diff --git a/compiler/rustc_codegen_gcc/src/attributes.rs b/compiler/rustc_codegen_gcc/src/attributes.rs index e521551304ef8..5fdf2680aac88 100644 --- a/compiler/rustc_codegen_gcc/src/attributes.rs +++ b/compiler/rustc_codegen_gcc/src/attributes.rs @@ -75,7 +75,7 @@ pub fn from_fn_attrs<'gcc, 'tcx>( let function_features = codegen_fn_attrs .target_features .iter() - .map(|features| features.as_str()) + .map(|features| features.name.as_str()) .collect::>(); if let Some(features) = check_tied_features( diff --git a/compiler/rustc_codegen_gcc/src/gcc_util.rs b/compiler/rustc_codegen_gcc/src/gcc_util.rs index 8bb90efe6fb7c..5308ccdb61469 100644 --- a/compiler/rustc_codegen_gcc/src/gcc_util.rs +++ b/compiler/rustc_codegen_gcc/src/gcc_util.rs @@ -65,8 +65,8 @@ pub(crate) fn global_gcc_features(sess: &Session, diagnostics: bool) -> Vec( to_add.extend(tune_cpu_attr(cx)); let function_features = - codegen_fn_attrs.target_features.iter().map(|f| f.as_str()).collect::>(); + codegen_fn_attrs.target_features.iter().map(|f| f.name.as_str()).collect::>(); if let Some(f) = llvm_util::check_tied_features( cx.tcx.sess, diff --git a/compiler/rustc_codegen_llvm/src/back/write.rs b/compiler/rustc_codegen_llvm/src/back/write.rs index 5a7909d151139..a1f2433ab6f3b 100644 --- a/compiler/rustc_codegen_llvm/src/back/write.rs +++ b/compiler/rustc_codegen_llvm/src/back/write.rs @@ -95,11 +95,14 @@ pub fn write_output_file<'ll>( } } -pub fn create_informational_target_machine(sess: &Session) -> OwnedTargetMachine { +pub fn create_informational_target_machine( + sess: &Session, + only_base_features: bool, +) -> OwnedTargetMachine { let config = TargetMachineFactoryConfig { split_dwarf_file: None, output_obj_file: None }; // Can't use query system here quite yet because this function is invoked before the query // system/tcx is set up. - let features = llvm_util::global_llvm_features(sess, false); + let features = llvm_util::global_llvm_features(sess, false, only_base_features); target_machine_factory(sess, config::OptLevel::No, &features)(config) .unwrap_or_else(|err| llvm_err(sess.dcx(), err).raise()) } diff --git a/compiler/rustc_codegen_llvm/src/context.rs b/compiler/rustc_codegen_llvm/src/context.rs index ea930421b5869..dd3f39eceadb6 100644 --- a/compiler/rustc_codegen_llvm/src/context.rs +++ b/compiler/rustc_codegen_llvm/src/context.rs @@ -149,7 +149,7 @@ pub unsafe fn create_module<'ll>( // Ensure the data-layout values hardcoded remain the defaults. { - let tm = crate::back::write::create_informational_target_machine(tcx.sess); + let tm = crate::back::write::create_informational_target_machine(tcx.sess, false); unsafe { llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, &tm); } @@ -775,10 +775,10 @@ impl<'ll> CodegenCx<'ll, '_> { ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.frameaddress", fn(t_i32) -> ptr); - ifn!("llvm.powi.f16", fn(t_f16, t_i32) -> t_f16); - ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); - ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); - ifn!("llvm.powi.f128", fn(t_f128, t_i32) -> t_f128); + ifn!("llvm.powi.f16.i32", fn(t_f16, t_i32) -> t_f16); + ifn!("llvm.powi.f32.i32", fn(t_f32, t_i32) -> t_f32); + ifn!("llvm.powi.f64.i32", fn(t_f64, t_i32) -> t_f64); + ifn!("llvm.powi.f128.i32", fn(t_f128, t_i32) -> t_f128); ifn!("llvm.pow.f16", fn(t_f16, t_f16) -> t_f16); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); diff --git a/compiler/rustc_codegen_llvm/src/intrinsic.rs b/compiler/rustc_codegen_llvm/src/intrinsic.rs index 040de1c7dd715..57d5f6fdf503f 100644 --- a/compiler/rustc_codegen_llvm/src/intrinsic.rs +++ b/compiler/rustc_codegen_llvm/src/intrinsic.rs @@ -35,10 +35,10 @@ fn get_simple_intrinsic<'ll>( sym::sqrtf64 => "llvm.sqrt.f64", sym::sqrtf128 => "llvm.sqrt.f128", - sym::powif16 => "llvm.powi.f16", - sym::powif32 => "llvm.powi.f32", - sym::powif64 => "llvm.powi.f64", - sym::powif128 => "llvm.powi.f128", + sym::powif16 => "llvm.powi.f16.i32", + sym::powif32 => "llvm.powi.f32.i32", + sym::powif64 => "llvm.powi.f64.i32", + sym::powif128 => "llvm.powi.f128.i32", sym::sinf16 => "llvm.sin.f16", sym::sinf32 => "llvm.sin.f32", diff --git a/compiler/rustc_codegen_llvm/src/lib.rs b/compiler/rustc_codegen_llvm/src/lib.rs index 41e9cfd1066b9..518a86e0cb06d 100644 --- a/compiler/rustc_codegen_llvm/src/lib.rs +++ b/compiler/rustc_codegen_llvm/src/lib.rs @@ -269,7 +269,7 @@ impl CodegenBackend for LlvmCodegenBackend { fn provide(&self, providers: &mut Providers) { providers.global_backend_features = - |tcx, ()| llvm_util::global_llvm_features(tcx.sess, true) + |tcx, ()| llvm_util::global_llvm_features(tcx.sess, true, false) } fn print(&self, req: &PrintRequest, out: &mut String, sess: &Session) { @@ -434,7 +434,7 @@ impl ModuleLlvm { ModuleLlvm { llmod_raw, llcx, - tm: ManuallyDrop::new(create_informational_target_machine(tcx.sess)), + tm: ManuallyDrop::new(create_informational_target_machine(tcx.sess, false)), } } } diff --git a/compiler/rustc_codegen_llvm/src/llvm_util.rs b/compiler/rustc_codegen_llvm/src/llvm_util.rs index af8a9be1ccbfd..9fd8ca43789dd 100644 --- a/compiler/rustc_codegen_llvm/src/llvm_util.rs +++ b/compiler/rustc_codegen_llvm/src/llvm_util.rs @@ -8,6 +8,7 @@ use libc::c_int; use rustc_codegen_ssa::base::wants_wasm_eh; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::small_c_str::SmallCStr; +use rustc_data_structures::unord::UnordSet; use rustc_fs_util::path_to_c_string; use rustc_middle::bug; use rustc_session::config::{PrintKind, PrintRequest}; @@ -239,40 +240,8 @@ pub fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> LLVMFeature<'a> { } // In LLVM neon implicitly enables fp, but we manually enable // neon when a feature only implicitly enables fp - ("aarch64", "f32mm") => { - LLVMFeature::with_dependency("f32mm", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "f64mm") => { - LLVMFeature::with_dependency("f64mm", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "fhm") => { - LLVMFeature::with_dependency("fp16fml", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "fp16") => { - LLVMFeature::with_dependency("fullfp16", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "jsconv") => { - LLVMFeature::with_dependency("jsconv", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve") => { - LLVMFeature::with_dependency("sve", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve2") => { - LLVMFeature::with_dependency("sve2", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve2-aes") => { - LLVMFeature::with_dependency("sve2-aes", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve2-sm4") => { - LLVMFeature::with_dependency("sve2-sm4", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve2-sha3") => { - LLVMFeature::with_dependency("sve2-sha3", TargetFeatureFoldStrength::EnableOnly("neon")) - } - ("aarch64", "sve2-bitperm") => LLVMFeature::with_dependency( - "sve2-bitperm", - TargetFeatureFoldStrength::EnableOnly("neon"), - ), + ("aarch64", "fhm") => LLVMFeature::new("fp16fml"), + ("aarch64", "fp16") => LLVMFeature::new("fullfp16"), // In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single feature called // `fast-unaligned-access`. In LLVM 19, it was split back out. ("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => { @@ -308,11 +277,53 @@ pub fn check_tied_features( /// Used to generate cfg variables and apply features /// Must express features in the way Rust understands them pub fn target_features(sess: &Session, allow_unstable: bool) -> Vec { - let target_machine = create_informational_target_machine(sess); + let mut features = vec![]; + + // Add base features for the target + let target_machine = create_informational_target_machine(sess, true); + features.extend( + sess.target + .supported_target_features() + .iter() + .filter(|(feature, _, _)| { + // skip checking special features, as LLVM may not understands them + if RUSTC_SPECIAL_FEATURES.contains(feature) { + return true; + } + // check that all features in a given smallvec are enabled + for llvm_feature in to_llvm_features(sess, feature) { + let cstr = SmallCStr::new(llvm_feature); + if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } { + return false; + } + } + true + }) + .map(|(feature, _, _)| Symbol::intern(feature)), + ); + + // Add enabled features + for (enabled, feature) in + sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() { + Some('+') => Some((true, Symbol::intern(&s[1..]))), + Some('-') => Some((false, Symbol::intern(&s[1..]))), + _ => None, + }) + { + if enabled { + features.extend(sess.target.implied_target_features(std::iter::once(feature))); + } else { + features.retain(|f| { + !sess.target.implied_target_features(std::iter::once(*f)).contains(&feature) + }); + } + } + + // Filter enabled features based on feature gates sess.target .supported_target_features() .iter() - .filter_map(|&(feature, gate)| { + .filter_map(|&(feature, gate, _)| { if sess.is_nightly_build() || allow_unstable || gate.is_stable() { Some(feature) } else { @@ -320,18 +331,7 @@ pub fn target_features(sess: &Session, allow_unstable: bool) -> Vec { } }) .filter(|feature| { - // skip checking special features, as LLVM may not understands them - if RUSTC_SPECIAL_FEATURES.contains(feature) { - return true; - } - // check that all features in a given smallvec are enabled - for llvm_feature in to_llvm_features(sess, feature) { - let cstr = SmallCStr::new(llvm_feature); - if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } { - return false; - } - } - true + RUSTC_SPECIAL_FEATURES.contains(feature) || features.contains(&Symbol::intern(feature)) }) .map(|feature| Symbol::intern(feature)) .collect() @@ -386,7 +386,7 @@ fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMach .target .supported_target_features() .iter() - .map(|(feature, _gate)| { + .map(|(feature, _gate, _implied)| { // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings. let llvm_feature = to_llvm_features(sess, *feature).llvm_feature_name; let desc = @@ -440,7 +440,7 @@ fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMach pub(crate) fn print(req: &PrintRequest, mut out: &mut String, sess: &Session) { require_inited(); - let tm = create_informational_target_machine(sess); + let tm = create_informational_target_machine(sess, false); match req.kind { PrintKind::TargetCPUs => { // SAFETY generate a C compatible string from a byte slice to pass @@ -488,7 +488,11 @@ pub fn target_cpu(sess: &Session) -> &str { /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). -pub(crate) fn global_llvm_features(sess: &Session, diagnostics: bool) -> Vec { +pub(crate) fn global_llvm_features( + sess: &Session, + diagnostics: bool, + only_base_features: bool, +) -> Vec { // Features that come earlier are overridden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // @@ -548,94 +552,124 @@ pub(crate) fn global_llvm_features(sess: &Session, diagnostics: bool) -> Vec return None, - Some(c @ ('+' | '-')) => c, - Some(_) => { - if diagnostics { - sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature: s }); + if !only_base_features { + let supported_features = sess.target.supported_target_features(); + let (llvm_major, _, _) = get_version(); + let mut featsmap = FxHashMap::default(); + + // insert implied features + let mut all_rust_features = vec![]; + for feature in sess.opts.cg.target_feature.split(',') { + match feature.strip_prefix('+') { + Some(feature) => all_rust_features.extend( + UnordSet::from( + sess.target + .implied_target_features(std::iter::once(Symbol::intern(feature))), + ) + .to_sorted_stable_ord() + .iter() + .map(|s| format!("+{}", s.as_str())), + ), + _ => all_rust_features.push(feature.to_string()), + } + } + + let feats = all_rust_features + .iter() + .filter_map(|s| { + let enable_disable = match s.chars().next() { + None => return None, + Some(c @ ('+' | '-')) => c, + Some(_) => { + if diagnostics { + sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature: s }); + } + return None; } - return None; - } - }; + }; - let feature = backend_feature_name(sess, s)?; - // Warn against use of LLVM specific feature names and unstable features on the CLI. - if diagnostics { - let feature_state = supported_features.iter().find(|&&(v, _)| v == feature); - if feature_state.is_none() { - let rust_feature = supported_features.iter().find_map(|&(rust_feature, _)| { - let llvm_features = to_llvm_features(sess, rust_feature); - if llvm_features.contains(feature) && !llvm_features.contains(rust_feature) - { - Some(rust_feature) + let feature = backend_feature_name(sess, s)?; + // Warn against use of LLVM specific feature names and unstable features on the CLI. + if diagnostics { + let feature_state = supported_features.iter().find(|&&(v, _, _)| v == feature); + if feature_state.is_none() { + let rust_feature = + supported_features.iter().find_map(|&(rust_feature, _, _)| { + let llvm_features = to_llvm_features(sess, rust_feature); + if llvm_features.contains(feature) + && !llvm_features.contains(rust_feature) + { + Some(rust_feature) + } else { + None + } + }); + let unknown_feature = if let Some(rust_feature) = rust_feature { + UnknownCTargetFeature { + feature, + rust_feature: PossibleFeature::Some { rust_feature }, + } } else { - None - } - }); - let unknown_feature = if let Some(rust_feature) = rust_feature { - UnknownCTargetFeature { - feature, - rust_feature: PossibleFeature::Some { rust_feature }, - } - } else { - UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None } - }; - sess.dcx().emit_warn(unknown_feature); - } else if feature_state - .is_some_and(|(_name, feature_gate)| !feature_gate.is_stable()) - { - // An unstable feature. Warn about using it. - sess.dcx().emit_warn(UnstableCTargetFeature { feature }); + UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None } + }; + sess.dcx().emit_warn(unknown_feature); + } else if feature_state + .is_some_and(|(_name, feature_gate, _implied)| !feature_gate.is_stable()) + { + // An unstable feature. Warn about using it. + sess.dcx().emit_warn(UnstableCTargetFeature { feature }); + } } - } - if diagnostics { - // FIXME(nagisa): figure out how to not allocate a full hashset here. - featsmap.insert(feature, enable_disable == '+'); - } + if diagnostics { + // FIXME(nagisa): figure out how to not allocate a full hashset here. + featsmap.insert(feature, enable_disable == '+'); + } - // rustc-specific features do not get passed down to LLVM… - if RUSTC_SPECIFIC_FEATURES.contains(&feature) { - return None; - } + // rustc-specific features do not get passed down to LLVM… + if RUSTC_SPECIFIC_FEATURES.contains(&feature) { + return None; + } - // if the target-feature is "backchain" and LLVM version is greater than 18 - // then we also need to add "+backchain" to the target-features attribute. - // otherwise, we will only add the naked `backchain` attribute to the attribute-group. - if feature == "backchain" && llvm_major < 18 { - return None; - } - // ... otherwise though we run through `to_llvm_features` when - // passing requests down to LLVM. This means that all in-language - // features also work on the command line instead of having two - // different names when the LLVM name and the Rust name differ. - let llvm_feature = to_llvm_features(sess, feature); - - Some( - std::iter::once(format!("{}{}", enable_disable, llvm_feature.llvm_feature_name)) - .chain(llvm_feature.dependency.into_iter().filter_map(move |feat| { - match (enable_disable, feat) { + // if the target-feature is "backchain" and LLVM version is greater than 18 + // then we also need to add "+backchain" to the target-features attribute. + // otherwise, we will only add the naked `backchain` attribute to the attribute-group. + if feature == "backchain" && llvm_major < 18 { + return None; + } + // ... otherwise though we run through `to_llvm_features` when + // passing requests down to LLVM. This means that all in-language + // features also work on the command line instead of having two + // different names when the LLVM name and the Rust name differ. + let llvm_feature = to_llvm_features(sess, feature); + + Some( + std::iter::once(format!