll get an error. Consider the
invalid code in Listing 8-19.

Listing 8-19: Attempting to use indexing syntax with a String

This code will result in the following error:

 let s1 = String::from("tic");
 let s2 = String::from("tac");
 let s3 = String::from("toe");

 let s = s1 + "-" + &s2 + "-" + &s3;

 let s1 = String::from("tic");
 let s2 = String::from("tac");
 let s3 = String::from("toe");

 let s = format!("{s1}-{s2}-{s3}");

 let s1 = String::from("hello");
 let h = s1[0];

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 190/636

The error and the note tell the story: Rust strings don’t support indexing. But why not?
To answer that question, we need to discuss how Rust stores strings in memory.

Internal Representation

A String is a wrapper over a Vec<u8> . Let’s look at some of our properly encoded UTF-
8 example strings from Listing 8-14. First, this one:

In this case, len will be 4, which means the vector storing the string “Hola” is 4 bytes
long. Each of these letters takes 1 byte when encoded in UTF-8. The following line,
however, may surprise you. (Note that this string begins with the capital Cyrillic letter Ze,
not the Arabic number 3.)

Asked how long the string is, you might say 12. In fact, Rust’s answer is 24: that’s the
number of bytes it takes to encode “Здравствуйте” in UTF-8, because each Unicode
scalar value in that string takes 2 bytes of storage. Therefore, an index into the string’s
bytes will not always correlate to a valid Unicode scalar value. To demonstrate, consider
this invalid Rust code:

You already know that answer will not be З , the first letter. When encoded in UTF-8,
the first byte of З is 208 and the second is 151 , so it would seem that answer should

$ cargo run
 Compiling collections v0.1.0 (file:///projects/collections)
error[E0277]: the type `String` cannot be indexed by `{integer}`
 --> src/main.rs:3:13
 |
3 | let h = s1[0];
 | ^^^^^ `String` cannot be indexed by `{integer}`
 |
 = help: the trait `Index<{integer}>` is not implemented for `String`
 = help: the following other types implement trait `Index<Idx>`:
 <String as Index<RangeFrom<usize>>>
 <String as Index<RangeFull>>
 <String as Index<RangeInclusive<usize>>>
 <String as Index<RangeTo<usize>>>
 <String as Index<RangeToInclusive<usize>>>
 <String as Index<std::ops::Range<usize>>>

For more information about this error, try `rustc --explain E0277`.
error: could not compile `collections` due to previous error

 let hello = String::from("Hola");

 let hello = String::from("Здравствуйте");

let hello = "Здравствуйте";
let answer = &hello[0];

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 191/636

in fact be 208 , but 208 is not a valid character on its own. Returning 208 is likely not
what a user would want if they asked for the first letter of this string; however, that’s the
only data that Rust has at byte index 0. Users generally don’t want the byte value
returned, even if the string contains only Latin letters: if &"hello"[0] were valid code
that returned the byte value, it would return 104 , not h .

The answer, then, is that to avoid returning an unexpected value and causing bugs that
might not be discovered immediately, Rust doesn’t compile this code at all and prevents
misunderstandings early in the development process.

Bytes and Scalar Values and Grapheme Clusters! Oh My!

Another point about UTF-8 is that there are actually three relevant ways to look at
strings from Rust’s perspective: as bytes, scalar values, and grapheme clusters (the
closest thing to what we would call letters).

If we look at the Hindi word “नम�े” written in the Devanagari script, it is stored as a
vector of u8 values that looks like this:

That’s 18 bytes and is how computers ultimately store this data. If we look at them as
Unicode scalar values, which are what Rust’s char type is, those bytes look like this:

There are six char values here, but the fourth and sixth are not letters: they’re diacritics
that don’t make sense on their own. Finally, if we look at them as grapheme clusters,
we’d get what a person would call the four letters that make up the Hindi word:

Rust provides different ways of interpreting the raw string data that computers store so
that each program can choose the interpretation it needs, no matter what human
language the data is in.

A final reason Rust doesn’t allow us to index into a String to get a character is that
indexing operations are expected to always take constant time (O(1)). But it isn’t
possible to guarantee that performance with a String , because Rust would have to
walk through the contents from the beginning to the index to determine how many
valid characters there were.

[224, 164, 168, 224, 164, 174, 224, 164, 184, 224, 165, 141, 224, 164, 164,
224, 165, 135]

['न', 'म', 'स', '◌्', 'त', '◌े']

["न", "म", "स्", "ते"]

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 192/636

Slicing Strings

Indexing into a string is often a bad idea because it’s not clear what the return type of
the string-indexing operation should be: a byte value, a character, a grapheme cluster,
or a string slice. If you really need to use indices to create string slices, therefore, Rust
asks you to be more specific.

Rather than indexing using [] with a single number, you can use [] with a range to
create a string slice containing particular bytes:

Here, s will be a &str that contains the first 4 bytes of the string. Earlier, we
mentioned that each of these characters was 2 bytes, which means s will be Зд .

If we were to try to slice only part of a character’s bytes with something like
&hello[0..1] , Rust would panic at runtime in the same way as if an invalid index were

accessed in a vector:

You should use ranges to create string slices with caution, because doing so can crash
your program.

Methods for Iterating Over Strings

The best way to operate on pieces of strings is to be explicit about whether you want
characters or bytes. For individual Unicode scalar values, use the chars method. Calling
chars on “Зд” separates out and returns two values of type char , and you can iterate

over the result to access each element:

This code will print the following:

let hello = "Здравствуйте";

let s = &hello[0..4];

$ cargo run
 Compiling collections v0.1.0 (file:///projects/collections)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running `target/debug/collections`
thread 'main' panicked at 'byte index 1 is not a char boundary; it is
inside 'З' (bytes 0..2) of `Здравствуйте`', src/main.rs:4:14
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

for c in "Зд".chars() {
 println!("{c}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 193/636

Alternatively, the bytes method returns each raw byte, which might be appropriate for
your domain:

This code will print the four bytes that make up this string:

But be sure to remember that valid Unicode scalar values may be made up of more
than 1 byte.

Getting grapheme clusters from strings as with the Devanagari script is complex, so this
functionality is not provided by the standard library. Crates are available on crates.io if
this is the functionality you need.

Strings Are Not So Simple

To summarize, strings are complicated. Different programming languages make
different choices about how to present this complexity to the programmer. Rust has
chosen to make the correct handling of String data the default behavior for all Rust
programs, which means programmers have to put more thought into handling UTF-8
data upfront. This trade-off exposes more of the complexity of strings than is apparent
in other programming languages, but it prevents you from having to handle errors
involving non-ASCII characters later in your development life cycle.

The good news is that the standard library offers a lot of functionality built off the
String and &str types to help handle these complex situations correctly. Be sure to

check out the documentation for useful methods like contains for searching in a string
and replace for substituting parts of a string with another string.

Let’s switch to something a bit less complex: hash maps!

З
д

for b in "Зд".bytes() {
 println!("{b}");
}

208
151
208
180

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 194/636

Storing Keys with Associated Values in Hash Maps

The last of our common collections is the hash map. The type HashMap<K, V> stores a
mapping of keys of type K to values of type V using a hashing function, which
determines how it places these keys and values into memory. Many programming
languages support this kind of data structure, but they often use a different name, such
as hash, map, object, hash table, dictionary, or associative array, just to name a few.

Hash maps are useful when you want to look up data not by using an index, as you can
with vectors, but by using a key that can be of any type. For example, in a game, you
could keep track of each team’s score in a hash map in which each key is a team’s name
and the values are each team’s score. Given a team name, you can retrieve its score.

We’ll go over the basic API of hash maps in this section, but many more goodies are
hiding in the functions defined on HashMap<K, V> by the standard library. As always,
check the standard library documentation for more information.

Creating a New Hash Map

One way to create an empty hash map is using new and adding elements with insert .
In Listing 8-20, we’re keeping track of the scores of two teams whose names are Blue
and Yellow. The Blue team starts with 10 points, and the Yellow team starts with 50.

Listing 8-20: Creating a new hash map and inserting some keys and values

Note that we need to first use the HashMap from the collections portion of the
standard library. Of our three common collections, this one is the least often used, so
it’s not included in the features brought into scope automatically in the prelude. Hash
maps also have less support from the standard library; there’s no built-in macro to
construct them, for example.

Just like vectors, hash maps store their data on the heap. This HashMap has keys of type
String and values of type i32 . Like vectors, hash maps are homogeneous: all of the

keys must have the same type as each other, and all of the values must have the same
type.

 use std::collections::HashMap;

 let mut scores = HashMap::new();

 scores.insert(String::from("Blue"), 10);
 scores.insert(String::from("Yellow"), 50);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 195/636

Accessing Values in a Hash Map

We can get a value out of the hash map by providing its key to the get method, as
shown in Listing 8-21.

Listing 8-21: Accessing the score for the Blue team stored in the hash map

Here, score will have the value that’s associated with the Blue team, and the result will
be 10 . The get method returns an Option<&V> ; if there’s no value for that key in the
hash map, get will return None . This program handles the Option by calling copied
to get an Option<i32> rather than an Option<&i32> , then unwrap_or to set score to
zero if scores doesn't have an entry for the key.

We can iterate over each key/value pair in a hash map in a similar manner as we do with
vectors, using a for loop:

This code will print each pair in an arbitrary order:

Hash Maps and Ownership

For types that implement the Copy trait, like i32 , the values are copied into the hash
map. For owned values like String , the values will be moved and the hash map will be
the owner of those values, as demonstrated in Listing 8-22.

 use std::collections::HashMap;

 let mut scores = HashMap::new();

 scores.insert(String::from("Blue"), 10);
 scores.insert(String::from("Yellow"), 50);

 let team_name = String::from("Blue");
 let score = scores.get(&team_name).copied().unwrap_or(0);

 use std::collections::HashMap;

 let mut scores = HashMap::new();

 scores.insert(String::from("Blue"), 10);
 scores.insert(String::from("Yellow"), 50);

 for (key, value) in &scores {
 println!("{key}: {value}");
 }

Yellow: 50
Blue: 10

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 196/636

Listing 8-22: Showing that keys and values are owned by the hash map once they’re inserted

We aren’t able to use the variables field_name and field_value after they’ve been
moved into the hash map with the call to insert .

If we insert references to values into the hash map, the values won’t be moved into the
hash map. The values that the references point to must be valid for at least as long as
the hash map is valid. We’ll talk more about these issues in the “Validating References
with Lifetimes” section in Chapter 10.

Updating a Hash Map

Although the number of key and value pairs is growable, each unique key can only have
one value associated with it at a time (but not vice versa: for example, both the Blue
team and the Yellow team could have value 10 stored in the scores hash map).

When you want to change the data in a hash map, you have to decide how to handle the
case when a key already has a value assigned. You could replace the old value with the
new value, completely disregarding the old value. You could keep the old value and
ignore the new value, only adding the new value if the key doesn’t already have a value.
Or you could combine the old value and the new value. Let’s look at how to do each of
these!

Overwriting a Value

If we insert a key and a value into a hash map and then insert that same key with a
different value, the value associated with that key will be replaced. Even though the
code in Listing 8-23 calls insert twice, the hash map will only contain one key/value
pair because we’re inserting the value for the Blue team’s key both times.

 use std::collections::HashMap;

 let field_name = String::from("Favorite color");
 let field_value = String::from("Blue");

 let mut map = HashMap::new();
 map.insert(field_name, field_value);
 // field_name and field_value are invalid at this point, try using them
and
 // see what compiler error you get!

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#validating-references-with-lifetimes

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 197/636

Listing 8-23: Replacing a value stored with a particular key

This code will print {"Blue": 25} . The original value of 10 has been overwritten.

Adding a Key and Value Only If a Key Isn’t Present

It’s common to check whether a particular key already exists in the hash map with a
value then take the following actions: if the key does exist in the hash map, the existing
value should remain the way it is. If the key doesn’t exist, insert it and a value for it.

Hash maps have a special API for this called entry that takes the key you want to check
as a parameter. The return value of the entry method is an enum called Entry that
represents a value that might or might not exist. Let’s say we want to check whether the
key for the Yellow team has a value associated with it. If it doesn’t, we want to insert the
value 50, and the same for the Blue team. Using the entry API, the code looks like
Listing 8-24.

Listing 8-24: Using the entry method to only insert if the key does not already have a value

The or_insert method on Entry is defined to return a mutable reference to the value
for the corresponding Entry key if that key exists, and if not, inserts the parameter as
the new value for this key and returns a mutable reference to the new value. This
technique is much cleaner than writing the logic ourselves and, in addition, plays more
nicely with the borrow checker.

Running the code in Listing 8-24 will print {"Yellow": 50, "Blue": 10} . The first call to
entry will insert the key for the Yellow team with the value 50 because the Yellow team

doesn’t have a value already. The second call to entry will not change the hash map
because the Blue team already has the value 10.

 use std::collections::HashMap;

 let mut scores = HashMap::new();

 scores.insert(String::from("Blue"), 10);
 scores.insert(String::from("Blue"), 25);

 println!("{:?}", scores);

 use std::collections::HashMap;

 let mut scores = HashMap::new();
 scores.insert(String::from("Blue"), 10);

 scores.entry(String::from("Yellow")).or_insert(50);
 scores.entry(String::from("Blue")).or_insert(50);

 println!("{:?}", scores);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 198/636

Updating a Value Based on the Old Value

Another common use case for hash maps is to look up a key’s value and then update it
based on the old value. For instance, Listing 8-25 shows code that counts how many
times each word appears in some text. We use a hash map with the words as keys and
increment the value to keep track of how many times we’ve seen that word. If it’s the
first time we’ve seen a word, we’ll first insert the value 0.

Listing 8-25: Counting occurrences of words using a hash map that stores words and counts

This code will print {"world": 2, "hello": 1, "wonderful": 1} . You might see the
same key/value pairs printed in a different order: recall from the “Accessing Values in a
Hash Map” section that iterating over a hash map happens in an arbitrary order.

The split_whitespace method returns an iterator over sub-slices, separated by
whitespace, of the value in text . The or_insert method returns a mutable reference
(&mut V) to the value for the specified key. Here we store that mutable reference in the
count variable, so in order to assign to that value, we must first dereference count

using the asterisk (*). The mutable reference goes out of scope at the end of the for
loop, so all of these changes are safe and allowed by the borrowing rules.

Hashing Functions

By default, HashMap uses a hashing function called SipHash that can provide resistance

to Denial of Service (DoS) attacks involving hash tables1. This is not the fastest hashing
algorithm available, but the trade-off for better security that comes with the drop in
performance is worth it. If you profile your code and find that the default hash function
is too slow for your purposes, you can switch to another function by specifying a
different hasher. A hasher is a type that implements the BuildHasher trait. We’ll talk
about traits and how to implement them in Chapter 10. You don’t necessarily have to
implement your own hasher from scratch; crates.io has libraries shared by other Rust
users that provide hashers implementing many common hashing algorithms.

 use std::collections::HashMap;

 let text = "hello world wonderful world";

 let mut map = HashMap::new();

 for word in text.split_whitespace() {
 let count = map.entry(word).or_insert(0);
 *count += 1;
 }

 println!("{:?}", map);

https://doc.rust-lang.org/book/ch08-03-hash-maps.html#accessing-values-in-a-hash-map
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 199/636

1 https://en.wikipedia.org/wiki/SipHash

Summary

Vectors, strings, and hash maps will provide a large amount of functionality necessary in
programs when you need to store, access, and modify data. Here are some exercises
you should now be equipped to solve:

Given a list of integers, use a vector and return the median (when sorted, the value
in the middle position) and mode (the value that occurs most often; a hash map
will be helpful here) of the list.
Convert strings to pig latin. The first consonant of each word is moved to the end
of the word and “ay” is added, so “first” becomes “irst-fay.” Words that start with a
vowel have “hay” added to the end instead (“apple” becomes “apple-hay”). Keep in
mind the details about UTF-8 encoding!
Using a hash map and vectors, create a text interface to allow a user to add
employee names to a department in a company. For example, “Add Sally to
Engineering” or “Add Amir to Sales.” Then let the user retrieve a list of all people in
a department or all people in the company by department, sorted alphabetically.

The standard library API documentation describes methods that vectors, strings, and
hash maps have that will be helpful for these exercises!

We’re getting into more complex programs in which operations can fail, so, it’s a perfect
time to discuss error handling. We’ll do that next!

https://en.wikipedia.org/wiki/SipHash

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 200/636

Error Handling
Errors are a fact of life in software, so Rust has a number of features for handling
situations in which something goes wrong. In many cases, Rust requires you to
acknowledge the possibility of an error and take some action before your code will
compile. This requirement makes your program more robust by ensuring that you’ll
discover errors and handle them appropriately before you’ve deployed your code to
production!

Rust groups errors into two major categories: recoverable and unrecoverable errors. For a
recoverable error, such as a file not found error, we most likely just want to report the
problem to the user and retry the operation. Unrecoverable errors are always
symptoms of bugs, like trying to access a location beyond the end of an array, and so we
want to immediately stop the program.

Most languages don’t distinguish between these two kinds of errors and handle both in
the same way, using mechanisms such as exceptions. Rust doesn’t have exceptions.
Instead, it has the type Result<T, E> for recoverable errors and the panic! macro
that stops execution when the program encounters an unrecoverable error. This
chapter covers calling panic! first and then talks about returning Result<T, E>
values. Additionally, we’ll explore considerations when deciding whether to try to
recover from an error or to stop execution.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 201/636

Unrecoverable Errors with panic!

Sometimes, bad things happen in your code, and there’s nothing you can do about it. In
these cases, Rust has the panic! macro. There are two ways to cause a panic in
practice: by taking an action that causes our code to panic (such as accessing an array
past the end) or by explicitly calling the panic! macro. In both cases, we cause a panic
in our program. By default, these panics will print a failure message, unwind, clean up
the stack, and quit. Via an environment variable, you can also have Rust display the call
stack when a panic occurs to make it easier to track down the source of the panic.

Unwinding the Stack or Aborting in Response to a Panic

By default, when a panic occurs, the program starts unwinding, which means Rust
walks back up the stack and cleans up the data from each function it encounters.
However, this walking back and cleanup is a lot of work. Rust, therefore, allows you
to choose the alternative of immediately aborting, which ends the program without
cleaning up.

Memory that the program was using will then need to be cleaned up by the
operating system. If in your project you need to make the resulting binary as small
as possible, you can switch from unwinding to aborting upon a panic by adding
panic = 'abort' to the appropriate [profile] sections in your Cargo.toml file.

For example, if you want to abort on panic in release mode, add this:

Let’s try calling panic! in a simple program:

Filename: src/main.rs

When you run the program, you’ll see something like this:

[profile.release]
panic = 'abort'

fn main() {
 panic!("crash and burn");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 202/636

The call to panic! causes the error message contained in the last two lines. The first
line shows our panic message and the place in our source code where the panic
occurred: src/main.rs:2:5 indicates that it’s the second line, fifth character of our
src/main.rs file.

In this case, the line indicated is part of our code, and if we go to that line, we see the
panic! macro call. In other cases, the panic! call might be in code that our code calls,

and the filename and line number reported by the error message will be someone else’s
code where the panic! macro is called, not the line of our code that eventually led to
the panic! call. We can use the backtrace of the functions the panic! call came from
to figure out the part of our code that is causing the problem. We’ll discuss backtraces in
more detail next.

Using a panic! Backtrace

Let’s look at another example to see what it’s like when a panic! call comes from a
library because of a bug in our code instead of from our code calling the macro directly.
Listing 9-1 has some code that attempts to access an index in a vector beyond the range
of valid indexes.

Filename: src/main.rs

Listing 9-1: Attempting to access an element beyond the end of a vector, which will cause a call to panic!

Here, we’re attempting to access the 100th element of our vector (which is at index 99
because indexing starts at zero), but the vector has only 3 elements. In this situation,
Rust will panic. Using [] is supposed to return an element, but if you pass an invalid
index, there’s no element that Rust could return here that would be correct.

In C, attempting to read beyond the end of a data structure is undefined behavior. You
might get whatever is at the location in memory that would correspond to that element
in the data structure, even though the memory doesn’t belong to that structure. This is
called a buffer overread and can lead to security vulnerabilities if an attacker is able to

$ cargo run
 Compiling panic v0.1.0 (file:///projects/panic)
 Finished dev [unoptimized + debuginfo] target(s) in 0.25s
 Running `target/debug/panic`
thread 'main' panicked at 'crash and burn', src/main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

fn main() {
 let v = vec![1, 2, 3];

 v[99];
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 203/636

manipulate the index in such a way as to read data they shouldn’t be allowed to that is
stored after the data structure.

To protect your program from this sort of vulnerability, if you try to read an element at
an index that doesn’t exist, Rust will stop execution and refuse to continue. Let’s try it
and see:

This error points at line 4 of our main.rs where we attempt to access index 99. The
next note line tells us that we can set the RUST_BACKTRACE environment variable to get a
backtrace of exactly what happened to cause the error. A backtrace is a list of all the
functions that have been called to get to this point. Backtraces in Rust work as they do
in other languages: the key to reading the backtrace is to start from the top and read
until you see files you wrote. That’s the spot where the problem originated. The lines
above that spot are code that your code has called; the lines below are code that called
your code. These before-and-after lines might include core Rust code, standard library
code, or crates that you’re using. Let’s try getting a backtrace by setting the
RUST_BACKTRACE environment variable to any value except 0. Listing 9-2 shows output

similar to what you’ll see.

$ cargo run
 Compiling panic v0.1.0 (file:///projects/panic)
 Finished dev [unoptimized + debuginfo] target(s) in 0.27s
 Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is 3 but the index
is 99', src/main.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 204/636

Listing 9-2: The backtrace generated by a call to panic! displayed when the environment variable

RUST_BACKTRACE is set

That’s a lot of output! The exact output you see might be different depending on your
operating system and Rust version. In order to get backtraces with this information,
debug symbols must be enabled. Debug symbols are enabled by default when using
cargo build or cargo run without the --release flag, as we have here.

In the output in Listing 9-2, line 6 of the backtrace points to the line in our project that’s
causing the problem: line 4 of src/main.rs. If we don’t want our program to panic, we
should start our investigation at the location pointed to by the first line mentioning a file
we wrote. In Listing 9-1, where we deliberately wrote code that would panic, the way to
fix the panic is to not request an element beyond the range of the vector indexes. When
your code panics in the future, you’ll need to figure out what action the code is taking
with what values to cause the panic and what the code should do instead.

$ RUST_BACKTRACE=1 cargo run
thread 'main' panicked at 'index out of bounds: the len is 3 but the index
is 99', src/main.rs:4:5
stack backtrace:
 0: rust_begin_unwind
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/std/src/panicking.r
s:584:5
 1: core::panicking::panic_fmt
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/panicking.
rs:142:14
 2: core::panicking::panic_bounds_check
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/panicking.
rs:84:5
 3: <usize as core::slice::index::SliceIndex<[T]>>::index
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/slice/inde
x.rs:242:10
 4: core::slice::index::<impl core::ops::index::Index<I> for [T]>::index
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/slice/inde
x.rs:18:9
 5: <alloc::vec::Vec<T,A> as core::ops::index::Index<I>>::index
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/alloc/src/vec/mod.r
s:2591:9
 6: panic::main
 at ./src/main.rs:4:5
 7: core::ops::function::FnOnce::call_once
 at
/rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/ops/functi
on.rs:248:5
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a
verbose backtrace.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 205/636

We’ll come back to panic! and when we should and should not use panic! to handle
error conditions in the “To panic! or Not to panic! ” section later in this chapter. Next,
we’ll look at how to recover from an error using Result .

https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html#to-panic-or-not-to-panic

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 206/636

Recoverable Errors with Result

Most errors aren’t serious enough to require the program to stop entirely. Sometimes,
when a function fails, it’s for a reason that you can easily interpret and respond to. For
example, if you try to open a file and that operation fails because the file doesn’t exist,
you might want to create the file instead of terminating the process.

Recall from “Handling Potential Failure with Result ” in Chapter 2 that the Result
enum is defined as having two variants, Ok and Err , as follows:

The T and E are generic type parameters: we’ll discuss generics in more detail in
Chapter 10. What you need to know right now is that T represents the type of the value
that will be returned in a success case within the Ok variant, and E represents the type
of the error that will be returned in a failure case within the Err variant. Because
Result has these generic type parameters, we can use the Result type and the

functions defined on it in many different situations where the successful value and error
value we want to return may differ.

Let’s call a function that returns a Result value because the function could fail. In
Listing 9-3 we try to open a file.

Filename: src/main.rs

Listing 9-3: Opening a file

The return type of File::open is a Result<T, E> . The generic parameter T has been
filled in by the implementation of File::open with the type of the success value,
std::fs::File , which is a file handle. The type of E used in the error value is
std::io::Error . This return type means the call to File::open might succeed and

return a file handle that we can read from or write to. The function call also might fail:
for example, the file might not exist, or we might not have permission to access the file.
The File::open function needs to have a way to tell us whether it succeeded or failed

enum Result<T, E> {
 Ok(T),
 Err(E),
}

use std::fs::File;

fn main() {
 let greeting_file_result = File::open("hello.txt");
}

https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#handling-potential-failure-with-result

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 207/636

and at the same time give us either the file handle or error information. This
information is exactly what the Result enum conveys.

In the case where File::open succeeds, the value in the variable
greeting_file_result will be an instance of Ok that contains a file handle. In the case

where it fails, the value in greeting_file_result will be an instance of Err that
contains more information about the kind of error that happened.

We need to add to the code in Listing 9-3 to take different actions depending on the
value File::open returns. Listing 9-4 shows one way to handle the Result using a
basic tool, the match expression that we discussed in Chapter 6.

Filename: src/main.rs

Listing 9-4: Using a match expression to handle the Result variants that might be returned

Note that, like the Option enum, the Result enum and its variants have been brought
into scope by the prelude, so we don’t need to specify Result:: before the Ok and
Err variants in the match arms.

When the result is Ok , this code will return the inner file value out of the Ok variant,
and we then assign that file handle value to the variable greeting_file . After the
match , we can use the file handle for reading or writing.

The other arm of the match handles the case where we get an Err value from
File::open . In this example, we’ve chosen to call the panic! macro. If there’s no file

named hello.txt in our current directory and we run this code, we’ll see the following
output from the panic! macro:

use std::fs::File;

fn main() {
 let greeting_file_result = File::open("hello.txt");

 let greeting_file = match greeting_file_result {
 Ok(file) => file,
 Err(error) => panic!("Problem opening the file: {:?}", error),
 };
}

$ cargo run
 Compiling error-handling v0.1.0 (file:///projects/error-handling)
 Finished dev [unoptimized + debuginfo] target(s) in 0.73s
 Running `target/debug/error-handling`
thread 'main' panicked at 'Problem opening the file: Os { code: 2, kind:
NotFound, message: "No such file or directory" }', src/main.rs:8:23
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 208/636

As usual, this output tells us exactly what has gone wrong.

Matching on Different Errors

The code in Listing 9-4 will panic! no matter why File::open failed. However, we want
to take different actions for different failure reasons: if File::open failed because the
file doesn’t exist, we want to create the file and return the handle to the new file. If
File::open failed for any other reason—for example, because we didn’t have

permission to open the file—we still want the code to panic! in the same way as it did
in Listing 9-4. For this we add an inner match expression, shown in Listing 9-5.

Filename: src/main.rs

Listing 9-5: Handling different kinds of errors in different ways

The type of the value that File::open returns inside the Err variant is io::Error ,
which is a struct provided by the standard library. This struct has a method kind that
we can call to get an io::ErrorKind value. The enum io::ErrorKind is provided by
the standard library and has variants representing the different kinds of errors that
might result from an io operation. The variant we want to use is
ErrorKind::NotFound , which indicates the file we’re trying to open doesn’t exist yet. So

we match on greeting_file_result , but we also have an inner match on
error.kind() .

The condition we want to check in the inner match is whether the value returned by
error.kind() is the NotFound variant of the ErrorKind enum. If it is, we try to create

the file with File::create . However, because File::create could also fail, we need a
second arm in the inner match expression. When the file can’t be created, a different

use std::fs::File;
use std::io::ErrorKind;

fn main() {
 let greeting_file_result = File::open("hello.txt");

 let greeting_file = match greeting_file_result {
 Ok(file) => file,
 Err(error) => match error.kind() {
 ErrorKind::NotFound => match File::create("hello.txt") {
 Ok(fc) => fc,
 Err(e) => panic!("Problem creating the file: {:?}", e),
 },
 other_error => {
 panic!("Problem opening the file: {:?}", other_error);
 }
 },
 };
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 209/636

error message is printed. The second arm of the outer match stays the same, so the
program panics on any error besides the missing file error.

Alternatives to Using match with Result<T, E>

That’s a lot of match ! The match expression is very useful but also very much a
primitive. In Chapter 13, you’ll learn about closures, which are used with many of
the methods defined on Result<T, E> . These methods can be more concise than
using match when handling Result<T, E> values in your code.

For example, here’s another way to write the same logic as shown in Listing 9-5,
this time using closures and the unwrap_or_else method:

Although this code has the same behavior as Listing 9-5, it doesn’t contain any
match expressions and is cleaner to read. Come back to this example after you’ve

read Chapter 13, and look up the unwrap_or_else method in the standard library
documentation. Many more of these methods can clean up huge nested match
expressions when you’re dealing with errors.

Shortcuts for Panic on Error: unwrap and expect

Using match works well enough, but it can be a bit verbose and doesn’t always
communicate intent well. The Result<T, E> type has many helper methods defined on
it to do various, more specific tasks. The unwrap method is a shortcut method
implemented just like the match expression we wrote in Listing 9-4. If the Result value
is the Ok variant, unwrap will return the value inside the Ok . If the Result is the Err
variant, unwrap will call the panic! macro for us. Here is an example of unwrap in
action:

use std::fs::File;
use std::io::ErrorKind;

fn main() {
 let greeting_file = File::open("hello.txt").unwrap_or_else(|error|
{
 if error.kind() == ErrorKind::NotFound {
 File::create("hello.txt").unwrap_or_else(|error| {
 panic!("Problem creating the file: {:?}", error);
 })
 } else {
 panic!("Problem opening the file: {:?}", error);
 }
 });
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 210/636

Filename: src/main.rs

If we run this code without a hello.txt file, we’ll see an error message from the panic!
call that the unwrap method makes:

Similarly, the expect method lets us also choose the panic! error message. Using
expect instead of unwrap and providing good error messages can convey your intent

and make tracking down the source of a panic easier. The syntax of expect looks like
this:

Filename: src/main.rs

We use expect in the same way as unwrap : to return the file handle or call the panic!
macro. The error message used by expect in its call to panic! will be the parameter
that we pass to expect , rather than the default panic! message that unwrap uses.
Here’s what it looks like:

In production-quality code, most Rustaceans choose expect rather than unwrap and
give more context about why the operation is expected to always succeed. That way, if
your assumptions are ever proven wrong, you have more information to use in
debugging.

use std::fs::File;

fn main() {
 let greeting_file = File::open("hello.txt").unwrap();
}

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Os
{
code: 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:4:49

use std::fs::File;

fn main() {
 let greeting_file = File::open("hello.txt")
 .expect("hello.txt should be included in this project");
}

thread 'main' panicked at 'hello.txt should be included in this project: Os
{
code: 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:5:10

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 211/636

Propagating Errors

When a function’s implementation calls something that might fail, instead of handling
the error within the function itself, you can return the error to the calling code so that it
can decide what to do. This is known as propagating the error and gives more control to
the calling code, where there might be more information or logic that dictates how the
error should be handled than what you have available in the context of your code.

For example, Listing 9-6 shows a function that reads a username from a file. If the file
doesn’t exist or can’t be read, this function will return those errors to the code that
called the function.

Filename: src/main.rs

Listing 9-6: A function that returns errors to the calling code using match

This function can be written in a much shorter way, but we’re going to start by doing a
lot of it manually in order to explore error handling; at the end, we’ll show the shorter
way. Let’s look at the return type of the function first: Result<String, io::Error> . This
means the function is returning a value of the type Result<T, E> where the generic
parameter T has been filled in with the concrete type String , and the generic type E
has been filled in with the concrete type io::Error .

If this function succeeds without any problems, the code that calls this function will
receive an Ok value that holds a String —the username that this function read from
the file. If this function encounters any problems, the calling code will receive an Err
value that holds an instance of io::Error that contains more information about what
the problems were. We chose io::Error as the return type of this function because
that happens to be the type of the error value returned from both of the operations

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
 let username_file_result = File::open("hello.txt");

 let mut username_file = match username_file_result {
 Ok(file) => file,
 Err(e) => return Err(e),
 };

 let mut username = String::new();

 match username_file.read_to_string(&mut username) {
 Ok(_) => Ok(username),
 Err(e) => Err(e),
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 212/636

we’re calling in this function’s body that might fail: the File::open function and the
read_to_string method.

The body of the function starts by calling the File::open function. Then we handle the
Result value with a match similar to the match in Listing 9-4. If File::open succeeds,

the file handle in the pattern variable file becomes the value in the mutable variable
username_file and the function continues. In the Err case, instead of calling panic! ,

we use the return keyword to return early out of the function entirely and pass the
error value from File::open , now in the pattern variable e , back to the calling code as
this function’s error value.

So if we have a file handle in username_file , the function then creates a new String in
variable username and calls the read_to_string method on the file handle in
username_file to read the contents of the file into username . The read_to_string

method also returns a Result because it might fail, even though File::open
succeeded. So we need another match to handle that Result : if read_to_string
succeeds, then our function has succeeded, and we return the username from the file
that’s now in username wrapped in an Ok . If read_to_string fails, we return the error
value in the same way that we returned the error value in the match that handled the
return value of File::open . However, we don’t need to explicitly say return , because
this is the last expression in the function.

The code that calls this code will then handle getting either an Ok value that contains a
username or an Err value that contains an io::Error . It’s up to the calling code to
decide what to do with those values. If the calling code gets an Err value, it could call
panic! and crash the program, use a default username, or look up the username from

somewhere other than a file, for example. We don’t have enough information on what
the calling code is actually trying to do, so we propagate all the success or error
information upward for it to handle appropriately.

This pattern of propagating errors is so common in Rust that Rust provides the question
mark operator ? to make this easier.

A Shortcut for Propagating Errors: the ? Operator

Listing 9-7 shows an implementation of read_username_from_file that has the same
functionality as in Listing 9-6, but this implementation uses the ? operator.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 213/636

Listing 9-7: A function that returns errors to the calling code using the ? operator

The ? placed after a Result value is defined to work in almost the same way as the
match expressions we defined to handle the Result values in Listing 9-6. If the value of

the Result is an Ok , the value inside the Ok will get returned from this expression,
and the program will continue. If the value is an Err , the Err will be returned from the
whole function as if we had used the return keyword so the error value gets
propagated to the calling code.

There is a difference between what the match expression from Listing 9-6 does and
what the ? operator does: error values that have the ? operator called on them go
through the from function, defined in the From trait in the standard library, which is
used to convert values from one type into another. When the ? operator calls the from
function, the error type received is converted into the error type defined in the return
type of the current function. This is useful when a function returns one error type to
represent all the ways a function might fail, even if parts might fail for many different
reasons.

For example, we could change the read_username_from_file function in Listing 9-7 to
return a custom error type named OurError that we define. If we also define impl
From<io::Error> for OurError to construct an instance of OurError from an
io::Error , then the ? operator calls in the body of read_username_from_file will call
from and convert the error types without needing to add any more code to the

function.

In the context of Listing 9-7, the ? at the end of the File::open call will return the
value inside an Ok to the variable username_file . If an error occurs, the ? operator
will return early out of the whole function and give any Err value to the calling code.
The same thing applies to the ? at the end of the read_to_string call.

The ? operator eliminates a lot of boilerplate and makes this function’s implementation
simpler. We could even shorten this code further by chaining method calls immediately
after the ? , as shown in Listing 9-8.

Filename: src/main.rs

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
 let mut username_file = File::open("hello.txt")?;
 let mut username = String::new();
 username_file.read_to_string(&mut username)?;
 Ok(username)
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 214/636

Listing 9-8: Chaining method calls after the ? operator

We’ve moved the creation of the new String in username to the beginning of the
function; that part hasn’t changed. Instead of creating a variable username_file , we’ve
chained the call to read_to_string directly onto the result of
File::open("hello.txt")? . We still have a ? at the end of the read_to_string call,

and we still return an Ok value containing username when both File::open and
read_to_string succeed rather than returning errors. The functionality is again the

same as in Listing 9-6 and Listing 9-7; this is just a different, more ergonomic way to
write it.

Listing 9-9 shows a way to make this even shorter using fs::read_to_string .

Filename: src/main.rs

Listing 9-9: Using fs::read_to_string instead of opening and then reading the file

Reading a file into a string is a fairly common operation, so the standard library provides
the convenient fs::read_to_string function that opens the file, creates a new String ,
reads the contents of the file, puts the contents into that String , and returns it. Of
course, using fs::read_to_string doesn’t give us the opportunity to explain all the
error handling, so we did it the longer way first.

Where The ? Operator Can Be Used

The ? operator can only be used in functions whose return type is compatible with the
value the ? is used on. This is because the ? operator is defined to perform an early
return of a value out of the function, in the same manner as the match expression we
defined in Listing 9-6. In Listing 9-6, the match was using a Result value, and the early

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
 let mut username = String::new();

 File::open("hello.txt")?.read_to_string(&mut username)?;

 Ok(username)
}

use std::fs;
use std::io;

fn read_username_from_file() -> Result<String, io::Error> {
 fs::read_to_string("hello.txt")
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 215/636

return arm returned an Err(e) value. The return type of the function has to be a
Result so that it’s compatible with this return .

In Listing 9-10, let’s look at the error we’ll get if we use the ? operator in a main
function with a return type incompatible with the type of the value we use ? on:

Filename: src/main.rs

Listing 9-10: Attempting to use the ? in the main function that returns () won’t compile

This code opens a file, which might fail. The ? operator follows the Result value
returned by File::open , but this main function has the return type of () , not Result .
When we compile this code, we get the following error message:

This error points out that we’re only allowed to use the ? operator in a function that
returns Result , Option , or another type that implements FromResidual .

To fix the error, you have two choices. One choice is to change the return type of your
function to be compatible with the value you’re using the ? operator on as long as you
have no restrictions preventing that. The other technique is to use a match or one of
the Result<T, E> methods to handle the Result<T, E> in whatever way is
appropriate.

The error message also mentioned that ? can be used with Option<T> values as well.
As with using ? on Result , you can only use ? on Option in a function that returns

use std::fs::File;

fn main() {
 let greeting_file = File::open("hello.txt")?;
}

$ cargo run
 Compiling error-handling v0.1.0 (file:///projects/error-handling)
error[E0277]: the `?` operator can only be used in a function that returns
`Result` or `Option` (or another type that implements `FromResidual`)
 --> src/main.rs:4:48
 |
3 | fn main() {
 | --------- this function should return `Result` or `Option` to accept `?
`
4 | let greeting_file = File::open("hello.txt")?;
 | ^ cannot use the `?`
operator in a function that returns `()`
 |
 = help: the trait `FromResidual<Result<Infallible, std::io::Error>>` is
not implemented for `()`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `error-handling` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 216/636

an Option . The behavior of the ? operator when called on an Option<T> is similar to
its behavior when called on a Result<T, E> : if the value is None , the None will be
returned early from the function at that point. If the value is Some , the value inside the
Some is the resulting value of the expression and the function continues. Listing 9-11

has an example of a function that finds the last character of the first line in the given
text:

Listing 9-11: Using the ? operator on an Option<T> value

This function returns Option<char> because it’s possible that there is a character there,
but it’s also possible that there isn’t. This code takes the text string slice argument and
calls the lines method on it, which returns an iterator over the lines in the string.
Because this function wants to examine the first line, it calls next on the iterator to get
the first value from the iterator. If text is the empty string, this call to next will return
None , in which case we use ? to stop and return None from
last_char_of_first_line . If text is not the empty string, next will return a Some

value containing a string slice of the first line in text .

The ? extracts the string slice, and we can call chars on that string slice to get an
iterator of its characters. We’re interested in the last character in this first line, so we call
last to return the last item in the iterator. This is an Option because it’s possible that

the first line is the empty string, for example if text starts with a blank line but has
characters on other lines, as in "\nhi" . However, if there is a last character on the first
line, it will be returned in the Some variant. The ? operator in the middle gives us a
concise way to express this logic, allowing us to implement the function in one line. If we
couldn’t use the ? operator on Option , we’d have to implement this logic using more
method calls or a match expression.

Note that you can use the ? operator on a Result in a function that returns Result ,
and you can use the ? operator on an Option in a function that returns Option , but
you can’t mix and match. The ? operator won’t automatically convert a Result to an
Option or vice versa; in those cases, you can use methods like the ok method on
Result or the ok_or method on Option to do the conversion explicitly.

So far, all the main functions we’ve used return () . The main function is special
because it’s the entry and exit point of executable programs, and there are restrictions
on what its return type can be for the programs to behave as expected.

Luckily, main can also return a Result<(), E> . Listing 9-12 has the code from Listing 9-
10 but we’ve changed the return type of main to be Result<(), Box<dyn Error>> and
added a return value Ok(()) to the end. This code will now compile:

fn last_char_of_first_line(text: &str) -> Option<char> {
 text.lines().next()?.chars().last()
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 217/636

Listing 9-12: Changing main to return Result<(), E> allows the use of the ? operator on Result values

The Box<dyn Error> type is a trait object, which we’ll talk about in the “Using Trait
Objects that Allow for Values of Different Types” section in Chapter 17. For now, you can
read Box<dyn Error> to mean “any kind of error.” Using ? on a Result value in a
main function with the error type Box<dyn Error> is allowed, because it allows any
Err value to be returned early. Even though the body of this main function will only

ever return errors of type std::io::Error , by specifying Box<dyn Error> , this
signature will continue to be correct even if more code that returns other errors is
added to the body of main .

When a main function returns a Result<(), E> , the executable will exit with a value of
0 if main returns Ok(()) and will exit with a nonzero value if main returns an Err

value. Executables written in C return integers when they exit: programs that exit
successfully return the integer 0 , and programs that error return some integer other
than 0 . Rust also returns integers from executables to be compatible with this
convention.

The main function may return any types that implement the
std::process::Termination trait, which contains a function report that returns an
ExitCode . Consult the standard library documentation for more information on

implementing the Termination trait for your own types.

Now that we’ve discussed the details of calling panic! or returning Result , let’s return
to the topic of how to decide which is appropriate to use in which cases.

use std::error::Error;
use std::fs::File;

fn main() -> Result<(), Box<dyn Error>> {
 let greeting_file = File::open("hello.txt")?;

 Ok(())
}

https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/std/process/trait.Termination.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 218/636

To panic! or Not to panic!

So how do you decide when you should call panic! and when you should return
Result ? When code panics, there’s no way to recover. You could call panic! for any

error situation, whether there’s a possible way to recover or not, but then you’re making
the decision that a situation is unrecoverable on behalf of the calling code. When you
choose to return a Result value, you give the calling code options. The calling code
could choose to attempt to recover in a way that’s appropriate for its situation, or it
could decide that an Err value in this case is unrecoverable, so it can call panic! and
turn your recoverable error into an unrecoverable one. Therefore, returning Result is a
good default choice when you’re defining a function that might fail.

In situations such as examples, prototype code, and tests, it’s more appropriate to write
code that panics instead of returning a Result . Let’s explore why, then discuss
situations in which the compiler can’t tell that failure is impossible, but you as a human
can. The chapter will conclude with some general guidelines on how to decide whether
to panic in library code.

Examples, Prototype Code, and Tests

When you’re writing an example to illustrate some concept, also including robust error-
handling code can make the example less clear. In examples, it’s understood that a call
to a method like unwrap that could panic is meant as a placeholder for the way you’d
want your application to handle errors, which can differ based on what the rest of your
code is doing.

Similarly, the unwrap and expect methods are very handy when prototyping, before
you’re ready to decide how to handle errors. They leave clear markers in your code for
when you’re ready to make your program more robust.

If a method call fails in a test, you’d want the whole test to fail, even if that method isn’t
the functionality under test. Because panic! is how a test is marked as a failure, calling
unwrap or expect is exactly what should happen.

Cases in Which You Have More Information Than the Compiler

It would also be appropriate to call unwrap or expect when you have some other logic
that ensures the Result will have an Ok value, but the logic isn’t something the
compiler understands. You’ll still have a Result value that you need to handle:
whatever operation you’re calling still has the possibility of failing in general, even

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 219/636

though it’s logically impossible in your particular situation. If you can ensure by
manually inspecting the code that you’ll never have an Err variant, it’s perfectly
acceptable to call unwrap , and even better to document the reason you think you’ll
never have an Err variant in the expect text. Here’s an example:

We’re creating an IpAddr instance by parsing a hardcoded string. We can see that
127.0.0.1 is a valid IP address, so it’s acceptable to use expect here. However, having

a hardcoded, valid string doesn’t change the return type of the parse method: we still
get a Result value, and the compiler will still make us handle the Result as if the Err
variant is a possibility because the compiler isn’t smart enough to see that this string is
always a valid IP address. If the IP address string came from a user rather than being
hardcoded into the program and therefore did have a possibility of failure, we’d
definitely want to handle the Result in a more robust way instead. Mentioning the
assumption that this IP address is hardcoded will prompt us to change expect to better
error handling code if in the future, we need to get the IP address from some other
source instead.

Guidelines for Error Handling

It’s advisable to have your code panic when it’s possible that your code could end up in a
bad state. In this context, a bad state is when some assumption, guarantee, contract, or
invariant has been broken, such as when invalid values, contradictory values, or missing
values are passed to your code—plus one or more of the following:

The bad state is something that is unexpected, as opposed to something that will
likely happen occasionally, like a user entering data in the wrong format.
Your code after this point needs to rely on not being in this bad state, rather than
checking for the problem at every step.
There’s not a good way to encode this information in the types you use. We’ll work
through an example of what we mean in the “Encoding States and Behavior as
Types” section of Chapter 17.

If someone calls your code and passes in values that don’t make sense, it’s best to
return an error if you can so the user of the library can decide what they want to do in
that case. However, in cases where continuing could be insecure or harmful, the best
choice might be to call panic! and alert the person using your library to the bug in their
code so they can fix it during development. Similarly, panic! is often appropriate if
you’re calling external code that is out of your control and it returns an invalid state that
you have no way of fixing.

 use std::net::IpAddr;

 let home: IpAddr = "127.0.0.1"
 .parse()
 .expect("Hardcoded IP address should be valid");

https://doc.rust-lang.org/book/ch17-03-oo-design-patterns.html#encoding-states-and-behavior-as-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 220/636

However, when failure is expected, it’s more appropriate to return a Result than to
make a panic! call. Examples include a parser being given malformed data or an HTTP
request returning a status that indicates you have hit a rate limit. In these cases,
returning a Result indicates that failure is an expected possibility that the calling code
must decide how to handle.

When your code performs an operation that could put a user at risk if it’s called using
invalid values, your code should verify the values are valid first and panic if the values
aren’t valid. This is mostly for safety reasons: attempting to operate on invalid data can
expose your code to vulnerabilities. This is the main reason the standard library will call
panic! if you attempt an out-of-bounds memory access: trying to access memory that

doesn’t belong to the current data structure is a common security problem. Functions
often have contracts: their behavior is only guaranteed if the inputs meet particular
requirements. Panicking when the contract is violated makes sense because a contract
violation always indicates a caller-side bug and it’s not a kind of error you want the
calling code to have to explicitly handle. In fact, there’s no reasonable way for calling
code to recover; the calling programmers need to fix the code. Contracts for a function,
especially when a violation will cause a panic, should be explained in the API
documentation for the function.

However, having lots of error checks in all of your functions would be verbose and
annoying. Fortunately, you can use Rust’s type system (and thus the type checking done
by the compiler) to do many of the checks for you. If your function has a particular type
as a parameter, you can proceed with your code’s logic knowing that the compiler has
already ensured you have a valid value. For example, if you have a type rather than an
Option , your program expects to have something rather than nothing. Your code then

doesn’t have to handle two cases for the Some and None variants: it will only have one
case for definitely having a value. Code trying to pass nothing to your function won’t
even compile, so your function doesn’t have to check for that case at runtime. Another
example is using an unsigned integer type such as u32 , which ensures the parameter is
never negative.

Creating Custom Types for Validation

Let’s take the idea of using Rust’s type system to ensure we have a valid value one step
further and look at creating a custom type for validation. Recall the guessing game in
Chapter 2 in which our code asked the user to guess a number between 1 and 100. We
never validated that the user’s guess was between those numbers before checking it
against our secret number; we only validated that the guess was positive. In this case,
the consequences were not very dire: our output of “Too high” or “Too low” would still
be correct. But it would be a useful enhancement to guide the user toward valid guesses
and have different behavior when a user guesses a number that’s out of range versus
when a user types, for example, letters instead.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 221/636

One way to do this would be to parse the guess as an i32 instead of only a u32 to
allow potentially negative numbers, and then add a check for the number being in
range, like so:

The if expression checks whether our value is out of range, tells the user about the
problem, and calls continue to start the next iteration of the loop and ask for another
guess. After the if expression, we can proceed with the comparisons between guess
and the secret number knowing that guess is between 1 and 100.

However, this is not an ideal solution: if it was absolutely critical that the program only
operated on values between 1 and 100, and it had many functions with this
requirement, having a check like this in every function would be tedious (and might
impact performance).

Instead, we can make a new type and put the validations in a function to create an
instance of the type rather than repeating the validations everywhere. That way, it’s safe
for functions to use the new type in their signatures and confidently use the values they
receive. Listing 9-13 shows one way to define a Guess type that will only create an
instance of Guess if the new function receives a value between 1 and 100.

 loop {
 // --snip--

 let guess: i32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 };

 if guess < 1 || guess > 100 {
 println!("The secret number will be between 1 and 100.");
 continue;
 }

 match guess.cmp(&secret_number) {
 // --snip--
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 222/636

Listing 9-13: A Guess type that will only continue with values between 1 and 100

First, we define a struct named Guess that has a field named value that holds an i32 .
This is where the number will be stored.

Then we implement an associated function named new on Guess that creates
instances of Guess values. The new function is defined to have one parameter named
value of type i32 and to return a Guess . The code in the body of the new function

tests value to make sure it’s between 1 and 100. If value doesn’t pass this test, we
make a panic! call, which will alert the programmer who is writing the calling code that
they have a bug they need to fix, because creating a Guess with a value outside this
range would violate the contract that Guess::new is relying on. The conditions in which
Guess::new might panic should be discussed in its public-facing API documentation;

we’ll cover documentation conventions indicating the possibility of a panic! in the API
documentation that you create in Chapter 14. If value does pass the test, we create a
new Guess with its value field set to the value parameter and return the Guess .

Next, we implement a method named value that borrows self , doesn’t have any
other parameters, and returns an i32 . This kind of method is sometimes called a getter,
because its purpose is to get some data from its fields and return it. This public method
is necessary because the value field of the Guess struct is private. It’s important that
the value field be private so code using the Guess struct is not allowed to set value
directly: code outside the module must use the Guess::new function to create an
instance of Guess , thereby ensuring there’s no way for a Guess to have a value that
hasn’t been checked by the conditions in the Guess::new function.

A function that has a parameter or returns only numbers between 1 and 100 could then
declare in its signature that it takes or returns a Guess rather than an i32 and wouldn’t
need to do any additional checks in its body.

pub struct Guess {
 value: i32,
}

impl Guess {
 pub fn new(value: i32) -> Guess {
 if value < 1 || value > 100 {
 panic!("Guess value must be between 1 and 100, got {}.",
value);
 }

 Guess { value }
 }

 pub fn value(&self) -> i32 {
 self.value
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 223/636

Summary

Rust’s error handling features are designed to help you write more robust code. The
panic! macro signals that your program is in a state it can’t handle and lets you tell the

process to stop instead of trying to proceed with invalid or incorrect values. The Result
enum uses Rust’s type system to indicate that operations might fail in a way that your
code could recover from. You can use Result to tell code that calls your code that it
needs to handle potential success or failure as well. Using panic! and Result in the
appropriate situations will make your code more reliable in the face of inevitable
problems.

Now that you’ve seen useful ways that the standard library uses generics with the
Option and Result enums, we’ll talk about how generics work and how you can use

them in your code.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 224/636

Generic Types, Traits, and Lifetimes
Every programming language has tools for effectively handling the duplication of
concepts. In Rust, one such tool is generics: abstract stand-ins for concrete types or
other properties. We can express the behavior of generics or how they relate to other
generics without knowing what will be in their place when compiling and running the
code.

Functions can take parameters of some generic type, instead of a concrete type like
i32 or String , in the same way a function takes parameters with unknown values to

run the same code on multiple concrete values. In fact, we’ve already used generics in
Chapter 6 with Option<T> , Chapter 8 with Vec<T> and HashMap<K, V> , and Chapter 9
with Result<T, E> . In this chapter, you’ll explore how to define your own types,
functions, and methods with generics!

First, we’ll review how to extract a function to reduce code duplication. We’ll then use
the same technique to make a generic function from two functions that differ only in the
types of their parameters. We’ll also explain how to use generic types in struct and
enum definitions.

Then you’ll learn how to use traits to define behavior in a generic way. You can combine
traits with generic types to constrain a generic type to accept only those types that have
a particular behavior, as opposed to just any type.

Finally, we’ll discuss lifetimes: a variety of generics that give the compiler information
about how references relate to each other. Lifetimes allow us to give the compiler
enough information about borrowed values so that it can ensure references will be valid
in more situations than it could without our help.

Removing Duplication by Extracting a Function

Generics allow us to replace specific types with a placeholder that represents multiple
types to remove code duplication. Before diving into generics syntax, then, let’s first look
at how to remove duplication in a way that doesn’t involve generic types by extracting a
function that replaces specific values with a placeholder that represents multiple values.
Then we’ll apply the same technique to extract a generic function! By looking at how to
recognize duplicated code you can extract into a function, you’ll start to recognize
duplicated code that can use generics.

We begin with the short program in Listing 10-1 that finds the largest number in a list.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 225/636

Listing 10-1: Finding the largest number in a list of numbers

We store a list of integers in the variable number_list and place a reference to the first
number in the list in a variable named largest . We then iterate through all the
numbers in the list, and if the current number is greater than the number stored in
largest , replace the reference in that variable. However, if the current number is less

than or equal to the largest number seen so far, the variable doesn’t change, and the
code moves on to the next number in the list. After considering all the numbers in the
list, largest should refer to the largest number, which in this case is 100.

We've now been tasked with finding the largest number in two different lists of
numbers. To do so, we can choose to duplicate the code in Listing 10-1 and use the
same logic at two different places in the program, as shown in Listing 10-2.

Filename: src/main.rs

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];

 let mut largest = &number_list[0];

 for number in &number_list {
 if number > largest {
 largest = number;
 }
 }

 println!("The largest number is {}", largest);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 226/636

Listing 10-2: Code to find the largest number in two lists of numbers

Although this code works, duplicating code is tedious and error prone. We also have to
remember to update the code in multiple places when we want to change it.

To eliminate this duplication, we’ll create an abstraction by defining a function that
operates on any list of integers passed in a parameter. This solution makes our code
clearer and lets us express the concept of finding the largest number in a list abstractly.

In Listing 10-3, we extract the code that finds the largest number into a function named
largest . Then we call the function to find the largest number in the two lists from

Listing 10-2. We could also use the function on any other list of i32 values we might
have in the future.

Filename: src/main.rs

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];

 let mut largest = &number_list[0];

 for number in &number_list {
 if number > largest {
 largest = number;
 }
 }

 println!("The largest number is {}", largest);

 let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];

 let mut largest = &number_list[0];

 for number in &number_list {
 if number > largest {
 largest = number;
 }
 }

 println!("The largest number is {}", largest);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 227/636

Listing 10-3: Abstracted code to find the largest number in two lists

The largest function has a parameter called list , which represents any concrete
slice of i32 values we might pass into the function. As a result, when we call the
function, the code runs on the specific values that we pass in.

In summary, here are the steps we took to change the code from Listing 10-2 to Listing
10-3:

1. Identify duplicate code.
2. Extract the duplicate code into the body of the function and specify the inputs and

return values of that code in the function signature.
3. Update the two instances of duplicated code to call the function instead.

Next, we’ll use these same steps with generics to reduce code duplication. In the same
way that the function body can operate on an abstract list instead of specific values,
generics allow code to operate on abstract types.

For example, say we had two functions: one that finds the largest item in a slice of i32
values and one that finds the largest item in a slice of char values. How would we
eliminate that duplication? Let’s find out!

fn largest(list: &[i32]) -> &i32 {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];

 let result = largest(&number_list);
 println!("The largest number is {}", result);

 let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];

 let result = largest(&number_list);
 println!("The largest number is {}", result);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 228/636

Generic Data Types

We use generics to create definitions for items like function signatures or structs, which
we can then use with many different concrete data types. Let’s first look at how to
define functions, structs, enums, and methods using generics. Then we’ll discuss how
generics affect code performance.

In Function Definitions

When defining a function that uses generics, we place the generics in the signature of
the function where we would usually specify the data types of the parameters and
return value. Doing so makes our code more flexible and provides more functionality to
callers of our function while preventing code duplication.

Continuing with our largest function, Listing 10-4 shows two functions that both find
the largest value in a slice. We'll then combine these into a single function that uses
generics.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 229/636

Listing 10-4: Two functions that differ only in their names and the types in their signatures

The largest_i32 function is the one we extracted in Listing 10-3 that finds the largest
i32 in a slice. The largest_char function finds the largest char in a slice. The function

bodies have the same code, so let’s eliminate the duplication by introducing a generic
type parameter in a single function.

To parameterize the types in a new single function, we need to name the type
parameter, just as we do for the value parameters to a function. You can use any
identifier as a type parameter name. But we’ll use T because, by convention, type
parameter names in Rust are short, often just a letter, and Rust’s type-naming
convention is UpperCamelCase. Short for “type,” T is the default choice of most Rust
programmers.

When we use a parameter in the body of the function, we have to declare the parameter
name in the signature so the compiler knows what that name means. Similarly, when
we use a type parameter name in a function signature, we have to declare the type

fn largest_i32(list: &[i32]) -> &i32 {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

fn largest_char(list: &[char]) -> &char {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];

 let result = largest_i32(&number_list);
 println!("The largest number is {}", result);

 let char_list = vec!['y', 'm', 'a', 'q'];

 let result = largest_char(&char_list);
 println!("The largest char is {}", result);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 230/636

parameter name before we use it. To define the generic largest function, place type
name declarations inside angle brackets, <> , between the name of the function and the
parameter list, like this:

We read this definition as: the function largest is generic over some type T . This
function has one parameter named list , which is a slice of values of type T . The
largest function will return a reference to a value of the same type T .

Listing 10-5 shows the combined largest function definition using the generic data
type in its signature. The listing also shows how we can call the function with either a
slice of i32 values or char values. Note that this code won’t compile yet, but we’ll fix it
later in this chapter.

Filename: src/main.rs

Listing 10-5: The largest function using generic type parameters; this doesn’t yet compile

If we compile this code right now, we’ll get this error:

fn largest<T>(list: &[T]) -> &T {

fn largest<T>(list: &[T]) -> &T {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];

 let result = largest(&number_list);
 println!("The largest number is {}", result);

 let char_list = vec!['y', 'm', 'a', 'q'];

 let result = largest(&char_list);
 println!("The largest char is {}", result);
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 231/636

The help text mentions std::cmp::PartialOrd , which is a trait, and we’re going to talk
about traits in the next section. For now, know that this error states that the body of
largest won’t work for all possible types that T could be. Because we want to

compare values of type T in the body, we can only use types whose values can be
ordered. To enable comparisons, the standard library has the std::cmp::PartialOrd
trait that you can implement on types (see Appendix C for more on this trait). By
following the help text's suggestion, we restrict the types valid for T to only those that
implement PartialOrd and this example will compile, because the standard library
implements PartialOrd on both i32 and char .

In Struct Definitions

We can also define structs to use a generic type parameter in one or more fields using
the <> syntax. Listing 10-6 defines a Point<T> struct to hold x and y coordinate
values of any type.

Filename: src/main.rs

Listing 10-6: A Point<T> struct that holds x and y values of type T

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0369]: binary operation `>` cannot be applied to type `&T`
 --> src/main.rs:5:17
 |
5 | if item > largest {
 | ---- ^ ------- &T
 | |
 | &T
 |
help: consider restricting type parameter `T`
 |
1 | fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
 | ++++++++++++++++++++++

For more information about this error, try `rustc --explain E0369`.
error: could not compile `chapter10` due to previous error

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let integer = Point { x: 5, y: 10 };
 let float = Point { x: 1.0, y: 4.0 };
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 232/636

The syntax for using generics in struct definitions is similar to that used in function
definitions. First, we declare the name of the type parameter inside angle brackets just
after the name of the struct. Then we use the generic type in the struct definition where
we would otherwise specify concrete data types.

Note that because we’ve used only one generic type to define Point<T> , this definition
says that the Point<T> struct is generic over some type T , and the fields x and y are
both that same type, whatever that type may be. If we create an instance of a Point<T>
that has values of different types, as in Listing 10-7, our code won’t compile.

Filename: src/main.rs

Listing 10-7: The fields x and y must be the same type because both have the same generic data type T .

In this example, when we assign the integer value 5 to x , we let the compiler know that
the generic type T will be an integer for this instance of Point<T> . Then when we
specify 4.0 for y , which we’ve defined to have the same type as x , we’ll get a type
mismatch error like this:

To define a Point struct where x and y are both generics but could have different
types, we can use multiple generic type parameters. For example, in Listing 10-8, we
change the definition of Point to be generic over types T and U where x is of type T
and y is of type U .

Filename: src/main.rs

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let wont_work = Point { x: 5, y: 4.0 };
}

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0308]: mismatched types
 --> src/main.rs:7:38
 |
7 | let wont_work = Point { x: 5, y: 4.0 };
 | ^^^ expected integer, found
floating-point number

For more information about this error, try `rustc --explain E0308`.
error: could not compile `chapter10` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 233/636

Listing 10-8: A Point<T, U> generic over two types so that x and y can be values of different types

Now all the instances of Point shown are allowed! You can use as many generic type
parameters in a definition as you want, but using more than a few makes your code
hard to read. If you're finding you need lots of generic types in your code, it could
indicate that your code needs restructuring into smaller pieces.

In Enum Definitions

As we did with structs, we can define enums to hold generic data types in their variants.
Let’s take another look at the Option<T> enum that the standard library provides,
which we used in Chapter 6:

This definition should now make more sense to you. As you can see, the Option<T>
enum is generic over type T and has two variants: Some , which holds one value of type
T , and a None variant that doesn’t hold any value. By using the Option<T> enum, we

can express the abstract concept of an optional value, and because Option<T> is
generic, we can use this abstraction no matter what the type of the optional value is.

Enums can use multiple generic types as well. The definition of the Result enum that
we used in Chapter 9 is one example:

The Result enum is generic over two types, T and E , and has two variants: Ok , which
holds a value of type T , and Err , which holds a value of type E . This definition makes
it convenient to use the Result enum anywhere we have an operation that might
succeed (return a value of some type T) or fail (return an error of some type E). In fact,

struct Point<T, U> {
 x: T,
 y: U,
}

fn main() {
 let both_integer = Point { x: 5, y: 10 };
 let both_float = Point { x: 1.0, y: 4.0 };
 let integer_and_float = Point { x: 5, y: 4.0 };
}

enum Option<T> {
 Some(T),
 None,
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 234/636

this is what we used to open a file in Listing 9-3, where T was filled in with the type
std::fs::File when the file was opened successfully and E was filled in with the type
std::io::Error when there were problems opening the file.

When you recognize situations in your code with multiple struct or enum definitions
that differ only in the types of the values they hold, you can avoid duplication by using
generic types instead.

In Method Definitions

We can implement methods on structs and enums (as we did in Chapter 5) and use
generic types in their definitions, too. Listing 10-9 shows the Point<T> struct we
defined in Listing 10-6 with a method named x implemented on it.

Filename: src/main.rs

Listing 10-9: Implementing a method named x on the Point<T> struct that will return a reference to the

x field of type T

Here, we’ve defined a method named x on Point<T> that returns a reference to the
data in the field x .

Note that we have to declare T just after impl so we can use T to specify that we’re
implementing methods on the type Point<T> . By declaring T as a generic type after
impl , Rust can identify that the type in the angle brackets in Point is a generic type

rather than a concrete type. We could have chosen a different name for this generic
parameter than the generic parameter declared in the struct definition, but using the
same name is conventional. Methods written within an impl that declares the generic
type will be defined on any instance of the type, no matter what concrete type ends up
substituting for the generic type.

struct Point<T> {
 x: T,
 y: T,
}

impl<T> Point<T> {
 fn x(&self) -> &T {
 &self.x
 }
}

fn main() {
 let p = Point { x: 5, y: 10 };

 println!("p.x = {}", p.x());
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 235/636

We can also specify constraints on generic types when defining methods on the type.
We could, for example, implement methods only on Point<f32> instances rather than
on Point<T> instances with any generic type. In Listing 10-10 we use the concrete type
f32 , meaning we don’t declare any types after impl .

Filename: src/main.rs

Listing 10-10: An impl block that only applies to a struct with a particular concrete type for the generic

type parameter T

This code means the type Point<f32> will have a distance_from_origin method;
other instances of Point<T> where T is not of type f32 will not have this method
defined. The method measures how far our point is from the point at coordinates (0.0,
0.0) and uses mathematical operations that are available only for floating point types.

Generic type parameters in a struct definition aren’t always the same as those you use
in that same struct’s method signatures. Listing 10-11 uses the generic types X1 and
Y1 for the Point struct and X2 Y2 for the mixup method signature to make the

example clearer. The method creates a new Point instance with the x value from the
self Point (of type X1) and the y value from the passed-in Point (of type Y2).

Filename: src/main.rs

impl Point<f32> {
 fn distance_from_origin(&self) -> f32 {
 (self.x.powi(2) + self.y.powi(2)).sqrt()
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 236/636

Listing 10-11: A method that uses generic types different from its struct’s definition

In main , we’ve defined a Point that has an i32 for x (with value 5) and an f64 for
y (with value 10.4). The p2 variable is a Point struct that has a string slice for x

(with value "Hello") and a char for y (with value c). Calling mixup on p1 with the
argument p2 gives us p3 , which will have an i32 for x , because x came from p1 .
The p3 variable will have a char for y , because y came from p2 . The println!
macro call will print p3.x = 5, p3.y = c .

The purpose of this example is to demonstrate a situation in which some generic
parameters are declared with impl and some are declared with the method definition.
Here, the generic parameters X1 and Y1 are declared after impl because they go with
the struct definition. The generic parameters X2 and Y2 are declared after fn mixup ,
because they’re only relevant to the method.

Performance of Code Using Generics

You might be wondering whether there is a runtime cost when using generic type
parameters. The good news is that using generic types won't make your program run
any slower than it would with concrete types.

Rust accomplishes this by performing monomorphization of the code using generics at
compile time. Monomorphization is the process of turning generic code into specific code
by filling in the concrete types that are used when compiled. In this process, the
compiler does the opposite of the steps we used to create the generic function in Listing

struct Point<X1, Y1> {
 x: X1,
 y: Y1,
}

impl<X1, Y1> Point<X1, Y1> {
 fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1, Y2> {
 Point {
 x: self.x,
 y: other.y,
 }
 }
}

fn main() {
 let p1 = Point { x: 5, y: 10.4 };
 let p2 = Point { x: "Hello", y: 'c' };

 let p3 = p1.mixup(p2);

 println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 237/636

10-5: the compiler looks at all the places where generic code is called and generates
code for the concrete types the generic code is called with.

Let’s look at how this works by using the standard library’s generic Option<T> enum:

When Rust compiles this code, it performs monomorphization. During that process, the
compiler reads the values that have been used in Option<T> instances and identifies
two kinds of Option<T> : one is i32 and the other is f64 . As such, it expands the
generic definition of Option<T> into two definitions specialized to i32 and f64 ,
thereby replacing the generic definition with the specific ones.

The monomorphized version of the code looks similar to the following (the compiler
uses different names than what we’re using here for illustration):

Filename: src/main.rs

The generic Option<T> is replaced with the specific definitions created by the compiler.
Because Rust compiles generic code into code that specifies the type in each instance,
we pay no runtime cost for using generics. When the code runs, it performs just as it
would if we had duplicated each definition by hand. The process of monomorphization
makes Rust’s generics extremely efficient at runtime.

let integer = Some(5);
let float = Some(5.0);

enum Option_i32 {
 Some(i32),
 None,
}

enum Option_f64 {
 Some(f64),
 None,
}

fn main() {
 let integer = Option_i32::Some(5);
 let float = Option_f64::Some(5.0);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 238/636

Traits: Defining Shared Behavior

A trait defines functionality a particular type has and can share with other types. We can
use traits to define shared behavior in an abstract way. We can use trait bounds to
specify that a generic type can be any type that has certain behavior.

Note: Traits are similar to a feature often called interfaces in other languages,
although with some differences.

Defining a Trait

A type’s behavior consists of the methods we can call on that type. Different types share
the same behavior if we can call the same methods on all of those types. Trait
definitions are a way to group method signatures together to define a set of behaviors
necessary to accomplish some purpose.

For example, let’s say we have multiple structs that hold various kinds and amounts of
text: a NewsArticle struct that holds a news story filed in a particular location and a
Tweet that can have at most 280 characters along with metadata that indicates whether

it was a new tweet, a retweet, or a reply to another tweet.

We want to make a media aggregator library crate named aggregator that can display
summaries of data that might be stored in a NewsArticle or Tweet instance. To do
this, we need a summary from each type, and we’ll request that summary by calling a
summarize method on an instance. Listing 10-12 shows the definition of a public
Summary trait that expresses this behavior.

Filename: src/lib.rs

Listing 10-12: A Summary trait that consists of the behavior provided by a summarize method

Here, we declare a trait using the trait keyword and then the trait’s name, which is
Summary in this case. We’ve also declared the trait as pub so that crates depending on

this crate can make use of this trait too, as we’ll see in a few examples. Inside the curly
brackets, we declare the method signatures that describe the behaviors of the types
that implement this trait, which in this case is fn summarize(&self) -> String .

pub trait Summary {
 fn summarize(&self) -> String;
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 239/636

After the method signature, instead of providing an implementation within curly
brackets, we use a semicolon. Each type implementing this trait must provide its own
custom behavior for the body of the method. The compiler will enforce that any type
that has the Summary trait will have the method summarize defined with this signature
exactly.

A trait can have multiple methods in its body: the method signatures are listed one per
line and each line ends in a semicolon.

Implementing a Trait on a Type

Now that we’ve defined the desired signatures of the Summary trait’s methods, we can
implement it on the types in our media aggregator. Listing 10-13 shows an
implementation of the Summary trait on the NewsArticle struct that uses the headline,
the author, and the location to create the return value of summarize . For the Tweet
struct, we define summarize as the username followed by the entire text of the tweet,
assuming that tweet content is already limited to 280 characters.

Filename: src/lib.rs

Listing 10-13: Implementing the Summary trait on the NewsArticle and Tweet types

pub struct NewsArticle {
 pub headline: String,
 pub location: String,
 pub author: String,
 pub content: String,
}

impl Summary for NewsArticle {
 fn summarize(&self) -> String {
 format!("{}, by {} ({})", self.headline, self.author,
self.location)
 }
}

pub struct Tweet {
 pub username: String,
 pub content: String,
 pub reply: bool,
 pub retweet: bool,
}

impl Summary for Tweet {
 fn summarize(&self) -> String {
 format!("{}: {}", self.username, self.content)
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 240/636

Implementing a trait on a type is similar to implementing regular methods. The
difference is that after impl , we put the trait name we want to implement, then use the
for keyword, and then specify the name of the type we want to implement the trait for.

Within the impl block, we put the method signatures that the trait definition has
defined. Instead of adding a semicolon after each signature, we use curly brackets and
fill in the method body with the specific behavior that we want the methods of the trait
to have for the particular type.

Now that the library has implemented the Summary trait on NewsArticle and Tweet ,
users of the crate can call the trait methods on instances of NewsArticle and Tweet in
the same way we call regular methods. The only difference is that the user must bring
the trait into scope as well as the types. Here’s an example of how a binary crate could
use our aggregator library crate:

This code prints 1 new tweet: horse_ebooks: of course, as you probably already
know, people .

Other crates that depend on the aggregator crate can also bring the Summary trait into
scope to implement Summary on their own types. One restriction to note is that we can
implement a trait on a type only if at least one of the trait or the type is local to our
crate. For example, we can implement standard library traits like Display on a custom
type like Tweet as part of our aggregator crate functionality, because the type Tweet
is local to our aggregator crate. We can also implement Summary on Vec<T> in our
aggregator crate, because the trait Summary is local to our aggregator crate.

But we can’t implement external traits on external types. For example, we can’t
implement the Display trait on Vec<T> within our aggregator crate, because
Display and Vec<T> are both defined in the standard library and aren’t local to our
aggregator crate. This restriction is part of a property called coherence, and more

specifically the orphan rule, so named because the parent type is not present. This rule
ensures that other people’s code can’t break your code and vice versa. Without the rule,
two crates could implement the same trait for the same type, and Rust wouldn’t know
which implementation to use.

use aggregator::{Summary, Tweet};

fn main() {
 let tweet = Tweet {
 username: String::from("horse_ebooks"),
 content: String::from(
 "of course, as you probably already know, people",
),
 reply: false,
 retweet: false,
 };

 println!("1 new tweet: {}", tweet.summarize());
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 241/636

Default Implementations

Sometimes it’s useful to have default behavior for some or all of the methods in a trait
instead of requiring implementations for all methods on every type. Then, as we
implement the trait on a particular type, we can keep or override each method’s default
behavior.

In Listing 10-14 we specify a default string for the summarize method of the Summary
trait instead of only defining the method signature, as we did in Listing 10-12.

Filename: src/lib.rs

Listing 10-14: Defining a Summary trait with a default implementation of the summarize method

To use a default implementation to summarize instances of NewsArticle , we specify an
empty impl block with impl Summary for NewsArticle {} .

Even though we’re no longer defining the summarize method on NewsArticle directly,
we’ve provided a default implementation and specified that NewsArticle implements
the Summary trait. As a result, we can still call the summarize method on an instance of
NewsArticle , like this:

This code prints New article available! (Read more...) .

Creating a default implementation doesn’t require us to change anything about the
implementation of Summary on Tweet in Listing 10-13. The reason is that the syntax for
overriding a default implementation is the same as the syntax for implementing a trait
method that doesn’t have a default implementation.

Default implementations can call other methods in the same trait, even if those other
methods don’t have a default implementation. In this way, a trait can provide a lot of

pub trait Summary {
 fn summarize(&self) -> String {
 String::from("(Read more...)")
 }
}

 let article = NewsArticle {
 headline: String::from("Penguins win the Stanley Cup
Championship!"),
 location: String::from("Pittsburgh, PA, USA"),
 author: String::from("Iceburgh"),
 content: String::from(
 "The Pittsburgh Penguins once again are the best \
 hockey team in the NHL.",
),
 };

 println!("New article available! {}", article.summarize());

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 242/636

useful functionality and only require implementors to specify a small part of it. For
example, we could define the Summary trait to have a summarize_author method
whose implementation is required, and then define a summarize method that has a
default implementation that calls the summarize_author method:

To use this version of Summary , we only need to define summarize_author when we
implement the trait on a type:

After we define summarize_author , we can call summarize on instances of the Tweet
struct, and the default implementation of summarize will call the definition of
summarize_author that we’ve provided. Because we’ve implemented
summarize_author , the Summary trait has given us the behavior of the summarize

method without requiring us to write any more code.

This code prints 1 new tweet: (Read more from @horse_ebooks...) .

Note that it isn’t possible to call the default implementation from an overriding
implementation of that same method.

Traits as Parameters

Now that you know how to define and implement traits, we can explore how to use
traits to define functions that accept many different types. We'll use the Summary trait

pub trait Summary {
 fn summarize_author(&self) -> String;

 fn summarize(&self) -> String {
 format!("(Read more from {}...)", self.summarize_author())
 }
}

impl Summary for Tweet {
 fn summarize_author(&self) -> String {
 format!("@{}", self.username)
 }
}

 let tweet = Tweet {
 username: String::from("horse_ebooks"),
 content: String::from(
 "of course, as you probably already know, people",
),
 reply: false,
 retweet: false,
 };

 println!("1 new tweet: {}", tweet.summarize());

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 243/636

we implemented on the NewsArticle and Tweet types in Listing 10-13 to define a
notify function that calls the summarize method on its item parameter, which is of

some type that implements the Summary trait. To do this, we use the impl Trait
syntax, like this:

Instead of a concrete type for the item parameter, we specify the impl keyword and
the trait name. This parameter accepts any type that implements the specified trait. In
the body of notify , we can call any methods on item that come from the Summary
trait, such as summarize . We can call notify and pass in any instance of NewsArticle
or Tweet . Code that calls the function with any other type, such as a String or an i32 ,
won’t compile because those types don’t implement Summary .

Trait Bound Syntax

The impl Trait syntax works for straightforward cases but is actually syntax sugar for
a longer form known as a trait bound; it looks like this:

This longer form is equivalent to the example in the previous section but is more
verbose. We place trait bounds with the declaration of the generic type parameter after
a colon and inside angle brackets.

The impl Trait syntax is convenient and makes for more concise code in simple cases,
while the fuller trait bound syntax can express more complexity in other cases. For
example, we can have two parameters that implement Summary . Doing so with the impl
Trait syntax looks like this:

Using impl Trait is appropriate if we want this function to allow item1 and item2 to
have different types (as long as both types implement Summary). If we want to force
both parameters to have the same type, however, we must use a trait bound, like this:

The generic type T specified as the type of the item1 and item2 parameters
constrains the function such that the concrete type of the value passed as an argument
for item1 and item2 must be the same.

pub fn notify(item: &impl Summary) {
 println!("Breaking news! {}", item.summarize());
}

pub fn notify<T: Summary>(item: &T) {
 println!("Breaking news! {}", item.summarize());
}

pub fn notify(item1: &impl Summary, item2: &impl Summary) {

pub fn notify<T: Summary>(item1: &T, item2: &T) {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 244/636

Specifying Multiple Trait Bounds with the + Syntax

We can also specify more than one trait bound. Say we wanted notify to use display
formatting as well as summarize on item : we specify in the notify definition that
item must implement both Display and Summary . We can do so using the + syntax:

The + syntax is also valid with trait bounds on generic types:

With the two trait bounds specified, the body of notify can call summarize and use {}
to format item .

Clearer Trait Bounds with where Clauses

Using too many trait bounds has its downsides. Each generic has its own trait bounds,
so functions with multiple generic type parameters can contain lots of trait bound
information between the function’s name and its parameter list, making the function
signature hard to read. For this reason, Rust has alternate syntax for specifying trait
bounds inside a where clause after the function signature. So instead of writing this:

we can use a where clause, like this:

This function’s signature is less cluttered: the function name, parameter list, and return
type are close together, similar to a function without lots of trait bounds.

Returning Types that Implement Traits

We can also use the impl Trait syntax in the return position to return a value of some
type that implements a trait, as shown here:

pub fn notify(item: &(impl Summary + Display)) {

pub fn notify<T: Summary + Display>(item: &T) {

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32
{

fn some_function<T, U>(t: &T, u: &U) -> i32
where
 T: Display + Clone,
 U: Clone + Debug,
{

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 245/636

By using impl Summary for the return type, we specify that the returns_summarizable
function returns some type that implements the Summary trait without naming the
concrete type. In this case, returns_summarizable returns a Tweet , but the code calling
this function doesn’t need to know that.

The ability to specify a return type only by the trait it implements is especially useful in
the context of closures and iterators, which we cover in Chapter 13. Closures and
iterators create types that only the compiler knows or types that are very long to
specify. The impl Trait syntax lets you concisely specify that a function returns some
type that implements the Iterator trait without needing to write out a very long type.

However, you can only use impl Trait if you’re returning a single type. For example,
this code that returns either a NewsArticle or a Tweet with the return type specified
as impl Summary wouldn’t work:

fn returns_summarizable() -> impl Summary {
 Tweet {
 username: String::from("horse_ebooks"),
 content: String::from(
 "of course, as you probably already know, people",
),
 reply: false,
 retweet: false,
 }
}

fn returns_summarizable(switch: bool) -> impl Summary {
 if switch {
 NewsArticle {
 headline: String::from(
 "Penguins win the Stanley Cup Championship!",
),
 location: String::from("Pittsburgh, PA, USA"),
 author: String::from("Iceburgh"),
 content: String::from(
 "The Pittsburgh Penguins once again are the best \
 hockey team in the NHL.",
),
 }
 } else {
 Tweet {
 username: String::from("horse_ebooks"),
 content: String::from(
 "of course, as you probably already know, people",
),
 reply: false,
 retweet: false,
 }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 246/636

Returning either a NewsArticle or a Tweet isn’t allowed due to restrictions around
how the impl Trait syntax is implemented in the compiler. We’ll cover how to write a
function with this behavior in the “Using Trait Objects That Allow for Values of Different
Types” section of Chapter 17.

Using Trait Bounds to Conditionally Implement Methods

By using a trait bound with an impl block that uses generic type parameters, we can
implement methods conditionally for types that implement the specified traits. For
example, the type Pair<T> in Listing 10-15 always implements the new function to
return a new instance of Pair<T> (recall from the “Defining Methods” section of
Chapter 5 that Self is a type alias for the type of the impl block, which in this case is
Pair<T>). But in the next impl block, Pair<T> only implements the cmp_display

method if its inner type T implements the PartialOrd trait that enables comparison
and the Display trait that enables printing.

Filename: src/lib.rs

Listing 10-15: Conditionally implementing methods on a generic type depending on trait bounds

We can also conditionally implement a trait for any type that implements another trait.
Implementations of a trait on any type that satisfies the trait bounds are called blanket
implementations and are extensively used in the Rust standard library. For example, the
standard library implements the ToString trait on any type that implements the
Display trait. The impl block in the standard library looks similar to this code:

use std::fmt::Display;

struct Pair<T> {
 x: T,
 y: T,
}

impl<T> Pair<T> {
 fn new(x: T, y: T) -> Self {
 Self { x, y }
 }
}

impl<T: Display + PartialOrd> Pair<T> {
 fn cmp_display(&self) {
 if self.x >= self.y {
 println!("The largest member is x = {}", self.x);
 } else {
 println!("The largest member is y = {}", self.y);
 }
 }
}

https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch05-03-method-syntax.html#defining-methods

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 247/636

Because the standard library has this blanket implementation, we can call the
to_string method defined by the ToString trait on any type that implements the
Display trait. For example, we can turn integers into their corresponding String

values like this because integers implement Display :

Blanket implementations appear in the documentation for the trait in the
“Implementors” section.

Traits and trait bounds let us write code that uses generic type parameters to reduce
duplication but also specify to the compiler that we want the generic type to have
particular behavior. The compiler can then use the trait bound information to check that
all the concrete types used with our code provide the correct behavior. In dynamically
typed languages, we would get an error at runtime if we called a method on a type
which didn’t define the method. But Rust moves these errors to compile time so we’re
forced to fix the problems before our code is even able to run. Additionally, we don’t
have to write code that checks for behavior at runtime because we’ve already checked
at compile time. Doing so improves performance without having to give up the flexibility
of generics.

impl<T: Display> ToString for T {
 // --snip--
}

let s = 3.to_string();

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 248/636

Validating References with Lifetimes

Lifetimes are another kind of generic that we’ve already been using. Rather than
ensuring that a type has the behavior we want, lifetimes ensure that references are valid
as long as we need them to be.

One detail we didn’t discuss in the “References and Borrowing” section in Chapter 4 is
that every reference in Rust has a lifetime, which is the scope for which that reference is
valid. Most of the time, lifetimes are implicit and inferred, just like most of the time,
types are inferred. We only must annotate types when multiple types are possible. In a
similar way, we must annotate lifetimes when the lifetimes of references could be
related in a few different ways. Rust requires us to annotate the relationships using
generic lifetime parameters to ensure the actual references used at runtime will
definitely be valid.

Annotating lifetimes is not even a concept most other programming languages have, so
this is going to feel unfamiliar. Although we won’t cover lifetimes in their entirety in this
chapter, we’ll discuss common ways you might encounter lifetime syntax so you can get
comfortable with the concept.

Preventing Dangling References with Lifetimes

The main aim of lifetimes is to prevent dangling references, which cause a program to
reference data other than the data it’s intended to reference. Consider the program in
Listing 10-16, which has an outer scope and an inner scope.

Listing 10-16: An attempt to use a reference whose value has gone out of scope

Note: The examples in Listings 10-16, 10-17, and 10-23 declare variables without
giving them an initial value, so the variable name exists in the outer scope. At first
glance, this might appear to be in conflict with Rust’s having no null values.

fn main() {
 let r;

 {
 let x = 5;
 r = &x;
 }

 println!("r: {}", r);
}

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#references-and-borrowing
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 249/636

However, if we try to use a variable before giving it a value, we’ll get a compile-time
error, which shows that Rust indeed does not allow null values.

The outer scope declares a variable named r with no initial value, and the inner scope
declares a variable named x with the initial value of 5. Inside the inner scope, we
attempt to set the value of r as a reference to x . Then the inner scope ends, and we
attempt to print the value in r . This code won’t compile because the value r is
referring to has gone out of scope before we try to use it. Here is the error message:

The variable x doesn’t “live long enough.” The reason is that x will be out of scope
when the inner scope ends on line 7. But r is still valid for the outer scope; because its
scope is larger, we say that it “lives longer.” If Rust allowed this code to work, r would
be referencing memory that was deallocated when x went out of scope, and anything
we tried to do with r wouldn’t work correctly. So how does Rust determine that this
code is invalid? It uses a borrow checker.

The Borrow Checker

The Rust compiler has a borrow checker that compares scopes to determine whether all
borrows are valid. Listing 10-17 shows the same code as Listing 10-16 but with
annotations showing the lifetimes of the variables.

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0597]: `x` does not live long enough
 --> src/main.rs:6:13
 |
6 | r = &x;
 | ^^ borrowed value does not live long enough
7 | }
 | - `x` dropped here while still borrowed
8 |
9 | println!("r: {}", r);
 | - borrow later used here

For more information about this error, try `rustc --explain E0597`.
error: could not compile `chapter10` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 250/636

Listing 10-17: Annotations of the lifetimes of r and x , named 'a and 'b , respectively

Here, we’ve annotated the lifetime of r with 'a and the lifetime of x with 'b . As you
can see, the inner 'b block is much smaller than the outer 'a lifetime block. At
compile time, Rust compares the size of the two lifetimes and sees that r has a lifetime
of 'a but that it refers to memory with a lifetime of 'b . The program is rejected
because 'b is shorter than 'a : the subject of the reference doesn’t live as long as the
reference.

Listing 10-18 fixes the code so it doesn’t have a dangling reference and compiles without
any errors.

Listing 10-18: A valid reference because the data has a longer lifetime than the reference

Here, x has the lifetime 'b , which in this case is larger than 'a . This means r can
reference x because Rust knows that the reference in r will always be valid while x is
valid.

Now that you know where the lifetimes of references are and how Rust analyzes
lifetimes to ensure references will always be valid, let’s explore generic lifetimes of
parameters and return values in the context of functions.

Generic Lifetimes in Functions

We’ll write a function that returns the longer of two string slices. This function will take
two string slices and return a single string slice. After we’ve implemented the longest
function, the code in Listing 10-19 should print The longest string is abcd .

fn main() {
 let r; // ---------+-- 'a
 // |
 { // |
 let x = 5; // -+-- 'b |
 r = &x; // | |
 } // -+ |
 // |
 println!("r: {}", r); // |
} // ---------+

fn main() {
 let x = 5; // ----------+-- 'b
 // |
 let r = &x; // --+-- 'a |
 // | |
 println!("r: {}", r); // | |
 // --+ |
} // ----------+

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 251/636

Filename: src/main.rs

Listing 10-19: A main function that calls the longest function to find the longer of two string slices

Note that we want the function to take string slices, which are references, rather than
strings, because we don’t want the longest function to take ownership of its
parameters. Refer to the “String Slices as Parameters” section in Chapter 4 for more
discussion about why the parameters we use in Listing 10-19 are the ones we want.

If we try to implement the longest function as shown in Listing 10-20, it won’t compile.

Filename: src/main.rs

Listing 10-20: An implementation of the longest function that returns the longer of two string slices but

does not yet compile

Instead, we get the following error that talks about lifetimes:

fn main() {
 let string1 = String::from("abcd");
 let string2 = "xyz";

 let result = longest(string1.as_str(), string2);
 println!("The longest string is {}", result);
}

fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

https://doc.rust-lang.org/book/ch04-03-slices.html#string-slices-as-parameters
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 252/636

The help text reveals that the return type needs a generic lifetime parameter on it
because Rust can’t tell whether the reference being returned refers to x or y . Actually,
we don’t know either, because the if block in the body of this function returns a
reference to x and the else block returns a reference to y !

When we’re defining this function, we don’t know the concrete values that will be passed
into this function, so we don’t know whether the if case or the else case will execute.
We also don’t know the concrete lifetimes of the references that will be passed in, so we
can’t look at the scopes as we did in Listings 10-17 and 10-18 to determine whether the
reference we return will always be valid. The borrow checker can’t determine this either,
because it doesn’t know how the lifetimes of x and y relate to the lifetime of the
return value. To fix this error, we’ll add generic lifetime parameters that define the
relationship between the references so the borrow checker can perform its analysis.

Lifetime Annotation Syntax

Lifetime annotations don’t change how long any of the references live. Rather, they
describe the relationships of the lifetimes of multiple references to each other without
affecting the lifetimes. Just as functions can accept any type when the signature
specifies a generic type parameter, functions can accept references with any lifetime by
specifying a generic lifetime parameter.

Lifetime annotations have a slightly unusual syntax: the names of lifetime parameters
must start with an apostrophe (') and are usually all lowercase and very short, like
generic types. Most people use the name 'a for the first lifetime annotation. We place
lifetime parameter annotations after the & of a reference, using a space to separate the
annotation from the reference’s type.

Here are some examples: a reference to an i32 without a lifetime parameter, a
reference to an i32 that has a lifetime parameter named 'a , and a mutable reference

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0106]: missing lifetime specifier
 --> src/main.rs:9:33
 |
9 | fn longest(x: &str, y: &str) -> &str {
 | ---- ---- ^ expected named lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but the
signature does not say whether it is borrowed from `x` or `y`
help: consider introducing a named lifetime parameter
 |
9 | fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 | ++++ ++ ++ ++

For more information about this error, try `rustc --explain E0106`.
error: could not compile `chapter10` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 253/636

to an i32 that also has the lifetime 'a .

One lifetime annotation by itself doesn’t have much meaning, because the annotations
are meant to tell Rust how generic lifetime parameters of multiple references relate to
each other. Let’s examine how the lifetime annotations relate to each other in the
context of the longest function.

Lifetime Annotations in Function Signatures

To use lifetime annotations in function signatures, we need to declare the generic
lifetime parameters inside angle brackets between the function name and the
parameter list, just as we did with generic type parameters.

We want the signature to express the following constraint: the returned reference will
be valid as long as both the parameters are valid. This is the relationship between
lifetimes of the parameters and the return value. We’ll name the lifetime 'a and then
add it to each reference, as shown in Listing 10-21.

Filename: src/main.rs

Listing 10-21: The longest function definition specifying that all the references in the signature must have

the same lifetime 'a

This code should compile and produce the result we want when we use it with the main
function in Listing 10-19.

The function signature now tells Rust that for some lifetime 'a , the function takes two
parameters, both of which are string slices that live at least as long as lifetime 'a . The
function signature also tells Rust that the string slice returned from the function will live
at least as long as lifetime 'a . In practice, it means that the lifetime of the reference
returned by the longest function is the same as the smaller of the lifetimes of the
values referred to by the function arguments. These relationships are what we want
Rust to use when analyzing this code.

&i32 // a reference
&'a i32 // a reference with an explicit lifetime
&'a mut i32 // a mutable reference with an explicit lifetime

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 254/636

Remember, when we specify the lifetime parameters in this function signature, we’re
not changing the lifetimes of any values passed in or returned. Rather, we’re specifying
that the borrow checker should reject any values that don’t adhere to these constraints.
Note that the longest function doesn’t need to know exactly how long x and y will
live, only that some scope can be substituted for 'a that will satisfy this signature.

When annotating lifetimes in functions, the annotations go in the function signature, not
in the function body. The lifetime annotations become part of the contract of the
function, much like the types in the signature. Having function signatures contain the
lifetime contract means the analysis the Rust compiler does can be simpler. If there’s a
problem with the way a function is annotated or the way it is called, the compiler errors
can point to the part of our code and the constraints more precisely. If, instead, the Rust
compiler made more inferences about what we intended the relationships of the
lifetimes to be, the compiler might only be able to point to a use of our code many steps
away from the cause of the problem.

When we pass concrete references to longest , the concrete lifetime that is substituted
for 'a is the part of the scope of x that overlaps with the scope of y . In other words,
the generic lifetime 'a will get the concrete lifetime that is equal to the smaller of the
lifetimes of x and y . Because we’ve annotated the returned reference with the same
lifetime parameter 'a , the returned reference will also be valid for the length of the
smaller of the lifetimes of x and y .

Let’s look at how the lifetime annotations restrict the longest function by passing in
references that have different concrete lifetimes. Listing 10-22 is a straightforward
example.

Filename: src/main.rs

Listing 10-22: Using the longest function with references to String values that have different concrete

lifetimes

In this example, string1 is valid until the end of the outer scope, string2 is valid until
the end of the inner scope, and result references something that is valid until the end
of the inner scope. Run this code, and you’ll see that the borrow checker approves; it will
compile and print The longest string is long string is long .

fn main() {
 let string1 = String::from("long string is long");

 {
 let string2 = String::from("xyz");
 let result = longest(string1.as_str(), string2.as_str());
 println!("The longest string is {}", result);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 255/636

Next, let’s try an example that shows that the lifetime of the reference in result must
be the smaller lifetime of the two arguments. We’ll move the declaration of the result
variable outside the inner scope but leave the assignment of the value to the result
variable inside the scope with string2 . Then we’ll move the println! that uses
result to outside the inner scope, after the inner scope has ended. The code in Listing

10-23 will not compile.

Filename: src/main.rs

Listing 10-23: Attempting to use result after string2 has gone out of scope

When we try to compile this code, we get this error:

The error shows that for result to be valid for the println! statement, string2
would need to be valid until the end of the outer scope. Rust knows this because we
annotated the lifetimes of the function parameters and return values using the same
lifetime parameter 'a .

As humans, we can look at this code and see that string1 is longer than string2 and
therefore result will contain a reference to string1 . Because string1 has not gone
out of scope yet, a reference to string1 will still be valid for the println! statement.
However, the compiler can’t see that the reference is valid in this case. We’ve told Rust
that the lifetime of the reference returned by the longest function is the same as the

fn main() {
 let string1 = String::from("long string is long");
 let result;
 {
 let string2 = String::from("xyz");
 result = longest(string1.as_str(), string2.as_str());
 }
 println!("The longest string is {}", result);
}

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0597]: `string2` does not live long enough
 --> src/main.rs:6:44
 |
6 | result = longest(string1.as_str(), string2.as_str());
 | ^^^^^^^^^^^^^^^^ borrowed
value does not live long enough
7 | }
 | - `string2` dropped here while still borrowed
8 | println!("The longest string is {}", result);
 | ------ borrow later used here

For more information about this error, try `rustc --explain E0597`.
error: could not compile `chapter10` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 256/636

smaller of the lifetimes of the references passed in. Therefore, the borrow checker
disallows the code in Listing 10-23 as possibly having an invalid reference.

Try designing more experiments that vary the values and lifetimes of the references
passed in to the longest function and how the returned reference is used. Make
hypotheses about whether or not your experiments will pass the borrow checker before
you compile; then check to see if you’re right!

Thinking in Terms of Lifetimes

The way in which you need to specify lifetime parameters depends on what your
function is doing. For example, if we changed the implementation of the longest
function to always return the first parameter rather than the longest string slice, we
wouldn’t need to specify a lifetime on the y parameter. The following code will compile:

Filename: src/main.rs

We’ve specified a lifetime parameter 'a for the parameter x and the return type, but
not for the parameter y , because the lifetime of y does not have any relationship with
the lifetime of x or the return value.

When returning a reference from a function, the lifetime parameter for the return type
needs to match the lifetime parameter for one of the parameters. If the reference
returned does not refer to one of the parameters, it must refer to a value created within
this function. However, this would be a dangling reference because the value will go out
of scope at the end of the function. Consider this attempted implementation of the
longest function that won’t compile:

Filename: src/main.rs

Here, even though we’ve specified a lifetime parameter 'a for the return type, this
implementation will fail to compile because the return value lifetime is not related to the
lifetime of the parameters at all. Here is the error message we get:

fn longest<'a>(x: &'a str, y: &str) -> &'a str {
 x
}

fn longest<'a>(x: &str, y: &str) -> &'a str {
 let result = String::from("really long string");
 result.as_str()
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 257/636

The problem is that result goes out of scope and gets cleaned up at the end of the
longest function. We’re also trying to return a reference to result from the function.

There is no way we can specify lifetime parameters that would change the dangling
reference, and Rust won’t let us create a dangling reference. In this case, the best fix
would be to return an owned data type rather than a reference so the calling function is
then responsible for cleaning up the value.

Ultimately, lifetime syntax is about connecting the lifetimes of various parameters and
return values of functions. Once they’re connected, Rust has enough information to
allow memory-safe operations and disallow operations that would create dangling
pointers or otherwise violate memory safety.

Lifetime Annotations in Struct Definitions

So far, the structs we’ve defined all hold owned types. We can define structs to hold
references, but in that case we would need to add a lifetime annotation on every
reference in the struct’s definition. Listing 10-24 has a struct named ImportantExcerpt
that holds a string slice.

Filename: src/main.rs

Listing 10-24: A struct that holds a reference, requiring a lifetime annotation

$ cargo run
 Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0515]: cannot return reference to local variable `result`
 --> src/main.rs:11:5
 |
11 | result.as_str()
 | ^^^^^^^^^^^^^^^ returns a reference to data owned by the current
function

For more information about this error, try `rustc --explain E0515`.
error: could not compile `chapter10` due to previous error

struct ImportantExcerpt<'a> {
 part: &'a str,
}

fn main() {
 let novel = String::from("Call me Ishmael. Some years ago...");
 let first_sentence = novel.split('.').next().expect("Could not find a
'.'");
 let i = ImportantExcerpt {
 part: first_sentence,
 };
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 258/636

This struct has the single field part that holds a string slice, which is a reference. As
with generic data types, we declare the name of the generic lifetime parameter inside
angle brackets after the name of the struct so we can use the lifetime parameter in the
body of the struct definition. This annotation means an instance of ImportantExcerpt
can’t outlive the reference it holds in its part field.

The main function here creates an instance of the ImportantExcerpt struct that holds
a reference to the first sentence of the String owned by the variable novel . The data
in novel exists before the ImportantExcerpt instance is created. In addition, novel
doesn’t go out of scope until after the ImportantExcerpt goes out of scope, so the
reference in the ImportantExcerpt instance is valid.

Lifetime Elision

You’ve learned that every reference has a lifetime and that you need to specify lifetime
parameters for functions or structs that use references. However, in Chapter 4 we had a
function in Listing 4-9, shown again in Listing 10-25, that compiled without lifetime
annotations.

Filename: src/lib.rs

Listing 10-25: A function we defined in Listing 4-9 that compiled without lifetime annotations, even though

the parameter and return type are references

The reason this function compiles without lifetime annotations is historical: in early
versions (pre-1.0) of Rust, this code wouldn’t have compiled because every reference
needed an explicit lifetime. At that time, the function signature would have been written
like this:

After writing a lot of Rust code, the Rust team found that Rust programmers were
entering the same lifetime annotations over and over in particular situations. These
situations were predictable and followed a few deterministic patterns. The developers

fn first_word(s: &str) -> &str {
 let bytes = s.as_bytes();

 for (i, &item) in bytes.iter().enumerate() {
 if item == b' ' {
 return &s[0..i];
 }
 }

 &s[..]
}

fn first_word<'a>(s: &'a str) -> &'a str {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 259/636

programmed these patterns into the compiler’s code so the borrow checker could infer
the lifetimes in these situations and wouldn’t need explicit annotations.

This piece of Rust history is relevant because it’s possible that more deterministic
patterns will emerge and be added to the compiler. In the future, even fewer lifetime
annotations might be required.

The patterns programmed into Rust’s analysis of references are called the lifetime elision
rules. These aren’t rules for programmers to follow; they’re a set of particular cases that
the compiler will consider, and if your code fits these cases, you don’t need to write the
lifetimes explicitly.

The elision rules don’t provide full inference. If Rust deterministically applies the rules
but there is still ambiguity as to what lifetimes the references have, the compiler won’t
guess what the lifetime of the remaining references should be. Instead of guessing, the
compiler will give you an error that you can resolve by adding the lifetime annotations.

Lifetimes on function or method parameters are called input lifetimes, and lifetimes on
return values are called output lifetimes.

The compiler uses three rules to figure out the lifetimes of the references when there
aren’t explicit annotations. The first rule applies to input lifetimes, and the second and
third rules apply to output lifetimes. If the compiler gets to the end of the three rules
and there are still references for which it can’t figure out lifetimes, the compiler will stop
with an error. These rules apply to fn definitions as well as impl blocks.

The first rule is that the compiler assigns a lifetime parameter to each parameter that’s a
reference. In other words, a function with one parameter gets one lifetime parameter:
fn foo<'a>(x: &'a i32) ; a function with two parameters gets two separate lifetime

parameters: fn foo<'a, 'b>(x: &'a i32, y: &'b i32) ; and so on.

The second rule is that, if there is exactly one input lifetime parameter, that lifetime is
assigned to all output lifetime parameters: fn foo<'a>(x: &'a i32) -> &'a i32 .

The third rule is that, if there are multiple input lifetime parameters, but one of them is
&self or &mut self because this is a method, the lifetime of self is assigned to all

output lifetime parameters. This third rule makes methods much nicer to read and write
because fewer symbols are necessary.

Let’s pretend we’re the compiler. We’ll apply these rules to figure out the lifetimes of the
references in the signature of the first_word function in Listing 10-25. The signature
starts without any lifetimes associated with the references:

Then the compiler applies the first rule, which specifies that each parameter gets its
own lifetime. We’ll call it 'a as usual, so now the signature is this:

fn first_word(s: &str) -> &str {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 260/636

The second rule applies because there is exactly one input lifetime. The second rule
specifies that the lifetime of the one input parameter gets assigned to the output
lifetime, so the signature is now this:

Now all the references in this function signature have lifetimes, and the compiler can
continue its analysis without needing the programmer to annotate the lifetimes in this
function signature.

Let’s look at another example, this time using the longest function that had no lifetime
parameters when we started working with it in Listing 10-20:

Let’s apply the first rule: each parameter gets its own lifetime. This time we have two
parameters instead of one, so we have two lifetimes:

You can see that the second rule doesn’t apply because there is more than one input
lifetime. The third rule doesn’t apply either, because longest is a function rather than a
method, so none of the parameters are self . After working through all three rules, we
still haven’t figured out what the return type’s lifetime is. This is why we got an error
trying to compile the code in Listing 10-20: the compiler worked through the lifetime
elision rules but still couldn’t figure out all the lifetimes of the references in the
signature.

Because the third rule really only applies in method signatures, we’ll look at lifetimes in
that context next to see why the third rule means we don’t have to annotate lifetimes in
method signatures very often.

Lifetime Annotations in Method Definitions

When we implement methods on a struct with lifetimes, we use the same syntax as that
of generic type parameters shown in Listing 10-11. Where we declare and use the
lifetime parameters depends on whether they’re related to the struct fields or the
method parameters and return values.

Lifetime names for struct fields always need to be declared after the impl keyword and
then used after the struct’s name, because those lifetimes are part of the struct’s type.

fn first_word<'a>(s: &'a str) -> &str {

fn first_word<'a>(s: &'a str) -> &'a str {

fn longest(x: &str, y: &str) -> &str {

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 261/636

In method signatures inside the impl block, references might be tied to the lifetime of
references in the struct’s fields, or they might be independent. In addition, the lifetime
elision rules often make it so that lifetime annotations aren’t necessary in method
signatures. Let’s look at some examples using the struct named ImportantExcerpt that
we defined in Listing 10-24.

First, we’ll use a method named level whose only parameter is a reference to self
and whose return value is an i32 , which is not a reference to anything:

The lifetime parameter declaration after impl and its use after the type name are
required, but we’re not required to annotate the lifetime of the reference to self
because of the first elision rule.

Here is an example where the third lifetime elision rule applies:

There are two input lifetimes, so Rust applies the first lifetime elision rule and gives both
&self and announcement their own lifetimes. Then, because one of the parameters is
&self , the return type gets the lifetime of &self , and all lifetimes have been accounted

for.

The Static Lifetime

One special lifetime we need to discuss is 'static , which denotes that the affected
reference can live for the entire duration of the program. All string literals have the
'static lifetime, which we can annotate as follows:

The text of this string is stored directly in the program’s binary, which is always
available. Therefore, the lifetime of all string literals is 'static .

You might see suggestions to use the 'static lifetime in error messages. But before
specifying 'static as the lifetime for a reference, think about whether the reference

impl<'a> ImportantExcerpt<'a> {
 fn level(&self) -> i32 {
 3
 }
}

impl<'a> ImportantExcerpt<'a> {
 fn announce_and_return_part(&self, announcement: &str) -> &str {
 println!("Attention please: {}", announcement);
 self.part
 }
}

let s: &'static str = "I have a static lifetime.";

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 262/636

you have actually lives the entire lifetime of your program or not, and whether you want
it to. Most of the time, an error message suggesting the 'static lifetime results from
attempting to create a dangling reference or a mismatch of the available lifetimes. In
such cases, the solution is fixing those problems, not specifying the 'static lifetime.

Generic Type Parameters, Trait Bounds, and Lifetimes
Together

Let’s briefly look at the syntax of specifying generic type parameters, trait bounds, and
lifetimes all in one function!

This is the longest function from Listing 10-21 that returns the longer of two string
slices. But now it has an extra parameter named ann of the generic type T , which can
be filled in by any type that implements the Display trait as specified by the where
clause. This extra parameter will be printed using {} , which is why the Display trait
bound is necessary. Because lifetimes are a type of generic, the declarations of the
lifetime parameter 'a and the generic type parameter T go in the same list inside the
angle brackets after the function name.

Summary

We covered a lot in this chapter! Now that you know about generic type parameters,
traits and trait bounds, and generic lifetime parameters, you’re ready to write code
without repetition that works in many different situations. Generic type parameters let
you apply the code to different types. Traits and trait bounds ensure that even though
the types are generic, they’ll have the behavior the code needs. You learned how to use

use std::fmt::Display;

fn longest_with_an_announcement<'a, T>(
 x: &'a str,
 y: &'a str,
 ann: T,
) -> &'a str
where
 T: Display,
{
 println!("Announcement! {}", ann);
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 263/636

lifetime annotations to ensure that this flexible code won’t have any dangling
references. And all of this analysis happens at compile time, which doesn’t affect
runtime performance!

Believe it or not, there is much more to learn on the topics we discussed in this chapter:
Chapter 17 discusses trait objects, which are another way to use traits. There are also
more complex scenarios involving lifetime annotations that you will only need in very
advanced scenarios; for those, you should read the Rust Reference. But next, you’ll learn
how to write tests in Rust so you can make sure your code is working the way it should.

https://doc.rust-lang.org/reference/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 264/636

Writing Automated Tests
In his 1972 essay “The Humble Programmer,” Edsger W. Dijkstra said that “Program
testing can be a very effective way to show the presence of bugs, but it is hopelessly
inadequate for showing their absence.” That doesn’t mean we shouldn’t try to test as
much as we can!

Correctness in our programs is the extent to which our code does what we intend it to
do. Rust is designed with a high degree of concern about the correctness of programs,
but correctness is complex and not easy to prove. Rust’s type system shoulders a huge
part of this burden, but the type system cannot catch everything. As such, Rust includes
support for writing automated software tests.

Say we write a function add_two that adds 2 to whatever number is passed to it. This
function’s signature accepts an integer as a parameter and returns an integer as a
result. When we implement and compile that function, Rust does all the type checking
and borrow checking that you’ve learned so far to ensure that, for instance, we aren’t
passing a String value or an invalid reference to this function. But Rust can’t check that
this function will do precisely what we intend, which is return the parameter plus 2
rather than, say, the parameter plus 10 or the parameter minus 50! That’s where tests
come in.

We can write tests that assert, for example, that when we pass 3 to the add_two
function, the returned value is 5 . We can run these tests whenever we make changes to
our code to make sure any existing correct behavior has not changed.

Testing is a complex skill: although we can’t cover every detail about how to write good
tests in one chapter, we’ll discuss the mechanics of Rust’s testing facilities. We’ll talk
about the annotations and macros available to you when writing your tests, the default
behavior and options provided for running your tests, and how to organize tests into
unit tests and integration tests.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 265/636

How to Write Tests

Tests are Rust functions that verify that the non-test code is functioning in the expected
manner. The bodies of test functions typically perform these three actions:

1. Set up any needed data or state.
2. Run the code you want to test.
3. Assert the results are what you expect.

Let’s look at the features Rust provides specifically for writing tests that take these
actions, which include the test attribute, a few macros, and the should_panic
attribute.

The Anatomy of a Test Function

At its simplest, a test in Rust is a function that’s annotated with the test attribute.
Attributes are metadata about pieces of Rust code; one example is the derive attribute
we used with structs in Chapter 5. To change a function into a test function, add #
[test] on the line before fn . When you run your tests with the cargo test command,
Rust builds a test runner binary that runs the annotated functions and reports on
whether each test function passes or fails.

Whenever we make a new library project with Cargo, a test module with a test function
in it is automatically generated for us. This module gives you a template for writing your
tests so you don’t have to look up the exact structure and syntax every time you start a
new project. You can add as many additional test functions and as many test modules
as you want!

We’ll explore some aspects of how tests work by experimenting with the template test
before we actually test any code. Then we’ll write some real-world tests that call some
code that we’ve written and assert that its behavior is correct.

Let’s create a new library project called adder that will add two numbers:

The contents of the src/lib.rs file in your adder library should look like Listing 11-1.

Filename: src/lib.rs

$ cargo new adder --lib
 Created library `adder` project
$ cd adder

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 266/636

Listing 11-1: The test module and function generated automatically by cargo new

For now, let’s ignore the top two lines and focus on the function. Note the #[test]
annotation: this attribute indicates this is a test function, so the test runner knows to
treat this function as a test. We might also have non-test functions in the tests module
to help set up common scenarios or perform common operations, so we always need to
indicate which functions are tests.

The example function body uses the assert_eq! macro to assert that result , which
contains the result of adding 2 and 2, equals 4. This assertion serves as an example of
the format for a typical test. Let’s run it to see that this test passes.

The cargo test command runs all tests in our project, as shown in Listing 11-2.

Listing 11-2: The output from running the automatically generated test

Cargo compiled and ran the test. We see the line running 1 test . The next line shows
the name of the generated test function, called it_works , and that the result of running
that test is ok . The overall summary test result: ok. means that all the tests
passed, and the portion that reads 1 passed; 0 failed totals the number of tests that
passed or failed.

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
 }
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.57s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 267/636

It’s possible to mark a test as ignored so it doesn’t run in a particular instance; we’ll
cover that in the “Ignoring Some Tests Unless Specifically Requested” section later in this
chapter. Because we haven’t done that here, the summary shows 0 ignored . We can
also pass an argument to the cargo test command to run only tests whose name
matches a string; this is called filtering and we’ll cover that in the “Running a Subset of
Tests by Name” section. We also haven’t filtered the tests being run, so the end of the
summary shows 0 filtered out .

The 0 measured statistic is for benchmark tests that measure performance. Benchmark
tests are, as of this writing, only available in nightly Rust. See the documentation about
benchmark tests to learn more.

The next part of the test output starting at Doc-tests adder is for the results of any
documentation tests. We don’t have any documentation tests yet, but Rust can compile
any code examples that appear in our API documentation. This feature helps keep your
docs and your code in sync! We’ll discuss how to write documentation tests in the
“Documentation Comments as Tests” section of Chapter 14. For now, we’ll ignore the
Doc-tests output.

Let’s start to customize the test to our own needs. First change the name of the
it_works function to a different name, such as exploration , like so:

Filename: src/lib.rs

Then run cargo test again. The output now shows exploration instead of it_works :

#[cfg(test)]
mod tests {
 #[test]
 fn exploration() {
 assert_eq!(2 + 2, 4);
 }
}

https://doc.rust-lang.org/book/ch11-02-running-tests.html#ignoring-some-tests-unless-specifically-requested
https://doc.rust-lang.org/book/ch11-02-running-tests.html#running-a-subset-of-tests-by-name
https://doc.rust-lang.org/unstable-book/library-features/test.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#documentation-comments-as-tests

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 268/636

Now we’ll add another test, but this time we’ll make a test that fails! Tests fail when
something in the test function panics. Each test is run in a new thread, and when the
main thread sees that a test thread has died, the test is marked as failed. In Chapter 9,
we talked about how the simplest way to panic is to call the panic! macro. Enter the
new test as a function named another , so your src/lib.rs file looks like Listing 11-3.

Filename: src/lib.rs

Listing 11-3: Adding a second test that will fail because we call the panic! macro

Run the tests again using cargo test . The output should look like Listing 11-4, which
shows that our exploration test passed and another failed.

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.59s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::exploration ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

#[cfg(test)]
mod tests {
 #[test]
 fn exploration() {
 assert_eq!(2 + 2, 4);
 }

 #[test]
 fn another() {
 panic!("Make this test fail");
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 269/636

Listing 11-4: Test results when one test passes and one test fails

Instead of ok , the line test tests::another shows FAILED . Two new sections appear
between the individual results and the summary: the first displays the detailed reason
for each test failure. In this case, we get the details that another failed because it
panicked at 'Make this test fail' on line 10 in the src/lib.rs file. The next section

lists just the names of all the failing tests, which is useful when there are lots of tests
and lots of detailed failing test output. We can use the name of a failing test to run just
that test to more easily debug it; we’ll talk more about ways to run tests in the
“Controlling How Tests Are Run” section.

The summary line displays at the end: overall, our test result is FAILED . We had one test
pass and one test fail.

Now that you’ve seen what the test results look like in different scenarios, let’s look at
some macros other than panic! that are useful in tests.

Checking Results with the assert! Macro

The assert! macro, provided by the standard library, is useful when you want to
ensure that some condition in a test evaluates to true . We give the assert! macro an
argument that evaluates to a Boolean. If the value is true , nothing happens and the
test passes. If the value is false , the assert! macro calls panic! to cause the test to

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.72s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 2 tests
test tests::another ... FAILED
test tests::exploration ... ok

failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

https://doc.rust-lang.org/book/ch11-02-running-tests.html#controlling-how-tests-are-run

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 270/636

fail. Using the assert! macro helps us check that our code is functioning in the way we
intend.

In Chapter 5, Listing 5-15, we used a Rectangle struct and a can_hold method, which
are repeated here in Listing 11-5. Let’s put this code in the src/lib.rs file, then write some
tests for it using the assert! macro.

Filename: src/lib.rs

Listing 11-5: Using the Rectangle struct and its can_hold method from Chapter 5

The can_hold method returns a Boolean, which means it’s a perfect use case for the
assert! macro. In Listing 11-6, we write a test that exercises the can_hold method by

creating a Rectangle instance that has a width of 8 and a height of 7 and asserting that
it can hold another Rectangle instance that has a width of 5 and a height of 1.

Filename: src/lib.rs

Listing 11-6: A test for can_hold that checks whether a larger rectangle can indeed hold a smaller

rectangle

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

impl Rectangle {
 fn can_hold(&self, other: &Rectangle) -> bool {
 self.width > other.width && self.height > other.height
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn larger_can_hold_smaller() {
 let larger = Rectangle {
 width: 8,
 height: 7,
 };
 let smaller = Rectangle {
 width: 5,
 height: 1,
 };

 assert!(larger.can_hold(&smaller));
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 271/636

Note that we’ve added a new line inside the tests module: use super::*; . The tests
module is a regular module that follows the usual visibility rules we covered in Chapter
7 in the “Paths for Referring to an Item in the Module Tree” section. Because the tests
module is an inner module, we need to bring the code under test in the outer module
into the scope of the inner module. We use a glob here so anything we define in the
outer module is available to this tests module.

We’ve named our test larger_can_hold_smaller , and we’ve created the two
Rectangle instances that we need. Then we called the assert! macro and passed it

the result of calling larger.can_hold(&smaller) . This expression is supposed to return
true , so our test should pass. Let’s find out!

It does pass! Let’s add another test, this time asserting that a smaller rectangle cannot
hold a larger rectangle:

Filename: src/lib.rs

$ cargo test
 Compiling rectangle v0.1.0 (file:///projects/rectangle)
 Finished test [unoptimized + debuginfo] target(s) in 0.66s
 Running unittests src/lib.rs (target/debug/deps/rectangle-
6584c4561e48942e)

running 1 test
test tests::larger_can_hold_smaller ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests rectangle

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 272/636

Because the correct result of the can_hold function in this case is false , we need to
negate that result before we pass it to the assert! macro. As a result, our test will pass
if can_hold returns false :

Two tests that pass! Now let’s see what happens to our test results when we introduce a
bug in our code. We’ll change the implementation of the can_hold method by replacing
the greater-than sign with a less-than sign when it compares the widths:

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn larger_can_hold_smaller() {
 // --snip--
 }

 #[test]
 fn smaller_cannot_hold_larger() {
 let larger = Rectangle {
 width: 8,
 height: 7,
 };
 let smaller = Rectangle {
 width: 5,
 height: 1,
 };

 assert!(!smaller.can_hold(&larger));
 }
}

$ cargo test
 Compiling rectangle v0.1.0 (file:///projects/rectangle)
 Finished test [unoptimized + debuginfo] target(s) in 0.66s
 Running unittests src/lib.rs (target/debug/deps/rectangle-
6584c4561e48942e)

running 2 tests
test tests::larger_can_hold_smaller ... ok
test tests::smaller_cannot_hold_larger ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests rectangle

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 273/636

Running the tests now produces the following:

Our tests caught the bug! Because larger.width is 8 and smaller.width is 5, the
comparison of the widths in can_hold now returns false : 8 is not less than 5.

Testing Equality with the assert_eq! and assert_ne! Macros

A common way to verify functionality is to test for equality between the result of the
code under test and the value you expect the code to return. You could do this using the
assert! macro and passing it an expression using the == operator. However, this is

such a common test that the standard library provides a pair of macros— assert_eq!

and assert_ne! —to perform this test more conveniently. These macros compare two
arguments for equality or inequality, respectively. They’ll also print the two values if the
assertion fails, which makes it easier to see why the test failed; conversely, the assert!
macro only indicates that it got a false value for the == expression, without printing
the values that led to the false value.

// --snip--
impl Rectangle {
 fn can_hold(&self, other: &Rectangle) -> bool {
 self.width < other.width && self.height > other.height
 }
}

$ cargo test
 Compiling rectangle v0.1.0 (file:///projects/rectangle)
 Finished test [unoptimized + debuginfo] target(s) in 0.66s
 Running unittests src/lib.rs (target/debug/deps/rectangle-
6584c4561e48942e)

running 2 tests
test tests::larger_can_hold_smaller ... FAILED
test tests::smaller_cannot_hold_larger ... ok

failures:

---- tests::larger_can_hold_smaller stdout ----
thread 'tests::larger_can_hold_smaller' panicked at 'assertion failed:
larger.can_hold(&smaller)', src/lib.rs:28:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::larger_can_hold_smaller

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 274/636

In Listing 11-7, we write a function named add_two that adds 2 to its parameter, then
we test this function using the assert_eq! macro.

Filename: src/lib.rs

Listing 11-7: Testing the function add_two using the assert_eq! macro

Let’s check that it passes!

We pass 4 as the argument to assert_eq! , which is equal to the result of calling
add_two(2) . The line for this test is test tests::it_adds_two ... ok , and the ok text

indicates that our test passed!

Let’s introduce a bug into our code to see what assert_eq! looks like when it fails.
Change the implementation of the add_two function to instead add 3 :

pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn it_adds_two() {
 assert_eq!(4, add_two(2));
 }
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.58s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 275/636

Run the tests again:

Our test caught the bug! The it_adds_two test failed, and the message tells us that the
assertion that fails was assertion failed: `(left == right)` and what the left and
right values are. This message helps us start debugging: the left argument was 4

but the right argument, where we had add_two(2) , was 5 . You can imagine that this
would be especially helpful when we have a lot of tests going on.

Note that in some languages and test frameworks, the parameters to equality assertion
functions are called expected and actual , and the order in which we specify the
arguments matters. However, in Rust, they’re called left and right , and the order in
which we specify the value we expect and the value the code produces doesn’t matter.
We could write the assertion in this test as assert_eq!(add_two(2), 4) , which would
result in the same failure message that displays assertion failed: `(left ==
right)` .

The assert_ne! macro will pass if the two values we give it are not equal and fail if
they’re equal. This macro is most useful for cases when we’re not sure what a value will
be, but we know what the value definitely shouldn’t be. For example, if we’re testing a

pub fn add_two(a: i32) -> i32 {
 a + 3
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.61s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::it_adds_two ... FAILED

failures:

---- tests::it_adds_two stdout ----
thread 'tests::it_adds_two' panicked at 'assertion failed: `(left ==
right)`
 left: `4`,
 right: `5`', src/lib.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::it_adds_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 276/636

function that is guaranteed to change its input in some way, but the way in which the
input is changed depends on the day of the week that we run our tests, the best thing to
assert might be that the output of the function is not equal to the input.

Under the surface, the assert_eq! and assert_ne! macros use the operators == and
!= , respectively. When the assertions fail, these macros print their arguments using

debug formatting, which means the values being compared must implement the
PartialEq and Debug traits. All primitive types and most of the standard library types

implement these traits. For structs and enums that you define yourself, you’ll need to
implement PartialEq to assert equality of those types. You’ll also need to implement
Debug to print the values when the assertion fails. Because both traits are derivable

traits, as mentioned in Listing 5-12 in Chapter 5, this is usually as straightforward as
adding the #[derive(PartialEq, Debug)] annotation to your struct or enum definition.
See Appendix C, “Derivable Traits,” for more details about these and other derivable
traits.

Adding Custom Failure Messages

You can also add a custom message to be printed with the failure message as optional
arguments to the assert! , assert_eq! , and assert_ne! macros. Any arguments
specified after the required arguments are passed along to the format! macro
(discussed in Chapter 8 in the “Concatenation with the + Operator or the format!
Macro” section), so you can pass a format string that contains {} placeholders and
values to go in those placeholders. Custom messages are useful for documenting what
an assertion means; when a test fails, you’ll have a better idea of what the problem is
with the code.

For example, let’s say we have a function that greets people by name and we want to
test that the name we pass into the function appears in the output:

Filename: src/lib.rs

pub fn greeting(name: &str) -> String {
 format!("Hello {}!", name)
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn greeting_contains_name() {
 let result = greeting("Carol");
 assert!(result.contains("Carol"));
 }
}

https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
https://doc.rust-lang.org/book/ch08-02-strings.html#concatenation-with-the--operator-or-the-format-macro

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 277/636

The requirements for this program haven’t been agreed upon yet, and we’re pretty sure
the Hello text at the beginning of the greeting will change. We decided we don’t want
to have to update the test when the requirements change, so instead of checking for
exact equality to the value returned from the greeting function, we’ll just assert that
the output contains the text of the input parameter.

Now let’s introduce a bug into this code by changing greeting to exclude name to see
what the default test failure looks like:

Running this test produces the following:

This result just indicates that the assertion failed and which line the assertion is on. A
more useful failure message would print the value from the greeting function. Let’s
add a custom failure message composed of a format string with a placeholder filled in
with the actual value we got from the greeting function:

pub fn greeting(name: &str) -> String {
 String::from("Hello!")
}

$ cargo test
 Compiling greeter v0.1.0 (file:///projects/greeter)
 Finished test [unoptimized + debuginfo] target(s) in 0.91s
 Running unittests src/lib.rs (target/debug/deps/greeter-
170b942eb5bf5e3a)

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
thread 'tests::greeting_contains_name' panicked at 'assertion failed:
result.contains(\"Carol\")', src/lib.rs:12:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::greeting_contains_name

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 278/636

Now when we run the test, we’ll get a more informative error message:

We can see the value we actually got in the test output, which would help us debug what
happened instead of what we were expecting to happen.

Checking for Panics with should_panic

In addition to checking return values, it’s important to check that our code handles error
conditions as we expect. For example, consider the Guess type that we created in
Chapter 9, Listing 9-13. Other code that uses Guess depends on the guarantee that
Guess instances will contain only values between 1 and 100. We can write a test that

ensures that attempting to create a Guess instance with a value outside that range
panics.

 #[test]
 fn greeting_contains_name() {
 let result = greeting("Carol");
 assert!(
 result.contains("Carol"),
 "Greeting did not contain name, value was `{}`",
 result
);
 }

$ cargo test
 Compiling greeter v0.1.0 (file:///projects/greeter)
 Finished test [unoptimized + debuginfo] target(s) in 0.93s
 Running unittests src/lib.rs (target/debug/deps/greeter-
170b942eb5bf5e3a)

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
thread 'tests::greeting_contains_name' panicked at 'Greeting did not
contain name, value was `Hello!`', src/lib.rs:12:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::greeting_contains_name

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 279/636

We do this by adding the attribute should_panic to our test function. The test passes if
the code inside the function panics; the test fails if the code inside the function doesn’t
panic.

Listing 11-8 shows a test that checks that the error conditions of Guess::new happen
when we expect them to.

Filename: src/lib.rs

Listing 11-8: Testing that a condition will cause a panic!

We place the #[should_panic] attribute after the #[test] attribute and before the
test function it applies to. Let’s look at the result when this test passes:

pub struct Guess {
 value: i32,
}

impl Guess {
 pub fn new(value: i32) -> Guess {
 if value < 1 || value > 100 {
 panic!("Guess value must be between 1 and 100, got {}.",
value);
 }

 Guess { value }
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 #[should_panic]
 fn greater_than_100() {
 Guess::new(200);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 280/636

Looks good! Now let’s introduce a bug in our code by removing the condition that the
new function will panic if the value is greater than 100:

When we run the test in Listing 11-8, it will fail:

$ cargo test
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished test [unoptimized + debuginfo] target(s) in 0.58s
 Running unittests src/lib.rs (target/debug/deps/guessing_game-
57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests guessing_game

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

// --snip--
impl Guess {
 pub fn new(value: i32) -> Guess {
 if value < 1 {
 panic!("Guess value must be between 1 and 100, got {}.",
value);
 }

 Guess { value }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 281/636

We don’t get a very helpful message in this case, but when we look at the test function,
we see that it’s annotated with #[should_panic] . The failure we got means that the
code in the test function did not cause a panic.

Tests that use should_panic can be imprecise. A should_panic test would pass even if
the test panics for a different reason from the one we were expecting. To make
should_panic tests more precise, we can add an optional expected parameter to the
should_panic attribute. The test harness will make sure that the failure message

contains the provided text. For example, consider the modified code for Guess in
Listing 11-9 where the new function panics with different messages depending on
whether the value is too small or too large.

Filename: src/lib.rs

$ cargo test
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished test [unoptimized + debuginfo] target(s) in 0.62s
 Running unittests src/lib.rs (target/debug/deps/guessing_game-
57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... FAILED

failures:

---- tests::greater_than_100 stdout ----
note: test did not panic as expected

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 282/636

Listing 11-9: Testing for a panic! with a panic message containing a specified substring

This test will pass because the value we put in the should_panic attribute’s expected
parameter is a substring of the message that the Guess::new function panics with. We
could have specified the entire panic message that we expect, which in this case would
be Guess value must be less than or equal to 100, got 200. What you choose to
specify depends on how much of the panic message is unique or dynamic and how
precise you want your test to be. In this case, a substring of the panic message is
enough to ensure that the code in the test function executes the else if value > 100
case.

To see what happens when a should_panic test with an expected message fails, let’s
again introduce a bug into our code by swapping the bodies of the if value < 1 and
the else if value > 100 blocks:

// --snip--

impl Guess {
 pub fn new(value: i32) -> Guess {
 if value < 1 {
 panic!(
 "Guess value must be greater than or equal to 1, got {}.",
 value
);
 } else if value > 100 {
 panic!(
 "Guess value must be less than or equal to 100, got {}.",
 value
);
 }

 Guess { value }
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 #[should_panic(expected = "less than or equal to 100")]
 fn greater_than_100() {
 Guess::new(200);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 283/636

This time when we run the should_panic test, it will fail:

The failure message indicates that this test did indeed panic as we expected, but the
panic message did not include the expected string 'Guess value must be less than
or equal to 100' . The panic message that we did get in this case was Guess value
must be greater than or equal to 1, got 200. Now we can start figuring out where
our bug is!

 if value < 1 {
 panic!(
 "Guess value must be less than or equal to 100, got {}.",
 value
);
 } else if value > 100 {
 panic!(
 "Guess value must be greater than or equal to 1, got {}.",
 value
);
 }

$ cargo test
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Finished test [unoptimized + debuginfo] target(s) in 0.66s
 Running unittests src/lib.rs (target/debug/deps/guessing_game-
57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... FAILED

failures:

---- tests::greater_than_100 stdout ----
thread 'tests::greater_than_100' panicked at 'Guess value must be greater
than or equal to 1, got 200.', src/lib.rs:13:13
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace
note: panic did not contain expected string
 panic message: `"Guess value must be greater than or equal to 1, got
200."`,
 expected substring: `"less than or equal to 100"`

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 284/636

Using Result<T, E> in Tests

Our tests so far all panic when they fail. We can also write tests that use Result<T, E> !
Here’s the test from Listing 11-1, rewritten to use Result<T, E> and return an Err
instead of panicking:

The it_works function now has the Result<(), String> return type. In the body of
the function, rather than calling the assert_eq! macro, we return Ok(()) when the
test passes and an Err with a String inside when the test fails.

Writing tests so they return a Result<T, E> enables you to use the question mark
operator in the body of tests, which can be a convenient way to write tests that should
fail if any operation within them returns an Err variant.

You can’t use the #[should_panic] annotation on tests that use Result<T, E> . To
assert that an operation returns an Err variant, don’t use the question mark operator
on the Result<T, E> value. Instead, use assert!(value.is_err()) .

Now that you know several ways to write tests, let’s look at what is happening when we
run our tests and explore the different options we can use with cargo test .

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() -> Result<(), String> {
 if 2 + 2 == 4 {
 Ok(())
 } else {
 Err(String::from("two plus two does not equal four"))
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 285/636

Controlling How Tests Are Run

Just as cargo run compiles your code and then runs the resulting binary, cargo test
compiles your code in test mode and runs the resulting test binary. The default behavior
of the binary produced by cargo test is to run all the tests in parallel and capture
output generated during test runs, preventing the output from being displayed and
making it easier to read the output related to the test results. You can, however, specify
command line options to change this default behavior.

Some command line options go to cargo test , and some go to the resulting test
binary. To separate these two types of arguments, you list the arguments that go to
cargo test followed by the separator -- and then the ones that go to the test binary.

Running cargo test --help displays the options you can use with cargo test , and
running cargo test -- --help displays the options you can use after the separator.

Running Tests in Parallel or Consecutively

When you run multiple tests, by default they run in parallel using threads, meaning they
finish running faster and you get feedback quicker. Because the tests are running at the
same time, you must make sure your tests don’t depend on each other or on any
shared state, including a shared environment, such as the current working directory or
environment variables.

For example, say each of your tests runs some code that creates a file on disk named
test-output.txt and writes some data to that file. Then each test reads the data in that file
and asserts that the file contains a particular value, which is different in each test.
Because the tests run at the same time, one test might overwrite the file in the time
between another test writing and reading the file. The second test will then fail, not
because the code is incorrect but because the tests have interfered with each other
while running in parallel. One solution is to make sure each test writes to a different file;
another solution is to run the tests one at a time.

If you don’t want to run the tests in parallel or if you want more fine-grained control
over the number of threads used, you can send the --test-threads flag and the
number of threads you want to use to the test binary. Take a look at the following
example:

We set the number of test threads to 1 , telling the program not to use any parallelism.
Running the tests using one thread will take longer than running them in parallel, but
the tests won’t interfere with each other if they share state.

$ cargo test -- --test-threads=1

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 286/636

Showing Function Output

By default, if a test passes, Rust’s test library captures anything printed to standard
output. For example, if we call println! in a test and the test passes, we won’t see the
println! output in the terminal; we’ll see only the line that indicates the test passed. If

a test fails, we’ll see whatever was printed to standard output with the rest of the failure
message.

As an example, Listing 11-10 has a silly function that prints the value of its parameter
and returns 10, as well as a test that passes and a test that fails.

Filename: src/lib.rs

Listing 11-10: Tests for a function that calls println!

When we run these tests with cargo test , we’ll see the following output:

fn prints_and_returns_10(a: i32) -> i32 {
 println!("I got the value {}", a);
 10
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn this_test_will_pass() {
 let value = prints_and_returns_10(4);
 assert_eq!(10, value);
 }

 #[test]
 fn this_test_will_fail() {
 let value = prints_and_returns_10(8);
 assert_eq!(5, value);
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 287/636

Note that nowhere in this output do we see I got the value 4 , which is what is
printed when the test that passes runs. That output has been captured. The output
from the test that failed, I got the value 8 , appears in the section of the test
summary output, which also shows the cause of the test failure.

If we want to see printed values for passing tests as well, we can tell Rust to also show
the output of successful tests with --show-output .

When we run the tests in Listing 11-10 again with the --show-output flag, we see the
following output:

$ cargo test
 Compiling silly-function v0.1.0 (file:///projects/silly-function)
 Finished test [unoptimized + debuginfo] target(s) in 0.58s
 Running unittests src/lib.rs (target/debug/deps/silly_function-
160869f38cff9166)

running 2 tests
test tests::this_test_will_fail ... FAILED
test tests::this_test_will_pass ... ok

failures:

---- tests::this_test_will_fail stdout ----
I got the value 8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left
== right)`
 left: `5`,
 right: `10`', src/lib.rs:19:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

$ cargo test -- --show-output

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 288/636

Running a Subset of Tests by Name

Sometimes, running a full test suite can take a long time. If you’re working on code in a
particular area, you might want to run only the tests pertaining to that code. You can
choose which tests to run by passing cargo test the name or names of the test(s) you
want to run as an argument.

To demonstrate how to run a subset of tests, we’ll first create three tests for our
add_two function, as shown in Listing 11-11, and choose which ones to run.

Filename: src/lib.rs

$ cargo test -- --show-output
 Compiling silly-function v0.1.0 (file:///projects/silly-function)
 Finished test [unoptimized + debuginfo] target(s) in 0.60s
 Running unittests src/lib.rs (target/debug/deps/silly_function-
160869f38cff9166)

running 2 tests
test tests::this_test_will_fail ... FAILED
test tests::this_test_will_pass ... ok

successes:

---- tests::this_test_will_pass stdout ----
I got the value 4

successes:
 tests::this_test_will_pass

failures:

---- tests::this_test_will_fail stdout ----
I got the value 8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left
== right)`
 left: `5`,
 right: `10`', src/lib.rs:19:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 289/636

Listing 11-11: Three tests with three different names

If we run the tests without passing any arguments, as we saw earlier, all the tests will
run in parallel:

pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn add_two_and_two() {
 assert_eq!(4, add_two(2));
 }

 #[test]
 fn add_three_and_two() {
 assert_eq!(5, add_two(3));
 }

 #[test]
 fn one_hundred() {
 assert_eq!(102, add_two(100));
 }
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.62s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 3 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok
test tests::one_hundred ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 290/636

Running Single Tests

We can pass the name of any test function to cargo test to run only that test:

Only the test with the name one_hundred ran; the other two tests didn’t match that
name. The test output lets us know we had more tests that didn’t run by displaying 2
filtered out at the end.

We can’t specify the names of multiple tests in this way; only the first value given to
cargo test will be used. But there is a way to run multiple tests.

Filtering to Run Multiple Tests

We can specify part of a test name, and any test whose name matches that value will be
run. For example, because two of our tests’ names contain add , we can run those two
by running cargo test add :

This command ran all tests with add in the name and filtered out the test named
one_hundred . Also note that the module in which a test appears becomes part of the

test’s name, so we can run all the tests in a module by filtering on the module’s name.

$ cargo test one_hundred
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.69s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out;
finished in 0.00s

$ cargo test add
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.61s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 2 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 291/636

Ignoring Some Tests Unless Specifically Requested

Sometimes a few specific tests can be very time-consuming to execute, so you might
want to exclude them during most runs of cargo test . Rather than listing as
arguments all tests you do want to run, you can instead annotate the time-consuming
tests using the ignore attribute to exclude them, as shown here:

Filename: src/lib.rs

After #[test] we add the #[ignore] line to the test we want to exclude. Now when we
run our tests, it_works runs, but expensive_test doesn’t:

The expensive_test function is listed as ignored . If we want to run only the ignored
tests, we can use cargo test -- --ignored :

#[test]
fn it_works() {
 assert_eq!(2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {
 // code that takes an hour to run
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.60s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 2 tests
test expensive_test ... ignored
test it_works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 292/636

By controlling which tests run, you can make sure your cargo test results will be fast.
When you’re at a point where it makes sense to check the results of the ignored tests
and you have time to wait for the results, you can run cargo test -- --ignored
instead. If you want to run all tests whether they’re ignored or not, you can run cargo
test -- --include-ignored .

$ cargo test -- --ignored
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.61s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test expensive_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 293/636

Test Organization

As mentioned at the start of the chapter, testing is a complex discipline, and different
people use different terminology and organization. The Rust community thinks about
tests in terms of two main categories: unit tests and integration tests. Unit tests are small
and more focused, testing one module in isolation at a time, and can test private
interfaces. Integration tests are entirely external to your library and use your code in the
same way any other external code would, using only the public interface and potentially
exercising multiple modules per test.

Writing both kinds of tests is important to ensure that the pieces of your library are
doing what you expect them to, separately and together.

Unit Tests

The purpose of unit tests is to test each unit of code in isolation from the rest of the
code to quickly pinpoint where code is and isn’t working as expected. You’ll put unit
tests in the src directory in each file with the code that they’re testing. The convention is
to create a module named tests in each file to contain the test functions and to
annotate the module with cfg(test) .

The Tests Module and #[cfg(test)]

The #[cfg(test)] annotation on the tests module tells Rust to compile and run the
test code only when you run cargo test , not when you run cargo build . This saves
compile time when you only want to build the library and saves space in the resulting
compiled artifact because the tests are not included. You’ll see that because integration
tests go in a different directory, they don’t need the #[cfg(test)] annotation.
However, because unit tests go in the same files as the code, you’ll use #[cfg(test)] to
specify that they shouldn’t be included in the compiled result.

Recall that when we generated the new adder project in the first section of this chapter,
Cargo generated this code for us:

Filename: src/lib.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 294/636

This code is the automatically generated test module. The attribute cfg stands for
configuration and tells Rust that the following item should only be included given a
certain configuration option. In this case, the configuration option is test , which is
provided by Rust for compiling and running tests. By using the cfg attribute, Cargo
compiles our test code only if we actively run the tests with cargo test . This includes
any helper functions that might be within this module, in addition to the functions
annotated with #[test] .

Testing Private Functions

There’s debate within the testing community about whether or not private functions
should be tested directly, and other languages make it difficult or impossible to test
private functions. Regardless of which testing ideology you adhere to, Rust’s privacy
rules do allow you to test private functions. Consider the code in Listing 11-12 with the
private function internal_adder .

Filename: src/lib.rs

Listing 11-12: Testing a private function

Note that the internal_adder function is not marked as pub . Tests are just Rust code,
and the tests module is just another module. As we discussed in the “Paths for
Referring to an Item in the Module Tree” section, items in child modules can use the

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
 }
}

pub fn add_two(a: i32) -> i32 {
 internal_adder(a, 2)
}

fn internal_adder(a: i32, b: i32) -> i32 {
 a + b
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn internal() {
 assert_eq!(4, internal_adder(2, 2));
 }
}

https://doc.rust-lang.org/book/ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 295/636

items in their ancestor modules. In this test, we bring all of the test module’s parent’s
items into scope with use super::* , and then the test can call internal_adder . If you
don’t think private functions should be tested, there’s nothing in Rust that will compel
you to do so.

Integration Tests

In Rust, integration tests are entirely external to your library. They use your library in the
same way any other code would, which means they can only call functions that are part
of your library’s public API. Their purpose is to test whether many parts of your library
work together correctly. Units of code that work correctly on their own could have
problems when integrated, so test coverage of the integrated code is important as well.
To create integration tests, you first need a tests directory.

The tests Directory

We create a tests directory at the top level of our project directory, next to src. Cargo
knows to look for integration test files in this directory. We can then make as many test
files as we want, and Cargo will compile each of the files as an individual crate.

Let’s create an integration test. With the code in Listing 11-12 still in the src/lib.rs file,
make a tests directory, and create a new file named tests/integration_test.rs. Your
directory structure should look like this:

Enter the code in Listing 11-13 into the tests/integration_test.rs file:

Filename: tests/integration_test.rs

Listing 11-13: An integration test of a function in the adder crate

Each file in the tests directory is a separate crate, so we need to bring our library into
each test crate’s scope. For that reason we add use adder at the top of the code, which

adder
├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
 └── integration_test.rs

use adder;

#[test]
fn it_adds_two() {
 assert_eq!(4, adder::add_two(2));
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 296/636

we didn’t need in the unit tests.

We don’t need to annotate any code in tests/integration_test.rs with #[cfg(test)] . Cargo
treats the tests directory specially and compiles files in this directory only when we
run cargo test . Run cargo test now:

The three sections of output include the unit tests, the integration test, and the doc
tests. Note that if any test in a section fails, the following sections will not be run. For
example, if a unit test fails, there won’t be any output for integration and doc tests
because those tests will only be run if all unit tests are passing.

The first section for the unit tests is the same as we’ve been seeing: one line for each
unit test (one named internal that we added in Listing 11-12) and then a summary line
for the unit tests.

The integration tests section starts with the line Running tests/integration_test.rs .
Next, there is a line for each test function in that integration test and a summary line for
the results of the integration test just before the Doc-tests adder section starts.

Each integration test file has its own section, so if we add more files in the tests
directory, there will be more integration test sections.

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 1.31s
 Running unittests src/lib.rs (target/debug/deps/adder-
1082c4b063a8fbe6)

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running tests/integration_test.rs (target/debug/deps/integration_test-
1082c4b063a8fbe6)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 297/636

We can still run a particular integration test function by specifying the test function’s
name as an argument to cargo test . To run all the tests in a particular integration test
file, use the --test argument of cargo test followed by the name of the file:

This command runs only the tests in the tests/integration_test.rs file.

Submodules in Integration Tests

As you add more integration tests, you might want to make more files in the tests
directory to help organize them; for example, you can group the test functions by the
functionality they’re testing. As mentioned earlier, each file in the tests directory is
compiled as its own separate crate, which is useful for creating separate scopes to more
closely imitate the way end users will be using your crate. However, this means files in
the tests directory don’t share the same behavior as files in src do, as you learned in
Chapter 7 regarding how to separate code into modules and files.

The different behavior of tests directory files is most noticeable when you have a set of
helper functions to use in multiple integration test files and you try to follow the steps in
the “Separating Modules into Different Files” section of Chapter 7 to extract them into a
common module. For example, if we create tests/common.rs and place a function named
setup in it, we can add some code to setup that we want to call from multiple test

functions in multiple test files:

Filename: tests/common.rs

When we run the tests again, we’ll see a new section in the test output for the
common.rs file, even though this file doesn’t contain any test functions nor did we call
the setup function from anywhere:

$ cargo test --test integration_test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.64s
 Running tests/integration_test.rs (target/debug/deps/integration_test-
82e7799c1bc62298)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

pub fn setup() {
 // setup code specific to your library's tests would go here
}

https://doc.rust-lang.org/book/ch07-05-separating-modules-into-different-files.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 298/636

Having common appear in the test results with running 0 tests displayed for it is not
what we wanted. We just wanted to share some code with the other integration test
files.

To avoid having common appear in the test output, instead of creating tests/common.rs,
we’ll create tests/common/mod.rs. The project directory now looks like this:

This is the older naming convention that Rust also understands that we mentioned in
the “Alternate File Paths” section of Chapter 7. Naming the file this way tells Rust not to

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.89s
 Running unittests src/lib.rs (target/debug/deps/adder-
92948b65e88960b4)

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running tests/common.rs (target/debug/deps/common-92948b65e88960b4)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running tests/integration_test.rs (target/debug/deps/integration_test-
92948b65e88960b4)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
 ├── common
 │ └── mod.rs
 └── integration_test.rs

https://doc.rust-lang.org/book/ch07-05-separating-modules-into-different-files.html#alternate-file-paths

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 299/636

treat the common module as an integration test file. When we move the setup function
code into tests/common/mod.rs and delete the tests/common.rs file, the section in the test
output will no longer appear. Files in subdirectories of the tests directory don’t get
compiled as separate crates or have sections in the test output.

After we’ve created tests/common/mod.rs, we can use it from any of the integration test
files as a module. Here’s an example of calling the setup function from the
it_adds_two test in tests/integration_test.rs:

Filename: tests/integration_test.rs

Note that the mod common; declaration is the same as the module declaration we
demonstrated in Listing 7-21. Then in the test function, we can call the
common::setup() function.

Integration Tests for Binary Crates

If our project is a binary crate that only contains a src/main.rs file and doesn’t have a
src/lib.rs file, we can’t create integration tests in the tests directory and bring functions
defined in the src/main.rs file into scope with a use statement. Only library crates
expose functions that other crates can use; binary crates are meant to be run on their
own.

This is one of the reasons Rust projects that provide a binary have a straightforward
src/main.rs file that calls logic that lives in the src/lib.rs file. Using that structure,
integration tests can test the library crate with use to make the important functionality
available. If the important functionality works, the small amount of code in the
src/main.rs file will work as well, and that small amount of code doesn’t need to be
tested.

Summary

Rust’s testing features provide a way to specify how code should function to ensure it
continues to work as you expect, even as you make changes. Unit tests exercise
different parts of a library separately and can test private implementation details.

use adder;

mod common;

#[test]
fn it_adds_two() {
 common::setup();
 assert_eq!(4, adder::add_two(2));
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 300/636

Integration tests check that many parts of the library work together correctly, and they
use the library’s public API to test the code in the same way external code will use it.
Even though Rust’s type system and ownership rules help prevent some kinds of bugs,
tests are still important to reduce logic bugs having to do with how your code is
expected to behave.

Let’s combine the knowledge you learned in this chapter and in previous chapters to
work on a project!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 301/636

An I/O Project: Building a Command Line
Program
This chapter is a recap of the many skills you’ve learned so far and an exploration of a
few more standard library features. We’ll build a command line tool that interacts with
file and command line input/output to practice some of the Rust concepts you now have
under your belt.

Rust’s speed, safety, single binary output, and cross-platform support make it an ideal
language for creating command line tools, so for our project, we’ll make our own
version of the classic command line search tool grep (globally search a regular
expression and print). In the simplest use case, grep searches a specified file for a
specified string. To do so, grep takes as its arguments a file path and a string. Then it
reads the file, finds lines in that file that contain the string argument, and prints those
lines.

Along the way, we’ll show how to make our command line tool use the terminal features
that many other command line tools use. We’ll read the value of an environment
variable to allow the user to configure the behavior of our tool. We’ll also print error
messages to the standard error console stream (stderr) instead of standard output
(stdout), so, for example, the user can redirect successful output to a file while still
seeing error messages onscreen.

One Rust community member, Andrew Gallant, has already created a fully featured,
very fast version of grep , called ripgrep . By comparison, our version will be fairly
simple, but this chapter will give you some of the background knowledge you need to
understand a real-world project such as ripgrep .

Our grep project will combine a number of concepts you’ve learned so far:

Organizing code (using what you learned about modules in Chapter 7)
Using vectors and strings (collections, Chapter 8)
Handling errors (Chapter 9)
Using traits and lifetimes where appropriate (Chapter 10)
Writing tests (Chapter 11)

We’ll also briefly introduce closures, iterators, and trait objects, which Chapters 13 and
17 will cover in detail.

https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html
https://doc.rust-lang.org/book/ch08-00-common-collections.html
https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/book/ch11-00-testing.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html
https://doc.rust-lang.org/book/ch17-00-oop.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 302/636

Accepting Command Line Arguments

Let’s create a new project with, as always, cargo new . We’ll call our project minigrep to
distinguish it from the grep tool that you might already have on your system.

The first task is to make minigrep accept its two command line arguments: the file path
and a string to search for. That is, we want to be able to run our program with cargo
run , two hyphens to indicate the following arguments are for our program rather than
for cargo , a string to search for, and a path to a file to search in, like so:

Right now, the program generated by cargo new cannot process arguments we give it.
Some existing libraries on crates.io can help with writing a program that accepts
command line arguments, but because you’re just learning this concept, let’s implement
this capability ourselves.

Reading the Argument Values

To enable minigrep to read the values of command line arguments we pass to it, we’ll
need the std::env::args function provided in Rust’s standard library. This function
returns an iterator of the command line arguments passed to minigrep . We’ll cover
iterators fully in Chapter 13. For now, you only need to know two details about iterators:
iterators produce a series of values, and we can call the collect method on an iterator
to turn it into a collection, such as a vector, that contains all the elements the iterator
produces.

The code in Listing 12-1 allows your minigrep program to read any command line
arguments passed to it and then collect the values into a vector.

Filename: src/main.rs

$ cargo new minigrep
 Created binary (application) `minigrep` project
$ cd minigrep

$ cargo run -- searchstring example-filename.txt

https://crates.io/
https://doc.rust-lang.org/book/ch13-00-functional-features.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 303/636

Listing 12-1: Collecting the command line arguments into a vector and printing them

First, we bring the std::env module into scope with a use statement so we can use its
args function. Notice that the std::env::args function is nested in two levels of

modules. As we discussed in Chapter 7, in cases where the desired function is nested in
more than one module, we’ve chosen to bring the parent module into scope rather than
the function. By doing so, we can easily use other functions from std::env . It’s also less
ambiguous than adding use std::env::args and then calling the function with just
args , because args might easily be mistaken for a function that’s defined in the

current module.

The args Function and Invalid Unicode

Note that std::env::args will panic if any argument contains invalid Unicode. If
your program needs to accept arguments containing invalid Unicode, use
std::env::args_os instead. That function returns an iterator that produces
OsString values instead of String values. We’ve chosen to use std::env::args

here for simplicity, because OsString values differ per platform and are more
complex to work with than String values.

On the first line of main , we call env::args , and we immediately use collect to turn
the iterator into a vector containing all the values produced by the iterator. We can use
the collect function to create many kinds of collections, so we explicitly annotate the
type of args to specify that we want a vector of strings. Although we very rarely need to
annotate types in Rust, collect is one function you do often need to annotate because
Rust isn’t able to infer the kind of collection you want.

Finally, we print the vector using the debug macro. Let’s try running the code first with
no arguments and then with two arguments:

use std::env;

fn main() {
 let args: Vec<String> = env::args().collect();
 dbg!(args);
}

https://doc.rust-lang.org/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword.html#creating-idiomatic-use-paths

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 304/636

Notice that the first value in the vector is "target/debug/minigrep" , which is the name
of our binary. This matches the behavior of the arguments list in C, letting programs use
the name by which they were invoked in their execution. It’s often convenient to have
access to the program name in case you want to print it in messages or change behavior
of the program based on what command line alias was used to invoke the program. But
for the purposes of this chapter, we’ll ignore it and save only the two arguments we
need.

Saving the Argument Values in Variables

The program is currently able to access the values specified as command line
arguments. Now we need to save the values of the two arguments in variables so we
can use the values throughout the rest of the program. We do that in Listing 12-2.