( + "{}{}", + enable_disable, llvm_feature.llvm_feature_name + )) + .chain(llvm_feature.dependency.into_iter().filter_map( + move |feat| match (enable_disable, feat) { ('-' | '+', TargetFeatureFoldStrength::Both(f)) | ('+', TargetFeatureFoldStrength::EnableOnly(f)) => { Some(format!("{enable_disable}{f}")) } _ => None, - } - })), - ) - }) - .flatten(); - features.extend(feats); + }, + )), + ) + }) + .flatten(); + features.extend(feats); + + if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) { + sess.dcx().emit_err(TargetFeatureDisableOrEnable { + features: f, + span: None, + missing_features: None, + }); + } + } // -Zfixed-x18 if sess.opts.unstable_opts.fixed_x18 { @@ -646,30 +680,6 @@ pub(crate) fn global_llvm_features(sess: &Session, diagnostics: bool) -> Vec, which didn't make - // it into a released version of LLVM yet. - // - // This doesn't use the "implicit target feature" system because it is only - // used for function attributes in other targets, which fixes this bug as - // well on the function attribute level. - if sess.target.families.contains(&"wasm".into()) { - if features.iter().any(|f| f == "+relaxed-simd") - && !features.iter().any(|f| f == "+simd128") - { - features.push("+simd128".into()); - } - } - - if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) { - sess.dcx().emit_err(TargetFeatureDisableOrEnable { - features: f, - span: None, - missing_features: None, - }); - } - features } diff --git a/compiler/rustc_codegen_ssa/src/target_features.rs b/compiler/rustc_codegen_ssa/src/target_features.rs index 127244a34f8f0..cf8f7fa25d856 100644 --- a/compiler/rustc_codegen_ssa/src/target_features.rs +++ b/compiler/rustc_codegen_ssa/src/target_features.rs @@ -1,11 +1,12 @@ use rustc_ast::ast; use rustc_attr::InstructionSetAttr; use rustc_data_structures::fx::FxIndexSet; -use rustc_data_structures::unord::UnordMap; +use rustc_data_structures::unord::{UnordMap, UnordSet}; use rustc_errors::Applicability; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE}; use rustc_middle::bug; +use rustc_middle::middle::codegen_fn_attrs::TargetFeature; use rustc_middle::query::Providers; use rustc_middle::ty::TyCtxt; use rustc_session::parse::feature_err; @@ -18,7 +19,7 @@ pub fn from_target_feature( tcx: TyCtxt<'_>, attr: &ast::Attribute, supported_target_features: &UnordMap>, - target_features: &mut Vec, + target_features: &mut Vec, ) { let Some(list) = attr.meta_item_list() else { return }; let bad_item = |span| { @@ -30,6 +31,7 @@ pub fn from_target_feature( .emit(); }; let rust_features = tcx.features(); + let mut added_target_features = Vec::new(); for item in list { // Only `enable = ...` is accepted in the meta-item list. if !item.has_name(sym::enable) { @@ -44,7 +46,7 @@ pub fn from_target_feature( }; // We allow comma separation to enable multiple features. - target_features.extend(value.as_str().split(',').filter_map(|feature| { + added_target_features.extend(value.as_str().split(',').filter_map(|feature| { let Some(feature_gate) = supported_target_features.get(feature) else { let msg = format!("the feature named `{feature}` is not valid for this target"); let mut err = tcx.dcx().struct_span_err(item.span(), msg); @@ -98,13 +100,26 @@ pub fn from_target_feature( })); } - for (feature, requires) in tcx.sess.target.implicit_target_features() { - if target_features.iter().any(|f| f.as_str() == *feature) - && !target_features.iter().any(|f| f.as_str() == *requires) - { - target_features.push(Symbol::intern(requires)); - } + // Add explicit features + target_features.extend( + added_target_features.iter().copied().map(|name| TargetFeature { name, implied: false }), + ); + + // Add implied features + let mut implied_target_features = UnordSet::new(); + for feature in added_target_features.iter() { + implied_target_features.extend(tcx.implied_target_features(*feature).clone()); } + for feature in added_target_features.iter() { + implied_target_features.remove(feature); + } + target_features.extend( + implied_target_features + .into_sorted_stable_ord() + .iter() + .copied() + .map(|name| TargetFeature { name, implied: true }), + ) } /// Computes the set of target features used in a function for the purposes of @@ -113,7 +128,7 @@ fn asm_target_features(tcx: TyCtxt<'_>, did: DefId) -> &FxIndexSet { let mut target_features = tcx.sess.unstable_target_features.clone(); if tcx.def_kind(did).has_codegen_attrs() { let attrs = tcx.codegen_fn_attrs(did); - target_features.extend(&attrs.target_features); + target_features.extend(attrs.target_features.iter().map(|feature| feature.name)); match attrs.instruction_set { None => {} Some(InstructionSetAttr::ArmA32) => { @@ -158,10 +173,14 @@ pub(crate) fn provide(providers: &mut Providers) { .target .supported_target_features() .iter() - .map(|&(a, b)| (a.to_string(), b.as_feature_name())) + .map(|&(a, b, _)| (a.to_string(), b.as_feature_name())) .collect() } }, + implied_target_features: |tcx, feature| { + UnordSet::from(tcx.sess.target.implied_target_features(std::iter::once(feature))) + .into_sorted_stable_ord() + }, asm_target_features, ..*providers } diff --git a/compiler/rustc_const_eval/src/interpret/terminator.rs b/compiler/rustc_const_eval/src/interpret/terminator.rs index 47d0e22b527d3..22cc9c65bc987 100644 --- a/compiler/rustc_const_eval/src/interpret/terminator.rs +++ b/compiler/rustc_const_eval/src/interpret/terminator.rs @@ -998,19 +998,20 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> { && attrs .target_features .iter() - .any(|feature| !self.tcx.sess.target_features.contains(feature)) + .any(|feature| !self.tcx.sess.target_features.contains(&feature.name)) { throw_ub_custom!( fluent::const_eval_unavailable_target_features_for_fn, unavailable_feats = attrs .target_features .iter() - .filter(|&feature| !self.tcx.sess.target_features.contains(feature)) + .filter(|&feature| !feature.implied + && !self.tcx.sess.target_features.contains(&feature.name)) .fold(String::new(), |mut s, feature| { if !s.is_empty() { s.push_str(", "); } - s.push_str(feature.as_str()); + s.push_str(feature.name.as_str()); s }), ); diff --git a/compiler/rustc_middle/src/middle/codegen_fn_attrs.rs b/compiler/rustc_middle/src/middle/codegen_fn_attrs.rs index ff6a3a9c12d36..b7d290e58d22b 100644 --- a/compiler/rustc_middle/src/middle/codegen_fn_attrs.rs +++ b/compiler/rustc_middle/src/middle/codegen_fn_attrs.rs @@ -28,7 +28,7 @@ pub struct CodegenFnAttrs { pub link_ordinal: Option, /// The `#[target_feature(enable = "...")]` attribute and the enabled /// features (only enabled features are supported right now). - pub target_features: Vec, + pub target_features: Vec, /// The `#[linkage = "..."]` attribute on Rust-defined items and the value we found. pub linkage: Option, /// The `#[linkage = "..."]` attribute on foreign items and the value we found. @@ -51,6 +51,15 @@ pub struct CodegenFnAttrs { pub patchable_function_entry: Option, } +#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)] +pub struct TargetFeature { + /// The name of the target feature (e.g. "avx") + pub name: Symbol, + /// The feature is implied by another feature, rather than explicitly added by the + /// `#[target_feature]` attribute + pub implied: bool, +} + #[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)] pub struct PatchableFunctionEntry { /// Nops to prepend to the function diff --git a/compiler/rustc_middle/src/query/mod.rs b/compiler/rustc_middle/src/query/mod.rs index c22c2e985abba..5b114c9515c19 100644 --- a/compiler/rustc_middle/src/query/mod.rs +++ b/compiler/rustc_middle/src/query/mod.rs @@ -2183,6 +2183,12 @@ rustc_queries! { desc { "looking up supported target features" } } + query implied_target_features(feature: Symbol) -> &'tcx Vec { + arena_cache + eval_always + desc { "looking up implied target features" } + } + query features_query(_: ()) -> &'tcx rustc_feature::Features { feedable desc { "looking up enabled feature gates" } diff --git a/compiler/rustc_mir_build/src/check_unsafety.rs b/compiler/rustc_mir_build/src/check_unsafety.rs index 48018fcaa36df..54a4204da71e8 100644 --- a/compiler/rustc_mir_build/src/check_unsafety.rs +++ b/compiler/rustc_mir_build/src/check_unsafety.rs @@ -5,6 +5,7 @@ use std::ops::Bound; use rustc_errors::DiagArgValue; use rustc_hir::def::DefKind; use rustc_hir::{self as hir, BindingMode, ByRef, HirId, Mutability}; +use rustc_middle::middle::codegen_fn_attrs::TargetFeature; use rustc_middle::mir::BorrowKind; use rustc_middle::span_bug; use rustc_middle::thir::visit::Visitor; @@ -31,7 +32,7 @@ struct UnsafetyVisitor<'a, 'tcx> { safety_context: SafetyContext, /// The `#[target_feature]` attributes of the body. Used for checking /// calls to functions with `#[target_feature]` (RFC 2396). - body_target_features: &'tcx [Symbol], + body_target_features: &'tcx [TargetFeature], /// When inside the LHS of an assignment to a field, this is the type /// of the LHS and the span of the assignment expression. assignment_info: Option>, @@ -442,14 +443,21 @@ impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> { // is_like_wasm check in hir_analysis/src/collect.rs let callee_features = &self.tcx.codegen_fn_attrs(func_did).target_features; if !self.tcx.sess.target.options.is_like_wasm - && !callee_features - .iter() - .all(|feature| self.body_target_features.contains(feature)) + && !callee_features.iter().all(|feature| { + self.body_target_features.iter().any(|f| f.name == feature.name) + }) { let missing: Vec<_> = callee_features .iter() .copied() - .filter(|feature| !self.body_target_features.contains(feature)) + .filter(|feature| { + !feature.implied + && !self + .body_target_features + .iter() + .any(|body_feature| body_feature.name == feature.name) + }) + .map(|feature| feature.name) .collect(); let build_enabled = self .tcx diff --git a/compiler/rustc_mir_transform/src/inline.rs b/compiler/rustc_mir_transform/src/inline.rs index f30732e6aaf3b..0f012242c3738 100644 --- a/compiler/rustc_mir_transform/src/inline.rs +++ b/compiler/rustc_mir_transform/src/inline.rs @@ -479,7 +479,9 @@ impl<'tcx> Inliner<'tcx> { return Err("incompatible instruction set"); } - if callee_attrs.target_features != self.codegen_fn_attrs.target_features { + let callee_feature_names = callee_attrs.target_features.iter().map(|f| f.name); + let this_feature_names = self.codegen_fn_attrs.target_features.iter().map(|f| f.name); + if callee_feature_names.ne(this_feature_names) { // In general it is not correct to inline a callee with target features that are a // subset of the caller. This is because the callee might contain calls, and the ABI of // those calls depends on the target features of the surrounding function. By moving a diff --git a/compiler/rustc_target/src/target_features.rs b/compiler/rustc_target/src/target_features.rs index 4e2617c467949..da66ba270b33c 100644 --- a/compiler/rustc_target/src/target_features.rs +++ b/compiler/rustc_target/src/target_features.rs @@ -1,3 +1,4 @@ +use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_span::symbol::{sym, Symbol}; /// Features that control behaviour of rustc, rather than the codegen. @@ -53,136 +54,154 @@ impl Stability { // // Stabilizing a target feature requires t-lang approval. -const ARM_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +type ImpliedFeatures = &'static [&'static str]; + +const ARM_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("aclass", Unstable(sym::arm_target_feature)), - ("aes", Unstable(sym::arm_target_feature)), - ("crc", Unstable(sym::arm_target_feature)), - ("d32", Unstable(sym::arm_target_feature)), - ("dotprod", Unstable(sym::arm_target_feature)), - ("dsp", Unstable(sym::arm_target_feature)), - ("fp-armv8", Unstable(sym::arm_target_feature)), - ("i8mm", Unstable(sym::arm_target_feature)), - ("mclass", Unstable(sym::arm_target_feature)), - ("neon", Unstable(sym::arm_target_feature)), - ("rclass", Unstable(sym::arm_target_feature)), - ("sha2", Unstable(sym::arm_target_feature)), + ("aclass", Unstable(sym::arm_target_feature), &[]), + ("aes", Unstable(sym::arm_target_feature), &["neon"]), + ("crc", Unstable(sym::arm_target_feature), &[]), + ("d32", Unstable(sym::arm_target_feature), &[]), + ("dotprod", Unstable(sym::arm_target_feature), &["neon"]), + ("dsp", Unstable(sym::arm_target_feature), &[]), + ("fp-armv8", Unstable(sym::arm_target_feature), &["vfp4"]), + ("i8mm", Unstable(sym::arm_target_feature), &["neon"]), + ("mclass", Unstable(sym::arm_target_feature), &[]), + ("neon", Unstable(sym::arm_target_feature), &["vfp3"]), + ("rclass", Unstable(sym::arm_target_feature), &[]), + ("sha2", Unstable(sym::arm_target_feature), &["neon"]), // This is needed for inline assembly, but shouldn't be stabilized as-is // since it should be enabled per-function using #[instruction_set], not // #[target_feature]. - ("thumb-mode", Unstable(sym::arm_target_feature)), - ("thumb2", Unstable(sym::arm_target_feature)), - ("trustzone", Unstable(sym::arm_target_feature)), - ("v5te", Unstable(sym::arm_target_feature)), - ("v6", Unstable(sym::arm_target_feature)), - ("v6k", Unstable(sym::arm_target_feature)), - ("v6t2", Unstable(sym::arm_target_feature)), - ("v7", Unstable(sym::arm_target_feature)), - ("v8", Unstable(sym::arm_target_feature)), - ("vfp2", Unstable(sym::arm_target_feature)), - ("vfp3", Unstable(sym::arm_target_feature)), - ("vfp4", Unstable(sym::arm_target_feature)), - ("virtualization", Unstable(sym::arm_target_feature)), + ("thumb-mode", Unstable(sym::arm_target_feature), &[]), + ("thumb2", Unstable(sym::arm_target_feature), &[]), + ("trustzone", Unstable(sym::arm_target_feature), &[]), + ("v5te", Unstable(sym::arm_target_feature), &[]), + ("v6", Unstable(sym::arm_target_feature), &["v5te"]), + ("v6k", Unstable(sym::arm_target_feature), &["v6"]), + ("v6t2", Unstable(sym::arm_target_feature), &["v6k", "thumb2"]), + ("v7", Unstable(sym::arm_target_feature), &["v6t2"]), + ("v8", Unstable(sym::arm_target_feature), &["v7"]), + ("vfp2", Unstable(sym::arm_target_feature), &[]), + ("vfp3", Unstable(sym::arm_target_feature), &["vfp2", "d32"]), + ("vfp4", Unstable(sym::arm_target_feature), &["vfp3"]), + ("virtualization", Unstable(sym::arm_target_feature), &[]), // tidy-alphabetical-end ]; -const AARCH64_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const AARCH64_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start // FEAT_AES & FEAT_PMULL - ("aes", Stable), + ("aes", Stable, &["neon"]), // FEAT_BF16 - ("bf16", Stable), + ("bf16", Stable, &[]), // FEAT_BTI - ("bti", Stable), + ("bti", Stable, &[]), // FEAT_CRC - ("crc", Stable), + ("crc", Stable, &[]), // FEAT_DIT - ("dit", Stable), + ("dit", Stable, &[]), // FEAT_DotProd - ("dotprod", Stable), + ("dotprod", Stable, &["neon"]), // FEAT_DPB - ("dpb", Stable), + ("dpb", Stable, &[]), // FEAT_DPB2 - ("dpb2", Stable), + ("dpb2", Stable, &["dpb"]), // FEAT_F32MM - ("f32mm", Stable), + ("f32mm", Stable, &["sve"]), // FEAT_F64MM - ("f64mm", Stable), + ("f64mm", Stable, &["sve"]), // FEAT_FCMA - ("fcma", Stable), + ("fcma", Stable, &["neon"]), // FEAT_FHM - ("fhm", Stable), + ("fhm", Stable, &["fp16"]), // FEAT_FLAGM - ("flagm", Stable), + ("flagm", Stable, &[]), // FEAT_FP16 - ("fp16", Stable), + // Rust ties FP and Neon: https://github.com/rust-lang/rust/pull/91608 + ("fp16", Stable, &["neon"]), // FEAT_FRINTTS - ("frintts", Stable), + ("frintts", Stable, &[]), // FEAT_I8MM - ("i8mm", Stable), + ("i8mm", Stable, &[]), // FEAT_JSCVT - ("jsconv", Stable), + // Rust ties FP and Neon: https://github.com/rust-lang/rust/pull/91608 + ("jsconv", Stable, &["neon"]), // FEAT_LOR - ("lor", Stable), + ("lor", Stable, &[]), // FEAT_LSE - ("lse", Stable), + ("lse", Stable, &[]), // FEAT_MTE & FEAT_MTE2 - ("mte", Stable), + ("mte", Stable, &[]), // FEAT_AdvSimd & FEAT_FP - ("neon", Stable), + ("neon", Stable, &[]), // FEAT_PAUTH (address authentication) - ("paca", Stable), + ("paca", Stable, &[]), // FEAT_PAUTH (generic authentication) - ("pacg", Stable), + ("pacg", Stable, &[]), // FEAT_PAN - ("pan", Stable), + ("pan", Stable, &[]), // FEAT_PMUv3 - ("pmuv3", Stable), + ("pmuv3", Stable, &[]), // FEAT_RAND - ("rand", Stable), + ("rand", Stable, &[]), // FEAT_RAS & FEAT_RASv1p1 - ("ras", Stable), + ("ras", Stable, &[]), // FEAT_RCPC - ("rcpc", Stable), + ("rcpc", Stable, &[]), // FEAT_RCPC2 - ("rcpc2", Stable), + ("rcpc2", Stable, &["rcpc"]), // FEAT_RDM - ("rdm", Stable), + ("rdm", Stable, &["neon"]), // FEAT_SB - ("sb", Stable), + ("sb", Stable, &[]), // FEAT_SHA1 & FEAT_SHA256 - ("sha2", Stable), + ("sha2", Stable, &["neon"]), // FEAT_SHA512 & FEAT_SHA3 - ("sha3", Stable), + ("sha3", Stable, &["sha2"]), // FEAT_SM3 & FEAT_SM4 - ("sm4", Stable), + ("sm4", Stable, &["neon"]), // FEAT_SPE - ("spe", Stable), + ("spe", Stable, &[]), // FEAT_SSBS & FEAT_SSBS2 - ("ssbs", Stable), + ("ssbs", Stable, &[]), // FEAT_SVE - ("sve", Stable), + // It was decided that SVE requires Neon: https://github.com/rust-lang/rust/pull/91608 + // + // LLVM doesn't enable Neon for SVE. ARM indicates that they're separate, but probably always + // exist together: https://developer.arm.com/documentation/102340/0100/New-features-in-SVE2 + // + // "For backwards compatibility, Neon and VFP are required in the latest architectures." + ("sve", Stable, &["neon"]), // FEAT_SVE2 - ("sve2", Stable), + ("sve2", Stable, &["sve"]), // FEAT_SVE2_AES - ("sve2-aes", Stable), + ("sve2-aes", Stable, &["sve2", "aes"]), // FEAT_SVE2_BitPerm - ("sve2-bitperm", Stable), + ("sve2-bitperm", Stable, &["sve2"]), // FEAT_SVE2_SHA3 - ("sve2-sha3", Stable), + ("sve2-sha3", Stable, &["sve2", "sha3"]), // FEAT_SVE2_SM4 - ("sve2-sm4", Stable), + ("sve2-sm4", Stable, &["sve2", "sm4"]), // FEAT_TME - ("tme", Stable), - ("v8.1a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.2a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.3a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.4a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.5a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.6a", Unstable(sym::aarch64_ver_target_feature)), - ("v8.7a", Unstable(sym::aarch64_ver_target_feature)), + ("tme", Stable, &[]), + ( + "v8.1a", + Unstable(sym::aarch64_ver_target_feature), + &["crc", "lse", "rdm", "pan", "lor", "vh"], + ), + ("v8.2a", Unstable(sym::aarch64_ver_target_feature), &["v8.1a", "ras", "dpb"]), + ( + "v8.3a", + Unstable(sym::aarch64_ver_target_feature), + &["v8.2a", "rcpc", "paca", "pacg", "jsconv"], + ), + ("v8.4a", Unstable(sym::aarch64_ver_target_feature), &["v8.3a", "dotprod", "dit", "flagm"]), + ("v8.5a", Unstable(sym::aarch64_ver_target_feature), &["v8.4a", "ssbs", "sb", "dpb2", "bti"]), + ("v8.6a", Unstable(sym::aarch64_ver_target_feature), &["v8.5a", "bf16", "i8mm"]), + ("v8.7a", Unstable(sym::aarch64_ver_target_feature), &[]), // FEAT_VHE - ("vh", Stable), + ("vh", Stable, &[]), // tidy-alphabetical-end ]; @@ -190,224 +209,223 @@ const AARCH64_TIED_FEATURES: &[&[&str]] = &[ &["paca", "pacg"], // Together these represent `pauth` in LLVM ]; -const X86_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const X86_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("adx", Stable), - ("aes", Stable), - ("amx-bf16", Unstable(sym::x86_amx_intrinsics)), - ("amx-complex", Unstable(sym::x86_amx_intrinsics)), - ("amx-fp16", Unstable(sym::x86_amx_intrinsics)), - ("amx-int8", Unstable(sym::x86_amx_intrinsics)), - ("amx-tile", Unstable(sym::x86_amx_intrinsics)), - ("avx", Stable), - ("avx2", Stable), - ("avx512bf16", Unstable(sym::avx512_target_feature)), - ("avx512bitalg", Unstable(sym::avx512_target_feature)), - ("avx512bw", Unstable(sym::avx512_target_feature)), - ("avx512cd", Unstable(sym::avx512_target_feature)), - ("avx512dq", Unstable(sym::avx512_target_feature)), - ("avx512f", Unstable(sym::avx512_target_feature)), - ("avx512fp16", Unstable(sym::avx512_target_feature)), - ("avx512ifma", Unstable(sym::avx512_target_feature)), - ("avx512vbmi", Unstable(sym::avx512_target_feature)), - ("avx512vbmi2", Unstable(sym::avx512_target_feature)), - ("avx512vl", Unstable(sym::avx512_target_feature)), - ("avx512vnni", Unstable(sym::avx512_target_feature)), - ("avx512vp2intersect", Unstable(sym::avx512_target_feature)), - ("avx512vpopcntdq", Unstable(sym::avx512_target_feature)), - ("avxifma", Unstable(sym::avx512_target_feature)), - ("avxneconvert", Unstable(sym::avx512_target_feature)), - ("avxvnni", Unstable(sym::avx512_target_feature)), - ("avxvnniint16", Unstable(sym::avx512_target_feature)), - ("avxvnniint8", Unstable(sym::avx512_target_feature)), - ("bmi1", Stable), - ("bmi2", Stable), - ("cmpxchg16b", Stable), - ("ermsb", Unstable(sym::ermsb_target_feature)), - ("f16c", Stable), - ("fma", Stable), - ("fxsr", Stable), - ("gfni", Unstable(sym::avx512_target_feature)), - ("lahfsahf", Unstable(sym::lahfsahf_target_feature)), - ("lzcnt", Stable), - ("movbe", Stable), - ("pclmulqdq", Stable), - ("popcnt", Stable), - ("prfchw", Unstable(sym::prfchw_target_feature)), - ("rdrand", Stable), - ("rdseed", Stable), - ("rtm", Unstable(sym::rtm_target_feature)), - ("sha", Stable), - ("sha512", Unstable(sym::sha512_sm_x86)), - ("sm3", Unstable(sym::sha512_sm_x86)), - ("sm4", Unstable(sym::sha512_sm_x86)), - ("sse", Stable), - ("sse2", Stable), - ("sse3", Stable), - ("sse4.1", Stable), - ("sse4.2", Stable), - ("sse4a", Unstable(sym::sse4a_target_feature)), - ("ssse3", Stable), - ("tbm", Unstable(sym::tbm_target_feature)), - ("vaes", Unstable(sym::avx512_target_feature)), - ("vpclmulqdq", Unstable(sym::avx512_target_feature)), - ("xop", Unstable(sym::xop_target_feature)), - ("xsave", Stable), - ("xsavec", Stable), - ("xsaveopt", Stable), - ("xsaves", Stable), + ("adx", Stable, &[]), + ("aes", Stable, &["sse2"]), + ("amx-bf16", Unstable(sym::x86_amx_intrinsics), &["amx-tile"]), + ("amx-complex", Unstable(sym::x86_amx_intrinsics), &["amx-tile"]), + ("amx-fp16", Unstable(sym::x86_amx_intrinsics), &["amx-tile"]), + ("amx-int8", Unstable(sym::x86_amx_intrinsics), &["amx-tile"]), + ("amx-tile", Unstable(sym::x86_amx_intrinsics), &[]), + ("avx", Stable, &["sse4.2"]), + ("avx2", Stable, &["avx"]), + ("avx512bf16", Unstable(sym::avx512_target_feature), &["avx512bw"]), + ("avx512bitalg", Unstable(sym::avx512_target_feature), &["avx512bw"]), + ("avx512bw", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512cd", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512dq", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512f", Unstable(sym::avx512_target_feature), &["avx2", "fma", "f16c"]), + ("avx512fp16", Unstable(sym::avx512_target_feature), &["avx512bw", "avx512vl", "avx512dq"]), + ("avx512ifma", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512vbmi", Unstable(sym::avx512_target_feature), &["avx512bw"]), + ("avx512vbmi2", Unstable(sym::avx512_target_feature), &["avx512bw"]), + ("avx512vl", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512vnni", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512vp2intersect", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avx512vpopcntdq", Unstable(sym::avx512_target_feature), &["avx512f"]), + ("avxifma", Unstable(sym::avx512_target_feature), &["avx2"]), + ("avxneconvert", Unstable(sym::avx512_target_feature), &["avx2"]), + ("avxvnni", Unstable(sym::avx512_target_feature), &["avx2"]), + ("avxvnniint16", Unstable(sym::avx512_target_feature), &["avx2"]), + ("avxvnniint8", Unstable(sym::avx512_target_feature), &["avx2"]), + ("bmi1", Stable, &[]), + ("bmi2", Stable, &[]), + ("cmpxchg16b", Stable, &[]), + ("ermsb", Unstable(sym::ermsb_target_feature), &[]), + ("f16c", Stable, &["avx"]), + ("fma", Stable, &["avx"]), + ("fxsr", Stable, &[]), + ("gfni", Unstable(sym::avx512_target_feature), &["sse2"]), + ("lahfsahf", Unstable(sym::lahfsahf_target_feature), &[]), + ("lzcnt", Stable, &[]), + ("movbe", Stable, &[]), + ("pclmulqdq", Stable, &[]), + ("popcnt", Stable, &[]), + ("prfchw", Unstable(sym::prfchw_target_feature), &[]), + ("rdrand", Stable, &[]), + ("rdseed", Stable, &[]), + ("rtm", Unstable(sym::rtm_target_feature), &[]), + ("sha", Stable, &["sse2"]), + ("sha512", Unstable(sym::sha512_sm_x86), &["avx2"]), + ("sm3", Unstable(sym::sha512_sm_x86), &["avx"]), + ("sm4", Unstable(sym::sha512_sm_x86), &["avx2"]), + ("sse", Stable, &[]), + ("sse2", Stable, &["sse"]), + ("sse3", Stable, &["sse2"]), + ("sse4.1", Stable, &["ssse3"]), + ("sse4.2", Stable, &["sse4.1"]), + ("sse4a", Unstable(sym::sse4a_target_feature), &["sse3"]), + ("ssse3", Stable, &["sse3"]), + ("tbm", Unstable(sym::tbm_target_feature), &[]), + ("vaes", Unstable(sym::avx512_target_feature), &["avx2", "aes"]), + ("vpclmulqdq", Unstable(sym::avx512_target_feature), &["avx", "pclmulqdq"]), + ("xop", Unstable(sym::xop_target_feature), &[/*"fma4", */ "avx", "sse4a"]), + ("xsave", Stable, &[]), + ("xsavec", Stable, &["xsave"]), + ("xsaveopt", Stable, &["xsave"]), + ("xsaves", Stable, &["xsave"]), // tidy-alphabetical-end ]; -const HEXAGON_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const HEXAGON_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("hvx", Unstable(sym::hexagon_target_feature)), - ("hvx-length128b", Unstable(sym::hexagon_target_feature)), + ("hvx", Unstable(sym::hexagon_target_feature), &[]), + ("hvx-length128b", Unstable(sym::hexagon_target_feature), &["hvx"]), // tidy-alphabetical-end ]; -const POWERPC_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const POWERPC_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("altivec", Unstable(sym::powerpc_target_feature)), - ("power10-vector", Unstable(sym::powerpc_target_feature)), - ("power8-altivec", Unstable(sym::powerpc_target_feature)), - ("power8-vector", Unstable(sym::powerpc_target_feature)), - ("power9-altivec", Unstable(sym::powerpc_target_feature)), - ("power9-vector", Unstable(sym::powerpc_target_feature)), - ("vsx", Unstable(sym::powerpc_target_feature)), + ("altivec", Unstable(sym::powerpc_target_feature), &[]), + ("power10-vector", Unstable(sym::powerpc_target_feature), &["power9-vector"]), + ("power8-altivec", Unstable(sym::powerpc_target_feature), &["altivec"]), + ("power8-vector", Unstable(sym::powerpc_target_feature), &["vsx", "power8-altivec"]), + ("power9-altivec", Unstable(sym::powerpc_target_feature), &["power8-altivec"]), + ("power9-vector", Unstable(sym::powerpc_target_feature), &["power8-vector", "power9-altivec"]), + ("vsx", Unstable(sym::powerpc_target_feature), &["altivec"]), // tidy-alphabetical-end ]; -const MIPS_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const MIPS_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("fp64", Unstable(sym::mips_target_feature)), - ("msa", Unstable(sym::mips_target_feature)), - ("virt", Unstable(sym::mips_target_feature)), + ("fp64", Unstable(sym::mips_target_feature), &[]), + ("msa", Unstable(sym::mips_target_feature), &[]), + ("virt", Unstable(sym::mips_target_feature), &[]), // tidy-alphabetical-end ]; -const RISCV_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const RISCV_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("a", Stable), - ("c", Stable), - ("d", Unstable(sym::riscv_target_feature)), - ("e", Unstable(sym::riscv_target_feature)), - ("f", Unstable(sym::riscv_target_feature)), - ("m", Stable), - ("relax", Unstable(sym::riscv_target_feature)), - ("unaligned-scalar-mem", Unstable(sym::riscv_target_feature)), - ("v", Unstable(sym::riscv_target_feature)), - ("zba", Stable), - ("zbb", Stable), - ("zbc", Stable), - ("zbkb", Stable), - ("zbkc", Stable), - ("zbkx", Stable), - ("zbs", Stable), - ("zdinx", Unstable(sym::riscv_target_feature)), - ("zfh", Unstable(sym::riscv_target_feature)), - ("zfhmin", Unstable(sym::riscv_target_feature)), - ("zfinx", Unstable(sym::riscv_target_feature)), - ("zhinx", Unstable(sym::riscv_target_feature)), - ("zhinxmin", Unstable(sym::riscv_target_feature)), - ("zk", Stable), - ("zkn", Stable), - ("zknd", Stable), - ("zkne", Stable), - ("zknh", Stable), - ("zkr", Stable), - ("zks", Stable), - ("zksed", Stable), - ("zksh", Stable), - ("zkt", Stable), + ("a", Stable, &[]), + ("c", Stable, &[]), + ("d", Unstable(sym::riscv_target_feature), &["f"]), + ("e", Unstable(sym::riscv_target_feature), &[]), + ("f", Unstable(sym::riscv_target_feature), &[]), + ("m", Stable, &[]), + ("relax", Unstable(sym::riscv_target_feature), &[]), + ("unaligned-scalar-mem", Unstable(sym::riscv_target_feature), &[]), + ("v", Unstable(sym::riscv_target_feature), &[]), + ("zba", Stable, &[]), + ("zbb", Stable, &[]), + ("zbc", Stable, &[]), + ("zbkb", Stable, &[]), + ("zbkc", Stable, &[]), + ("zbkx", Stable, &[]), + ("zbs", Stable, &[]), + ("zdinx", Unstable(sym::riscv_target_feature), &["zfinx"]), + ("zfh", Unstable(sym::riscv_target_feature), &["zfhmin"]), + ("zfhmin", Unstable(sym::riscv_target_feature), &["f"]), + ("zfinx", Unstable(sym::riscv_target_feature), &[]), + ("zhinx", Unstable(sym::riscv_target_feature), &["zhinxmin"]), + ("zhinxmin", Unstable(sym::riscv_target_feature), &["zfinx"]), + ("zk", Stable, &["zkn", "zkr", "zkt"]), + ("zkn", Stable, &["zbkb", "zbkc", "zbkx", "zkne", "zknd", "zknh"]), + ("zknd", Stable, &[]), + ("zkne", Stable, &[]), + ("zknh", Stable, &[]), + ("zkr", Stable, &[]), + ("zks", Stable, &["zbkb", "zbkc", "zbkx", "zksed", "zksh"]), + ("zksed", Stable, &[]), + ("zksh", Stable, &[]), + ("zkt", Stable, &[]), // tidy-alphabetical-end ]; -const WASM_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const WASM_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("atomics", Unstable(sym::wasm_target_feature)), - ("bulk-memory", Stable), - ("exception-handling", Unstable(sym::wasm_target_feature)), - ("extended-const", Stable), - ("multivalue", Unstable(sym::wasm_target_feature)), - ("mutable-globals", Stable), - ("nontrapping-fptoint", Stable), - ("reference-types", Unstable(sym::wasm_target_feature)), - ("relaxed-simd", Stable), - ("sign-ext", Stable), - ("simd128", Stable), + ("atomics", Unstable(sym::wasm_target_feature), &[]), + ("bulk-memory", Stable, &[]), + ("exception-handling", Unstable(sym::wasm_target_feature), &[]), + ("extended-const", Stable, &[]), + ("multivalue", Unstable(sym::wasm_target_feature), &[]), + ("mutable-globals", Stable, &[]), + ("nontrapping-fptoint", Stable, &[]), + ("reference-types", Unstable(sym::wasm_target_feature), &[]), + ("relaxed-simd", Stable, &["simd128"]), + ("sign-ext", Stable, &[]), + ("simd128", Stable, &[]), // tidy-alphabetical-end ]; -const WASM_IMPLICIT_FEATURES: &[(&str, &str)] = &[("relaxed-simd", "simd128")]; - -const BPF_ALLOWED_FEATURES: &[(&str, Stability)] = &[("alu32", Unstable(sym::bpf_target_feature))]; +const BPF_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = + &[("alu32", Unstable(sym::bpf_target_feature), &[])]; -const CSKY_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const