Filename: src/main.rs

Listing 12-2: Creating variables to hold the query argument and file path argument

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.61s
 Running `target/debug/minigrep`
[src/main.rs:5] args = [
 "target/debug/minigrep",
]

$ cargo run -- needle haystack
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 1.57s
 Running `target/debug/minigrep needle haystack`
[src/main.rs:5] args = [
 "target/debug/minigrep",
 "needle",
 "haystack",
]

use std::env;

fn main() {
 let args: Vec<String> = env::args().collect();

 let query = &args[1];
 let file_path = &args[2];

 println!("Searching for {}", query);
 println!("In file {}", file_path);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 305/636

As we saw when we printed the vector, the program’s name takes up the first value in
the vector at args[0] , so we’re starting arguments at index 1 . The first argument
minigrep takes is the string we’re searching for, so we put a reference to the first

argument in the variable query . The second argument will be the file path, so we put a
reference to the second argument in the variable file_path .

We temporarily print the values of these variables to prove that the code is working as
we intend. Let’s run this program again with the arguments test and sample.txt :

Great, the program is working! The values of the arguments we need are being saved
into the right variables. Later we’ll add some error handling to deal with certain
potential erroneous situations, such as when the user provides no arguments; for now,
we’ll ignore that situation and work on adding file-reading capabilities instead.

$ cargo run -- test sample.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep test sample.txt`
Searching for test
In file sample.txt

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 306/636

Reading a File

Now we’ll add functionality to read the file specified in the file_path argument. First,
we need a sample file to test it with: we’ll use a file with a small amount of text over
multiple lines with some repeated words. Listing 12-3 has an Emily Dickinson poem that
will work well! Create a file called poem.txt at the root level of your project, and enter the
poem “I’m Nobody! Who are you?”

Filename: poem.txt

Listing 12-3: A poem by Emily Dickinson makes a good test case

With the text in place, edit src/main.rs and add code to read the file, as shown in Listing
12-4.

Filename: src/main.rs

Listing 12-4: Reading the contents of the file specified by the second argument

First, we bring in a relevant part of the standard library with a use statement: we need
std::fs to handle files.

In main , the new statement fs::read_to_string takes the file_path , opens that file,
and returns a std::io::Result<String> of the file’s contents.

I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

use std::env;
use std::fs;

fn main() {
 // --snip--
 println!("In file {}", file_path);

 let contents = fs::read_to_string(file_path)
 .expect("Should have been able to read the file");

 println!("With text:\n{contents}");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 307/636

After that, we again add a temporary println! statement that prints the value of
contents after the file is read, so we can check that the program is working so far.

Let’s run this code with any string as the first command line argument (because we
haven’t implemented the searching part yet) and the poem.txt file as the second
argument:

Great! The code read and then printed the contents of the file. But the code has a few
flaws. At the moment, the main function has multiple responsibilities: generally,
functions are clearer and easier to maintain if each function is responsible for only one
idea. The other problem is that we’re not handling errors as well as we could. The
program is still small, so these flaws aren’t a big problem, but as the program grows, it
will be harder to fix them cleanly. It’s good practice to begin refactoring early on when
developing a program, because it’s much easier to refactor smaller amounts of code.
We’ll do that next.

$ cargo run -- the poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 308/636

Refactoring to Improve Modularity and Error Handling

To improve our program, we’ll fix four problems that have to do with the program’s
structure and how it’s handling potential errors. First, our main function now performs
two tasks: it parses arguments and reads files. As our program grows, the number of
separate tasks the main function handles will increase. As a function gains
responsibilities, it becomes more difficult to reason about, harder to test, and harder to
change without breaking one of its parts. It’s best to separate functionality so each
function is responsible for one task.

This issue also ties into the second problem: although query and file_path are
configuration variables to our program, variables like contents are used to perform the
program’s logic. The longer main becomes, the more variables we’ll need to bring into
scope; the more variables we have in scope, the harder it will be to keep track of the
purpose of each. It’s best to group the configuration variables into one structure to
make their purpose clear.

The third problem is that we’ve used expect to print an error message when reading
the file fails, but the error message just prints Should have been able to read the
file . Reading a file can fail in a number of ways: for example, the file could be missing,
or we might not have permission to open it. Right now, regardless of the situation, we’d
print the same error message for everything, which wouldn’t give the user any
information!

Fourth, we use expect repeatedly to handle different errors, and if the user runs our
program without specifying enough arguments, they’ll get an index out of bounds
error from Rust that doesn’t clearly explain the problem. It would be best if all the error-
handling code were in one place so future maintainers had only one place to consult the
code if the error-handling logic needed to change. Having all the error-handling code in
one place will also ensure that we’re printing messages that will be meaningful to our
end users.

Let’s address these four problems by refactoring our project.

Separation of Concerns for Binary Projects

The organizational problem of allocating responsibility for multiple tasks to the main
function is common to many binary projects. As a result, the Rust community has
developed guidelines for splitting the separate concerns of a binary program when
main starts getting large. This process has the following steps:

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 309/636

Split your program into a main.rs and a lib.rs and move your program’s logic to
lib.rs.
As long as your command line parsing logic is small, it can remain in main.rs.
When the command line parsing logic starts getting complicated, extract it from
main.rs and move it to lib.rs.

The responsibilities that remain in the main function after this process should be
limited to the following:

Calling the command line parsing logic with the argument values
Setting up any other configuration
Calling a run function in lib.rs
Handling the error if run returns an error

This pattern is about separating concerns: main.rs handles running the program, and
lib.rs handles all the logic of the task at hand. Because you can’t test the main function
directly, this structure lets you test all of your program’s logic by moving it into functions
in lib.rs. The code that remains in main.rs will be small enough to verify its correctness
by reading it. Let’s rework our program by following this process.

Extracting the Argument Parser

We’ll extract the functionality for parsing arguments into a function that main will call to
prepare for moving the command line parsing logic to src/lib.rs. Listing 12-5 shows the
new start of main that calls a new function parse_config , which we’ll define in
src/main.rs for the moment.

Filename: src/main.rs

Listing 12-5: Extracting a parse_config function from main

We’re still collecting the command line arguments into a vector, but instead of assigning
the argument value at index 1 to the variable query and the argument value at index 2
to the variable file_path within the main function, we pass the whole vector to the

fn main() {
 let args: Vec<String> = env::args().collect();

 let (query, file_path) = parse_config(&args);

 // --snip--
}

fn parse_config(args: &[String]) -> (&str, &str) {
 let query = &args[1];
 let file_path = &args[2];

 (query, file_path)
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 310/636

parse_config function. The parse_config function then holds the logic that
determines which argument goes in which variable and passes the values back to main .
We still create the query and file_path variables in main , but main no longer has the
responsibility of determining how the command line arguments and variables
correspond.

This rework may seem like overkill for our small program, but we’re refactoring in small,
incremental steps. After making this change, run the program again to verify that the
argument parsing still works. It’s good to check your progress often, to help identify the
cause of problems when they occur.

Grouping Configuration Values

We can take another small step to improve the parse_config function further. At the
moment, we’re returning a tuple, but then we immediately break that tuple into
individual parts again. This is a sign that perhaps we don’t have the right abstraction yet.

Another indicator that shows there’s room for improvement is the config part of
parse_config , which implies that the two values we return are related and are both

part of one configuration value. We’re not currently conveying this meaning in the
structure of the data other than by grouping the two values into a tuple; we’ll instead
put the two values into one struct and give each of the struct fields a meaningful name.
Doing so will make it easier for future maintainers of this code to understand how the
different values relate to each other and what their purpose is.

Listing 12-6 shows the improvements to the parse_config function.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 311/636

Listing 12-6: Refactoring parse_config to return an instance of a Config struct

We’ve added a struct named Config defined to have fields named query and
file_path . The signature of parse_config now indicates that it returns a Config

value. In the body of parse_config , where we used to return string slices that reference
String values in args , we now define Config to contain owned String values. The
args variable in main is the owner of the argument values and is only letting the
parse_config function borrow them, which means we’d violate Rust’s borrowing rules

if Config tried to take ownership of the values in args .

There are a number of ways we could manage the String data; the easiest, though
somewhat inefficient, route is to call the clone method on the values. This will make a
full copy of the data for the Config instance to own, which takes more time and
memory than storing a reference to the string data. However, cloning the data also
makes our code very straightforward because we don’t have to manage the lifetimes of
the references; in this circumstance, giving up a little performance to gain simplicity is a
worthwhile trade-off.

The Trade-Offs of Using clone

There’s a tendency among many Rustaceans to avoid using clone to fix ownership
problems because of its runtime cost. In Chapter 13, you’ll learn how to use more

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = parse_config(&args);

 println!("Searching for {}", config.query);
 println!("In file {}", config.file_path);

 let contents = fs::read_to_string(config.file_path)
 .expect("Should have been able to read the file");

 // --snip--
}

struct Config {
 query: String,
 file_path: String,
}

fn parse_config(args: &[String]) -> Config {
 let query = args[1].clone();
 let file_path = args[2].clone();

 Config { query, file_path }
}

https://doc.rust-lang.org/book/ch13-00-functional-features.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 312/636

efficient methods in this type of situation. But for now, it’s okay to copy a few
strings to continue making progress because you’ll make these copies only once
and your file path and query string are very small. It’s better to have a working
program that’s a bit inefficient than to try to hyperoptimize code on your first pass.
As you become more experienced with Rust, it’ll be easier to start with the most
efficient solution, but for now, it’s perfectly acceptable to call clone .

We’ve updated main so it places the instance of Config returned by parse_config
into a variable named config , and we updated the code that previously used the
separate query and file_path variables so it now uses the fields on the Config struct
instead.

Now our code more clearly conveys that query and file_path are related and that
their purpose is to configure how the program will work. Any code that uses these
values knows to find them in the config instance in the fields named for their purpose.

Creating a Constructor for Config

So far, we’ve extracted the logic responsible for parsing the command line arguments
from main and placed it in the parse_config function. Doing so helped us to see that
the query and file_path values were related and that relationship should be
conveyed in our code. We then added a Config struct to name the related purpose of
query and file_path and to be able to return the values’ names as struct field names

from the parse_config function.

So now that the purpose of the parse_config function is to create a Config instance,
we can change parse_config from a plain function to a function named new that is
associated with the Config struct. Making this change will make the code more
idiomatic. We can create instances of types in the standard library, such as String , by
calling String::new . Similarly, by changing parse_config into a new function
associated with Config , we’ll be able to create instances of Config by calling
Config::new . Listing 12-7 shows the changes we need to make.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 313/636

Listing 12-7: Changing parse_config into Config::new

We’ve updated main where we were calling parse_config to instead call Config::new .
We’ve changed the name of parse_config to new and moved it within an impl block,
which associates the new function with Config . Try compiling this code again to make
sure it works.

Fixing the Error Handling

Now we’ll work on fixing our error handling. Recall that attempting to access the values
in the args vector at index 1 or index 2 will cause the program to panic if the vector
contains fewer than three items. Try running the program without any arguments; it will
look like this:

The line index out of bounds: the len is 1 but the index is 1 is an error
message intended for programmers. It won’t help our end users understand what they
should do instead. Let’s fix that now.

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::new(&args);

 // --snip--
}

// --snip--

impl Config {
 fn new(args: &[String]) -> Config {
 let query = args[1].clone();
 let file_path = args[2].clone();

 Config { query, file_path }
 }
}

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep`
thread 'main' panicked at 'index out of bounds: the len is 1 but the index
is 1', src/main.rs:27:21
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 314/636

Improving the Error Message

In Listing 12-8, we add a check in the new function that will verify that the slice is long
enough before accessing index 1 and 2. If the slice isn’t long enough, the program
panics and displays a better error message.

Filename: src/main.rs

Listing 12-8: Adding a check for the number of arguments

This code is similar to the Guess::new function we wrote in Listing 9-13, where we
called panic! when the value argument was out of the range of valid values. Instead
of checking for a range of values here, we’re checking that the length of args is at least
3 and the rest of the function can operate under the assumption that this condition has
been met. If args has fewer than three items, this condition will be true, and we call the
panic! macro to end the program immediately.

With these extra few lines of code in new , let’s run the program without any arguments
again to see what the error looks like now:

This output is better: we now have a reasonable error message. However, we also have
extraneous information we don’t want to give to our users. Perhaps using the technique
we used in Listing 9-13 isn’t the best to use here: a call to panic! is more appropriate
for a programming problem than a usage problem, as discussed in Chapter 9. Instead,
we’ll use the other technique you learned about in Chapter 9—returning a Result that
indicates either success or an error.

Returning a Result Instead of Calling panic!

We can instead return a Result value that will contain a Config instance in the
successful case and will describe the problem in the error case. We’re also going to
change the function name from new to build because many programmers expect new

 // --snip--
 fn new(args: &[String]) -> Config {
 if args.len() < 3 {
 panic!("not enough arguments");
 }
 // --snip--

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep`
thread 'main' panicked at 'not enough arguments', src/main.rs:26:13
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html#creating-custom-types-for-validation
https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html#guidelines-for-error-handling
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 315/636

functions to never fail. When Config::build is communicating to main , we can use the
Result type to signal there was a problem. Then we can change main to convert an
Err variant into a more practical error for our users without the surrounding text about
thread 'main' and RUST_BACKTRACE that a call to panic! causes.

Listing 12-9 shows the changes we need to make to the return value of the function
we’re now calling Config::build and the body of the function needed to return a
Result . Note that this won’t compile until we update main as well, which we’ll do in the

next listing.

Filename: src/main.rs

Listing 12-9: Returning a Result from Config::build

Our build function returns a Result with a Config instance in the success case and a
&'static str in the error case. Our error values will always be string literals that have

the 'static lifetime.

We’ve made two changes in the body of the function: instead of calling panic! when
the user doesn’t pass enough arguments, we now return an Err value, and we’ve
wrapped the Config return value in an Ok . These changes make the function conform
to its new type signature.

Returning an Err value from Config::build allows the main function to handle the
Result value returned from the build function and exit the process more cleanly in

the error case.

Calling Config::build and Handling Errors

To handle the error case and print a user-friendly message, we need to update main to
handle the Result being returned by Config::build , as shown in Listing 12-10. We’ll
also take the responsibility of exiting the command line tool with a nonzero error code
away from panic! and instead implement it by hand. A nonzero exit status is a
convention to signal to the process that called our program that the program exited
with an error state.

impl Config {
 fn build(args: &[String]) -> Result<Config, &'static str> {
 if args.len() < 3 {
 return Err("not enough arguments");
 }

 let query = args[1].clone();
 let file_path = args[2].clone();

 Ok(Config { query, file_path })
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 316/636

Filename: src/main.rs

Listing 12-10: Exiting with an error code if building a Config fails

In this listing, we’ve used a method we haven’t covered in detail yet: unwrap_or_else ,
which is defined on Result<T, E> by the standard library. Using unwrap_or_else
allows us to define some custom, non- panic! error handling. If the Result is an Ok
value, this method’s behavior is similar to unwrap : it returns the inner value Ok is
wrapping. However, if the value is an Err value, this method calls the code in the
closure, which is an anonymous function we define and pass as an argument to
unwrap_or_else . We’ll cover closures in more detail in Chapter 13. For now, you just

need to know that unwrap_or_else will pass the inner value of the Err , which in this
case is the static string "not enough arguments" that we added in Listing 12-9, to our
closure in the argument err that appears between the vertical pipes. The code in the
closure can then use the err value when it runs.

We’ve added a new use line to bring process from the standard library into scope. The
code in the closure that will be run in the error case is only two lines: we print the err
value and then call process::exit . The process::exit function will stop the program
immediately and return the number that was passed as the exit status code. This is
similar to the panic! -based handling we used in Listing 12-8, but we no longer get all
the extra output. Let’s try it:

Great! This output is much friendlier for our users.

Extracting Logic from main

Now that we’ve finished refactoring the configuration parsing, let’s turn to the program’s
logic. As we stated in “Separation of Concerns for Binary Projects”, we’ll extract a

use std::process;

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::build(&args).unwrap_or_else(|err| {
 println!("Problem parsing arguments: {err}");
 process::exit(1);
 });

 // --snip--

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48s
 Running `target/debug/minigrep`
Problem parsing arguments: not enough arguments

https://doc.rust-lang.org/book/ch13-00-functional-features.html
https://doc.rust-lang.org/book/ch12-03-improving-error-handling-and-modularity.html#separation-of-concerns-for-binary-projects

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 317/636

function named run that will hold all the logic currently in the main function that isn’t
involved with setting up configuration or handling errors. When we’re done, main will
be concise and easy to verify by inspection, and we’ll be able to write tests for all the
other logic.

Listing 12-11 shows the extracted run function. For now, we’re just making the small,
incremental improvement of extracting the function. We’re still defining the function in
src/main.rs.

Filename: src/main.rs

Listing 12-11: Extracting a run function containing the rest of the program logic

The run function now contains all the remaining logic from main , starting from reading
the file. The run function takes the Config instance as an argument.

Returning Errors from the run Function

With the remaining program logic separated into the run function, we can improve the
error handling, as we did with Config::build in Listing 12-9. Instead of allowing the
program to panic by calling expect , the run function will return a Result<T, E> when
something goes wrong. This will let us further consolidate the logic around handling
errors into main in a user-friendly way. Listing 12-12 shows the changes we need to
make to the signature and body of run .

Filename: src/main.rs

fn main() {
 // --snip--

 println!("Searching for {}", config.query);
 println!("In file {}", config.file_path);

 run(config);
}

fn run(config: Config) {
 let contents = fs::read_to_string(config.file_path)
 .expect("Should have been able to read the file");

 println!("With text:\n{contents}");
}

// --snip--

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 318/636

Listing 12-12: Changing the run function to return Result

We’ve made three significant changes here. First, we changed the return type of the
run function to Result<(), Box<dyn Error>> . This function previously returned the

unit type, () , and we keep that as the value returned in the Ok case.

For the error type, we used the trait object Box<dyn Error> (and we’ve brought
std::error::Error into scope with a use statement at the top). We’ll cover trait

objects in Chapter 17. For now, just know that Box<dyn Error> means the function will
return a type that implements the Error trait, but we don’t have to specify what
particular type the return value will be. This gives us flexibility to return error values that
may be of different types in different error cases. The dyn keyword is short for
“dynamic.”

Second, we’ve removed the call to expect in favor of the ? operator, as we talked
about in Chapter 9. Rather than panic! on an error, ? will return the error value from
the current function for the caller to handle.

Third, the run function now returns an Ok value in the success case. We’ve declared
the run function’s success type as () in the signature, which means we need to wrap
the unit type value in the Ok value. This Ok(()) syntax might look a bit strange at first,
but using () like this is the idiomatic way to indicate that we’re calling run for its side
effects only; it doesn’t return a value we need.

When you run this code, it will compile but will display a warning:

use std::error::Error;

// --snip--

fn run(config: Config) -> Result<(), Box<dyn Error>> {
 let contents = fs::read_to_string(config.file_path)?;

 println!("With text:\n{contents}");

 Ok(())
}

https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 319/636

Rust tells us that our code ignored the Result value and the Result value might
indicate that an error occurred. But we’re not checking to see whether or not there was
an error, and the compiler reminds us that we probably meant to have some error-
handling code here! Let’s rectify that problem now.

Handling Errors Returned from run in main

We’ll check for errors and handle them using a technique similar to one we used with
Config::build in Listing 12-10, but with a slight difference:

Filename: src/main.rs

$ cargo run the poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
warning: unused `Result` that must be used
 --> src/main.rs:19:5
 |
19 | run(config);
 | ^^^^^^^^^^^
 |
 = note: this `Result` may be an `Err` variant, which should be handled
 = note: `#[warn(unused_must_use)]` on by default

warning: `minigrep` (bin "minigrep") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.71s
 Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

fn main() {
 // --snip--

 println!("Searching for {}", config.query);
 println!("In file {}", config.file_path);

 if let Err(e) = run(config) {
 println!("Application error: {e}");
 process::exit(1);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 320/636

We use if let rather than unwrap_or_else to check whether run returns an Err
value and call process::exit(1) if it does. The run function doesn’t return a value that
we want to unwrap in the same way that Config::build returns the Config instance.
Because run returns () in the success case, we only care about detecting an error, so
we don’t need unwrap_or_else to return the unwrapped value, which would only be
() .

The bodies of the if let and the unwrap_or_else functions are the same in both
cases: we print the error and exit.

Splitting Code into a Library Crate

Our minigrep project is looking good so far! Now we’ll split the src/main.rs file and put
some code into the src/lib.rs file. That way we can test the code and have a src/main.rs
file with fewer responsibilities.

Let’s move all the code that isn’t the main function from src/main.rs to src/lib.rs:

The run function definition
The relevant use statements
The definition of Config
The Config::build function definition

The contents of src/lib.rs should have the signatures shown in Listing 12-13 (we’ve
omitted the bodies of the functions for brevity). Note that this won’t compile until we
modify src/main.rs in Listing 12-14.

Filename: src/lib.rs

Listing 12-13: Moving Config and run into src/lib.rs

use std::error::Error;
use std::fs;

pub struct Config {
 pub query: String,
 pub file_path: String,
}

impl Config {
 pub fn build(args: &[String]) -> Result<Config, &'static str> {
 // --snip--
 }
}

pub fn run(config: Config) -> Result<(), Box<dyn Error>> {
 // --snip--
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 321/636

We’ve made liberal use of the pub keyword: on Config , on its fields and its build
method, and on the run function. We now have a library crate that has a public API we
can test!

Now we need to bring the code we moved to src/lib.rs into the scope of the binary crate
in src/main.rs, as shown in Listing 12-14.

Filename: src/main.rs

Listing 12-14: Using the minigrep library crate in src/main.rs

We add a use minigrep::Config line to bring the Config type from the library crate
into the binary crate’s scope, and we prefix the run function with our crate name. Now
all the functionality should be connected and should work. Run the program with cargo
run and make sure everything works correctly.

Whew! That was a lot of work, but we’ve set ourselves up for success in the future. Now
it’s much easier to handle errors, and we’ve made the code more modular. Almost all of
our work will be done in src/lib.rs from here on out.

Let’s take advantage of this newfound modularity by doing something that would have
been difficult with the old code but is easy with the new code: we’ll write some tests!

use std::env;
use std::process;

use minigrep::Config;

fn main() {
 // --snip--
 if let Err(e) = minigrep::run(config) {
 // --snip--
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 322/636

Developing the Library’s Functionality with Test-
Driven Development

Now that we’ve extracted the logic into src/lib.rs and left the argument collecting and
error handling in src/main.rs, it’s much easier to write tests for the core functionality of
our code. We can call functions directly with various arguments and check return values
without having to call our binary from the command line.

In this section, we’ll add the searching logic to the minigrep program using the test-
driven development (TDD) process with the following steps:

1. Write a test that fails and run it to make sure it fails for the reason you expect.
2. Write or modify just enough code to make the new test pass.
3. Refactor the code you just added or changed and make sure the tests continue to

pass.
4. Repeat from step 1!

Though it’s just one of many ways to write software, TDD can help drive code design.
Writing the test before you write the code that makes the test pass helps to maintain
high test coverage throughout the process.

We’ll test drive the implementation of the functionality that will actually do the searching
for the query string in the file contents and produce a list of lines that match the query.
We’ll add this functionality in a function called search .

Writing a Failing Test

Because we don’t need them anymore, let’s remove the println! statements from
src/lib.rs and src/main.rs that we used to check the program’s behavior. Then, in src/lib.rs,
add a tests module with a test function, as we did in Chapter 11. The test function
specifies the behavior we want the search function to have: it will take a query and the
text to search, and it will return only the lines from the text that contain the query.
Listing 12-15 shows this test, which won’t compile yet.

Filename: src/lib.rs

https://doc.rust-lang.org/book/ch11-01-writing-tests.html#the-anatomy-of-a-test-function

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 323/636

Listing 12-15: Creating a failing test for the search function we wish we had

This test searches for the string "duct" . The text we’re searching is three lines, only one
of which contains "duct" (Note that the backslash after the opening double quote tells
Rust not to put a newline character at the beginning of the contents of this string literal).
We assert that the value returned from the search function contains only the line we
expect.

We aren’t yet able to run this test and watch it fail because the test doesn’t even
compile: the search function doesn’t exist yet! In accordance with TDD principles, we’ll
add just enough code to get the test to compile and run by adding a definition of the
search function that always returns an empty vector, as shown in Listing 12-16. Then

the test should compile and fail because an empty vector doesn’t match a vector
containing the line "safe, fast, productive."

Filename: src/lib.rs

Listing 12-16: Defining just enough of the search function so our test will compile

Notice that we need to define an explicit lifetime 'a in the signature of search and use
that lifetime with the contents argument and the return value. Recall in Chapter 10
that the lifetime parameters specify which argument lifetime is connected to the lifetime
of the return value. In this case, we indicate that the returned vector should contain
string slices that reference slices of the argument contents (rather than the argument
query).

In other words, we tell Rust that the data returned by the search function will live as
long as the data passed into the search function in the contents argument. This is

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn one_result() {
 let query = "duct";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.";

 assert_eq!(vec!["safe, fast, productive."], search(query,
contents));
 }
}

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 vec![]
}

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 324/636

important! The data referenced by a slice needs to be valid for the reference to be valid;
if the compiler assumes we’re making string slices of query rather than contents , it
will do its safety checking incorrectly.

If we forget the lifetime annotations and try to compile this function, we’ll get this error:

Rust can’t possibly know which of the two arguments we need, so we need to tell it
explicitly. Because contents is the argument that contains all of our text and we want
to return the parts of that text that match, we know contents is the argument that
should be connected to the return value using the lifetime syntax.

Other programming languages don’t require you to connect arguments to return values
in the signature, but this practice will get easier over time. You might want to compare
this example with the “Validating References with Lifetimes” section in Chapter 10.

Now let’s run the test:

$ cargo build
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
error[E0106]: missing lifetime specifier
 --> src/lib.rs:28:51
 |
28 | pub fn search(query: &str, contents: &str) -> Vec<&str> {
 | ---- ---- ^ expected named
lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but the
signature does not say whether it is borrowed from `query` or `contents`
help: consider introducing a named lifetime parameter
 |
28 | pub fn search<'a>(query: &'a str, contents: &'a str) -> Vec<&'a str> {
 | ++++ ++ ++ ++

For more information about this error, try `rustc --explain E0106`.
error: could not compile `minigrep` due to previous error

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#validating-references-with-lifetimes

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 325/636

Great, the test fails, exactly as we expected. Let’s get the test to pass!

Writing Code to Pass the Test

Currently, our test is failing because we always return an empty vector. To fix that and
implement search , our program needs to follow these steps:

Iterate through each line of the contents.
Check whether the line contains our query string.
If it does, add it to the list of values we’re returning.
If it doesn’t, do nothing.
Return the list of results that match.

Let’s work through each step, starting with iterating through lines.

Iterating Through Lines with the lines Method

Rust has a helpful method to handle line-by-line iteration of strings, conveniently named
lines , that works as shown in Listing 12-17. Note this won’t compile yet.

Filename: src/lib.rs

$ cargo test
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished test [unoptimized + debuginfo] target(s) in 0.97s
 Running unittests src/lib.rs (target/debug/deps/minigrep-
9cd200e5fac0fc94)

running 1 test
test tests::one_result ... FAILED

failures:

---- tests::one_result stdout ----
thread 'tests::one_result' panicked at 'assertion failed: `(left == right)`
 left: `["safe, fast, productive."]`,
 right: `[]`', src/lib.rs:44:9
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::one_result

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 326/636

Listing 12-17: Iterating through each line in contents

The lines method returns an iterator. We’ll talk about iterators in depth in Chapter 13,
but recall that you saw this way of using an iterator in Listing 3-5, where we used a for
loop with an iterator to run some code on each item in a collection.

Searching Each Line for the Query

Next, we’ll check whether the current line contains our query string. Fortunately, strings
have a helpful method named contains that does this for us! Add a call to the
contains method in the search function, as shown in Listing 12-18. Note this still

won’t compile yet.

Filename: src/lib.rs

Listing 12-18: Adding functionality to see whether the line contains the string in query

At the moment, we’re building up functionality. To get it to compile, we need to return a
value from the body as we indicated we would in the function signature.

Storing Matching Lines

To finish this function, we need a way to store the matching lines that we want to return.
For that, we can make a mutable vector before the for loop and call the push method
to store a line in the vector. After the for loop, we return the vector, as shown in
Listing 12-19.

Filename: src/lib.rs

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 for line in contents.lines() {
 // do something with line
 }
}

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 for line in contents.lines() {
 if line.contains(query) {
 // do something with line
 }
 }
}

https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/book/ch03-05-control-flow.html#looping-through-a-collection-with-for
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 327/636

Listing 12-19: Storing the lines that match so we can return them

Now the search function should return only the lines that contain query , and our test
should pass. Let’s run the test:

Our test passed, so we know it works!

At this point, we could consider opportunities for refactoring the implementation of the
search function while keeping the tests passing to maintain the same functionality. The
code in the search function isn’t too bad, but it doesn’t take advantage of some useful
features of iterators. We’ll return to this example in Chapter 13, where we’ll explore
iterators in detail, and look at how to improve it.

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.contains(query) {
 results.push(line);
 }
 }

 results
}

$ cargo test
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished test [unoptimized + debuginfo] target(s) in 1.22s
 Running unittests src/lib.rs (target/debug/deps/minigrep-
9cd200e5fac0fc94)

running 1 test
test tests::one_result ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running unittests src/main.rs (target/debug/deps/minigrep-
9cd200e5fac0fc94)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests minigrep

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

https://doc.rust-lang.org/book/ch13-02-iterators.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 328/636

Using the search Function in the run Function

Now that the search function is working and tested, we need to call search from our
run function. We need to pass the config.query value and the contents that run

reads from the file to the search function. Then run will print each line returned from
search :

Filename: src/lib.rs

We’re still using a for loop to return each line from search and print it.

Now the entire program should work! Let’s try it out, first with a word that should return
exactly one line from the Emily Dickinson poem, “frog”:

Cool! Now let’s try a word that will match multiple lines, like “body”:

And finally, let’s make sure that we don’t get any lines when we search for a word that
isn’t anywhere in the poem, such as “monomorphization”:

Excellent! We’ve built our own mini version of a classic tool and learned a lot about how
to structure applications. We’ve also learned a bit about file input and output, lifetimes,

pub fn run(config: Config) -> Result<(), Box<dyn Error>> {
 let contents = fs::read_to_string(config.file_path)?;

 for line in search(&config.query, &contents) {
 println!("{line}");
 }

 Ok(())
}

$ cargo run -- frog poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.38s
 Running `target/debug/minigrep frog poem.txt`
How public, like a frog

$ cargo run -- body poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep body poem.txt`
I'm nobody! Who are you?
Are you nobody, too?
How dreary to be somebody!

$ cargo run -- monomorphization poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep monomorphization poem.txt`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 329/636

testing, and command line parsing.

To round out this project, we’ll briefly demonstrate how to work with environment
variables and how to print to standard error, both of which are useful when you’re
writing command line programs.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 330/636

Working with Environment Variables

We’ll improve minigrep by adding an extra feature: an option for case-insensitive
searching that the user can turn on via an environment variable. We could make this
feature a command line option and require that users enter it each time they want it to
apply, but by instead making it an environment variable, we allow our users to set the
environment variable once and have all their searches be case insensitive in that
terminal session.

Writing a Failing Test for the Case-Insensitive search Function

We first add a new search_case_insensitive function that will be called when the
environment variable has a value. We’ll continue to follow the TDD process, so the first
step is again to write a failing test. We’ll add a new test for the new
search_case_insensitive function and rename our old test from one_result to
case_sensitive to clarify the differences between the two tests, as shown in Listing 12-

20.

Filename: src/lib.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 331/636

Listing 12-20: Adding a new failing test for the case-insensitive function we’re about to add

Note that we’ve edited the old test’s contents too. We’ve added a new line with the text
"Duct tape." using a capital D that shouldn’t match the query "duct" when we’re

searching in a case-sensitive manner. Changing the old test in this way helps ensure that
we don’t accidentally break the case-sensitive search functionality that we’ve already
implemented. This test should pass now and should continue to pass as we work on the
case-insensitive search.

The new test for the case-insensitive search uses "rUsT" as its query. In the
search_case_insensitive function we’re about to add, the query "rUsT" should

match the line containing "Rust:" with a capital R and match the line "Trust me."
even though both have different casing from the query. This is our failing test, and it will
fail to compile because we haven’t yet defined the search_case_insensitive function.
Feel free to add a skeleton implementation that always returns an empty vector, similar
to the way we did for the search function in Listing 12-16 to see the test compile and
fail.

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn case_sensitive() {
 let query = "duct";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.
Duct tape.";

 assert_eq!(vec!["safe, fast, productive."], search(query,
contents));
 }

 #[test]
 fn case_insensitive() {
 let query = "rUsT";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.
Trust me.";

 assert_eq!(
 vec!["Rust:", "Trust me."],
 search_case_insensitive(query, contents)
);
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 332/636

Implementing the search_case_insensitive Function

The search_case_insensitive function, shown in Listing 12-21, will be almost the same
as the search function. The only difference is that we’ll lowercase the query and each
line so whatever the case of the input arguments, they’ll be the same case when we

check whether the line contains the query.

Filename: src/lib.rs

Listing 12-21: Defining the search_case_insensitive function to lowercase the query and the line before

comparing them

First, we lowercase the query string and store it in a shadowed variable with the same
name. Calling to_lowercase on the query is necessary so no matter whether the user’s
query is "rust" , "RUST" , "Rust" , or "rUsT" , we’ll treat the query as if it were "rust"
and be insensitive to the case. While to_lowercase will handle basic Unicode, it won’t
be 100% accurate. If we were writing a real application, we’d want to do a bit more work
here, but this section is about environment variables, not Unicode, so we’ll leave it at
that here.

Note that query is now a String rather than a string slice, because calling
to_lowercase creates new data rather than referencing existing data. Say the query is
"rUsT" , as an example: that string slice doesn’t contain a lowercase u or t for us to

use, so we have to allocate a new String containing "rust" . When we pass query as
an argument to the contains method now, we need to add an ampersand because the
signature of contains is defined to take a string slice.

Next, we add a call to to_lowercase on each line to lowercase all characters. Now
that we’ve converted line and query to lowercase, we’ll find matches no matter what
the case of the query is.

Let’s see if this implementation passes the tests:

pub fn search_case_insensitive<'a>(
 query: &str,
 contents: &'a str,
) -> Vec<&'a str> {
 let query = query.to_lowercase();
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.to_lowercase().contains(&query) {
 results.push(line);
 }
 }

 results
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 333/636

Great! They passed. Now, let’s call the new search_case_insensitive function from the
run function. First, we’ll add a configuration option to the Config struct to switch

between case-sensitive and case-insensitive search. Adding this field will cause compiler
errors because we aren’t initializing this field anywhere yet:

Filename: src/lib.rs

We added the ignore_case field that holds a Boolean. Next, we need the run function
to check the ignore_case field’s value and use that to decide whether to call the
search function or the search_case_insensitive function, as shown in Listing 12-22.

This still won’t compile yet.

Filename: src/lib.rs

$ cargo test
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished test [unoptimized + debuginfo] target(s) in 1.33s
 Running unittests src/lib.rs (target/debug/deps/minigrep-
9cd200e5fac0fc94)

running 2 tests
test tests::case_insensitive ... ok
test tests::case_sensitive ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running unittests src/main.rs (target/debug/deps/minigrep-
9cd200e5fac0fc94)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests minigrep

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

pub struct Config {
 pub query: String,
 pub file_path: String,
 pub ignore_case: bool,
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 334/636

Listing 12-22: Calling either search or search_case_insensitive based on the value in

config.ignore_case

Finally, we need to check for the environment variable. The functions for working with
environment variables are in the env module in the standard library, so we bring that
module into scope at the top of src/lib.rs. Then we’ll use the var function from the env
module to check to see if any value has been set for an environment variable named
IGNORE_CASE , as shown in Listing 12-23.

Filename: src/lib.rs

Listing 12-23: Checking for any value in an environment variable named IGNORE_CASE

pub fn run(config: Config) -> Result<(), Box<dyn Error>> {
 let contents = fs::read_to_string(config.file_path)?;

 let results = if config.ignore_case {
 search_case_insensitive(&config.query, &contents)
 } else {
 search(&config.query, &contents)
 };

 for line in results {
 println!("{line}");
 }

 Ok(())
}

use std::env;
// --snip--

impl Config {
 pub fn build(args: &[String]) -> Result<Config, &'static str> {
 if args.len() < 3 {
 return Err("not enough arguments");
 }

 let query = args[1].clone();
 let file_path = args[2].clone();

 let ignore_case = env::var("IGNORE_CASE").is_ok();

 Ok(Config {
 query,
 file_path,
 ignore_case,
 })
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 335/636

Here, we create a new variable ignore_case . To set its value, we call the env::var
function and pass it the name of the IGNORE_CASE environment variable. The env::var
function returns a Result that will be the successful Ok variant that contains the value
of the environment variable if the environment variable is set to any value. It will return
the Err variant if the environment variable is not set.

We’re using the is_ok method on the Result to check whether the environment
variable is set, which means the program should do a case-insensitive search. If the
IGNORE_CASE environment variable isn’t set to anything, is_ok will return false and the

program will perform a case-sensitive search. We don’t care about the value of the
environment variable, just whether it’s set or unset, so we’re checking is_ok rather
than using unwrap , expect , or any of the other methods we’ve seen on Result .

We pass the value in the ignore_case variable to the Config instance so the run
function can read that value and decide whether to call search_case_insensitive or
search , as we implemented in Listing 12-22.

Let’s give it a try! First, we’ll run our program without the environment variable set and
with the query to , which should match any line that contains the word “to” in all
lowercase:

Looks like that still works! Now, let’s run the program with IGNORE_CASE set to 1 but
with the same query to .

If you’re using PowerShell, you will need to set the environment variable and run the
program as separate commands:

This will make IGNORE_CASE persist for the remainder of your shell session. It can be
unset with the Remove-Item cmdlet:

We should get lines that contain “to” that might have uppercase letters:

$ cargo run -- to poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/minigrep to poem.txt`
Are you nobody, too?
How dreary to be somebody!

$ IGNORE_CASE=1 cargo run -- to poem.txt

PS> $Env:IGNORE_CASE=1; cargo run -- to poem.txt

PS> Remove-Item Env:IGNORE_CASE

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 336/636

Excellent, we also got lines containing “To”! Our minigrep program can now do case-
insensitive searching controlled by an environment variable. Now you know how to
manage options set using either command line arguments or environment variables.

Some programs allow arguments and environment variables for the same configuration.
In those cases, the programs decide that one or the other takes precedence. For
another exercise on your own, try controlling case sensitivity through either a command
line argument or an environment variable. Decide whether the command line argument
or the environment variable should take precedence if the program is run with one set
to case sensitive and one set to ignore case.

The std::env module contains many more useful features for dealing with
environment variables: check out its documentation to see what is available.

Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 337/636

Writing Error Messages to Standard Error Instead of
Standard Output

At the moment, we’re writing all of our output to the terminal using the println!
macro. In most terminals, there are two kinds of output: standard output (stdout) for
general information and standard error (stderr) for error messages. This distinction
enables users to choose to direct the successful output of a program to a file but still
print error messages to the screen.

The println! macro is only capable of printing to standard output, so we have to use
something else to print to standard error.

Checking Where Errors Are Written

First, let’s observe how the content printed by minigrep is currently being written to
standard output, including any error messages we want to write to standard error
instead. We’ll do that by redirecting the standard output stream to a file while
intentionally causing an error. We won’t redirect the standard error stream, so any
content sent to standard error will continue to display on the screen.

Command line programs are expected to send error messages to the standard error
stream so we can still see error messages on the screen even if we redirect the standard
output stream to a file. Our program is not currently well-behaved: we’re about to see
that it saves the error message output to a file instead!

To demonstrate this behavior, we’ll run the program with > and the file path, output.txt,
that we want to redirect the standard output stream to. We won’t pass any arguments,
which should cause an error:

The > syntax tells the shell to write the contents of standard output to output.txt
instead of the screen. We didn’t see the error message we were expecting printed to the
screen, so that means it must have ended up in the file. This is what output.txt contains:

Yup, our error message is being printed to standard output. It’s much more useful for
error messages like this to be printed to standard error so only data from a successful
run ends up in the file. We’ll change that.

$ cargo run > output.txt

Problem parsing arguments: not enough arguments

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 338/636

Printing Errors to Standard Error

We’ll use the code in Listing 12-24 to change how error messages are printed. Because
of the refactoring we did earlier in this chapter, all the code that prints error messages is
in one function, main . The standard library provides the eprintln! macro that prints
to the standard error stream, so let’s change the two places we were calling println!
to print errors to use eprintln! instead.

Filename: src/main.rs

Listing 12-24: Writing error messages to standard error instead of standard output using eprintln!

Let’s now run the program again in the same way, without any arguments and
redirecting standard output with > :

Now we see the error onscreen and output.txt contains nothing, which is the behavior
we expect of command line programs.

Let’s run the program again with arguments that don’t cause an error but still redirect
standard output to a file, like so:

We won’t see any output to the terminal, and output.txt will contain our results:

Filename: output.txt

This demonstrates that we’re now using standard output for successful output and
standard error for error output as appropriate.

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::build(&args).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {err}");
 process::exit(1);
 });

 if let Err(e) = minigrep::run(config) {
 eprintln!("Application error: {e}");
 process::exit(1);
 }
}

$ cargo run > output.txt
Problem parsing arguments: not enough arguments

$ cargo run -- to poem.txt > output.txt

Are you nobody, too?
How dreary to be somebody!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 339/636

Summary

This chapter recapped some of the major concepts you’ve learned so far and covered
how to perform common I/O operations in Rust. By using command line arguments,
files, environment variables, and the eprintln! macro for printing errors, you’re now
prepared to write command line applications. Combined with the concepts in previous
chapters, your code will be well organized, store data effectively in the appropriate data
structures, handle errors nicely, and be well tested.

Next, we’ll explore some Rust features that were influenced by functional languages:
closures and iterators.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 340/636

Functional Language Features: Iterators
and Closures
Rust’s design has taken inspiration from many existing languages and techniques, and
one significant influence is functional programming. Programming in a functional style
often includes using functions as values by passing them in arguments, returning them
from other functions, assigning them to variables for later execution, and so forth.

In this chapter, we won’t debate the issue of what functional programming is or isn’t but
will instead discuss some features of Rust that are similar to features in many languages
often referred to as functional.

More specifically, we’ll cover:

Closures, a function-like construct you can store in a variable
Iterators, a way of processing a series of elements
How to use closures and iterators to improve the I/O project in Chapter 12
The performance of closures and iterators (Spoiler alert: they’re faster than you
might think!)

We’ve already covered some other Rust features, such as pattern matching and enums,
that are also influenced by the functional style. Because mastering closures and
iterators is an important part of writing idiomatic, fast Rust code, we’ll devote this entire
chapter to them.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 341/636

Closures: Anonymous Functions that Capture Their
Environment

Rust’s closures are anonymous functions you can save in a variable or pass as
arguments to other functions. You can create the closure in one place and then call the
closure elsewhere to evaluate it in a different context. Unlike functions, closures can
capture values from the scope in which they’re defined. We’ll demonstrate how these
closure features allow for code reuse and behavior customization.

Capturing the Environment with Closures

We’ll first examine how we can use closures to capture values from the environment
they’re defined in for later use. Here’s the scenario: Every so often, our t-shirt company
gives away an exclusive, limited-edition shirt to someone on our mailing list as a
promotion. People on the mailing list can optionally add their favorite color to their
profile. If the person chosen for a free shirt has their favorite color set, they get that
color shirt. If the person hasn’t specified a favorite color, they get whatever color the
company currently has the most of.

There are many ways to implement this. For this example, we’re going to use an enum
called ShirtColor that has the variants Red and Blue (limiting the number of colors
available for simplicity). We represent the company’s inventory with an Inventory
struct that has a field named shirts that contains a Vec<ShirtColor> representing the
shirt colors currently in stock. The method giveaway defined on Inventory gets the
optional shirt color preference of the free shirt winner, and returns the shirt color the
person will get. This setup is shown in Listing 13-1:

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 342/636

Listing 13-1: Shirt company giveaway situation

#[derive(Debug, PartialEq, Copy, Clone)]
enum ShirtColor {
 Red,
 Blue,
}

struct Inventory {
 shirts: Vec<ShirtColor>,
}

impl Inventory {
 fn giveaway(&self, user_preference: Option<ShirtColor>) -> ShirtColor {
 user_preference.unwrap_or_else(|| self.most_stocked())
 }

 fn most_stocked(&self) -> ShirtColor {
 let mut num_red = 0;
 let mut num_blue = 0;

 for color in &self.shirts {
 match color {
 ShirtColor::Red => num_red += 1,
 ShirtColor::Blue => num_blue += 1,
 }
 }
 if num_red > num_blue {
 ShirtColor::Red
 } else {
 ShirtColor::Blue
 }
 }
}

fn main() {
 let store = Inventory {
 shirts: vec![ShirtColor::Blue, ShirtColor::Red, ShirtColor::Blue],
 };

 let user_pref1 = Some(ShirtColor::Red);
 let giveaway1 = store.giveaway(user_pref1);
 println!(
 "The user with preference {:?} gets {:?}",
 user_pref1, giveaway1
);

 let user_pref2 = None;
 let giveaway2 = store.giveaway(user_pref2);
 println!(
 "The user with preference {:?} gets {:?}",
 user_pref2, giveaway2
);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 343/636

The store defined in main has two blue shirts and one red shirt remaining to
distribute for this limited-edition promotion. We call the giveaway method for a user
with a preference for a red shirt and a user without any preference.

Again, this code could be implemented in many ways, and here, to focus on closures,
we’ve stuck to concepts you’ve already learned except for the body of the giveaway
method that uses a closure. In the giveaway method, we get the user preference as a
parameter of type Option<ShirtColor> and call the unwrap_or_else method on
user_preference . The unwrap_or_else method on Option<T> is defined by the

standard library. It takes one argument: a closure without any arguments that returns a
value T (the same type stored in the Some variant of the Option<T> , in this case
ShirtColor). If the Option<T> is the Some variant, unwrap_or_else returns the value

from within the Some . If the Option<T> is the None variant, unwrap_or_else calls the
closure and returns the value returned by the closure.

We specify the closure expression || self.most_stocked() as the argument to
unwrap_or_else . This is a closure that takes no parameters itself (if the closure had

parameters, they would appear between the two vertical bars). The body of the closure
calls self.most_stocked() . We’re defining the closure here, and the implementation of
unwrap_or_else will evaluate the closure later if the result is needed.

Running this code prints:

One interesting aspect here is that we’ve passed a closure that calls
self.most_stocked() on the current Inventory instance. The standard library didn’t

need to know anything about the Inventory or ShirtColor types we defined, or the
logic we want to use in this scenario. The closure captures an immutable reference to
the self Inventory instance and passes it with the code we specify to the
unwrap_or_else method. Functions, on the other hand, are not able to capture their

environment in this way.

Closure Type Inference and Annotation

There are more differences between functions and closures. Closures don’t usually
require you to annotate the types of the parameters or the return value like fn
functions do. Type annotations are required on functions because the types are part of
an explicit interface exposed to your users. Defining this interface rigidly is important for
ensuring that everyone agrees on what types of values a function uses and returns.

$ cargo run
 Compiling shirt-company v0.1.0 (file:///projects/shirt-company)
 Finished dev [unoptimized + debuginfo] target(s) in 0.27s
 Running `target/debug/shirt-company`
The user with preference Some(Red) gets Red
The user with preference None gets Blue

https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 344/636

Closures, on the other hand, aren’t used in an exposed interface like this: they’re stored
in variables and used without naming them and exposing them to users of our library.

Closures are typically short and relevant only within a narrow context rather than in any
arbitrary scenario. Within these limited contexts, the compiler can infer the types of the
parameters and the return type, similar to how it’s able to infer the types of most
variables (there are rare cases where the compiler needs closure type annotations too).

As with variables, we can add type annotations if we want to increase explicitness and
clarity at the cost of being more verbose than is strictly necessary. Annotating the types
for a closure would look like the definition shown in Listing 13-2. In this example, we’re
defining a closure and storing it in a variable rather than defining the closure in the spot
we pass it as an argument as we did in Listing 13-1.

Filename: src/main.rs

Listing 13-2: Adding optional type annotations of the parameter and return value types in the closure

With type annotations added, the syntax of closures looks more similar to the syntax of
functions. Here we define a function that adds 1 to its parameter and a closure that has
the same behavior, for comparison. We’ve added some spaces to line up the relevant
parts. This illustrates how closure syntax is similar to function syntax except for the use
of pipes and the amount of syntax that is optional:

The first line shows a function definition, and the second line shows a fully annotated
closure definition. In the third line, we remove the type annotations from the closure
definition. In the fourth line, we remove the brackets, which are optional because the
closure body has only one expression. These are all valid definitions that will produce
the same behavior when they’re called. The add_one_v3 and add_one_v4 lines require
the closures to be evaluated to be able to compile because the types will be inferred
from their usage. This is similar to let v = Vec::new(); needing either type
annotations or values of some type to be inserted into the Vec for Rust to be able to
infer the type.

For closure definitions, the compiler will infer one concrete type for each of their
parameters and for their return value. For instance, Listing 13-3 shows the definition of
a short closure that just returns the value it receives as a parameter. This closure isn’t

 let expensive_closure = |num: u32| -> u32 {
 println!("calculating slowly...");
 thread::sleep(Duration::from_secs(2));
 num
 };

fn add_one_v1 (x: u32) -> u32 { x + 1 }
let add_one_v2 = |x: u32| -> u32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 345/636

very useful except for the purposes of this example. Note that we haven’t added any
type annotations to the definition. Because there are no type annotations, we can call
the closure with any type, which we’ve done here with String the first time. If we then
try to call example_closure with an integer, we’ll get an error.

Filename: src/main.rs

Listing 13-3: Attempting to call a closure whose types are inferred with two different types

The compiler gives us this error:

The first time we call example_closure with the String value, the compiler infers the
type of x and the return type of the closure to be String . Those types are then locked
into the closure in example_closure , and we get a type error when we next try to use a
different type with the same closure.

Capturing References or Moving Ownership

Closures can capture values from their environment in three ways, which directly map
to the three ways a function can take a parameter: borrowing immutably, borrowing
mutably, and taking ownership. The closure will decide which of these to use based on
what the body of the function does with the captured values.

 let example_closure = |x| x;

 let s = example_closure(String::from("hello"));
 let n = example_closure(5);

$ cargo run
 Compiling closure-example v0.1.0 (file:///projects/closure-example)
error[E0308]: mismatched types
 --> src/main.rs:5:29
 |
5 | let n = example_closure(5);
 | --------------- ^- help: try using a conversion method:
`.to_string()`
 | | |
 | | expected struct `String`, found integer
 | arguments to this function are incorrect
 |
note: closure parameter defined here
 --> src/main.rs:2:28
 |
2 | let example_closure = |x| x;
 | ^

For more information about this error, try `rustc --explain E0308`.
error: could not compile `closure-example` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 346/636

In Listing 13-4, we define a closure that captures an immutable reference to the vector
named list because it only needs an immutable reference to print the value:

Filename: src/main.rs

Listing 13-4: Defining and calling a closure that captures an immutable reference

This example also illustrates that a variable can bind to a closure definition, and we can
later call the closure by using the variable name and parentheses as if the variable name
were a function name.

Because we can have multiple immutable references to list at the same time, list is
still accessible from the code before the closure definition, after the closure definition
but before the closure is called, and after the closure is called. This code compiles, runs,
and prints:

Next, in Listing 13-5, we change the closure body so that it adds an element to the list
vector. The closure now captures a mutable reference:

Filename: src/main.rs

fn main() {
 let list = vec![1, 2, 3];
 println!("Before defining closure: {:?}", list);

 let only_borrows = || println!("From closure: {:?}", list);

 println!("Before calling closure: {:?}", list);
 only_borrows();
 println!("After calling closure: {:?}", list);
}

$ cargo run
 Compiling closure-example v0.1.0 (file:///projects/closure-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running `target/debug/closure-example`
Before defining closure: [1, 2, 3]
Before calling closure: [1, 2, 3]
From closure: [1, 2, 3]
After calling closure: [1, 2, 3]

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 347/636

Listing 13-5: Defining and calling a closure that captures a mutable reference

This code compiles, runs, and prints:

Note that there’s no longer a println! between the definition and the call of the
borrows_mutably closure: when borrows_mutably is defined, it captures a mutable

reference to list . We don’t use the closure again after the closure is called, so the
mutable borrow ends. Between the closure definition and the closure call, an immutable
borrow to print isn’t allowed because no other borrows are allowed when there’s a
mutable borrow. Try adding a println! there to see what error message you get!

If you want to force the closure to take ownership of the values it uses in the
environment even though the body of the closure doesn’t strictly need ownership, you
can use the move keyword before the parameter list.

This technique is mostly useful when passing a closure to a new thread to move the
data so that it’s owned by the new thread. We’ll discuss threads and why you would
want to use them in detail in Chapter 16 when we talk about concurrency, but for now,
let’s briefly explore spawning a new thread using a closure that needs the move
keyword. Listing 13-6 shows Listing 13-4 modified to print the vector in a new thread
rather than in the main thread:

Filename: src/main.rs

fn main() {
 let mut list = vec![1, 2, 3];
 println!("Before defining closure: {:?}", list);

 let mut borrows_mutably = || list.push(7);

 borrows_mutably();
 println!("After calling closure: {:?}", list);
}

$ cargo run
 Compiling closure-example v0.1.0 (file:///projects/closure-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running `target/debug/closure-example`
Before defining closure: [1, 2, 3]
After calling closure: [1, 2, 3, 7]

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 348/636

Listing 13-6: Using move to force the closure for the thread to take ownership of list

We spawn a new thread, giving the thread a closure to run as an argument. The closure
body prints out the list. In Listing 13-4, the closure only captured list using an
immutable reference because that's the least amount of access to list needed to print
it. In this example, even though the closure body still only needs an immutable
reference, we need to specify that list should be moved into the closure by putting
the move keyword at the beginning of the closure definition. The new thread might
finish before the rest of the main thread finishes, or the main thread might finish first. If
the main thread maintained ownership of list but ended before the new thread did
and dropped list , the immutable reference in the thread would be invalid. Therefore,
the compiler requires that list be moved into the closure given to the new thread so
the reference will be valid. Try removing the move keyword or using list in the main
thread after the closure is defined to see what compiler errors you get!

Moving Captured Values Out of Closures and the Fn Traits

Once a closure has captured a reference or captured ownership of a value from the
environment where the closure is defined (thus affecting what, if anything, is moved into
the closure), the code in the body of the closure defines what happens to the references
or values when the closure is evaluated later (thus affecting what, if anything, is moved
out of the closure). A closure body can do any of the following: move a captured value
out of the closure, mutate the captured value, neither move nor mutate the value, or
capture nothing from the environment to begin with.

The way a closure captures and handles values from the environment affects which
traits the closure implements, and traits are how functions and structs can specify what
kinds of closures they can use. Closures will automatically implement one, two, or all
three of these Fn traits, in an additive fashion, depending on how the closure’s body
handles the values:

1. FnOnce applies to closures that can be called once. All closures implement at least
this trait, because all closures can be called. A closure that moves captured values
out of its body will only implement FnOnce and none of the other Fn traits,
because it can only be called once.

use std::thread;

fn main() {
 let list = vec![1, 2, 3];
 println!("Before defining closure: {:?}", list);

 thread::spawn(move || println!("From thread: {:?}", list))
 .join()
 .unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 349/636

2. FnMut applies to closures that don’t move captured values out of their body, but
that might mutate the captured values. These closures can be called more than
once.

3. Fn applies to closures that don’t move captured values out of their body and that
don’t mutate captured values, as well as closures that capture nothing from their
environment. These closures can be called more than once without mutating their
environment, which is important in cases such as calling a closure multiple times
concurrently.

Let’s look at the definition of the unwrap_or_else method on Option<T> that we used
in Listing 13-1:

Recall that T is the generic type representing the type of the value in the Some variant
of an Option . That type T is also the return type of the unwrap_or_else function: code
that calls unwrap_or_else on an Option<String> , for example, will get a String .

Next, notice that the unwrap_or_else function has the additional generic type
parameter F . The F type is the type of the parameter named f , which is the closure
we provide when calling unwrap_or_else .

The trait bound specified on the generic type F is FnOnce() -> T , which means F
must be able to be called once, take no arguments, and return a T . Using FnOnce in the
trait bound expresses the constraint that unwrap_or_else is only going to call f at
most one time. In the body of unwrap_or_else , we can see that if the Option is Some ,
f won’t be called. If the Option is None , f will be called once. Because all closures

implement FnOnce , unwrap_or_else accepts the most different kinds of closures and is
as flexible as it can be.

Note: Functions can implement all three of the Fn traits too. If what we want to do
doesn’t require capturing a value from the environment, we can use the name of a
function rather than a closure where we need something that implements one of
the Fn traits. For example, on an Option<Vec<T>> value, we could call
unwrap_or_else(Vec::new) to get a new, empty vector if the value is None .

impl<T> Option<T> {
 pub fn unwrap_or_else<F>(self, f: F) -> T
 where
 F: FnOnce() -> T
 {
 match self {
 Some(x) => x,
 None => f(),
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 350/636

Now let’s look at the standard library method sort_by_key defined on slices, to see
how that differs from unwrap_or_else and why sort_by_key uses FnMut instead of
FnOnce for the trait bound. The closure gets one argument in the form of a reference to

the current item in the slice being considered, and returns a value of type K that can be
ordered. This function is useful when you want to sort a slice by a particular attribute of
each item. In Listing 13-7, we have a list of Rectangle instances and we use
sort_by_key to order them by their width attribute from low to high:

Filename: src/main.rs

Listing 13-7: Using sort_by_key to order rectangles by width

This code prints:

The reason sort_by_key is defined to take an FnMut closure is that it calls the closure
multiple times: once for each item in the slice. The closure |r| r.width doesn’t

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let mut list = [
 Rectangle { width: 10, height: 1 },
 Rectangle { width: 3, height: 5 },
 Rectangle { width: 7, height: 12 },
];

 list.sort_by_key(|r| r.width);
 println!("{:#?}", list);
}

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
 Finished dev [unoptimized + debuginfo] target(s) in 0.41s
 Running `target/debug/rectangles`
[
 Rectangle {
 width: 3,
 height: 5,
 },
 Rectangle {
 width: 7,
 height: 12,
 },
 Rectangle {
 width: 10,
 height: 1,
 },
]

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 351/636

capture, mutate, or move out anything from its environment, so it meets the trait bound
requirements.

In contrast, Listing 13-8 shows an example of a closure that implements just the FnOnce
trait, because it moves a value out of the environment. The compiler won’t let us use
this closure with sort_by_key :

Filename: src/main.rs

Listing 13-8: Attempting to use an FnOnce closure with sort_by_key

This is a contrived, convoluted way (that doesn’t work) to try and count the number of
times sort_by_key gets called when sorting list . This code attempts to do this
counting by pushing value —a String from the closure’s environment—into the
sort_operations vector. The closure captures value then moves value out of the

closure by transferring ownership of value to the sort_operations vector. This
closure can be called once; trying to call it a second time wouldn’t work because value
would no longer be in the environment to be pushed into sort_operations again!
Therefore, this closure only implements FnOnce . When we try to compile this code, we
get this error that value can’t be moved out of the closure because the closure must
implement FnMut :

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let mut list = [
 Rectangle { width: 10, height: 1 },
 Rectangle { width: 3, height: 5 },
 Rectangle { width: 7, height: 12 },
];

 let mut sort_operations = vec![];
 let value = String::from("by key called");

 list.sort_by_key(|r| {
 sort_operations.push(value);
 r.width
 });
 println!("{:#?}", list);
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 352/636

The error points to the line in the closure body that moves value out of the
environment. To fix this, we need to change the closure body so that it doesn’t move
values out of the environment. To count the number of times sort_by_key is called,
keeping a counter in the environment and incrementing its value in the closure body is a
more straightforward way to calculate that. The closure in Listing 13-9 works with
sort_by_key because it is only capturing a mutable reference to the
num_sort_operations counter and can therefore be called more than once:

Filename: src/main.rs

Listing 13-9: Using an FnMut closure with sort_by_key is allowed

The Fn traits are important when defining or using functions or types that make use of
closures. In the next section, we’ll discuss iterators. Many iterator methods take closure

$ cargo run
 Compiling rectangles v0.1.0 (file:///projects/rectangles)
error[E0507]: cannot move out of `value`, a captured variable in an `FnMut`
closure
 --> src/main.rs:18:30
 |
15 | let value = String::from("by key called");
 | ----- captured outer variable
16 |
17 | list.sort_by_key(|r| {
 | --- captured by this `FnMut` closure
18 | sort_operations.push(value);
 | ^^^^^ move occurs because `value` has
type `String`, which does not implement the `Copy` trait

For more information about this error, try `rustc --explain E0507`.
error: could not compile `rectangles` due to previous error

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let mut list = [
 Rectangle { width: 10, height: 1 },
 Rectangle { width: 3, height: 5 },
 Rectangle { width: 7, height: 12 },
];

 let mut num_sort_operations = 0;
 list.sort_by_key(|r| {
 num_sort_operations += 1;
 r.width
 });
 println!("{:#?}, sorted in {num_sort_operations} operations", list);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 353/636

arguments, so keep these closure details in mind as we continue!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 354/636

Processing a Series of Items with Iterators

The iterator pattern allows you to perform some task on a sequence of items in turn. An
iterator is responsible for the logic of iterating over each item and determining when the
sequence has finished. When you use iterators, you don’t have to reimplement that logic
yourself.

In Rust, iterators are lazy, meaning they have no effect until you call methods that
consume the iterator to use it up. For example, the code in Listing 13-10 creates an
iterator over the items in the vector v1 by calling the iter method defined on Vec<T> .
This code by itself doesn’t do anything useful.

Listing 13-10: Creating an iterator

The iterator is stored in the v1_iter variable. Once we’ve created an iterator, we can
use it in a variety of ways. In Listing 3-5 in Chapter 3, we iterated over an array using a
for loop to execute some code on each of its items. Under the hood this implicitly

created and then consumed an iterator, but we glossed over how exactly that works
until now.

In the example in Listing 13-11, we separate the creation of the iterator from the use of
the iterator in the for loop. When the for loop is called using the iterator in v1_iter ,
each element in the iterator is used in one iteration of the loop, which prints out each
value.

Listing 13-11: Using an iterator in a for loop

In languages that don’t have iterators provided by their standard libraries, you would
likely write this same functionality by starting a variable at index 0, using that variable to
index into the vector to get a value, and incrementing the variable value in a loop until it
reached the total number of items in the vector.

 let v1 = vec![1, 2, 3];

 let v1_iter = v1.iter();

 let v1 = vec![1, 2, 3];

 let v1_iter = v1.iter();

 for val in v1_iter {
 println!("Got: {}", val);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 355/636

Iterators handle all that logic for you, cutting down on repetitive code you could
potentially mess up. Iterators give you more flexibility to use the same logic with many
different kinds of sequences, not just data structures you can index into, like vectors.
Let’s examine how iterators do that.

The Iterator Trait and the next Method

All iterators implement a trait named Iterator that is defined in the standard library.
The definition of the trait looks like this:

Notice this definition uses some new syntax: type Item and Self::Item , which are
defining an associated type with this trait. We’ll talk about associated types in depth in
Chapter 19. For now, all you need to know is that this code says implementing the
Iterator trait requires that you also define an Item type, and this Item type is used

in the return type of the next method. In other words, the Item type will be the type
returned from the iterator.

The Iterator trait only requires implementors to define one method: the next
method, which returns one item of the iterator at a time wrapped in Some and, when
iteration is over, returns None .

We can call the next method on iterators directly; Listing 13-12 demonstrates what
values are returned from repeated calls to next on the iterator created from the vector.

Filename: src/lib.rs

Listing 13-12: Calling the next method on an iterator

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;

 // methods with default implementations elided
}

 #[test]
 fn iterator_demonstration() {
 let v1 = vec![1, 2, 3];

 let mut v1_iter = v1.iter();

 assert_eq!(v1_iter.next(), Some(&1));
 assert_eq!(v1_iter.next(), Some(&2));
 assert_eq!(v1_iter.next(), Some(&3));
 assert_eq!(v1_iter.next(), None);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 356/636

Note that we needed to make v1_iter mutable: calling the next method on an
iterator changes internal state that the iterator uses to keep track of where it is in the
sequence. In other words, this code consumes, or uses up, the iterator. Each call to next
eats up an item from the iterator. We didn’t need to make v1_iter mutable when we
used a for loop because the loop took ownership of v1_iter and made it mutable
behind the scenes.

Also note that the values we get from the calls to next are immutable references to the
values in the vector. The iter method produces an iterator over immutable references.
If we want to create an iterator that takes ownership of v1 and returns owned values,
we can call into_iter instead of iter . Similarly, if we want to iterate over mutable
references, we can call iter_mut instead of iter .

Methods that Consume the Iterator

The Iterator trait has a number of different methods with default implementations
provided by the standard library; you can find out about these methods by looking in
the standard library API documentation for the Iterator trait. Some of these methods
call the next method in their definition, which is why you’re required to implement the
next method when implementing the Iterator trait.

Methods that call next are called consuming adaptors, because calling them uses up the
iterator. One example is the sum method, which takes ownership of the iterator and
iterates through the items by repeatedly calling next , thus consuming the iterator. As it
iterates through, it adds each item to a running total and returns the total when
iteration is complete. Listing 13-13 has a test illustrating a use of the sum method:

Filename: src/lib.rs

Listing 13-13: Calling the sum method to get the total of all items in the iterator

We aren’t allowed to use v1_iter after the call to sum because sum takes ownership of
the iterator we call it on.

 #[test]
 fn iterator_sum() {
 let v1 = vec![1, 2, 3];

 let v1_iter = v1.iter();

 let total: i32 = v1_iter.sum();

 assert_eq!(total, 6);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 357/636

Methods that Produce Other Iterators

Iterator adaptors are methods defined on the Iterator trait that don’t consume the
iterator. Instead, they produce different iterators by changing some aspect of the
original iterator.

Listing 13-14 shows an example of calling the iterator adaptor method map , which takes
a closure to call on each item as the items are iterated through. The map method
returns a new iterator that produces the modified items. The closure here creates a new
iterator in which each item from the vector will be incremented by 1:

Filename: src/main.rs

Listing 13-14: Calling the iterator adaptor map to create a new iterator

However, this code produces a warning:

The code in Listing 13-14 doesn’t do anything; the closure we’ve specified never gets
called. The warning reminds us why: iterator adaptors are lazy, and we need to
consume the iterator here.

To fix this warning and consume the iterator, we’ll use the collect method, which we
used in Chapter 12 with env::args in Listing 12-1. This method consumes the iterator
and collects the resulting values into a collection data type.

In Listing 13-15, we collect the results of iterating over the iterator that’s returned from
the call to map into a vector. This vector will end up containing each item from the
original vector incremented by 1.

Filename: src/main.rs

 let v1: Vec<i32> = vec![1, 2, 3];

 v1.iter().map(|x| x + 1);

$ cargo run
 Compiling iterators v0.1.0 (file:///projects/iterators)
warning: unused `Map` that must be used
 --> src/main.rs:4:5
 |
4 | v1.iter().map(|x| x + 1);
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: iterators are lazy and do nothing unless consumed
 = note: `#[warn(unused_must_use)]` on by default

warning: `iterators` (bin "iterators") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.47s
 Running `target/debug/iterators`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 358/636

Listing 13-15: Calling the map method to create a new iterator and then calling the collect method to

consume the new iterator and create a vector

Because map takes a closure, we can specify any operation we want to perform on each
item. This is a great example of how closures let you customize some behavior while
reusing the iteration behavior that the Iterator trait provides.

You can chain multiple calls to iterator adaptors to perform complex actions in a
readable way. But because all iterators are lazy, you have to call one of the consuming
adaptor methods to get results from calls to iterator adaptors.

Using Closures that Capture Their Environment

Many iterator adapters take closures as arguments, and commonly the closures we’ll
specify as arguments to iterator adapters will be closures that capture their
environment.

For this example, we’ll use the filter method that takes a closure. The closure gets an
item from the iterator and returns a bool . If the closure returns true , the value will be
included in the iteration produced by filter . If the closure returns false , the value
won’t be included.

In Listing 13-16, we use filter with a closure that captures the shoe_size variable
from its environment to iterate over a collection of Shoe struct instances. It will return
only shoes that are the specified size.

Filename: src/lib.rs

 let v1: Vec<i32> = vec![1, 2, 3];

 let v2: Vec<_> = v1.iter().map(|x| x + 1).collect();

 assert_eq!(v2, vec![2, 3, 4]);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 359/636

Listing 13-16: Using the filter method with a closure that captures shoe_size

The shoes_in_size function takes ownership of a vector of shoes and a shoe size as
parameters. It returns a vector containing only shoes of the specified size.

#[derive(PartialEq, Debug)]
struct Shoe {
 size: u32,
 style: String,
}

fn shoes_in_size(shoes: Vec<Shoe>, shoe_size: u32) -> Vec<Shoe> {
 shoes.into_iter().filter(|s| s.size == shoe_size).collect()
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn filters_by_size() {
 let shoes = vec![
 Shoe {
 size: 10,
 style: String::from("sneaker"),
 },
 Shoe {
 size: 13,
 style: String::from("sandal"),
 },
 Shoe {
 size: 10,
 style: String::from("boot"),
 },
];

 let in_my_size = shoes_in_size(shoes, 10);

 assert_eq!(
 in_my_size,
 vec![
 Shoe {
 size: 10,
 style: String::from("sneaker")
 },
 Shoe {
 size: 10,
 style: String::from("boot")
 },
]
);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 360/636

In the body of shoes_in_size , we call into_iter to create an iterator that takes
ownership of the vector. Then we call filter to adapt that iterator into a new iterator
that only contains elements for which the closure returns true .

The closure captures the shoe_size parameter from the environment and compares
the value with each shoe’s size, keeping only shoes of the size specified. Finally, calling
collect gathers the values returned by the adapted iterator into a vector that’s

returned by the function.

The test shows that when we call shoes_in_size , we get back only shoes that have the
same size as the value we specified.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 361/636

Improving Our I/O Project

With this new knowledge about iterators, we can improve the I/O project in Chapter 12
by using iterators to make places in the code clearer and more concise. Let’s look at how
iterators can improve our implementation of the Config::build function and the
search function.

Removing a clone Using an Iterator

In Listing 12-6, we added code that took a slice of String values and created an
instance of the Config struct by indexing into the slice and cloning the values, allowing
the Config struct to own those values. In Listing 13-17, we’ve reproduced the
implementation of the Config::build function as it was in Listing 12-23:

Filename: src/lib.rs

Listing 13-17: Reproduction of the Config::build function from Listing 12-23

At the time, we said not to worry about the inefficient clone calls because we would
remove them in the future. Well, that time is now!

We needed clone here because we have a slice with String elements in the
parameter args , but the build function doesn’t own args . To return ownership of a
Config instance, we had to clone the values from the query and file_path fields of
Config so the Config instance can own its values.

impl Config {
 pub fn build(args: &[String]) -> Result<Config, &'static str> {
 if args.len() < 3 {
 return Err("not enough arguments");
 }

 let query = args[1].clone();
 let file_path = args[2].clone();

 let ignore_case = env::var("IGNORE_CASE").is_ok();

 Ok(Config {
 query,
 file_path,
 ignore_case,
 })
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 362/636

With our new knowledge about iterators, we can change the build function to take
ownership of an iterator as its argument instead of borrowing a slice. We’ll use the
iterator functionality instead of the code that checks the length of the slice and indexes
into specific locations. This will clarify what the Config::build function is doing
because the iterator will access the values.

Once Config::build takes ownership of the iterator and stops using indexing
operations that borrow, we can move the String values from the iterator into Config
rather than calling clone and making a new allocation.

Using the Returned Iterator Directly

Open your I/O project’s src/main.rs file, which should look like this:

Filename: src/main.rs

We’ll first change the start of the main function that we had in Listing 12-24 to the code
in Listing 13-18, which this time uses an iterator. This won’t compile until we update
Config::build as well.

Filename: src/main.rs

Listing 13-18: Passing the return value of env::args to Config::build

The env::args function returns an iterator! Rather than collecting the iterator values
into a vector and then passing a slice to Config::build , now we’re passing ownership
of the iterator returned from env::args to Config::build directly.

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::build(&args).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {err}");
 process::exit(1);
 });

 // --snip--
}

fn main() {
 let config = Config::build(env::args()).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {err}");
 process::exit(1);
 });

 // --snip--
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 363/636

Next, we need to update the definition of Config::build . In your I/O project’s src/lib.rs
file, let’s change the signature of Config::build to look like Listing 13-19. This still won’t
compile because we need to update the function body.

Filename: src/lib.rs

Listing 13-19: Updating the signature of Config::build to expect an iterator

The standard library documentation for the env::args function shows that the type of
the iterator it returns is std::env::Args , and that type implements the Iterator trait
and returns String values.

We’ve updated the signature of the Config::build function so the parameter args
has a generic type with the trait bounds impl Iterator<Item = String> instead of &
[String] . This usage of the impl Trait syntax we discussed in the “Traits as
Parameters” section of Chapter 10 means that args can be any type that implements
the Iterator type and returns String items.

Because we’re taking ownership of args and we’ll be mutating args by iterating over it,
we can add the mut keyword into the specification of the args parameter to make it
mutable.

Using Iterator Trait Methods Instead of Indexing

Next, we’ll fix the body of Config::build . Because args implements the Iterator
trait, we know we can call the next method on it! Listing 13-20 updates the code from
Listing 12-23 to use the next method:

Filename: src/lib.rs

impl Config {
 pub fn build(
 mut args: impl Iterator<Item = String>,
) -> Result<Config, &'static str> {
 // --snip--

https://doc.rust-lang.org/book/ch10-02-traits.html#traits-as-parameters
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 364/636

Listing 13-20: Changing the body of Config::build to use iterator methods

Remember that the first value in the return value of env::args is the name of the
program. We want to ignore that and get to the next value, so first we call next and do
nothing with the return value. Second, we call next to get the value we want to put in
the query field of Config . If next returns a Some , we use a match to extract the
value. If it returns None , it means not enough arguments were given and we return
early with an Err value. We do the same thing for the file_path value.

Making Code Clearer with Iterator Adaptors

We can also take advantage of iterators in the search function in our I/O project, which
is reproduced here in Listing 13-21 as it was in Listing 12-19:

Filename: src/lib.rs

impl Config {
 pub fn build(
 mut args: impl Iterator<Item = String>,
) -> Result<Config, &'static str> {
 args.next();

 let query = match args.next() {
 Some(arg) => arg,
 None => return Err("Didn't get a query string"),
 };

 let file_path = match args.next() {
 Some(arg) => arg,
 None => return Err("Didn't get a file path"),
 };

 let ignore_case = env::var("IGNORE_CASE").is_ok();

 Ok(Config {
 query,
 file_path,
 ignore_case,
 })
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 365/636

Listing 13-21: The implementation of the search function from Listing 12-19

We can write this code in a more concise way using iterator adaptor methods. Doing so
also lets us avoid having a mutable intermediate results vector. The functional
programming style prefers to minimize the amount of mutable state to make code
clearer. Removing the mutable state might enable a future enhancement to make
searching happen in parallel, because we wouldn’t have to manage concurrent access to
the results vector. Listing 13-22 shows this change:

Filename: src/lib.rs

Listing 13-22: Using iterator adaptor methods in the implementation of the search function

Recall that the purpose of the search function is to return all lines in contents that
contain the query . Similar to the filter example in Listing 13-16, this code uses the
filter adaptor to keep only the lines that line.contains(query) returns true for.

We then collect the matching lines into another vector with collect . Much simpler!
Feel free to make the same change to use iterator methods in the
search_case_insensitive function as well.

Choosing Between Loops or Iterators

The next logical question is which style you should choose in your own code and why:
the original implementation in Listing 13-21 or the version using iterators in Listing 13-
22. Most Rust programmers prefer to use the iterator style. It’s a bit tougher to get the
hang of at first, but once you get a feel for the various iterator adaptors and what they
do, iterators can be easier to understand. Instead of fiddling with the various bits of
looping and building new vectors, the code focuses on the high-level objective of the

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.contains(query) {
 results.push(line);
 }
 }

 results
}

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 contents
 .lines()
 .filter(|line| line.contains(query))
 .collect()
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 366/636

loop. This abstracts away some of the commonplace code so it’s easier to see the
concepts that are unique to this code, such as the filtering condition each element in the
iterator must pass.