CSKY_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("10e60", Unstable(sym::csky_target_feature)), - ("2e3", Unstable(sym::csky_target_feature)), - ("3e3r1", Unstable(sym::csky_target_feature)), - ("3e3r2", Unstable(sym::csky_target_feature)), - ("3e3r3", Unstable(sym::csky_target_feature)), - ("3e7", Unstable(sym::csky_target_feature)), - ("7e10", Unstable(sym::csky_target_feature)), - ("cache", Unstable(sym::csky_target_feature)), - ("doloop", Unstable(sym::csky_target_feature)), - ("dsp1e2", Unstable(sym::csky_target_feature)), - ("dspe60", Unstable(sym::csky_target_feature)), - ("e1", Unstable(sym::csky_target_feature)), - ("e2", Unstable(sym::csky_target_feature)), - ("edsp", Unstable(sym::csky_target_feature)), - ("elrw", Unstable(sym::csky_target_feature)), - ("float1e2", Unstable(sym::csky_target_feature)), - ("float1e3", Unstable(sym::csky_target_feature)), - ("float3e4", Unstable(sym::csky_target_feature)), - ("float7e60", Unstable(sym::csky_target_feature)), - ("floate1", Unstable(sym::csky_target_feature)), - ("hard-tp", Unstable(sym::csky_target_feature)), - ("high-registers", Unstable(sym::csky_target_feature)), - ("hwdiv", Unstable(sym::csky_target_feature)), - ("mp", Unstable(sym::csky_target_feature)), - ("mp1e2", Unstable(sym::csky_target_feature)), - ("nvic", Unstable(sym::csky_target_feature)), - ("trust", Unstable(sym::csky_target_feature)), - ("vdsp2e60f", Unstable(sym::csky_target_feature)), - ("vdspv1", Unstable(sym::csky_target_feature)), - ("vdspv2", Unstable(sym::csky_target_feature)), + ("10e60", Unstable(sym::csky_target_feature), &["7e10"]), + ("2e3", Unstable(sym::csky_target_feature), &["e2"]), + ("3e3r1", Unstable(sym::csky_target_feature), &[]), + ("3e3r2", Unstable(sym::csky_target_feature), &["3e3r1", "doloop"]), + ("3e3r3", Unstable(sym::csky_target_feature), &["doloop"]), + ("3e7", Unstable(sym::csky_target_feature), &["2e3"]), + ("7e10", Unstable(sym::csky_target_feature), &["3e7"]), + ("cache", Unstable(sym::csky_target_feature), &[]), + ("doloop", Unstable(sym::csky_target_feature), &[]), + ("dsp1e2", Unstable(sym::csky_target_feature), &[]), + ("dspe60", Unstable(sym::csky_target_feature), &[]), + ("e1", Unstable(sym::csky_target_feature), &["elrw"]), + ("e2", Unstable(sym::csky_target_feature), &["e2"]), + ("edsp", Unstable(sym::csky_target_feature), &[]), + ("elrw", Unstable(sym::csky_target_feature), &[]), + ("float1e2", Unstable(sym::csky_target_feature), &[]), + ("float1e3", Unstable(sym::csky_target_feature), &[]), + ("float3e4", Unstable(sym::csky_target_feature), &[]), + ("float7e60", Unstable(sym::csky_target_feature), &[]), + ("floate1", Unstable(sym::csky_target_feature), &[]), + ("hard-tp", Unstable(sym::csky_target_feature), &[]), + ("high-registers", Unstable(sym::csky_target_feature), &[]), + ("hwdiv", Unstable(sym::csky_target_feature), &[]), + ("mp", Unstable(sym::csky_target_feature), &["2e3"]), + ("mp1e2", Unstable(sym::csky_target_feature), &["3e7"]), + ("nvic", Unstable(sym::csky_target_feature), &[]), + ("trust", Unstable(sym::csky_target_feature), &[]), + ("vdsp2e60f", Unstable(sym::csky_target_feature), &[]), + ("vdspv1", Unstable(sym::csky_target_feature), &[]), + ("vdspv2", Unstable(sym::csky_target_feature), &[]), // tidy-alphabetical-end //fpu // tidy-alphabetical-start - ("fdivdu", Unstable(sym::csky_target_feature)), - ("fpuv2_df", Unstable(sym::csky_target_feature)), - ("fpuv2_sf", Unstable(sym::csky_target_feature)), - ("fpuv3_df", Unstable(sym::csky_target_feature)), - ("fpuv3_hf", Unstable(sym::csky_target_feature)), - ("fpuv3_hi", Unstable(sym::csky_target_feature)), - ("fpuv3_sf", Unstable(sym::csky_target_feature)), - ("hard-float", Unstable(sym::csky_target_feature)), - ("hard-float-abi", Unstable(sym::csky_target_feature)), + ("fdivdu", Unstable(sym::csky_target_feature), &[]), + ("fpuv2_df", Unstable(sym::csky_target_feature), &[]), + ("fpuv2_sf", Unstable(sym::csky_target_feature), &[]), + ("fpuv3_df", Unstable(sym::csky_target_feature), &[]), + ("fpuv3_hf", Unstable(sym::csky_target_feature), &[]), + ("fpuv3_hi", Unstable(sym::csky_target_feature), &[]), + ("fpuv3_sf", Unstable(sym::csky_target_feature), &[]), + ("hard-float", Unstable(sym::csky_target_feature), &[]), + ("hard-float-abi", Unstable(sym::csky_target_feature), &[]), // tidy-alphabetical-end ]; -const LOONGARCH_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const LOONGARCH_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("d", Unstable(sym::loongarch_target_feature)), - ("f", Unstable(sym::loongarch_target_feature)), - ("frecipe", Unstable(sym::loongarch_target_feature)), - ("lasx", Unstable(sym::loongarch_target_feature)), - ("lbt", Unstable(sym::loongarch_target_feature)), - ("lsx", Unstable(sym::loongarch_target_feature)), - ("lvz", Unstable(sym::loongarch_target_feature)), - ("relax", Unstable(sym::loongarch_target_feature)), - ("ual", Unstable(sym::loongarch_target_feature)), + ("d", Unstable(sym::loongarch_target_feature), &["f"]), + ("f", Unstable(sym::loongarch_target_feature), &[]), + ("frecipe", Unstable(sym::loongarch_target_feature), &[]), + ("lasx", Unstable(sym::loongarch_target_feature), &["lsx"]), + ("lbt", Unstable(sym::loongarch_target_feature), &[]), + ("lsx", Unstable(sym::loongarch_target_feature), &["d"]), + ("lvz", Unstable(sym::loongarch_target_feature), &[]), + ("relax", Unstable(sym::loongarch_target_feature), &[]), + ("ual", Unstable(sym::loongarch_target_feature), &[]), // tidy-alphabetical-end ]; -const IBMZ_ALLOWED_FEATURES: &[(&str, Stability)] = &[ +const IBMZ_ALLOWED_FEATURES: &[(&str, Stability, ImpliedFeatures)] = &[ // tidy-alphabetical-start - ("backchain", Unstable(sym::s390x_target_feature)), - ("vector", Unstable(sym::s390x_target_feature)), + ("backchain", Unstable(sym::s390x_target_feature), &[]), + ("vector", Unstable(sym::s390x_target_feature), &[]), // tidy-alphabetical-end ]; @@ -430,10 +448,13 @@ pub fn all_known_features() -> impl Iterator { .chain(LOONGARCH_ALLOWED_FEATURES) .chain(IBMZ_ALLOWED_FEATURES) .cloned() + .map(|(f, s, _)| (f, s)) } impl super::spec::Target { - pub fn supported_target_features(&self) -> &'static [(&'static str, Stability)] { + pub fn supported_target_features( + &self, + ) -> &'static [(&'static str, Stability, ImpliedFeatures)] { match &*self.arch { "arm" => ARM_ALLOWED_FEATURES, "aarch64" | "arm64ec" => AARCH64_ALLOWED_FEATURES, @@ -458,12 +479,27 @@ impl super::spec::Target { } } - /// Returns a list of target features. Each items first target feature - /// implicitly enables the second one. - pub fn implicit_target_features(&self) -> &'static [(&'static str, &'static str)] { - match &*self.arch { - "wasm32" | "wasm64" => WASM_IMPLICIT_FEATURES, - _ => &[], + pub fn implied_target_features( + &self, + base_features: impl Iterator, + ) -> FxHashSet { + let implied_features = self + .supported_target_features() + .iter() + .map(|(f, _, i)| (Symbol::intern(f), i)) + .collect::>(); + + // implied target features have their own implied target features, so we traverse the + // map until there are no more features to add + let mut features = FxHashSet::default(); + let mut new_features = base_features.collect::>(); + while let Some(new_feature) = new_features.pop() { + if features.insert(new_feature) { + if let Some(implied_features) = implied_features.get(&new_feature) { + new_features.extend(implied_features.iter().copied().map(Symbol::intern)) + } + } } + features } } diff --git a/library/core/src/intrinsics.rs b/library/core/src/intrinsics.rs index e9eacbcd25a0a..6f1e0cb747194 100644 --- a/library/core/src/intrinsics.rs +++ b/library/core/src/intrinsics.rs @@ -1528,6 +1528,12 @@ extern "rust-intrinsic" { #[rustc_diagnostic_item = "intrinsics_unaligned_volatile_store"] pub fn unaligned_volatile_store(dst: *mut T, val: T); + /// Returns the square root of an `f16` + /// + /// The stabilized version of this intrinsic is + /// [`f16::sqrt`](../../std/primitive.f16.html#method.sqrt) + #[rustc_nounwind] + pub fn sqrtf16(x: f16) -> f16; /// Returns the square root of an `f32` /// /// The stabilized version of this intrinsic is @@ -1540,6 +1546,12 @@ extern "rust-intrinsic" { /// [`f64::sqrt`](../../std/primitive.f64.html#method.sqrt) #[rustc_nounwind] pub fn sqrtf64(x: f64) -> f64; + /// Returns the square root of an `f128` + /// + /// The stabilized version of this intrinsic is + /// [`f128::sqrt`](../../std/primitive.f128.html#method.sqrt) + #[rustc_nounwind] + pub fn sqrtf128(x: f128) -> f128; /// Raises an `f16` to an integer power. /// @@ -1566,6 +1578,12 @@ extern "rust-intrinsic" { #[rustc_nounwind] pub fn powif128(a: f128, x: i32) -> f128; + /// Returns the sine of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::sin`](../../std/primitive.f16.html#method.sin) + #[rustc_nounwind] + pub fn sinf16(x: f16) -> f16; /// Returns the sine of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1578,7 +1596,19 @@ extern "rust-intrinsic" { /// [`f64::sin`](../../std/primitive.f64.html#method.sin) #[rustc_nounwind] pub fn sinf64(x: f64) -> f64; + /// Returns the sine of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::sin`](../../std/primitive.f128.html#method.sin) + #[rustc_nounwind] + pub fn sinf128(x: f128) -> f128; + /// Returns the cosine of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::cos`](../../std/primitive.f16.html#method.cos) + #[rustc_nounwind] + pub fn cosf16(x: f16) -> f16; /// Returns the cosine of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1591,7 +1621,19 @@ extern "rust-intrinsic" { /// [`f64::cos`](../../std/primitive.f64.html#method.cos) #[rustc_nounwind] pub fn cosf64(x: f64) -> f64; + /// Returns the cosine of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::cos`](../../std/primitive.f128.html#method.cos) + #[rustc_nounwind] + pub fn cosf128(x: f128) -> f128; + /// Raises an `f16` to an `f16` power. + /// + /// The stabilized version of this intrinsic is + /// [`f16::powf`](../../std/primitive.f16.html#method.powf) + #[rustc_nounwind] + pub fn powf16(a: f16, x: f16) -> f16; /// Raises an `f32` to an `f32` power. /// /// The stabilized version of this intrinsic is @@ -1604,7 +1646,19 @@ extern "rust-intrinsic" { /// [`f64::powf`](../../std/primitive.f64.html#method.powf) #[rustc_nounwind] pub fn powf64(a: f64, x: f64) -> f64; + /// Raises an `f128` to an `f128` power. + /// + /// The stabilized version of this intrinsic is + /// [`f128::powf`](../../std/primitive.f128.html#method.powf) + #[rustc_nounwind] + pub fn powf128(a: f128, x: f128) -> f128; + /// Returns the exponential of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::exp`](../../std/primitive.f16.html#method.exp) + #[rustc_nounwind] + pub fn expf16(x: f16) -> f16; /// Returns the exponential of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1617,7 +1671,19 @@ extern "rust-intrinsic" { /// [`f64::exp`](../../std/primitive.f64.html#method.exp) #[rustc_nounwind] pub fn expf64(x: f64) -> f64; + /// Returns the exponential of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::exp`](../../std/primitive.f128.html#method.exp) + #[rustc_nounwind] + pub fn expf128(x: f128) -> f128; + /// Returns 2 raised to the power of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::exp2`](../../std/primitive.f16.html#method.exp2) + #[rustc_nounwind] + pub fn exp2f16(x: f16) -> f16; /// Returns 2 raised to the power of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1630,7 +1696,19 @@ extern "rust-intrinsic" { /// [`f64::exp2`](../../std/primitive.f64.html#method.exp2) #[rustc_nounwind] pub fn exp2f64(x: f64) -> f64; + /// Returns 2 raised to the power of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::exp2`](../../std/primitive.f128.html#method.exp2) + #[rustc_nounwind] + pub fn exp2f128(x: f128) -> f128; + /// Returns the natural logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::ln`](../../std/primitive.f16.html#method.ln) + #[rustc_nounwind] + pub fn logf16(x: f16) -> f16; /// Returns the natural logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1643,7 +1721,19 @@ extern "rust-intrinsic" { /// [`f64::ln`](../../std/primitive.f64.html#method.ln) #[rustc_nounwind] pub fn logf64(x: f64) -> f64; + /// Returns the natural logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::ln`](../../std/primitive.f128.html#method.ln) + #[rustc_nounwind] + pub fn logf128(x: f128) -> f128; + /// Returns the base 10 logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::log10`](../../std/primitive.f16.html#method.log10) + #[rustc_nounwind] + pub fn log10f16(x: f16) -> f16; /// Returns the base 10 logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1656,7 +1746,19 @@ extern "rust-intrinsic" { /// [`f64::log10`](../../std/primitive.f64.html#method.log10) #[rustc_nounwind] pub fn log10f64(x: f64) -> f64; + /// Returns the base 10 logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::log10`](../../std/primitive.f128.html#method.log10) + #[rustc_nounwind] + pub fn log10f128(x: f128) -> f128; + /// Returns the base 2 logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::log2`](../../std/primitive.f16.html#method.log2) + #[rustc_nounwind] + pub fn log2f16(x: f16) -> f16; /// Returns the base 2 logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1669,7 +1771,19 @@ extern "rust-intrinsic" { /// [`f64::log2`](../../std/primitive.f64.html#method.log2) #[rustc_nounwind] pub fn log2f64(x: f64) -> f64; + /// Returns the base 2 logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::log2`](../../std/primitive.f128.html#method.log2) + #[rustc_nounwind] + pub fn log2f128(x: f128) -> f128; + /// Returns `a * b + c` for `f16` values. + /// + /// The stabilized version of this intrinsic is + /// [`f16::mul_add`](../../std/primitive.f16.html#method.mul_add) + #[rustc_nounwind] + pub fn fmaf16(a: f16, b: f16, c: f16) -> f16; /// Returns `a * b + c` for `f32` values. /// /// The stabilized version of this intrinsic is @@ -1682,7 +1796,19 @@ extern "rust-intrinsic" { /// [`f64::mul_add`](../../std/primitive.f64.html#method.mul_add) #[rustc_nounwind] pub fn fmaf64(a: f64, b: f64, c: f64) -> f64; + /// Returns `a * b + c` for `f128` values. + /// + /// The stabilized version of this intrinsic is + /// [`f128::mul_add`](../../std/primitive.f128.html#method.mul_add) + #[rustc_nounwind] + pub fn fmaf128(a: f128, b: f128, c: f128) -> f128; + /// Returns the absolute value of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::abs`](../../std/primitive.f16.html#method.abs) + #[rustc_nounwind] + pub fn fabsf16(x: f16) -> f16; /// Returns the absolute value of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1695,7 +1821,25 @@ extern "rust-intrinsic" { /// [`f64::abs`](../../std/primitive.f64.html#method.abs) #[rustc_nounwind] pub fn fabsf64(x: f64) -> f64; + /// Returns the absolute value of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::abs`](../../std/primitive.f128.html#method.abs) + #[rustc_nounwind] + pub fn fabsf128(x: f128) -> f128; + /// Returns the minimum of two `f16` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f16::min`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn minnumf16(x: f16, y: f16) -> f16; /// Returns the minimum of two `f32` values. /// /// Note that, unlike most intrinsics, this is safe to call; @@ -1720,6 +1864,31 @@ extern "rust-intrinsic" { #[rustc_safe_intrinsic] #[rustc_nounwind] pub fn minnumf64(x: f64, y: f64) -> f64; + /// Returns the minimum of two `f128` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f128::min`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn minnumf128(x: f128, y: f128) -> f128; + + /// Returns the maximum of two `f16` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f16::max`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn maxnumf16(x: f16, y: f16) -> f16; /// Returns the maximum of two `f32` values. /// /// Note that, unlike most intrinsics, this is safe to call; @@ -1744,7 +1913,25 @@ extern "rust-intrinsic" { #[rustc_safe_intrinsic] #[rustc_nounwind] pub fn maxnumf64(x: f64, y: f64) -> f64; + /// Returns the maximum of two `f128` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f128::max`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn maxnumf128(x: f128, y: f128) -> f128; + /// Copies the sign from `y` to `x` for `f16` values. + /// + /// The stabilized version of this intrinsic is + /// [`f16::copysign`](../../std/primitive.f16.html#method.copysign) + #[rustc_nounwind] + pub fn copysignf16(x: f16, y: f16) -> f16; /// Copies the sign from `y` to `x` for `f32` values. /// /// The stabilized version of this intrinsic is @@ -1757,7 +1944,19 @@ extern "rust-intrinsic" { /// [`f64::copysign`](../../std/primitive.f64.html#method.copysign) #[rustc_nounwind] pub fn copysignf64(x: f64, y: f64) -> f64; + /// Copies the sign from `y` to `x` for `f128` values. + /// + /// The stabilized version of this intrinsic is + /// [`f128::copysign`](../../std/primitive.f128.html#method.copysign) + #[rustc_nounwind] + pub fn copysignf128(x: f128, y: f128) -> f128; + /// Returns the largest integer less than or equal to an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::floor`](../../std/primitive.f16.html#method.floor) + #[rustc_nounwind] + pub fn floorf16(x: f16) -> f16; /// Returns the largest integer less than or equal to an `f32`. /// /// The stabilized version of this intrinsic is @@ -1770,7 +1969,19 @@ extern "rust-intrinsic" { /// [`f64::floor`](../../std/primitive.f64.html#method.floor) #[rustc_nounwind] pub fn floorf64(x: f64) -> f64; + /// Returns the largest integer less than or equal to an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::floor`](../../std/primitive.f128.html#method.floor) + #[rustc_nounwind] + pub fn floorf128(x: f128) -> f128; + /// Returns the smallest integer greater than or equal to an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::ceil`](../../std/primitive.f16.html#method.ceil) + #[rustc_nounwind] + pub fn ceilf16(x: f16) -> f16; /// Returns the smallest integer greater than or equal to an `f32`. /// /// The stabilized version of this intrinsic is @@ -1783,7 +1994,19 @@ extern "rust-intrinsic" { /// [`f64::ceil`](../../std/primitive.f64.html#method.ceil) #[rustc_nounwind] pub fn ceilf64(x: f64) -> f64; + /// Returns the smallest integer greater than or equal to an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::ceil`](../../std/primitive.f128.html#method.ceil) + #[rustc_nounwind] + pub fn ceilf128(x: f128) -> f128; + /// Returns the integer part of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::trunc`](../../std/primitive.f16.html#method.trunc) + #[rustc_nounwind] + pub fn truncf16(x: f16) -> f16; /// Returns the integer part of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1796,7 +2019,25 @@ extern "rust-intrinsic" { /// [`f64::trunc`](../../std/primitive.f64.html#method.trunc) #[rustc_nounwind] pub fn truncf64(x: f64) -> f64; + /// Returns the integer part of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::trunc`](../../std/primitive.f128.html#method.trunc) + #[rustc_nounwind] + pub fn truncf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// May raise an inexact floating-point exception if the argument is not an integer. + /// However, Rust assumes floating-point exceptions cannot be observed, so these exceptions + /// cannot actually be utilized from Rust code. + /// In other words, this intrinsic is equivalent in behavior to `nearbyintf16` and `roundevenf16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::round_ties_even`](../../std/primitive.f16.html#method.round_ties_even) + #[rustc_nounwind] + pub fn rintf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Changing the rounding mode is not possible in Rust, /// so this rounds half-way cases to the number with an even least significant digit. /// @@ -1821,7 +2062,25 @@ extern "rust-intrinsic" { /// [`f64::round_ties_even`](../../std/primitive.f64.html#method.round_ties_even) #[rustc_nounwind] pub fn rintf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// May raise an inexact floating-point exception if the argument is not an integer. + /// However, Rust assumes floating-point exceptions cannot be observed, so these exceptions + /// cannot actually be utilized from Rust code. + /// In other words, this intrinsic is equivalent in behavior to `nearbyintf128` and `roundevenf128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::round_ties_even`](../../std/primitive.f128.html#method.round_ties_even) + #[rustc_nounwind] + pub fn rintf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn nearbyintf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Changing the rounding mode is not possible in Rust, /// so this rounds half-way cases to the number with an even least significant digit. /// @@ -1834,7 +2093,19 @@ extern "rust-intrinsic" { /// This intrinsic does not have a stable counterpart. #[rustc_nounwind] pub fn nearbyintf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn nearbyintf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Rounds half-way cases away from zero. + /// + /// The stabilized version of this intrinsic is + /// [`f16::round`](../../std/primitive.f16.html#method.round) + #[rustc_nounwind] + pub fn roundf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero. /// /// The stabilized version of this intrinsic is @@ -1847,7 +2118,19 @@ extern "rust-intrinsic" { /// [`f64::round`](../../std/primitive.f64.html#method.round) #[rustc_nounwind] pub fn roundf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Rounds half-way cases away from zero. + /// + /// The stabilized version of this intrinsic is + /// [`f128::round`](../../std/primitive.f128.html#method.round) + #[rustc_nounwind] + pub fn roundf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn roundevenf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Rounds half-way cases to the number /// with an even least significant digit. /// @@ -1860,6 +2143,12 @@ extern "rust-intrinsic" { /// This intrinsic does not have a stable counterpart. #[rustc_nounwind] pub fn roundevenf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn roundevenf128(x: f128) -> f128; /// Float addition that allows optimizations based on algebraic rules. /// May assume inputs are finite. diff --git a/library/core/src/num/f128.rs b/library/core/src/num/f128.rs index 6a24748fd9e87..0c04f47fe7df1 100644 --- a/library/core/src/num/f128.rs +++ b/library/core/src/num/f128.rs @@ -686,6 +686,182 @@ impl f128 { self * RADS_PER_DEG } + /// Returns the maximum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. + /// This also matches the behavior of libm’s fmax. + /// + /// ``` + /// #![feature(f128)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.max(y), y); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn max(self, other: f128) -> f128 { + intrinsics::maxnumf128(self, other) + } + + /// Returns the minimum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids minNum's problems with associativity. + /// This also matches the behavior of libm’s fmin. + /// + /// ``` + /// #![feature(f128)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.min(y), x); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn min(self, other: f128) -> f128 { + intrinsics::minnumf128(self, other) + } + + /// Returns the maximum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f128::max`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_minimum_maximum)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.maximum(y), y); + /// assert!(x.maximum(f128::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f128) for more info. + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn maximum(self, other: f128) -> f128 { + if self > other { + self + } else if other > self { + other + } else if self == other { + if self.is_sign_positive() && other.is_sign_negative() { self } else { other } + } else { + self + other + } + } + + /// Returns the minimum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f128::min`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_minimum_maximum)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.minimum(y), x); + /// assert!(x.minimum(f128::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f128) for more info. + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn minimum(self, other: f128) -> f128 { + if self < other { + self + } else if other < self { + other + } else if self == other { + if self.is_sign_negative() && other.is_sign_positive() { self } else { other } + } else { + // At least one input is NaN. Use `+` to perform NaN propagation and quieting. + self + other + } + } + + /// Calculates the middle point of `self` and `rhs`. + /// + /// This returns NaN when *either* argument is NaN or if a combination of + /// +inf and -inf is provided as arguments. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(num_midpoint)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// assert_eq!(1f128.midpoint(4.0), 2.5); + /// assert_eq!((-5.5f128).midpoint(8.0), 1.25); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "num_midpoint", issue = "110840")] + pub fn midpoint(self, other: f128) -> f128 { + const LO: f128 = f128::MIN_POSITIVE * 2.; + const HI: f128 = f128::MAX / 2.; + + let (a, b) = (self, other); + let abs_a = a.abs_private(); + let abs_b = b.abs_private(); + + if abs_a <= HI && abs_b <= HI { + // Overflow is impossible + (a + b) / 2. + } else if abs_a < LO { + // Not safe to halve `a` (would underflow) + a + (b / 2.) + } else if abs_b < LO { + // Not safe to halve `b` (would underflow) + (a / 2.) + b + } else { + // Safe to halve `a` and `b` + (a / 2.) + (b / 2.) + } + } + /// Rounds toward zero and converts to any primitive integer type, /// assuming that the value is finite and fits in that type. /// diff --git a/library/core/src/num/f16.rs b/library/core/src/num/f16.rs index 054897b3c96bc..e5b1148e19215 100644 --- a/library/core/src/num/f16.rs +++ b/library/core/src/num/f16.rs @@ -720,6 +720,177 @@ impl f16 { self * RADS_PER_DEG } + /// Returns the maximum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. + /// This also matches the behavior of libm’s fmax. + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.max(y), y); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn max(self, other: f16) -> f16 { + intrinsics::maxnumf16(self, other) + } + + /// Returns the minimum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids minNum's problems with associativity. + /// This also matches the behavior of libm’s fmin. + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.min(y), x); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn min(self, other: f16) -> f16 { + intrinsics::minnumf16(self, other) + } + + /// Returns the maximum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f16::max`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_minimum_maximum)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.maximum(y), y); + /// assert!(x.maximum(f16::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f16) for more info. + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn maximum(self, other: f16) -> f16 { + if self > other { + self + } else if other > self { + other + } else if self == other { + if self.is_sign_positive() && other.is_sign_negative() { self } else { other } + } else { + self + other + } + } + + /// Returns the minimum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f16::min`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_minimum_maximum)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.minimum(y), x); + /// assert!(x.minimum(f16::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f16) for more info. + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn minimum(self, other: f16) -> f16 { + if self < other { + self + } else if other < self { + other + } else if self == other { + if self.is_sign_negative() && other.is_sign_positive() { self } else { other } + } else { + // At least one input is NaN. Use `+` to perform NaN propagation and quieting. + self + other + } + } + + /// Calculates the middle point of `self` and `rhs`. + /// + /// This returns NaN when *either* argument is NaN or if a combination of + /// +inf and -inf is provided as arguments. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(num_midpoint)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// assert_eq!(1f16.midpoint(4.0), 2.5); + /// assert_eq!((-5.5f16).midpoint(8.0), 1.25); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "num_midpoint", issue = "110840")] + pub fn midpoint(self, other: f16) -> f16 { + const LO: f16 = f16::MIN_POSITIVE * 2.; + const HI: f16 = f16::MAX / 2.; + + let (a, b) = (self, other); + let abs_a = a.abs_private(); + let abs_b = b.abs_private(); + + if abs_a <= HI && abs_b <= HI { + // Overflow is impossible + (a + b) / 2. + } else if abs_a < LO { + // Not safe to halve `a` (would underflow) + a + (b / 2.) + } else if abs_b < LO { + // Not safe to halve `b` (would underflow) + (a / 2.) + b + } else { + // Safe to halve `a` and `b` + (a / 2.) + (b / 2.) + } + } + /// Rounds toward zero and converts to any primitive integer type, /// assuming that the value is finite and fits in that type. /// diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs index 08d863f17caf7..e65c982b17227 100644 --- a/library/core/src/num/f32.rs +++ b/library/core/src/num/f32.rs @@ -1070,13 +1070,13 @@ impl f32 { // Overflow is impossible (a + b) / 2. } else if abs_a < LO { - // Not safe to halve a + // Not safe to halve `a` (would underflow) a + (b / 2.) } else if abs_b < LO { - // Not safe to halve b + // Not safe to halve `b` (would underflow) (a / 2.) + b } else { - // Not safe to halve a and b + // Safe to halve `a` and `b` (a / 2.) + (b / 2.) } } diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs index 5d33eea6d011f..b27d47b07d544 100644 --- a/library/core/src/num/f64.rs +++ b/library/core/src/num/f64.rs @@ -1064,13 +1064,13 @@ impl f64 { // Overflow is impossible (a + b) / 2. } else if abs_a < LO { - // Not safe to halve a + // Not safe to halve `a` (would underflow) a + (b / 2.) } else if abs_b < LO { - // Not safe to halve b + // Not safe to halve `b` (would underflow) (a / 2.) + b } else { - // Not safe to halve a and b + // Safe to halve `a` and `b` (a / 2.) + (b / 2.) } } diff --git a/library/core/src/primitive_docs.rs b/library/core/src/primitive_docs.rs index 5989bcbcc5201..09ebef89fb0c2 100644 --- a/library/core/src/primitive_docs.rs +++ b/library/core/src/primitive_docs.rs @@ -1244,6 +1244,9 @@ mod prim_f64 {} /// actually implement it. For x86-64 and AArch64, ISA support is not even specified, /// so it will always be a software implementation significantly slower than `f64`. /// +/// _Note: `f128` support is incomplete. Many platforms will not be able to link math functions. On +/// x86 in particular, these functions do link but their results are always incorrect._ +/// /// *[See also the `std::f128::consts` module](crate::f128::consts).* /// /// [wikipedia]: https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format diff --git a/library/std/build.rs b/library/std/build.rs index 9b58dd53ba20a..18ca7b512a9b6 100644 --- a/library/std/build.rs +++ b/library/std/build.rs @@ -85,6 +85,11 @@ fn main() { println!("cargo:rustc-check-cfg=cfg(reliable_f16)"); println!("cargo:rustc-check-cfg=cfg(reliable_f128)"); + // This is a step beyond only having the types and basic functions available. Math functions + // aren't consistently available or correct. + println!("cargo:rustc-check-cfg=cfg(reliable_f16_math)"); + println!("cargo:rustc-check-cfg=cfg(reliable_f128_math)"); + let has_reliable_f16 = match (target_arch.as_str(), target_os.as_str()) { // Selection failure until recent LLVM // FIXME(llvm19): can probably be removed at the version bump @@ -130,10 +135,42 @@ fn main() { _ => false, }; + // These are currently empty, but will fill up as some platforms move from completely + // unreliable to reliable basics but unreliable math. + + // LLVM is currenlty adding missing routines, + let has_reliable_f16_math = has_reliable_f16 + && match (target_arch.as_str(), target_os.as_str()) { + // Currently nothing special. Hooray! + // This will change as platforms gain better better support for standard ops but math + // lags behind. + _ => true, + }; + + let has_reliable_f128_math = has_reliable_f128 + && match (target_arch.as_str(), target_os.as_str()) { + // LLVM lowers `fp128` math to `long double` symbols even on platforms where + // `long double` is not IEEE binary128. See + // . + // + // This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits + // (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86` + // (ld is 80-bit extended precision). + ("x86_64", _) => false, + (_, "linux") if target_pointer_width == 64 => true, + _ => false, + }; + if has_reliable_f16 { println!