But are the two implementations truly equivalent? The intuitive assumption might be
that the more low-level loop will be faster. Let’s talk about performance.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 367/636

Comparing Performance: Loops vs. Iterators

To determine whether to use loops or iterators, you need to know which
implementation is faster: the version of the search function with an explicit for loop
or the version with iterators.

We ran a benchmark by loading the entire contents of The Adventures of Sherlock Holmes
by Sir Arthur Conan Doyle into a String and looking for the word the in the contents.
Here are the results of the benchmark on the version of search using the for loop
and the version using iterators:

The iterator version was slightly faster! We won’t explain the benchmark code here,
because the point is not to prove that the two versions are equivalent but to get a
general sense of how these two implementations compare performance-wise.

For a more comprehensive benchmark, you should check using various texts of various
sizes as the contents , different words and words of different lengths as the query ,
and all kinds of other variations. The point is this: iterators, although a high-level
abstraction, get compiled down to roughly the same code as if you’d written the lower-
level code yourself. Iterators are one of Rust’s zero-cost abstractions, by which we mean
using the abstraction imposes no additional runtime overhead. This is analogous to how
Bjarne Stroustrup, the original designer and implementor of C++, defines zero-overhead
in “Foundations of C++” (2012):

In general, C++ implementations obey the zero-overhead principle: What you don’t
use, you don’t pay for. And further: What you do use, you couldn’t hand code any
better.

As another example, the following code is taken from an audio decoder. The decoding
algorithm uses the linear prediction mathematical operation to estimate future values
based on a linear function of the previous samples. This code uses an iterator chain to
do some math on three variables in scope: a buffer slice of data, an array of 12
coefficients , and an amount by which to shift data in qlp_shift . We’ve declared the

variables within this example but not given them any values; although this code doesn’t
have much meaning outside of its context, it’s still a concise, real-world example of how
Rust translates high-level ideas to low-level code.

test bench_search_for ... bench: 19,620,300 ns/iter (+/- 915,700)
test bench_search_iter ... bench: 19,234,900 ns/iter (+/- 657,200)

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 368/636

To calculate the value of prediction , this code iterates through each of the 12 values in
coefficients and uses the zip method to pair the coefficient values with the previous

12 values in buffer . Then, for each pair, we multiply the values together, sum all the
results, and shift the bits in the sum qlp_shift bits to the right.

Calculations in applications like audio decoders often prioritize performance most
highly. Here, we’re creating an iterator, using two adaptors, and then consuming the
value. What assembly code would this Rust code compile to? Well, as of this writing, it
compiles down to the same assembly you’d write by hand. There’s no loop at all
corresponding to the iteration over the values in coefficients : Rust knows that there
are 12 iterations, so it “unrolls” the loop. Unrolling is an optimization that removes the
overhead of the loop controlling code and instead generates repetitive code for each
iteration of the loop.

All of the coefficients get stored in registers, which means accessing the values is very
fast. There are no bounds checks on the array access at runtime. All these optimizations
that Rust is able to apply make the resulting code extremely efficient. Now that you
know this, you can use iterators and closures without fear! They make code seem like
it’s higher level but don’t impose a runtime performance penalty for doing so.

Summary

Closures and iterators are Rust features inspired by functional programming language
ideas. They contribute to Rust’s capability to clearly express high-level ideas at low-level
performance. The implementations of closures and iterators are such that runtime
performance is not affected. This is part of Rust’s goal to strive to provide zero-cost
abstractions.

Now that we’ve improved the expressiveness of our I/O project, let’s look at some more
features of cargo that will help us share the project with the world.

let buffer: &mut [i32];
let coefficients: [i64; 12];
let qlp_shift: i16;

for i in 12..buffer.len() {
 let prediction = coefficients.iter()
 .zip(&buffer[i - 12..i])
 .map(|(&c, &s)| c * s as i64)
 .sum::<i64>() >> qlp_shift;
 let delta = buffer[i];
 buffer[i] = prediction as i32 + delta;
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 369/636

More About Cargo and Crates.io
So far we’ve used only the most basic features of Cargo to build, run, and test our code,
but it can do a lot more. In this chapter, we’ll discuss some of its other, more advanced
features to show you how to do the following:

Customize your build through release profiles
Publish libraries on crates.io
Organize large projects with workspaces
Install binaries from crates.io
Extend Cargo using custom commands

Cargo can do even more than the functionality we cover in this chapter, so for a full
explanation of all its features, see its documentation.

https://crates.io/
https://crates.io/
https://doc.rust-lang.org/cargo/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 370/636

Customizing Builds with Release Profiles

In Rust, release profiles are predefined and customizable profiles with different
configurations that allow a programmer to have more control over various options for
compiling code. Each profile is configured independently of the others.

Cargo has two main profiles: the dev profile Cargo uses when you run cargo build
and the release profile Cargo uses when you run cargo build --release . The dev
profile is defined with good defaults for development, and the release profile has
good defaults for release builds.

These profile names might be familiar from the output of your builds:

The dev and release are these different profiles used by the compiler.

Cargo has default settings for each of the profiles that apply when you haven't explicitly
added any [profile.*] sections in the project’s Cargo.toml file. By adding [profile.*]
sections for any profile you want to customize, you override any subset of the default
settings. For example, here are the default values for the opt-level setting for the dev
and release profiles:

Filename: Cargo.toml

The opt-level setting controls the number of optimizations Rust will apply to your
code, with a range of 0 to 3. Applying more optimizations extends compiling time, so if
you’re in development and compiling your code often, you’ll want fewer optimizations to
compile faster even if the resulting code runs slower. The default opt-level for dev is
therefore 0 . When you’re ready to release your code, it’s best to spend more time
compiling. You’ll only compile in release mode once, but you’ll run the compiled
program many times, so release mode trades longer compile time for code that runs
faster. That is why the default opt-level for the release profile is 3 .

$ cargo build
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
$ cargo build --release
 Finished release [optimized] target(s) in 0.0s

[profile.dev]
opt-level = 0

[profile.release]
opt-level = 3

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 371/636

You can override a default setting by adding a different value for it in Cargo.toml. For
example, if we want to use optimization level 1 in the development profile, we can add
these two lines to our project’s Cargo.toml file:

Filename: Cargo.toml

This code overrides the default setting of 0 . Now when we run cargo build , Cargo will
use the defaults for the dev profile plus our customization to opt-level . Because we
set opt-level to 1 , Cargo will apply more optimizations than the default, but not as
many as in a release build.

For the full list of configuration options and defaults for each profile, see Cargo’s
documentation.

[profile.dev]
opt-level = 1

https://doc.rust-lang.org/cargo/reference/profiles.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 372/636

Publishing a Crate to Crates.io

We’ve used packages from crates.io as dependencies of our project, but you can also
share your code with other people by publishing your own packages. The crate registry
at crates.io distributes the source code of your packages, so it primarily hosts code that
is open source.

Rust and Cargo have features that make your published package easier for people to
find and use. We’ll talk about some of these features next and then explain how to
publish a package.

Making Useful Documentation Comments

Accurately documenting your packages will help other users know how and when to use
them, so it’s worth investing the time to write documentation. In Chapter 3, we
discussed how to comment Rust code using two slashes, // . Rust also has a particular
kind of comment for documentation, known conveniently as a documentation comment,
that will generate HTML documentation. The HTML displays the contents of
documentation comments for public API items intended for programmers interested in
knowing how to use your crate as opposed to how your crate is implemented.

Documentation comments use three slashes, /// , instead of two and support
Markdown notation for formatting the text. Place documentation comments just before
the item they’re documenting. Listing 14-1 shows documentation comments for an
add_one function in a crate named my_crate .

Filename: src/lib.rs

Listing 14-1: A documentation comment for a function

/// Adds one to the number given.
///
/// # Examples
///
/// ```
/// let arg = 5;
/// let answer = my_crate::add_one(arg);
///
/// assert_eq!(6, answer);
/// ```
pub fn add_one(x: i32) -> i32 {
 x + 1
}

https://crates.io/
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 373/636

Here, we give a description of what the add_one function does, start a section with the
heading Examples , and then provide code that demonstrates how to use the add_one
function. We can generate the HTML documentation from this documentation comment
by running cargo doc . This command runs the rustdoc tool distributed with Rust and
puts the generated HTML documentation in the target/doc directory.

For convenience, running cargo doc --open will build the HTML for your current crate’s
documentation (as well as the documentation for all of your crate’s dependencies) and
open the result in a web browser. Navigate to the add_one function and you’ll see how
the text in the documentation comments is rendered, as shown in Figure 14-1:

Figure 14-1: HTML documentation for the add_one function

Commonly Used Sections

We used the # Examples Markdown heading in Listing 14-1 to create a section in the
HTML with the title “Examples.” Here are some other sections that crate authors
commonly use in their documentation:

Panics: The scenarios in which the function being documented could panic. Callers
of the function who don’t want their programs to panic should make sure they
don’t call the function in these situations.
Errors: If the function returns a Result , describing the kinds of errors that might
occur and what conditions might cause those errors to be returned can be helpful
to callers so they can write code to handle the different kinds of errors in different
ways.
Safety: If the function is unsafe to call (we discuss unsafety in Chapter 19), there
should be a section explaining why the function is unsafe and covering the

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 374/636

invariants that the function expects callers to uphold.

Most documentation comments don’t need all of these sections, but this is a good
checklist to remind you of the aspects of your code users will be interested in knowing
about.

Documentation Comments as Tests

Adding example code blocks in your documentation comments can help demonstrate
how to use your library, and doing so has an additional bonus: running cargo test will
run the code examples in your documentation as tests! Nothing is better than
documentation with examples. But nothing is worse than examples that don’t work
because the code has changed since the documentation was written. If we run cargo
test with the documentation for the add_one function from Listing 14-1, we will see a
section in the test results like this:

Now if we change either the function or the example so the assert_eq! in the example
panics and run cargo test again, we’ll see that the doc tests catch that the example
and the code are out of sync with each other!

Commenting Contained Items

The style of doc comment //! adds documentation to the item that contains the
comments rather than to the items following the comments. We typically use these doc
comments inside the crate root file (src/lib.rs by convention) or inside a module to
document the crate or the module as a whole.

For example, to add documentation that describes the purpose of the my_crate crate
that contains the add_one function, we add documentation comments that start with
//! to the beginning of the src/lib.rs file, as shown in Listing 14-2:

Filename: src/lib.rs

 Doc-tests my_crate

running 1 test
test src/lib.rs - add_one (line 5) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.27s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 375/636

Listing 14-2: Documentation for the my_crate crate as a whole

Notice there isn’t any code after the last line that begins with //! . Because we started
the comments with //! instead of /// , we’re documenting the item that contains this
comment rather than an item that follows this comment. In this case, that item is the
src/lib.rs file, which is the crate root. These comments describe the entire crate.

When we run cargo doc --open , these comments will display on the front page of the
documentation for my_crate above the list of public items in the crate, as shown in
Figure 14-2:

Figure 14-2: Rendered documentation for my_crate , including the comment describing the crate as a

whole

Documentation comments within items are useful for describing crates and modules
especially. Use them to explain the overall purpose of the container to help your users
understand the crate’s organization.

Exporting a Convenient Public API with pub use

The structure of your public API is a major consideration when publishing a crate.
People who use your crate are less familiar with the structure than you are and might
have difficulty finding the pieces they want to use if your crate has a large module
hierarchy.

//! # My Crate
//!
//! `my_crate` is a collection of utilities to make performing certain
//! calculations more convenient.

/// Adds one to the number given.
// --snip--

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 376/636

In Chapter 7, we covered how to make items public using the pub keyword, and bring
items into a scope with the use keyword. However, the structure that makes sense to
you while you’re developing a crate might not be very convenient for your users. You
might want to organize your structs in a hierarchy containing multiple levels, but then
people who want to use a type you’ve defined deep in the hierarchy might have trouble
finding out that type exists. They might also be annoyed at having to enter use
my_crate::some_module::another_module::UsefulType; rather than use
my_crate::UsefulType; .

The good news is that if the structure isn’t convenient for others to use from another
library, you don’t have to rearrange your internal organization: instead, you can re-
export items to make a public structure that’s different from your private structure by
using pub use . Re-exporting takes a public item in one location and makes it public in
another location, as if it were defined in the other location instead.

For example, say we made a library named art for modeling artistic concepts. Within
this library are two modules: a kinds module containing two enums named
PrimaryColor and SecondaryColor and a utils module containing a function named
mix , as shown in Listing 14-3:

Filename: src/lib.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 377/636

Listing 14-3: An art library with items organized into kinds and utils modules

Figure 14-3 shows what the front page of the documentation for this crate generated by
cargo doc would look like:

Figure 14-3: Front page of the documentation for art that lists the kinds and utils modules

//! # Art
//!
//! A library for modeling artistic concepts.

pub mod kinds {
 /// The primary colors according to the RYB color model.
 pub enum PrimaryColor {
 Red,
 Yellow,
 Blue,
 }

 /// The secondary colors according to the RYB color model.
 pub enum SecondaryColor {
 Orange,
 Green,
 Purple,
 }
}

pub mod utils {
 use crate::kinds::*;

 /// Combines two primary colors in equal amounts to create
 /// a secondary color.
 pub fn mix(c1: PrimaryColor, c2: PrimaryColor) -> SecondaryColor {
 // --snip--
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 378/636

Note that the PrimaryColor and SecondaryColor types aren’t listed on the front page,
nor is the mix function. We have to click kinds and utils to see them.

Another crate that depends on this library would need use statements that bring the
items from art into scope, specifying the module structure that’s currently defined.
Listing 14-4 shows an example of a crate that uses the PrimaryColor and mix items
from the art crate:

Filename: src/main.rs

Listing 14-4: A crate using the art crate’s items with its internal structure exported

The author of the code in Listing 14-4, which uses the art crate, had to figure out that
PrimaryColor is in the kinds module and mix is in the utils module. The module

structure of the art crate is more relevant to developers working on the art crate
than to those using it. The internal structure doesn’t contain any useful information for
someone trying to understand how to use the art crate, but rather causes confusion
because developers who use it have to figure out where to look, and must specify the
module names in the use statements.

To remove the internal organization from the public API, we can modify the art crate
code in Listing 14-3 to add pub use statements to re-export the items at the top level,
as shown in Listing 14-5:

Filename: src/lib.rs

use art::kinds::PrimaryColor;
use art::utils::mix;

fn main() {
 let red = PrimaryColor::Red;
 let yellow = PrimaryColor::Yellow;
 mix(red, yellow);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 379/636

Listing 14-5: Adding pub use statements to re-export items

The API documentation that cargo doc generates for this crate will now list and link re-
exports on the front page, as shown in Figure 14-4, making the PrimaryColor and
SecondaryColor types and the mix function easier to find.

Figure 14-4: The front page of the documentation for art that lists the re-exports

The art crate users can still see and use the internal structure from Listing 14-3 as
demonstrated in Listing 14-4, or they can use the more convenient structure in Listing
14-5, as shown in Listing 14-6:

//! # Art
//!
//! A library for modeling artistic concepts.

pub use self::kinds::PrimaryColor;
pub use self::kinds::SecondaryColor;
pub use self::utils::mix;

pub mod kinds {
 // --snip--
}

pub mod utils {
 // --snip--
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 380/636

Filename: src/main.rs

Listing 14-6: A program using the re-exported items from the art crate

In cases where there are many nested modules, re-exporting the types at the top level
with pub use can make a significant difference in the experience of people who use the
crate. Another common use of pub use is to re-export definitions of a dependency in
the current crate to make that crate's definitions part of your crate’s public API.

Creating a useful public API structure is more of an art than a science, and you can
iterate to find the API that works best for your users. Choosing pub use gives you
flexibility in how you structure your crate internally and decouples that internal
structure from what you present to your users. Look at some of the code of crates
you’ve installed to see if their internal structure differs from their public API.

Setting Up a Crates.io Account

Before you can publish any crates, you need to create an account on crates.io and get
an API token. To do so, visit the home page at crates.io and log in via a GitHub account.
(The GitHub account is currently a requirement, but the site might support other ways
of creating an account in the future.) Once you’re logged in, visit your account settings at
https://crates.io/me/ and retrieve your API key. Then run the cargo login command
with your API key, like this:

This command will inform Cargo of your API token and store it locally in
~/.cargo/credentials. Note that this token is a secret: do not share it with anyone else. If
you do share it with anyone for any reason, you should revoke it and generate a new
token on crates.io.

Adding Metadata to a New Crate

Let’s say you have a crate you want to publish. Before publishing, you’ll need to add
some metadata in the [package] section of the crate’s Cargo.toml file.

Your crate will need a unique name. While you’re working on a crate locally, you can
name a crate whatever you’d like. However, crate names on crates.io are allocated on a

use art::mix;
use art::PrimaryColor;

fn main() {
 // --snip--
}

$ cargo login abcdefghijklmnopqrstuvwxyz012345

https://crates.io/
https://crates.io/
https://crates.io/me/
https://crates.io/
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 381/636

first-come, first-served basis. Once a crate name is taken, no one else can publish a
crate with that name. Before attempting to publish a crate, search for the name you
want to use. If the name has been used, you will need to find another name and edit the
name field in the Cargo.toml file under the [package] section to use the new name for

publishing, like so:

Filename: Cargo.toml

Even if you’ve chosen a unique name, when you run cargo publish to publish the crate
at this point, you’ll get a warning and then an error:

This errors because you’re missing some crucial information: a description and license
are required so people will know what your crate does and under what terms they can
use it. In Cargo.toml, add a description that's just a sentence or two, because it will
appear with your crate in search results. For the license field, you need to give a
license identifier value. The Linux Foundation’s Software Package Data Exchange (SPDX)
lists the identifiers you can use for this value. For example, to specify that you’ve
licensed your crate using the MIT License, add the MIT identifier:

Filename: Cargo.toml

If you want to use a license that doesn’t appear in the SPDX, you need to place the text
of that license in a file, include the file in your project, and then use license-file to
specify the name of that file instead of using the license key.

Guidance on which license is appropriate for your project is beyond the scope of this
book. Many people in the Rust community license their projects in the same way as Rust
by using a dual license of MIT OR Apache-2.0 . This practice demonstrates that you can

[package]
name = "guessing_game"

$ cargo publish
 Updating crates.io index
warning: manifest has no description, license, license-file, documentation,
homepage or repository.
See https://doc.rust-lang.org/cargo/reference/manifest.html#package-
metadata for more info.
--snip--
error: failed to publish to registry at https://crates.io

Caused by:
 the remote server responded with an error: missing or empty metadata
fields: description, license. Please see https://doc.rust-
lang.org/cargo/reference/manifest.html for how to upload metadata

[package]
name = "guessing_game"
license = "MIT"

http://spdx.org/licenses/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 382/636

also specify multiple license identifiers separated by OR to have multiple licenses for
your project.

With a unique name, the version, your description, and a license added, the Cargo.toml
file for a project that is ready to publish might look like this:

Filename: Cargo.toml

Cargo’s documentation describes other metadata you can specify to ensure others can
discover and use your crate more easily.

Publishing to Crates.io

Now that you’ve created an account, saved your API token, chosen a name for your
crate, and specified the required metadata, you’re ready to publish! Publishing a crate
uploads a specific version to crates.io for others to use.

Be careful, because a publish is permanent. The version can never be overwritten, and
the code cannot be deleted. One major goal of crates.io is to act as a permanent archive
of code so that builds of all projects that depend on crates from crates.io will continue
to work. Allowing version deletions would make fulfilling that goal impossible. However,
there is no limit to the number of crate versions you can publish.

Run the cargo publish command again. It should succeed now:

Congratulations! You’ve now shared your code with the Rust community, and anyone
can easily add your crate as a dependency of their project.

[package]
name = "guessing_game"
version = "0.1.0"
edition = "2021"
description = "A fun game where you guess what number the computer has
chosen."
license = "MIT OR Apache-2.0"

[dependencies]

$ cargo publish
 Updating crates.io index
 Packaging guessing_game v0.1.0 (file:///projects/guessing_game)
 Verifying guessing_game v0.1.0 (file:///projects/guessing_game)
 Compiling guessing_game v0.1.0
(file:///projects/guessing_game/target/package/guessing_game-0.1.0)
 Finished dev [unoptimized + debuginfo] target(s) in 0.19s
 Uploading guessing_game v0.1.0 (file:///projects/guessing_game)

https://doc.rust-lang.org/cargo/
https://crates.io/
https://crates.io/
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 383/636

Publishing a New Version of an Existing Crate

When you’ve made changes to your crate and are ready to release a new version, you
change the version value specified in your Cargo.toml file and republish. Use the
Semantic Versioning rules to decide what an appropriate next version number is based
on the kinds of changes you’ve made. Then run cargo publish to upload the new
version.

Deprecating Versions from Crates.io with cargo yank

Although you can’t remove previous versions of a crate, you can prevent any future
projects from adding them as a new dependency. This is useful when a crate version is
broken for one reason or another. In such situations, Cargo supports yanking a crate
version.

Yanking a version prevents new projects from depending on that version while allowing
all existing projects that depend on it to continue. Essentially, a yank means that all
projects with a Cargo.lock will not break, and any future Cargo.lock files generated will
not use the yanked version.

To yank a version of a crate, in the directory of the crate that you’ve previously
published, run cargo yank and specify which version you want to yank. For example, if
we've published a crate named guessing_game version 1.0.1 and we want to yank it, in
the project directory for guessing_game we'd run:

By adding --undo to the command, you can also undo a yank and allow projects to
start depending on a version again:

A yank does not delete any code. It cannot, for example, delete accidentally uploaded
secrets. If that happens, you must reset those secrets immediately.

$ cargo yank --vers 1.0.1
 Updating crates.io index
 Yank guessing_game@1.0.1

$ cargo yank --vers 1.0.1 --undo
 Updating crates.io index
 Unyank guessing_game@1.0.1

http://semver.org/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 384/636

Cargo Workspaces

In Chapter 12, we built a package that included a binary crate and a library crate. As
your project develops, you might find that the library crate continues to get bigger and
you want to split your package further into multiple library crates. Cargo offers a feature
called workspaces that can help manage multiple related packages that are developed in
tandem.

Creating a Workspace

A workspace is a set of packages that share the same Cargo.lock and output directory.
Let’s make a project using a workspace—we’ll use trivial code so we can concentrate on
the structure of the workspace. There are multiple ways to structure a workspace, so
we'll just show one common way. We’ll have a workspace containing a binary and two
libraries. The binary, which will provide the main functionality, will depend on the two
libraries. One library will provide an add_one function, and a second library an add_two
function. These three crates will be part of the same workspace. We’ll start by creating a
new directory for the workspace:

Next, in the add directory, we create the Cargo.toml file that will configure the entire
workspace. This file won’t have a [package] section. Instead, it will start with a
[workspace] section that will allow us to add members to the workspace by specifying

the path to the package with our binary crate; in this case, that path is adder:

Filename: Cargo.toml

Next, we’ll create the adder binary crate by running cargo new within the add
directory:

$ mkdir add
$ cd add

[workspace]

members = [
 "adder",
]

$ cargo new adder
 Created binary (application) `adder` package

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 385/636

At this point, we can build the workspace by running cargo build . The files in your add
directory should look like this:

The workspace has one target directory at the top level that the compiled artifacts will
be placed into; the adder package doesn’t have its own target directory. Even if we were
to run cargo build from inside the adder directory, the compiled artifacts would still
end up in add/target rather than add/adder/target. Cargo structures the target directory
in a workspace like this because the crates in a workspace are meant to depend on each
other. If each crate had its own target directory, each crate would have to recompile
each of the other crates in the workspace to place the artifacts in its own target
directory. By sharing one target directory, the crates can avoid unnecessary rebuilding.

Creating the Second Package in the Workspace

Next, let’s create another member package in the workspace and call it add_one .
Change the top-level Cargo.toml to specify the add_one path in the members list:

Filename: Cargo.toml

Then generate a new library crate named add_one :

Your add directory should now have these directories and files:

├── Cargo.lock
├── Cargo.toml
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target

[workspace]

members = [
 "adder",
 "add_one",
]

$ cargo new add_one --lib
 Created library `add_one` package

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 386/636

In the add_one/src/lib.rs file, let’s add an add_one function:

Filename: add_one/src/lib.rs

Now we can have the adder package with our binary depend on the add_one package
that has our library. First, we’ll need to add a path dependency on add_one to
adder/Cargo.toml.

Filename: adder/Cargo.toml

Cargo doesn’t assume that crates in a workspace will depend on each other, so we need
to be explicit about the dependency relationships.

Next, let’s use the add_one function (from the add_one crate) in the adder crate. Open
the adder/src/main.rs file and add a use line at the top to bring the new add_one library
crate into scope. Then change the main function to call the add_one function, as in
Listing 14-7.

Filename: adder/src/main.rs

Listing 14-7: Using the add_one library crate from the adder crate

Let’s build the workspace by running cargo build in the top-level add directory!

├── Cargo.lock
├── Cargo.toml
├── add_one
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target

pub fn add_one(x: i32) -> i32 {
 x + 1
}

[dependencies]
add_one = { path = "../add_one" }

use add_one;

fn main() {
 let num = 10;
 println!("Hello, world! {num} plus one is {}!", add_one::add_one(num));
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 387/636

To run the binary crate from the add directory, we can specify which package in the
workspace we want to run by using the -p argument and the package name with
cargo run :

This runs the code in adder/src/main.rs, which depends on the add_one crate.

Depending on an External Package in a Workspace

Notice that the workspace has only one Cargo.lock file at the top level, rather than
having a Cargo.lock in each crate’s directory. This ensures that all crates are using the
same version of all dependencies. If we add the rand package to the adder/Cargo.toml
and add_one/Cargo.toml files, Cargo will resolve both of those to one version of rand
and record that in the one Cargo.lock. Making all crates in the workspace use the same
dependencies means the crates will always be compatible with each other. Let’s add the
rand crate to the [dependencies] section in the add_one/Cargo.toml file so we can use

the rand crate in the add_one crate:

Filename: add_one/Cargo.toml

We can now add use rand; to the add_one/src/lib.rs file, and building the whole
workspace by running cargo build in the add directory will bring in and compile the
rand crate. We will get one warning because we aren’t referring to the rand we

brought into scope:

$ cargo build
 Compiling add_one v0.1.0 (file:///projects/add/add_one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.68s

$ cargo run -p adder
 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
 Running `target/debug/adder`
Hello, world! 10 plus one is 11!

[dependencies]
rand = "0.8.5"

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 388/636

The top-level Cargo.lock now contains information about the dependency of add_one on
rand . However, even though rand is used somewhere in the workspace, we can’t use it

in other crates in the workspace unless we add rand to their Cargo.toml files as well. For
example, if we add use rand; to the adder/src/main.rs file for the adder package, we’ll
get an error:

To fix this, edit the Cargo.toml file for the adder package and indicate that rand is a
dependency for it as well. Building the adder package will add rand to the list of
dependencies for adder in Cargo.lock, but no additional copies of rand will be
downloaded. Cargo has ensured that every crate in every package in the workspace
using the rand package will be using the same version, saving us space and ensuring
that the crates in the workspace will be compatible with each other.

Adding a Test to a Workspace

For another enhancement, let’s add a test of the add_one::add_one function within the
add_one crate:

Filename: add_one/src/lib.rs

$ cargo build
 Updating crates.io index
 Downloaded rand v0.8.5
 --snip--
 Compiling rand v0.8.5
 Compiling add_one v0.1.0 (file:///projects/add/add_one)
warning: unused import: `rand`
 --> add_one/src/lib.rs:1:5
 |
1 | use rand;
 | ^^^^
 |
 = note: `#[warn(unused_imports)]` on by default

warning: `add_one` (lib) generated 1 warning
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 10.18s

$ cargo build
 --snip--
 Compiling adder v0.1.0 (file:///projects/add/adder)
error[E0432]: unresolved import `rand`
 --> adder/src/main.rs:2:5
 |
2 | use rand;
 | ^^^^ no external crate `rand`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 389/636

Now run cargo test in the top-level add directory. Running cargo test in a
workspace structured like this one will run the tests for all the crates in the workspace:

The first section of the output shows that the it_works test in the add_one crate
passed. The next section shows that zero tests were found in the adder crate, and then
the last section shows zero documentation tests were found in the add_one crate.

We can also run tests for one particular crate in a workspace from the top-level
directory by using the -p flag and specifying the name of the crate we want to test:

pub fn add_one(x: i32) -> i32 {
 x + 1
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn it_works() {
 assert_eq!(3, add_one(2));
 }
}

$ cargo test
 Compiling add_one v0.1.0 (file:///projects/add/add_one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.27s
 Running unittests src/lib.rs (target/debug/deps/add_one-
f0253159197f7841)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running unittests src/main.rs (target/debug/deps/adder-
49979ff40686fa8e)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests add_one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 390/636

This output shows cargo test only ran the tests for the add_one crate and didn’t run
the adder crate tests.

If you publish the crates in the workspace to crates.io, each crate in the workspace will
need to be published separately. Like cargo test , we can publish a particular crate in
our workspace by using the -p flag and specifying the name of the crate we want to
publish.

For additional practice, add an add_two crate to this workspace in a similar way as the
add_one crate!

As your project grows, consider using a workspace: it’s easier to understand smaller,
individual components than one big blob of code. Furthermore, keeping the crates in a
workspace can make coordination between crates easier if they are often changed at
the same time.

$ cargo test -p add_one
 Finished test [unoptimized + debuginfo] target(s) in 0.00s
 Running unittests src/lib.rs (target/debug/deps/add_one-
b3235fea9a156f74)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests add_one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 391/636

Installing Binaries with cargo install

The cargo install command allows you to install and use binary crates locally. This
isn’t intended to replace system packages; it’s meant to be a convenient way for Rust
developers to install tools that others have shared on crates.io. Note that you can only
install packages that have binary targets. A binary target is the runnable program that is
created if the crate has a src/main.rs file or another file specified as a binary, as opposed
to a library target that isn’t runnable on its own but is suitable for including within other
programs. Usually, crates have information in the README file about whether a crate is a
library, has a binary target, or both.

All binaries installed with cargo install are stored in the installation root’s bin folder.
If you installed Rust using rustup.rs and don’t have any custom configurations, this
directory will be $HOME/.cargo/bin. Ensure that directory is in your $PATH to be able to
run programs you’ve installed with cargo install .

For example, in Chapter 12 we mentioned that there’s a Rust implementation of the
grep tool called ripgrep for searching files. To install ripgrep , we can run the

following:

The second-to-last line of the output shows the location and the name of the installed
binary, which in the case of ripgrep is rg . As long as the installation directory is in
your $PATH , as mentioned previously, you can then run rg --help and start using a
faster, rustier tool for searching files!

$ cargo install ripgrep
 Updating crates.io index
 Downloaded ripgrep v13.0.0
 Downloaded 1 crate (243.3 KB) in 0.88s
 Installing ripgrep v13.0.0
--snip--
 Compiling ripgrep v13.0.0
 Finished release [optimized + debuginfo] target(s) in 3m 10s
 Installing ~/.cargo/bin/rg
 Installed package `ripgrep v13.0.0` (executable `rg`)

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 392/636

Extending Cargo with Custom Commands

Cargo is designed so you can extend it with new subcommands without having to
modify Cargo. If a binary in your $PATH is named cargo-something , you can run it as if
it was a Cargo subcommand by running cargo something . Custom commands like this
are also listed when you run cargo --list . Being able to use cargo install to install
extensions and then run them just like the built-in Cargo tools is a super convenient
benefit of Cargo’s design!

Summary

Sharing code with Cargo and crates.io is part of what makes the Rust ecosystem useful
for many different tasks. Rust’s standard library is small and stable, but crates are easy
to share, use, and improve on a timeline different from that of the language. Don’t be
shy about sharing code that’s useful to you on crates.io; it’s likely that it will be useful to
someone else as well!

https://crates.io/
https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 393/636

Smart Pointers
A pointer is a general concept for a variable that contains an address in memory. This
address refers to, or “points at,” some other data. The most common kind of pointer in
Rust is a reference, which you learned about in Chapter 4. References are indicated by
the & symbol and borrow the value they point to. They don’t have any special
capabilities other than referring to data, and have no overhead.

Smart pointers, on the other hand, are data structures that act like a pointer but also
have additional metadata and capabilities. The concept of smart pointers isn’t unique to
Rust: smart pointers originated in C++ and exist in other languages as well. Rust has a
variety of smart pointers defined in the standard library that provide functionality
beyond that provided by references. To explore the general concept, we’ll look at a
couple of different examples of smart pointers, including a reference counting smart
pointer type. This pointer enables you to allow data to have multiple owners by keeping
track of the number of owners and, when no owners remain, cleaning up the data.

Rust, with its concept of ownership and borrowing, has an additional difference
between references and smart pointers: while references only borrow data, in many
cases, smart pointers own the data they point to.

Though we didn’t call them as such at the time, we’ve already encountered a few smart
pointers in this book, including String and Vec<T> in Chapter 8. Both these types
count as smart pointers because they own some memory and allow you to manipulate
it. They also have metadata and extra capabilities or guarantees. String , for example,
stores its capacity as metadata and has the extra ability to ensure its data will always be
valid UTF-8.

Smart pointers are usually implemented using structs. Unlike an ordinary struct, smart
pointers implement the Deref and Drop traits. The Deref trait allows an instance of
the smart pointer struct to behave like a reference so you can write your code to work
with either references or smart pointers. The Drop trait allows you to customize the
code that’s run when an instance of the smart pointer goes out of scope. In this chapter,
we’ll discuss both traits and demonstrate why they’re important to smart pointers.

Given that the smart pointer pattern is a general design pattern used frequently in Rust,
this chapter won’t cover every existing smart pointer. Many libraries have their own
smart pointers, and you can even write your own. We’ll cover the most common smart
pointers in the standard library:

Box<T> for allocating values on the heap
Rc<T> , a reference counting type that enables multiple ownership
Ref<T> and RefMut<T> , accessed through RefCell<T> , a type that enforces the

borrowing rules at runtime instead of compile time

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 394/636

In addition, we’ll cover the interior mutability pattern where an immutable type exposes
an API for mutating an interior value. We’ll also discuss reference cycles: how they can
leak memory and how to prevent them.

Let’s dive in!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 395/636

Using Box<T> to Point to Data on the Heap

The most straightforward smart pointer is a box, whose type is written Box<T> . Boxes
allow you to store data on the heap rather than the stack. What remains on the stack is
the pointer to the heap data. Refer to Chapter 4 to review the difference between the
stack and the heap.

Boxes don’t have performance overhead, other than storing their data on the heap
instead of on the stack. But they don’t have many extra capabilities either. You’ll use
them most often in these situations:

When you have a type whose size can’t be known at compile time and you want to
use a value of that type in a context that requires an exact size
When you have a large amount of data and you want to transfer ownership but
ensure the data won’t be copied when you do so
When you want to own a value and you care only that it’s a type that implements a
particular trait rather than being of a specific type

We’ll demonstrate the first situation in the “Enabling Recursive Types with Boxes”
section. In the second case, transferring ownership of a large amount of data can take a
long time because the data is copied around on the stack. To improve performance in
this situation, we can store the large amount of data on the heap in a box. Then, only
the small amount of pointer data is copied around on the stack, while the data it
references stays in one place on the heap. The third case is known as a trait object, and
Chapter 17 devotes an entire section, “Using Trait Objects That Allow for Values of
Different Types,” just to that topic. So what you learn here you’ll apply again in Chapter
17!

Using a Box<T> to Store Data on the Heap

Before we discuss the heap storage use case for Box<T> , we’ll cover the syntax and how
to interact with values stored within a Box<T> .

Listing 15-1 shows how to use a box to store an i32 value on the heap:

Filename: src/main.rs

Listing 15-1: Storing an i32 value on the heap using a box

fn main() {
 let b = Box::new(5);
 println!("b = {}", b);
}

https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-boxes
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 396/636

We define the variable b to have the value of a Box that points to the value 5 , which is
allocated on the heap. This program will print b = 5 ; in this case, we can access the
data in the box similar to how we would if this data were on the stack. Just like any
owned value, when a box goes out of scope, as b does at the end of main , it will be
deallocated. The deallocation happens both for the box (stored on the stack) and the
data it points to (stored on the heap).

Putting a single value on the heap isn’t very useful, so you won’t use boxes by
themselves in this way very often. Having values like a single i32 on the stack, where
they’re stored by default, is more appropriate in the majority of situations. Let’s look at a
case where boxes allow us to define types that we wouldn’t be allowed to if we didn’t
have boxes.

Enabling Recursive Types with Boxes

A value of recursive type can have another value of the same type as part of itself.
Recursive types pose an issue because at compile time Rust needs to know how much
space a type takes up. However, the nesting of values of recursive types could
theoretically continue infinitely, so Rust can’t know how much space the value needs.
Because boxes have a known size, we can enable recursive types by inserting a box in
the recursive type definition.

As an example of a recursive type, let’s explore the cons list. This is a data type
commonly found in functional programming languages. The cons list type we’ll define is
straightforward except for the recursion; therefore, the concepts in the example we’ll
work with will be useful any time you get into more complex situations involving
recursive types.

More Information About the Cons List

A cons list is a data structure that comes from the Lisp programming language and its
dialects and is made up of nested pairs, and is the Lisp version of a linked list. Its name
comes from the cons function (short for “construct function”) in Lisp that constructs a
new pair from its two arguments. By calling cons on a pair consisting of a value and
another pair, we can construct cons lists made up of recursive pairs.

For example, here’s a pseudocode representation of a cons list containing the list 1, 2, 3
with each pair in parentheses:

Each item in a cons list contains two elements: the value of the current item and the
next item. The last item in the list contains only a value called Nil without a next item.
A cons list is produced by recursively calling the cons function. The canonical name to

(1, (2, (3, Nil)))

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 397/636

denote the base case of the recursion is Nil . Note that this is not the same as the “null”
or “nil” concept in Chapter 6, which is an invalid or absent value.

The cons list isn’t a commonly used data structure in Rust. Most of the time when you
have a list of items in Rust, Vec<T> is a better choice to use. Other, more complex
recursive data types are useful in various situations, but by starting with the cons list in
this chapter, we can explore how boxes let us define a recursive data type without much
distraction.

Listing 15-2 contains an enum definition for a cons list. Note that this code won’t
compile yet because the List type doesn’t have a known size, which we’ll demonstrate.

Filename: src/main.rs

Listing 15-2: The first attempt at defining an enum to represent a cons list data structure of i32 values

Note: We’re implementing a cons list that holds only i32 values for the purposes
of this example. We could have implemented it using generics, as we discussed in
Chapter 10, to define a cons list type that could store values of any type.

Using the List type to store the list 1, 2, 3 would look like the code in Listing 15-3:

Filename: src/main.rs

Listing 15-3: Using the List enum to store the list 1, 2, 3

The first Cons value holds 1 and another List value. This List value is another Cons
value that holds 2 and another List value. This List value is one more Cons value
that holds 3 and a List value, which is finally Nil , the non-recursive variant that
signals the end of the list.

If we try to compile the code in Listing 15-3, we get the error shown in Listing 15-4:

enum List {
 Cons(i32, List),
 Nil,
}

use crate::List::{Cons, Nil};

fn main() {
 let list = Cons(1, Cons(2, Cons(3, Nil)));
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 398/636

Listing 15-4: The error we get when attempting to define a recursive enum

The error shows this type “has infinite size.” The reason is that we’ve defined List with
a variant that is recursive: it holds another value of itself directly. As a result, Rust can’t
figure out how much space it needs to store a List value. Let’s break down why we get
this error. First, we’ll look at how Rust decides how much space it needs to store a value
of a non-recursive type.

Computing the Size of a Non-Recursive Type

Recall the Message enum we defined in Listing 6-2 when we discussed enum definitions
in Chapter 6:

To determine how much space to allocate for a Message value, Rust goes through each
of the variants to see which variant needs the most space. Rust sees that
Message::Quit doesn’t need any space, Message::Move needs enough space to store

two i32 values, and so forth. Because only one variant will be used, the most space a
Message value will need is the space it would take to store the largest of its variants.

Contrast this with what happens when Rust tries to determine how much space a
recursive type like the List enum in Listing 15-2 needs. The compiler starts by looking
at the Cons variant, which holds a value of type i32 and a value of type List .
Therefore, Cons needs an amount of space equal to the size of an i32 plus the size of

$ cargo run
 Compiling cons-list v0.1.0 (file:///projects/cons-list)
error[E0072]: recursive type `List` has infinite size
 --> src/main.rs:1:1
 |
1 | enum List {
 | ^^^^^^^^^
2 | Cons(i32, List),
 | ---- recursive without indirection
 |
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the
cycle
 |
2 | Cons(i32, Box<List>),
 | ++++ +

For more information about this error, try `rustc --explain E0072`.
error: could not compile `cons-list` due to previous error

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 399/636

a List . To figure out how much memory the List type needs, the compiler looks at
the variants, starting with the Cons variant. The Cons variant holds a value of type i32
and a value of type List , and this process continues infinitely, as shown in Figure 15-1.

Cons

i32

Cons

i32

Cons

i32
Cons

i32
Cons
i32 ∞

Figure 15-1: An infinite List consisting of infinite Cons variants

Using Box<T> to Get a Recursive Type with a Known Size

Because Rust can’t figure out how much space to allocate for recursively defined types,
the compiler gives an error with this helpful suggestion:

In this suggestion, “indirection” means that instead of storing a value directly, we should
change the data structure to store the value indirectly by storing a pointer to the value
instead.

Because a Box<T> is a pointer, Rust always knows how much space a Box<T> needs: a
pointer’s size doesn’t change based on the amount of data it’s pointing to. This means
we can put a Box<T> inside the Cons variant instead of another List value directly.
The Box<T> will point to the next List value that will be on the heap rather than inside
the Cons variant. Conceptually, we still have a list, created with lists holding other lists,
but this implementation is now more like placing the items next to one another rather
than inside one another.

We can change the definition of the List enum in Listing 15-2 and the usage of the
List in Listing 15-3 to the code in Listing 15-5, which will compile:

Filename: src/main.rs

help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `List`
representable
 |
2 | Cons(i32, Box<List>),
 | ++++ +

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 400/636

Listing 15-5: Definition of List that uses Box<T> in order to have a known size

The Cons variant needs the size of an i32 plus the space to store the box’s pointer
data. The Nil variant stores no values, so it needs less space than the Cons variant. We
now know that any List value will take up the size of an i32 plus the size of a box’s
pointer data. By using a box, we’ve broken the infinite, recursive chain, so the compiler
can figure out the size it needs to store a List value. Figure 15-2 shows what the Cons
variant looks like now.

Cons

i32
Box
usize

Figure 15-2: A List that is not infinitely sized because Cons holds a Box

Boxes provide only the indirection and heap allocation; they don’t have any other
special capabilities, like those we’ll see with the other smart pointer types. They also
don’t have the performance overhead that these special capabilities incur, so they can
be useful in cases like the cons list where the indirection is the only feature we need.
We’ll look at more use cases for boxes in Chapter 17, too.

The Box<T> type is a smart pointer because it implements the Deref trait, which allows
Box<T> values to be treated like references. When a Box<T> value goes out of scope,

the heap data that the box is pointing to is cleaned up as well because of the Drop trait
implementation. These two traits will be even more important to the functionality

enum List {
 Cons(i32, Box<List>),
 Nil,
}

use crate::List::{Cons, Nil};

fn main() {
 let list = Cons(1, Box::new(Cons(2, Box::new(Cons(3,
Box::new(Nil))))));
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 401/636

provided by the other smart pointer types we’ll discuss in the rest of this chapter. Let’s
explore these two traits in more detail.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 402/636

Treating Smart Pointers Like Regular References with
the Deref Trait

Implementing the Deref trait allows you to customize the behavior of the dereference
operator * (not to be confused with the multiplication or glob operator). By
implementing Deref in such a way that a smart pointer can be treated like a regular
reference, you can write code that operates on references and use that code with smart
pointers too.

Let’s first look at how the dereference operator works with regular references. Then
we’ll try to define a custom type that behaves like Box<T> , and see why the dereference
operator doesn’t work like a reference on our newly defined type. We’ll explore how
implementing the Deref trait makes it possible for smart pointers to work in ways
similar to references. Then we’ll look at Rust’s deref coercion feature and how it lets us
work with either references or smart pointers.

Note: there’s one big difference between the MyBox<T> type we’re about to build
and the real Box<T> : our version will not store its data on the heap. We are
focusing this example on Deref , so where the data is actually stored is less
important than the pointer-like behavior.

Following the Pointer to the Value

A regular reference is a type of pointer, and one way to think of a pointer is as an arrow
to a value stored somewhere else. In Listing 15-6, we create a reference to an i32 value
and then use the dereference operator to follow the reference to the value:

Filename: src/main.rs

Listing 15-6: Using the dereference operator to follow a reference to an i32 value

The variable x holds an i32 value 5 . We set y equal to a reference to x . We can
assert that x is equal to 5 . However, if we want to make an assertion about the value

fn main() {
 let x = 5;
 let y = &x;

 assert_eq!(5, x);
 assert_eq!(5, *y);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 403/636

in y , we have to use *y to follow the reference to the value it’s pointing to (hence
dereference) so the compiler can compare the actual value. Once we dereference y , we
have access to the integer value y is pointing to that we can compare with 5 .

If we tried to write assert_eq!(5, y); instead, we would get this compilation error:

Comparing a number and a reference to a number isn’t allowed because they’re
different types. We must use the dereference operator to follow the reference to the
value it’s pointing to.

Using Box<T> Like a Reference

We can rewrite the code in Listing 15-6 to use a Box<T> instead of a reference; the
dereference operator used on the Box<T> in Listing 15-7 functions in the same way as
the dereference operator used on the reference in Listing 15-6:

Filename: src/main.rs

$ cargo run
 Compiling deref-example v0.1.0 (file:///projects/deref-example)
error[E0277]: can't compare `{integer}` with `&{integer}`
 --> src/main.rs:6:5
 |
6 | assert_eq!(5, y);
 | ^^^^^^^^^^^^^^^^ no implementation for `{integer} == &{integer}`
 |
 = help: the trait `PartialEq<&{integer}>` is not implemented for
`{integer}`
 = help: the following other types implement trait `PartialEq<Rhs>`:
 f32
 f64
 i128
 i16
 i32
 i64
 i8
 isize
 and 6 others
 = note: this error originates in the macro `assert_eq` (in Nightly
builds, run with -Z macro-backtrace for more info)

For more information about this error, try `rustc --explain E0277`.
error: could not compile `deref-example` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 404/636

Listing 15-7: Using the dereference operator on a Box<i32>

The main difference between Listing 15-7 and Listing 15-6 is that here we set y to be an
instance of a Box<T> pointing to a copied value of x rather than a reference pointing to
the value of x . In the last assertion, we can use the dereference operator to follow the
pointer of the Box<T> in the same way that we did when y was a reference. Next, we’ll
explore what is special about Box<T> that enables us to use the dereference operator
by defining our own type.

Defining Our Own Smart Pointer

Let’s build a smart pointer similar to the Box<T> type provided by the standard library
to experience how smart pointers behave differently from references by default. Then
we’ll look at how to add the ability to use the dereference operator.

The Box<T> type is ultimately defined as a tuple struct with one element, so Listing 15-8
defines a MyBox<T> type in the same way. We’ll also define a new function to match the
new function defined on Box<T> .

Filename: src/main.rs

Listing 15-8: Defining a MyBox<T> type

We define a struct named MyBox and declare a generic parameter T , because we want
our type to hold values of any type. The MyBox type is a tuple struct with one element of
type T . The MyBox::new function takes one parameter of type T and returns a MyBox
instance that holds the value passed in.

Let’s try adding the main function in Listing 15-7 to Listing 15-8 and changing it to use
the MyBox<T> type we’ve defined instead of Box<T> . The code in Listing 15-9 won’t
compile because Rust doesn’t know how to dereference MyBox .

fn main() {
 let x = 5;
 let y = Box::new(x);

 assert_eq!(5, x);
 assert_eq!(5, *y);
}

struct MyBox<T>(T);

impl<T> MyBox<T> {
 fn new(x: T) -> MyBox<T> {
 MyBox(x)
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 405/636

Filename: src/main.rs

Listing 15-9: Attempting to use MyBox<T> in the same way we used references and Box<T>

Here’s the resulting compilation error:

Our MyBox<T> type can’t be dereferenced because we haven’t implemented that ability
on our type. To enable dereferencing with the * operator, we implement the Deref
trait.

Treating a Type Like a Reference by Implementing the Deref Trait

As discussed in the “Implementing a Trait on a Type” section of Chapter 10, to
implement a trait, we need to provide implementations for the trait’s required methods.
The Deref trait, provided by the standard library, requires us to implement one
method named deref that borrows self and returns a reference to the inner data.
Listing 15-10 contains an implementation of Deref to add to the definition of MyBox :

Filename: src/main.rs

fn main() {
 let x = 5;
 let y = MyBox::new(x);

 assert_eq!(5, x);
 assert_eq!(5, *y);
}

$ cargo run
 Compiling deref-example v0.1.0 (file:///projects/deref-example)
error[E0614]: type `MyBox<{integer}>` cannot be dereferenced
 --> src/main.rs:14:19
 |
14 | assert_eq!(5, *y);
 | ^^

For more information about this error, try `rustc --explain E0614`.
error: could not compile `deref-example` due to previous error

use std::ops::Deref;

impl<T> Deref for MyBox<T> {
 type Target = T;

 fn deref(&self) -> &Self::Target {
 &self.0
 }
}

https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 406/636

Listing 15-10: Implementing Deref on MyBox<T>

The type Target = T; syntax defines an associated type for the Deref trait to use.
Associated types are a slightly different way of declaring a generic parameter, but you
don’t need to worry about them for now; we’ll cover them in more detail in Chapter 19.

We fill in the body of the deref method with &self.0 so deref returns a reference to
the value we want to access with the * operator; recall from the “Using Tuple Structs
without Named Fields to Create Different Types” section of Chapter 5 that .0 accesses
the first value in a tuple struct. The main function in Listing 15-9 that calls * on the
MyBox<T> value now compiles, and the assertions pass!

Without the Deref trait, the compiler can only dereference & references. The deref
method gives the compiler the ability to take a value of any type that implements Deref
and call the deref method to get a & reference that it knows how to dereference.

When we entered *y in Listing 15-9, behind the scenes Rust actually ran this code:

Rust substitutes the * operator with a call to the deref method and then a plain
dereference so we don’t have to think about whether or not we need to call the deref
method. This Rust feature lets us write code that functions identically whether we have
a regular reference or a type that implements Deref .

The reason the deref method returns a reference to a value, and that the plain
dereference outside the parentheses in *(y.deref()) is still necessary, is to do with
the ownership system. If the deref method returned the value directly instead of a
reference to the value, the value would be moved out of self . We don’t want to take
ownership of the inner value inside MyBox<T> in this case or in most cases where we
use the dereference operator.

Note that the * operator is replaced with a call to the deref method and then a call to
the * operator just once, each time we use a * in our code. Because the substitution
of the * operator does not recurse infinitely, we end up with data of type i32 , which
matches the 5 in assert_eq! in Listing 15-9.

Implicit Deref Coercions with Functions and Methods

Deref coercion converts a reference to a type that implements the Deref trait into a
reference to another type. For example, deref coercion can convert &String to &str
because String implements the Deref trait such that it returns &str . Deref coercion
is a convenience Rust performs on arguments to functions and methods, and works
only on types that implement the Deref trait. It happens automatically when we pass a

*(y.deref())

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 407/636

reference to a particular type’s value as an argument to a function or method that
doesn’t match the parameter type in the function or method definition. A sequence of
calls to the deref method converts the type we provided into the type the parameter
needs.

Deref coercion was added to Rust so that programmers writing function and method
calls don’t need to add as many explicit references and dereferences with & and * . The
deref coercion feature also lets us write more code that can work for either references
or smart pointers.

To see deref coercion in action, let’s use the MyBox<T> type we defined in Listing 15-8 as
well as the implementation of Deref that we added in Listing 15-10. Listing 15-11 shows
the definition of a function that has a string slice parameter:

Filename: src/main.rs

Listing 15-11: A hello function that has the parameter name of type &str

We can call the hello function with a string slice as an argument, such as
hello("Rust"); for example. Deref coercion makes it possible to call hello with a

reference to a value of type MyBox<String> , as shown in Listing 15-12:

Filename: src/main.rs

Listing 15-12: Calling hello with a reference to a MyBox<String> value, which works because of deref

coercion

Here we’re calling the hello function with the argument &m , which is a reference to a
MyBox<String> value. Because we implemented the Deref trait on MyBox<T> in Listing

15-10, Rust can turn &MyBox<String> into &String by calling deref . The standard
library provides an implementation of Deref on String that returns a string slice, and
this is in the API documentation for Deref . Rust calls deref again to turn the &String
into &str , which matches the hello function’s definition.

If Rust didn’t implement deref coercion, we would have to write the code in Listing 15-13
instead of the code in Listing 15-12 to call hello with a value of type &MyBox<String> .

Filename: src/main.rs

fn hello(name: &str) {
 println!("Hello, {name}!");
}

fn main() {
 let m = MyBox::new(String::from("Rust"));
 hello(&m);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 408/636

Listing 15-13: The code we would have to write if Rust didn’t have deref coercion

The (*m) dereferences the MyBox<String> into a String . Then the & and [..] take
a string slice of the String that is equal to the whole string to match the signature of
hello . This code without deref coercions is harder to read, write, and understand with

all of these symbols involved. Deref coercion allows Rust to handle these conversions
for us automatically.

When the Deref trait is defined for the types involved, Rust will analyze the types and
use Deref::deref as many times as necessary to get a reference to match the
parameter’s type. The number of times that Deref::deref needs to be inserted is
resolved at compile time, so there is no runtime penalty for taking advantage of deref
coercion!

How Deref Coercion Interacts with Mutability

Similar to how you use the Deref trait to override the * operator on immutable
references, you can use the DerefMut trait to override the * operator on mutable
references.

Rust does deref coercion when it finds types and trait implementations in three cases:

From &T to &U when T: Deref<Target=U>
From &mut T to &mut U when T: DerefMut<Target=U>
From &mut T to &U when T: Deref<Target=U>

The first two cases are the same as each other except that the second implements
mutability. The first case states that if you have a &T , and T implements Deref to
some type U , you can get a &U transparently. The second case states that the same
deref coercion happens for mutable references.

The third case is trickier: Rust will also coerce a mutable reference to an immutable one.
But the reverse is not possible: immutable references will never coerce to mutable
references. Because of the borrowing rules, if you have a mutable reference, that
mutable reference must be the only reference to that data (otherwise, the program
wouldn’t compile). Converting one mutable reference to one immutable reference will
never break the borrowing rules. Converting an immutable reference to a mutable
reference would require that the initial immutable reference is the only immutable
reference to that data, but the borrowing rules don’t guarantee that. Therefore, Rust

fn main() {
 let m = MyBox::new(String::from("Rust"));
 hello(&(*m)[..]);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 409/636

can’t make the assumption that converting an immutable reference to a mutable
reference is possible.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 410/636

Running Code on Cleanup with the Drop Trait

The second trait important to the smart pointer pattern is Drop , which lets you
customize what happens when a value is about to go out of scope. You can provide an
implementation for the Drop trait on any type, and that code can be used to release
resources like files or network connections.

We’re introducing Drop in the context of smart pointers because the functionality of the
Drop trait is almost always used when implementing a smart pointer. For example,

when a Box<T> is dropped it will deallocate the space on the heap that the box points
to.

In some languages, for some types, the programmer must call code to free memory or
resources every time they finish using an instance of those types. Examples include file
handles, sockets, or locks. If they forget, the system might become overloaded and
crash. In Rust, you can specify that a particular bit of code be run whenever a value goes
out of scope, and the compiler will insert this code automatically. As a result, you don’t
need to be careful about placing cleanup code everywhere in a program that an
instance of a particular type is finished with—you still won’t leak resources!

You specify the code to run when a value goes out of scope by implementing the Drop
trait. The Drop trait requires you to implement one method named drop that takes a
mutable reference to self . To see when Rust calls drop , let’s implement drop with
println! statements for now.

Listing 15-14 shows a CustomSmartPointer struct whose only custom functionality is
that it will print Dropping CustomSmartPointer! when the instance goes out of scope,
to show when Rust runs the drop function.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 411/636

Listing 15-14: A CustomSmartPointer struct that implements the Drop trait where we would put our

cleanup code

The Drop trait is included in the prelude, so we don’t need to bring it into scope. We
implement the Drop trait on CustomSmartPointer and provide an implementation for
the drop method that calls println! . The body of the drop function is where you
would place any logic that you wanted to run when an instance of your type goes out of
scope. We’re printing some text here to demonstrate visually when Rust will call drop .

In main , we create two instances of CustomSmartPointer and then print
CustomSmartPointers created . At the end of main , our instances of
CustomSmartPointer will go out of scope, and Rust will call the code we put in the drop

method, printing our final message. Note that we didn’t need to call the drop method
explicitly.

When we run this program, we’ll see the following output:

Rust automatically called drop for us when our instances went out of scope, calling the
code we specified. Variables are dropped in the reverse order of their creation, so d
was dropped before c . This example’s purpose is to give you a visual guide to how the
drop method works; usually you would specify the cleanup code that your type needs

to run rather than a print message.

struct CustomSmartPointer {
 data: String,
}

impl Drop for CustomSmartPointer {
 fn drop(&mut self) {
 println!("Dropping CustomSmartPointer with data `{}`!", self.data);
 }
}

fn main() {
 let c = CustomSmartPointer {
 data: String::from("my stuff"),
 };
 let d = CustomSmartPointer {
 data: String::from("other stuff"),
 };
 println!("CustomSmartPointers created.");
}

$ cargo run
 Compiling drop-example v0.1.0 (file:///projects/drop-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.60s
 Running `target/debug/drop-example`
CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 412/636

Dropping a Value Early with std::mem::drop

Unfortunately, it’s not straightforward to disable the automatic drop functionality.
Disabling drop isn’t usually necessary; the whole point of the Drop trait is that it’s taken
care of automatically. Occasionally, however, you might want to clean up a value early.
One example is when using smart pointers that manage locks: you might want to force
the drop method that releases the lock so that other code in the same scope can
acquire the lock. Rust doesn’t let you call the Drop trait’s drop method manually;
instead you have to call the std::mem::drop function provided by the standard library if
you want to force a value to be dropped before the end of its scope.

If we try to call the Drop trait’s drop method manually by modifying the main function
from Listing 15-14, as shown in Listing 15-15, we’ll get a compiler error:

Filename: src/main.rs

Listing 15-15: Attempting to call the drop method from the Drop trait manually to clean up early

When we try to compile this code, we’ll get this error:

This error message states that we’re not allowed to explicitly call drop . The error
message uses the term destructor, which is the general programming term for a function
that cleans up an instance. A destructor is analogous to a constructor, which creates an
instance. The drop function in Rust is one particular destructor.

Rust doesn’t let us call drop explicitly because Rust would still automatically call drop
on the value at the end of main . This would cause a double free error because Rust

fn main() {
 let c = CustomSmartPointer {
 data: String::from("some data"),
 };
 println!("CustomSmartPointer created.");
 c.drop();
 println!("CustomSmartPointer dropped before the end of main.");
}

$ cargo run
 Compiling drop-example v0.1.0 (file:///projects/drop-example)
error[E0040]: explicit use of destructor method
 --> src/main.rs:16:7
 |
16 | c.drop();
 | --^^^^--
 | | |
 | | explicit destructor calls not allowed
 | help: consider using `drop` function: `drop(c)`

For more information about this error, try `rustc --explain E0040`.
error: could not compile `drop-example` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 413/636

would be trying to clean up the same value twice.

We can’t disable the automatic insertion of drop when a value goes out of scope, and
we can’t call the drop method explicitly. So, if we need to force a value to be cleaned up
early, we use the std::mem::drop function.

The std::mem::drop function is different from the drop method in the Drop trait. We
call it by passing as an argument the value we want to force drop. The function is in the
prelude, so we can modify main in Listing 15-15 to call the drop function, as shown in
Listing 15-16:

Filename: src/main.rs

Listing 15-16: Calling std::mem::drop to explicitly drop a value before it goes out of scope

Running this code will print the following:

The text Dropping CustomSmartPointer with data `some data`! is printed between
the CustomSmartPointer created. and CustomSmartPointer dropped before the end
of main. text, showing that the drop method code is called to drop c at that point.

You can use code specified in a Drop trait implementation in many ways to make
cleanup convenient and safe: for instance, you could use it to create your own memory
allocator! With the Drop trait and Rust’s ownership system, you don’t have to remember
to clean up because Rust does it automatically.

You also don’t have to worry about problems resulting from accidentally cleaning up
values still in use: the ownership system that makes sure references are always valid
also ensures that drop gets called only once when the value is no longer being used.

Now that we’ve examined Box<T> and some of the characteristics of smart pointers,
let’s look at a few other smart pointers defined in the standard library.

fn main() {
 let c = CustomSmartPointer {
 data: String::from("some data"),
 };
 println!("CustomSmartPointer created.");
 drop(c);
 println!("CustomSmartPointer dropped before the end of main.");
}

$ cargo run
 Compiling drop-example v0.1.0 (file:///projects/drop-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.73s
 Running `target/debug/drop-example`
CustomSmartPointer created.
Dropping CustomSmartPointer with data `some data`!
CustomSmartPointer dropped before the end of main.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 414/636

Rc<T>, the Reference Counted Smart Pointer

In the majority of cases, ownership is clear: you know exactly which variable owns a
given value. However, there are cases when a single value might have multiple owners.
For example, in graph data structures, multiple edges might point to the same node,
and that node is conceptually owned by all of the edges that point to it. A node
shouldn’t be cleaned up unless it doesn’t have any edges pointing to it and so has no
owners.

You have to enable multiple ownership explicitly by using the Rust type Rc<T> , which is
an abbreviation for reference counting. The Rc<T> type keeps track of the number of
references to a value to determine whether or not the value is still in use. If there are
zero references to a value, the value can be cleaned up without any references
becoming invalid.

Imagine Rc<T> as a TV in a family room. When one person enters to watch TV, they turn
it on. Others can come into the room and watch the TV. When the last person leaves the
room, they turn off the TV because it’s no longer being used. If someone turns off the TV
while others are still watching it, there would be uproar from the remaining TV
watchers!

We use the Rc<T> type when we want to allocate some data on the heap for multiple
parts of our program to read and we can’t determine at compile time which part will
finish using the data last. If we knew which part would finish last, we could just make
that part the data’s owner, and the normal ownership rules enforced at compile time
would take effect.

Note that Rc<T> is only for use in single-threaded scenarios. When we discuss
concurrency in Chapter 16, we’ll cover how to do reference counting in multithreaded
programs.

Using Rc<T> to Share Data

Let’s return to our cons list example in Listing 15-5. Recall that we defined it using
Box<T> . This time, we’ll create two lists that both share ownership of a third list.

Conceptually, this looks similar to Figure 15-3:

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 415/636

b 3

5 a 10 Nil

c 4

Figure 15-3: Two lists, b and c , sharing ownership of a third list, a

We’ll create list a that contains 5 and then 10. Then we’ll make two more lists: b that
starts with 3 and c that starts with 4. Both b and c lists will then continue on to the
first a list containing 5 and 10. In other words, both lists will share the first list
containing 5 and 10.

Trying to implement this scenario using our definition of List with Box<T> won’t work,
as shown in Listing 15-17:

Filename: src/main.rs

Listing 15-17: Demonstrating we’re not allowed to have two lists using Box<T> that try to share ownership

of a third list

When we compile this code, we get this error:

enum List {
 Cons(i32, Box<List>),
 Nil,
}

use crate::List::{Cons, Nil};

fn main() {
 let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
 let b = Cons(3, Box::new(a));
 let c = Cons(4, Box::new(a));
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 416/636

The Cons variants own the data they hold, so when we create the b list, a is moved
into b and b owns a . Then, when we try to use a again when creating c , we’re not
allowed to because a has been moved.

We could change the definition of Cons to hold references instead, but then we would
have to specify lifetime parameters. By specifying lifetime parameters, we would be
specifying that every element in the list will live at least as long as the entire list. This is
the case for the elements and lists in Listing 15-17, but not in every scenario.

Instead, we’ll change our definition of List to use Rc<T> in place of Box<T> , as shown
in Listing 15-18. Each Cons variant will now hold a value and an Rc<T> pointing to a
List . When we create b , instead of taking ownership of a , we’ll clone the Rc<List>

that a is holding, thereby increasing the number of references from one to two and
letting a and b share ownership of the data in that Rc<List> . We’ll also clone a when
creating c , increasing the number of references from two to three. Every time we call
Rc::clone , the reference count to the data within the Rc<List> will increase, and the

data won’t be cleaned up unless there are zero references to it.

Filename: src/main.rs

Listing 15-18: A definition of List that uses Rc<T>

$ cargo run
 Compiling cons-list v0.1.0 (file:///projects/cons-list)
error[E0382]: use of moved value: `a`
 --> src/main.rs:11:30
 |
9 | let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
 | - move occurs because `a` has type `List`, which does not
implement the `Copy` trait
10 | let b = Cons(3, Box::new(a));
 | - value moved here
11 | let c = Cons(4, Box::new(a));
 | ^ value used here after move

For more information about this error, try `rustc --explain E0382`.
error: could not compile `cons-list` due to previous error

enum List {
 Cons(i32, Rc<List>),
 Nil,
}

use crate::List::{Cons, Nil};
use std::rc::Rc;

fn main() {
 let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
 let b = Cons(3, Rc::clone(&a));
 let c = Cons(4, Rc::clone(&a));
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 417/636

We need to add a use statement to bring Rc<T> into scope because it’s not in the
prelude. In main , we create the list holding 5 and 10 and store it in a new Rc<List> in
a . Then when we create b and c , we call the Rc::clone function and pass a

reference to the Rc<List> in a as an argument.

We could have called a.clone() rather than Rc::clone(&a) , but Rust’s convention is
to use Rc::clone in this case. The implementation of Rc::clone doesn’t make a deep
copy of all the data like most types’ implementations of clone do. The call to
Rc::clone only increments the reference count, which doesn’t take much time. Deep

copies of data can take a lot of time. By using Rc::clone for reference counting, we can
visually distinguish between the deep-copy kinds of clones and the kinds of clones that
increase the reference count. When looking for performance problems in the code, we
only need to consider the deep-copy clones and can disregard calls to Rc::clone .

Cloning an Rc<T> Increases the Reference Count

Let’s change our working example in Listing 15-18 so we can see the reference counts
changing as we create and drop references to the Rc<List> in a .

In Listing 15-19, we’ll change main so it has an inner scope around list c ; then we can
see how the reference count changes when c goes out of scope.

Filename: src/main.rs

Listing 15-19: Printing the reference count

At each point in the program where the reference count changes, we print the reference
count, which we get by calling the Rc::strong_count function. This function is named
strong_count rather than count because the Rc<T> type also has a weak_count ; we’ll

see what weak_count is used for in the “Preventing Reference Cycles: Turning an Rc<T>
into a Weak<T> ” section.

This code prints the following:

fn main() {
 let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
 println!("count after creating a = {}", Rc::strong_count(&a));
 let b = Cons(3, Rc::clone(&a));
 println!("count after creating b = {}", Rc::strong_count(&a));
 {
 let c = Cons(4, Rc::clone(&a));
 println!("count after creating c = {}", Rc::strong_count(&a));
 }
 println!("count after c goes out of scope = {}", Rc::strong_count(&a));
}

https://doc.rust-lang.org/book/ch15-06-reference-cycles.html#preventing-reference-cycles-turning-an-rct-into-a-weakt

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 418/636

We can see that the Rc<List> in a has an initial reference count of 1; then each time
we call clone , the count goes up by 1. When c goes out of scope, the count goes down
by 1. We don’t have to call a function to decrease the reference count like we have to call
Rc::clone to increase the reference count: the implementation of the Drop trait

decreases the reference count automatically when an Rc<T> value goes out of scope.

What we can’t see in this example is that when b and then a go out of scope at the
end of main , the count is then 0, and the Rc<List> is cleaned up completely. Using
Rc<T> allows a single value to have multiple owners, and the count ensures that the

value remains valid as long as any of the owners still exist.

Via immutable references, Rc<T> allows you to share data between multiple parts of
your program for reading only. If Rc<T> allowed you to have multiple mutable
references too, you might violate one of the borrowing rules discussed in Chapter 4:
multiple mutable borrows to the same place can cause data races and inconsistencies.
But being able to mutate data is very useful! In the next section, we’ll discuss the interior
mutability pattern and the RefCell<T> type that you can use in conjunction with an
Rc<T> to work with this immutability restriction.

$ cargo run
 Compiling cons-list v0.1.0 (file:///projects/cons-list)
 Finished dev [unoptimized + debuginfo] target(s) in 0.45s
 Running `target/debug/cons-list`
count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 419/636

RefCell<T> and the Interior Mutability Pattern

Interior mutability is a design pattern in Rust that allows you to mutate data even when
there are immutable references to that data; normally, this action is disallowed by the
borrowing rules. To mutate data, the pattern uses unsafe code inside a data structure
to bend Rust’s usual rules that govern mutation and borrowing. Unsafe code indicates
to the compiler that we’re checking the rules manually instead of relying on the compiler
to check them for us; we will discuss unsafe code more in Chapter 19.

We can use types that use the interior mutability pattern only when we can ensure that
the borrowing rules will be followed at runtime, even though the compiler can’t
guarantee that. The unsafe code involved is then wrapped in a safe API, and the outer
type is still immutable.

Let’s explore this concept by looking at the RefCell<T> type that follows the interior
mutability pattern.

Enforcing Borrowing Rules at Runtime with RefCell<T>

Unlike Rc<T> , the RefCell<T> type represents single ownership over the data it holds.
So, what makes RefCell<T> different from a type like Box<T> ? Recall the borrowing
rules you learned in Chapter 4:

At any given time, you can have either (but not both) one mutable reference or any
number of immutable references.
References must always be valid.

With references and Box<T> , the borrowing rules’ invariants are enforced at compile
time. With RefCell<T> , these invariants are enforced at runtime. With references, if you
break these rules, you’ll get a compiler error. With RefCell<T> , if you break these rules,
your program will panic and exit.

The advantages of checking the borrowing rules at compile time are that errors will be
caught sooner in the development process, and there is no impact on runtime
performance because all the analysis is completed beforehand. For those reasons,
checking the borrowing rules at compile time is the best choice in the majority of cases,
which is why this is Rust’s default.

The advantage of checking the borrowing rules at runtime instead is that certain
memory-safe scenarios are then allowed, where they would’ve been disallowed by the
compile-time checks. Static analysis, like the Rust compiler, is inherently conservative.
Some properties of code are impossible to detect by analyzing the code: the most

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 420/636

famous example is the Halting Problem, which is beyond the scope of this book but is
an interesting topic to research.

Because some analysis is impossible, if the Rust compiler can’t be sure the code
complies with the ownership rules, it might reject a correct program; in this way, it’s
conservative. If Rust accepted an incorrect program, users wouldn’t be able to trust in
the guarantees Rust makes. However, if Rust rejects a correct program, the programmer
will be inconvenienced, but nothing catastrophic can occur. The RefCell<T> type is
useful when you’re sure your code follows the borrowing rules but the compiler is
unable to understand and guarantee that.

Similar to Rc<T> , RefCell<T> is only for use in single-threaded scenarios and will give
you a compile-time error if you try using it in a multithreaded context. We’ll talk about
how to get the functionality of RefCell<T> in a multithreaded program in Chapter 16.

Here is a recap of the reasons to choose Box<T> , Rc<T> , or RefCell<T> :

Rc<T> enables multiple owners of the same data; Box<T> and RefCell<T> have
single owners.
Box<T> allows immutable or mutable borrows checked at compile time; Rc<T>

allows only immutable borrows checked at compile time; RefCell<T> allows
immutable or mutable borrows checked at runtime.
Because RefCell<T> allows mutable borrows checked at runtime, you can mutate
the value inside the RefCell<T> even when the RefCell<T> is immutable.

Mutating the value inside an immutable value is the interior mutability pattern. Let’s look
at a situation in which interior mutability is useful and examine how it’s possible.

Interior Mutability: A Mutable Borrow to an Immutable Value

A consequence of the borrowing rules is that when you have an immutable value, you
can’t borrow it mutably. For example, this code won’t compile:

If you tried to compile this code, you’d get the following error:

fn main() {
 let x = 5;
 let y = &mut x;
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 421/636

However, there are situations in which it would be useful for a value to mutate itself in
its methods but appear immutable to other code. Code outside the value’s methods
would not be able to mutate the value. Using RefCell<T> is one way to get the ability to
have interior mutability, but RefCell<T> doesn’t get around the borrowing rules
completely: the borrow checker in the compiler allows this interior mutability, and the
borrowing rules are checked at runtime instead. If you violate the rules, you’ll get a
panic! instead of a compiler error.

Let’s work through a practical example where we can use RefCell<T> to mutate an
immutable value and see why that is useful.

A Use Case for Interior Mutability: Mock Objects

Sometimes during testing a programmer will use a type in place of another type, in
order to observe particular behavior and assert it’s implemented correctly. This
placeholder type is called a test double. Think of it in the sense of a “stunt double” in
filmmaking, where a person steps in and substitutes for an actor to do a particular tricky
scene. Test doubles stand in for other types when we’re running tests. Mock objects are
specific types of test doubles that record what happens during a test so you can assert
that the correct actions took place.

Rust doesn’t have objects in the same sense as other languages have objects, and Rust
doesn’t have mock object functionality built into the standard library as some other
languages do. However, you can definitely create a struct that will serve the same
purposes as a mock object.

Here’s the scenario we’ll test: we’ll create a library that tracks a value against a
maximum value and sends messages based on how close to the maximum value the
current value is. This library could be used to keep track of a user’s quota for the
number of API calls they’re allowed to make, for example.

Our library will only provide the functionality of tracking how close to the maximum a
value is and what the messages should be at what times. Applications that use our
library will be expected to provide the mechanism for sending the messages: the

$ cargo run
 Compiling borrowing v0.1.0 (file:///projects/borrowing)
error[E0596]: cannot borrow `x` as mutable, as it is not declared as
mutable
 --> src/main.rs:3:13
 |
2 | let x = 5;
 | - help: consider changing this to be mutable: `mut x`
3 | let y = &mut x;
 | ^^^^^^ cannot borrow as mutable

For more information about this error, try `rustc --explain E0596`.
error: could not compile `borrowing` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 422/636

application could put a message in the application, send an email, send a text message,
or something else. The library doesn’t need to know that detail. All it needs is something
that implements a trait we’ll provide called Messenger . Listing 15-20 shows the library
code:

Filename: src/lib.rs

Listing 15-20: A library to keep track of how close a value is to a maximum value and warn when the value

is at certain levels

One important part of this code is that the Messenger trait has one method called send
that takes an immutable reference to self and the text of the message. This trait is the
interface our mock object needs to implement so that the mock can be used in the
same way a real object is. The other important part is that we want to test the behavior

pub trait Messenger {
 fn send(&self, msg: &str);
}

pub struct LimitTracker<'a, T: Messenger> {
 messenger: &'a T,
 value: usize,
 max: usize,
}

impl<'a, T> LimitTracker<'a, T>
where
 T: Messenger,
{
 pub fn new(messenger: &'a T, max: usize) -> LimitTracker<'a, T> {
 LimitTracker {
 messenger,
 value: 0,
 max,
 }
 }

 pub fn set_value(&mut self, value: usize) {
 self.value = value;

 let percentage_of_max = self.value as f64 / self.max as f64;

 if percentage_of_max >= 1.0 {
 self.messenger.send("Error: You are over your quota!");
 } else if percentage_of_max >= 0.9 {
 self.messenger
 .send("Urgent warning: You've used up over 90% of your
quota!");
 } else if percentage_of_max >= 0.75 {
 self.messenger
 .send("Warning: You've used up over 75% of your quota!");
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 423/636

of the set_value method on the LimitTracker . We can change what we pass in for
the value parameter, but set_value doesn’t return anything for us to make assertions
on. We want to be able to say that if we create a LimitTracker with something that
implements the Messenger trait and a particular value for max , when we pass different
numbers for value , the messenger is told to send the appropriate messages.