("cargo:rustc-cfg=reliable_f16"); } if has_reliable_f128 { println!("cargo:rustc-cfg=reliable_f128"); } + if has_reliable_f16_math { + println!("cargo:rustc-cfg=reliable_f16_math"); + } + if has_reliable_f128_math { + println!("cargo:rustc-cfg=reliable_f128_math"); + } } diff --git a/library/std/src/f128.rs b/library/std/src/f128.rs index a5b00d57cefdd..f6df6259137bf 100644 --- a/library/std/src/f128.rs +++ b/library/std/src/f128.rs @@ -12,25 +12,180 @@ pub use core::f128::consts; #[cfg(not(test))] use crate::intrinsics; +#[cfg(not(test))] +use crate::sys::cmath; #[cfg(not(test))] impl f128 { - /// Raises a number to an integer power. + /// Returns the largest integer less than or equal to `self`. /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. + /// This function always returns the precise result. /// - /// # Unspecified precision + /// # Examples /// - /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and - /// can even differ within the same execution from one invocation to the next. + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` #[inline] #[rustc_allow_incoherent_impl] #[unstable(feature = "f128", issue = "116909")] #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f128 { - unsafe { intrinsics::powif128(self, n) } + pub fn floor(self) -> f128 { + unsafe { intrinsics::floorf128(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.01_f128; + /// let g = 4.0_f128; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f128 { + unsafe { intrinsics::ceilf128(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = -3.7_f128; + /// let i = 3.5_f128; + /// let j = 4.5_f128; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f128 { + unsafe { intrinsics::roundf128(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = 3.5_f128; + /// let i = 4.5_f128; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f128 { + unsafe { intrinsics::rintf128(self) } + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f128 { + unsafe { intrinsics::truncf128(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 3.6_f128; + /// let y = -3.6_f128; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f128::EPSILON); + /// assert!(abs_difference_y <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f128 { + self - self.trunc() } /// Computes the absolute value of `self`. @@ -41,7 +196,7 @@ impl f128 { /// /// ``` /// #![feature(f128)] - /// # #[cfg(reliable_f128)] { // FIXME(f16_f128): reliable_f128 + /// # #[cfg(reliable_f128)] { /// /// let x = 3.5_f128; /// let y = -3.5_f128; @@ -61,4 +216,1129 @@ impl f128 { // We don't do this now because LLVM has lowering bugs for f128 math. Self::from_bits(self.to_bits() & !(1 << 127)) } + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `INFINITY` + /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` + /// - NaN if the number is NaN + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.5_f128; + /// + /// assert_eq!(f.signum(), 1.0); + /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0); + /// + /// assert!(f128::NAN.signum().is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn signum(self) -> f128 { + if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) } + } + + /// Returns a number composed of the magnitude of `self` and the sign of + /// `sign`. + /// + /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise + /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of + /// `sign` is returned. Note, however, that conserving the sign bit on NaN + /// across arithmetical operations is not generally guaranteed. + /// See [explanation of NaN as a special value](primitive@f128) for more info. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.5_f128; + /// + /// assert_eq!(f.copysign(0.42), 3.5_f128); + /// assert_eq!(f.copysign(-0.42), -3.5_f128); + /// assert_eq!((-f).copysign(0.42), 3.5_f128); + /// assert_eq!((-f).copysign(-0.42), -3.5_f128); + /// + /// assert!(f128::NAN.copysign(1.0).is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn copysign(self, sign: f128) -> f128 { + unsafe { intrinsics::copysignf128(self, sign) } + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let m = 10.0_f128; + /// let x = 4.0_f128; + /// let b = 60.0_f128; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f128 + f128::EPSILON; + /// let one_minus_eps = 1.0_f128 - f128::EPSILON; + /// let minus_one = -1.0_f128; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f128, b: f128) -> f128 { + unsafe { intrinsics::fmaf128(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f128) -> f128 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f128) -> f128 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f128 { + unsafe { intrinsics::powif128(self, n) } + } + + /// Raises a number to a floating point power. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0_f128; + /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powf(self, n: f128) -> f128 { + unsafe { intrinsics::powf128(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let positive = 4.0_f128; + /// let negative = -4.0_f128; + /// let negative_zero = -0.0_f128; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f128 { + unsafe { intrinsics::sqrtf128(self) } + } + + /// Returns `e^(self)`, (the exponential function). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let one = 1.0f128; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp(self) -> f128 { + unsafe { intrinsics::expf128(self) } + } + + /// Returns `2^(self)`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 2.0f128; + /// + /// // 2^2 - 4 == 0 + /// let abs_difference = (f.exp2() - 4.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp2(self) -> f128 { + unsafe { intrinsics::exp2f128(self) } + } + + /// Returns the natural logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let one = 1.0f128; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln(self) -> f128 { + unsafe { intrinsics::logf128(self) } + } + + /// Returns the logarithm of the number with respect to an arbitrary base. + /// + /// The result might not be correctly rounded owing to implementation details; + /// `self.log2()` can produce more accurate results for base 2, and + /// `self.log10()` can produce more accurate results for base 10. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let five = 5.0f128; + /// + /// // log5(5) - 1 == 0 + /// let abs_difference = (five.log(5.0) - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log(self, base: f128) -> f128 { + self.ln() / base.ln() + } + + /// Returns the base 2 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let two = 2.0f128; + /// + /// // log2(2) - 1 == 0 + /// let abs_difference = (two.log2() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log2(self) -> f128 { + unsafe { intrinsics::log2f128(self) } + } + + /// Returns the base 10 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let ten = 10.0f128; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference = (ten.log10() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log10(self) -> f128 { + unsafe { intrinsics::log10f128(self) } + } + + /// Returns the cube root of a number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// + /// This function currently corresponds to the `cbrtf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 8.0f128; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cbrt(self) -> f128 { + unsafe { cmath::cbrtf128(self) } + } + + /// Compute the distance between the origin and a point (`x`, `y`) on the + /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a + /// right-angle triangle with other sides having length `x.abs()` and + /// `y.abs()`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// + /// This function currently corresponds to the `hypotf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0f128; + /// let y = 3.0f128; + /// + /// // sqrt(x^2 + y^2) + /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn hypot(self, other: f128) -> f128 { + unsafe { cmath::hypotf128(self, other) } + } + + /// Computes the sine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_2; + /// + /// let abs_difference = (x.sin() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sin(self) -> f128 { + unsafe { intrinsics::sinf128(self) } + } + + /// Computes the cosine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0 * std::f128::consts::PI; + /// + /// let abs_difference = (x.cos() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cos(self) -> f128 { + unsafe { intrinsics::cosf128(self) } + } + + /// Computes the tangent of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanf128` from libc on Unix and + /// Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_4; + /// let abs_difference = (x.tan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tan(self) -> f128 { + unsafe { cmath::tanf128(self) } + } + + /// Computes the arcsine of a number. Return value is in radians in + /// the range [-pi/2, pi/2] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `asinf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = std::f128::consts::FRAC_PI_2; + /// + /// // asin(sin(pi/2)) + /// let abs_difference = (f.sin().asin() - std::f128::consts::FRAC_PI_2).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsin")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asin(self) -> f128 { + unsafe { cmath::asinf128(self) } + } + + /// Computes the arccosine of a number. Return value is in radians in + /// the range [0, pi] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `acosf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = std::f128::consts::FRAC_PI_4; + /// + /// // acos(cos(pi/4)) + /// let abs_difference = (f.cos().acos() - std::f128::consts::FRAC_PI_4).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acos(self) -> f128 { + unsafe { cmath::acosf128(self) } + } + + /// Computes the arctangent of a number. Return value is in radians in the + /// range [-pi/2, pi/2]; + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atanf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 1.0f128; + /// + /// // atan(tan(1)) + /// let abs_difference = (f.tan().atan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctan")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan(self) -> f128 { + unsafe { cmath::atanf128(self) } + } + + /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. + /// + /// * `x = 0`, `y = 0`: `0` + /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` + /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` + /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atan2f128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// // Positive angles measured counter-clockwise + /// // from positive x axis + /// // -pi/4 radians (45 deg clockwise) + /// let x1 = 3.0f128; + /// let y1 = -3.0f128; + /// + /// // 3pi/4 radians (135 deg counter-clockwise) + /// let x2 = -3.0f128; + /// let y2 = 3.0f128; + /// + /// let abs_difference_1 = (y1.atan2(x1) - (-std::f128::consts::FRAC_PI_4)).abs(); + /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f128::consts::FRAC_PI_4)).abs(); + /// + /// assert!(abs_difference_1 <= f128::EPSILON); + /// assert!(abs_difference_2 <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan2(self, other: f128) -> f128 { + unsafe { cmath::atan2f128(self, other) } + } + + /// Simultaneously computes the sine and cosine of the number, `x`. Returns + /// `(sin(x), cos(x))`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `(f128::sin(x), + /// f128::cos(x))`. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_4; + /// let f = x.sin_cos(); + /// + /// let abs_difference_0 = (f.0 - x.sin()).abs(); + /// let abs_difference_1 = (f.1 - x.cos()).abs(); + /// + /// assert!(abs_difference_0 <= f128::EPSILON); + /// assert!(abs_difference_1 <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "sincos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + pub fn sin_cos(self) -> (f128, f128) { + (self.sin(), self.cos()) + } + + /// Returns `e^(self) - 1` in a way that is accurate even if the + /// number is close to zero. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `expm1f128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1e-8_f128; + /// + /// // for very small x, e^x is approximately 1 + x + x^2 / 2 + /// let approx = x + x * x / 2.0; + /// let abs_difference = (x.exp_m1() - approx).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp_m1(self) -> f128 { + unsafe { cmath::expm1f128(self) } + } + + /// Returns `ln(1+n)` (natural logarithm) more accurately than if + /// the operations were performed separately. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `log1pf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1e-8_f128; + /// + /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 + /// let approx = x - x * x / 2.0; + /// let abs_difference = (x.ln_1p() - approx).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// # } + /// ``` + #[inline] + #[doc(alias = "log1p")] + #[must_use = "method returns a new number and does not mutate the original value"] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + pub fn ln_1p(self) -> f128 { + unsafe { cmath::log1pf128(self) } + } + + /// Hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `sinhf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// + /// let f = x.sinh(); + /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` + /// let g = ((e * e) - 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sinh(self) -> f128 { + unsafe { cmath::sinhf128(self) } + } + + /// Hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `coshf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// let f = x.cosh(); + /// // Solving cosh() at 1 gives this result + /// let g = ((e * e) + 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// // Same result + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cosh(self) -> f128 { + unsafe { cmath::coshf128(self) } + } + + /// Hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanhf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// + /// let f = x.tanh(); + /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` + /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tanh(self) -> f128 { + unsafe { cmath::tanhf128(self) } + } + + /// Inverse hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1.0f128; + /// let f = x.sinh().asinh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsinh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asinh(self) -> f128 { + let ax = self.abs(); + let ix = 1.0 / ax; + (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) + } + + /// Inverse hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1.0f128; + /// let f = x.cosh().acosh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccosh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acosh(self) -> f128 { + if self < 1.0 { + Self::NAN + } else { + (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() + } + } + + /// Inverse hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let f = e.tanh().atanh(); + /// + /// let abs_difference = (f - e).abs(); + /// + /// assert!(abs_difference <= 1e-5); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctanh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atanh(self) -> f128 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() + } + + /// Gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tgammaf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 5.0f128; + /// + /// let abs_difference = (x.gamma() - 24.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn gamma(self) -> f128 { + unsafe { cmath::tgammaf128(self) } + } + + /// Natural logarithm of the absolute value of the gamma function + /// + /// The integer part of the tuple indicates the sign of the gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `lgammaf128_r` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0f128; + /// + /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_gamma(self) -> (f128, i32) { + let mut signgamp: i32 = 0; + let x = unsafe { cmath::lgammaf128_r(self, &mut signgamp) }; + (x, signgamp) + } } diff --git a/library/std/src/f128/tests.rs b/library/std/src/f128/tests.rs index 162c8dbad81a1..7051c051bf723 100644 --- a/library/std/src/f128/tests.rs +++ b/library/std/src/f128/tests.rs @@ -4,6 +4,21 @@ use crate::f128::consts; use crate::num::{FpCategory as Fp, *}; +// Note these tolerances make sense around zero, but not for more extreme exponents. + +/// For operations that are near exact, usually not involving math of different +/// signs. +const TOL_PRECISE: f128 = 1e-28; + +/// Default tolerances. Works for values that should be near precise but not exact. Roughly +/// the precision carried by `100 * 100`. +const TOL: f128 = 1e-12; + +/// Tolerances for math that is allowed to be imprecise, usually due to multiple chained +/// operations. +#[cfg(reliable_f128_math)] +const TOL_IMPR: f128 = 1e-10; + /// Smallest number const TINY_BITS: u128 = 0x1; @@ -41,7 +56,33 @@ fn test_num_f128() { test_num(10f128, 2f128); } -// FIXME(f16_f128): add min and max tests when available +#[test] +#[cfg(reliable_f128_math)] +fn test_min_nan() { + assert_eq!(f128::NAN.min(2.0), 2.0); + assert_eq!(2.0f128.min(f128::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_max_nan() { + assert_eq!(f128::NAN.max(2.0), 2.0); + assert_eq!(2.0f128.max(f128::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_minimum() { + assert!(f128::NAN.minimum(2.0).is_nan()); + assert!(2.0f128.minimum(f128::NAN).is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_maximum() { + assert!(f128::NAN.maximum(2.0).is_nan()); + assert!(2.0f128.maximum(f128::NAN).is_nan()); +} #[test] fn test_nan() { @@ -191,9 +232,100 @@ fn test_classify() { assert_eq!(1e-4932f128.classify(), Fp::Subnormal); } -// FIXME(f16_f128): add missing math functions when available +#[test] +#[cfg(reliable_f128_math)] +fn test_floor() { + assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ceil() { + assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE); +} #[test] +#[cfg(reliable_f128_math)] +fn test_round() { + assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_trunc() { + assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_fract() { + assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] fn test_abs() { assert_eq!(f128::INFINITY.abs(), f128::INFINITY); assert_eq!(1f128.abs(), 1f128); @@ -293,6 +425,24 @@ fn test_next_down() { } #[test] +#[cfg(reliable_f128_math)] +fn test_mul_add() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE); + assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE); + assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE); + assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f128.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] fn test_recip() { let nan: f128 = f128::NAN; let inf: f128 = f128::INFINITY; @@ -301,11 +451,161 @@ fn test_recip() { assert_eq!(2.0f128.recip(), 0.5); assert_eq!((-0.4f128).recip(), -2.5); assert_eq!(0.0f128.recip(), inf); + assert_approx_eq!( + f128::MAX.recip(), + 8.40525785778023376565669454330438228902076605e-4933, + 1e-4900 + ); assert!(nan.recip().is_nan()); assert_eq!(inf.recip(), 0.0); assert_eq!(neg_inf.recip(), 0.0); } +// Many math functions allow for less accurate results, so the next tolerance up is used + +#[test] +#[cfg(reliable_f128_math)] +fn test_powi() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.powi(1), 1.0); + assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL); + assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL); + assert_eq!(8.3f128.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_powf() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.powf(1.0), 1.0); + assert_approx_eq!(3.4f128.powf(4.5), 246.40818323761892815995637964326426756, TOL_IMPR); + assert_approx_eq!(2.7f128.powf(-3.2), 0.041652009108526178281070304373500889273, TOL_IMPR); + assert_approx_eq!((-3.1f128).powf(2.0), 9.6100000000000005506706202140776519387, TOL_IMPR); + assert_approx_eq!(5.9f128.powf(-2.0), 0.028727377190462507313100483690639638451, TOL_IMPR); + assert_eq!(8.3f128.powf(0.0), 1.0); + assert!(nan.powf(2.0).is_nan()); + assert_eq!(inf.powf(2.0), inf); + assert_eq!(neg_inf.powf(3.0), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_sqrt_domain() { + assert!(f128::NAN.sqrt().is_nan()); + assert!(f128::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f128).sqrt().is_nan()); + assert_eq!((-0.0f128).sqrt(), -0.0); + assert_eq!(0.0f128.sqrt(), 0.0); + assert_eq!(1.0f128.sqrt(), 1.0); + assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_exp() { + assert_eq!(1.0, 0.0f128.exp()); + assert_approx_eq!(consts::E, 1.0f128.exp(), TOL); + assert_approx_eq!(148.41315910257660342111558004055227962348775, 5.0f128.exp(), TOL); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf, inf.exp()); + assert_eq!(0.0, neg_inf.exp()); + assert!(nan.exp().is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_exp2() { + assert_eq!(32.0, 5.0f128.exp2()); + assert_eq!(1.0, 0.0f128.exp2()); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf, inf.exp2()); + assert_eq!(0.0, neg_inf.exp2()); + assert!(nan.exp2().is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ln() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(1.0f128.exp().ln(), 1.0, TOL); + assert!(nan.ln().is_nan()); + assert_eq!(inf.ln(), inf); + assert!(neg_inf.ln().is_nan()); + assert!((-2.3f128).ln().is_nan()); + assert_eq!((-0.0f128).ln(), neg_inf); + assert_eq!(0.0f128.ln(), neg_inf); + assert_approx_eq!(4.0f128.ln(), 1.3862943611198906188344642429163531366, TOL); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(10.0f128.log(10.0), 1.0); + assert_approx_eq!(2.3f128.log(3.5), 0.66485771361478710036766645911922010272, TOL); + assert_eq!(1.0f128.exp().log(1.0f128.exp()), 1.0); + assert!(1.0f128.log(1.0).is_nan()); + assert!(1.0f128.log(-13.9).is_nan()); + assert!(nan.log(2.3).is_nan()); + assert_eq!(inf.log(10.0), inf); + assert!(neg_inf.log(8.8).is_nan()); + assert!((-2.3f128).log(0.1).is_nan()); + assert_eq!((-0.0f128).log(2.0), neg_inf); + assert_eq!(0.0f128.log(7.0), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log2() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(10.0f128.log2(), 3.32192809488736234787031942948939017, TOL); + assert_approx_eq!(2.3f128.log2(), 1.2016338611696504130002982471978765921, TOL); + assert_approx_eq!(1.0f128.exp().log2(), 1.4426950408889634073599246810018921381, TOL); + assert!(nan.log2().is_nan()); + assert_eq!(inf.log2(), inf); + assert!(neg_inf.log2().is_nan()); + assert!((-2.3f128).log2().is_nan()); + assert_eq!((-0.0f128).log2(), neg_inf); + assert_eq!(0.0f128.log2(), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log10() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(10.0f128.log10(), 1.0); + assert_approx_eq!(2.3f128.log10(), 0.36172783601759284532595218865859309898, TOL); + assert_approx_eq!(1.0f128.exp().log10(), 0.43429448190325182765112891891660508222, TOL); + assert_eq!(1.0f128.log10(), 0.0); + assert!(nan.log10().is_nan()); + assert_eq!(inf.log10(), inf); + assert!(neg_inf.log10().is_nan()); + assert!((-2.3f128).log10().is_nan()); + assert_eq!((-0.0f128).log10(), neg_inf); + assert_eq!(0.0f128.log10(), neg_inf); +} + #[test] fn test_to_degrees() { let pi: f128 = consts::PI; @@ -313,8 +613,8 @@ fn test_to_degrees() { let inf: f128 = f128::INFINITY; let neg_inf: f128 = f128::NEG_INFINITY; assert_eq!(0.0f128.to_degrees(), 0.0); - assert_approx_eq!((-5.8f128).to_degrees(), -332.315521); - assert_eq!(pi.to_degrees(), 180.0); + assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL); assert!(nan.to_degrees().is_nan()); assert_eq!(inf.to_degrees(), inf); assert_eq!(neg_inf.to_degrees(), neg_inf); @@ -328,19 +628,122 @@ fn test_to_radians() { let inf: f128 = f128::INFINITY; let neg_inf: f128 = f128::NEG_INFINITY; assert_eq!(0.0f128.to_radians(), 0.0); - assert_approx_eq!(154.6f128.to_radians(), 2.698279); - assert_approx_eq!((-332.31f128).to_radians(), -5.799903); + assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL); + assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL); // check approx rather than exact because round trip for pi doesn't fall on an exactly // representable value (unlike `f32` and `f64`). - assert_approx_eq!(180.0f128.to_radians(), pi); + assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE); assert!(nan.to_radians().is_nan()); assert_eq!(inf.to_radians(), inf); assert_eq!(neg_inf.to_radians(), neg_inf); } +#[test] +#[cfg(reliable_f128_math)] +fn test_asinh() { + // Lower accuracy results are allowed, use increased tolerances + assert_eq!(0.0f128.asinh(), 0.0f128); + assert_eq!((-0.0f128).asinh(), -0.0f128); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf.asinh(), inf); + assert_eq!(neg_inf.asinh(), neg_inf); + assert!(nan.asinh().is_nan()); + assert!((-0.0f128).asinh().is_sign_negative()); + + // issue 63271 + assert_approx_eq!(2.0f128.asinh(), 1.443635475178810342493276740273105f128, TOL_IMPR); + assert_approx_eq!((-2.0f128).asinh(), -1.443635475178810342493276740273105f128, TOL_IMPR); + // regression test for the catastrophic cancellation fixed in 72486 + assert_approx_eq!( + (-67452098.07139316f128).asinh(), + -18.720075426274544393985484294000831757220, + TOL_IMPR + ); + + // test for low accuracy from issue 104548 + assert_approx_eq!(60.0f128, 60.0f128.sinh().asinh(), TOL_IMPR); + // mul needed for approximate comparison to be meaningful + assert_approx_eq!(1.0f128, 1e-15f128.sinh().asinh() * 1e15f128, TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_acosh() { + assert_eq!(1.0f128.acosh(), 0.0f128); + assert!(0.999f128.acosh().is_nan()); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf.acosh(), inf); + assert!(neg_inf.acosh().is_nan()); + assert!(nan.acosh().is_nan()); + assert_approx_eq!(2.0f128.acosh(), 1.31695789692481670862504634730796844f128, TOL_IMPR); + assert_approx_eq!(3.0f128.acosh(), 1.76274717403908605046521864995958461f128, TOL_IMPR); + + // test for low accuracy from issue 104548 + assert_approx_eq!(60.0f128, 60.0f128.cosh().acosh(), TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_atanh() { + assert_eq!(0.0f128.atanh(), 0.0f128); + assert_eq!((-0.0f128).atanh(), -0.0f128); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(1.0f128.atanh(), inf); + assert_eq!((-1.0f128).atanh(), neg_inf); + assert!(2f128.atanh().atanh().is_nan()); + assert!((-2f128).atanh().atanh().is_nan()); + assert!(inf.atanh().is_nan()); + assert!(neg_inf.atanh().is_nan()); + assert!(nan.atanh().is_nan()); + assert_approx_eq!(0.5f128.atanh(), 0.54930614433405484569762261846126285f128, TOL_IMPR); + assert_approx_eq!((-0.5f128).atanh(), -0.54930614433405484569762261846126285f128, TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_gamma() { + // precision can differ among platforms + assert_approx_eq!(1.0f128.gamma(), 1.0f128, TOL_IMPR); + assert_approx_eq!(2.0f128.gamma(), 1.0f128, TOL_IMPR); + assert_approx_eq!(3.0f128.gamma(), 2.0f128, TOL_IMPR); + assert_approx_eq!(4.0f128.gamma(), 6.0f128, TOL_IMPR); + assert_approx_eq!(5.0f128.gamma(), 24.0f128, TOL_IMPR); + assert_approx_eq!(0.5f128.gamma(), consts::PI.sqrt(), TOL_IMPR); + assert_approx_eq!((-0.5f128).gamma(), -2.0 * consts::PI.sqrt(), TOL_IMPR); + assert_eq!(0.0f128.gamma(), f128::INFINITY); + assert_eq!((-0.0f128).gamma(), f128::NEG_INFINITY); + assert!((-1.0f128).gamma().is_nan()); + assert!((-2.0f128).gamma().is_nan()); + assert!(f128::NAN.gamma().is_nan()); + assert!(f128::NEG_INFINITY.gamma().is_nan()); + assert_eq!(f128::INFINITY.gamma(), f128::INFINITY); + assert_eq!(1760.9f128.gamma(), f128::INFINITY); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ln_gamma() { + assert_approx_eq!(1.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); + assert_eq!(1.0f128.ln_gamma().1, 1); + assert_approx_eq!(2.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); + assert_eq!(2.0f128.ln_gamma().1, 1); + assert_approx_eq!(3.0f128.ln_gamma().0, 2.0f128.ln(), TOL_IMPR); + assert_eq!(3.0f128.ln_gamma().1, 1); + assert_approx_eq!((-0.5f128).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_IMPR); + assert_eq!((-0.5f128).ln_gamma().1, -1); +} + #[test] fn test_real_consts() { - // FIXME(f16_f128): add math tests when available use super::consts; let pi: f128 = consts::PI; @@ -351,29 +754,34 @@ fn test_real_consts() { let frac_pi_8: f128 = consts::FRAC_PI_8; let frac_1_pi: f128 = consts::FRAC_1_PI; let frac_2_pi: f128 = consts::FRAC_2_PI; - // let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI; - // let sqrt2: f128 = consts::SQRT_2; - // let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2; - // let e: f128 = consts::E; - // let log2_e: f128 = consts::LOG2_E; - // let log10_e: f128 = consts::LOG10_E; - // let ln_2: f128 = consts::LN_2; - // let ln_10: f128 = consts::LN_10; - - assert_approx_eq!(frac_pi_2, pi / 2f128); - assert_approx_eq!(frac_pi_3, pi / 3f128); - assert_approx_eq!(frac_pi_4, pi / 4f128); - assert_approx_eq!(frac_pi_6, pi / 6f128); - assert_approx_eq!(frac_pi_8, pi / 8f128); - assert_approx_eq!(frac_1_pi, 1f128 / pi); - assert_approx_eq!(frac_2_pi, 2f128 / pi); - // assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt()); - // assert_approx_eq!(sqrt2, 2f128.sqrt()); - // assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt()); - // assert_approx_eq!(log2_e, e.log2()); - // assert_approx_eq!(log10_e, e.log10()); - // assert_approx_eq!(ln_2, 2f128.ln()); - // assert_approx_eq!(ln_10, 10f128.ln()); + + assert_approx_eq!(frac_pi_2, pi / 2f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_3, pi / 3f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_4, pi / 4f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_6, pi / 6f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_8, pi / 8f128, TOL_PRECISE); + assert_approx_eq!(frac_1_pi, 1f128 / pi, TOL_PRECISE); + assert_approx_eq!(frac_2_pi, 2f128 / pi, TOL_PRECISE); + + #[cfg(reliable_f128_math)] + { + let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI; + let sqrt2: f128 = consts::SQRT_2; + let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2; + let e: f128 = consts::E; + let log2_e: f128 = consts::LOG2_E; + let log10_e: f128 = consts::LOG10_E; + let ln_2: f128 = consts::LN_2; + let ln_10: f128 = consts::LN_10; + + assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt(), TOL_PRECISE); + assert_approx_eq!(sqrt2, 2f128.sqrt(), TOL_PRECISE); + assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt(), TOL_PRECISE); + assert_approx_eq!(log2_e, e.log2(), TOL_PRECISE); + assert_approx_eq!(log10_e, e.log10(), TOL_PRECISE); + assert_approx_eq!