We need a mock object that, instead of sending an email or text message when we call
send , will only keep track of the messages it’s told to send. We can create a new

instance of the mock object, create a LimitTracker that uses the mock object, call the
set_value method on LimitTracker , and then check that the mock object has the

messages we expect. Listing 15-21 shows an attempt to implement a mock object to do
just that, but the borrow checker won’t allow it:

Filename: src/lib.rs

Listing 15-21: An attempt to implement a MockMessenger that isn’t allowed by the borrow checker

This test code defines a MockMessenger struct that has a sent_messages field with a
Vec of String values to keep track of the messages it’s told to send. We also define an

#[cfg(test)]
mod tests {
 use super::*;

 struct MockMessenger {
 sent_messages: Vec<String>,
 }

 impl MockMessenger {
 fn new() -> MockMessenger {
 MockMessenger {
 sent_messages: vec![],
 }
 }
 }

 impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
 self.sent_messages.push(String::from(message));
 }
 }

 #[test]
 fn it_sends_an_over_75_percent_warning_message() {
 let mock_messenger = MockMessenger::new();
 let mut limit_tracker = LimitTracker::new(&mock_messenger, 100);

 limit_tracker.set_value(80);

 assert_eq!(mock_messenger.sent_messages.len(), 1);
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 424/636

associated function new to make it convenient to create new MockMessenger values
that start with an empty list of messages. We then implement the Messenger trait for
MockMessenger so we can give a MockMessenger to a LimitTracker . In the definition of

the send method, we take the message passed in as a parameter and store it in the
MockMessenger list of sent_messages .

In the test, we’re testing what happens when the LimitTracker is told to set value to
something that is more than 75 percent of the max value. First, we create a new
MockMessenger , which will start with an empty list of messages. Then we create a new
LimitTracker and give it a reference to the new MockMessenger and a max value of

100. We call the set_value method on the LimitTracker with a value of 80, which is
more than 75 percent of 100. Then we assert that the list of messages that the
MockMessenger is keeping track of should now have one message in it.

However, there’s one problem with this test, as shown here:

We can’t modify the MockMessenger to keep track of the messages, because the send
method takes an immutable reference to self . We also can’t take the suggestion from
the error text to use &mut self instead, because then the signature of send wouldn’t
match the signature in the Messenger trait definition (feel free to try and see what error
message you get).

This is a situation in which interior mutability can help! We’ll store the sent_messages
within a RefCell<T> , and then the send method will be able to modify sent_messages
to store the messages we’ve seen. Listing 15-22 shows what that looks like:

Filename: src/lib.rs

$ cargo test
 Compiling limit-tracker v0.1.0 (file:///projects/limit-tracker)
error[E0596]: cannot borrow `self.sent_messages` as mutable, as it is
behind a `&` reference
 --> src/lib.rs:58:13
 |
2 | fn send(&self, msg: &str);
 | ----- help: consider changing that to be a mutable
reference: `&mut self`
...
58 | self.sent_messages.push(String::from(message));
 | ^^ `self` is a
`&` reference, so the data it refers to cannot be borrowed as mutable

For more information about this error, try `rustc --explain E0596`.
error: could not compile `limit-tracker` due to previous error
warning: build failed, waiting for other jobs to finish...

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 425/636

Listing 15-22: Using RefCell<T> to mutate an inner value while the outer value is considered immutable

The sent_messages field is now of type RefCell<Vec<String>> instead of
Vec<String> . In the new function, we create a new RefCell<Vec<String>> instance

around the empty vector.

For the implementation of the send method, the first parameter is still an immutable
borrow of self , which matches the trait definition. We call borrow_mut on the
RefCell<Vec<String>> in self.sent_messages to get a mutable reference to the value

inside the RefCell<Vec<String>> , which is the vector. Then we can call push on the
mutable reference to the vector to keep track of the messages sent during the test.

The last change we have to make is in the assertion: to see how many items are in the
inner vector, we call borrow on the RefCell<Vec<String>> to get an immutable
reference to the vector.

Now that you’ve seen how to use RefCell<T> , let’s dig into how it works!

#[cfg(test)]
mod tests {
 use super::*;
 use std::cell::RefCell;

 struct MockMessenger {
 sent_messages: RefCell<Vec<String>>,
 }

 impl MockMessenger {
 fn new() -> MockMessenger {
 MockMessenger {
 sent_messages: RefCell::new(vec![]),
 }
 }
 }

 impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
 self.sent_messages.borrow_mut().push(String::from(message));
 }
 }

 #[test]
 fn it_sends_an_over_75_percent_warning_message() {
 // --snip--

 assert_eq!(mock_messenger.sent_messages.borrow().len(), 1);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 426/636

Keeping Track of Borrows at Runtime with RefCell<T>

When creating immutable and mutable references, we use the & and &mut syntax,
respectively. With RefCell<T> , we use the borrow and borrow_mut methods, which
are part of the safe API that belongs to RefCell<T> . The borrow method returns the
smart pointer type Ref<T> , and borrow_mut returns the smart pointer type
RefMut<T> . Both types implement Deref , so we can treat them like regular references.

The RefCell<T> keeps track of how many Ref<T> and RefMut<T> smart pointers are
currently active. Every time we call borrow , the RefCell<T> increases its count of how
many immutable borrows are active. When a Ref<T> value goes out of scope, the count
of immutable borrows goes down by one. Just like the compile-time borrowing rules,
RefCell<T> lets us have many immutable borrows or one mutable borrow at any point

in time.

If we try to violate these rules, rather than getting a compiler error as we would with
references, the implementation of RefCell<T> will panic at runtime. Listing 15-23
shows a modification of the implementation of send in Listing 15-22. We’re deliberately
trying to create two mutable borrows active for the same scope to illustrate that
RefCell<T> prevents us from doing this at runtime.

Filename: src/lib.rs

Listing 15-23: Creating two mutable references in the same scope to see that RefCell<T> will panic

We create a variable one_borrow for the RefMut<T> smart pointer returned from
borrow_mut . Then we create another mutable borrow in the same way in the variable
two_borrow . This makes two mutable references in the same scope, which isn’t allowed.

When we run the tests for our library, the code in Listing 15-23 will compile without any
errors, but the test will fail:

 impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
 let mut one_borrow = self.sent_messages.borrow_mut();
 let mut two_borrow = self.sent_messages.borrow_mut();

 one_borrow.push(String::from(message));
 two_borrow.push(String::from(message));
 }
 }

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 427/636

Notice that the code panicked with the message already borrowed: BorrowMutError .
This is how RefCell<T> handles violations of the borrowing rules at runtime.

Choosing to catch borrowing errors at runtime rather than compile time, as we’ve done
here, means you’d potentially be finding mistakes in your code later in the development
process: possibly not until your code was deployed to production. Also, your code would
incur a small runtime performance penalty as a result of keeping track of the borrows at
runtime rather than compile time. However, using RefCell<T> makes it possible to
write a mock object that can modify itself to keep track of the messages it has seen
while you’re using it in a context where only immutable values are allowed. You can use
RefCell<T> despite its trade-offs to get more functionality than regular references

provide.

Having Multiple Owners of Mutable Data by Combining Rc<T> and
RefCell<T>

A common way to use RefCell<T> is in combination with Rc<T> . Recall that Rc<T> lets
you have multiple owners of some data, but it only gives immutable access to that data.
If you have an Rc<T> that holds a RefCell<T> , you can get a value that can have
multiple owners and that you can mutate!

For example, recall the cons list example in Listing 15-18 where we used Rc<T> to allow
multiple lists to share ownership of another list. Because Rc<T> holds only immutable

$ cargo test
 Compiling limit-tracker v0.1.0 (file:///projects/limit-tracker)
 Finished test [unoptimized + debuginfo] target(s) in 0.91s
 Running unittests src/lib.rs (target/debug/deps/limit_tracker-
e599811fa246dbde)

running 1 test
test tests::it_sends_an_over_75_percent_warning_message ... FAILED

failures:

---- tests::it_sends_an_over_75_percent_warning_message stdout ----
thread 'tests::it_sends_an_over_75_percent_warning_message' panicked at
'already borrowed: BorrowMutError', src/lib.rs:60:53
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace

failures:
 tests::it_sends_an_over_75_percent_warning_message

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass `--lib`

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 428/636

values, we can’t change any of the values in the list once we’ve created them. Let’s add
in RefCell<T> to gain the ability to change the values in the lists. Listing 15-24 shows
that by using a RefCell<T> in the Cons definition, we can modify the value stored in all
the lists:

Filename: src/main.rs

Listing 15-24: Using Rc<RefCell<i32>> to create a List that we can mutate

We create a value that is an instance of Rc<RefCell<i32>> and store it in a variable
named value so we can access it directly later. Then we create a List in a with a
Cons variant that holds value . We need to clone value so both a and value have

ownership of the inner 5 value rather than transferring ownership from value to a or
having a borrow from value .

We wrap the list a in an Rc<T> so when we create lists b and c , they can both refer to
a , which is what we did in Listing 15-18.

After we’ve created the lists in a , b , and c , we want to add 10 to the value in value .
We do this by calling borrow_mut on value , which uses the automatic dereferencing
feature we discussed in Chapter 5 (see the section “Where’s the -> Operator?”) to
dereference the Rc<T> to the inner RefCell<T> value. The borrow_mut method
returns a RefMut<T> smart pointer, and we use the dereference operator on it and
change the inner value.

#[derive(Debug)]
enum List {
 Cons(Rc<RefCell<i32>>, Rc<List>),
 Nil,
}

use crate::List::{Cons, Nil};
use std::cell::RefCell;
use std::rc::Rc;

fn main() {
 let value = Rc::new(RefCell::new(5));

 let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

 let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
 let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

 *value.borrow_mut() += 10;

 println!("a after = {:?}", a);
 println!("b after = {:?}", b);
 println!("c after = {:?}", c);
}

https://doc.rust-lang.org/book/ch05-03-method-syntax.html#wheres-the---operator

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 429/636

When we print a , b , and c , we can see that they all have the modified value of 15
rather than 5:

This technique is pretty neat! By using RefCell<T> , we have an outwardly immutable
List value. But we can use the methods on RefCell<T> that provide access to its

interior mutability so we can modify our data when we need to. The runtime checks of
the borrowing rules protect us from data races, and it’s sometimes worth trading a bit of
speed for this flexibility in our data structures. Note that RefCell<T> does not work for
multithreaded code! Mutex<T> is the thread-safe version of RefCell<T> and we’ll
discuss Mutex<T> in Chapter 16.

$ cargo run
 Compiling cons-list v0.1.0 (file:///projects/cons-list)
 Finished dev [unoptimized + debuginfo] target(s) in 0.63s
 Running `target/debug/cons-list`
a after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 3 }, Cons(RefCell { value: 15 }, Nil))
c after = Cons(RefCell { value: 4 }, Cons(RefCell { value: 15 }, Nil))

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 430/636

Reference Cycles Can Leak Memory

Rust’s memory safety guarantees make it difficult, but not impossible, to accidentally
create memory that is never cleaned up (known as a memory leak). Preventing memory
leaks entirely is not one of Rust’s guarantees, meaning memory leaks are memory safe
in Rust. We can see that Rust allows memory leaks by using Rc<T> and RefCell<T> : it’s
possible to create references where items refer to each other in a cycle. This creates
memory leaks because the reference count of each item in the cycle will never reach 0,
and the values will never be dropped.

Creating a Reference Cycle

Let’s look at how a reference cycle might happen and how to prevent it, starting with the
definition of the List enum and a tail method in Listing 15-25:

Filename: src/main.rs

Listing 15-25: A cons list definition that holds a RefCell<T> so we can modify what a Cons variant is

referring to

We’re using another variation of the List definition from Listing 15-5. The second
element in the Cons variant is now RefCell<Rc<List>> , meaning that instead of having
the ability to modify the i32 value as we did in Listing 15-24, we want to modify the

use crate::List::{Cons, Nil};
use std::cell::RefCell;
use std::rc::Rc;

#[derive(Debug)]
enum List {
 Cons(i32, RefCell<Rc<List>>),
 Nil,
}

impl List {
 fn tail(&self) -> Option<&RefCell<Rc<List>>> {
 match self {
 Cons(_, item) => Some(item),
 Nil => None,
 }
 }
}

fn main() {}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 431/636

List value a Cons variant is pointing to. We’re also adding a tail method to make it
convenient for us to access the second item if we have a Cons variant.

In Listing 15-26, we’re adding a main function that uses the definitions in Listing 15-25.
This code creates a list in a and a list in b that points to the list in a . Then it modifies
the list in a to point to b , creating a reference cycle. There are println! statements
along the way to show what the reference counts are at various points in this process.

Filename: src/main.rs

Listing 15-26: Creating a reference cycle of two List values pointing to each other

We create an Rc<List> instance holding a List value in the variable a with an initial
list of 5, Nil . We then create an Rc<List> instance holding another List value in the
variable b that contains the value 10 and points to the list in a .

We modify a so it points to b instead of Nil , creating a cycle. We do that by using the
tail method to get a reference to the RefCell<Rc<List>> in a , which we put in the

variable link . Then we use the borrow_mut method on the RefCell<Rc<List>> to
change the value inside from an Rc<List> that holds a Nil value to the Rc<List> in
b .

When we run this code, keeping the last println! commented out for the moment,
we’ll get this output:

fn main() {
 let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

 println!("a initial rc count = {}", Rc::strong_count(&a));
 println!("a next item = {:?}", a.tail());

 let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

 println!("a rc count after b creation = {}", Rc::strong_count(&a));
 println!("b initial rc count = {}", Rc::strong_count(&b));
 println!("b next item = {:?}", b.tail());

 if let Some(link) = a.tail() {
 *link.borrow_mut() = Rc::clone(&b);
 }

 println!("b rc count after changing a = {}", Rc::strong_count(&b));
 println!("a rc count after changing a = {}", Rc::strong_count(&a));

 // Uncomment the next line to see that we have a cycle;
 // it will overflow the stack
 // println!("a next item = {:?}", a.tail());
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 432/636

The reference count of the Rc<List> instances in both a and b are 2 after we change
the list in a to point to b . At the end of main , Rust drops the variable b , which
decreases the reference count of the b Rc<List> instance from 2 to 1. The memory
that Rc<List> has on the heap won’t be dropped at this point, because its reference
count is 1, not 0. Then Rust drops a , which decreases the reference count of the a
Rc<List> instance from 2 to 1 as well. This instance’s memory can’t be dropped either,

because the other Rc<List> instance still refers to it. The memory allocated to the list
will remain uncollected forever. To visualize this reference cycle, we’ve created a
diagram in Figure 15-4.

5 10
a

b

Figure 15-4: A reference cycle of lists a and b pointing to each other

If you uncomment the last println! and run the program, Rust will try to print this
cycle with a pointing to b pointing to a and so forth until it overflows the stack.

Compared to a real-world program, the consequences creating a reference cycle in this
example aren’t very dire: right after we create the reference cycle, the program ends.
However, if a more complex program allocated lots of memory in a cycle and held onto

$ cargo run
 Compiling cons-list v0.1.0 (file:///projects/cons-list)
 Finished dev [unoptimized + debuginfo] target(s) in 0.53s
 Running `target/debug/cons-list`
a initial rc count = 1
a next item = Some(RefCell { value: Nil })
a rc count after b creation = 2
b initial rc count = 1
b next item = Some(RefCell { value: Cons(5, RefCell { value: Nil }) })
b rc count after changing a = 2
a rc count after changing a = 2

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 433/636

it for a long time, the program would use more memory than it needed and might
overwhelm the system, causing it to run out of available memory.

Creating reference cycles is not easily done, but it’s not impossible either. If you have
RefCell<T> values that contain Rc<T> values or similar nested combinations of types

with interior mutability and reference counting, you must ensure that you don’t create
cycles; you can’t rely on Rust to catch them. Creating a reference cycle would be a logic
bug in your program that you should use automated tests, code reviews, and other
software development practices to minimize.

Another solution for avoiding reference cycles is reorganizing your data structures so
that some references express ownership and some references don’t. As a result, you
can have cycles made up of some ownership relationships and some non-ownership
relationships, and only the ownership relationships affect whether or not a value can be
dropped. In Listing 15-25, we always want Cons variants to own their list, so
reorganizing the data structure isn’t possible. Let’s look at an example using graphs
made up of parent nodes and child nodes to see when non-ownership relationships are
an appropriate way to prevent reference cycles.

Preventing Reference Cycles: Turning an Rc<T> into a Weak<T>

So far, we’ve demonstrated that calling Rc::clone increases the strong_count of an
Rc<T> instance, and an Rc<T> instance is only cleaned up if its strong_count is 0. You

can also create a weak reference to the value within an Rc<T> instance by calling
Rc::downgrade and passing a reference to the Rc<T> . Strong references are how you

can share ownership of an Rc<T> instance. Weak references don’t express an
ownership relationship, and their count doesn’t affect when an Rc<T> instance is
cleaned up. They won’t cause a reference cycle because any cycle involving some weak
references will be broken once the strong reference count of values involved is 0.

When you call Rc::downgrade , you get a smart pointer of type Weak<T> . Instead of
increasing the strong_count in the Rc<T> instance by 1, calling Rc::downgrade
increases the weak_count by 1. The Rc<T> type uses weak_count to keep track of how
many Weak<T> references exist, similar to strong_count . The difference is the
weak_count doesn’t need to be 0 for the Rc<T> instance to be cleaned up.

Because the value that Weak<T> references might have been dropped, to do anything
with the value that a Weak<T> is pointing to, you must make sure the value still exists.
Do this by calling the upgrade method on a Weak<T> instance, which will return an
Option<Rc<T>> . You’ll get a result of Some if the Rc<T> value has not been dropped yet

and a result of None if the Rc<T> value has been dropped. Because upgrade returns
an Option<Rc<T>> , Rust will ensure that the Some case and the None case are handled,
and there won’t be an invalid pointer.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 434/636

As an example, rather than using a list whose items know only about the next item, we’ll
create a tree whose items know about their children items and their parent items.

Creating a Tree Data Structure: a Node with Child Nodes

To start, we’ll build a tree with nodes that know about their child nodes. We’ll create a
struct named Node that holds its own i32 value as well as references to its children
Node values:

Filename: src/main.rs

We want a Node to own its children, and we want to share that ownership with
variables so we can access each Node in the tree directly. To do this, we define the
Vec<T> items to be values of type Rc<Node> . We also want to modify which nodes are

children of another node, so we have a RefCell<T> in children around the
Vec<Rc<Node>> .

Next, we’ll use our struct definition and create one Node instance named leaf with the
value 3 and no children, and another instance named branch with the value 5 and
leaf as one of its children, as shown in Listing 15-27:

Filename: src/main.rs

Listing 15-27: Creating a leaf node with no children and a branch node with leaf as one of its children

We clone the Rc<Node> in leaf and store that in branch , meaning the Node in leaf
now has two owners: leaf and branch . We can get from branch to leaf through
branch.children , but there’s no way to get from leaf to branch . The reason is that

use std::cell::RefCell;
use std::rc::Rc;

#[derive(Debug)]
struct Node {
 value: i32,
 children: RefCell<Vec<Rc<Node>>>,
}

fn main() {
 let leaf = Rc::new(Node {
 value: 3,
 children: RefCell::new(vec![]),
 });

 let branch = Rc::new(Node {
 value: 5,
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 435/636

leaf has no reference to branch and doesn’t know they’re related. We want leaf to
know that branch is its parent. We’ll do that next.

Adding a Reference from a Child to Its Parent

To make the child node aware of its parent, we need to add a parent field to our Node
struct definition. The trouble is in deciding what the type of parent should be. We know
it can’t contain an Rc<T> , because that would create a reference cycle with
leaf.parent pointing to branch and branch.children pointing to leaf , which would

cause their strong_count values to never be 0.

Thinking about the relationships another way, a parent node should own its children: if
a parent node is dropped, its child nodes should be dropped as well. However, a child
should not own its parent: if we drop a child node, the parent should still exist. This is a
case for weak references!

So instead of Rc<T> , we’ll make the type of parent use Weak<T> , specifically a
RefCell<Weak<Node>> . Now our Node struct definition looks like this:

Filename: src/main.rs

A node will be able to refer to its parent node but doesn’t own its parent. In Listing 15-
28, we update main to use this new definition so the leaf node will have a way to refer
to its parent, branch :

Filename: src/main.rs

use std::cell::RefCell;
use std::rc::{Rc, Weak};

#[derive(Debug)]
struct Node {
 value: i32,
 parent: RefCell<Weak<Node>>,
 children: RefCell<Vec<Rc<Node>>>,
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 436/636

Listing 15-28: A leaf node with a weak reference to its parent node branch

Creating the leaf node looks similar to Listing 15-27 with the exception of the parent
field: leaf starts out without a parent, so we create a new, empty Weak<Node>
reference instance.

At this point, when we try to get a reference to the parent of leaf by using the
upgrade method, we get a None value. We see this in the output from the first
println! statement:

When we create the branch node, it will also have a new Weak<Node> reference in the
parent field, because branch doesn’t have a parent node. We still have leaf as one of

the children of branch . Once we have the Node instance in branch , we can modify
leaf to give it a Weak<Node> reference to its parent. We use the borrow_mut method

on the RefCell<Weak<Node>> in the parent field of leaf , and then we use the
Rc::downgrade function to create a Weak<Node> reference to branch from the
Rc<Node> in branch.

When we print the parent of leaf again, this time we’ll get a Some variant holding
branch : now leaf can access its parent! When we print leaf , we also avoid the cycle

that eventually ended in a stack overflow like we had in Listing 15-26; the Weak<Node>
references are printed as (Weak) :

fn main() {
 let leaf = Rc::new(Node {
 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

 println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());

 let branch = Rc::new(Node {
 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

 println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());
}

leaf parent = None

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 437/636

The lack of infinite output indicates that this code didn’t create a reference cycle. We can
also tell this by looking at the values we get from calling Rc::strong_count and
Rc::weak_count .

Visualizing Changes to strong_count and weak_count

Let’s look at how the strong_count and weak_count values of the Rc<Node> instances
change by creating a new inner scope and moving the creation of branch into that
scope. By doing so, we can see what happens when branch is created and then
dropped when it goes out of scope. The modifications are shown in Listing 15-29:

Filename: src/main.rs

leaf parent = Some(Node { value: 5, parent: RefCell { value: (Weak) },
children: RefCell { value: [Node { value: 3, parent: RefCell { value:
(Weak) },
children: RefCell { value: [] } }] } })

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 438/636

Listing 15-29: Creating branch in an inner scope and examining strong and weak reference counts

After leaf is created, its Rc<Node> has a strong count of 1 and a weak count of 0. In
the inner scope, we create branch and associate it with leaf , at which point when we
print the counts, the Rc<Node> in branch will have a strong count of 1 and a weak
count of 1 (for leaf.parent pointing to branch with a Weak<Node>). When we print the
counts in leaf , we’ll see it will have a strong count of 2, because branch now has a
clone of the Rc<Node> of leaf stored in branch.children , but will still have a weak
count of 0.

fn main() {
 let leaf = Rc::new(Node {
 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

 println!(
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);

 {
 let branch = Rc::new(Node {
 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

 println!(
 "branch strong = {}, weak = {}",
 Rc::strong_count(&branch),
 Rc::weak_count(&branch),
);

 println!(
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
 }

 println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());
 println!(
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 439/636

When the inner scope ends, branch goes out of scope and the strong count of the
Rc<Node> decreases to 0, so its Node is dropped. The weak count of 1 from
leaf.parent has no bearing on whether or not Node is dropped, so we don’t get any

memory leaks!

If we try to access the parent of leaf after the end of the scope, we’ll get None again.
At the end of the program, the Rc<Node> in leaf has a strong count of 1 and a weak
count of 0, because the variable leaf is now the only reference to the Rc<Node> again.

All of the logic that manages the counts and value dropping is built into Rc<T> and
Weak<T> and their implementations of the Drop trait. By specifying that the

relationship from a child to its parent should be a Weak<T> reference in the definition of
Node , you’re able to have parent nodes point to child nodes and vice versa without

creating a reference cycle and memory leaks.

Summary

This chapter covered how to use smart pointers to make different guarantees and
trade-offs from those Rust makes by default with regular references. The Box<T> type
has a known size and points to data allocated on the heap. The Rc<T> type keeps track
of the number of references to data on the heap so that data can have multiple owners.
The RefCell<T> type with its interior mutability gives us a type that we can use when
we need an immutable type but need to change an inner value of that type; it also
enforces the borrowing rules at runtime instead of at compile time.

Also discussed were the Deref and Drop traits, which enable a lot of the functionality
of smart pointers. We explored reference cycles that can cause memory leaks and how
to prevent them using Weak<T> .

If this chapter has piqued your interest and you want to implement your own smart
pointers, check out “The Rustonomicon” for more useful information.

Next, we’ll talk about concurrency in Rust. You’ll even learn about a few new smart
pointers.

https://doc.rust-lang.org/nomicon/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 440/636

Fearless Concurrency
Handling concurrent programming safely and efficiently is another of Rust’s major goals.
Concurrent programming, where different parts of a program execute independently,
and parallel programming, where different parts of a program execute at the same time,
are becoming increasingly important as more computers take advantage of their
multiple processors. Historically, programming in these contexts has been difficult and
error prone: Rust hopes to change that.

Initially, the Rust team thought that ensuring memory safety and preventing
concurrency problems were two separate challenges to be solved with different
methods. Over time, the team discovered that the ownership and type systems are a
powerful set of tools to help manage memory safety and concurrency problems! By
leveraging ownership and type checking, many concurrency errors are compile-time
errors in Rust rather than runtime errors. Therefore, rather than making you spend lots
of time trying to reproduce the exact circumstances under which a runtime concurrency
bug occurs, incorrect code will refuse to compile and present an error explaining the
problem. As a result, you can fix your code while you’re working on it rather than
potentially after it has been shipped to production. We’ve nicknamed this aspect of Rust
fearless concurrency. Fearless concurrency allows you to write code that is free of subtle
bugs and is easy to refactor without introducing new bugs.

Note: For simplicity’s sake, we’ll refer to many of the problems as concurrent rather
than being more precise by saying concurrent and/or parallel. If this book were
about concurrency and/or parallelism, we’d be more specific. For this chapter,
please mentally substitute concurrent and/or parallel whenever we use concurrent.

Many languages are dogmatic about the solutions they offer for handling concurrent
problems. For example, Erlang has elegant functionality for message-passing
concurrency but has only obscure ways to share state between threads. Supporting only
a subset of possible solutions is a reasonable strategy for higher-level languages,
because a higher-level language promises benefits from giving up some control to gain
abstractions. However, lower-level languages are expected to provide the solution with
the best performance in any given situation and have fewer abstractions over the
hardware. Therefore, Rust offers a variety of tools for modeling problems in whatever
way is appropriate for your situation and requirements.

Here are the topics we’ll cover in this chapter:

How to create threads to run multiple pieces of code at the same time
Message-passing concurrency, where channels send messages between threads
Shared-state concurrency, where multiple threads have access to some piece of
data

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 441/636

The Sync and Send traits, which extend Rust’s concurrency guarantees to user-
defined types as well as types provided by the standard library

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 442/636

Using Threads to Run Code Simultaneously

In most current operating systems, an executed program’s code is run in a process, and
the operating system will manage multiple processes at once. Within a program, you
can also have independent parts that run simultaneously. The features that run these
independent parts are called threads. For example, a web server could have multiple
threads so that it could respond to more than one request at the same time.

Splitting the computation in your program into multiple threads to run multiple tasks at
the same time can improve performance, but it also adds complexity. Because threads
can run simultaneously, there’s no inherent guarantee about the order in which parts of
your code on different threads will run. This can lead to problems, such as:

Race conditions, where threads are accessing data or resources in an inconsistent
order
Deadlocks, where two threads are waiting for each other, preventing both threads
from continuing
Bugs that happen only in certain situations and are hard to reproduce and fix
reliably

Rust attempts to mitigate the negative effects of using threads, but programming in a
multithreaded context still takes careful thought and requires a code structure that is
different from that in programs running in a single thread.

Programming languages implement threads in a few different ways, and many
operating systems provide an API the language can call for creating new threads. The
Rust standard library uses a 1:1 model of thread implementation, whereby a program
uses one operating system thread per one language thread. There are crates that
implement other models of threading that make different tradeoffs to the 1:1 model.

Creating a New Thread with spawn

To create a new thread, we call the thread::spawn function and pass it a closure (we
talked about closures in Chapter 13) containing the code we want to run in the new
thread. The example in Listing 16-1 prints some text from a main thread and other text
from a new thread:

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 443/636

Listing 16-1: Creating a new thread to print one thing while the main thread prints something else

Note that when the main thread of a Rust program completes, all spawned threads are
shut down, whether or not they have finished running. The output from this program
might be a little different every time, but it will look similar to the following:

The calls to thread::sleep force a thread to stop its execution for a short duration,
allowing a different thread to run. The threads will probably take turns, but that isn’t
guaranteed: it depends on how your operating system schedules the threads. In this
run, the main thread printed first, even though the print statement from the spawned
thread appears first in the code. And even though we told the spawned thread to print
until i is 9, it only got to 5 before the main thread shut down.

If you run this code and only see output from the main thread, or don’t see any overlap,
try increasing the numbers in the ranges to create more opportunities for the operating
system to switch between the threads.

Waiting for All Threads to Finish Using join Handles

The code in Listing 16-1 not only stops the spawned thread prematurely most of the
time due to the main thread ending, but because there is no guarantee on the order in
which threads run, we also can’t guarantee that the spawned thread will get to run at all!

use std::thread;
use std::time::Duration;

fn main() {
 thread::spawn(|| {
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
 });

 for i in 1..5 {
 println!("hi number {} from the main thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
}

hi number 1 from the main thread!
hi number 1 from the spawned thread!
hi number 2 from the main thread!
hi number 2 from the spawned thread!
hi number 3 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the main thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 444/636

We can fix the problem of the spawned thread not running or ending prematurely by
saving the return value of thread::spawn in a variable. The return type of
thread::spawn is JoinHandle . A JoinHandle is an owned value that, when we call the
join method on it, will wait for its thread to finish. Listing 16-2 shows how to use the
JoinHandle of the thread we created in Listing 16-1 and call join to make sure the

spawned thread finishes before main exits:

Filename: src/main.rs

Listing 16-2: Saving a JoinHandle from thread::spawn to guarantee the thread is run to completion

Calling join on the handle blocks the thread currently running until the thread
represented by the handle terminates. Blocking a thread means that thread is prevented
from performing work or exiting. Because we’ve put the call to join after the main
thread’s for loop, running Listing 16-2 should produce output similar to this:

The two threads continue alternating, but the main thread waits because of the call to
handle.join() and does not end until the spawned thread is finished.

use std::thread;
use std::time::Duration;

fn main() {
 let handle = thread::spawn(|| {
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
 });

 for i in 1..5 {
 println!("hi number {} from the main thread!", i);
 thread::sleep(Duration::from_millis(1));
 }

 handle.join().unwrap();
}

hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 1 from the spawned thread!
hi number 3 from the main thread!
hi number 2 from the spawned thread!
hi number 4 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 445/636

But let’s see what happens when we instead move handle.join() before the for loop
in main , like this:

Filename: src/main.rs

The main thread will wait for the spawned thread to finish and then run its for loop, so
the output won’t be interleaved anymore, as shown here:

Small details, such as where join is called, can affect whether or not your threads run
at the same time.

Using move Closures with Threads

We'll often use the move keyword with closures passed to thread::spawn because the
closure will then take ownership of the values it uses from the environment, thus
transferring ownership of those values from one thread to another. In the “Capturing
References or Moving Ownership” section of Chapter 13, we discussed move in the

use std::thread;
use std::time::Duration;

fn main() {
 let handle = thread::spawn(|| {
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
 });

 handle.join().unwrap();

 for i in 1..5 {
 println!("hi number {} from the main thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
}

hi number 1 from the spawned thread!
hi number 2 from the spawned thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!
hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 3 from the main thread!
hi number 4 from the main thread!

https://doc.rust-lang.org/book/ch13-01-closures.html#capturing-references-or-moving-ownership

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 446/636

context of closures. Now, we’ll concentrate more on the interaction between move and
thread::spawn .

Notice in Listing 16-1 that the closure we pass to thread::spawn takes no arguments:
we’re not using any data from the main thread in the spawned thread’s code. To use
data from the main thread in the spawned thread, the spawned thread’s closure must
capture the values it needs. Listing 16-3 shows an attempt to create a vector in the main
thread and use it in the spawned thread. However, this won’t yet work, as you’ll see in a
moment.

Filename: src/main.rs

Listing 16-3: Attempting to use a vector created by the main thread in another thread

The closure uses v , so it will capture v and make it part of the closure’s environment.
Because thread::spawn runs this closure in a new thread, we should be able to access
v inside that new thread. But when we compile this example, we get the following

error:

use std::thread;

fn main() {
 let v = vec![1, 2, 3];

 let handle = thread::spawn(|| {
 println!("Here's a vector: {:?}", v);
 });

 handle.join().unwrap();
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 447/636

Rust infers how to capture v , and because println! only needs a reference to v , the
closure tries to borrow v . However, there’s a problem: Rust can’t tell how long the
spawned thread will run, so it doesn’t know if the reference to v will always be valid.

Listing 16-4 provides a scenario that’s more likely to have a reference to v that won’t be
valid:

Filename: src/main.rs

Listing 16-4: A thread with a closure that attempts to capture a reference to v from a main thread that

drops v

$ cargo run
 Compiling threads v0.1.0 (file:///projects/threads)
error[E0373]: closure may outlive the current function, but it borrows `v`,
which is owned by the current function
 --> src/main.rs:6:32
 |
6 | let handle = thread::spawn(|| {
 | ^^ may outlive borrowed value `v`
7 | println!("Here's a vector: {:?}", v);
 | - `v` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:6:18
 |
6 | let handle = thread::spawn(|| {
 | __________________^
7 | | println!("Here's a vector: {:?}", v);
8 | | });
 | |______^
help: to force the closure to take ownership of `v` (and any other
referenced variables), use the `move` keyword
 |
6 | let handle = thread::spawn(move || {
 | ++++

For more information about this error, try `rustc --explain E0373`.
error: could not compile `threads` due to previous error

use std::thread;

fn main() {
 let v = vec![1, 2, 3];

 let handle = thread::spawn(|| {
 println!("Here's a vector: {:?}", v);
 });

 drop(v); // oh no!

 handle.join().unwrap();
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 448/636

If Rust allowed us to run this code, there’s a possibility the spawned thread would be
immediately put in the background without running at all. The spawned thread has a
reference to v inside, but the main thread immediately drops v , using the drop
function we discussed in Chapter 15. Then, when the spawned thread starts to execute,
v is no longer valid, so a reference to it is also invalid. Oh no!

To fix the compiler error in Listing 16-3, we can use the error message’s advice:

By adding the move keyword before the closure, we force the closure to take ownership
of the values it’s using rather than allowing Rust to infer that it should borrow the
values. The modification to Listing 16-3 shown in Listing 16-5 will compile and run as we
intend:

Filename: src/main.rs

Listing 16-5: Using the move keyword to force a closure to take ownership of the values it uses

We might be tempted to try the same thing to fix the code in Listing 16-4 where the
main thread called drop by using a move closure. However, this fix will not work
because what Listing 16-4 is trying to do is disallowed for a different reason. If we added
move to the closure, we would move v into the closure’s environment, and we could no

longer call drop on it in the main thread. We would get this compiler error instead:

help: to force the closure to take ownership of `v` (and any other
referenced variables), use the `move` keyword
 |
6 | let handle = thread::spawn(move || {
 | ++++

use std::thread;

fn main() {
 let v = vec![1, 2, 3];

 let handle = thread::spawn(move || {
 println!("Here's a vector: {:?}", v);
 });

 handle.join().unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 449/636

Rust’s ownership rules have saved us again! We got an error from the code in Listing 16-
3 because Rust was being conservative and only borrowing v for the thread, which
meant the main thread could theoretically invalidate the spawned thread’s reference. By
telling Rust to move ownership of v to the spawned thread, we’re guaranteeing Rust
that the main thread won’t use v anymore. If we change Listing 16-4 in the same way,
we’re then violating the ownership rules when we try to use v in the main thread. The
move keyword overrides Rust’s conservative default of borrowing; it doesn’t let us

violate the ownership rules.

With a basic understanding of threads and the thread API, let’s look at what we can do
with threads.

$ cargo run
 Compiling threads v0.1.0 (file:///projects/threads)
error[E0382]: use of moved value: `v`
 --> src/main.rs:10:10
 |
4 | let v = vec![1, 2, 3];
 | - move occurs because `v` has type `Vec<i32>`, which does not
implement the `Copy` trait
5 |
6 | let handle = thread::spawn(move || {
 | ------- value moved into closure here
7 | println!("Here's a vector: {:?}", v);
 | - variable moved due to use
in closure
...
10 | drop(v); // oh no!
 | ^ value used here after move

For more information about this error, try `rustc --explain E0382`.
error: could not compile `threads` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 450/636

Using Message Passing to Transfer Data Between
Threads

One increasingly popular approach to ensuring safe concurrency is message passing,
where threads or actors communicate by sending each other messages containing data.
Here’s the idea in a slogan from the Go language documentation: “Do not communicate
by sharing memory; instead, share memory by communicating.”

To accomplish message-sending concurrency, Rust's standard library provides an
implementation of channels. A channel is a general programming concept by which data
is sent from one thread to another.

You can imagine a channel in programming as being like a directional channel of water,
such as a stream or a river. If you put something like a rubber duck into a river, it will
travel downstream to the end of the waterway.

A channel has two halves: a transmitter and a receiver. The transmitter half is the
upstream location where you put rubber ducks into the river, and the receiver half is
where the rubber duck ends up downstream. One part of your code calls methods on
the transmitter with the data you want to send, and another part checks the receiving
end for arriving messages. A channel is said to be closed if either the transmitter or
receiver half is dropped.

Here, we’ll work up to a program that has one thread to generate values and send them
down a channel, and another thread that will receive the values and print them out.
We’ll be sending simple values between threads using a channel to illustrate the feature.
Once you’re familiar with the technique, you could use channels for any threads that
need to communicate between each other, such as a chat system or a system where
many threads perform parts of a calculation and send the parts to one thread that
aggregates the results.

First, in Listing 16-6, we’ll create a channel but not do anything with it. Note that this
won’t compile yet because Rust can’t tell what type of values we want to send over the
channel.

Filename: src/main.rs

Listing 16-6: Creating a channel and assigning the two halves to tx and rx

use std::sync::mpsc;

fn main() {
 let (tx, rx) = mpsc::channel();
}

https://golang.org/doc/effective_go.html#concurrency
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 451/636

We create a new channel using the mpsc::channel function; mpsc stands for multiple
producer, single consumer. In short, the way Rust’s standard library implements channels
means a channel can have multiple sending ends that produce values but only one
receiving end that consumes those values. Imagine multiple streams flowing together
into one big river: everything sent down any of the streams will end up in one river at
the end. We’ll start with a single producer for now, but we’ll add multiple producers
when we get this example working.

The mpsc::channel function returns a tuple, the first element of which is the sending
end--the transmitter--and the second element is the receiving end--the receiver. The
abbreviations tx and rx are traditionally used in many fields for transmitter and
receiver respectively, so we name our variables as such to indicate each end. We’re using
a let statement with a pattern that destructures the tuples; we’ll discuss the use of
patterns in let statements and destructuring in Chapter 18. For now, know that using a
let statement this way is a convenient approach to extract the pieces of the tuple

returned by mpsc::channel .

Let’s move the transmitting end into a spawned thread and have it send one string so
the spawned thread is communicating with the main thread, as shown in Listing 16-7.
This is like putting a rubber duck in the river upstream or sending a chat message from
one thread to another.

Filename: src/main.rs

Listing 16-7: Moving tx to a spawned thread and sending “hi”

Again, we’re using thread::spawn to create a new thread and then using move to move
tx into the closure so the spawned thread owns tx . The spawned thread needs to

own the transmitter to be able to send messages through the channel. The transmitter
has a send method that takes the value we want to send. The send method returns a
Result<T, E> type, so if the receiver has already been dropped and there’s nowhere to

send a value, the send operation will return an error. In this example, we’re calling
unwrap to panic in case of an error. But in a real application, we would handle it

properly: return to Chapter 9 to review strategies for proper error handling.

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 });
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 452/636

In Listing 16-8, we’ll get the value from the receiver in the main thread. This is like
retrieving the rubber duck from the water at the end of the river or receiving a chat
message.

Filename: src/main.rs

Listing 16-8: Receiving the value “hi” in the main thread and printing it

The receiver has two useful methods: recv and try_recv . We’re using recv , short for
receive, which will block the main thread’s execution and wait until a value is sent down
the channel. Once a value is sent, recv will return it in a Result<T, E> . When the
transmitter closes, recv will return an error to signal that no more values will be
coming.

The try_recv method doesn’t block, but will instead return a Result<T, E>
immediately: an Ok value holding a message if one is available and an Err value if
there aren’t any messages this time. Using try_recv is useful if this thread has other
work to do while waiting for messages: we could write a loop that calls try_recv every
so often, handles a message if one is available, and otherwise does other work for a
little while until checking again.

We’ve used recv in this example for simplicity; we don’t have any other work for the
main thread to do other than wait for messages, so blocking the main thread is
appropriate.

When we run the code in Listing 16-8, we’ll see the value printed from the main thread:

Perfect!

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

Got: hi

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 453/636

Channels and Ownership Transference

The ownership rules play a vital role in message sending because they help you write
safe, concurrent code. Preventing errors in concurrent programming is the advantage of
thinking about ownership throughout your Rust programs. Let’s do an experiment to
show how channels and ownership work together to prevent problems: we’ll try to use a
val value in the spawned thread after we’ve sent it down the channel. Try compiling the

code in Listing 16-9 to see why this code isn’t allowed:

Filename: src/main.rs

Listing 16-9: Attempting to use val after we’ve sent it down the channel

Here, we try to print val after we’ve sent it down the channel via tx.send . Allowing
this would be a bad idea: once the value has been sent to another thread, that thread
could modify or drop it before we try to use the value again. Potentially, the other
thread’s modifications could cause errors or unexpected results due to inconsistent or
nonexistent data. However, Rust gives us an error if we try to compile the code in Listing
16-9:

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 println!("val is {}", val);
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 454/636

Our concurrency mistake has caused a compile time error. The send function takes
ownership of its parameter, and when the value is moved, the receiver takes ownership
of it. This stops us from accidentally using the value again after sending it; the
ownership system checks that everything is okay.

Sending Multiple Values and Seeing the Receiver Waiting

The code in Listing 16-8 compiled and ran, but it didn’t clearly show us that two separate
threads were talking to each other over the channel. In Listing 16-10 we’ve made some
modifications that will prove the code in Listing 16-8 is running concurrently: the
spawned thread will now send multiple messages and pause for a second between each
message.

Filename: src/main.rs

$ cargo run
 Compiling message-passing v0.1.0 (file:///projects/message-passing)
error[E0382]: borrow of moved value: `val`
 --> src/main.rs:10:31
 |
8 | let val = String::from("hi");
 | --- move occurs because `val` has type `String`, which
does not implement the `Copy` trait
9 | tx.send(val).unwrap();
 | --- value moved here
10 | println!("val is {}", val);
 | ^^^ value borrowed here after move
 |
 = note: this error originates in the macro `$crate::format_args_nl`
which comes from the expansion of the macro `println` (in Nightly builds,
run with -Z macro-backtrace for more info)

For more information about this error, try `rustc --explain E0382`.
error: could not compile `message-passing` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 455/636

Listing 16-10: Sending multiple messages and pausing between each

This time, the spawned thread has a vector of strings that we want to send to the main
thread. We iterate over them, sending each individually, and pause between each by
calling the thread::sleep function with a Duration value of 1 second.

In the main thread, we’re not calling the recv function explicitly anymore: instead,
we’re treating rx as an iterator. For each value received, we’re printing it. When the
channel is closed, iteration will end.

When running the code in Listing 16-10, you should see the following output with a 1-
second pause in between each line:

Because we don’t have any code that pauses or delays in the for loop in the main
thread, we can tell that the main thread is waiting to receive values from the spawned
thread.

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let vals = vec![
 String::from("hi"),
 String::from("from"),
 String::from("the"),
 String::from("thread"),
];

 for val in vals {
 tx.send(val).unwrap();
 thread::sleep(Duration::from_secs(1));
 }
 });

 for received in rx {
 println!("Got: {}", received);
 }
}

Got: hi
Got: from
Got: the
Got: thread

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 456/636

Creating Multiple Producers by Cloning the Transmitter

Earlier we mentioned that mpsc was an acronym for multiple producer, single consumer.
Let’s put mpsc to use and expand the code in Listing 16-10 to create multiple threads
that all send values to the same receiver. We can do so by cloning the transmitter, as
shown in Listing 16-11:

Filename: src/main.rs

Listing 16-11: Sending multiple messages from multiple producers

This time, before we create the first spawned thread, we call clone on the transmitter.
This will give us a new transmitter we can pass to the first spawned thread. We pass the
original transmitter to a second spawned thread. This gives us two threads, each
sending different messages to the one receiver.

 // --snip--

 let (tx, rx) = mpsc::channel();

 let tx1 = tx.clone();
 thread::spawn(move || {
 let vals = vec![
 String::from("hi"),
 String::from("from"),
 String::from("the"),
 String::from("thread"),
];

 for val in vals {
 tx1.send(val).unwrap();
 thread::sleep(Duration::from_secs(1));
 }
 });

 thread::spawn(move || {
 let vals = vec![
 String::from("more"),
 String::from("messages"),
 String::from("for"),
 String::from("you"),
];

 for val in vals {
 tx.send(val).unwrap();
 thread::sleep(Duration::from_secs(1));
 }
 });

 for received in rx {
 println!("Got: {}", received);
 }

 // --snip--

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 457/636

When you run the code, your output should look something like this:

You might see the values in another order, depending on your system. This is what
makes concurrency interesting as well as difficult. If you experiment with
thread::sleep , giving it various values in the different threads, each run will be more

nondeterministic and create different output each time.

Now that we’ve looked at how channels work, let’s look at a different method of
concurrency.

Got: hi
Got: more
Got: from
Got: messages
Got: for
Got: the
Got: thread
Got: you

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 458/636

Shared-State Concurrency

Message passing is a fine way of handling concurrency, but it’s not the only one.
Another method would be for multiple threads to access the same shared data.
Consider this part of the slogan from the Go language documentation again: “do not
communicate by sharing memory.”

What would communicating by sharing memory look like? In addition, why would
message-passing enthusiasts caution not to use memory sharing?

In a way, channels in any programming language are similar to single ownership,
because once you transfer a value down a channel, you should no longer use that value.
Shared memory concurrency is like multiple ownership: multiple threads can access the
same memory location at the same time. As you saw in Chapter 15, where smart
pointers made multiple ownership possible, multiple ownership can add complexity
because these different owners need managing. Rust’s type system and ownership rules
greatly assist in getting this management correct. For an example, let’s look at mutexes,
one of the more common concurrency primitives for shared memory.

Using Mutexes to Allow Access to Data from One Thread at a Time

Mutex is an abbreviation for mutual exclusion, as in, a mutex allows only one thread to
access some data at any given time. To access the data in a mutex, a thread must first
signal that it wants access by asking to acquire the mutex’s lock. The lock is a data
structure that is part of the mutex that keeps track of who currently has exclusive access
to the data. Therefore, the mutex is described as guarding the data it holds via the
locking system.

Mutexes have a reputation for being difficult to use because you have to remember two
rules:

You must attempt to acquire the lock before using the data.
When you’re done with the data that the mutex guards, you must unlock the data
so other threads can acquire the lock.

For a real-world metaphor for a mutex, imagine a panel discussion at a conference with
only one microphone. Before a panelist can speak, they have to ask or signal that they
want to use the microphone. When they get the microphone, they can talk for as long as
they want to and then hand the microphone to the next panelist who requests to speak.
If a panelist forgets to hand the microphone off when they’re finished with it, no one
else is able to speak. If management of the shared microphone goes wrong, the panel
won’t work as planned!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 459/636

Management of mutexes can be incredibly tricky to get right, which is why so many
people are enthusiastic about channels. However, thanks to Rust’s type system and
ownership rules, you can’t get locking and unlocking wrong.

The API of Mutex<T>

As an example of how to use a mutex, let’s start by using a mutex in a single-threaded
context, as shown in Listing 16-12:

Filename: src/main.rs

Listing 16-12: Exploring the API of Mutex<T> in a single-threaded context for simplicity

As with many types, we create a Mutex<T> using the associated function new . To access
the data inside the mutex, we use the lock method to acquire the lock. This call will
block the current thread so it can’t do any work until it’s our turn to have the lock.

The call to lock would fail if another thread holding the lock panicked. In that case, no
one would ever be able to get the lock, so we’ve chosen to unwrap and have this thread
panic if we’re in that situation.

After we’ve acquired the lock, we can treat the return value, named num in this case, as
a mutable reference to the data inside. The type system ensures that we acquire a lock
before using the value in m . The type of m is Mutex<i32> , not i32 , so we must call
lock to be able to use the i32 value. We can’t forget; the type system won’t let us

access the inner i32 otherwise.

As you might suspect, Mutex<T> is a smart pointer. More accurately, the call to lock
returns a smart pointer called MutexGuard , wrapped in a LockResult that we handled
with the call to unwrap . The MutexGuard smart pointer implements Deref to point at
our inner data; the smart pointer also has a Drop implementation that releases the lock
automatically when a MutexGuard goes out of scope, which happens at the end of the
inner scope. As a result, we don’t risk forgetting to release the lock and blocking the
mutex from being used by other threads, because the lock release happens
automatically.

use std::sync::Mutex;

fn main() {
 let m = Mutex::new(5);

 {
 let mut num = m.lock().unwrap();
 *num = 6;
 }

 println!("m = {:?}", m);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 460/636

After dropping the lock, we can print the mutex value and see that we were able to
change the inner i32 to 6.

Sharing a Mutex<T> Between Multiple Threads

Now, let’s try to share a value between multiple threads using Mutex<T> . We’ll spin up
10 threads and have them each increment a counter value by 1, so the counter goes
from 0 to 10. The next example in Listing 16-13 will have a compiler error, and we’ll use
that error to learn more about using Mutex<T> and how Rust helps us use it correctly.

Filename: src/main.rs

Listing 16-13: Ten threads each increment a counter guarded by a Mutex<T>

We create a counter variable to hold an i32 inside a Mutex<T> , as we did in Listing 16-
12. Next, we create 10 threads by iterating over a range of numbers. We use
thread::spawn and give all the threads the same closure: one that moves the counter

into the thread, acquires a lock on the Mutex<T> by calling the lock method, and then
adds 1 to the value in the mutex. When a thread finishes running its closure, num will go
out of scope and release the lock so another thread can acquire it.

In the main thread, we collect all the join handles. Then, as we did in Listing 16-2, we call
join on each handle to make sure all the threads finish. At that point, the main thread

will acquire the lock and print the result of this program.

We hinted that this example wouldn’t compile. Now let’s find out why!

use std::sync::Mutex;
use std::thread;

fn main() {
 let counter = Mutex::new(0);
 let mut handles = vec![];

 for _ in 0..10 {
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }

 println!("Result: {}", *counter.lock().unwrap());
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 461/636

The error message states that the counter value was moved in the previous iteration of
the loop. Rust is telling us that we can’t move the ownership of lock counter into
multiple threads. Let’s fix the compiler error with a multiple-ownership method we
discussed in Chapter 15.

Multiple Ownership with Multiple Threads

In Chapter 15, we gave a value multiple owners by using the smart pointer Rc<T> to
create a reference counted value. Let’s do the same here and see what happens. We’ll
wrap the Mutex<T> in Rc<T> in Listing 16-14 and clone the Rc<T> before moving
ownership to the thread.

Filename: src/main.rs

$ cargo run
 Compiling shared-state v0.1.0 (file:///projects/shared-state)
error[E0382]: use of moved value: `counter`
 --> src/main.rs:9:36
 |
5 | let counter = Mutex::new(0);
 | ------- move occurs because `counter` has type `Mutex<i32>`,
which does not implement the `Copy` trait
...
9 | let handle = thread::spawn(move || {
 | ^^^^^^^ value moved into closure
here, in previous iteration of loop
10 | let mut num = counter.lock().unwrap();
 | ------- use occurs due to use in closure

For more information about this error, try `rustc --explain E0382`.
error: could not compile `shared-state` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 462/636

Listing 16-14: Attempting to use Rc<T> to allow multiple threads to own the Mutex<T>

Once again, we compile and get... different errors! The compiler is teaching us a lot.

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;

fn main() {
 let counter = Rc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter = Rc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }

 println!("Result: {}", *counter.lock().unwrap());
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 463/636

Wow, that error message is very wordy! Here’s the important part to focus on:
`Rc<Mutex<i32>>` cannot be sent between threads safely . The compiler is also

telling us the reason why: the trait `Send` is not implemented for
`Rc<Mutex<i32>>` . We’ll talk about Send in the next section: it’s one of the traits that
ensures the types we use with threads are meant for use in concurrent situations.

Unfortunately, Rc<T> is not safe to share across threads. When Rc<T> manages the
reference count, it adds to the count for each call to clone and subtracts from the
count when each clone is dropped. But it doesn’t use any concurrency primitives to
make sure that changes to the count can’t be interrupted by another thread. This could
lead to wrong counts—subtle bugs that could in turn lead to memory leaks or a value
being dropped before we’re done with it. What we need is a type exactly like Rc<T> but
one that makes changes to the reference count in a thread-safe way.

$ cargo run
 Compiling shared-state v0.1.0 (file:///projects/shared-state)
error[E0277]: `Rc<Mutex<i32>>` cannot be sent between threads safely
 --> src/main.rs:11:36
 |
11 | let handle = thread::spawn(move || {
 | ------------- ^------
 | | |
 | ______________________|_____________within this
`[closure@src/main.rs:11:36: 11:43]`
 | | |
 | | required by a bound introduced by this call
12 | | let mut num = counter.lock().unwrap();
13 | |
14 | | *num += 1;
15 | | });
 | |_________^ `Rc<Mutex<i32>>` cannot be sent between threads safely
 |
 = help: within `[closure@src/main.rs:11:36: 11:43]`, the trait `Send` is
not implemented for `Rc<Mutex<i32>>`
note: required because it's used within this closure
 --> src/main.rs:11:36
 |
11 | let handle = thread::spawn(move || {
 | ^^^^^^^
note: required by a bound in `spawn`
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std/src/thread/mod.
rs:704:8
 |
 = note: required by this bound in `spawn`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `shared-state` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 464/636

Atomic Reference Counting with Arc<T>

Fortunately, Arc<T> is a type like Rc<T> that is safe to use in concurrent situations. The
a stands for atomic, meaning it’s an atomically reference counted type. Atomics are an
additional kind of concurrency primitive that we won’t cover in detail here: see the
standard library documentation for std::sync::atomic for more details. At this point,
you just need to know that atomics work like primitive types but are safe to share across
threads.

You might then wonder why all primitive types aren’t atomic and why standard library
types aren’t implemented to use Arc<T> by default. The reason is that thread safety
comes with a performance penalty that you only want to pay when you really need to. If
you’re just performing operations on values within a single thread, your code can run
faster if it doesn’t have to enforce the guarantees atomics provide.

Let’s return to our example: Arc<T> and Rc<T> have the same API, so we fix our
program by changing the use line, the call to new , and the call to clone . The code in
Listing 16-15 will finally compile and run:

Filename: src/main.rs

Listing 16-15: Using an Arc<T> to wrap the Mutex<T> to be able to share ownership across multiple

threads

This code will print the following:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
 let counter = Arc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }

 println!("Result: {}", *counter.lock().unwrap());
}

https://doc.rust-lang.org/std/sync/atomic/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 465/636

We did it! We counted from 0 to 10, which may not seem very impressive, but it did
teach us a lot about Mutex<T> and thread safety. You could also use this program’s
structure to do more complicated operations than just incrementing a counter. Using
this strategy, you can divide a calculation into independent parts, split those parts
across threads, and then use a Mutex<T> to have each thread update the final result
with its part.

Note that if you are doing simple numerical operations, there are types simpler than
Mutex<T> types provided by the std::sync::atomic module of the standard library.

These types provide safe, concurrent, atomic access to primitive types. We chose to use
Mutex<T> with a primitive type for this example so we could concentrate on how
Mutex<T> works.

Similarities Between RefCell<T>/Rc<T> and Mutex<T>/Arc<T>

You might have noticed that counter is immutable but we could get a mutable
reference to the value inside it; this means Mutex<T> provides interior mutability, as the
Cell family does. In the same way we used RefCell<T> in Chapter 15 to allow us to

mutate contents inside an Rc<T> , we use Mutex<T> to mutate contents inside an
Arc<T> .

Another detail to note is that Rust can’t protect you from all kinds of logic errors when
you use Mutex<T> . Recall in Chapter 15 that using Rc<T> came with the risk of creating
reference cycles, where two Rc<T> values refer to each other, causing memory leaks.
Similarly, Mutex<T> comes with the risk of creating deadlocks. These occur when an
operation needs to lock two resources and two threads have each acquired one of the
locks, causing them to wait for each other forever. If you’re interested in deadlocks, try
creating a Rust program that has a deadlock; then research deadlock mitigation
strategies for mutexes in any language and have a go at implementing them in Rust. The
standard library API documentation for Mutex<T> and MutexGuard offers useful
information.

We’ll round out this chapter by talking about the Send and Sync traits and how we can
use them with custom types.

Result: 10

https://doc.rust-lang.org/std/sync/atomic/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 466/636

Extensible Concurrency with the Sync and Send Traits

Interestingly, the Rust language has very few concurrency features. Almost every
concurrency feature we’ve talked about so far in this chapter has been part of the
standard library, not the language. Your options for handling concurrency are not
limited to the language or the standard library; you can write your own concurrency
features or use those written by others.

However, two concurrency concepts are embedded in the language: the std::marker
traits Sync and Send .

Allowing Transference of Ownership Between Threads with Send

The Send marker trait indicates that ownership of values of the type implementing
Send can be transferred between threads. Almost every Rust type is Send , but there

are some exceptions, including Rc<T> : this cannot be Send because if you cloned an
Rc<T> value and tried to transfer ownership of the clone to another thread, both

threads might update the reference count at the same time. For this reason, Rc<T> is
implemented for use in single-threaded situations where you don’t want to pay the
thread-safe performance penalty.

Therefore, Rust’s type system and trait bounds ensure that you can never accidentally
send an Rc<T> value across threads unsafely. When we tried to do this in Listing 16-14,
we got the error the trait Send is not implemented for Rc<Mutex<i32>> . When we
switched to Arc<T> , which is Send , the code compiled.

Any type composed entirely of Send types is automatically marked as Send as well.
Almost all primitive types are Send , aside from raw pointers, which we’ll discuss in
Chapter 19.

Allowing Access from Multiple Threads with Sync

The Sync marker trait indicates that it is safe for the type implementing Sync to be
referenced from multiple threads. In other words, any type T is Sync if &T (an
immutable reference to T) is Send , meaning the reference can be sent safely to
another thread. Similar to Send , primitive types are Sync , and types composed entirely
of types that are Sync are also Sync .

The smart pointer Rc<T> is also not Sync for the same reasons that it’s not Send . The
RefCell<T> type (which we talked about in Chapter 15) and the family of related

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 467/636

Cell<T> types are not Sync . The implementation of borrow checking that RefCell<T>
does at runtime is not thread-safe. The smart pointer Mutex<T> is Sync and can be
used to share access with multiple threads as you saw in the “Sharing a Mutex<T>
Between Multiple Threads” section.

Implementing Send and Sync Manually Is Unsafe

Because types that are made up of Send and Sync traits are automatically also Send
and Sync , we don’t have to implement those traits manually. As marker traits, they
don’t even have any methods to implement. They’re just useful for enforcing invariants
related to concurrency.

Manually implementing these traits involves implementing unsafe Rust code. We’ll talk
about using unsafe Rust code in Chapter 19; for now, the important information is that
building new concurrent types not made up of Send and Sync parts requires careful
thought to uphold the safety guarantees. “The Rustonomicon” has more information
about these guarantees and how to uphold them.

Summary

This isn’t the last you’ll see of concurrency in this book: the project in Chapter 20 will use
the concepts in this chapter in a more realistic situation than the smaller examples
discussed here.

As mentioned earlier, because very little of how Rust handles concurrency is part of the
language, many concurrency solutions are implemented as crates. These evolve more
quickly than the standard library, so be sure to search online for the current, state-of-
the-art crates to use in multithreaded situations.

The Rust standard library provides channels for message passing and smart pointer
types, such as Mutex<T> and Arc<T> , that are safe to use in concurrent contexts. The
type system and the borrow checker ensure that the code using these solutions won’t
end up with data races or invalid references. Once you get your code to compile, you
can rest assured that it will happily run on multiple threads without the kinds of hard-to-
track-down bugs common in other languages. Concurrent programming is no longer a
concept to be afraid of: go forth and make your programs concurrent, fearlessly!

Next, we’ll talk about idiomatic ways to model problems and structure solutions as your
Rust programs get bigger. In addition, we’ll discuss how Rust’s idioms relate to those you
might be familiar with from object-oriented programming.

https://doc.rust-lang.org/book/ch16-03-shared-state.html#sharing-a-mutext-between-multiple-threads
https://doc.rust-lang.org/nomicon/index.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 468/636

Object-Oriented Programming Features
of Rust
Object-oriented programming (OOP) is a way of modeling programs. Objects as a
programmatic concept were introduced in the programming language Simula in the
1960s. Those objects influenced Alan Kay’s programming architecture in which objects
pass messages to each other. To describe this architecture, he coined the term object-
oriented programming in 1967. Many competing definitions describe what OOP is, and by
some of these definitions Rust is object-oriented, but by others it is not. In this chapter,
we’ll explore certain characteristics that are commonly considered object-oriented and
how those characteristics translate to idiomatic Rust. We’ll then show you how to
implement an object-oriented design pattern in Rust and discuss the trade-offs of doing
so versus implementing a solution using some of Rust’s strengths instead.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 469/636

Characteristics of Object-Oriented Languages

There is no consensus in the programming community about what features a language
must have to be considered object-oriented. Rust is influenced by many programming
paradigms, including OOP; for example, we explored the features that came from
functional programming in Chapter 13. Arguably, OOP languages share certain common
characteristics, namely objects, encapsulation, and inheritance. Let’s look at what each
of those characteristics means and whether Rust supports it.

Objects Contain Data and Behavior

The book Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Professional, 1994),
colloquially referred to as The Gang of Four book, is a catalog of object-oriented design
patterns. It defines OOP this way:

Object-oriented programs are made up of objects. An object packages both data
and the procedures that operate on that data. The procedures are typically called
methods or operations.

Using this definition, Rust is object-oriented: structs and enums have data, and impl
blocks provide methods on structs and enums. Even though structs and enums with
methods aren’t called objects, they provide the same functionality, according to the
Gang of Four’s definition of objects.

Encapsulation that Hides Implementation Details

Another aspect commonly associated with OOP is the idea of encapsulation, which
means that the implementation details of an object aren’t accessible to code using that
object. Therefore, the only way to interact with an object is through its public API; code
using the object shouldn’t be able to reach into the object’s internals and change data or
behavior directly. This enables the programmer to change and refactor an object’s
internals without needing to change the code that uses the object.

We discussed how to control encapsulation in Chapter 7: we can use the pub keyword
to decide which modules, types, functions, and methods in our code should be public,
and by default everything else is private. For example, we can define a struct
AveragedCollection that has a field containing a vector of i32 values. The struct can

also have a field that contains the average of the values in the vector, meaning the

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 470/636

average doesn’t have to be computed on demand whenever anyone needs it. In other
words, AveragedCollection will cache the calculated average for us. Listing 17-1 has
the definition of the AveragedCollection struct:

Filename: src/lib.rs

Listing 17-1: An AveragedCollection struct that maintains a list of integers and the average of the items in

the collection

The struct is marked pub so that other code can use it, but the fields within the struct
remain private. This is important in this case because we want to ensure that whenever
a value is added or removed from the list, the average is also updated. We do this by
implementing add , remove , and average methods on the struct, as shown in Listing
17-2:

Filename: src/lib.rs

Listing 17-2: Implementations of the public methods add , remove , and average on AveragedCollection

pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
}

impl AveragedCollection {
 pub fn add(&mut self, value: i32) {
 self.list.push(value);
 self.update_average();
 }

 pub fn remove(&mut self) -> Option<i32> {
 let result = self.list.pop();
 match result {
 Some(value) => {
 self.update_average();
 Some(value)
 }
 None => None,
 }
 }

 pub fn average(&self) -> f64 {
 self.average
 }

 fn update_average(&mut self) {
 let total: i32 = self.list.iter().sum();
 self.average = total as f64 / self.list.len() as f64;
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 471/636

The public methods add , remove , and average are the only ways to access or modify
data in an instance of AveragedCollection . When an item is added to list using the
add method or removed using the remove method, the implementations of each call

the private update_average method that handles updating the average field as well.

We leave the list and average fields private so there is no way for external code to
add or remove items to or from the list field directly; otherwise, the average field
might become out of sync when the list changes. The average method returns the
value in the average field, allowing external code to read the average but not modify
it.

Because we’ve encapsulated the implementation details of the struct
AveragedCollection , we can easily change aspects, such as the data structure, in the

future. For instance, we could use a HashSet<i32> instead of a Vec<i32> for the list
field. As long as the signatures of the add , remove , and average public methods stay
the same, code using AveragedCollection wouldn’t need to change. If we made list
public instead, this wouldn’t necessarily be the case: HashSet<i32> and Vec<i32> have
different methods for adding and removing items, so the external code would likely
have to change if it were modifying list directly.

If encapsulation is a required aspect for a language to be considered object-oriented,
then Rust meets that requirement. The option to use pub or not for different parts of
code enables encapsulation of implementation details.

Inheritance as a Type System and as Code Sharing

Inheritance is a mechanism whereby an object can inherit elements from another
object’s definition, thus gaining the parent object’s data and behavior without you
having to define them again.

If a language must have inheritance to be an object-oriented language, then Rust is not
one. There is no way to define a struct that inherits the parent struct’s fields and
method implementations without using a macro.

However, if you’re used to having inheritance in your programming toolbox, you can use
other solutions in Rust, depending on your reason for reaching for inheritance in the
first place.

You would choose inheritance for two main reasons. One is for reuse of code: you can
implement particular behavior for one type, and inheritance enables you to reuse that
implementation for a different type. You can do this in a limited way in Rust code using
default trait method implementations, which you saw in Listing 10-14 when we added a
default implementation of the summarize method on the Summary trait. Any type
implementing the Summary trait would have the summarize method available on it
without any further code. This is similar to a parent class having an implementation of a

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 472/636

method and an inheriting child class also having the implementation of the method. We
can also override the default implementation of the summarize method when we
implement the Summary trait, which is similar to a child class overriding the
implementation of a method inherited from a parent class.

The other reason to use inheritance relates to the type system: to enable a child type to
be used in the same places as the parent type. This is also called polymorphism, which
means that you can substitute multiple objects for each other at runtime if they share
certain characteristics.

Polymorphism

To many people, polymorphism is synonymous with inheritance. But it’s actually a
more general concept that refers to code that can work with data of multiple
types. For inheritance, those types are generally subclasses.

Rust instead uses generics to abstract over different possible types and trait
bounds to impose constraints on what those types must provide. This is
sometimes called bounded parametric polymorphism.

Inheritance has recently fallen out of favor as a programming design solution in many
programming languages because it’s often at risk of sharing more code than necessary.
Subclasses shouldn’t always share all characteristics of their parent class but will do so
with inheritance. This can make a program’s design less flexible. It also introduces the
possibility of calling methods on subclasses that don’t make sense or that cause errors
because the methods don’t apply to the subclass. In addition, some languages will only
allow single inheritance (meaning a subclass can only inherit from one class), further
restricting the flexibility of a program’s design.

For these reasons, Rust takes the different approach of using trait objects instead of
inheritance. Let’s look at how trait objects enable polymorphism in Rust.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 473/636

Using Trait Objects That Allow for Values of Different
Types

In Chapter 8, we mentioned that one limitation of vectors is that they can store
elements of only one type. We created a workaround in Listing 8-9 where we defined a
SpreadsheetCell enum that had variants to hold integers, floats, and text. This meant

we could store different types of data in each cell and still have a vector that
represented a row of cells. This is a perfectly good solution when our interchangeable
items are a fixed set of types that we know when our code is compiled.

However, sometimes we want our library user to be able to extend the set of types that
are valid in a particular situation. To show how we might achieve this, we’ll create an
example graphical user interface (GUI) tool that iterates through a list of items, calling a
draw method on each one to draw it to the screen—a common technique for GUI tools.

We’ll create a library crate called gui that contains the structure of a GUI library. This
crate might include some types for people to use, such as Button or TextField . In
addition, gui users will want to create their own types that can be drawn: for instance,
one programmer might add an Image and another might add a SelectBox .

We won’t implement a fully fledged GUI library for this example but will show how the
pieces would fit together. At the time of writing the library, we can’t know and define all
the types other programmers might want to create. But we do know that gui needs to
keep track of many values of different types, and it needs to call a draw method on
each of these differently typed values. It doesn’t need to know exactly what will happen
when we call the draw method, just that the value will have that method available for us
to call.

To do this in a language with inheritance, we might define a class named Component
that has a method named draw on it. The other classes, such as Button , Image , and
SelectBox , would inherit from Component and thus inherit the draw method. They

could each override the draw method to define their custom behavior, but the
framework could treat all of the types as if they were Component instances and call
draw on them. But because Rust doesn’t have inheritance, we need another way to

structure the gui library to allow users to extend it with new types.

Defining a Trait for Common Behavior

To implement the behavior we want gui to have, we’ll define a trait named Draw that
will have one method named draw . Then we can define a vector that takes a trait object.
A trait object points to both an instance of a type implementing our specified trait and a
table used to look up trait methods on that type at runtime. We create a trait object by

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 474/636

specifying some sort of pointer, such as a & reference or a Box<T> smart pointer, then
the dyn keyword, and then specifying the relevant trait. (We’ll talk about the reason
trait objects must use a pointer in Chapter 19 in the section “Dynamically Sized Types
and the Sized Trait.”) We can use trait objects in place of a generic or concrete type.
Wherever we use a trait object, Rust’s type system will ensure at compile time that any
value used in that context will implement the trait object’s trait. Consequently, we don’t
need to know all the possible types at compile time.

We’ve mentioned that, in Rust, we refrain from calling structs and enums “objects” to
distinguish them from other languages’ objects. In a struct or enum, the data in the
struct fields and the behavior in impl blocks are separated, whereas in other
languages, the data and behavior combined into one concept is often labeled an object.
However, trait objects are more like objects in other languages in the sense that they
combine data and behavior. But trait objects differ from traditional objects in that we
can’t add data to a trait object. Trait objects aren’t as generally useful as objects in other
languages: their specific purpose is to allow abstraction across common behavior.

Listing 17-3 shows how to define a trait named Draw with one method named draw :

Filename: src/lib.rs

Listing 17-3: Definition of the Draw trait

This syntax should look familiar from our discussions on how to define traits in Chapter
10. Next comes some new syntax: Listing 17-4 defines a struct named Screen that
holds a vector named components . This vector is of type Box<dyn Draw> , which is a trait
object; it’s a stand-in for any type inside a Box that implements the Draw trait.

Filename: src/lib.rs

Listing 17-4: Definition of the Screen struct with a components field holding a vector of trait objects that

implement the Draw trait

On the Screen struct, we’ll define a method named run that will call the draw method
on each of its components , as shown in Listing 17-5:

Filename: src/lib.rs

pub trait Draw {
 fn draw(&self);
}

pub struct Screen {
 pub components: Vec<Box<dyn Draw>>,
}

https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 475/636

Listing 17-5: A run method on Screen that calls the draw method on each component

This works differently from defining a struct that uses a generic type parameter with
trait bounds. A generic type parameter can only be substituted with one concrete type
at a time, whereas trait objects allow for multiple concrete types to fill in for the trait
object at runtime. For example, we could have defined the Screen struct using a
generic type and a trait bound as in Listing 17-6:

Filename: src/lib.rs

Listing 17-6: An alternate implementation of the Screen struct and its run method using generics and

trait bounds

This restricts us to a Screen instance that has a list of components all of type Button
or all of type TextField . If you’ll only ever have homogeneous collections, using
generics and trait bounds is preferable because the definitions will be monomorphized
at compile time to use the concrete types.

On the other hand, with the method using trait objects, one Screen instance can hold a
Vec<T> that contains a Box<Button> as well as a Box<TextField> . Let’s look at how

this works, and then we’ll talk about the runtime performance implications.

Implementing the Trait

Now we’ll add some types that implement the Draw trait. We’ll provide the Button
type. Again, actually implementing a GUI library is beyond the scope of this book, so the

impl Screen {
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}

pub struct Screen<T: Draw> {
 pub components: Vec<T>,
}

impl<T> Screen<T>
where
 T: Draw,
{
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 476/636

draw method won’t have any useful implementation in its body. To imagine what the
implementation might look like, a Button struct might have fields for width , height ,
and label , as shown in Listing 17-7:

Filename: src/lib.rs

Listing 17-7: A Button struct that implements the Draw trait

The width , height , and label fields on Button will differ from the fields on other
components; for example, a TextField type might have those same fields plus a
placeholder field. Each of the types we want to draw on the screen will implement the
Draw trait but will use different code in the draw method to define how to draw that

particular type, as Button has here (without the actual GUI code, as mentioned). The
Button type, for instance, might have an additional impl block containing methods

related to what happens when a user clicks the button. These kinds of methods won’t
apply to types like TextField .

If someone using our library decides to implement a SelectBox struct that has width ,
height , and options fields, they implement the Draw trait on the SelectBox type as

well, as shown in Listing 17-8:

Filename: src/main.rs

Listing 17-8: Another crate using gui and implementing the Draw trait on a SelectBox struct

pub struct Button {
 pub width: u32,
 pub height: u32,
 pub label: String,
}

impl Draw for Button {
 fn draw(&self) {
 // code to actually draw a button
 }
}

use gui::Draw;

struct SelectBox {
 width: u32,
 height: u32,
 options: Vec<String>,
}

impl Draw for SelectBox {
 fn draw(&self) {
 // code to actually draw a select box
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 477/636

Our library’s user can now write their main function to create a Screen instance. To the
Screen instance, they can add a SelectBox and a Button by putting each in a Box<T>

to become a trait object. They can then call the run method on the Screen instance,
which will call draw on each of the components. Listing 17-9 shows this
implementation:

Filename: src/main.rs

Listing 17-9: Using trait objects to store values of different types that implement the same trait

When we wrote the library, we didn’t know that someone might add the SelectBox
type, but our Screen implementation was able to operate on the new type and draw it
because SelectBox implements the Draw trait, which means it implements the draw
method.

This concept—of being concerned only with the messages a value responds to rather
than the value’s concrete type—is similar to the concept of duck typing in dynamically
typed languages: if it walks like a duck and quacks like a duck, then it must be a duck! In
the implementation of run on Screen in Listing 17-5, run doesn’t need to know what
the concrete type of each component is. It doesn’t check whether a component is an
instance of a Button or a SelectBox , it just calls the draw method on the component.
By specifying Box<dyn Draw> as the type of the values in the components vector, we’ve
defined Screen to need values that we can call the draw method on.

The advantage of using trait objects and Rust’s type system to write code similar to code
using duck typing is that we never have to check whether a value implements a

use gui::{Button, Screen};

fn main() {
 let screen = Screen {
 components: vec![
 Box::new(SelectBox {
 width: 75,
 height: 10,
 options: vec![
 String::from("Yes"),
 String::from("Maybe"),
 String::from("No"),
],
 }),
 Box::new(Button {
 width: 50,
 height: 10,
 label: String::from("OK"),
 }),
],
 };

 screen.run();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 478/636

particular method at runtime or worry about getting errors if a value doesn’t implement
a method but we call it anyway. Rust won’t compile our code if the values don’t
implement the traits that the trait objects need.

For example, Listing 17-10 shows what happens if we try to create a Screen with a
String as a component:

Filename: src/main.rs

Listing 17-10: Attempting to use a type that doesn’t implement the trait object’s trait

We’ll get this error because String doesn’t implement the Draw trait:

This error lets us know that either we’re passing something to Screen we didn’t mean
to pass and so should pass a different type or we should implement Draw on String
so that Screen is able to call draw on it.

Trait Objects Perform Dynamic Dispatch

Recall in the “Performance of Code Using Generics” section in Chapter 10 our discussion
on the monomorphization process performed by the compiler when we use trait
bounds on generics: the compiler generates nongeneric implementations of functions
and methods for each concrete type that we use in place of a generic type parameter.
The code that results from monomorphization is doing static dispatch, which is when the

use gui::Screen;

fn main() {
 let screen = Screen {
 components: vec![Box::new(String::from("Hi"))],
 };

 screen.run();
}

$ cargo run
 Compiling gui v0.1.0 (file:///projects/gui)
error[E0277]: the trait bound `String: Draw` is not satisfied
 --> src/main.rs:5:26
 |
5 | components: vec![Box::new(String::from("Hi"))],
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Draw`
is not implemented for `String`
 |
 = help: the trait `Draw` is implemented for `Button`
 = note: required for the cast from `String` to the object type `dyn Draw`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `gui` due to previous error

https://doc.rust-lang.org/book/ch10-01-syntax.html#performance-of-code-using-generics
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 479/636

compiler knows what method you’re calling at compile time. This is opposed to dynamic
dispatch, which is when the compiler can’t tell at compile time which method you’re
calling. In dynamic dispatch cases, the compiler emits code that at runtime will figure
out which method to call.

When we use trait objects, Rust must use dynamic dispatch. The compiler doesn’t know
all the types that might be used with the code that’s using trait objects, so it doesn’t
know which method implemented on which type to call. Instead, at runtime, Rust uses
the pointers inside the trait object to know which method to call. This lookup incurs a
runtime cost that doesn’t occur with static dispatch. Dynamic dispatch also prevents the
compiler from choosing to inline a method’s code, which in turn prevents some
optimizations. However, we did get extra flexibility in the code that we wrote in Listing
17-5 and were able to support in Listing 17-9, so it’s a trade-off to consider.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 480/636

Implementing an Object-Oriented Design Pattern

The state pattern is an object-oriented design pattern. The crux of the pattern is that we
define a set of states a value can have internally. The states are represented by a set of
state objects, and the value’s behavior changes based on its state. We’re going to work
through an example of a blog post struct that has a field to hold its state, which will be a
state object from the set "draft", "review", or "published".

The state objects share functionality: in Rust, of course, we use structs and traits rather
than objects and inheritance. Each state object is responsible for its own behavior and
for governing when it should change into another state. The value that holds a state
object knows nothing about the different behavior of the states or when to transition
between states.

The advantage of using the state pattern is that, when the business requirements of the
program change, we won’t need to change the code of the value holding the state or the
code that uses the value. We’ll only need to update the code inside one of the state
objects to change its rules or perhaps add more state objects.

First, we’re going to implement the state pattern in a more traditional object-oriented
way, then we’ll use an approach that’s a bit more natural in Rust. Let’s dig in to
incrementally implementing a blog post workflow using the state pattern.

The final functionality will look like this:

1. A blog post starts as an empty draft.
2. When the draft is done, a review of the post is requested.
3. When the post is approved, it gets published.
4. Only published blog posts return content to print, so unapproved posts can’t

accidentally be published.

Any other changes attempted on a post should have no effect. For example, if we try to
approve a draft blog post before we’ve requested a review, the post should remain an
unpublished draft.

Listing 17-11 shows this workflow in code form: this is an example usage of the API we’ll
implement in a library crate named blog . This won’t compile yet because we haven’t
implemented the blog crate.

Filename: src/main.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 481/636

Listing 17-11: Code that demonstrates the desired behavior we want our blog crate to have

We want to allow the user to create a new draft blog post with Post::new . We want to
allow text to be added to the blog post. If we try to get the post’s content immediately,
before approval, we shouldn’t get any text because the post is still a draft. We’ve added
assert_eq! in the code for demonstration purposes. An excellent unit test for this

would be to assert that a draft blog post returns an empty string from the content
method, but we’re not going to write tests for this example.

Next, we want to enable a request for a review of the post, and we want content to
return an empty string while waiting for the review. When the post receives approval, it
should get published, meaning the text of the post will be returned when content is
called.

Notice that the only type we’re interacting with from the crate is the Post type. This
type will use the state pattern and will hold a value that will be one of three state objects
representing the various states a post can be in—draft, waiting for review, or published.
Changing from one state to another will be managed internally within the Post type.
The states change in response to the methods called by our library’s users on the Post
instance, but they don’t have to manage the state changes directly. Also, users can’t
make a mistake with the states, like publishing a post before it’s reviewed.

Defining Post and Creating a New Instance in the Draft State

Let’s get started on the implementation of the library! We know we need a public Post
struct that holds some content, so we’ll start with the definition of the struct and an
associated public new function to create an instance of Post , as shown in Listing 17-12.
We’ll also make a private State trait that will define the behavior that all state objects
for a Post must have.

Then Post will hold a trait object of Box<dyn State> inside an Option<T> in a private
field named state to hold the state object. You’ll see why the Option<T> is necessary

use blog::Post;

fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");
 assert_eq!("", post.content());

 post.request_review();
 assert_eq!("", post.content());

 post.approve();
 assert_eq!("I ate a salad for lunch today", post.content());
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 482/636

in a bit.

Filename: src/lib.rs

Listing 17-12: Definition of a Post struct and a new function that creates a new Post instance, a State

trait, and a Draft struct

The State trait defines the behavior shared by different post states. The state objects
are Draft , PendingReview , and Published , and they will all implement the State
trait. For now, the trait doesn’t have any methods, and we’ll start by defining just the
Draft state because that is the state we want a post to start in.

When we create a new Post , we set its state field to a Some value that holds a Box .
This Box points to a new instance of the Draft struct. This ensures whenever we
create a new instance of Post , it will start out as a draft. Because the state field of
Post is private, there is no way to create a Post in any other state! In the Post::new

function, we set the content field to a new, empty String .

Storing the Text of the Post Content

We saw in Listing 17-11 that we want to be able to call a method named add_text and
pass it a &str that is then added as the text content of the blog post. We implement
this as a method, rather than exposing the content field as pub , so that later we can
implement a method that will control how the content field’s data is read. The
add_text method is pretty straightforward, so let’s add the implementation in Listing

17-13 to the impl Post block:

Filename: src/lib.rs

pub struct Post {
 state: Option<Box<dyn State>>,
 content: String,
}

impl Post {
 pub fn new() -> Post {
 Post {
 state: Some(Box::new(Draft {})),
 content: String::new(),
 }
 }
}

trait State {}

struct Draft {}

impl State for Draft {}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 483/636

Listing 17-13: Implementing the add_text method to add text to a post’s content

The add_text method takes a mutable reference to self , because we’re changing the
Post instance that we’re calling add_text on. We then call push_str on the String in
content and pass the text argument to add to the saved content . This behavior

doesn’t depend on the state the post is in, so it’s not part of the state pattern. The
add_text method doesn’t interact with the state field at all, but it is part of the

behavior we want to support.

Ensuring the Content of a Draft Post Is Empty

Even after we’ve called add_text and added some content to our post, we still want the
content method to return an empty string slice because the post is still in the draft

state, as shown on line 7 of Listing 17-11. For now, let’s implement the content method
with the simplest thing that will fulfill this requirement: always returning an empty string
slice. We’ll change this later once we implement the ability to change a post’s state so it
can be published. So far, posts can only be in the draft state, so the post content should
always be empty. Listing 17-14 shows this placeholder implementation:

Filename: src/lib.rs

Listing 17-14: Adding a placeholder implementation for the content method on Post that always returns

an empty string slice

With this added content method, everything in Listing 17-11 up to line 7 works as
intended.

Requesting a Review of the Post Changes Its State

Next, we need to add functionality to request a review of a post, which should change its
state from Draft to PendingReview . Listing 17-15 shows this code:

impl Post {
 // --snip--
 pub fn add_text(&mut self, text: &str) {
 self.content.push_str(text);
 }
}

impl Post {
 // --snip--
 pub fn content(&self) -> &str {
 ""
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 484/636

Filename: src/lib.rs

Listing 17-15: Implementing request_review methods on Post and the State trait

We give Post a public method named request_review that will take a mutable
reference to self . Then we call an internal request_review method on the current
state of Post , and this second request_review method consumes the current state
and returns a new state.

We add the request_review method to the State trait; all types that implement the
trait will now need to implement the request_review method. Note that rather than
having self , &self , or &mut self as the first parameter of the method, we have
self: Box<Self> . This syntax means the method is only valid when called on a Box

holding the type. This syntax takes ownership of Box<Self> , invalidating the old state
so the state value of the Post can transform into a new state.

To consume the old state, the request_review method needs to take ownership of the
state value. This is where the Option in the state field of Post comes in: we call the
take method to take the Some value out of the state field and leave a None in its

place, because Rust doesn’t let us have unpopulated fields in structs. This lets us move
the state value out of Post rather than borrowing it. Then we’ll set the post’s state
value to the result of this operation.

impl Post {
 // --snip--
 pub fn request_review(&mut self) {
 if let Some(s) = self.state.take() {
 self.state = Some(s.request_review())
 }
 }
}

trait State {
 fn request_review(self: Box<Self>) -> Box<dyn State>;
}

struct Draft {}

impl State for Draft {
 fn request_review(self: Box<Self>) -> Box<dyn State> {
 Box::new(PendingReview {})
 }
}

struct PendingReview {}

impl State for PendingReview {
 fn request_review(self: Box<Self>) -> Box<dyn State> {
 self
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 485/636

We need to set state to None temporarily rather than setting it directly with code like
self.state = self.state.request_review(); to get ownership of the state value.

This ensures Post can’t use the old state value after we’ve transformed it into a new
state.

The request_review method on Draft returns a new, boxed instance of a new
PendingReview struct, which represents the state when a post is waiting for a review.

The PendingReview struct also implements the request_review method but doesn’t do
any transformations. Rather, it returns itself, because when we request a review on a
post already in the PendingReview state, it should stay in the PendingReview state.

Now we can start seeing the advantages of the state pattern: the request_review
method on Post is the same no matter its state value. Each state is responsible for its
own rules.

We’ll leave the content method on Post as is, returning an empty string slice. We can
now have a Post in the PendingReview state as well as in the Draft state, but we want
the same behavior in the PendingReview state. Listing 17-11 now works up to line 10!

Adding approve to Change the Behavior of content

The approve method will be similar to the request_review method: it will set state to
the value that the current state says it should have when that state is approved, as
shown in Listing 17-16:

Filename: src/lib.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 486/636

Listing 17-16: Implementing the approve method on Post and the State trait

We add the approve method to the State trait and add a new struct that implements
State , the Published state.

Similar to the way request_review on PendingReview works, if we call the approve
method on a Draft , it will have no effect because approve will return self . When we
call approve on PendingReview , it returns a new, boxed instance of the Published
struct. The Published struct implements the State trait, and for both the

impl Post {
 // --snip--
 pub fn approve(&mut self) {
 if let Some(s) = self.state.take() {
 self.state = Some(s.approve())
 }
 }
}

trait State {
 fn request_review(self: Box<Self>) -> Box<dyn State>;
 fn approve(self: Box<Self>) -> Box<dyn State>;
}

struct Draft {}

impl State for Draft {
 // --snip--
 fn approve(self: Box<Self>) -> Box<dyn State> {
 self
 }
}

struct PendingReview {}

impl State for PendingReview {
 // --snip--
 fn approve(self: Box<Self>) -> Box<dyn State> {
 Box::new(Published {})
 }
}

struct Published {}

impl State for Published {
 fn request_review(self: Box<Self>) -> Box<dyn State> {
 self
 }

 fn approve(self: Box<Self>) -> Box<dyn State> {
 self
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 487/636

request_review method and the approve method, it returns itself, because the post
should stay in the Published state in those cases.

Now we need to update the content method on Post . We want the value returned
from content to depend on the current state of the Post , so we’re going to have the
Post delegate to a content method defined on its state , as shown in Listing 17-17:

Filename: src/lib.rs

Listing 17-17: Updating the content method on Post to delegate to a content method on State

Because the goal is to keep all these rules inside the structs that implement State , we
call a content method on the value in state and pass the post instance (that is, self)
as an argument. Then we return the value that’s returned from using the content
method on the state value.

We call the as_ref method on the Option because we want a reference to the value
inside the Option rather than ownership of the value. Because state is an
Option<Box<dyn State>> , when we call as_ref , an Option<&Box<dyn State>> is

returned. If we didn’t call as_ref , we would get an error because we can’t move state
out of the borrowed &self of the function parameter.

We then call the unwrap method, which we know will never panic, because we know the
methods on Post ensure that state will always contain a Some value when those
methods are done. This is one of the cases we talked about in the “Cases In Which You
Have More Information Than the Compiler” section of Chapter 9 when we know that a
None value is never possible, even though the compiler isn’t able to understand that.

At this point, when we call content on the &Box<dyn State> , deref coercion will take
effect on the & and the Box so the content method will ultimately be called on the
type that implements the State trait. That means we need to add content to the
State trait definition, and that is where we’ll put the logic for what content to return

depending on which state we have, as shown in Listing 17-18:

Filename: src/lib.rs

impl Post {
 // --snip--
 pub fn content(&self) -> &str {
 self.state.as_ref().unwrap().content(self)
 }
 // --snip--
}

https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html#cases-in-which-you-have-more-information-than-the-compiler
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 488/636

Listing 17-18: Adding the content method to the State trait

We add a default implementation for the content method that returns an empty string
slice. That means we don’t need to implement content on the Draft and
PendingReview structs. The Published struct will override the content method and

return the value in post.content .

Note that we need lifetime annotations on this method, as we discussed in Chapter 10.
We’re taking a reference to a post as an argument and returning a reference to part of
that post , so the lifetime of the returned reference is related to the lifetime of the
post argument.

And we’re done—all of Listing 17-11 now works! We’ve implemented the state pattern
with the rules of the blog post workflow. The logic related to the rules lives in the state
objects rather than being scattered throughout Post .

Why Not An Enum?

You may have been wondering why we didn’t use an enum with the different
possible post states as variants. That’s certainly a possible solution, try it and
compare the end results to see which you prefer! One disadvantage of using an
enum is every place that checks the value of the enum will need a match
expression or similar to handle every possible variant. This could get more
repetitive than this trait object solution.

trait State {
 // --snip--
 fn content<'a>(&self, post: &'a Post) -> &'a str {
 ""
 }
}

// --snip--
struct Published {}

impl State for Published {
 // --snip--
 fn content<'a>(&self, post: &'a Post) -> &'a str {
 &post.content
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 489/636

Trade-offs of the State Pattern

We’ve shown that Rust is capable of implementing the object-oriented state pattern to
encapsulate the different kinds of behavior a post should have in each state. The
methods on Post know nothing about the various behaviors. The way we organized the
code, we have to look in only one place to know the different ways a published post can
behave: the implementation of the State trait on the Published struct.

If we were to create an alternative implementation that didn’t use the state pattern, we
might instead use match expressions in the methods on Post or even in the main
code that checks the state of the post and changes behavior in those places. That would
mean we would have to look in several places to understand all the implications of a
post being in the published state! This would only increase the more states we added:
each of those match expressions would need another arm.

With the state pattern, the Post methods and the places we use Post don’t need
match expressions, and to add a new state, we would only need to add a new struct

and implement the trait methods on that one struct.

The implementation using the state pattern is easy to extend to add more functionality.
To see the simplicity of maintaining code that uses the state pattern, try a few of these
suggestions:

Add a reject method that changes the post’s state from PendingReview back to
Draft .

Require two calls to approve before the state can be changed to Published .
Allow users to add text content only when a post is in the Draft state. Hint: have
the state object responsible for what might change about the content but not
responsible for modifying the Post .

One downside of the state pattern is that, because the states implement the transitions
between states, some of the states are coupled to each other. If we add another state
between PendingReview and Published , such as Scheduled , we would have to change
the code in PendingReview to transition to Scheduled instead. It would be less work if
PendingReview didn’t need to change with the addition of a new state, but that would

mean switching to another design pattern.

Another downside is that we’ve duplicated some logic. To eliminate some of the
duplication, we might try to make default implementations for the request_review and
approve methods on the State trait that return self ; however, this would violate

object safety, because the trait doesn’t know what the concrete self will be exactly. We
want to be able to use State as a trait object, so we need its methods to be object safe.

Other duplication includes the similar implementations of the request_review and
approve methods on Post . Both methods delegate to the implementation of the same

method on the value in the state field of Option and set the new value of the state

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 490/636

field to the result. If we had a lot of methods on Post that followed this pattern, we
might consider defining a macro to eliminate the repetition (see the “Macros” section in
Chapter 19).

By implementing the state pattern exactly as it’s defined for object-oriented languages,
we’re not taking as full advantage of Rust’s strengths as we could. Let’s look at some
changes we can make to the blog crate that can make invalid states and transitions
into compile time errors.

Encoding States and Behavior as Types

We’ll show you how to rethink the state pattern to get a different set of trade-offs.
Rather than encapsulating the states and transitions completely so outside code has no
knowledge of them, we’ll encode the states into different types. Consequently, Rust’s
type checking system will prevent attempts to use draft posts where only published
posts are allowed by issuing a compiler error.

Let’s consider the first part of main in Listing 17-11:

Filename: src/main.rs

We still enable the creation of new posts in the draft state using Post::new and the
ability to add text to the post’s content. But instead of having a content method on a
draft post that returns an empty string, we’ll make it so draft posts don’t have the
content method at all. That way, if we try to get a draft post’s content, we’ll get a

compiler error telling us the method doesn’t exist. As a result, it will be impossible for us
to accidentally display draft post content in production, because that code won’t even
compile. Listing 17-19 shows the definition of a Post struct and a DraftPost struct, as
well as methods on each:

Filename: src/lib.rs

fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");
 assert_eq!("", post.content());
}

https://doc.rust-lang.org/book/ch19-06-macros.html#macros

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 491/636

Listing 17-19: A Post with a content method and a DraftPost without a content method

Both the Post and DraftPost structs have a private content field that stores the blog
post text. The structs no longer have the state field because we’re moving the
encoding of the state to the types of the structs. The Post struct will represent a
published post, and it has a content method that returns the content .

We still have a Post::new function, but instead of returning an instance of Post , it
returns an instance of DraftPost . Because content is private and there aren’t any
functions that return Post , it’s not possible to create an instance of Post right now.

The DraftPost struct has an add_text method, so we can add text to content as
before, but note that DraftPost does not have a content method defined! So now the
program ensures all posts start as draft posts, and draft posts don’t have their content
available for display. Any attempt to get around these constraints will result in a
compiler error.

Implementing Transitions as Transformations into Different Types

So how do we get a published post? We want to enforce the rule that a draft post has to
be reviewed and approved before it can be published. A post in the pending review
state should still not display any content. Let’s implement these constraints by adding
another struct, PendingReviewPost , defining the request_review method on

pub struct Post {
 content: String,
}

pub struct DraftPost {
 content: String,
}

impl Post {
 pub fn new() -> DraftPost {
 DraftPost {
 content: String::new(),
 }
 }

 pub fn content(&self) -> &str {
 &self.content
 }
}

impl DraftPost {
 pub fn add_text(&mut self, text: &str) {
 self.content.push_str(text);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 492/636

DraftPost to return a PendingReviewPost , and defining an approve method on
PendingReviewPost to return a Post , as shown in Listing 17-20:

Filename: src/lib.rs

Listing 17-20: A PendingReviewPost that gets created by calling request_review on DraftPost and an

approve method that turns a PendingReviewPost into a published Post

The request_review and approve methods take ownership of self , thus consuming
the DraftPost and PendingReviewPost instances and transforming them into a
PendingReviewPost and a published Post , respectively. This way, we won’t have any

lingering DraftPost instances after we’ve called request_review on them, and so
forth. The PendingReviewPost struct doesn’t have a content method defined on it, so
attempting to read its content results in a compiler error, as with DraftPost . Because
the only way to get a published Post instance that does have a content method
defined is to call the approve method on a PendingReviewPost , and the only way to get
a PendingReviewPost is to call the request_review method on a DraftPost , we’ve
now encoded the blog post workflow into the type system.

But we also have to make some small changes to main . The request_review and
approve methods return new instances rather than modifying the struct they’re called

on, so we need to add more let post = shadowing assignments to save the returned
instances. We also can’t have the assertions about the draft and pending review posts’
contents be empty strings, nor do we need them: we can’t compile code that tries to use
the content of posts in those states any longer. The updated code in main is shown in
Listing 17-21:

Filename: src/main.rs

impl DraftPost {
 // --snip--
 pub fn request_review(self) -> PendingReviewPost {
 PendingReviewPost {
 content: self.content,
 }
 }
}

pub struct PendingReviewPost {
 content: String,
}

impl PendingReviewPost {
 pub fn approve(self) -> Post {
 Post {
 content: self.content,
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 493/636

Listing 17-21: Modifications to main to use the new implementation of the blog post workflow

The changes we needed to make to main to reassign post mean that this
implementation doesn’t quite follow the object-oriented state pattern anymore: the
transformations between the states are no longer encapsulated entirely within the
Post implementation. However, our gain is that invalid states are now impossible

because of the type system and the type checking that happens at compile time! This
ensures that certain bugs, such as display of the content of an unpublished post, will be
discovered before they make it to production.

Try the tasks suggested at the start of this section on the blog crate as it is after Listing
17-21 to see what you think about the design of this version of the code. Note that some
of the tasks might be completed already in this design.

We’ve seen that even though Rust is capable of implementing object-oriented design
patterns, other patterns, such as encoding state into the type system, are also available
in Rust. These patterns have different trade-offs. Although you might be very familiar
with object-oriented patterns, rethinking the problem to take advantage of Rust’s
features can provide benefits, such as preventing some bugs at compile time. Object-
oriented patterns won’t always be the best solution in Rust due to certain features, like
ownership, that object-oriented languages don’t have.

Summary

No matter whether or not you think Rust is an object-oriented language after reading
this chapter, you now know that you can use trait objects to get some object-oriented
features in Rust. Dynamic dispatch can give your code some flexibility in exchange for a
bit of runtime performance. You can use this flexibility to implement object-oriented
patterns that can help your code’s maintainability. Rust also has other features, like
ownership, that object-oriented languages don’t have. An object-oriented pattern won’t
always be the best way to take advantage of Rust’s strengths, but is an available option.

use blog::Post;

fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");

 let post = post.request_review();

 let post = post.approve();

 assert_eq!("I ate a salad for lunch today", post.content());
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 494/636

Next, we’ll look at patterns, which are another of Rust’s features that enable lots of
flexibility. We’ve looked at them briefly throughout the book but haven’t seen their full
capability yet. Let’s go!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 495/636

Patterns and Matching
Patterns are a special syntax in Rust for matching against the structure of types, both
complex and simple. Using patterns in conjunction with match expressions and other
constructs gives you more control over a program’s control flow. A pattern consists of
some combination of the following:

Literals
Destructured arrays, enums, structs, or tuples
Variables
Wildcards
Placeholders

Some example patterns include x , (a, 3) , and Some(Color::Red) . In the contexts in
which patterns are valid, these components describe the shape of data. Our program
then matches values against the patterns to determine whether it has the correct shape
of data to continue running a particular piece of code.

To use a pattern, we compare it to some value. If the pattern matches the value, we use
the value parts in our code. Recall the match expressions in Chapter 6 that used
patterns, such as the coin-sorting machine example. If the value fits the shape of the
pattern, we can use the named pieces. If it doesn’t, the code associated with the pattern
won’t run.

This chapter is a reference on all things related to patterns. We’ll cover the valid places
to use patterns, the difference between refutable and irrefutable patterns, and the
different kinds of pattern syntax that you might see. By the end of the chapter, you’ll
know how to use patterns to express many concepts in a clear way.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 496/636

All the Places Patterns Can Be Used

Patterns pop up in a number of places in Rust, and you’ve been using them a lot without
realizing it! This section discusses all the places where patterns are valid.

match Arms

As discussed in Chapter 6, we use patterns in the arms of match expressions. Formally,
match expressions are defined as the keyword match , a value to match on, and one or

more match arms that consist of a pattern and an expression to run if the value
matches that arm’s pattern, like this:

For example, here's the match expression from Listing 6-5 that matches on an
Option<i32> value in the variable x :

The patterns in this match expression are the None and Some(i) on the left of each
arrow.

One requirement for match expressions is that they need to be exhaustive in the sense
that all possibilities for the value in the match expression must be accounted for. One
way to ensure you’ve covered every possibility is to have a catchall pattern for the last
arm: for example, a variable name matching any value can never fail and thus covers
every remaining case.

The particular pattern _ will match anything, but it never binds to a variable, so it’s
often used in the last match arm. The _ pattern can be useful when you want to ignore
any value not specified, for example. We’ll cover the _ pattern in more detail in the
“Ignoring Values in a Pattern” section later in this chapter.

match VALUE {
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
}

match x {
 None => None,
 Some(i) => Some(i + 1),
}

https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#ignoring-values-in-a-pattern

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 497/636

Conditional if let Expressions

In Chapter 6 we discussed how to use if let expressions mainly as a shorter way to
write the equivalent of a match that only matches one case. Optionally, if let can
have a corresponding else containing code to run if the pattern in the if let doesn’t
match.

Listing 18-1 shows that it’s also possible to mix and match if let , else if , and else
if let expressions. Doing so gives us more flexibility than a match expression in which
we can express only one value to compare with the patterns. Also, Rust doesn't require
that the conditions in a series of if let , else if , else if let arms relate to each
other.

The code in Listing 18-1 determines what color to make your background based on a
series of checks for several conditions. For this example, we’ve created variables with
hardcoded values that a real program might receive from user input.

Filename: src/main.rs

Listing 18-1: Mixing if let , else if , else if let , and else

If the user specifies a favorite color, that color is used as the background. If no favorite
color is specified and today is Tuesday, the background color is green. Otherwise, if the
user specifies their age as a string and we can parse it as a number successfully, the
color is either purple or orange depending on the value of the number. If none of these
conditions apply, the background color is blue.

This conditional structure lets us support complex requirements. With the hardcoded
values we have here, this example will print Using purple as the background color .

fn main() {
 let favorite_color: Option<&str> = None;
 let is_tuesday = false;
 let age: Result<u8, _> = "34".parse();

 if let Some(color) = favorite_color {
 println!("Using your favorite color, {color}, as the background");
 } else if is_tuesday {
 println!("Tuesday is green day!");
 } else if let Ok(age) = age {
 if age > 30 {
 println!("Using purple as the background color");
 } else {
 println!("Using orange as the background color");
 }
 } else {
 println!("Using blue as the background color");
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 498/636

You can see that if let can also introduce shadowed variables in the same way that
match arms can: the line if let Ok(age) = age introduces a new shadowed age

variable that contains the value inside the Ok variant. This means we need to place the
if age > 30 condition within that block: we can’t combine these two conditions into
if let Ok(age) = age && age > 30 . The shadowed age we want to compare to 30

isn’t valid until the new scope starts with the curly bracket.

The downside of using if let expressions is that the compiler doesn’t check for
exhaustiveness, whereas with match expressions it does. If we omitted the last else
block and therefore missed handling some cases, the compiler would not alert us to the
possible logic bug.

while let Conditional Loops

Similar in construction to if let , the while let conditional loop allows a while loop
to run for as long as a pattern continues to match. In Listing 18-2 we code a while let
loop that uses a vector as a stack and prints the values in the vector in the opposite
order in which they were pushed.

Listing 18-2: Using a while let loop to print values for as long as stack.pop() returns Some

This example prints 3, 2, and then 1. The pop method takes the last element out of the
vector and returns Some(value) . If the vector is empty, pop returns None . The while
loop continues running the code in its block as long as pop returns Some . When pop
returns None , the loop stops. We can use while let to pop every element off our
stack.

for Loops

In a for loop, the value that directly follows the keyword for is a pattern. For example,
in for x in y the x is the pattern. Listing 18-3 demonstrates how to use a pattern in a
for loop to destructure, or break apart, a tuple as part of the for loop.

 let mut stack = Vec::new();

 stack.push(1);
 stack.push(2);
 stack.push(3);

 while let Some(top) = stack.pop() {
 println!("{}", top);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 499/636

Listing 18-3: Using a pattern in a for loop to destructure a tuple

The code in Listing 18-3 will print the following:

We adapt an iterator using the enumerate method so it produces a value and the index
for that value, placed into a tuple. The first value produced is the tuple (0, 'a') . When
this value is matched to the pattern (index, value) , index will be 0 and value will
be 'a' , printing the first line of the output.

let Statements

Prior to this chapter, we had only explicitly discussed using patterns with match and if
let , but in fact, we’ve used patterns in other places as well, including in let
statements. For example, consider this straightforward variable assignment with let :

Every time you've used a let statement like this you've been using patterns, although
you might not have realized it! More formally, a let statement looks like this:

In statements like let x = 5; with a variable name in the PATTERN slot, the variable
name is just a particularly simple form of a pattern. Rust compares the expression
against the pattern and assigns any names it finds. So in the let x = 5; example, x is
a pattern that means “bind what matches here to the variable x .” Because the name x
is the whole pattern, this pattern effectively means “bind everything to the variable x ,
whatever the value is.”

To see the pattern matching aspect of let more clearly, consider Listing 18-4, which
uses a pattern with let to destructure a tuple.

 let v = vec!['a', 'b', 'c'];

 for (index, value) in v.iter().enumerate() {
 println!("{} is at index {}", value, index);
 }

$ cargo run
 Compiling patterns v0.1.0 (file:///projects/patterns)
 Finished dev [unoptimized + debuginfo] target(s) in 0.52s
 Running `target/debug/patterns`
a is at index 0
b is at index 1
c is at index 2

let x = 5;

let PATTERN = EXPRESSION;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 500/636

Listing 18-4: Using a pattern to destructure a tuple and create three variables at once

Here, we match a tuple against a pattern. Rust compares the value (1, 2, 3) to the
pattern (x, y, z) and sees that the value matches the pattern, so Rust binds 1 to x ,
2 to y , and 3 to z . You can think of this tuple pattern as nesting three individual

variable patterns inside it.

If the number of elements in the pattern doesn’t match the number of elements in the
tuple, the overall type won’t match and we’ll get a compiler error. For example, Listing
18-5 shows an attempt to destructure a tuple with three elements into two variables,
which won’t work.

Listing 18-5: Incorrectly constructing a pattern whose variables don’t match the number of elements in the

tuple

Attempting to compile this code results in this type error:

To fix the error, we could ignore one or more of the values in the tuple using _ or .. ,
as you’ll see in the “Ignoring Values in a Pattern” section. If the problem is that we have
too many variables in the pattern, the solution is to make the types match by removing
variables so the number of variables equals the number of elements in the tuple.

Function Parameters

Function parameters can also be patterns. The code in Listing 18-6, which declares a
function named foo that takes one parameter named x of type i32 , should by now

 let (x, y, z) = (1, 2, 3);

 let (x, y) = (1, 2, 3);

$ cargo run
 Compiling patterns v0.1.0 (file:///projects/patterns)
error[E0308]: mismatched types
 --> src/main.rs:2:9
 |
2 | let (x, y) = (1, 2, 3);
 | ^^^^^^ --------- this expression has type `({integer},
{integer}, {integer})`
 | |
 | expected a tuple with 3 elements, found one with 2 elements
 |
 = note: expected tuple `({integer}, {integer}, {integer})`
 found tuple `(_, _)`

For more information about this error, try `rustc --explain E0308`.
error: could not compile `patterns` due to previous error

https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#ignoring-values-in-a-pattern

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 501/636

look familiar.

Listing 18-6: A function signature uses patterns in the parameters

The x part is a pattern! As we did with let , we could match a tuple in a function’s
arguments to the pattern. Listing 18-7 splits the values in a tuple as we pass it to a
function.

Filename: src/main.rs

Listing 18-7: A function with parameters that destructure a tuple

This code prints Current location: (3, 5) . The values &(3, 5) match the pattern &
(x, y) , so x is the value 3 and y is the value 5 .

We can also use patterns in closure parameter lists in the same way as in function
parameter lists, because closures are similar to functions, as discussed in Chapter 13.

At this point, you’ve seen several ways of using patterns, but patterns don’t work the
same in every place we can use them. In some places, the patterns must be irrefutable;
in other circumstances, they can be refutable. We’ll discuss these two concepts next.

fn foo(x: i32) {
 // code goes here
}

fn print_coordinates(&(x, y): &(i32, i32)) {
 println!("Current location: ({}, {})", x, y);
}

fn main() {
 let point = (3, 5);
 print_coordinates(&point);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 502/636

Refutability: Whether a Pattern Might Fail to Match

Patterns come in two forms: refutable and irrefutable. Patterns that will match for any
possible value passed are irrefutable. An example would be x in the statement let x =
5; because x matches anything and therefore cannot fail to match. Patterns that can
fail to match for some possible value are refutable. An example would be Some(x) in the
expression if let Some(x) = a_value because if the value in the a_value variable is
None rather than Some , the Some(x) pattern will not match.

Function parameters, let statements, and for loops can only accept irrefutable
patterns, because the program cannot do anything meaningful when values don’t
match. The if let and while let expressions accept refutable and irrefutable
patterns, but the compiler warns against irrefutable patterns because by definition
they’re intended to handle possible failure: the functionality of a conditional is in its
ability to perform differently depending on success or failure.

In general, you shouldn’t have to worry about the distinction between refutable and
irrefutable patterns; however, you do need to be familiar with the concept of refutability
so you can respond when you see it in an error message. In those cases, you’ll need to
change either the pattern or the construct you’re using the pattern with, depending on
the intended behavior of the code.

Let’s look at an example of what happens when we try to use a refutable pattern where
Rust requires an irrefutable pattern and vice versa. Listing 18-8 shows a let statement,
but for the pattern we’ve specified Some(x) , a refutable pattern. As you might expect,
this code will not compile.

Listing 18-8: Attempting to use a refutable pattern with let

If some_option_value was a None value, it would fail to match the pattern Some(x) ,
meaning the pattern is refutable. However, the let statement can only accept an
irrefutable pattern because there is nothing valid the code can do with a None value. At
compile time, Rust will complain that we’ve tried to use a refutable pattern where an
irrefutable pattern is required:

 let Some(x) = some_option_value;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 503/636

Because we didn’t cover (and couldn’t cover!) every valid value with the pattern
Some(x) , Rust rightfully produces a compiler error.

If we have a refutable pattern where an irrefutable pattern is needed, we can fix it by
changing the code that uses the pattern: instead of using let , we can use if let .
Then if the pattern doesn’t match, the code will just skip the code in the curly brackets,
giving it a way to continue validly. Listing 18-9 shows how to fix the code in Listing 18-8.

Listing 18-9: Using if let and a block with refutable patterns instead of let

We’ve given the code an out! This code is perfectly valid, although it means we cannot
use an irrefutable pattern without receiving an error. If we give if let a pattern that
will always match, such as x , as shown in Listing 18-10, the compiler will give a warning.

$ cargo run
 Compiling patterns v0.1.0 (file:///projects/patterns)
error[E0005]: refutable pattern in local binding: `None` not covered
 --> src/main.rs:3:9
 |
3 | let Some(x) = some_option_value;
 | ^^^^^^^ pattern `None` not covered
 |
 = note: `let` bindings require an "irrefutable pattern", like a `struct`
or an `enum` with only one variant
 = note: for more information, visit https://doc.rust-lang.org/book/ch18-
02-refutability.html
note: `Option<i32>` defined here
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/core/src/option.rs:
518:1
 |
 = note:
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/core/src/option.rs:
522:5: not covered
 = note: the matched value is of type `Option<i32>`
help: you might want to use `if let` to ignore the variant that isn't
matched
 |
3 | let x = if let Some(x) = some_option_value { x } else { todo!() };
 | ++++++++++ ++++++++++++++++++++++
help: alternatively, you might want to use let else to handle the variant
that isn't matched
 |
3 | let Some(x) = some_option_value else { todo!() };
 | ++++++++++++++++

For more information about this error, try `rustc --explain E0005`.
error: could not compile `patterns` due to previous error

 if let Some(x) = some_option_value {
 println!("{}", x);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 504/636

Listing 18-10: Attempting to use an irrefutable pattern with if let

Rust complains that it doesn’t make sense to use if let with an irrefutable pattern:

For this reason, match arms must use refutable patterns, except for the last arm, which
should match any remaining values with an irrefutable pattern. Rust allows us to use an
irrefutable pattern in a match with only one arm, but this syntax isn’t particularly useful
and could be replaced with a simpler let statement.

Now that you know where to use patterns and the difference between refutable and
irrefutable patterns, let’s cover all the syntax we can use to create patterns.

 if let x = 5 {
 println!("{}", x);
 };

$ cargo run
 Compiling patterns v0.1.0 (file:///projects/patterns)
warning: irrefutable `if let` pattern
 --> src/main.rs:2:8
 |
2 | if let x = 5 {
 | ^^^^^^^^^
 |
 = note: this pattern will always match, so the `if let` is useless
 = help: consider replacing the `if let` with a `let`
 = note: `#[warn(irrefutable_let_patterns)]` on by default

warning: `patterns` (bin "patterns") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.39s
 Running `target/debug/patterns`
5

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 505/636

Pattern Syntax

In this section, we gather all the syntax valid in patterns and discuss why and when you
might want to use each one.

Matching Literals

As you saw in Chapter 6, you can match patterns against literals directly. The following
code gives some examples:

This code prints one because the value in x is 1. This syntax is useful when you want
your code to take an action if it gets a particular concrete value.

Matching Named Variables

Named variables are irrefutable patterns that match any value, and we’ve used them
many times in the book. However, there is a complication when you use named
variables in match expressions. Because match starts a new scope, variables declared
as part of a pattern inside the match expression will shadow those with the same name
outside the match construct, as is the case with all variables. In Listing 18-11, we declare
a variable named x with the value Some(5) and a variable y with the value 10 . We
then create a match expression on the value x . Look at the patterns in the match arms
and println! at the end, and try to figure out what the code will print before running
this code or reading further.

Filename: src/main.rs

 let x = 1;

 match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 _ => println!("anything"),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 506/636

Listing 18-11: A match expression with an arm that introduces a shadowed variable y

Let’s walk through what happens when the match expression runs. The pattern in the
first match arm doesn’t match the defined value of x , so the code continues.

The pattern in the second match arm introduces a new variable named y that will
match any value inside a Some value. Because we’re in a new scope inside the match
expression, this is a new y variable, not the y we declared at the beginning with the
value 10. This new y binding will match any value inside a Some , which is what we have
in x . Therefore, this new y binds to the inner value of the Some in x . That value is 5 ,
so the expression for that arm executes and prints Matched, y = 5 .

If x had been a None value instead of Some(5) , the patterns in the first two arms
wouldn’t have matched, so the value would have matched to the underscore. We didn’t
introduce the x variable in the pattern of the underscore arm, so the x in the
expression is still the outer x that hasn’t been shadowed. In this hypothetical case, the
match would print Default case, x = None .

When the match expression is done, its scope ends, and so does the scope of the inner
y . The last println! produces at the end: x = Some(5), y = 10 .

To create a match expression that compares the values of the outer x and y , rather
than introducing a shadowed variable, we would need to use a match guard conditional
instead. We’ll talk about match guards later in the “Extra Conditionals with Match
Guards” section.

Multiple Patterns

In match expressions, you can match multiple patterns using the | syntax, which is the
pattern or operator. For example, in the following code we match the value of x against
the match arms, the first of which has an or option, meaning if the value of x matches
either of the values in that arm, that arm’s code will run:

 let x = Some(5);
 let y = 10;

 match x {
 Some(50) => println!("Got 50"),
 Some(y) => println!("Matched, y = {y}"),
 _ => println!("Default case, x = {:?}", x),
 }

 println!("at the end: x = {:?}, y = {y}", x);

https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#extra-conditionals-with-match-guards

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 507/636

This code prints one or two .

Matching Ranges of Values with ..=

The ..= syntax allows us to match to an inclusive range of values. In the following code,
when a pattern matches any of the values within the given range, that arm will execute:

If x is 1, 2, 3, 4, or 5, the first arm will match. This syntax is more convenient for
multiple match values than using the | operator to express the same idea; if we were
to use | we would have to specify 1 | 2 | 3 | 4 | 5 . Specifying a range is much
shorter, especially if we want to match, say, any number between 1 and 1,000!

The compiler checks that the range isn’t empty at compile time, and because the only
types for which Rust can tell if a range is empty or not are char and numeric values,
ranges are only allowed with numeric or char values.

Here is an example using ranges of char values:

Rust can tell that 'c' is within the first pattern’s range and prints early ASCII letter .

Destructuring to Break Apart Values

We can also use patterns to destructure structs, enums, and tuples to use different
parts of these values. Let’s walk through each value.

 let x = 1;

 match x {
 1 | 2 => println!("one or two"),
 3 => println!("three"),
 _ => println!("anything"),
 }

 let x = 5;

 match x {
 1..=5 => println!("one through five"),
 _ => println!("something else"),
 }

 let x = 'c';

 match x {
 'a'..='j' => println!("early ASCII letter"),
 'k'..='z' => println!("late ASCII letter"),
 _ => println!("something else"),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 508/636

Destructuring Structs

Listing 18-12 shows a Point struct with two fields, x and y , that we can break apart
using a pattern with a let statement.

Filename: src/main.rs

Listing 18-12: Destructuring a struct’s fields into separate variables

This code creates the variables a and b that match the values of the x and y fields of
the p struct. This example shows that the names of the variables in the pattern don’t
have to match the field names of the struct. However, it’s common to match the variable
names to the field names to make it easier to remember which variables came from
which fields. Because of this common usage, and because writing let Point { x: x,
y: y } = p; contains a lot of duplication, Rust has a shorthand for patterns that match
struct fields: you only need to list the name of the struct field, and the variables created
from the pattern will have the same names. Listing 18-13 behaves in the same way as
the code in Listing 18-12, but the variables created in the let pattern are x and y
instead of a and b .

Filename: src/main.rs

Listing 18-13: Destructuring struct fields using struct field shorthand

struct Point {
 x: i32,
 y: i32,
}

fn main() {
 let p = Point { x: 0, y: 7 };

 let Point { x: a, y: b } = p;
 assert_eq!(0, a);
 assert_eq!(7, b);
}

struct Point {
 x: i32,
 y: i32,
}

fn main() {
 let p = Point { x: 0, y: 7 };

 let Point { x, y } = p;
 assert_eq!(0, x);
 assert_eq!(7, y);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 509/636

This code creates the variables x and y that match the x and y fields of the p
variable. The outcome is that the variables x and y contain the values from the p
struct.

We can also destructure with literal values as part of the struct pattern rather than
creating variables for all the fields. Doing so allows us to test some of the fields for
particular values while creating variables to destructure the other fields.

In Listing 18-14, we have a match expression that separates Point values into three
cases: points that lie directly on the x axis (which is true when y = 0), on the y axis (x
= 0), or neither.

Filename: src/main.rs

Listing 18-14: Destructuring and matching literal values in one pattern

The first arm will match any point that lies on the x axis by specifying that the y field
matches if its value matches the literal 0 . The pattern still creates an x variable that we
can use in the code for this arm.

Similarly, the second arm matches any point on the y axis by specifying that the x field
matches if its value is 0 and creates a variable y for the value of the y field. The third
arm doesn’t specify any literals, so it matches any other Point and creates variables for
both the x and y fields.

In this example, the value p matches the second arm by virtue of x containing a 0, so
this code will print On the y axis at 7 .

Remember that a match expression stops checking arms once it has found the first
matching pattern, so even though Point { x: 0, y: 0} is on the x axis and the y
axis, this code would only print On the x axis at 0 .

Destructuring Enums

We've destructured enums in this book (for example, Listing 6-5 in Chapter 6), but
haven’t yet explicitly discussed that the pattern to destructure an enum corresponds to

fn main() {
 let p = Point { x: 0, y: 7 };

 match p {
 Point { x, y: 0 } => println!("On the x axis at {x}"),
 Point { x: 0, y } => println!("On the y axis at {y}"),
 Point { x, y } => {
 println!("On neither axis: ({x}, {y})");
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 510/636

the way the data stored within the enum is defined. As an example, in Listing 18-15 we
use the Message enum from Listing 6-2 and write a match with patterns that will
destructure each inner value.

Filename: src/main.rs

Listing 18-15: Destructuring enum variants that hold different kinds of values

This code will print Change the color to red 0, green 160, and blue 255 . Try
changing the value of msg to see the code from the other arms run.

For enum variants without any data, like Message::Quit , we can’t destructure the value
any further. We can only match on the literal Message::Quit value, and no variables are
in that pattern.

For struct-like enum variants, such as Message::Move , we can use a pattern similar to
the pattern we specify to match structs. After the variant name, we place curly brackets
and then list the fields with variables so we break apart the pieces to use in the code for
this arm. Here we use the shorthand form as we did in Listing 18-13.

For tuple-like enum variants, like Message::Write that holds a tuple with one element
and Message::ChangeColor that holds a tuple with three elements, the pattern is
similar to the pattern we specify to match tuples. The number of variables in the pattern
must match the number of elements in the variant we’re matching.

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

fn main() {
 let msg = Message::ChangeColor(0, 160, 255);

 match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.");
 }
 Message::Move { x, y } => {
 println!("Move in the x direction {x} and in the y direction
{y}");
 }
 Message::Write(text) => {
 println!("Text message: {text}");
 }
 Message::ChangeColor(r, g, b) => {
 println!("Change the color to red {r}, green {g}, and blue
{b}",)
 }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 511/636

Destructuring Nested Structs and Enums

So far, our examples have all been matching structs or enums one level deep, but
matching can work on nested items too! For example, we can refactor the code in
Listing 18-15 to support RGB and HSV colors in the ChangeColor message, as shown in
Listing 18-16.

Listing 18-16: Matching on nested enums

The pattern of the first arm in the match expression matches a Message::ChangeColor
enum variant that contains a Color::Rgb variant; then the pattern binds to the three
inner i32 values. The pattern of the second arm also matches a
Message::ChangeColor enum variant, but the inner enum matches Color::Hsv

instead. We can specify these complex conditions in one match expression, even
though two enums are involved.

Destructuring Structs and Tuples

We can mix, match, and nest destructuring patterns in even more complex ways. The
following example shows a complicated destructure where we nest structs and tuples
inside a tuple and destructure all the primitive values out:

enum Color {
 Rgb(i32, i32, i32),
 Hsv(i32, i32, i32),
}

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(Color),
}

fn main() {
 let msg = Message::ChangeColor(Color::Hsv(0, 160, 255));

 match msg {
 Message::ChangeColor(Color::Rgb(r, g, b)) => {
 println!("Change color to red {r}, green {g}, and blue {b}");
 }
 Message::ChangeColor(Color::Hsv(h, s, v)) => {
 println!("Change color to hue {h}, saturation {s}, value {v}")
 }
 _ => (),
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 512/636

This code lets us break complex types into their component parts so we can use the
values we’re interested in separately.

Destructuring with patterns is a convenient way to use pieces of values, such as the
value from each field in a struct, separately from each other.

Ignoring Values in a Pattern

You’ve seen that it’s sometimes useful to ignore values in a pattern, such as in the last
arm of a match , to get a catchall that doesn’t actually do anything but does account for
all remaining possible values. There are a few ways to ignore entire values or parts of
values in a pattern: using the _ pattern (which you’ve seen), using the _ pattern within
another pattern, using a name that starts with an underscore, or using .. to ignore
remaining parts of a value. Let’s explore how and why to use each of these patterns.

Ignoring an Entire Value with _

We’ve used the underscore as a wildcard pattern that will match any value but not bind
to the value. This is especially useful as the last arm in a match expression, but we can
also use it in any pattern, including function parameters, as shown in Listing 18-17.

Filename: src/main.rs

Listing 18-17: Using _ in a function signature

This code will completely ignore the value 3 passed as the first argument, and will print
This code only uses the y parameter: 4 .

In most cases when you no longer need a particular function parameter, you would
change the signature so it doesn’t include the unused parameter. Ignoring a function
parameter can be especially useful in cases when, for example, you're implementing a
trait when you need a certain type signature but the function body in your
implementation doesn’t need one of the parameters. You then avoid getting a compiler
warning about unused function parameters, as you would if you used a name instead.

 let ((feet, inches), Point { x, y }) = ((3, 10), Point { x: 3, y: -10
});

fn foo(_: i32, y: i32) {
 println!("This code only uses the y parameter: {}", y);
}

fn main() {
 foo(3, 4);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 513/636

Ignoring Parts of a Value with a Nested _

We can also use _ inside another pattern to ignore just part of a value, for example,
when we want to test for only part of a value but have no use for the other parts in the
corresponding code we want to run. Listing 18-18 shows code responsible for managing
a setting’s value. The business requirements are that the user should not be allowed to
overwrite an existing customization of a setting but can unset the setting and give it a
value if it is currently unset.

Listing 18-18: Using an underscore within patterns that match Some variants when we don’t need to use

the value inside the Some

This code will print Can't overwrite an existing customized value and then
setting is Some(5) . In the first match arm, we don’t need to match on or use the

values inside either Some variant, but we do need to test for the case when
setting_value and new_setting_value are the Some variant. In that case, we print the

reason for not changing setting_value , and it doesn’t get changed.

In all other cases (if either setting_value or new_setting_value are None) expressed
by the _ pattern in the second arm, we want to allow new_setting_value to become
setting_value .

We can also use underscores in multiple places within one pattern to ignore particular
values. Listing 18-19 shows an example of ignoring the second and fourth values in a
tuple of five items.

Listing 18-19: Ignoring multiple parts of a tuple

 let mut setting_value = Some(5);
 let new_setting_value = Some(10);

 match (setting_value, new_setting_value) {
 (Some(_), Some(_)) => {
 println!("Can't overwrite an existing customized value");
 }
 _ => {
 setting_value = new_setting_value;
 }
 }

 println!("setting is {:?}", setting_value);

 let numbers = (2, 4, 8, 16, 32);

 match numbers {
 (first, _, third, _, fifth) => {
 println!("Some numbers: {first}, {third}, {fifth}")
 }
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 514/636

This code will print Some numbers: 2, 8, 32 , and the values 4 and 16 will be ignored.

Ignoring an Unused Variable by Starting Its Name with _

If you create a variable but don’t use it anywhere, Rust will usually issue a warning
because an unused variable could be a bug. However, sometimes it’s useful to be able
to create a variable you won’t use yet, such as when you’re prototyping or just starting a
project. In this situation, you can tell Rust not to warn you about the unused variable by
starting the name of the variable with an underscore. In Listing 18-20, we create two
unused variables, but when we compile this code, we should only get a warning about
one of them.

Filename: src/main.rs

Listing 18-20: Starting a variable name with an underscore to avoid getting unused variable warnings

Here we get a warning about not using the variable y , but we don’t get a warning about
not using _x .

Note that there is a subtle difference between using only _ and using a name that
starts with an underscore. The syntax _x still binds the value to the variable, whereas
_ doesn’t bind at all. To show a case where this distinction matters, Listing 18-21 will

provide us with an error.

Listing 18-21: An unused variable starting with an underscore still binds the value, which might take

ownership of the value

We’ll receive an error because the s value will still be moved into _s , which prevents
us from using s again. However, using the underscore by itself doesn’t ever bind to the
value. Listing 18-22 will compile without any errors because s doesn’t get moved into
_ .

fn main() {
 let _x = 5;
 let y = 10;
}

 let s = Some(String::from("Hello!"));

 if let Some(_s) = s {
 println!("found a string");
 }

 println!("{:?}", s);

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 515/636

Listing 18-22: Using an underscore does not bind the value

This code works just fine because we never bind s to anything; it isn’t moved.

Ignoring Remaining Parts of a Value with ..

With values that have many parts, we can use the .. syntax to use specific parts and
ignore the rest, avoiding the need to list underscores for each ignored value. The ..
pattern ignores any parts of a value that we haven’t explicitly matched in the rest of the
pattern. In Listing 18-23, we have a Point struct that holds a coordinate in three-
dimensional space. In the match expression, we want to operate only on the x
coordinate and ignore the values in the y and z fields.

Listing 18-23: Ignoring all fields of a Point except for x by using ..

We list the x value and then just include the .. pattern. This is quicker than having to
list y: _ and z: _ , particularly when we’re working with structs that have lots of fields
in situations where only one or two fields are relevant.

The syntax .. will expand to as many values as it needs to be. Listing 18-24 shows how
to use .. with a tuple.

Filename: src/main.rs

 let s = Some(String::from("Hello!"));

 if let Some(_) = s {
 println!("found a string");
 }

 println!("{:?}", s);

 struct Point {
 x: i32,
 y: i32,
 z: i32,
 }

 let origin = Point { x: 0, y: 0, z: 0 };

 match origin {
 Point { x, .. } => println!("x is {}", x),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 516/636

Listing 18-24: Matching only the first and last values in a tuple and ignoring all other values

In this code, the first and last value are matched with first and last . The .. will
match and ignore everything in the middle.

However, using .. must be unambiguous. If it is unclear which values are intended for
matching and which should be ignored, Rust will give us an error. Listing 18-25 shows an
example of using .. ambiguously, so it will not compile.

Filename: src/main.rs

Listing 18-25: An attempt to use .. in an ambiguous way

When we compile this example, we get this error:

It’s impossible for Rust to determine how many values in the tuple to ignore before
matching a value with second and then how many further values to ignore thereafter.
This code could mean that we want to ignore 2 , bind second to 4 , and then ignore 8 ,
16 , and 32 ; or that we want to ignore 2 and 4 , bind second to 8 , and then ignore

fn main() {
 let numbers = (2, 4, 8, 16, 32);

 match numbers {
 (first, .., last) => {
 println!("Some numbers: {first}, {last}");
 }
 }
}

fn main() {
 let numbers = (2, 4, 8, 16, 32);

 match numbers {
 (.., second, ..) => {
 println!("Some numbers: {}", second)
 },
 }
}

$ cargo run
 Compiling patterns v0.1.0 (file:///projects/patterns)
error: `..` can only be used once per tuple pattern
 --> src/main.rs:5:22
 |
5 | (.., second, ..) => {
 | -- ^^ can only be used once per tuple pattern
 | |
 | previously used here

error: could not compile `patterns` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 517/636

16 and 32 ; and so forth. The variable name second doesn’t mean anything special to
Rust, so we get a compiler error because using .. in two places like this is ambiguous.

Extra Conditionals with Match Guards

A match guard is an additional if condition, specified after the pattern in a match arm,
that must also match for that arm to be chosen. Match guards are useful for expressing
more complex ideas than a pattern alone allows.

The condition can use variables created in the pattern. Listing 18-26 shows a match
where the first arm has the pattern Some(x) and also has a match guard of if x % 2
== 0 (which will be true if the number is even).

Listing 18-26: Adding a match guard to a pattern

This example will print The number 4 is even . When num is compared to the pattern
in the first arm, it matches, because Some(4) matches Some(x) . Then the match guard
checks whether the remainder of dividing x by 2 is equal to 0, and because it is, the
first arm is selected.

If num had been Some(5) instead, the match guard in the first arm would have been
false because the remainder of 5 divided by 2 is 1, which is not equal to 0. Rust would
then go to the second arm, which would match because the second arm doesn’t have a
match guard and therefore matches any Some variant.

There is no way to express the if x % 2 == 0 condition within a pattern, so the match
guard gives us the ability to express this logic. The downside of this additional
expressiveness is that the compiler doesn't try to check for exhaustiveness when match
guard expressions are involved.

In Listing 18-11, we mentioned that we could use match guards to solve our pattern-
shadowing problem. Recall that we created a new variable inside the pattern in the
match expression instead of using the variable outside the match . That new variable

meant we couldn’t test against the value of the outer variable. Listing 18-27 shows how
we can use a match guard to fix this problem.

Filename: src/main.rs

 let num = Some(4);

 match num {
 Some(x) if x % 2 == 0 => println!("The number {} is even", x),
 Some(x) => println!("The number {} is odd", x),
 None => (),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 518/636

Listing 18-27: Using a match guard to test for equality with an outer variable

This code will now print Default case, x = Some(5) . The pattern in the second match
arm doesn’t introduce a new variable y that would shadow the outer y , meaning we
can use the outer y in the match guard. Instead of specifying the pattern as Some(y) ,
which would have shadowed the outer y , we specify Some(n) . This creates a new
variable n that doesn’t shadow anything because there is no n variable outside the
match .

The match guard if n == y is not a pattern and therefore doesn’t introduce new
variables. This y is the outer y rather than a new shadowed y , and we can look for a
value that has the same value as the outer y by comparing n to y .

You can also use the or operator | in a match guard to specify multiple patterns; the
match guard condition will apply to all the patterns. Listing 18-28 shows the precedence
when combining a pattern that uses | with a match guard. The important part of this
example is that the if y match guard applies to 4 , 5 , and 6 , even though it might
look like if y only applies to 6 .

Listing 18-28: Combining multiple patterns with a match guard

The match condition states that the arm only matches if the value of x is equal to 4 ,
5 , or 6 and if y is true . When this code runs, the pattern of the first arm matches

because x is 4 , but the match guard if y is false, so the first arm is not chosen. The
code moves on to the second arm, which does match, and this program prints no . The
reason is that the if condition applies to the whole pattern 4 | 5 | 6 , not only to the
last value 6 . In other words, the precedence of a match guard in relation to a pattern
behaves like this:

fn main() {
 let x = Some(5);
 let y = 10;

 match x {
 Some(50) => println!("Got 50"),
 Some(n) if n == y => println!("Matched, n = {n}"),
 _ => println!("Default case, x = {:?}", x),
 }

 println!("at the end: x = {:?}, y = {y}", x);
}

 let x = 4;
 let y = false;

 match x {
 4 | 5 | 6 if y => println!("yes"),
 _ => println!("no"),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 519/636

rather than this:

After running the code, the precedence behavior is evident: if the match guard were
applied only to the final value in the list of values specified using the | operator, the
arm would have matched and the program would have printed yes .

@ Bindings

The at operator @ lets us create a variable that holds a value at the same time as we’re
testing that value for a pattern match. In Listing 18-29, we want to test that a
Message::Hello id field is within the range 3..=7 . We also want to bind the value to

the variable id_variable so we can use it in the code associated with the arm. We
could name this variable id , the same as the field, but for this example we’ll use a
different name.

Listing 18-29: Using @ to bind to a value in a pattern while also testing it

This example will print Found an id in range: 5 . By specifying id_variable @ before
the range 3..=7 , we’re capturing whatever value matched the range while also testing
that the value matched the range pattern.

In the second arm, where we only have a range specified in the pattern, the code
associated with the arm doesn’t have a variable that contains the actual value of the id
field. The id field’s value could have been 10, 11, or 12, but the code that goes with that
pattern doesn’t know which it is. The pattern code isn’t able to use the value from the
id field, because we haven’t saved the id value in a variable.

(4 | 5 | 6) if y => ...

4 | 5 | (6 if y) => ...

 enum Message {
 Hello { id: i32 },
 }

 let msg = Message::Hello { id: 5 };

 match msg {
 Message::Hello {
 id: id_variable @ 3..=7,
 } => println!("Found an id in range: {}", id_variable),
 Message::Hello { id: 10..=12 } => {
 println!("Found an id in another range")
 }
 Message::Hello { id } => println!("Found some other id: {}", id),
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 520/636

In the last arm, where we’ve specified a variable without a range, we do have the value
available to use in the arm’s code in a variable named id . The reason is that we’ve used
the struct field shorthand syntax. But we haven’t applied any test to the value in the id
field in this arm, as we did with the first two arms: any value would match this pattern.

Using @ lets us test a value and save it in a variable within one pattern.

Summary

Rust’s patterns are very useful in distinguishing between different kinds of data. When
used in match expressions, Rust ensures your patterns cover every possible value, or
your program won’t compile. Patterns in let statements and function parameters
make those constructs more useful, enabling the destructuring of values into smaller
parts at the same time as assigning to variables. We can create simple or complex
patterns to suit our needs.

Next, for the penultimate chapter of the book, we’ll look at some advanced aspects of a
variety of Rust’s features.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 521/636

Advanced Features
By now, you’ve learned the most commonly used parts of the Rust programming
language. Before we do one more project in Chapter 20, we’ll look at a few aspects of
the language you might run into every once in a while, but may not use every day. You
can use this chapter as a reference for when you encounter any unknowns. The features
covered here are useful in very specific situations. Although you might not reach for
them often, we want to make sure you have a grasp of all the features Rust has to offer.

In this chapter, we’ll cover:

Unsafe Rust: how to opt out of some of Rust’s guarantees and take responsibility
for manually upholding those guarantees
Advanced traits: associated types, default type parameters, fully qualified syntax,
supertraits, and the newtype pattern in relation to traits
Advanced types: more about the newtype pattern, type aliases, the never type, and
dynamically sized types
Advanced functions and closures: function pointers and returning closures
Macros: ways to define code that defines more code at compile time

It’s a panoply of Rust features with something for everyone! Let’s dive in!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 522/636

Unsafe Rust

All the code we’ve discussed so far has had Rust’s memory safety guarantees enforced
at compile time. However, Rust has a second language hidden inside it that doesn’t
enforce these memory safety guarantees: it’s called unsafe Rust and works just like
regular Rust, but gives us extra superpowers.

Unsafe Rust exists because, by nature, static analysis is conservative. When the compiler
tries to determine whether or not code upholds the guarantees, it’s better for it to reject
some valid programs than to accept some invalid programs. Although the code might be
okay, if the Rust compiler doesn’t have enough information to be confident, it will reject
the code. In these cases, you can use unsafe code to tell the compiler, “Trust me, I know
what I’m doing.” Be warned, however, that you use unsafe Rust at your own risk: if you
use unsafe code incorrectly, problems can occur due to memory unsafety, such as null
pointer dereferencing.

Another reason Rust has an unsafe alter ego is that the underlying computer hardware
is inherently unsafe. If Rust didn’t let you do unsafe operations, you couldn’t do certain
tasks. Rust needs to allow you to do low-level systems programming, such as directly
interacting with the operating system or even writing your own operating system.
Working with low-level systems programming is one of the goals of the language. Let’s
explore what we can do with unsafe Rust and how to do it.

Unsafe Superpowers

To switch to unsafe Rust, use the unsafe keyword and then start a new block that holds
the unsafe code. You can take five actions in unsafe Rust that you can’t in safe Rust,
which we call unsafe superpowers. Those superpowers include the ability to:

Dereference a raw pointer
Call an unsafe function or method
Access or modify a mutable static variable
Implement an unsafe trait
Access fields of union s

It’s important to understand that unsafe doesn’t turn off the borrow checker or disable
any other of Rust’s safety checks: if you use a reference in unsafe code, it will still be
checked. The unsafe keyword only gives you access to these five features that are then
not checked by the compiler for memory safety. You’ll still get some degree of safety
inside of an unsafe block.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 523/636

In addition, unsafe does not mean the code inside the block is necessarily dangerous
or that it will definitely have memory safety problems: the intent is that as the
programmer, you’ll ensure the code inside an unsafe block will access memory in a
valid way.

People are fallible, and mistakes will happen, but by requiring these five unsafe
operations to be inside blocks annotated with unsafe you’ll know that any errors
related to memory safety must be within an unsafe block. Keep unsafe blocks small;
you’ll be thankful later when you investigate memory bugs.

To isolate unsafe code as much as possible, it’s best to enclose unsafe code within a safe
abstraction and provide a safe API, which we’ll discuss later in the chapter when we
examine unsafe functions and methods. Parts of the standard library are implemented
as safe abstractions over unsafe code that has been audited. Wrapping unsafe code in a
safe abstraction prevents uses of unsafe from leaking out into all the places that you or
your users might want to use the functionality implemented with unsafe code, because
using a safe abstraction is safe.

Let’s look at each of the five unsafe superpowers in turn. We’ll also look at some
abstractions that provide a safe interface to unsafe code.

Dereferencing a Raw Pointer

In Chapter 4, in the “Dangling References” section, we mentioned that the compiler
ensures references are always valid. Unsafe Rust has two new types called raw pointers
that are similar to references. As with references, raw pointers can be immutable or
mutable and are written as *const T and *mut T , respectively. The asterisk isn’t the
dereference operator; it’s part of the type name. In the context of raw pointers,
immutable means that the pointer can’t be directly assigned to after being dereferenced.

Different from references and smart pointers, raw pointers:

Are allowed to ignore the borrowing rules by having both immutable and mutable
pointers or multiple mutable pointers to the same location
Aren’t guaranteed to point to valid memory
Are allowed to be null
Don’t implement any automatic cleanup

By opting out of having Rust enforce these guarantees, you can give up guaranteed
safety in exchange for greater performance or the ability to interface with another
language or hardware where Rust’s guarantees don’t apply.

Listing 19-1 shows how to create an immutable and a mutable raw pointer from
references.

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#dangling-references

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 524/636

Listing 19-1: Creating raw pointers from references

Notice that we don’t include the unsafe keyword in this code. We can create raw
pointers in safe code; we just can’t dereference raw pointers outside an unsafe block, as
you’ll see in a bit.

We’ve created raw pointers by using as to cast an immutable and a mutable reference
into their corresponding raw pointer types. Because we created them directly from
references guaranteed to be valid, we know these particular raw pointers are valid, but
we can’t make that assumption about just any raw pointer.

To demonstrate this, next we’ll create a raw pointer whose validity we can’t be so certain
of. Listing 19-2 shows how to create a raw pointer to an arbitrary location in memory.
Trying to use arbitrary memory is undefined: there might be data at that address or
there might not, the compiler might optimize the code so there is no memory access, or
the program might error with a segmentation fault. Usually, there is no good reason to
write code like this, but it is possible.

Listing 19-2: Creating a raw pointer to an arbitrary memory address

Recall that we can create raw pointers in safe code, but we can’t dereference raw
pointers and read the data being pointed to. In Listing 19-3, we use the dereference
operator * on a raw pointer that requires an unsafe block.

Listing 19-3: Dereferencing raw pointers within an unsafe block

Creating a pointer does no harm; it’s only when we try to access the value that it points
at that we might end up dealing with an invalid value.

Note also that in Listing 19-1 and 19-3, we created *const i32 and *mut i32 raw
pointers that both pointed to the same memory location, where num is stored. If we

 let mut num = 5;

 let r1 = &num as *const i32;
 let r2 = &mut num as *mut i32;

 let address = 0x012345usize;
 let r = address as *const i32;

 let mut num = 5;

 let r1 = &num as *const i32;
 let r2 = &mut num as *mut i32;

 unsafe {
 println!("r1 is: {}", *r1);
 println!("r2 is: {}", *r2);
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 525/636

instead tried to create an immutable and a mutable reference to num , the code would
not have compiled because Rust’s ownership rules don’t allow a mutable reference at
the same time as any immutable references. With raw pointers, we can create a
mutable pointer and an immutable pointer to the same location and change data
through the mutable pointer, potentially creating a data race. Be careful!

With all of these dangers, why would you ever use raw pointers? One major use case is
when interfacing with C code, as you’ll see in the next section, “Calling an Unsafe
Function or Method.” Another case is when building up safe abstractions that the
borrow checker doesn’t understand. We’ll introduce unsafe functions and then look at
an example of a safe abstraction that uses unsafe code.

Calling an Unsafe Function or Method

The second type of operation you can perform in an unsafe block is calling unsafe
functions. Unsafe functions and methods look exactly like regular functions and
methods, but they have an extra unsafe before the rest of the definition. The unsafe
keyword in this context indicates the function has requirements we need to uphold
when we call this function, because Rust can’t guarantee we’ve met these requirements.
By calling an unsafe function within an unsafe block, we’re saying that we’ve read this
function’s documentation and take responsibility for upholding the function’s contracts.

Here is an unsafe function named dangerous that doesn’t do anything in its body:

We must call the dangerous function within a separate unsafe block. If we try to call
dangerous without the unsafe block, we’ll get an error:

 unsafe fn dangerous() {}

 unsafe {
 dangerous();
 }

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#calling-an-unsafe-function-or-method

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 526/636

With the unsafe block, we’re asserting to Rust that we’ve read the function’s
documentation, we understand how to use it properly, and we’ve verified that we’re
fulfilling the contract of the function.

Bodies of unsafe functions are effectively unsafe blocks, so to perform other unsafe
operations within an unsafe function, we don’t need to add another unsafe block.

Creating a Safe Abstraction over Unsafe Code

Just because a function contains unsafe code doesn’t mean we need to mark the entire
function as unsafe. In fact, wrapping unsafe code in a safe function is a common
abstraction. As an example, let’s study the split_at_mut function from the standard
library, which requires some unsafe code. We’ll explore how we might implement it. This
safe method is defined on mutable slices: it takes one slice and makes it two by splitting
the slice at the index given as an argument. Listing 19-4 shows how to use
split_at_mut .

Listing 19-4: Using the safe split_at_mut function

We can’t implement this function using only safe Rust. An attempt might look something
like Listing 19-5, which won’t compile. For simplicity, we’ll implement split_at_mut as a
function rather than a method and only for slices of i32 values rather than for a
generic type T .

$ cargo run
 Compiling unsafe-example v0.1.0 (file:///projects/unsafe-example)
error[E0133]: call to unsafe function is unsafe and requires unsafe
function or block
 --> src/main.rs:4:5
 |
4 | dangerous();
 | ^^^^^^^^^^^ call to unsafe function
 |
 = note: consult the function's documentation for information on how to
avoid undefined behavior

For more information about this error, try `rustc --explain E0133`.
error: could not compile `unsafe-example` due to previous error

 let mut v = vec![1, 2, 3, 4, 5, 6];

 let r = &mut v[..];

 let (a, b) = r.split_at_mut(3);

 assert_eq!(a, &mut [1, 2, 3]);
 assert_eq!(b, &mut [4, 5, 6]);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 527/636

Listing 19-5: An attempted implementation of split_at_mut using only safe Rust

This function first gets the total length of the slice. Then it asserts that the index given as
a parameter is within the slice by checking whether it’s less than or equal to the length.
The assertion means that if we pass an index that is greater than the length to split the
slice at, the function will panic before it attempts to use that index.

Then we return two mutable slices in a tuple: one from the start of the original slice to
the mid index and another from mid to the end of the slice.

When we try to compile the code in Listing 19-5, we’ll get an error.

Rust’s borrow checker can’t understand that we’re borrowing different parts of the slice;
it only knows that we’re borrowing from the same slice twice. Borrowing different parts
of a slice is fundamentally okay because the two slices aren’t overlapping, but Rust isn’t
smart enough to know this. When we know code is okay, but Rust doesn’t, it’s time to
reach for unsafe code.

Listing 19-6 shows how to use an unsafe block, a raw pointer, and some calls to unsafe
functions to make the implementation of split_at_mut work.

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32])
{
 let len = values.len();

 assert!(mid <= len);

 (&mut values[..mid], &mut values[mid..])
}

$ cargo run
 Compiling unsafe-example v0.1.0 (file:///projects/unsafe-example)
error[E0499]: cannot borrow `*values` as mutable more than once at a time
 --> src/main.rs:6:31
 |
1 | fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut
[i32]) {
 | - let's call the lifetime of this reference
`'1`
...
6 | (&mut values[..mid], &mut values[mid..])
 | --------------------------^^^^^^--------
 | | | |
 | | | second mutable borrow occurs here
 | | first mutable borrow occurs here
 | returning this value requires that `*values` is borrowed for `'1`

For more information about this error, try `rustc --explain E0499`.
error: could not compile `unsafe-example` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 528/636

Listing 19-6: Using unsafe code in the implementation of the split_at_mut function

Recall from “The Slice Type” section in Chapter 4 that slices are a pointer to some data
and the length of the slice. We use the len method to get the length of a slice and the
as_mut_ptr method to access the raw pointer of a slice. In this case, because we have a

mutable slice to i32 values, as_mut_ptr returns a raw pointer with the type *mut i32 ,
which we’ve stored in the variable ptr .

We keep the assertion that the mid index is within the slice. Then we get to the unsafe
code: the slice::from_raw_parts_mut function takes a raw pointer and a length, and it
creates a slice. We use this function to create a slice that starts from ptr and is mid
items long. Then we call the add method on ptr with mid as an argument to get a raw
pointer that starts at mid , and we create a slice using that pointer and the remaining
number of items after mid as the length.

The function slice::from_raw_parts_mut is unsafe because it takes a raw pointer and
must trust that this pointer is valid. The add method on raw pointers is also unsafe,
because it must trust that the offset location is also a valid pointer. Therefore, we had to
put an unsafe block around our calls to slice::from_raw_parts_mut and add so we
could call them. By looking at the code and by adding the assertion that mid must be
less than or equal to len , we can tell that all the raw pointers used within the unsafe
block will be valid pointers to data within the slice. This is an acceptable and appropriate
use of unsafe .

Note that we don’t need to mark the resulting split_at_mut function as unsafe , and
we can call this function from safe Rust. We’ve created a safe abstraction to the unsafe
code with an implementation of the function that uses unsafe code in a safe way,
because it creates only valid pointers from the data this function has access to.

In contrast, the use of slice::from_raw_parts_mut in Listing 19-7 would likely crash
when the slice is used. This code takes an arbitrary memory location and creates a slice

use std::slice;

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32])
{
 let len = values.len();
 let ptr = values.as_mut_ptr();

 assert!(mid <= len);

 unsafe {
 (
 slice::from_raw_parts_mut(ptr, mid),
 slice::from_raw_parts_mut(ptr.add(mid), len - mid),
)
 }
}

https://doc.rust-lang.org/book/ch04-03-slices.html#the-slice-type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 529/636

10,000 items long.

Listing 19-7: Creating a slice from an arbitrary memory location

We don’t own the memory at this arbitrary location, and there is no guarantee that the
slice this code creates contains valid i32 values. Attempting to use values as though
it’s a valid slice results in undefined behavior.

Using extern Functions to Call External Code

Sometimes, your Rust code might need to interact with code written in another
language. For this, Rust has the keyword extern that facilitates the creation and use of
a Foreign Function Interface (FFI). An FFI is a way for a programming language to define
functions and enable a different (foreign) programming language to call those functions.

Listing 19-8 demonstrates how to set up an integration with the abs function from the
C standard library. Functions declared within extern blocks are always unsafe to call
from Rust code. The reason is that other languages don’t enforce Rust’s rules and
guarantees, and Rust can’t check them, so responsibility falls on the programmer to
ensure safety.

Filename: src/main.rs

Listing 19-8: Declaring and calling an extern function defined in another language

Within the extern "C" block, we list the names and signatures of external functions
from another language we want to call. The "C" part defines which application binary
interface (ABI) the external function uses: the ABI defines how to call the function at the
assembly level. The "C" ABI is the most common and follows the C programming
language’s ABI.

 use std::slice;

 let address = 0x01234usize;
 let r = address as *mut i32;

 let values: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) };

extern "C" {
 fn abs(input: i32) -> i32;
}

fn main() {
 unsafe {
 println!("Absolute value of -3 according to C: {}", abs(-3));
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 530/636

Calling Rust Functions from Other Languages

We can also use extern to create an interface that allows other languages to call
Rust functions. Instead of creating a whole extern block, we add the extern
keyword and specify the ABI to use just before the fn keyword for the relevant
function. We also need to add a #[no_mangle] annotation to tell the Rust compiler
not to mangle the name of this function. Mangling is when a compiler changes the
name we’ve given a function to a different name that contains more information
for other parts of the compilation process to consume but is less human readable.
Every programming language compiler mangles names slightly differently, so for a
Rust function to be nameable by other languages, we must disable the Rust
compiler’s name mangling.

In the following example, we make the call_from_c function accessible from C
code, after it’s compiled to a shared library and linked from C:

This usage of extern does not require unsafe .

Accessing or Modifying a Mutable Static Variable

In this book, we’ve not yet talked about global variables, which Rust does support but
can be problematic with Rust’s ownership rules. If two threads are accessing the same
mutable global variable, it can cause a data race.

In Rust, global variables are called static variables. Listing 19-9 shows an example
declaration and use of a static variable with a string slice as a value.

Filename: src/main.rs

Listing 19-9: Defining and using an immutable static variable

Static variables are similar to constants, which we discussed in the “Differences Between
Variables and Constants” section in Chapter 3. The names of static variables are in

#[no_mangle]
pub extern "C" fn call_from_c() {
 println!("Just called a Rust function from C!");
}

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
 println!("name is: {}", HELLO_WORLD);
}

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#constants

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 531/636

SCREAMING_SNAKE_CASE by convention. Static variables can only store references with
the 'static lifetime, which means the Rust compiler can figure out the lifetime and we
aren’t required to annotate it explicitly. Accessing an immutable static variable is safe.

A subtle difference between constants and immutable static variables is that values in a
static variable have a fixed address in memory. Using the value will always access the
same data. Constants, on the other hand, are allowed to duplicate their data whenever
they’re used. Another difference is that static variables can be mutable. Accessing and
modifying mutable static variables is unsafe. Listing 19-10 shows how to declare, access,
and modify a mutable static variable named COUNTER .

Filename: src/main.rs

Listing 19-10: Reading from or writing to a mutable static variable is unsafe

As with regular variables, we specify mutability using the mut keyword. Any code that
reads or writes from COUNTER must be within an unsafe block. This code compiles and
prints COUNTER: 3 as we would expect because it’s single threaded. Having multiple
threads access COUNTER would likely result in data races.

With mutable data that is globally accessible, it’s difficult to ensure there are no data
races, which is why Rust considers mutable static variables to be unsafe. Where
possible, it’s preferable to use the concurrency techniques and thread-safe smart
pointers we discussed in Chapter 16 so the compiler checks that data accessed from
different threads is done safely.

Implementing an Unsafe Trait

We can use unsafe to implement an unsafe trait. A trait is unsafe when at least one of
its methods has some invariant that the compiler can’t verify. We declare that a trait is
unsafe by adding the unsafe keyword before trait and marking the implementation

of the trait as unsafe too, as shown in Listing 19-11.

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
 unsafe {
 COUNTER += inc;
 }
}

fn main() {
 add_to_count(3);

 unsafe {
 println!("COUNTER: {}", COUNTER);
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 532/636

Listing 19-11: Defining and implementing an unsafe trait

By using unsafe impl , we’re promising that we’ll uphold the invariants that the
compiler can’t verify.

As an example, recall the Sync and Send marker traits we discussed in the “Extensible
Concurrency with the Sync and Send Traits” section in Chapter 16: the compiler
implements these traits automatically if our types are composed entirely of Send and
Sync types. If we implement a type that contains a type that is not Send or Sync , such

as raw pointers, and we want to mark that type as Send or Sync , we must use unsafe .
Rust can’t verify that our type upholds the guarantees that it can be safely sent across
threads or accessed from multiple threads; therefore, we need to do those checks
manually and indicate as such with unsafe .

Accessing Fields of a Union

The final action that works only with unsafe is accessing fields of a union. A union is
similar to a struct , but only one declared field is used in a particular instance at one
time. Unions are primarily used to interface with unions in C code. Accessing union
fields is unsafe because Rust can’t guarantee the type of the data currently being stored
in the union instance. You can learn more about unions in the Rust Reference.

When to Use Unsafe Code

Using unsafe to take one of the five actions (superpowers) just discussed isn’t wrong or
even frowned upon. But it is trickier to get unsafe code correct because the compiler
can’t help uphold memory safety. When you have a reason to use unsafe code, you can
do so, and having the explicit unsafe annotation makes it easier to track down the
source of problems when they occur.

unsafe trait Foo {
 // methods go here
}

unsafe impl Foo for i32 {
 // method implementations go here
}

fn main() {}

https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html#extensible-concurrency-with-the-sync-and-send-traits
https://doc.rust-lang.org/reference/items/unions.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 533/636

Advanced Traits

We first covered traits in the “Traits: Defining Shared Behavior” section of Chapter 10,
but we didn’t discuss the more advanced details. Now that you know more about Rust,
we can get into the nitty-gritty.

Specifying Placeholder Types in Trait Definitions with Associated
Types

Associated types connect a type placeholder with a trait such that the trait method
definitions can use these placeholder types in their signatures. The implementor of a
trait will specify the concrete type to be used instead of the placeholder type for the
particular implementation. That way, we can define a trait that uses some types without
needing to know exactly what those types are until the trait is implemented.

We’ve described most of the advanced features in this chapter as being rarely needed.
Associated types are somewhere in the middle: they’re used more rarely than features
explained in the rest of the book but more commonly than many of the other features
discussed in this chapter.

One example of a trait with an associated type is the Iterator trait that the standard
library provides. The associated type is named Item and stands in for the type of the
values the type implementing the Iterator trait is iterating over. The definition of the
Iterator trait is as shown in Listing 19-12.

Listing 19-12: The definition of the Iterator trait that has an associated type Item

The type Item is a placeholder, and the next method’s definition shows that it will
return values of type Option<Self::Item> . Implementors of the Iterator trait will
specify the concrete type for Item , and the next method will return an Option
containing a value of that concrete type.

Associated types might seem like a similar concept to generics, in that the latter allow us
to define a function without specifying what types it can handle. To examine the
difference between the two concepts, we’ll look at an implementation of the Iterator
trait on a type named Counter that specifies the Item type is u32 :

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;
}

https://doc.rust-lang.org/book/ch10-02-traits.html#traits-defining-shared-behavior

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 534/636

Filename: src/lib.rs

This syntax seems comparable to that of generics. So why not just define the Iterator
trait with generics, as shown in Listing 19-13?

Listing 19-13: A hypothetical definition of the Iterator trait using generics

The difference is that when using generics, as in Listing 19-13, we must annotate the
types in each implementation; because we can also implement Iterator<String> for
Counter or any other type, we could have multiple implementations of Iterator for
Counter . In other words, when a trait has a generic parameter, it can be implemented

for a type multiple times, changing the concrete types of the generic type parameters
each time. When we use the next method on Counter , we would have to provide type
annotations to indicate which implementation of Iterator we want to use.

With associated types, we don’t need to annotate types because we can’t implement a
trait on a type multiple times. In Listing 19-12 with the definition that uses associated
types, we can only choose what the type of Item will be once, because there can only
be one impl Iterator for Counter . We don’t have to specify that we want an iterator
of u32 values everywhere that we call next on Counter .

Associated types also become part of the trait’s contract: implementors of the trait must
provide a type to stand in for the associated type placeholder. Associated types often
have a name that describes how the type will be used, and documenting the associated
type in the API documentation is good practice.

Default Generic Type Parameters and Operator Overloading

When we use generic type parameters, we can specify a default concrete type for the
generic type. This eliminates the need for implementors of the trait to specify a concrete
type if the default type works. You specify a default type when declaring a generic type
with the <PlaceholderType=ConcreteType> syntax.

A great example of a situation where this technique is useful is with operator
overloading, in which you customize the behavior of an operator (such as +) in
particular situations.

impl Iterator for Counter {
 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> {
 // --snip--

pub trait Iterator<T> {
 fn next(&mut self) -> Option<T>;
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 535/636

Rust doesn’t allow you to create your own operators or overload arbitrary operators.
But you can overload the operations and corresponding traits listed in std::ops by
implementing the traits associated with the operator. For example, in Listing 19-14 we
overload the + operator to add two Point instances together. We do this by
implementing the Add trait on a Point struct:

Filename: src/main.rs

Listing 19-14: Implementing the Add trait to overload the + operator for Point instances

The add method adds the x values of two Point instances and the y values of two
Point instances to create a new Point . The Add trait has an associated type named
Output that determines the type returned from the add method.

The default generic type in this code is within the Add trait. Here is its definition:

This code should look generally familiar: a trait with one method and an associated
type. The new part is Rhs=Self : this syntax is called default type parameters. The Rhs
generic type parameter (short for “right hand side”) defines the type of the rhs

use std::ops::Add;

#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
 x: i32,
 y: i32,
}

impl Add for Point {
 type Output = Point;

 fn add(self, other: Point) -> Point {
 Point {
 x: self.x + other.x,
 y: self.y + other.y,
 }
 }
}

fn main() {
 assert_eq!(
 Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
 Point { x: 3, y: 3 }
);
}

trait Add<Rhs=Self> {
 type Output;

 fn add(self, rhs: Rhs) -> Self::Output;
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 536/636

parameter in the add method. If we don’t specify a concrete type for Rhs when we
implement the Add trait, the type of Rhs will default to Self , which will be the type
we’re implementing Add on.

When we implemented Add for Point , we used the default for Rhs because we
wanted to add two Point instances. Let’s look at an example of implementing the Add
trait where we want to customize the Rhs type rather than using the default.

We have two structs, Millimeters and Meters , holding values in different units. This
thin wrapping of an existing type in another struct is known as the newtype pattern,
which we describe in more detail in the “Using the Newtype Pattern to Implement
External Traits on External Types” section. We want to add values in millimeters to
values in meters and have the implementation of Add do the conversion correctly. We
can implement Add for Millimeters with Meters as the Rhs , as shown in Listing 19-
15.

Filename: src/lib.rs

Listing 19-15: Implementing the Add trait on Millimeters to add Millimeters to Meters

To add Millimeters and Meters , we specify impl Add<Meters> to set the value of the
Rhs type parameter instead of using the default of Self .

You’ll use default type parameters in two main ways:

To extend a type without breaking existing code
To allow customization in specific cases most users won’t need

The standard library’s Add trait is an example of the second purpose: usually, you’ll add
two like types, but the Add trait provides the ability to customize beyond that. Using a
default type parameter in the Add trait definition means you don’t have to specify the
extra parameter most of the time. In other words, a bit of implementation boilerplate
isn’t needed, making it easier to use the trait.

The first purpose is similar to the second but in reverse: if you want to add a type
parameter to an existing trait, you can give it a default to allow extension of the

use std::ops::Add;

struct Millimeters(u32);
struct Meters(u32);

impl Add<Meters> for Millimeters {
 type Output = Millimeters;

 fn add(self, other: Meters) -> Millimeters {
 Millimeters(self.0 + (other.0 * 1000))
 }
}

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 537/636

functionality of the trait without breaking the existing implementation code.

Fully Qualified Syntax for Disambiguation: Calling Methods with the
Same Name

Nothing in Rust prevents a trait from having a method with the same name as another
trait’s method, nor does Rust prevent you from implementing both traits on one type.
It’s also possible to implement a method directly on the type with the same name as
methods from traits.

When calling methods with the same name, you’ll need to tell Rust which one you want
to use. Consider the code in Listing 19-16 where we’ve defined two traits, Pilot and
Wizard , that both have a method called fly . We then implement both traits on a type
Human that already has a method named fly implemented on it. Each fly method

does something different.

Filename: src/main.rs

Listing 19-16: Two traits are defined to have a fly method and are implemented on the Human type, and a

fly method is implemented on Human directly

trait Pilot {
 fn fly(&self);
}

trait Wizard {
 fn fly(&self);
}

struct Human;

impl Pilot for Human {
 fn fly(&self) {
 println!("This is your captain speaking.");
 }
}

impl Wizard for Human {
 fn fly(&self) {
 println!("Up!");
 }
}

impl Human {
 fn fly(&self) {
 println!("*waving arms furiously*");
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 538/636

When we call fly on an instance of Human , the compiler defaults to calling the method
that is directly implemented on the type, as shown in Listing 19-17.

Filename: src/main.rs

Listing 19-17: Calling fly on an instance of Human

Running this code will print *waving arms furiously* , showing that Rust called the
fly method implemented on Human directly.

To call the fly methods from either the Pilot trait or the Wizard trait, we need to
use more explicit syntax to specify which fly method we mean. Listing 19-18
demonstrates this syntax.

Filename: src/main.rs

Listing 19-18: Specifying which trait’s fly method we want to call

Specifying the trait name before the method name clarifies to Rust which
implementation of fly we want to call. We could also write Human::fly(&person) ,
which is equivalent to the person.fly() that we used in Listing 19-18, but this is a bit
longer to write if we don’t need to disambiguate.

Running this code prints the following:

Because the fly method takes a self parameter, if we had two types that both
implement one trait, Rust could figure out which implementation of a trait to use based
on the type of self .

fn main() {
 let person = Human;
 person.fly();
}

fn main() {
 let person = Human;
 Pilot::fly(&person);
 Wizard::fly(&person);
 person.fly();
}

$ cargo run
 Compiling traits-example v0.1.0 (file:///projects/traits-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.46s
 Running `target/debug/traits-example`
This is your captain speaking.
Up!
waving arms furiously

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 539/636

However, associated functions that are not methods don’t have a self parameter.
When there are multiple types or traits that define non-method functions with the same
function name, Rust doesn't always know which type you mean unless you use fully
qualified syntax. For example, in Listing 19-19 we create a trait for an animal shelter that
wants to name all baby dogs Spot. We make an Animal trait with an associated non-
method function baby_name . The Animal trait is implemented for the struct Dog , on
which we also provide an associated non-method function baby_name directly.

Filename: src/main.rs

Listing 19-19: A trait with an associated function and a type with an associated function of the same name

that also implements the trait

We implement the code for naming all puppies Spot in the baby_name associated
function that is defined on Dog . The Dog type also implements the trait Animal , which
describes characteristics that all animals have. Baby dogs are called puppies, and that is
expressed in the implementation of the Animal trait on Dog in the baby_name function
associated with the Animal trait.

In main , we call the Dog::baby_name function, which calls the associated function
defined on Dog directly. This code prints the following:

trait Animal {
 fn baby_name() -> String;
}

struct Dog;

impl Dog {
 fn baby_name() -> String {
 String::from("Spot")
 }
}

impl Animal for Dog {
 fn baby_name() -> String {
 String::from("puppy")
 }
}

fn main() {
 println!("A baby dog is called a {}", Dog::baby_name());
}

$ cargo run
 Compiling traits-example v0.1.0 (file:///projects/traits-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.54s
 Running `target/debug/traits-example`
A baby dog is called a Spot

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 540/636

This output isn’t what we wanted. We want to call the baby_name function that is part of
the Animal trait that we implemented on Dog so the code prints A baby dog is
called a puppy . The technique of specifying the trait name that we used in Listing 19-
18 doesn’t help here; if we change main to the code in Listing 19-20, we’ll get a
compilation error.

Filename: src/main.rs

Listing 19-20: Attempting to call the baby_name function from the Animal trait, but Rust doesn’t know

which implementation to use

Because Animal::baby_name doesn’t have a self parameter, and there could be other
types that implement the Animal trait, Rust can’t figure out which implementation of
Animal::baby_name we want. We’ll get this compiler error:

To disambiguate and tell Rust that we want to use the implementation of Animal for
Dog as opposed to the implementation of Animal for some other type, we need to use

fully qualified syntax. Listing 19-21 demonstrates how to use fully qualified syntax.

Filename: src/main.rs

fn main() {
 println!("A baby dog is called a {}", Animal::baby_name());
}

$ cargo run
 Compiling traits-example v0.1.0 (file:///projects/traits-example)
error[E0790]: cannot call associated function on trait without specifying
the corresponding `impl` type
 --> src/main.rs:20:43
 |
2 | fn baby_name() -> String;
 | ------------------------- `Animal::baby_name` defined here
...
20 | println!("A baby dog is called a {}", Animal::baby_name());
 | ^^^^^^^^^^^^^^^^^ cannot
call associated function of trait
 |
help: use the fully-qualified path to the only available implementation
 |
20 | println!("A baby dog is called a {}", <Dog as
Animal>::baby_name());
 | +++++++ +

For more information about this error, try `rustc --explain E0790`.
error: could not compile `traits-example` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 541/636

Listing 19-21: Using fully qualified syntax to specify that we want to call the baby_name function from the

Animal trait as implemented on Dog

We’re providing Rust with a type annotation within the angle brackets, which indicates
we want to call the baby_name method from the Animal trait as implemented on Dog
by saying that we want to treat the Dog type as an Animal for this function call. This
code will now print what we want:

In general, fully qualified syntax is defined as follows:

For associated functions that aren’t methods, there would not be a receiver : there
would only be the list of other arguments. You could use fully qualified syntax
everywhere that you call functions or methods. However, you’re allowed to omit any
part of this syntax that Rust can figure out from other information in the program. You
only need to use this more verbose syntax in cases where there are multiple
implementations that use the same name and Rust needs help to identify which
implementation you want to call.

Using Supertraits to Require One Trait’s Functionality Within Another
Trait

Sometimes, you might write a trait definition that depends on another trait: for a type to
implement the first trait, you want to require that type to also implement the second
trait. You would do this so that your trait definition can make use of the associated
items of the second trait. The trait your trait definition is relying on is called a supertrait
of your trait.

For example, let’s say we want to make an OutlinePrint trait with an outline_print
method that will print a given value formatted so that it's framed in asterisks. That is,
given a Point struct that implements the standard library trait Display to result in (x,
y) , when we call outline_print on a Point instance that has 1 for x and 3 for y , it
should print the following:

fn main() {
 println!("A baby dog is called a {}", <Dog as Animal>::baby_name());
}

$ cargo run
 Compiling traits-example v0.1.0 (file:///projects/traits-example)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48s
 Running `target/debug/traits-example`
A baby dog is called a puppy

<Type as Trait>::function(receiver_if_method, next_arg, ...);

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 542/636

In the implementation of the outline_print method, we want to use the Display
trait’s functionality. Therefore, we need to specify that the OutlinePrint trait will work
only for types that also implement Display and provide the functionality that
OutlinePrint needs. We can do that in the trait definition by specifying OutlinePrint:
Display . This technique is similar to adding a trait bound to the trait. Listing 19-22
shows an implementation of the OutlinePrint trait.

Filename: src/main.rs

Listing 19-22: Implementing the OutlinePrint trait that requires the functionality from Display

Because we’ve specified that OutlinePrint requires the Display trait, we can use the
to_string function that is automatically implemented for any type that implements
Display . If we tried to use to_string without adding a colon and specifying the
Display trait after the trait name, we’d get an error saying that no method named
to_string was found for the type &Self in the current scope.

Let’s see what happens when we try to implement OutlinePrint on a type that doesn’t
implement Display , such as the Point struct:

Filename: src/main.rs

We get an error saying that Display is required but not implemented:

* *
* (1, 3) *
* *

use std::fmt;

trait OutlinePrint: fmt::Display {
 fn outline_print(&self) {
 let output = self.to_string();
 let len = output.len();
 println!("{}", "*".repeat(len + 4));
 println!("*{}*", " ".repeat(len + 2));
 println!("* {} *", output);
 println!("*{}*", " ".repeat(len + 2));
 println!("{}", "*".repeat(len + 4));
 }
}

struct Point {
 x: i32,
 y: i32,
}

impl OutlinePrint for Point {}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 543/636

To fix this, we implement Display on Point and satisfy the constraint that
OutlinePrint requires, like so:

Filename: src/main.rs

Then implementing the OutlinePrint trait on Point will compile successfully, and we
can call outline_print on a Point instance to display it within an outline of asterisks.

Using the Newtype Pattern to Implement External Traits on External
Types

In Chapter 10 in the “Implementing a Trait on a Type” section, we mentioned the orphan
rule that states we’re only allowed to implement a trait on a type if either the trait or the
type are local to our crate. It’s possible to get around this restriction using the newtype
pattern, which involves creating a new type in a tuple struct. (We covered tuple structs in
the “Using Tuple Structs without Named Fields to Create Different Types” section of
Chapter 5.) The tuple struct will have one field and be a thin wrapper around the type
we want to implement a trait for. Then the wrapper type is local to our crate, and we can
implement the trait on the wrapper. Newtype is a term that originates from the Haskell

$ cargo run
 Compiling traits-example v0.1.0 (file:///projects/traits-example)
error[E0277]: `Point` doesn't implement `std::fmt::Display`
 --> src/main.rs:20:6
 |
20 | impl OutlinePrint for Point {}
 | ^^^^^^^^^^^^ `Point` cannot be formatted with the default
formatter
 |
 = help: the trait `std::fmt::Display` is not implemented for `Point`
 = note: in format strings you may be able to use `{:?}` (or {:#?} for
pretty-print) instead
note: required by a bound in `OutlinePrint`
 --> src/main.rs:3:21
 |
3 | trait OutlinePrint: fmt::Display {
 | ^^^^^^^^^^^^ required by this bound in
`OutlinePrint`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `traits-example` due to previous error

use std::fmt;

impl fmt::Display for Point {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 write!(f, "({}, {})", self.x, self.y)
 }
}

https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 544/636

programming language. There is no runtime performance penalty for using this pattern,
and the wrapper type is elided at compile time.

As an example, let’s say we want to implement Display on Vec<T> , which the orphan
rule prevents us from doing directly because the Display trait and the Vec<T> type are
defined outside our crate. We can make a Wrapper struct that holds an instance of
Vec<T> ; then we can implement Display on Wrapper and use the Vec<T> value, as

shown in Listing 19-23.

Filename: src/main.rs

Listing 19-23: Creating a Wrapper type around Vec<String> to implement Display

The implementation of Display uses self.0 to access the inner Vec<T> , because
Wrapper is a tuple struct and Vec<T> is the item at index 0 in the tuple. Then we can

use the functionality of the Display type on Wrapper .

The downside of using this technique is that Wrapper is a new type, so it doesn’t have
the methods of the value it’s holding. We would have to implement all the methods of
Vec<T> directly on Wrapper such that the methods delegate to self.0 , which would

allow us to treat Wrapper exactly like a Vec<T> . If we wanted the new type to have
every method the inner type has, implementing the Deref trait (discussed in Chapter
15 in the “Treating Smart Pointers Like Regular References with the Deref Trait”
section) on the Wrapper to return the inner type would be a solution. If we don’t want
the Wrapper type to have all the methods of the inner type—for example, to restrict the
Wrapper type’s behavior—we would have to implement just the methods we do want

manually.

This newtype pattern is also useful even when traits are not involved. Let’s switch focus
and look at some advanced ways to interact with Rust’s type system.

use std::fmt;

struct Wrapper(Vec<String>);

impl fmt::Display for Wrapper {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 write!(f, "[{}]", self.0.join(", "))
 }
}

fn main() {
 let w = Wrapper(vec![String::from("hello"), String::from("world")]);
 println!("w = {}", w);
}

https://doc.rust-lang.org/book/ch15-02-deref.html#treating-smart-pointers-like-regular-references-with-the-deref-trait

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 545/636

Advanced Types

The Rust type system has some features that we’ve so far mentioned but haven’t yet
discussed. We’ll start by discussing newtypes in general as we examine why newtypes
are useful as types. Then we’ll move on to type aliases, a feature similar to newtypes but
with slightly different semantics. We’ll also discuss the ! type and dynamically sized
types.

Using the Newtype Pattern for Type Safety and Abstraction

Note: This section assumes you’ve read the earlier section “Using the Newtype
Pattern to Implement External Traits on External Types.”

The newtype pattern is also useful for tasks beyond those we’ve discussed so far,
including statically enforcing that values are never confused and indicating the units of a
value. You saw an example of using newtypes to indicate units in Listing 19-15: recall
that the Millimeters and Meters structs wrapped u32 values in a newtype. If we
wrote a function with a parameter of type Millimeters , we couldn’t compile a program
that accidentally tried to call that function with a value of type Meters or a plain u32 .

We can also use the newtype pattern to abstract away some implementation details of a
type: the new type can expose a public API that is different from the API of the private
inner type.

Newtypes can also hide internal implementation. For example, we could provide a
People type to wrap a HashMap<i32, String> that stores a person’s ID associated with

their name. Code using People would only interact with the public API we provide, such
as a method to add a name string to the People collection; that code wouldn’t need to
know that we assign an i32 ID to names internally. The newtype pattern is a
lightweight way to achieve encapsulation to hide implementation details, which we
discussed in the “Encapsulation that Hides Implementation Details” section of Chapter
17.

Creating Type Synonyms with Type Aliases

Rust provides the ability to declare a type alias to give an existing type another name.
For this we use the type keyword. For example, we can create the alias Kilometers to
i32 like so:

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
https://doc.rust-lang.org/book/ch17-01-what-is-oo.html#encapsulation-that-hides-implementation-details

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 546/636

Now, the alias Kilometers is a synonym for i32 ; unlike the Millimeters and Meters
types we created in Listing 19-15, Kilometers is not a separate, new type. Values that
have the type Kilometers will be treated the same as values of type i32 :

Because Kilometers and i32 are the same type, we can add values of both types and
we can pass Kilometers values to functions that take i32 parameters. However, using
this method, we don’t get the type checking benefits that we get from the newtype
pattern discussed earlier. In other words, if we mix up Kilometers and i32 values
somewhere, the compiler will not give us an error.

The main use case for type synonyms is to reduce repetition. For example, we might
have a lengthy type like this:

Writing this lengthy type in function signatures and as type annotations all over the code
can be tiresome and error prone. Imagine having a project full of code like that in Listing
19-24.

Listing 19-24: Using a long type in many places

A type alias makes this code more manageable by reducing the repetition. In Listing 19-
25, we’ve introduced an alias named Thunk for the verbose type and can replace all
uses of the type with the shorter alias Thunk .

 type Kilometers = i32;

 type Kilometers = i32;

 let x: i32 = 5;
 let y: Kilometers = 5;

 println!("x + y = {}", x + y);

Box<dyn Fn() + Send + 'static>

 let f: Box<dyn Fn() + Send + 'static> = Box::new(|| println!("hi"));

 fn takes_long_type(f: Box<dyn Fn() + Send + 'static>) {
 // --snip--
 }

 fn returns_long_type() -> Box<dyn Fn() + Send + 'static> {
 // --snip--
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 547/636

Listing 19-25: Introducing a type alias Thunk to reduce repetition

This code is much easier to read and write! Choosing a meaningful name for a type alias
can help communicate your intent as well (thunk is a word for code to be evaluated at a
later time, so it’s an appropriate name for a closure that gets stored).

Type aliases are also commonly used with the Result<T, E> type for reducing
repetition. Consider the std::io module in the standard library. I/O operations often
return a Result<T, E> to handle situations when operations fail to work. This library
has a std::io::Error struct that represents all possible I/O errors. Many of the
functions in std::io will be returning Result<T, E> where the E is std::io::Error ,
such as these functions in the Write trait:

The Result<..., Error> is repeated a lot. As such, std::io has this type alias
declaration:

Because this declaration is in the std::io module, we can use the fully qualified alias
std::io::Result<T> ; that is, a Result<T, E> with the E filled in as std::io::Error .

The Write trait function signatures end up looking like this:

 type Thunk = Box<dyn Fn() + Send + 'static>;

 let f: Thunk = Box::new(|| println!("hi"));

 fn takes_long_type(f: Thunk) {
 // --snip--
 }

 fn returns_long_type() -> Thunk {
 // --snip--
 }

use std::fmt;
use std::io::Error;

pub trait Write {
 fn write(&mut self, buf: &[u8]) -> Result<usize, Error>;
 fn flush(&mut self) -> Result<(), Error>;

 fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>;
 fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<(), Error>;
}

type Result<T> = std::result::Result<T, std::io::Error>;

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 548/636

The type alias helps in two ways: it makes code easier to write and it gives us a
consistent interface across all of std::io . Because it’s an alias, it’s just another
Result<T, E> , which means we can use any methods that work on Result<T, E> with

it, as well as special syntax like the ? operator.

The Never Type that Never Returns

Rust has a special type named ! that’s known in type theory lingo as the empty type
because it has no values. We prefer to call it the never type because it stands in the place
of the return type when a function will never return. Here is an example:

This code is read as “the function bar returns never.” Functions that return never are
called diverging functions. We can’t create values of the type ! so bar can never
possibly return.

But what use is a type you can never create values for? Recall the code from Listing 2-5,
part of the number guessing game; we’ve reproduced a bit of it here in Listing 19-26.

Listing 19-26: A match with an arm that ends in continue

At the time, we skipped over some details in this code. In Chapter 6 in “The match
Control Flow Operator” section, we discussed that match arms must all return the same
type. So, for example, the following code doesn’t work:

pub trait Write {
 fn write(&mut self, buf: &[u8]) -> Result<usize>;
 fn flush(&mut self) -> Result<()>;

 fn write_all(&mut self, buf: &[u8]) -> Result<()>;
 fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<()>;
}

fn bar() -> ! {
 // --snip--
}

 let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 };

 let guess = match guess.trim().parse() {
 Ok(_) => 5,
 Err(_) => "hello",
 };

https://doc.rust-lang.org/book/ch06-02-match.html#the-match-control-flow-operator
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 549/636

The type of guess in this code would have to be an integer and a string, and Rust
requires that guess have only one type. So what does continue return? How were we
allowed to return a u32 from one arm and have another arm that ends with continue
in Listing 19-26?

As you might have guessed, continue has a ! value. That is, when Rust computes the
type of guess , it looks at both match arms, the former with a value of u32 and the
latter with a ! value. Because ! can never have a value, Rust decides that the type of
guess is u32 .

The formal way of describing this behavior is that expressions of type ! can be coerced
into any other type. We’re allowed to end this match arm with continue because
continue doesn’t return a value; instead, it moves control back to the top of the loop,

so in the Err case, we never assign a value to guess .

The never type is useful with the panic! macro as well. Recall the unwrap function that
we call on Option<T> values to produce a value or panic with this definition:

In this code, the same thing happens as in the match in Listing 19-26: Rust sees that
val has the type T and panic! has the type ! , so the result of the overall match

expression is T . This code works because panic! doesn’t produce a value; it ends the
program. In the None case, we won’t be returning a value from unwrap , so this code is
valid.

One final expression that has the type ! is a loop :

Here, the loop never ends, so ! is the value of the expression. However, this wouldn’t
be true if we included a break , because the loop would terminate when it got to the
break .

impl<T> Option<T> {
 pub fn unwrap(self) -> T {
 match self {
 Some(val) => val,
 None => panic!("called `Option::unwrap()` on a `None` value"),
 }
 }
}

 print!("forever ");

 loop {
 print!("and ever ");
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 550/636

Dynamically Sized Types and the Sized Trait

Rust needs to know certain details about its types, such as how much space to allocate
for a value of a particular type. This leaves one corner of its type system a little
confusing at first: the concept of dynamically sized types. Sometimes referred to as DSTs
or unsized types, these types let us write code using values whose size we can know only
at runtime.

Let’s dig into the details of a dynamically sized type called str , which we’ve been using
throughout the book. That’s right, not &str , but str on its own, is a DST. We can’t
know how long the string is until runtime, meaning we can’t create a variable of type
str , nor can we take an argument of type str . Consider the following code, which

does not work:

Rust needs to know how much memory to allocate for any value of a particular type,
and all values of a type must use the same amount of memory. If Rust allowed us to
write this code, these two str values would need to take up the same amount of space.
But they have different lengths: s1 needs 12 bytes of storage and s2 needs 15. This is
why it’s not possible to create a variable holding a dynamically sized type.

So what do we do? In this case, you already know the answer: we make the types of s1
and s2 a &str rather than a str . Recall from the “String Slices” section of Chapter 4
that the slice data structure just stores the starting position and the length of the slice.
So although a &T is a single value that stores the memory address of where the T is
located, a &str is two values: the address of the str and its length. As such, we can
know the size of a &str value at compile time: it’s twice the length of a usize . That is,
we always know the size of a &str , no matter how long the string it refers to is. In
general, this is the way in which dynamically sized types are used in Rust: they have an
extra bit of metadata that stores the size of the dynamic information. The golden rule of
dynamically sized types is that we must always put values of dynamically sized types
behind a pointer of some kind.

We can combine str with all kinds of pointers: for example, Box<str> or Rc<str> . In
fact, you’ve seen this before but with a different dynamically sized type: traits. Every trait
is a dynamically sized type we can refer to by using the name of the trait. In Chapter 17
in the “Using Trait Objects That Allow for Values of Different Types” section, we
mentioned that to use traits as trait objects, we must put them behind a pointer, such as
&dyn Trait or Box<dyn Trait> (Rc<dyn Trait> would work too).

To work with DSTs, Rust provides the Sized trait to determine whether or not a type’s
size is known at compile time. This trait is automatically implemented for everything
whose size is known at compile time. In addition, Rust implicitly adds a bound on Sized
to every generic function. That is, a generic function definition like this:

 let s1: str = "Hello there!";
 let s2: str = "How's it going?";

https://doc.rust-lang.org/book/ch04-03-slices.html#string-slices
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 551/636

is actually treated as though we had written this:

By default, generic functions will work only on types that have a known size at compile
time. However, you can use the following special syntax to relax this restriction:

A trait bound on ?Sized means “ T may or may not be Sized ” and this notation
overrides the default that generic types must have a known size at compile time. The ?
Trait syntax with this meaning is only available for Sized , not any other traits.

Also note that we switched the type of the t parameter from T to &T . Because the
type might not be Sized , we need to use it behind some kind of pointer. In this case,
we’ve chosen a reference.

Next, we’ll talk about functions and closures!

fn generic<T>(t: T) {
 // --snip--
}

fn generic<T: Sized>(t: T) {
 // --snip--
}

fn generic<T: ?Sized>(t: &T) {
 // --snip--
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 552/636

Advanced Functions and Closures

This section explores some advanced features related to functions and closures,
including function pointers and returning closures.

Function Pointers

We’ve talked about how to pass closures to functions; you can also pass regular
functions to functions! This technique is useful when you want to pass a function you’ve
already defined rather than defining a new closure. Functions coerce to the type fn
(with a lowercase f), not to be confused with the Fn closure trait. The fn type is called a
function pointer. Passing functions with function pointers will allow you to use functions
as arguments to other functions.

The syntax for specifying that a parameter is a function pointer is similar to that of
closures, as shown in Listing 19-27, where we’ve defined a function add_one that adds
one to its parameter. The function do_twice takes two parameters: a function pointer
to any function that takes an i32 parameter and returns an i32 , and one i32 value .
The do_twice function calls the function f twice, passing it the arg value, then adds
the two function call results together. The main function calls do_twice with the
arguments add_one and 5 .

Filename: src/main.rs

Listing 19-27: Using the fn type to accept a function pointer as an argument

This code prints The answer is: 12 . We specify that the parameter f in do_twice is
an fn that takes one parameter of type i32 and returns an i32 . We can then call f in
the body of do_twice . In main , we can pass the function name add_one as the first
argument to do_twice .

fn add_one(x: i32) -> i32 {
 x + 1
}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
 f(arg) + f(arg)
}

fn main() {
 let answer = do_twice(add_one, 5);

 println!("The answer is: {}", answer);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 553/636

Unlike closures, fn is a type rather than a trait, so we specify fn as the parameter type
directly rather than declaring a generic type parameter with one of the Fn traits as a
trait bound.

Function pointers implement all three of the closure traits (Fn , FnMut , and FnOnce),
meaning you can always pass a function pointer as an argument for a function that
expects a closure. It’s best to write functions using a generic type and one of the closure
traits so your functions can accept either functions or closures.

That said, one example of where you would want to only accept fn and not closures is
when interfacing with external code that doesn’t have closures: C functions can accept
functions as arguments, but C doesn’t have closures.

As an example of where you could use either a closure defined inline or a named
function, let’s look at a use of the map method provided by the Iterator trait in the
standard library. To use the map function to turn a vector of numbers into a vector of
strings, we could use a closure, like this:

Or we could name a function as the argument to map instead of the closure, like this:

Note that we must use the fully qualified syntax that we talked about earlier in the
“Advanced Traits” section because there are multiple functions available named
to_string . Here, we’re using the to_string function defined in the ToString trait,

which the standard library has implemented for any type that implements Display .

Recall from the “Enum values” section of Chapter 6 that the name of each enum variant
that we define also becomes an initializer function. We can use these initializer functions
as function pointers that implement the closure traits, which means we can specify the
initializer functions as arguments for methods that take closures, like so:

Here we create Status::Value instances using each u32 value in the range that map is
called on by using the initializer function of Status::Value . Some people prefer this

 let list_of_numbers = vec![1, 2, 3];
 let list_of_strings: Vec<String> =
 list_of_numbers.iter().map(|i| i.to_string()).collect();

 let list_of_numbers = vec![1, 2, 3];
 let list_of_strings: Vec<String> =
 list_of_numbers.iter().map(ToString::to_string).collect();

 enum Status {
 Value(u32),
 Stop,
 }

 let list_of_statuses: Vec<Status> =
(0u32..20).map(Status::Value).collect();

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#advanced-traits
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#enum-values

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 554/636

style, and some people prefer to use closures. They compile to the same code, so use
whichever style is clearer to you.

Returning Closures

Closures are represented by traits, which means you can’t return closures directly. In
most cases where you might want to return a trait, you can instead use the concrete
type that implements the trait as the return value of the function. However, you can’t do
that with closures because they don’t have a concrete type that is returnable; you’re not
allowed to use the function pointer fn as a return type, for example.

The following code tries to return a closure directly, but it won’t compile:

The compiler error is as follows:

The error references the Sized trait again! Rust doesn’t know how much space it will
need to store the closure. We saw a solution to this problem earlier. We can use a trait
object:

This code will compile just fine. For more about trait objects, refer to the section “Using
Trait Objects That Allow for Values of Different Types” in Chapter 17.

fn returns_closure() -> dyn Fn(i32) -> i32 {
 |x| x + 1
}

$ cargo build
 Compiling functions-example v0.1.0 (file:///projects/functions-example)
error[E0746]: return type cannot have an unboxed trait object
 --> src/lib.rs:1:25
 |
1 | fn returns_closure() -> dyn Fn(i32) -> i32 {
 | ^^^^^^^^^^^^^^^^^^ doesn't have a size known at
compile-time
 |
 = note: for information on `impl Trait`, see <https://doc.rust-
lang.org/book/ch10-02-traits.html#returning-types-that-implement-traits>
help: use `impl Fn(i32) -> i32` as the return type, as all return paths are
of type `[closure@src/lib.rs:2:5: 2:8]`, which implements `Fn(i32) -> i32`
 |
1 | fn returns_closure() -> impl Fn(i32) -> i32 {
 | ~~~~~~~~~~~~~~~~~~~

For more information about this error, try `rustc --explain E0746`.
error: could not compile `functions-example` due to previous error

fn returns_closure() -> Box<dyn Fn(i32) -> i32> {
 Box::new(|x| x + 1)
}

https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 555/636

Next, let’s look at macros!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 556/636

Macros

We’ve used macros like println! throughout this book, but we haven’t fully explored
what a macro is and how it works. The term macro refers to a family of features in Rust:
declarative macros with macro_rules! and three kinds of procedural macros:

Custom #[derive] macros that specify code added with the derive attribute
used on structs and enums
Attribute-like macros that define custom attributes usable on any item
Function-like macros that look like function calls but operate on the tokens
specified as their argument

We’ll talk about each of these in turn, but first, let’s look at why we even need macros
when we already have functions.

The Difference Between Macros and Functions

Fundamentally, macros are a way of writing code that writes other code, which is known
as metaprogramming. In Appendix C, we discuss the derive attribute, which generates
an implementation of various traits for you. We’ve also used the println! and vec!
macros throughout the book. All of these macros expand to produce more code than
the code you’ve written manually.

Metaprogramming is useful for reducing the amount of code you have to write and
maintain, which is also one of the roles of functions. However, macros have some
additional powers that functions don’t.

A function signature must declare the number and type of parameters the function has.
Macros, on the other hand, can take a variable number of parameters: we can call
println!("hello") with one argument or println!("hello {}", name) with two

arguments. Also, macros are expanded before the compiler interprets the meaning of
the code, so a macro can, for example, implement a trait on a given type. A function
can’t, because it gets called at runtime and a trait needs to be implemented at compile
time.

The downside to implementing a macro instead of a function is that macro definitions
are more complex than function definitions because you’re writing Rust code that writes
Rust code. Due to this indirection, macro definitions are generally more difficult to read,
understand, and maintain than function definitions.

Another important difference between macros and functions is that you must define
macros or bring them into scope before you call them in a file, as opposed to functions
you can define anywhere and call anywhere.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 557/636

Declarative Macros with macro_rules! for General Metaprogramming

The most widely used form of macros in Rust is the declarative macro. These are also
sometimes referred to as “macros by example,” “ macro_rules! macros,” or just plain
“macros.” At their core, declarative macros allow you to write something similar to a
Rust match expression. As discussed in Chapter 6, match expressions are control
structures that take an expression, compare the resulting value of the expression to
patterns, and then run the code associated with the matching pattern. Macros also
compare a value to patterns that are associated with particular code: in this situation,
the value is the literal Rust source code passed to the macro; the patterns are compared
with the structure of that source code; and the code associated with each pattern, when
matched, replaces the code passed to the macro. This all happens during compilation.

To define a macro, you use the macro_rules! construct. Let’s explore how to use
macro_rules! by looking at how the vec! macro is defined. Chapter 8 covered how we

can use the vec! macro to create a new vector with particular values. For example, the
following macro creates a new vector containing three integers:

We could also use the vec! macro to make a vector of two integers or a vector of five
string slices. We wouldn’t be able to use a function to do the same because we wouldn’t
know the number or type of values up front.

Listing 19-28 shows a slightly simplified definition of the vec! macro.

Filename: src/lib.rs

Listing 19-28: A simplified version of the vec! macro definition

Note: The actual definition of the vec! macro in the standard library includes
code to preallocate the correct amount of memory up front. That code is an
optimization that we don’t include here to make the example simpler.

let v: Vec<u32> = vec![1, 2, 3];

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {
 {
 let mut temp_vec = Vec::new();
 $(
 temp_vec.push($x);
)*
 temp_vec
 }
 };
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 558/636

The #[macro_export] annotation indicates that this macro should be made available
whenever the crate in which the macro is defined is brought into scope. Without this
annotation, the macro can’t be brought into scope.

We then start the macro definition with macro_rules! and the name of the macro we’re
defining without the exclamation mark. The name, in this case vec , is followed by curly
brackets denoting the body of the macro definition.

The structure in the vec! body is similar to the structure of a match expression. Here
we have one arm with the pattern ($($x:expr),*) , followed by => and the block
of code associated with this pattern. If the pattern matches, the associated block of code
will be emitted. Given that this is the only pattern in this macro, there is only one valid
way to match; any other pattern will result in an error. More complex macros will have
more than one arm.

Valid pattern syntax in macro definitions is different than the pattern syntax covered in
Chapter 18 because macro patterns are matched against Rust code structure rather
than values. Let’s walk through what the pattern pieces in Listing 19-28 mean; for the
full macro pattern syntax, see the Rust Reference.

First, we use a set of parentheses to encompass the whole pattern. We use a dollar sign
($) to declare a variable in the macro system that will contain the Rust code matching
the pattern. The dollar sign makes it clear this is a macro variable as opposed to a
regular Rust variable. Next comes a set of parentheses that captures values that match
the pattern within the parentheses for use in the replacement code. Within $() is
$x:expr , which matches any Rust expression and gives the expression the name $x .

The comma following $() indicates that a literal comma separator character could
optionally appear after the code that matches the code in $() . The * specifies that the
pattern matches zero or more of whatever precedes the * .

When we call this macro with vec![1, 2, 3]; , the $x pattern matches three times
with the three expressions 1 , 2 , and 3 .

Now let’s look at the pattern in the body of the code associated with this arm:
temp_vec.push() within $()* is generated for each part that matches $() in the

pattern zero or more times depending on how many times the pattern matches. The
$x is replaced with each expression matched. When we call this macro with vec![1,
2, 3]; , the code generated that replaces this macro call will be the following:

https://doc.rust-lang.org/reference/macros-by-example.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 559/636

We’ve defined a macro that can take any number of arguments of any type and can
generate code to create a vector containing the specified elements.

To learn more about how to write macros, consult the online documentation or other
resources, such as “The Little Book of Rust Macros” started by Daniel Keep and
continued by Lukas Wirth.

Procedural Macros for Generating Code from Attributes

The second form of macros is the procedural macro, which acts more like a function (and
is a type of procedure). Procedural macros accept some code as an input, operate on
that code, and produce some code as an output rather than matching against patterns
and replacing the code with other code as declarative macros do. The three kinds of
procedural macros are custom derive, attribute-like, and function-like, and all work in a
similar fashion.

When creating procedural macros, the definitions must reside in their own crate with a
special crate type. This is for complex technical reasons that we hope to eliminate in the
future. In Listing 19-29, we show how to define a procedural macro, where
some_attribute is a placeholder for using a specific macro variety.

Filename: src/lib.rs

Listing 19-29: An example of defining a procedural macro

The function that defines a procedural macro takes a TokenStream as an input and
produces a TokenStream as an output. The TokenStream type is defined by the
proc_macro crate that is included with Rust and represents a sequence of tokens. This

is the core of the macro: the source code that the macro is operating on makes up the
input TokenStream , and the code the macro produces is the output TokenStream . The
function also has an attribute attached to it that specifies which kind of procedural
macro we’re creating. We can have multiple kinds of procedural macros in the same
crate.

{
 let mut temp_vec = Vec::new();
 temp_vec.push(1);
 temp_vec.push(2);
 temp_vec.push(3);
 temp_vec
}

use proc_macro;

#[some_attribute]
pub fn some_name(input: TokenStream) -> TokenStream {
}

https://veykril.github.io/tlborm/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 560/636

Let’s look at the different kinds of procedural macros. We’ll start with a custom derive
macro and then explain the small dissimilarities that make the other forms different.

How to Write a Custom derive Macro

Let’s create a crate named hello_macro that defines a trait named HelloMacro with
one associated function named hello_macro . Rather than making our users implement
the HelloMacro trait for each of their types, we’ll provide a procedural macro so users
can annotate their type with #[derive(HelloMacro)] to get a default implementation
of the hello_macro function. The default implementation will print Hello, Macro! My
name is TypeName! where TypeName is the name of the type on which this trait has
been defined. In other words, we’ll write a crate that enables another programmer to
write code like Listing 19-30 using our crate.

Filename: src/main.rs

Listing 19-30: The code a user of our crate will be able to write when using our procedural macro

This code will print Hello, Macro! My name is Pancakes! when we’re done. The first
step is to make a new library crate, like this:

Next, we’ll define the HelloMacro trait and its associated function:

Filename: src/lib.rs

We have a trait and its function. At this point, our crate user could implement the trait to
achieve the desired functionality, like so:

use hello_macro::HelloMacro;
use hello_macro_derive::HelloMacro;

#[derive(HelloMacro)]
struct Pancakes;

fn main() {
 Pancakes::hello_macro();
}

$ cargo new hello_macro --lib

pub trait HelloMacro {
 fn hello_macro();
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 561/636

However, they would need to write the implementation block for each type they wanted
to use with hello_macro ; we want to spare them from having to do this work.

Additionally, we can’t yet provide the hello_macro function with default
implementation that will print the name of the type the trait is implemented on: Rust
doesn’t have reflection capabilities, so it can’t look up the type’s name at runtime. We
need a macro to generate code at compile time.

The next step is to define the procedural macro. At the time of this writing, procedural
macros need to be in their own crate. Eventually, this restriction might be lifted. The
convention for structuring crates and macro crates is as follows: for a crate named foo ,
a custom derive procedural macro crate is called foo_derive . Let’s start a new crate
called hello_macro_derive inside our hello_macro project:

Our two crates are tightly related, so we create the procedural macro crate within the
directory of our hello_macro crate. If we change the trait definition in hello_macro ,
we’ll have to change the implementation of the procedural macro in
hello_macro_derive as well. The two crates will need to be published separately, and

programmers using these crates will need to add both as dependencies and bring them
both into scope. We could instead have the hello_macro crate use
hello_macro_derive as a dependency and re-export the procedural macro code.

However, the way we’ve structured the project makes it possible for programmers to
use hello_macro even if they don’t want the derive functionality.

We need to declare the hello_macro_derive crate as a procedural macro crate. We’ll
also need functionality from the syn and quote crates, as you’ll see in a moment, so
we need to add them as dependencies. Add the following to the Cargo.toml file for
hello_macro_derive :

Filename: hello_macro_derive/Cargo.toml

use hello_macro::HelloMacro;

struct Pancakes;

impl HelloMacro for Pancakes {
 fn hello_macro() {
 println!("Hello, Macro! My name is Pancakes!");
 }
}

fn main() {
 Pancakes::hello_macro();
}

$ cargo new hello_macro_derive --lib

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 562/636

To start defining the procedural macro, place the code in Listing 19-31 into your src/lib.rs
file for the hello_macro_derive crate. Note that this code won’t compile until we add a
definition for the impl_hello_macro function.

Filename: hello_macro_derive/src/lib.rs

Listing 19-31: Code that most procedural macro crates will require in order to process Rust code

Notice that we’ve split the code into the hello_macro_derive function, which is
responsible for parsing the TokenStream , and the impl_hello_macro function, which is
responsible for transforming the syntax tree: this makes writing a procedural macro
more convenient. The code in the outer function (hello_macro_derive in this case) will
be the same for almost every procedural macro crate you see or create. The code you
specify in the body of the inner function (impl_hello_macro in this case) will be
different depending on your procedural macro’s purpose.

We’ve introduced three new crates: proc_macro , syn , and quote . The proc_macro
crate comes with Rust, so we didn’t need to add that to the dependencies in Cargo.toml.
The proc_macro crate is the compiler’s API that allows us to read and manipulate Rust
code from our code.

The syn crate parses Rust code from a string into a data structure that we can perform
operations on. The quote crate turns syn data structures back into Rust code. These
crates make it much simpler to parse any sort of Rust code we might want to handle:
writing a full parser for Rust code is no simple task.

The hello_macro_derive function will be called when a user of our library specifies #
[derive(HelloMacro)] on a type. This is possible because we’ve annotated the

[lib]
proc-macro = true

[dependencies]
syn = "1.0"
quote = "1.0"

use proc_macro::TokenStream;
use quote::quote;
use syn;

#[proc_macro_derive(HelloMacro)]
pub fn hello_macro_derive(input: TokenStream) -> TokenStream {
 // Construct a representation of Rust code as a syntax tree
 // that we can manipulate
 let ast = syn::parse(input).unwrap();

 // Build the trait implementation
 impl_hello_macro(&ast)
}

https://crates.io/crates/syn
https://crates.io/crates/quote
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 563/636

hello_macro_derive function here with proc_macro_derive and specified the name
HelloMacro , which matches our trait name; this is the convention most procedural

macros follow.

The hello_macro_derive function first converts the input from a TokenStream to a
data structure that we can then interpret and perform operations on. This is where syn
comes into play. The parse function in syn takes a TokenStream and returns a
DeriveInput struct representing the parsed Rust code. Listing 19-32 shows the relevant

parts of the DeriveInput struct we get from parsing the struct Pancakes; string:

Listing 19-32: The DeriveInput instance we get when parsing the code that has the macro’s attribute in

Listing 19-30

The fields of this struct show that the Rust code we’ve parsed is a unit struct with the
ident (identifier, meaning the name) of Pancakes . There are more fields on this struct

for describing all sorts of Rust code; check the syn documentation for DeriveInput for
more information.

Soon we’ll define the impl_hello_macro function, which is where we’ll build the new
Rust code we want to include. But before we do, note that the output for our derive
macro is also a TokenStream . The returned TokenStream is added to the code that our
crate users write, so when they compile their crate, they’ll get the extra functionality that
we provide in the modified TokenStream .

You might have noticed that we’re calling unwrap to cause the hello_macro_derive
function to panic if the call to the syn::parse function fails here. It’s necessary for our
procedural macro to panic on errors because proc_macro_derive functions must
return TokenStream rather than Result to conform to the procedural macro API. We’ve
simplified this example by using unwrap ; in production code, you should provide more
specific error messages about what went wrong by using panic! or expect .

DeriveInput {
 // --snip--

 ident: Ident {
 ident: "Pancakes",
 span: #0 bytes(95..103)
 },
 data: Struct(
 DataStruct {
 struct_token: Struct,
 fields: Unit,
 semi_token: Some(
 Semi
)
 }
)
}

https://docs.rs/syn/1.0/syn/struct.DeriveInput.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 564/636

Now that we have the code to turn the annotated Rust code from a TokenStream into a
DeriveInput instance, let’s generate the code that implements the HelloMacro trait on

the annotated type, as shown in Listing 19-33.

Filename: hello_macro_derive/src/lib.rs

Listing 19-33: Implementing the HelloMacro trait using the parsed Rust code

We get an Ident struct instance containing the name (identifier) of the annotated type
using ast.ident . The struct in Listing 19-32 shows that when we run the
impl_hello_macro function on the code in Listing 19-30, the ident we get will have the
ident field with a value of "Pancakes" . Thus, the name variable in Listing 19-33 will

contain an Ident struct instance that, when printed, will be the string "Pancakes" , the
name of the struct in Listing 19-30.

The quote! macro lets us define the Rust code that we want to return. The compiler
expects something different to the direct result of the quote! macro’s execution, so we
need to convert it to a TokenStream . We do this by calling the into method, which
consumes this intermediate representation and returns a value of the required
TokenStream type.

The quote! macro also provides some very cool templating mechanics: we can enter
#name , and quote! will replace it with the value in the variable name . You can even do

some repetition similar to the way regular macros work. Check out the quote crate’s
docs for a thorough introduction.

We want our procedural macro to generate an implementation of our HelloMacro trait
for the type the user annotated, which we can get by using #name . The trait
implementation has the one function hello_macro , whose body contains the
functionality we want to provide: printing Hello, Macro! My name is and then the
name of the annotated type.

The stringify! macro used here is built into Rust. It takes a Rust expression, such as 1
+ 2 , and at compile time turns the expression into a string literal, such as "1 + 2" . This
is different than format! or println! , macros which evaluate the expression and then

fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream {
 let name = &ast.ident;
 let gen = quote! {
 impl HelloMacro for #name {
 fn hello_macro() {
 println!("Hello, Macro! My name is {}!", stringify!
(#name));
 }
 }
 };
 gen.into()
}

https://docs.rs/quote

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 565/636

turn the result into a String . There is a possibility that the #name input might be an
expression to print literally, so we use stringify! . Using stringify! also saves an
allocation by converting #name to a string literal at compile time.

At this point, cargo build should complete successfully in both hello_macro and
hello_macro_derive . Let’s hook up these crates to the code in Listing 19-30 to see the

procedural macro in action! Create a new binary project in your projects directory using
cargo new pancakes . We need to add hello_macro and hello_macro_derive as

dependencies in the pancakes crate’s Cargo.toml. If you’re publishing your versions of
hello_macro and hello_macro_derive to crates.io, they would be regular

dependencies; if not, you can specify them as path dependencies as follows:

Put the code in Listing 19-30 into src/main.rs, and run cargo run : it should print Hello,
Macro! My name is Pancakes! The implementation of the HelloMacro trait from the
procedural macro was included without the pancakes crate needing to implement it;
the #[derive(HelloMacro)] added the trait implementation.

Next, let’s explore how the other kinds of procedural macros differ from custom derive
macros.

Attribute-like macros

Attribute-like macros are similar to custom derive macros, but instead of generating
code for the derive attribute, they allow you to create new attributes. They’re also
more flexible: derive only works for structs and enums; attributes can be applied to
other items as well, such as functions. Here’s an example of using an attribute-like
macro: say you have an attribute named route that annotates functions when using a
web application framework:

This #[route] attribute would be defined by the framework as a procedural macro. The
signature of the macro definition function would look like this:

Here, we have two parameters of type TokenStream . The first is for the contents of the
attribute: the GET, "/" part. The second is the body of the item the attribute is
attached to: in this case, fn index() {} and the rest of the function’s body.

hello_macro = { path = "../hello_macro" }
hello_macro_derive = { path = "../hello_macro/hello_macro_derive" }

#[route(GET, "/")]
fn index() {

#[proc_macro_attribute]
pub fn route(attr: TokenStream, item: TokenStream) -> TokenStream {

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 566/636

Other than that, attribute-like macros work the same way as custom derive macros: you
create a crate with the proc-macro crate type and implement a function that generates
the code you want!

Function-like macros

Function-like macros define macros that look like function calls. Similarly to
macro_rules! macros, they’re more flexible than functions; for example, they can take

an unknown number of arguments. However, macro_rules! macros can be defined
only using the match-like syntax we discussed in the section “Declarative Macros with
macro_rules! for General Metaprogramming” earlier. Function-like macros take a
TokenStream parameter and their definition manipulates that TokenStream using Rust

code as the other two types of procedural macros do. An example of a function-like
macro is an sql! macro that might be called like so:

This macro would parse the SQL statement inside it and check that it’s syntactically
correct, which is much more complex processing than a macro_rules! macro can do.
The sql! macro would be defined like this:

This definition is similar to the custom derive macro’s signature: we receive the tokens
that are inside the parentheses and return the code we wanted to generate.

Summary

Whew! Now you have some Rust features in your toolbox that you likely won’t use often,
but you’ll know they’re available in very particular circumstances. We’ve introduced
several complex topics so that when you encounter them in error message suggestions
or in other peoples’ code, you’ll be able to recognize these concepts and syntax. Use this
chapter as a reference to guide you to solutions.

Next, we’ll put everything we’ve discussed throughout the book into practice and do one
more project!

let sql = sql!(SELECT * FROM posts WHERE id=1);

#[proc_macro]
pub fn sql(input: TokenStream) -> TokenStream {

https://doc.rust-lang.org/book/ch19-06-macros.html#declarative-macros-with-macro_rules-for-general-metaprogramming

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 567/636

Final Project: Building a Multithreaded
Web Server
It’s been a long journey, but we’ve reached the end of the book. In this chapter, we’ll
build one more project together to demonstrate some of the concepts we covered in
the final chapters, as well as recap some earlier lessons.

For our final project, we’ll make a web server that says “hello” and looks like Figure 20-1
in a web browser.

Figure 20-1: Our final shared project

Here is our plan for building the web server:

1. Learn a bit about TCP and HTTP.
2. Listen for TCP connections on a socket.
3. Parse a small number of HTTP requests.
4. Create a proper HTTP response.
5. Improve the throughput of our server with a thread pool.

Before we get started, we should mention one detail: the method we’ll use won’t be the
best way to build a web server with Rust. Community members have published a
number of production-ready crates available on crates.io that provide more complete
web server and thread pool implementations than we’ll build. However, our intention in
this chapter is to help you learn, not to take the easy route. Because Rust is a systems
programming language, we can choose the level of abstraction we want to work with
and can go to a lower level than is possible or practical in other languages. We’ll
therefore write the basic HTTP server and thread pool manually so you can learn the
general ideas and techniques behind the crates you might use in the future.

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 568/636

Building a Single-Threaded Web Server

We’ll start by getting a single-threaded web server working. Before we begin, let’s look at
a quick overview of the protocols involved in building web servers. The details of these
protocols are beyond the scope of this book, but a brief overview will give you the
information you need.

The two main protocols involved in web servers are Hypertext Transfer Protocol (HTTP)
and Transmission Control Protocol (TCP). Both protocols are request-response protocols,
meaning a client initiates requests and a server listens to the requests and provides a
response to the client. The contents of those requests and responses are defined by the
protocols.

TCP is the lower-level protocol that describes the details of how information gets from
one server to another but doesn’t specify what that information is. HTTP builds on top
of TCP by defining the contents of the requests and responses. It’s technically possible
to use HTTP with other protocols, but in the vast majority of cases, HTTP sends its data
over TCP. We’ll work with the raw bytes of TCP and HTTP requests and responses.

Listening to the TCP Connection

Our web server needs to listen to a TCP connection, so that’s the first part we’ll work on.
The standard library offers a std::net module that lets us do this. Let’s make a new
project in the usual fashion:

Now enter the code in Listing 20-1 in src/main.rs to start. This code will listen at the local
address 127.0.0.1:7878 for incoming TCP streams. When it gets an incoming stream, it
will print Connection established! .

Filename: src/main.rs

$ cargo new hello
 Created binary (application) `hello` project
$ cd hello

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 569/636

Listing 20-1: Listening for incoming streams and printing a message when we receive a stream

Using TcpListener , we can listen for TCP connections at the address 127.0.0.1:7878 .
In the address, the section before the colon is an IP address representing your
computer (this is the same on every computer and doesn’t represent the authors’
computer specifically), and 7878 is the port. We’ve chosen this port for two reasons:
HTTP isn’t normally accepted on this port so our server is unlikely to conflict with any
other web server you might have running on your machine, and 7878 is rust typed on a
telephone.

The bind function in this scenario works like the new function in that it will return a
new TcpListener instance. The function is called bind because, in networking,
connecting to a port to listen to is known as “binding to a port.”

The bind function returns a Result<T, E> , which indicates that it’s possible for binding
to fail. For example, connecting to port 80 requires administrator privileges
(nonadministrators can listen only on ports higher than 1023), so if we tried to connect
to port 80 without being an administrator, binding wouldn’t work. Binding also wouldn’t
work, for example, if we ran two instances of our program and so had two programs
listening to the same port. Because we’re writing a basic server just for learning
purposes, we won’t worry about handling these kinds of errors; instead, we use unwrap
to stop the program if errors happen.

The incoming method on TcpListener returns an iterator that gives us a sequence of
streams (more specifically, streams of type TcpStream). A single stream represents an
open connection between the client and the server. A connection is the name for the full
request and response process in which a client connects to the server, the server
generates a response, and the server closes the connection. As such, we will read from
the TcpStream to see what the client sent and then write our response to the stream to
send data back to the client. Overall, this for loop will process each connection in turn
and produce a series of streams for us to handle.

For now, our handling of the stream consists of calling unwrap to terminate our
program if the stream has any errors; if there aren’t any errors, the program prints a
message. We’ll add more functionality for the success case in the next listing. The
reason we might receive errors from the incoming method when a client connects to

use std::net::TcpListener;

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();

 for stream in listener.incoming() {
 let stream = stream.unwrap();

 println!("Connection established!");
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 570/636

the server is that we’re not actually iterating over connections. Instead, we’re iterating
over connection attempts. The connection might not be successful for a number of
reasons, many of them operating system specific. For example, many operating systems
have a limit to the number of simultaneous open connections they can support; new
connection attempts beyond that number will produce an error until some of the open
connections are closed.

Let’s try running this code! Invoke cargo run in the terminal and then load
127.0.0.1:7878 in a web browser. The browser should show an error message like
“Connection reset,” because the server isn’t currently sending back any data. But when
you look at your terminal, you should see several messages that were printed when the
browser connected to the server!

Sometimes, you’ll see multiple messages printed for one browser request; the reason
might be that the browser is making a request for the page as well as a request for
other resources, like the favicon.ico icon that appears in the browser tab.

It could also be that the browser is trying to connect to the server multiple times
because the server isn’t responding with any data. When stream goes out of scope and
is dropped at the end of the loop, the connection is closed as part of the drop
implementation. Browsers sometimes deal with closed connections by retrying, because
the problem might be temporary. The important factor is that we’ve successfully gotten
a handle to a TCP connection!

Remember to stop the program by pressing ctrl-c when you’re done running a particular
version of the code. Then restart the program by invoking the cargo run command
after you’ve made each set of code changes to make sure you’re running the newest
code.

Reading the Request

Let’s implement the functionality to read the request from the browser! To separate the
concerns of first getting a connection and then taking some action with the connection,
we’ll start a new function for processing connections. In this new handle_connection
function, we’ll read data from the TCP stream and print it so we can see the data being
sent from the browser. Change the code to look like Listing 20-2.

Filename: src/main.rs

 Running `target/debug/hello`
Connection established!
Connection established!
Connection established!

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 571/636

Listing 20-2: Reading from the TcpStream and printing the data

We bring std::io::prelude and std::io::BufReader into scope to get access to traits
and types that let us read from and write to the stream. In the for loop in the main
function, instead of printing a message that says we made a connection, we now call the
new handle_connection function and pass the stream to it.

In the handle_connection function, we create a new BufReader instance that wraps a
mutable reference to the stream . BufReader adds buffering by managing calls to the
std::io::Read trait methods for us.

We create a variable named http_request to collect the lines of the request the
browser sends to our server. We indicate that we want to collect these lines in a vector
by adding the Vec<_> type annotation.

BufReader implements the std::io::BufRead trait, which provides the lines
method. The lines method returns an iterator of Result<String, std::io::Error>
by splitting the stream of data whenever it sees a newline byte. To get each String , we
map and unwrap each Result . The Result might be an error if the data isn’t valid UTF-
8 or if there was a problem reading from the stream. Again, a production program
should handle these errors more gracefully, but we’re choosing to stop the program in
the error case for simplicity.

The browser signals the end of an HTTP request by sending two newline characters in a
row, so to get one request from the stream, we take lines until we get a line that is the

use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream},
};

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();

 for stream in listener.incoming() {
 let stream = stream.unwrap();

 handle_connection(stream);
 }
}

fn handle_connection(mut stream: TcpStream) {
 let buf_reader = BufReader::new(&mut stream);
 let http_request: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();

 println!("Request: {:#?}", http_request);
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 572/636

empty string. Once we’ve collected the lines into the vector, we’re printing them out
using pretty debug formatting so we can take a look at the instructions the web browser
is sending to our server.

Let’s try this code! Start the program and make a request in a web browser again. Note
that we’ll still get an error page in the browser, but our program’s output in the terminal
will now look similar to this:

Depending on your browser, you might get slightly different output. Now that we’re
printing the request data, we can see why we get multiple connections from one
browser request by looking at the path after GET in the first line of the request. If the
repeated connections are all requesting /, we know the browser is trying to fetch /
repeatedly because it’s not getting a response from our program.

Let’s break down this request data to understand what the browser is asking of our
program.

A Closer Look at an HTTP Request

HTTP is a text-based protocol, and a request takes this format:

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s
 Running `target/debug/hello`
Request: [
 "GET / HTTP/1.1",
 "Host: 127.0.0.1:7878",
 "User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:99.0)
Gecko/20100101 Firefox/99.0",
 "Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp
,*/*;q=0.8",
 "Accept-Language: en-US,en;q=0.5",
 "Accept-Encoding: gzip, deflate, br",
 "DNT: 1",
 "Connection: keep-alive",
 "Upgrade-Insecure-Requests: 1",
 "Sec-Fetch-Dest: document",
 "Sec-Fetch-Mode: navigate",
 "Sec-Fetch-Site: none",
 "Sec-Fetch-User: ?1",
 "Cache-Control: max-age=0",
]

Method Request-URI HTTP-Version CRLF
headers CRLF
message-body

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 573/636

The first line is the request line that holds information about what the client is
requesting. The first part of the request line indicates the method being used, such as
GET or POST , which describes how the client is making this request. Our client used a
GET request, which means it is asking for information.

The next part of the request line is /, which indicates the Uniform Resource Identifier (URI)
the client is requesting: a URI is almost, but not quite, the same as a Uniform Resource
Locator (URL). The difference between URIs and URLs isn’t important for our purposes in
this chapter, but the HTTP spec uses the term URI, so we can just mentally substitute
URL for URI here.

The last part is the HTTP version the client uses, and then the request line ends in a CRLF
sequence. (CRLF stands for carriage return and line feed, which are terms from the
typewriter days!) The CRLF sequence can also be written as \r\n , where \r is a
carriage return and \n is a line feed. The CRLF sequence separates the request line
from the rest of the request data. Note that when the CRLF is printed, we see a new line
start rather than \r\n .

Looking at the request line data we received from running our program so far, we see
that GET is the method, / is the request URI, and HTTP/1.1 is the version.

After the request line, the remaining lines starting from Host: onward are headers.
GET requests have no body.

Try making a request from a different browser or asking for a different address, such as
127.0.0.1:7878/test, to see how the request data changes.

Now that we know what the browser is asking for, let’s send back some data!

Writing a Response

We’re going to implement sending data in response to a client request. Responses have
the following format:

The first line is a status line that contains the HTTP version used in the response, a
numeric status code that summarizes the result of the request, and a reason phrase
that provides a text description of the status code. After the CRLF sequence are any
headers, another CRLF sequence, and the body of the response.

Here is an example response that uses HTTP version 1.1, has a status code of 200, an
OK reason phrase, no headers, and no body:

HTTP-Version Status-Code Reason-Phrase CRLF
headers CRLF
message-body

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 574/636

The status code 200 is the standard success response. The text is a tiny successful HTTP
response. Let’s write this to the stream as our response to a successful request! From
the handle_connection function, remove the println! that was printing the request
data and replace it with the code in Listing 20-3.

Filename: src/main.rs

Listing 20-3: Writing a tiny successful HTTP response to the stream

The first new line defines the response variable that holds the success message’s data.
Then we call as_bytes on our response to convert the string data to bytes. The
write_all method on stream takes a &[u8] and sends those bytes directly down the

connection. Because the write_all operation could fail, we use unwrap on any error
result as before. Again, in a real application you would add error handling here.

With these changes, let’s run our code and make a request. We’re no longer printing any
data to the terminal, so we won’t see any output other than the output from Cargo.
When you load 127.0.0.1:7878 in a web browser, you should get a blank page instead of
an error. You’ve just hand-coded receiving an HTTP request and sending a response!

Returning Real HTML

Let’s implement the functionality for returning more than a blank page. Create the new
file hello.html in the root of your project directory, not in the src directory. You can input
any HTML you want; Listing 20-4 shows one possibility.

Filename: hello.html

HTTP/1.1 200 OK\r\n\r\n

fn handle_connection(mut stream: TcpStream) {
 let buf_reader = BufReader::new(&mut stream);
 let http_request: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();

 let response = "HTTP/1.1 200 OK\r\n\r\n";

 stream.write_all(response.as_bytes()).unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 575/636

Listing 20-4: A sample HTML file to return in a response

This is a minimal HTML5 document with a heading and some text. To return this from
the server when a request is received, we’ll modify handle_connection as shown in
Listing 20-5 to read the HTML file, add it to the response as a body, and send it.

Filename: src/main.rs

Listing 20-5: Sending the contents of hello.html as the body of the response

We’ve added fs to the use statement to bring the standard library’s filesystem module
into scope. The code for reading the contents of a file to a string should look familiar; we
used it in Chapter 12 when we read the contents of a file for our I/O project in Listing 12-
4.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello!</title>
 </head>
 <body>
 <h1>Hello!</h1>
 <p>Hi from Rust</p>
 </body>
</html>

use std::{
 fs,
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream},
};
// --snip--

fn handle_connection(mut stream: TcpStream) {
 let buf_reader = BufReader::new(&mut stream);
 let http_request: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();

 let status_line = "HTTP/1.1 200 OK";
 let contents = fs::read_to_string("hello.html").unwrap();
 let length = contents.len();

 let response =
 format!("{status_line}\r\nContent-Length:
{length}\r\n\r\n{contents}");

 stream.write_all(response.as_bytes()).unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 576/636

Next, we use format! to add the file’s contents as the body of the success response. To
ensure a valid HTTP response, we add the Content-Length header which is set to the
size of our response body, in this case the size of hello.html .

Run this code with cargo run and load 127.0.0.1:7878 in your browser; you should see
your HTML rendered!

Currently, we’re ignoring the request data in http_request and just sending back the
contents of the HTML file unconditionally. That means if you try requesting
127.0.0.1:7878/something-else in your browser, you’ll still get back this same HTML
response. At the moment, our server is very limited and does not do what most web
servers do. We want to customize our responses depending on the request and only
send back the HTML file for a well-formed request to /.

Validating the Request and Selectively Responding

Right now, our web server will return the HTML in the file no matter what the client
requested. Let’s add functionality to check that the browser is requesting / before
returning the HTML file and return an error if the browser requests anything else. For
this we need to modify handle_connection , as shown in Listing 20-6. This new code
checks the content of the request received against what we know a request for / looks
like and adds if and else blocks to treat requests differently.

Filename: src/main.rs

Listing 20-6: Handling requests to / differently from other requests

// --snip--

fn handle_connection(mut stream: TcpStream) {
 let buf_reader = BufReader::new(&mut stream);
 let request_line = buf_reader.lines().next().unwrap().unwrap();

 if request_line == "GET / HTTP/1.1" {
 let status_line = "HTTP/1.1 200 OK";
 let contents = fs::read_to_string("hello.html").unwrap();
 let length = contents.len();

 let response = format!(
 "{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}"
);

 stream.write_all(response.as_bytes()).unwrap();
 } else {
 // some other request
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 577/636

We’re only going to be looking at the first line of the HTTP request, so rather than
reading the entire request into a vector, we’re calling next to get the first item from the
iterator. The first unwrap takes care of the Option and stops the program if the iterator
has no items. The second unwrap handles the Result and has the same effect as the
unwrap that was in the map added in Listing 20-2.

Next, we check the request_line to see if it equals the request line of a GET request to
the / path. If it does, the if block returns the contents of our HTML file.

If the request_line does not equal the GET request to the / path, it means we’ve
received some other request. We’ll add code to the else block in a moment to respond
to all other requests.

Run this code now and request 127.0.0.1:7878; you should get the HTML in hello.html. If
you make any other request, such as 127.0.0.1:7878/something-else, you’ll get a
connection error like those you saw when running the code in Listing 20-1 and Listing
20-2.

Now let’s add the code in Listing 20-7 to the else block to return a response with the
status code 404, which signals that the content for the request was not found. We’ll also
return some HTML for a page to render in the browser indicating the response to the
end user.

Filename: src/main.rs

Listing 20-7: Responding with status code 404 and an error page if anything other than / was requested

Here, our response has a status line with status code 404 and the reason phrase NOT
FOUND . The body of the response will be the HTML in the file 404.html. You’ll need to
create a 404.html file next to hello.html for the error page; again feel free to use any
HTML you want or use the example HTML in Listing 20-8.

Filename: 404.html

 // --snip--
 } else {
 let status_line = "HTTP/1.1 404 NOT FOUND";
 let contents = fs::read_to_string("404.html").unwrap();
 let length = contents.len();

 let response = format!(
 "{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}"
);

 stream.write_all(response.as_bytes()).unwrap();
 }

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 578/636

Listing 20-8: Sample content for the page to send back with any 404 response

With these changes, run your server again. Requesting 127.0.0.1:7878 should return the
contents of hello.html, and any other request, like 127.0.0.1:7878/foo, should return the
error HTML from 404.html.

A Touch of Refactoring

At the moment the if and else blocks have a lot of repetition: they’re both reading
files and writing the contents of the files to the stream. The only differences are the
status line and the filename. Let’s make the code more concise by pulling out those
differences into separate if and else lines that will assign the values of the status line
and the filename to variables; we can then use those variables unconditionally in the
code to read the file and write the response. Listing 20-9 shows the resulting code after
replacing the large if and else blocks.

Filename: src/main.rs

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello!</title>
 </head>
 <body>
 <h1>Oops!</h1>
 <p>Sorry, I don't know what you're asking for.</p>
 </body>
</html>

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 579/636

Listing 20-9: Refactoring the if and else blocks to contain only the code that differs between the two

cases

Now the if and else blocks only return the appropriate values for the status line and
filename in a tuple; we then use destructuring to assign these two values to
status_line and filename using a pattern in the let statement, as discussed in

Chapter 18.

The previously duplicated code is now outside the if and else blocks and uses the
status_line and filename variables. This makes it easier to see the difference

between the two cases, and it means we have only one place to update the code if we
want to change how the file reading and response writing work. The behavior of the
code in Listing 20-9 will be the same as that in Listing 20-8.

Awesome! We now have a simple web server in approximately 40 lines of Rust code that
responds to one request with a page of content and responds to all other requests with
a 404 response.

Currently, our server runs in a single thread, meaning it can only serve one request at a
time. Let’s examine how that can be a problem by simulating some slow requests. Then
we’ll fix it so our server can handle multiple requests at once.

// --snip--

fn handle_connection(mut stream: TcpStream) {
 // --snip--

 let (status_line, filename) = if request_line == "GET / HTTP/1.1" {
 ("HTTP/1.1 200 OK", "hello.html")
 } else {
 ("HTTP/1.1 404 NOT FOUND", "404.html")
 };

 let contents = fs::read_to_string(filename).unwrap();
 let length = contents.len();

 let response =
 format!("{status_line}\r\nContent-Length:
{length}\r\n\r\n{contents}");

 stream.write_all(response.as_bytes()).unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 580/636

Turning Our Single-Threaded Server into a
Multithreaded Server

Right now, the server will process each request in turn, meaning it won’t process a
second connection until the first is finished processing. If the server received more and
more requests, this serial execution would be less and less optimal. If the server
receives a request that takes a long time to process, subsequent requests will have to
wait until the long request is finished, even if the new requests can be processed
quickly. We’ll need to fix this, but first, we’ll look at the problem in action.

Simulating a Slow Request in the Current Server Implementation

We’ll look at how a slow-processing request can affect other requests made to our
current server implementation. Listing 20-10 implements handling a request to /sleep
with a simulated slow response that will cause the server to sleep for 5 seconds before
responding.

Filename: src/main.rs

Listing 20-10: Simulating a slow request by sleeping for 5 seconds

use std::{
 fs,
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream},
 thread,
 time::Duration,
};
// --snip--

fn handle_connection(mut stream: TcpStream) {
 // --snip--

 let (status_line, filename) = match &request_line[..] {
 "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
 "GET /sleep HTTP/1.1" => {
 thread::sleep(Duration::from_secs(5));
 ("HTTP/1.1 200 OK", "hello.html")
 }
 _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
 };

 // --snip--
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 581/636

We switched from if to match now that we have three cases. We need to explicitly
match on a slice of request_line to pattern match against the string literal values;
match doesn’t do automatic referencing and dereferencing like the equality method

does.

The first arm is the same as the if block from Listing 20-9. The second arm matches a
request to /sleep. When that request is received, the server will sleep for 5 seconds
before rendering the successful HTML page. The third arm is the same as the else
block from Listing 20-9.

You can see how primitive our server is: real libraries would handle the recognition of
multiple requests in a much less verbose way!

Start the server using cargo run . Then open two browser windows: one for
http://127.0.0.1:7878/ and the other for http://127.0.0.1:7878/sleep. If you enter the / URI a
few times, as before, you’ll see it respond quickly. But if you enter /sleep and then load /,
you’ll see that / waits until sleep has slept for its full 5 seconds before loading.

There are multiple techniques we could use to avoid requests backing up behind a slow
request; the one we’ll implement is a thread pool.

Improving Throughput with a Thread Pool

A thread pool is a group of spawned threads that are waiting and ready to handle a task.
When the program receives a new task, it assigns one of the threads in the pool to the
task, and that thread will process the task. The remaining threads in the pool are
available to handle any other tasks that come in while the first thread is processing.
When the first thread is done processing its task, it’s returned to the pool of idle threads,
ready to handle a new task. A thread pool allows you to process connections
concurrently, increasing the throughput of your server.

We’ll limit the number of threads in the pool to a small number to protect us from
Denial of Service (DoS) attacks; if we had our program create a new thread for each
request as it came in, someone making 10 million requests to our server could create
havoc by using up all our server’s resources and grinding the processing of requests to a
halt.

Rather than spawning unlimited threads, then, we’ll have a fixed number of threads
waiting in the pool. Requests that come in are sent to the pool for processing. The pool
will maintain a queue of incoming requests. Each of the threads in the pool will pop off a
request from this queue, handle the request, and then ask the queue for another
request. With this design, we can process up to N requests concurrently, where N is
the number of threads. If each thread is responding to a long-running request,
subsequent requests can still back up in the queue, but we’ve increased the number of
long-running requests we can handle before reaching that point.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 582/636

This technique is just one of many ways to improve the throughput of a web server.
Other options you might explore are the fork/join model, the single-threaded async I/O
model, or the multi-threaded async I/O model. If you’re interested in this topic, you can
read more about other solutions and try to implement them; with a low-level language
like Rust, all of these options are possible.

Before we begin implementing a thread pool, let’s talk about what using the pool should
look like. When you’re trying to design code, writing the client interface first can help
guide your design. Write the API of the code so it’s structured in the way you want to call
it; then implement the functionality within that structure rather than implementing the
functionality and then designing the public API.

Similar to how we used test-driven development in the project in Chapter 12, we’ll use
compiler-driven development here. We’ll write the code that calls the functions we want,
and then we’ll look at errors from the compiler to determine what we should change
next to get the code to work. Before we do that, however, we’ll explore the technique
we’re not going to use as a starting point.

Spawning a Thread for Each Request

First, let’s explore how our code might look if it did create a new thread for every
connection. As mentioned earlier, this isn’t our final plan due to the problems with
potentially spawning an unlimited number of threads, but it is a starting point to get a
working multithreaded server first. Then we’ll add the thread pool as an improvement,
and contrasting the two solutions will be easier. Listing 20-11 shows the changes to
make to main to spawn a new thread to handle each stream within the for loop.

Filename: src/main.rs

Listing 20-11: Spawning a new thread for each stream

As you learned in Chapter 16, thread::spawn will create a new thread and then run the
code in the closure in the new thread. If you run this code and load /sleep in your
browser, then / in two more browser tabs, you’ll indeed see that the requests to / don’t
have to wait for /sleep to finish. However, as we mentioned, this will eventually
overwhelm the system because you’d be making new threads without any limit.

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();

 for stream in listener.incoming() {
 let stream = stream.unwrap();

 thread::spawn(|| {
 handle_connection(stream);
 });
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 583/636

Creating a Finite Number of Threads

We want our thread pool to work in a similar, familiar way so switching from threads to
a thread pool doesn’t require large changes to the code that uses our API. Listing 20-12
shows the hypothetical interface for a ThreadPool struct we want to use instead of
thread::spawn .

Filename: src/main.rs

Listing 20-12: Our ideal ThreadPool interface

We use ThreadPool::new to create a new thread pool with a configurable number of
threads, in this case four. Then, in the for loop, pool.execute has a similar interface
as thread::spawn in that it takes a closure the pool should run for each stream. We
need to implement pool.execute so it takes the closure and gives it to a thread in the
pool to run. This code won’t yet compile, but we’ll try so the compiler can guide us in
how to fix it.

Building ThreadPool Using Compiler Driven Development

Make the changes in Listing 20-12 to src/main.rs, and then let’s use the compiler errors
from cargo check to drive our development. Here is the first error we get:

Great! This error tells us we need a ThreadPool type or module, so we’ll build one now.
Our ThreadPool implementation will be independent of the kind of work our web

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
 let pool = ThreadPool::new(4);

 for stream in listener.incoming() {
 let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }
}

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0433]: failed to resolve: use of undeclared type `ThreadPool`
 --> src/main.rs:11:16
 |
11 | let pool = ThreadPool::new(4);
 | ^^^^^^^^^^ use of undeclared type `ThreadPool`

For more information about this error, try `rustc --explain E0433`.
error: could not compile `hello` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 584/636

server is doing. So, let’s switch the hello crate from a binary crate to a library crate to
hold our ThreadPool implementation. After we change to a library crate, we could also
use the separate thread pool library for any work we want to do using a thread pool, not
just for serving web requests.

Create a src/lib.rs that contains the following, which is the simplest definition of a
ThreadPool struct that we can have for now:

Filename: src/lib.rs

Then edit main.rs file to bring ThreadPool into scope from the library crate by adding
the following code to the top of src/main.rs:

Filename: src/main.rs

This code still won’t work, but let’s check it again to get the next error that we need to
address:

This error indicates that next we need to create an associated function named new for
ThreadPool . We also know that new needs to have one parameter that can accept 4

as an argument and should return a ThreadPool instance. Let’s implement the simplest
new function that will have those characteristics:

Filename: src/lib.rs

pub struct ThreadPool;

use hello::ThreadPool;

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no function or associated item named `new` found for struct
`ThreadPool` in the current scope
 --> src/main.rs:12:28
 |
12 | let pool = ThreadPool::new(4);
 | ^^^ function or associated item not found
in `ThreadPool`

For more information about this error, try `rustc --explain E0599`.
error: could not compile `hello` due to previous error

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 585/636

We chose usize as the type of the size parameter, because we know that a negative
number of threads doesn’t make any sense. We also know we’ll use this 4 as the
number of elements in a collection of threads, which is what the usize type is for, as
discussed in the “Integer Types” section of Chapter 3.

Let’s check the code again:

Now the error occurs because we don’t have an execute method on ThreadPool .
Recall from the “Creating a Finite Number of Threads” section that we decided our
thread pool should have an interface similar to thread::spawn . In addition, we’ll
implement the execute function so it takes the closure it’s given and gives it to an idle
thread in the pool to run.

We’ll define the execute method on ThreadPool to take a closure as a parameter.
Recall from the “Moving Captured Values Out of the Closure and the Fn Traits” section
in Chapter 13 that we can take closures as parameters with three different traits: Fn ,
FnMut , and FnOnce . We need to decide which kind of closure to use here. We know

we’ll end up doing something similar to the standard library thread::spawn
implementation, so we can look at what bounds the signature of thread::spawn has on
its parameter. The documentation shows us the following:

The F type parameter is the one we’re concerned with here; the T type parameter is
related to the return value, and we’re not concerned with that. We can see that spawn

pub struct ThreadPool;

impl ThreadPool {
 pub fn new(size: usize) -> ThreadPool {
 ThreadPool
 }
}

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `execute` found for struct `ThreadPool` in
the current scope
 --> src/main.rs:17:14
 |
17 | pool.execute(|| {
 | ^^^^^^^ method not found in `ThreadPool`

For more information about this error, try `rustc --explain E0599`.
error: could not compile `hello` due to previous error

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
 where
 F: FnOnce() -> T,
 F: Send + 'static,
 T: Send + 'static,

https://doc.rust-lang.org/book/ch03-02-data-types.html#integer-types
https://doc.rust-lang.org/book/ch20-02-multithreaded.html#creating-a-finite-number-of-threads
https://doc.rust-lang.org/book/ch13-01-closures.html#moving-captured-values-out-of-the-closure-and-the-fn-traits

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 586/636

uses FnOnce as the trait bound on F . This is probably what we want as well, because
we’ll eventually pass the argument we get in execute to spawn . We can be further
confident that FnOnce is the trait we want to use because the thread for running a
request will only execute that request’s closure one time, which matches the Once in
FnOnce .

The F type parameter also has the trait bound Send and the lifetime bound 'static ,
which are useful in our situation: we need Send to transfer the closure from one thread
to another and 'static because we don’t know how long the thread will take to
execute. Let’s create an execute method on ThreadPool that will take a generic
parameter of type F with these bounds:

Filename: src/lib.rs

We still use the () after FnOnce because this FnOnce represents a closure that takes
no parameters and returns the unit type () . Just like function definitions, the return
type can be omitted from the signature, but even if we have no parameters, we still
need the parentheses.

Again, this is the simplest implementation of the execute method: it does nothing, but
we’re trying only to make our code compile. Let’s check it again:

It compiles! But note that if you try cargo run and make a request in the browser, you’ll
see the errors in the browser that we saw at the beginning of the chapter. Our library
isn’t actually calling the closure passed to execute yet!

Note: A saying you might hear about languages with strict compilers, such as
Haskell and Rust, is “if the code compiles, it works.” But this saying is not
universally true. Our project compiles, but it does absolutely nothing! If we were
building a real, complete project, this would be a good time to start writing unit
tests to check that the code compiles and has the behavior we want.

impl ThreadPool {
 // --snip--
 pub fn execute<F>(&self, f: F)
 where
 F: FnOnce() + Send + 'static,
 {
 }
}

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.24s

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 587/636

Validating the Number of Threads in new

We aren’t doing anything with the parameters to new and execute . Let’s implement
the bodies of these functions with the behavior we want. To start, let’s think about new .
Earlier we chose an unsigned type for the size parameter, because a pool with a
negative number of threads makes no sense. However, a pool with zero threads also
makes no sense, yet zero is a perfectly valid usize . We’ll add code to check that size is
greater than zero before we return a ThreadPool instance and have the program panic
if it receives a zero by using the assert! macro, as shown in Listing 20-13.

Filename: src/lib.rs

Listing 20-13: Implementing ThreadPool::new to panic if size is zero

We’ve also added some documentation for our ThreadPool with doc comments. Note
that we followed good documentation practices by adding a section that calls out the
situations in which our function can panic, as discussed in Chapter 14. Try running
cargo doc --open and clicking the ThreadPool struct to see what the generated docs

for new look like!

Instead of adding the assert! macro as we’ve done here, we could change new into
build and return a Result like we did with Config::build in the I/O project in Listing

12-9. But we’ve decided in this case that trying to create a thread pool without any
threads should be an unrecoverable error. If you’re feeling ambitious, try to write a
function named build with the following signature to compare with the new function:

impl ThreadPool {
 /// Create a new ThreadPool.
 ///
 /// The size is the number of threads in the pool.
 ///
 /// # Panics
 ///
 /// The `new` function will panic if the size is zero.
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 ThreadPool
 }

 // --snip--
}

pub fn build(size: usize) -> Result<ThreadPool, PoolCreationError> {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 588/636

Creating Space to Store the Threads

Now that we have a way to know we have a valid number of threads to store in the pool,
we can create those threads and store them in the ThreadPool struct before returning
the struct. But how do we “store” a thread? Let’s take another look at the
thread::spawn signature:

The spawn function returns a JoinHandle<T> , where T is the type that the closure
returns. Let’s try using JoinHandle too and see what happens. In our case, the closures
we’re passing to the thread pool will handle the connection and not return anything, so
T will be the unit type () .

The code in Listing 20-14 will compile but doesn’t create any threads yet. We’ve changed
the definition of ThreadPool to hold a vector of thread::JoinHandle<()> instances,
initialized the vector with a capacity of size , set up a for loop that will run some code
to create the threads, and returned a ThreadPool instance containing them.

Filename: src/lib.rs

Listing 20-14: Creating a vector for ThreadPool to hold the threads

We’ve brought std::thread into scope in the library crate, because we’re using
thread::JoinHandle as the type of the items in the vector in ThreadPool .

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
 where
 F: FnOnce() -> T,
 F: Send + 'static,
 T: Send + 'static,

use std::thread;

pub struct ThreadPool {
 threads: Vec<thread::JoinHandle<()>>,
}

impl ThreadPool {
 // --snip--
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let mut threads = Vec::with_capacity(size);

 for _ in 0..size {
 // create some threads and store them in the vector
 }

 ThreadPool { threads }
 }
 // --snip--
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 589/636

Once a valid size is received, our ThreadPool creates a new vector that can hold size
items. The with_capacity function performs the same task as Vec::new but with an
important difference: it preallocates space in the vector. Because we know we need to
store size elements in the vector, doing this allocation up front is slightly more
efficient than using Vec::new , which resizes itself as elements are inserted.

When you run cargo check again, it should succeed.

A Worker Struct Responsible for Sending Code from the ThreadPool to a Thread

We left a comment in the for loop in Listing 20-14 regarding the creation of threads.
Here, we’ll look at how we actually create threads. The standard library provides
thread::spawn as a way to create threads, and thread::spawn expects to get some

code the thread should run as soon as the thread is created. However, in our case, we
want to create the threads and have them wait for code that we’ll send later. The
standard library’s implementation of threads doesn’t include any way to do that; we
have to implement it manually.

We’ll implement this behavior by introducing a new data structure between the
ThreadPool and the threads that will manage this new behavior. We’ll call this data

structure Worker, which is a common term in pooling implementations. The Worker
picks up code that needs to be run and runs the code in the Worker’s thread. Think of
people working in the kitchen at a restaurant: the workers wait until orders come in
from customers, and then they’re responsible for taking those orders and fulfilling
them.

Instead of storing a vector of JoinHandle<()> instances in the thread pool, we’ll store
instances of the Worker struct. Each Worker will store a single JoinHandle<()>
instance. Then we’ll implement a method on Worker that will take a closure of code to
run and send it to the already running thread for execution. We’ll also give each worker
an id so we can distinguish between the different workers in the pool when logging or
debugging.

Here is the new process that will happen when we create a ThreadPool . We’ll
implement the code that sends the closure to the thread after we have Worker set up in
this way:

1. Define a Worker struct that holds an id and a JoinHandle<()> .
2. Change ThreadPool to hold a vector of Worker instances.
3. Define a Worker::new function that takes an id number and returns a Worker

instance that holds the id and a thread spawned with an empty closure.
4. In ThreadPool::new , use the for loop counter to generate an id , create a new

Worker with that id , and store the worker in the vector.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 590/636

If you’re up for a challenge, try implementing these changes on your own before looking
at the code in Listing 20-15.

Ready? Here is Listing 20-15 with one way to make the preceding modifications.

Filename: src/lib.rs

Listing 20-15: Modifying ThreadPool to hold Worker instances instead of holding threads directly

We’ve changed the name of the field on ThreadPool from threads to workers
because it’s now holding Worker instances instead of JoinHandle<()> instances. We
use the counter in the for loop as an argument to Worker::new , and we store each
new Worker in the vector named workers .

External code (like our server in src/main.rs) doesn’t need to know the implementation
details regarding using a Worker struct within ThreadPool , so we make the Worker
struct and its new function private. The Worker::new function uses the id we give it

use std::thread;

pub struct ThreadPool {
 workers: Vec<Worker>,
}

impl ThreadPool {
 // --snip--
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let mut workers = Vec::with_capacity(size);

 for id in 0..size {
 workers.push(Worker::new(id));
 }

 ThreadPool { workers }
 }
 // --snip--
}

struct Worker {
 id: usize,
 thread: thread::JoinHandle<()>,
}

impl Worker {
 fn new(id: usize) -> Worker {
 let thread = thread::spawn(|| {});

 Worker { id, thread }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 591/636

and stores a JoinHandle<()> instance that is created by spawning a new thread using
an empty closure.

Note: If the operating system can’t create a thread because there aren’t enough
system resources, thread::spawn will panic. That will cause our whole server to
panic, even though the creation of some threads might succeed. For simplicity’s
sake, this behavior is fine, but in a production thread pool implementation, you’d
likely want to use std::thread::Builder and its spawn method that returns
Result instead.

This code will compile and will store the number of Worker instances we specified as an
argument to ThreadPool::new . But we’re still not processing the closure that we get in
execute . Let’s look at how to do that next.

Sending Requests to Threads via Channels

The next problem we’ll tackle is that the closures given to thread::spawn do absolutely
nothing. Currently, we get the closure we want to execute in the execute method. But
we need to give thread::spawn a closure to run when we create each Worker during
the creation of the ThreadPool .

We want the Worker structs that we just created to fetch the code to run from a queue
held in the ThreadPool and send that code to its thread to run.

The channels we learned about in Chapter 16—a simple way to communicate between
two threads—would be perfect for this use case. We’ll use a channel to function as the
queue of jobs, and execute will send a job from the ThreadPool to the Worker
instances, which will send the job to its thread. Here is the plan:

1. The ThreadPool will create a channel and hold on to the sender.
2. Each Worker will hold on to the receiver.
3. We’ll create a new Job struct that will hold the closures we want to send down the

channel.
4. The execute method will send the job it wants to execute through the sender.
5. In its thread, the Worker will loop over its receiver and execute the closures of any

jobs it receives.

Let’s start by creating a channel in ThreadPool::new and holding the sender in the
ThreadPool instance, as shown in Listing 20-16. The Job struct doesn’t hold anything

for now but will be the type of item we’re sending down the channel.

Filename: src/lib.rs

https://doc.rust-lang.org/std/thread/struct.Builder.html
https://doc.rust-lang.org/std/thread/struct.Builder.html#method.spawn

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 592/636

Listing 20-16: Modifying ThreadPool to store the sender of a channel that transmits Job instances

In ThreadPool::new , we create our new channel and have the pool hold the sender.
This will successfully compile.

Let’s try passing a receiver of the channel into each worker as the thread pool creates
the channel. We know we want to use the receiver in the thread that the workers spawn,
so we’ll reference the receiver parameter in the closure. The code in Listing 20-17
won’t quite compile yet.

Filename: src/lib.rs

use std::{sync::mpsc, thread};

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: mpsc::Sender<Job>,
}

struct Job;

impl ThreadPool {
 // --snip--
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let (sender, receiver) = mpsc::channel();

 let mut workers = Vec::with_capacity(size);

 for id in 0..size {
 workers.push(Worker::new(id));
 }

 ThreadPool { workers, sender }
 }
 // --snip--
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 593/636

Listing 20-17: Passing the receiver to the workers

We’ve made some small and straightforward changes: we pass the receiver into
Worker::new , and then we use it inside the closure.

When we try to check this code, we get this error:

impl ThreadPool {
 // --snip--
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let (sender, receiver) = mpsc::channel();

 let mut workers = Vec::with_capacity(size);

 for id in 0..size {
 workers.push(Worker::new(id, receiver));
 }

 ThreadPool { workers, sender }
 }
 // --snip--
}

// --snip--

impl Worker {
 fn new(id: usize, receiver: mpsc::Receiver<Job>) -> Worker {
 let thread = thread::spawn(|| {
 receiver;
 });

 Worker { id, thread }
 }
}

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0382]: use of moved value: `receiver`
 --> src/lib.rs:26:42
 |
21 | let (sender, receiver) = mpsc::channel();
 | -------- move occurs because `receiver` has type
`std::sync::mpsc::Receiver<Job>`, which does not implement the `Copy` trait
...
26 | workers.push(Worker::new(id, receiver));
 | ^^^^^^^^ value moved here, in
previous iteration of loop

For more information about this error, try `rustc --explain E0382`.
error: could not compile `hello` due to previous error

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 594/636

The code is trying to pass receiver to multiple Worker instances. This won’t work, as
you’ll recall from Chapter 16: the channel implementation that Rust provides is multiple
producer, single consumer. This means we can’t just clone the consuming end of the
channel to fix this code. We also don’t want to send a message multiple times to
multiple consumers; we want one list of messages with multiple workers such that each
message gets processed once.

Additionally, taking a job off the channel queue involves mutating the receiver , so the
threads need a safe way to share and modify receiver ; otherwise, we might get race
conditions (as covered in Chapter 16).

Recall the thread-safe smart pointers discussed in Chapter 16: to share ownership
across multiple threads and allow the threads to mutate the value, we need to use
Arc<Mutex<T>> . The Arc type will let multiple workers own the receiver, and Mutex will

ensure that only one worker gets a job from the receiver at a time. Listing 20-18 shows
the changes we need to make.

Filename: src/lib.rs

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 595/636

Listing 20-18: Sharing the receiver among the workers using Arc and Mutex

In ThreadPool::new , we put the receiver in an Arc and a Mutex . For each new worker,
we clone the Arc to bump the reference count so the workers can share ownership of
the receiver.

With these changes, the code compiles! We’re getting there!

Implementing the execute Method

Let’s finally implement the execute method on ThreadPool . We’ll also change Job
from a struct to a type alias for a trait object that holds the type of closure that execute
receives. As discussed in the “Creating Type Synonyms with Type Aliases” section of
Chapter 19, type aliases allow us to make long types shorter for ease of use. Look at
Listing 20-19.

use std::{
 sync::{mpsc, Arc, Mutex},
 thread,
};
// --snip--

impl ThreadPool {
 // --snip--
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let (sender, receiver) = mpsc::channel();

 let receiver = Arc::new(Mutex::new(receiver));

 let mut workers = Vec::with_capacity(size);

 for id in 0..size {
 workers.push(Worker::new(id, Arc::clone(&receiver)));
 }

 ThreadPool { workers, sender }
 }

 // --snip--
}

// --snip--

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 // --snip--
 }
}

https://doc.rust-lang.org/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 596/636

Filename: src/lib.rs

Listing 20-19: Creating a Job type alias for a Box that holds each closure and then sending the job down

the channel

After creating a new Job instance using the closure we get in execute , we send that
job down the sending end of the channel. We’re calling unwrap on send for the case
that sending fails. This might happen if, for example, we stop all our threads from
executing, meaning the receiving end has stopped receiving new messages. At the
moment, we can’t stop our threads from executing: our threads continue executing as
long as the pool exists. The reason we use unwrap is that we know the failure case
won’t happen, but the compiler doesn’t know that.

But we’re not quite done yet! In the worker, our closure being passed to thread::spawn
still only references the receiving end of the channel. Instead, we need the closure to
loop forever, asking the receiving end of the channel for a job and running the job when
it gets one. Let’s make the change shown in Listing 20-20 to Worker::new .

Filename: src/lib.rs

// --snip--

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
 // --snip--

 pub fn execute<F>(&self, f: F)
 where
 F: FnOnce() + Send + 'static,
 {
 let job = Box::new(f);

 self.sender.send(job).unwrap();
 }
}

// --snip--

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 597/636

Listing 20-20: Receiving and executing the jobs in the worker’s thread

Here, we first call lock on the receiver to acquire the mutex, and then we call
unwrap to panic on any errors. Acquiring a lock might fail if the mutex is in a poisoned

state, which can happen if some other thread panicked while holding the lock rather
than releasing the lock. In this situation, calling unwrap to have this thread panic is the
correct action to take. Feel free to change this unwrap to an expect with an error
message that is meaningful to you.

If we get the lock on the mutex, we call recv to receive a Job from the channel. A final
unwrap moves past any errors here as well, which might occur if the thread holding the

sender has shut down, similar to how the send method returns Err if the receiver
shuts down.

The call to recv blocks, so if there is no job yet, the current thread will wait until a job
becomes available. The Mutex<T> ensures that only one Worker thread at a time is
trying to request a job.

Our thread pool is now in a working state! Give it a cargo run and make some
requests:

// --snip--

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 let thread = thread::spawn(move || loop {
 let job = receiver.lock().unwrap().recv().unwrap();

 println!("Worker {id} got a job; executing.");

 job();
 });

 Worker { id, thread }
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 598/636

Success! We now have a thread pool that executes connections asynchronously. There
are never more than four threads created, so our system won’t get overloaded if the
server receives a lot of requests. If we make a request to /sleep, the server will be able to
serve other requests by having another thread run them.

Note: if you open /sleep in multiple browser windows simultaneously, they might
load one at a time in 5 second intervals. Some web browsers execute multiple
instances of the same request sequentially for caching reasons. This limitation is
not caused by our web server.

After learning about the while let loop in Chapter 18, you might be wondering why
we didn’t write the worker thread code as shown in Listing 20-21.

Filename: src/lib.rs

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
warning: field is never read: `workers`
 --> src/lib.rs:7:5
 |
7 | workers: Vec<Worker>,
 | ^^^^^^^^^^^^^^^^^^^^
 |
 = note: `#[warn(dead_code)]` on by default

warning: field is never read: `id`
 --> src/lib.rs:48:5
 |
48 | id: usize,
 | ^^^^^^^^^

warning: field is never read: `thread`
 --> src/lib.rs:49:5
 |
49 | thread: thread::JoinHandle<()>,
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

warning: `hello` (lib) generated 3 warnings
 Finished dev [unoptimized + debuginfo] target(s) in 1.40s
 Running `target/debug/hello`
Worker 0 got a job; executing.
Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 599/636

Listing 20-21: An alternative implementation of Worker::new using while let

This code compiles and runs but doesn’t result in the desired threading behavior: a slow
request will still cause other requests to wait to be processed. The reason is somewhat
subtle: the Mutex struct has no public unlock method because the ownership of the
lock is based on the lifetime of the MutexGuard<T> within the
LockResult<MutexGuard<T>> that the lock method returns. At compile time, the

borrow checker can then enforce the rule that a resource guarded by a Mutex cannot
be accessed unless we hold the lock. However, this implementation can also result in
the lock being held longer than intended if we aren’t mindful of the lifetime of the
MutexGuard<T> .

The code in Listing 20-20 that uses let job =
receiver.lock().unwrap().recv().unwrap(); works because with let , any temporary
values used in the expression on the right hand side of the equals sign are immediately
dropped when the let statement ends. However, while let (and if let and match)
does not drop temporary values until the end of the associated block. In Listing 20-21,
the lock remains held for the duration of the call to job() , meaning other workers
cannot receive jobs.

// --snip--

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 let thread = thread::spawn(move || {
 while let Ok(job) = receiver.lock().unwrap().recv() {
 println!("Worker {id} got a job; executing.");

 job();
 }
 });

 Worker { id, thread }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 600/636

Graceful Shutdown and Cleanup

The code in Listing 20-20 is responding to requests asynchronously through the use of a
thread pool, as we intended. We get some warnings about the workers , id , and
thread fields that we’re not using in a direct way that reminds us we’re not cleaning up

anything. When we use the less elegant ctrl-c method to halt the main thread, all other
threads are stopped immediately as well, even if they’re in the middle of serving a
request.

Next, then, we’ll implement the Drop trait to call join on each of the threads in the
pool so they can finish the requests they’re working on before closing. Then we’ll
implement a way to tell the threads they should stop accepting new requests and shut
down. To see this code in action, we’ll modify our server to accept only two requests
before gracefully shutting down its thread pool.

Implementing the Drop Trait on ThreadPool

Let’s start with implementing Drop on our thread pool. When the pool is dropped, our
threads should all join to make sure they finish their work. Listing 20-22 shows a first
attempt at a Drop implementation; this code won’t quite work yet.

Filename: src/lib.rs

Listing 20-22: Joining each thread when the thread pool goes out of scope

First, we loop through each of the thread pool workers . We use &mut for this because
self is a mutable reference, and we also need to be able to mutate worker . For each

worker, we print a message saying that this particular worker is shutting down, and then
we call join on that worker’s thread. If the call to join fails, we use unwrap to make
Rust panic and go into an ungraceful shutdown.

Here is the error we get when we compile this code:

impl Drop for ThreadPool {
 fn drop(&mut self) {
 for worker in &mut self.workers {
 println!("Shutting down worker {}", worker.id);

 worker.thread.join().unwrap();
 }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 601/636

The error tells us we can’t call join because we only have a mutable borrow of each
worker and join takes ownership of its argument. To solve this issue, we need to

move the thread out of the Worker instance that owns thread so join can consume
the thread. We did this in Listing 17-15: if Worker holds an
Option<thread::JoinHandle<()>> instead, we can call the take method on the
Option to move the value out of the Some variant and leave a None variant in its place.

In other words, a Worker that is running will have a Some variant in thread , and when
we want to clean up a Worker , we’ll replace Some with None so the Worker doesn’t
have a thread to run.

So we know we want to update the definition of Worker like this:

Filename: src/lib.rs

Now let’s lean on the compiler to find the other places that need to change. Checking
this code, we get two errors:

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0507]: cannot move out of `worker.thread` which is behind a mutable
reference
 --> src/lib.rs:52:13
 |
52 | worker.thread.join().unwrap();
 | ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this
method call
 | |
 | move occurs because `worker.thread` has type
`JoinHandle<()>`, which does not implement the `Copy` trait
 |
note: this function takes ownership of the receiver `self`, which moves
`worker.thread`
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std/src/thread/mod.
rs:1581:17

For more information about this error, try `rustc --explain E0507`.
error: could not compile `hello` due to previous error

struct Worker {
 id: usize,
 thread: Option<thread::JoinHandle<()>>,
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 602/636

Let’s address the second error, which points to the code at the end of Worker::new ; we
need to wrap the thread value in Some when we create a new Worker . Make the
following changes to fix this error:

Filename: src/lib.rs

$ cargo check
 Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `join` found for enum `Option` in the current
scope
 --> src/lib.rs:52:27
 |
52 | worker.thread.join().unwrap();
 | ^^^^ method not found in
`Option<JoinHandle<()>>`
 |
note: the method `join` exists on the type `JoinHandle<()>`
 -->
/rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std/src/thread/mod.
rs:1581:5
help: consider using `Option::expect` to unwrap the `JoinHandle<()>` value,
panicking if the value is an `Option::None`
 |
52 | worker.thread.expect("REASON").join().unwrap();
 | +++++++++++++++++

error[E0308]: mismatched types
 --> src/lib.rs:72:22
 |
72 | Worker { id, thread }
 | ^^^^^^ expected enum `Option`, found struct
`JoinHandle`
 |
 = note: expected enum `Option<JoinHandle<()>>`
 found struct `JoinHandle<_>`
help: try wrapping the expression in `Some`
 |
72 | Worker { id, thread: Some(thread) }
 | +++++++++++++ +

Some errors have detailed explanations: E0308, E0599.
For more information about an error, try `rustc --explain E0308`.
error: could not compile `hello` due to 2 previous errors

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 603/636

The first error is in our Drop implementation. We mentioned earlier that we intended to
call take on the Option value to move thread out of worker . The following changes
will do so:

Filename: src/lib.rs

As discussed in Chapter 17, the take method on Option takes the Some variant out
and leaves None in its place. We’re using if let to destructure the Some and get the
thread; then we call join on the thread. If a worker’s thread is already None , we know
that worker has already had its thread cleaned up, so nothing happens in that case.

Signaling to the Threads to Stop Listening for Jobs

With all the changes we’ve made, our code compiles without any warnings. However,
the bad news is this code doesn’t function the way we want it to yet. The key is the logic
in the closures run by the threads of the Worker instances: at the moment, we call
join , but that won’t shut down the threads because they loop forever looking for jobs.

If we try to drop our ThreadPool with our current implementation of drop , the main
thread will block forever waiting for the first thread to finish.

To fix this problem, we’ll need a change in the ThreadPool drop implementation and
then a change in the Worker loop.

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 // --snip--

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

impl Drop for ThreadPool {
 fn drop(&mut self) {
 for worker in &mut self.workers {
 println!("Shutting down worker {}", worker.id);

 if let Some(thread) = worker.thread.take() {
 thread.join().unwrap();
 }
 }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris
https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 604/636

First, we’ll change the ThreadPool drop implementation to explicitly drop the sender
before waiting for the threads to finish. Listing 20-23 shows the changes to ThreadPool
to explicitly drop sender . We use the same Option and take technique as we did with
the thread to be able to move sender out of ThreadPool :

Filename: src/lib.rs

Listing 20-23: Explicitly drop sender before joining the worker threads

Dropping sender closes the channel, which indicates no more messages will be sent.
When that happens, all the calls to recv that the workers do in the infinite loop will
return an error. In Listing 20-24, we change the Worker loop to gracefully exit the loop
in that case, which means the threads will finish when the ThreadPool drop
implementation calls join on them.

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: Option<mpsc::Sender<Job>>,
}
// --snip--
impl ThreadPool {
 pub fn new(size: usize) -> ThreadPool {
 // --snip--

 ThreadPool {
 workers,
 sender: Some(sender),
 }
 }

 pub fn execute<F>(&self, f: F)
 where
 F: FnOnce() + Send + 'static,
 {
 let job = Box::new(f);

 self.sender.as_ref().unwrap().send(job).unwrap();
 }
}

impl Drop for ThreadPool {
 fn drop(&mut self) {
 drop(self.sender.take());

 for worker in &mut self.workers {
 println!("Shutting down worker {}", worker.id);

 if let Some(thread) = worker.thread.take() {
 thread.join().unwrap();
 }
 }
 }
}

https://doc.rust-lang.org/book/ch00-00-introduction.html#ferris

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 605/636

Filename: src/lib.rs

Listing 20-24: Explicitly break out of the loop when recv returns an error

To see this code in action, let’s modify main to accept only two requests before
gracefully shutting down the server, as shown in Listing 20-25.

Filename: src/main.rs

Listing 20-25: Shut down the server after serving two requests by exiting the loop

You wouldn’t want a real-world web server to shut down after serving only two
requests. This code just demonstrates that the graceful shutdown and cleanup is in

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 let thread = thread::spawn(move || loop {
 let message = receiver.lock().unwrap().recv();

 match message {
 Ok(job) => {
 println!("Worker {id} got a job; executing.");

 job();
 }
 Err(_) => {
 println!("Worker {id} disconnected; shutting down.");
 break;
 }
 }
 });

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
 let pool = ThreadPool::new(4);

 for stream in listener.incoming().take(2) {
 let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }

 println!("Shutting down.");
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 606/636

working order.

The take method is defined in the Iterator trait and limits the iteration to the first
two items at most. The ThreadPool will go out of scope at the end of main , and the
drop implementation will run.

Start the server with cargo run , and make three requests. The third request should
error, and in your terminal you should see output similar to this:

You might see a different ordering of workers and messages printed. We can see how
this code works from the messages: workers 0 and 3 got the first two requests. The
server stopped accepting connections after the second connection, and the Drop
implementation on ThreadPool starts executing before worker 3 even starts its job.
Dropping the sender disconnects all the workers and tells them to shut down. The
workers each print a message when they disconnect, and then the thread pool calls
join to wait for each worker thread to finish.

Notice one interesting aspect of this particular execution: the ThreadPool dropped the
sender , and before any worker received an error, we tried to join worker 0. Worker 0

had not yet gotten an error from recv , so the main thread blocked waiting for worker 0
to finish. In the meantime, worker 3 received a job and then all threads received an
error. When worker 0 finished, the main thread waited for the rest of the workers to
finish. At that point, they had all exited their loops and stopped.

Congrats! We’ve now completed our project; we have a basic web server that uses a
thread pool to respond asynchronously. We’re able to perform a graceful shutdown of
the server, which cleans up all the threads in the pool.

Here’s the full code for reference:

Filename: src/main.rs

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 1.0s
 Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 607/636

Filename: src/lib.rs

use hello::ThreadPool;
use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
use std::thread;
use std::time::Duration;

fn main() {
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
 let pool = ThreadPool::new(4);

 for stream in listener.incoming().take(2) {
 let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }

 println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
 let mut buffer = [0; 1024];
 stream.read(&mut buffer).unwrap();

 let get = b"GET / HTTP/1.1\r\n";
 let sleep = b"GET /sleep HTTP/1.1\r\n";

 let (status_line, filename) = if buffer.starts_with(get) {
 ("HTTP/1.1 200 OK", "hello.html")
 } else if buffer.starts_with(sleep) {
 thread::sleep(Duration::from_secs(5));
 ("HTTP/1.1 200 OK", "hello.html")
 } else {
 ("HTTP/1.1 404 NOT FOUND", "404.html")
 };

 let contents = fs::read_to_string(filename).unwrap();

 let response = format!(
 "{}\r\nContent-Length: {}\r\n\r\n{}",
 status_line,
 contents.len(),
 contents
);

 stream.write_all(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 608/636

use std::{
 sync::{mpsc, Arc, Mutex},
 thread,
};

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
 /// Create a new ThreadPool.
 ///
 /// The size is the number of threads in the pool.
 ///
 /// # Panics
 ///
 /// The `new` function will panic if the size is zero.
 pub fn new(size: usize) -> ThreadPool {
 assert!(size > 0);

 let (sender, receiver) = mpsc::channel();

 let receiver = Arc::new(Mutex::new(receiver));

 let mut workers = Vec::with_capacity(size);

 for id in 0..size {
 workers.push(Worker::new(id, Arc::clone(&receiver)));
 }

 ThreadPool {
 workers,
 sender: Some(sender),
 }
 }

 pub fn execute<F>(&self, f: F)
 where
 F: FnOnce() + Send + 'static,
 {
 let job = Box::new(f);

 self.sender.as_ref().unwrap().send(job).unwrap();
 }
}

impl Drop for ThreadPool {
 fn drop(&mut self) {
 drop(self.sender.take());

 for worker in &mut self.workers {
 println!("Shutting down worker {}", worker.id);

 if let Some(thread) = worker.thread.take() {

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 609/636

We could do more here! If you want to continue enhancing this project, here are some
ideas:

Add more documentation to ThreadPool and its public methods.
Add tests of the library’s functionality.
Change calls to unwrap to more robust error handling.
Use ThreadPool to perform some task other than serving web requests.
Find a thread pool crate on crates.io and implement a similar web server using the
crate instead. Then compare its API and robustness to the thread pool we
implemented.

 thread.join().unwrap();
 }
 }
 }
}

struct Worker {
 id: usize,
 thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker
{
 let thread = thread::spawn(move || loop {
 let message = receiver.lock().unwrap().recv();

 match message {
 Ok(job) => {
 println!("Worker {id} got a job; executing.");

 job();
 }
 Err(_) => {
 println!("Worker {id} disconnected; shutting down.");
 break;
 }
 }
 });

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

https://crates.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 610/636

Summary

Well done! You’ve made it to the end of the book! We want to thank you for joining us
on this tour of Rust. You’re now ready to implement your own Rust projects and help
with other peoples’ projects. Keep in mind that there is a welcoming community of other
Rustaceans who would love to help you with any challenges you encounter on your Rust
journey.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 611/636

Appendix
The following sections contain reference material you may find useful in your Rust
journey.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 612/636

Appendix A: Keywords

The following list contains keywords that are reserved for current or future use by the
Rust language. As such, they cannot be used as identifiers (except as raw identifiers as
we’ll discuss in the “Raw Identifiers” section). Identifiers are names of functions,
variables, parameters, struct fields, modules, crates, constants, macros, static values,
attributes, types, traits, or lifetimes.

Keywords Currently in Use

The following is a list of keywords currently in use, with their functionality described.

as - perform primitive casting, disambiguate the specific trait containing an item,
or rename items in use statements
async - return a Future instead of blocking the current thread
await - suspend execution until the result of a Future is ready
break - exit a loop immediately
const - define constant items or constant raw pointers
continue - continue to the next loop iteration
crate - in a module path, refers to the crate root
dyn - dynamic dispatch to a trait object
else - fallback for if and if let control flow constructs
enum - define an enumeration
extern - link an external function or variable
false - Boolean false literal
fn - define a function or the function pointer type
for - loop over items from an iterator, implement a trait, or specify a higher-

ranked lifetime
if - branch based on the result of a conditional expression
impl - implement inherent or trait functionality
in - part of for loop syntax
let - bind a variable
loop - loop unconditionally
match - match a value to patterns
mod - define a module
move - make a closure take ownership of all its captures
mut - denote mutability in references, raw pointers, or pattern bindings
pub - denote public visibility in struct fields, impl blocks, or modules
ref - bind by reference
return - return from function

https://doc.rust-lang.org/book/appendix-01-keywords.html#raw-identifiers

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 613/636

Self - a type alias for the type we are defining or implementing
self - method subject or current module
static - global variable or lifetime lasting the entire program execution
struct - define a structure
super - parent module of the current module
trait - define a trait
true - Boolean true literal
type - define a type alias or associated type
union - define a union; is only a keyword when used in a union declaration
unsafe - denote unsafe code, functions, traits, or implementations
use - bring symbols into scope
where - denote clauses that constrain a type
while - loop conditionally based on the result of an expression

Keywords Reserved for Future Use

The following keywords do not yet have any functionality but are reserved by Rust for
potential future use.

abstract

become

box

do

final

macro

override

priv

try

typeof

unsized

virtual

yield

Raw Identifiers

Raw identifiers are the syntax that lets you use keywords where they wouldn’t normally
be allowed. You use a raw identifier by prefixing a keyword with r# .

For example, match is a keyword. If you try to compile the following function that uses
match as its name:

Filename: src/main.rs

https://doc.rust-lang.org/reference/items/unions.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 614/636

you’ll get this error:

The error shows that you can’t use the keyword match as the function identifier. To use
match as a function name, you need to use the raw identifier syntax, like this:

Filename: src/main.rs

This code will compile without any errors. Note the r# prefix on the function name in
its definition as well as where the function is called in main .

Raw identifiers allow you to use any word you choose as an identifier, even if that word
happens to be a reserved keyword. This gives us more freedom to choose identifier
names, as well as lets us integrate with programs written in a language where these
words aren’t keywords. In addition, raw identifiers allow you to use libraries written in a
different Rust edition than your crate uses. For example, try isn’t a keyword in the
2015 edition but is in the 2018 edition. If you depend on a library that’s written using the
2015 edition and has a try function, you’ll need to use the raw identifier syntax, r#try
in this case, to call that function from your 2018 edition code. See Appendix E for more
information on editions.

fn match(needle: &str, haystack: &str) -> bool {
 haystack.contains(needle)
}

error: expected identifier, found keyword `match`
 --> src/main.rs:4:4
 |
4 | fn match(needle: &str, haystack: &str) -> bool {
 | ^^^^^ expected identifier, found keyword

fn r#match(needle: &str, haystack: &str) -> bool {
 haystack.contains(needle)
}

fn main() {
 assert!(r#match("foo", "foobar"));
}

https://doc.rust-lang.org/book/appendix-05-editions.html

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 615/636

Appendix B: Operators and Symbols

This appendix contains a glossary of Rust’s syntax, including operators and other
symbols that appear by themselves or in the context of paths, generics, trait bounds,
macros, attributes, comments, tuples, and brackets.

Operators

Table B-1 contains the operators in Rust, an example of how the operator would appear
in context, a short explanation, and whether that operator is overloadable. If an
operator is overloadable, the relevant trait to use to overload that operator is listed.

Table B-1: Operators

Operator Example Explanation Overloadable?

!
ident!(...) ,
ident!{...} ,
ident![...]

Macro expansion

! !expr
Bitwise or logical
complement

Not

!= expr != expr Nonequality comparison PartialEq

% expr % expr Arithmetic remainder Rem

%= var %= expr
Arithmetic remainder and
assignment

RemAssign

&
&expr , &mut
expr

Borrow

&

&type , &mut
type , &'a
type , &'a mut
type

Borrowed pointer type

& expr & expr Bitwise AND BitAnd

&= var &= expr
Bitwise AND and
assignment

BitAndAssign

&& expr && expr
Short-circuiting logical
AND

* expr * expr Arithmetic multiplication Mul

*= var *= expr
Arithmetic multiplication
and assignment

MulAssign

* *expr Dereference Deref

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 616/636

Operator Example Explanation Overloadable?

*
*const type ,
*mut type

Raw pointer

+
trait +
trait , 'a +
trait

Compound type
constraint

+ expr + expr Arithmetic addition Add

+= var += expr
Arithmetic addition and
assignment

AddAssign

, expr, expr
Argument and element
separator

- - expr Arithmetic negation Neg

- expr - expr Arithmetic subtraction Sub

-= var -= expr
Arithmetic subtraction
and assignment

SubAssign

->
fn(...) ->
type , |...| -
> type

Function and closure
return type

. expr.ident Member access

..
.. , expr.. ,
..expr ,
expr..expr

Right-exclusive range
literal

PartialOrd

..=
..=expr ,
expr..=expr

Right-inclusive range
literal

PartialOrd

.. ..expr
Struct literal update
syntax

..

variant(x,
..) ,
struct_type
{ x, .. }

“And the rest” pattern
binding

... expr...expr
(Deprecated, use ..=
instead) In a pattern:
inclusive range pattern

/ expr / expr Arithmetic division Div

/= var /= expr
Arithmetic division and
assignment

DivAssign

:
pat: type ,
ident: type

Constraints

: ident: expr Struct field initializer

: 'a: loop Loop label

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 617/636

Operator Example Explanation Overloadable?
{...}

; expr;
Statement and item
terminator

; [...; len]
Part of fixed-size array
syntax

<< expr << expr Left-shift Shl

<<= var <<= expr Left-shift and assignment ShlAssign

< expr < expr Less than comparison PartialOrd

<= expr <= expr
Less than or equal to
comparison

PartialOrd

=
var = expr ,
ident = type

Assignment/equivalence

== expr == expr Equality comparison PartialEq

=> pat => expr Part of match arm syntax

> expr > expr Greater than comparison PartialOrd

>= expr >= expr
Greater than or equal to
comparison

PartialOrd

>> expr >> expr Right-shift Shr

>>= var >>= expr
Right-shift and
assignment

ShrAssign

@ ident @ pat Pattern binding

^ expr ^ expr Bitwise exclusive OR BitXor

^= var ^= expr
Bitwise exclusive OR and
assignment

BitXorAssign

| pat | pat Pattern alternatives

| expr | expr Bitwise OR BitOr

|= var |= expr
Bitwise OR and
assignment

BitOrAssign

|| expr || expr Short-circuiting logical OR

? expr? Error propagation

Non-operator Symbols

The following list contains all symbols that don’t function as operators; that is, they don’t
behave like a function or method call.

Table B-2 shows symbols that appear on their own and are valid in a variety of locations.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 618/636

Table B-2: Stand-Alone Syntax

Symbol Explanation

'ident Named lifetime or loop label

...u8 , ...i32 , ...f64 ,

...usize , etc.
Numeric literal of specific type

"..." String literal

r"..." , r#"..."# ,
r##"..."## , etc.

Raw string literal, escape characters not
processed

b"..."
Byte string literal; constructs an array of bytes
instead of a string

br"..." , br#"..."# ,
br##"..."## , etc.

Raw byte string literal, combination of raw and
byte string literal

'...' Character literal

b'...' ASCII byte literal

|...| expr Closure

!
Always empty bottom type for diverging
functions

_
“Ignored” pattern binding; also used to make
integer literals readable

Table B-3 shows symbols that appear in the context of a path through the module
hierarchy to an item.

Table B-3: Path-Related Syntax

Symbol Explanation

ident::ident Namespace path

::path
Path relative to the crate root (i.e., an explicitly
absolute path)

self::path
Path relative to the current module (i.e., an
explicitly relative path).

super::path
Path relative to the parent of the current
module

type::ident , <type as
trait>::ident

Associated constants, functions, and types

<type>::...
Associated item for a type that cannot be
directly named (e.g., <&T>::... , <[T]>::... ,
etc.)

trait::method(...)
Disambiguating a method call by naming the
trait that defines it

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 619/636

Symbol Explanation

type::method(...)
Disambiguating a method call by naming the
type for which it’s defined

<type as
trait>::method(...)

Disambiguating a method call by naming the
trait and type

Table B-4 shows symbols that appear in the context of using generic type parameters.

Table B-4: Generics

Symbol Explanation

path<...>
Specifies parameters to generic type in a type (e.g.,
Vec<u8>)

path::<...> ,
method::<...>

Specifies parameters to generic type, function, or
method in an expression; often referred to as
turbofish (e.g., "42".parse::<i32>())

fn ident<...> ... Define generic function

struct ident<...>
...

Define generic structure

enum ident<...> ... Define generic enumeration

impl<...> ... Define generic implementation

for<...> type Higher-ranked lifetime bounds

type<ident=type>
A generic type where one or more associated types
have specific assignments (e.g., Iterator<Item=T>)

Table B-5 shows symbols that appear in the context of constraining generic type
parameters with trait bounds.

Table B-5: Trait Bound Constraints

Symbol Explanation

T: U
Generic parameter T constrained to types that implement
U

T: 'a
Generic type T must outlive lifetime 'a (meaning the type
cannot transitively contain any references with lifetimes
shorter than 'a)

T: 'static
Generic type T contains no borrowed references other than
'static ones

'b: 'a Generic lifetime 'b must outlive lifetime 'a

T: ?Sized Allow generic type parameter to be a dynamically sized type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 620/636

Symbol Explanation

'a + trait ,
trait + trait

Compound type constraint

Table B-6 shows symbols that appear in the context of calling or defining macros and
specifying attributes on an item.

Table B-6: Macros and Attributes

Symbol Explanation

#[meta] Outer attribute

#![meta] Inner attribute

$ident Macro substitution

$ident:kind Macro capture

$(…)… Macro repetition

ident!(...) , ident!{...} , ident![...] Macro invocation

Table B-7 shows symbols that create comments.

Table B-7: Comments

Symbol Explanation

// Line comment

//! Inner line doc comment

/// Outer line doc comment

/*...*/ Block comment

/*!...*/ Inner block doc comment

/**...*/ Outer block doc comment

Table B-8 shows symbols that appear in the context of using tuples.

Table B-8: Tuples

Symbol Explanation

() Empty tuple (aka unit), both literal and type

(expr) Parenthesized expression

(expr,) Single-element tuple expression

(type,) Single-element tuple type

(expr, ...) Tuple expression

(type, ...) Tuple type

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 621/636

Symbol Explanation

expr(expr,
...)

Function call expression; also used to initialize tuple
struct s and tuple enum variants

expr.0 , expr.1 ,
etc.

Tuple indexing

Table B-9 shows the contexts in which curly braces are used.

Table B-9: Curly Brackets

Context Explanation

{...} Block expression

Type {...} struct literal

Table B-10 shows the contexts in which square brackets are used.

Table B-10: Square Brackets

Context Explanation

[...] Array literal

[expr; len] Array literal containing len copies of expr

[type; len] Array type containing len instances of type

expr[expr]
Collection indexing. Overloadable (Index ,
IndexMut)

expr[..] , expr[a..] ,
expr[..b] , expr[a..b]

Collection indexing pretending to be collection
slicing, using Range , RangeFrom , RangeTo , or
RangeFull as the “index”

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 622/636

Appendix C: Derivable Traits

In various places in the book, we’ve discussed the derive attribute, which you can
apply to a struct or enum definition. The derive attribute generates code that will
implement a trait with its own default implementation on the type you’ve annotated
with the derive syntax.

In this appendix, we provide a reference of all the traits in the standard library that you
can use with derive . Each section covers:

What operators and methods deriving this trait will enable
What the implementation of the trait provided by derive does
What implementing the trait signifies about the type
The conditions in which you’re allowed or not allowed to implement the trait
Examples of operations that require the trait

If you want different behavior from that provided by the derive attribute, consult the
standard library documentation for each trait for details of how to manually implement
them.

These traits listed here are the only ones defined by the standard library that can be
implemented on your types using derive . Other traits defined in the standard library
don’t have sensible default behavior, so it’s up to you to implement them in the way that
makes sense for what you’re trying to accomplish.

An example of a trait that can’t be derived is Display , which handles formatting for end
users. You should always consider the appropriate way to display a type to an end user.
What parts of the type should an end user be allowed to see? What parts would they
find relevant? What format of the data would be most relevant to them? The Rust
compiler doesn’t have this insight, so it can’t provide appropriate default behavior for
you.

The list of derivable traits provided in this appendix is not comprehensive: libraries can
implement derive for their own traits, making the list of traits you can use derive
with truly open-ended. Implementing derive involves using a procedural macro, which
is covered in the “Macros” section of Chapter 19.

Debug for Programmer Output

The Debug trait enables debug formatting in format strings, which you indicate by
adding :? within {} placeholders.

https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/book/ch19-06-macros.html#macros

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 623/636

The Debug trait allows you to print instances of a type for debugging purposes, so you
and other programmers using your type can inspect an instance at a particular point in
a program’s execution.

The Debug trait is required, for example, in use of the assert_eq! macro. This macro
prints the values of instances given as arguments if the equality assertion fails so
programmers can see why the two instances weren’t equal.

PartialEq and Eq for Equality Comparisons

The PartialEq trait allows you to compare instances of a type to check for equality and
enables use of the == and != operators.

Deriving PartialEq implements the eq method. When PartialEq is derived on
structs, two instances are equal only if all fields are equal, and the instances are not
equal if any fields are not equal. When derived on enums, each variant is equal to itself
and not equal to the other variants.

The PartialEq trait is required, for example, with the use of the assert_eq! macro,
which needs to be able to compare two instances of a type for equality.

The Eq trait has no methods. Its purpose is to signal that for every value of the
annotated type, the value is equal to itself. The Eq trait can only be applied to types
that also implement PartialEq , although not all types that implement PartialEq can
implement Eq . One example of this is floating point number types: the implementation
of floating point numbers states that two instances of the not-a-number (NaN) value are
not equal to each other.

An example of when Eq is required is for keys in a HashMap<K, V> so the HashMap<K,
V> can tell whether two keys are the same.

PartialOrd and Ord for Ordering Comparisons

The PartialOrd trait allows you to compare instances of a type for sorting purposes. A
type that implements PartialOrd can be used with the < , > , <= , and >= operators.
You can only apply the PartialOrd trait to types that also implement PartialEq .

Deriving PartialOrd implements the partial_cmp method, which returns an
Option<Ordering> that will be None when the values given don’t produce an ordering.

An example of a value that doesn’t produce an ordering, even though most values of
that type can be compared, is the not-a-number (NaN) floating point value. Calling
partial_cmp with any floating point number and the NaN floating point value will

return None .

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 624/636

When derived on structs, PartialOrd compares two instances by comparing the value
in each field in the order in which the fields appear in the struct definition. When
derived on enums, variants of the enum declared earlier in the enum definition are
considered less than the variants listed later.

The PartialOrd trait is required, for example, for the gen_range method from the
rand crate that generates a random value in the range specified by a range expression.

The Ord trait allows you to know that for any two values of the annotated type, a valid
ordering will exist. The Ord trait implements the cmp method, which returns an
Ordering rather than an Option<Ordering> because a valid ordering will always be

possible. You can only apply the Ord trait to types that also implement PartialOrd and
Eq (and Eq requires PartialEq). When derived on structs and enums, cmp behaves

the same way as the derived implementation for partial_cmp does with PartialOrd .

An example of when Ord is required is when storing values in a BTreeSet<T> , a data
structure that stores data based on the sort order of the values.

Clone and Copy for Duplicating Values

The Clone trait allows you to explicitly create a deep copy of a value, and the
duplication process might involve running arbitrary code and copying heap data. See
the “Ways Variables and Data Interact: Clone” section in Chapter 4 for more information
on Clone .

Deriving Clone implements the clone method, which when implemented for the
whole type, calls clone on each of the parts of the type. This means all the fields or
values in the type must also implement Clone to derive Clone .

An example of when Clone is required is when calling the to_vec method on a slice.
The slice doesn’t own the type instances it contains, but the vector returned from
to_vec will need to own its instances, so to_vec calls clone on each item. Thus, the

type stored in the slice must implement Clone .

The Copy trait allows you to duplicate a value by only copying bits stored on the stack;
no arbitrary code is necessary. See the “Stack-Only Data: Copy” section in Chapter 4 for
more information on Copy .

The Copy trait doesn’t define any methods to prevent programmers from overloading
those methods and violating the assumption that no arbitrary code is being run. That
way, all programmers can assume that copying a value will be very fast.

You can derive Copy on any type whose parts all implement Copy . A type that
implements Copy must also implement Clone , because a type that implements Copy
has a trivial implementation of Clone that performs the same task as Copy .

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html#ways-variables-and-data-interact-clone
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html#stack-only-data-copy

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 625/636

The Copy trait is rarely required; types that implement Copy have optimizations
available, meaning you don’t have to call clone , which makes the code more concise.

Everything possible with Copy you can also accomplish with Clone , but the code might
be slower or have to use clone in places.

Hash for Mapping a Value to a Value of Fixed Size

The Hash trait allows you to take an instance of a type of arbitrary size and map that
instance to a value of fixed size using a hash function. Deriving Hash implements the
hash method. The derived implementation of the hash method combines the result of

calling hash on each of the parts of the type, meaning all fields or values must also
implement Hash to derive Hash .

An example of when Hash is required is in storing keys in a HashMap<K, V> to store
data efficiently.

Default for Default Values

The Default trait allows you to create a default value for a type. Deriving Default
implements the default function. The derived implementation of the default
function calls the default function on each part of the type, meaning all fields or values
in the type must also implement Default to derive Default .

The Default::default function is commonly used in combination with the struct
update syntax discussed in the “Creating Instances From Other Instances With Struct
Update Syntax” section in Chapter 5. You can customize a few fields of a struct and then
set and use a default value for the rest of the fields by using ..Default::default() .

The Default trait is required when you use the method unwrap_or_default on
Option<T> instances, for example. If the Option<T> is None , the method
unwrap_or_default will return the result of Default::default for the type T stored in

the Option<T> .

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#creating-instances-from-other-instances-with-struct-update-syntax

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 626/636

Appendix D - Useful Development Tools

In this appendix, we talk about some useful development tools that the Rust project
provides. We’ll look at automatic formatting, quick ways to apply warning fixes, a linter,
and integrating with IDEs.

Automatic Formatting with rustfmt

The rustfmt tool reformats your code according to the community code style. Many
collaborative projects use rustfmt to prevent arguments about which style to use
when writing Rust: everyone formats their code using the tool.

To install rustfmt , enter the following:

This command gives you rustfmt and cargo-fmt , similar to how Rust gives you both
rustc and cargo . To format any Cargo project, enter the following:

Running this command reformats all the Rust code in the current crate. This should only
change the code style, not the code semantics. For more information on rustfmt , see
its documentation.

Fix Your Code with rustfix

The rustfix tool is included with Rust installations and can automatically fix compiler
warnings that have a clear way to correct the problem that’s likely what you want. It’s
likely you’ve seen compiler warnings before. For example, consider this code:

Filename: src/main.rs

$ rustup component add rustfmt

$ cargo fmt

fn do_something() {}

fn main() {
 for i in 0..100 {
 do_something();
 }
}

https://github.com/rust-lang/rustfmt

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 627/636

Here, we’re calling the do_something function 100 times, but we never use the variable
i in the body of the for loop. Rust warns us about that:

The warning suggests that we use _i as a name instead: the underscore indicates that
we intend for this variable to be unused. We can automatically apply that suggestion
using the rustfix tool by running the command cargo fix :

When we look at src/main.rs again, we’ll see that cargo fix has changed the code:

Filename: src/main.rs

The for loop variable is now named _i , and the warning no longer appears.

You can also use the cargo fix command to transition your code between different
Rust editions. Editions are covered in Appendix E.

More Lints with Clippy

The Clippy tool is a collection of lints to analyze your code so you can catch common
mistakes and improve your Rust code.

To install Clippy, enter the following:

$ cargo build
 Compiling myprogram v0.1.0 (file:///projects/myprogram)
warning: unused variable: `i`
 --> src/main.rs:4:9
 |
4 | for i in 0..100 {
 | ^ help: consider using `_i` instead
 |
 = note: #[warn(unused_variables)] on by default

 Finished dev [unoptimized + debuginfo] target(s) in 0.50s

$ cargo fix
 Checking myprogram v0.1.0 (file:///projects/myprogram)
 Fixing src/main.rs (1 fix)
 Finished dev [unoptimized + debuginfo] target(s) in 0.59s

fn do_something() {}

fn main() {
 for _i in 0..100 {
 do_something();
 }
}

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 628/636

To run Clippy’s lints on any Cargo project, enter the following:

For example, say you write a program that uses an approximation of a mathematical
constant, such as pi, as this program does:

Filename: src/main.rs

Running cargo clippy on this project results in this error:

This error lets you know that Rust already has a more precise PI constant defined, and
that your program would be more correct if you used the constant instead. You would
then change your code to use the PI constant. The following code doesn’t result in any
errors or warnings from Clippy:

Filename: src/main.rs

For more information on Clippy, see its documentation.

$ rustup component add clippy

$ cargo clippy

fn main() {
 let x = 3.1415;
 let r = 8.0;
 println!("the area of the circle is {}", x * r * r);
}

error: approximate value of `f{32, 64}::consts::PI` found
 --> src/main.rs:2:13
 |
2 | let x = 3.1415;
 | ^^^^^^
 |
 = note: `#[deny(clippy::approx_constant)]` on by default
 = help: consider using the constant directly
 = help: for further information visit https://rust-lang.github.io/rust-
clippy/master/index.html#approx_constant

fn main() {
 let x = std::f64::consts::PI;
 let r = 8.0;
 println!("the area of the circle is {}", x * r * r);
}

https://github.com/rust-lang/rust-clippy

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 629/636

IDE Integration Using rust-analyzer

To help IDE integration, the Rust community recommends using rust-analyzer . This
tool is a set of compiler-centric utilities that speaks the Language Server Protocol, which
is a specification for IDEs and programming languages to communicate with each other.
Different clients can use rust-analyzer , such as the Rust analyzer plug-in for Visual
Studio Code.

Visit the rust-analyzer project’s home page for installation instructions, then install
the language server support in your particular IDE. Your IDE will gain abilities such as
autocompletion, jump to definition, and inline errors.

https://rust-analyzer.github.io/
http://langserver.org/
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
https://rust-analyzer.github.io/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 630/636

Appendix E - Editions

In Chapter 1, you saw that cargo new adds a bit of metadata to your Cargo.toml file
about an edition. This appendix talks about what that means!

The Rust language and compiler have a six-week release cycle, meaning users get a
constant stream of new features. Other programming languages release larger changes
less often; Rust releases smaller updates more frequently. After a while, all of these tiny
changes add up. But from release to release, it can be difficult to look back and say,
“Wow, between Rust 1.10 and Rust 1.31, Rust has changed a lot!”

Every two or three years, the Rust team produces a new Rust edition. Each edition brings
together the features that have landed into a clear package with fully updated
documentation and tooling. New editions ship as part of the usual six-week release
process.

Editions serve different purposes for different people:

For active Rust users, a new edition brings together incremental changes into an
easy-to-understand package.
For non-users, a new edition signals that some major advancements have landed,
which might make Rust worth another look.
For those developing Rust, a new edition provides a rallying point for the project as
a whole.

At the time of this writing, three Rust editions are available: Rust 2015, Rust 2018, and
Rust 2021. This book is written using Rust 2021 edition idioms.

The edition key in Cargo.toml indicates which edition the compiler should use for your
code. If the key doesn’t exist, Rust uses 2015 as the edition value for backward
compatibility reasons.

Each project can opt in to an edition other than the default 2015 edition. Editions can
contain incompatible changes, such as including a new keyword that conflicts with
identifiers in code. However, unless you opt in to those changes, your code will continue
to compile even as you upgrade the Rust compiler version you use.

All Rust compiler versions support any edition that existed prior to that compiler’s
release, and they can link crates of any supported editions together. Edition changes
only affect the way the compiler initially parses code. Therefore, if you’re using Rust
2015 and one of your dependencies uses Rust 2018, your project will compile and be
able to use that dependency. The opposite situation, where your project uses Rust 2018
and a dependency uses Rust 2015, works as well.

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 631/636

To be clear: most features will be available on all editions. Developers using any Rust
edition will continue to see improvements as new stable releases are made. However, in
some cases, mainly when new keywords are added, some new features might only be
available in later editions. You will need to switch editions if you want to take advantage
of such features.

For more details, the Edition Guide is a complete book about editions that enumerates
the differences between editions and explains how to automatically upgrade your code
to a new edition via cargo fix .

https://doc.rust-lang.org/stable/edition-guide/

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 632/636

Appendix F: Translations of the Book

For resources in languages other than English. Most are still in progress; see the
Translations label to help or let us know about a new translation!

Português (BR)
Português (PT)
简体中⽂

正體中⽂

Українська
Español, alternate
Italiano
Русский
한국어

⽇本語

Français
Polski
Cebuano
Tagalog
Esperanto
ελληνική
Svenska
Farsi
Deutsch
�ह�दी
ไทย
Danske

https://github.com/rust-lang/book/issues?q=is%3Aopen+is%3Aissue+label%3ATranslations
https://github.com/rust-br/rust-book-pt-br
https://github.com/nunojesus/rust-book-pt-pt
https://github.com/KaiserY/trpl-zh-cn
https://github.com/rust-tw/book-tw
https://github.com/pavloslav/rust-book-uk-ua
https://github.com/thecodix/book
https://github.com/ManRR/rust-book-es
https://github.com/EmanueleGurini/book_it
https://github.com/rust-lang-ru/book
https://github.com/rinthel/rust-lang-book-ko
https://github.com/rust-lang-ja/book-ja
https://github.com/Jimskapt/rust-book-fr
https://github.com/paytchoo/book-pl
https://github.com/agentzero1/book
https://github.com/josephace135/book
https://github.com/psychoslave/Rust-libro
https://github.com/TChatzigiannakis/rust-book-greek
https://github.com/sebras/book
https://github.com/pomokhtari/rust-book-fa
https://github.com/rust-lang-de/rustbook-de
https://github.com/venkatarun95/rust-book-hindi
https://github.com/rust-lang-th/book-th
https://github.com/DanKHansen/book-dk

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 633/636

Appendix G - How Rust is Made and “Nightly Rust”

This appendix is about how Rust is made and how that affects you as a Rust developer.

Stability Without Stagnation

As a language, Rust cares a lot about the stability of your code. We want Rust to be a
rock-solid foundation you can build on, and if things were constantly changing, that
would be impossible. At the same time, if we can’t experiment with new features, we
may not find out important flaws until after their release, when we can no longer
change things.

Our solution to this problem is what we call “stability without stagnation”, and our
guiding principle is this: you should never have to fear upgrading to a new version of
stable Rust. Each upgrade should be painless, but should also bring you new features,
fewer bugs, and faster compile times.

Choo, Choo! Release Channels and Riding the Trains

Rust development operates on a train schedule. That is, all development is done on the
master branch of the Rust repository. Releases follow a software release train model,

which has been used by Cisco IOS and other software projects. There are three release
channels for Rust:

Nightly
Beta
Stable

Most Rust developers primarily use the stable channel, but those who want to try out
experimental new features may use nightly or beta.

Here’s an example of how the development and release process works: let’s assume
that the Rust team is working on the release of Rust 1.5. That release happened in
December of 2015, but it will provide us with realistic version numbers. A new feature is
added to Rust: a new commit lands on the master branch. Each night, a new nightly
version of Rust is produced. Every day is a release day, and these releases are created
by our release infrastructure automatically. So as time passes, our releases look like
this, once a night:

nightly: * - - * - - *

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 634/636

Every six weeks, it’s time to prepare a new release! The beta branch of the Rust
repository branches off from the master branch used by nightly. Now, there are two
releases:

Most Rust users do not use beta releases actively, but test against beta in their CI
system to help Rust discover possible regressions. In the meantime, there’s still a nightly
release every night:

Let’s say a regression is found. Good thing we had some time to test the beta release
before the regression snuck into a stable release! The fix is applied to master , so that
nightly is fixed, and then the fix is backported to the beta branch, and a new release of
beta is produced:

Six weeks after the first beta was created, it’s time for a stable release! The stable
branch is produced from the beta branch:

Hooray! Rust 1.5 is done! However, we’ve forgotten one thing: because the six weeks
have gone by, we also need a new beta of the next version of Rust, 1.6. So after stable
branches off of beta , the next version of beta branches off of nightly again:

This is called the “train model” because every six weeks, a release “leaves the station”,
but still has to take a journey through the beta channel before it arrives as a stable
release.

nightly: * - - * - - *
 |
beta: *

nightly: * - - * - - * - - * - - *
 |
beta: *

nightly: * - - * - - * - - * - - * - - *
 |
beta: * - - - - - - - - *

nightly: * - - * - - * - - * - - * - - * - * - *
 |
beta: * - - - - - - - - *
 |
stable: *

nightly: * - - * - - * - - * - - * - - * - * - *
 | |
beta: * - - - - - - - - * *
 |
stable: *

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 635/636

Rust releases every six weeks, like clockwork. If you know the date of one Rust release,
you can know the date of the next one: it’s six weeks later. A nice aspect of having
releases scheduled every six weeks is that the next train is coming soon. If a feature
happens to miss a particular release, there’s no need to worry: another one is
happening in a short time! This helps reduce pressure to sneak possibly unpolished
features in close to the release deadline.

Thanks to this process, you can always check out the next build of Rust and verify for
yourself that it’s easy to upgrade to: if a beta release doesn’t work as expected, you can
report it to the team and get it fixed before the next stable release happens! Breakage
in a beta release is relatively rare, but rustc is still a piece of software, and bugs do
exist.

Unstable Features

There’s one more catch with this release model: unstable features. Rust uses a
technique called “feature flags” to determine what features are enabled in a given
release. If a new feature is under active development, it lands on master , and
therefore, in nightly, but behind a feature flag. If you, as a user, wish to try out the work-
in-progress feature, you can, but you must be using a nightly release of Rust and
annotate your source code with the appropriate flag to opt in.

If you’re using a beta or stable release of Rust, you can’t use any feature flags. This is the
key that allows us to get practical use with new features before we declare them stable
forever. Those who wish to opt into the bleeding edge can do so, and those who want a
rock-solid experience can stick with stable and know that their code won’t break.
Stability without stagnation.

This book only contains information about stable features, as in-progress features are
still changing, and surely they’ll be different between when this book was written and
when they get enabled in stable builds. You can find documentation for nightly-only
features online.

Rustup and the Role of Rust Nightly

Rustup makes it easy to change between different release channels of Rust, on a global
or per-project basis. By default, you’ll have stable Rust installed. To install nightly, for
example:

You can see all of the toolchains (releases of Rust and associated components) you have
installed with rustup as well. Here’s an example on one of your authors’ Windows
computer:

$ rustup toolchain install nightly

5/25/23, 2:31 PM The Rust Programming Language

https://doc.rust-lang.org/book/print.html 636/636

As you can see, the stable toolchain is the default. Most Rust users use stable most of
the time. You might want to use stable most of the time, but use nightly on a specific
project, because you care about a cutting-edge feature. To do so, you can use rustup
override in that project’s directory to set the nightly toolchain as the one rustup
should use when you’re in that directory:

Now, every time you call rustc or cargo inside of ~/projects/needs-nightly, rustup will
make sure that you are using nightly Rust, rather than your default of stable Rust. This
comes in handy when you have a lot of Rust projects!

The RFC Process and Teams

So how do you learn about these new features? Rust’s development model follows a
Request For Comments (RFC) process. If you’d like an improvement in Rust, you can write
up a proposal, called an RFC.

Anyone can write RFCs to improve Rust, and the proposals are reviewed and discussed
by the Rust team, which is comprised of many topic subteams. There’s a full list of the
teams on Rust’s website, which includes teams for each area of the project: language
design, compiler implementation, infrastructure, documentation, and more. The
appropriate team reads the proposal and the comments, writes some comments of
their own, and eventually, there’s consensus to accept or reject the feature.

If the feature is accepted, an issue is opened on the Rust repository, and someone can
implement it. The person who implements it very well may not be the person who
proposed the feature in the first place! When the implementation is ready, it lands on
the master branch behind a feature gate, as we discussed in the “Unstable Features”
section.

After some time, once Rust developers who use nightly releases have been able to try
out the new feature, team members will discuss the feature, how it’s worked out on
nightly, and decide if it should make it into stable Rust or not. If the decision is to move
forward, the feature gate is removed, and the feature is now considered stable! It rides
the trains into a new stable release of Rust.

> rustup toolchain list
stable-x86_64-pc-windows-msvc (default)
beta-x86_64-pc-windows-msvc
nightly-x86_64-pc-windows-msvc

$ cd ~/projects/needs-nightly
$ rustup override set nightly

https://www.rust-lang.org/governance
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html#unstable-features

	Foreword
	Introduction
	1. Getting Started
	Installation
	Hello, World!
	Hello, Cargo!

	2. Programming a Guessing Game
	3. Common Programming Concepts
	Variables and Mutability
	Data Types
	Functions
	Comments
	Control Flow

	4. Understanding Ownership
	What Is Ownership?
	References and Borrowing
	The Slice Type

	5. Using Structs to Structure Related Data
	Deﬁning and Instantiating Structs
	An Example Program Using Structs
	Method Syntax

	6. Enums and Pattern Matching
	Deﬁning an Enum
	The match Control Flow Construct
	Concise Control Flow with if let

	7. Managing Growing Projects with Packages, Crates, and Modules
	Packages and Crates
	Deﬁning Modules to Control Scope and Privacy
	Paths for Referring to an Item in the Module Tree
	Bringing Paths into Scope with the use Keyword
	Separating Modules into Diﬀerent Files

	8. Common Collections
	Storing Lists of Values with Vectors
	Storing UTF-8 Encoded Text with Strings
	Storing Keys with Associated Values in Hash Maps

	9. Error Handling
	Unrecoverable Errors with panic!
	Recoverable Errors with Result
	To panic! or Not to panic!

	10. Generic Types, Traits, and Lifetimes
	Generic Data Types
	Traits: Deﬁning Shared Behavior
	Validating References with Lifetimes

	11. Writing Automated Tests
	How to Write Tests
	Controlling How Tests Are Run
	Test Organization

	12. An I/O Project: Building a Command Line Program
	Accepting Command Line Arguments
	Reading a File
	Refactoring to Improve Modularity and Error Handling
	Developing the Library’s Functionality with Test-Driven Development
	Working with Environment Variables
	Writing Error Messages to Standard Error Instead of Standard Output

	13. Functional Language Features: Iterators and Closures
	Closures: Anonymous Functions that Capture Their Environment
	Processing a Series of Items with Iterators
	Improving Our I/O Project
	Comparing Performance: Loops vs. Iterators

	14. More About Cargo and Crates.io
	Customizing Builds with Release Proﬁles
	Publishing a Crate to Crates.io
	Cargo Workspaces
	Installing Binaries with cargo install
	Extending Cargo with Custom Commands

	15. Smart Pointers
	Using Box<T> to Point to Data on the Heap
	Treating Smart Pointers Like Regular References with the Deref Trait
	Running Code on Cleanup with the Drop Trait
	Rc<T> , the Reference Counted Smart Pointer
	RefCell<T> and the Interior Mutability Pattern
	Reference Cycles Can Leak Memory

	16. Fearless Concurrency
	Using Threads to Run Code Simultaneously
	Using Message Passing to Transfer Data Between Threads
	Shared-State Concurrency
	Extensible Concurrency with the Sync and Send Traits

	17. Object-Oriented Programming Features of Rust
	Characteristics of Object-Oriented Languages
	Using Trait Objects That Allow for Values of Diﬀerent Types
	Implementing an Object-Oriented Design Pattern

	18. Patterns and Matching
	All the Places Patterns Can Be Used
	Refutability: Whether a Pattern Might Fail to Match
	Pattern Syntax

	19. Advanced Features
	Unsafe Rust
	Advanced Traits
	Advanced Types
	Advanced Functions and Closures
	Macros

	20. Final Project: Building a Multithreaded Web Server
	Building a Single-Threaded Web Server
	Turning Our Single-Threaded Server into a Multithreaded Server
	Graceful Shutdown and Cleanup

	21. Appendix
	A - Keywords
	B - Operators and Symbols
	C - Derivable Traits
	D - Useful Development Tools
	E - Editions
	F - Translations of the Book
	G - How Rust is Made and “Nightly Rust”