(ln_2, 2f128.ln(), TOL_PRECISE); + assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE); + } } #[test] @@ -382,10 +790,10 @@ fn test_float_bits_conv() { assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000); assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000); assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); - assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); - assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5); - assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); - assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); + assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE); // Check that NaNs roundtrip their bits regardless of signaling-ness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs index e3024defed734..10908332762d5 100644 --- a/library/std/src/f16.rs +++ b/library/std/src/f16.rs @@ -12,25 +12,180 @@ pub use core::f16::consts; #[cfg(not(test))] use crate::intrinsics; +#[cfg(not(test))] +use crate::sys::cmath; #[cfg(not(test))] impl f16 { - /// Raises a number to an integer power. + /// Returns the largest integer less than or equal to `self`. /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. + /// This function always returns the precise result. /// - /// # Unspecified precision + /// # Examples /// - /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and - /// can even differ within the same execution from one invocation to the next. + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` #[inline] #[rustc_allow_incoherent_impl] #[unstable(feature = "f16", issue = "116909")] #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f16 { - unsafe { intrinsics::powif16(self, n) } + pub fn floor(self) -> f16 { + unsafe { intrinsics::floorf16(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.01_f16; + /// let g = 4.0_f16; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f16 { + unsafe { intrinsics::ceilf16(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = -3.7_f16; + /// let i = 3.5_f16; + /// let j = 4.5_f16; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f16 { + unsafe { intrinsics::roundf16(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = 3.5_f16; + /// let i = 4.5_f16; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f16 { + unsafe { intrinsics::rintf16(self) } + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f16 { + unsafe { intrinsics::truncf16(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 3.6_f16; + /// let y = -3.6_f16; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f16::EPSILON); + /// assert!(abs_difference_y <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f16 { + self - self.trunc() } /// Computes the absolute value of `self`. @@ -60,4 +215,1127 @@ impl f16 { // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available Self::from_bits(self.to_bits() & !(1 << 15)) } + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `INFINITY` + /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` + /// - NaN if the number is NaN + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.5_f16; + /// + /// assert_eq!(f.signum(), 1.0); + /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0); + /// + /// assert!(f16::NAN.signum().is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn signum(self) -> f16 { + if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) } + } + + /// Returns a number composed of the magnitude of `self` and the sign of + /// `sign`. + /// + /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise + /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of + /// `sign` is returned. Note, however, that conserving the sign bit on NaN + /// across arithmetical operations is not generally guaranteed. + /// See [explanation of NaN as a special value](primitive@f16) for more info. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.5_f16; + /// + /// assert_eq!(f.copysign(0.42), 3.5_f16); + /// assert_eq!(f.copysign(-0.42), -3.5_f16); + /// assert_eq!((-f).copysign(0.42), 3.5_f16); + /// assert_eq!((-f).copysign(-0.42), -3.5_f16); + /// + /// assert!(f16::NAN.copysign(1.0).is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn copysign(self, sign: f16) -> f16 { + unsafe { intrinsics::copysignf16(self, sign) } + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let m = 10.0_f16; + /// let x = 4.0_f16; + /// let b = 60.0_f16; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f16 + f16::EPSILON; + /// let one_minus_eps = 1.0_f16 - f16::EPSILON; + /// let minus_one = -1.0_f16; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f16, b: f16) -> f16 { + unsafe { intrinsics::fmaf16(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f16) -> f16 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f16) -> f16 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f16 { + unsafe { intrinsics::powif16(self, n) } + } + + /// Raises a number to a floating point power. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0_f16; + /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powf(self, n: f16) -> f16 { + unsafe { intrinsics::powf16(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let positive = 4.0_f16; + /// let negative = -4.0_f16; + /// let negative_zero = -0.0_f16; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f16 { + unsafe { intrinsics::sqrtf16(self) } + } + + /// Returns `e^(self)`, (the exponential function). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let one = 1.0f16; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp(self) -> f16 { + unsafe { intrinsics::expf16(self) } + } + + /// Returns `2^(self)`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 2.0f16; + /// + /// // 2^2 - 4 == 0 + /// let abs_difference = (f.exp2() - 4.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp2(self) -> f16 { + unsafe { intrinsics::exp2f16(self) } + } + + /// Returns the natural logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let one = 1.0f16; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln(self) -> f16 { + unsafe { intrinsics::logf16(self) } + } + + /// Returns the logarithm of the number with respect to an arbitrary base. + /// + /// The result might not be correctly rounded owing to implementation details; + /// `self.log2()` can produce more accurate results for base 2, and + /// `self.log10()` can produce more accurate results for base 10. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let five = 5.0f16; + /// + /// // log5(5) - 1 == 0 + /// let abs_difference = (five.log(5.0) - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log(self, base: f16) -> f16 { + self.ln() / base.ln() + } + + /// Returns the base 2 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let two = 2.0f16; + /// + /// // log2(2) - 1 == 0 + /// let abs_difference = (two.log2() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log2(self) -> f16 { + unsafe { intrinsics::log2f16(self) } + } + + /// Returns the base 10 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let ten = 10.0f16; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference = (ten.log10() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log10(self) -> f16 { + unsafe { intrinsics::log10f16(self) } + } + + /// Returns the cube root of a number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `cbrtf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 8.0f16; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cbrt(self) -> f16 { + (unsafe { cmath::cbrtf(self as f32) }) as f16 + } + + /// Compute the distance between the origin and a point (`x`, `y`) on the + /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a + /// right-angle triangle with other sides having length `x.abs()` and + /// `y.abs()`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `hypotf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0f16; + /// let y = 3.0f16; + /// + /// // sqrt(x^2 + y^2) + /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn hypot(self, other: f16) -> f16 { + (unsafe { cmath::hypotf(self as f32, other as f32) }) as f16 + } + + /// Computes the sine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_2; + /// + /// let abs_difference = (x.sin() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sin(self) -> f16 { + unsafe { intrinsics::sinf16(self) } + } + + /// Computes the cosine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0 * std::f16::consts::PI; + /// + /// let abs_difference = (x.cos() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cos(self) -> f16 { + unsafe { intrinsics::cosf16(self) } + } + + /// Computes the tangent of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanf` from libc on Unix and + /// Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_4; + /// let abs_difference = (x.tan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tan(self) -> f16 { + (unsafe { cmath::tanf(self as f32) }) as f16 + } + + /// Computes the arcsine of a number. Return value is in radians in + /// the range [-pi/2, pi/2] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `asinf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = std::f16::consts::FRAC_PI_2; + /// + /// // asin(sin(pi/2)) + /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsin")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asin(self) -> f16 { + (unsafe { cmath::asinf(self as f32) }) as f16 + } + + /// Computes the arccosine of a number. Return value is in radians in + /// the range [0, pi] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `acosf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = std::f16::consts::FRAC_PI_4; + /// + /// // acos(cos(pi/4)) + /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acos(self) -> f16 { + (unsafe { cmath::acosf(self as f32) }) as f16 + } + + /// Computes the arctangent of a number. Return value is in radians in the + /// range [-pi/2, pi/2]; + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atanf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 1.0f16; + /// + /// // atan(tan(1)) + /// let abs_difference = (f.tan().atan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctan")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan(self) -> f16 { + (unsafe { cmath::atanf(self as f32) }) as f16 + } + + /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. + /// + /// * `x = 0`, `y = 0`: `0` + /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` + /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` + /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atan2f` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// // Positive angles measured counter-clockwise + /// // from positive x axis + /// // -pi/4 radians (45 deg clockwise) + /// let x1 = 3.0f16; + /// let y1 = -3.0f16; + /// + /// // 3pi/4 radians (135 deg counter-clockwise) + /// let x2 = -3.0f16; + /// let y2 = 3.0f16; + /// + /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs(); + /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs(); + /// + /// assert!(abs_difference_1 <= f16::EPSILON); + /// assert!(abs_difference_2 <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan2(self, other: f16) -> f16 { + (unsafe { cmath::atan2f(self as f32, other as f32) }) as f16 + } + + /// Simultaneously computes the sine and cosine of the number, `x`. Returns + /// `(sin(x), cos(x))`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `(f16::sin(x), + /// f16::cos(x))`. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_4; + /// let f = x.sin_cos(); + /// + /// let abs_difference_0 = (f.0 - x.sin()).abs(); + /// let abs_difference_1 = (f.1 - x.cos()).abs(); + /// + /// assert!(abs_difference_0 <= f16::EPSILON); + /// assert!(abs_difference_1 <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "sincos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + pub fn sin_cos(self) -> (f16, f16) { + (self.sin(), self.cos()) + } + + /// Returns `e^(self) - 1` in a way that is accurate even if the + /// number is close to zero. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `expm1f` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1e-4_f16; + /// + /// // for very small x, e^x is approximately 1 + x + x^2 / 2 + /// let approx = x + x * x / 2.0; + /// let abs_difference = (x.exp_m1() - approx).abs(); + /// + /// assert!(abs_difference < 1e-4); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp_m1(self) -> f16 { + (unsafe { cmath::expm1f(self as f32) }) as f16 + } + + /// Returns `ln(1+n)` (natural logarithm) more accurately than if + /// the operations were performed separately. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `log1pf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1e-4_f16; + /// + /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 + /// let approx = x - x * x / 2.0; + /// let abs_difference = (x.ln_1p() - approx).abs(); + /// + /// assert!(abs_difference < 1e-4); + /// # } + /// ``` + #[inline] + #[doc(alias = "log1p")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_1p(self) -> f16 { + (unsafe { cmath::log1pf(self as f32) }) as f16 + } + + /// Hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `sinhf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// + /// let f = x.sinh(); + /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` + /// let g = ((e * e) - 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sinh(self) -> f16 { + (unsafe { cmath::sinhf(self as f32) }) as f16 + } + + /// Hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `coshf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// let f = x.cosh(); + /// // Solving cosh() at 1 gives this result + /// let g = ((e * e) + 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// // Same result + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cosh(self) -> f16 { + (unsafe { cmath::coshf(self as f32) }) as f16 + } + + /// Hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanhf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// + /// let f = x.tanh(); + /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` + /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tanh(self) -> f16 { + (unsafe { cmath::tanhf(self as f32) }) as f16 + } + + /// Inverse hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1.0f16; + /// let f = x.sinh().asinh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsinh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asinh(self) -> f16 { + let ax = self.abs(); + let ix = 1.0 / ax; + (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) + } + + /// Inverse hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1.0f16; + /// let f = x.cosh().acosh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccosh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acosh(self) -> f16 { + if self < 1.0 { + Self::NAN + } else { + (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() + } + } + + /// Inverse hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let f = e.tanh().atanh(); + /// + /// let abs_difference = (f - e).abs(); + /// + /// assert!(abs_difference <= 0.01); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctanh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atanh(self) -> f16 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() + } + + /// Gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tgammaf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 5.0f16; + /// + /// let abs_difference = (x.gamma() - 24.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn gamma(self) -> f16 { + (unsafe { cmath::tgammaf(self as f32) }) as f16 + } + + /// Natural logarithm of the absolute value of the gamma function + /// + /// The integer part of the tuple indicates the sign of the gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `lgamma_r` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0f16; + /// + /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_gamma(self) -> (f16, i32) { + let mut signgamp: i32 = 0; + let x = (unsafe { cmath::lgammaf_r(self as f32, &mut signgamp) }) as f16; + (x, signgamp) + } } diff --git a/library/std/src/f16/tests.rs b/library/std/src/f16/tests.rs index f73bdf68e8295..50504e7ffd94f 100644 --- a/library/std/src/f16/tests.rs +++ b/library/std/src/f16/tests.rs @@ -4,11 +4,21 @@ use crate::f16::consts; use crate::num::{FpCategory as Fp, *}; -// We run out of precision pretty quickly with f16 -// const F16_APPROX_L1: f16 = 0.001; -const F16_APPROX_L2: f16 = 0.01; -// const F16_APPROX_L3: f16 = 0.1; -const F16_APPROX_L4: f16 = 0.5; +/// Tolerance for results on the order of 10.0e-2; +#[cfg(reliable_f16_math)] +const TOL_N2: f16 = 0.0001; + +/// Tolerance for results on the order of 10.0e+0 +#[cfg(reliable_f16_math)] +const TOL_0: f16 = 0.01; + +/// Tolerance for results on the order of 10.0e+2 +#[cfg(reliable_f16_math)] +const TOL_P2: f16 = 0.5; + +/// Tolerance for results on the order of 10.0e+4 +#[cfg(reliable_f16_math)] +const TOL_P4: f16 = 10.0; /// Smallest number const TINY_BITS: u16 = 0x1; @@ -47,7 +57,33 @@ fn test_num_f16() { test_num(10f16, 2f16); } -// FIXME(f16_f128): add min and max tests when available +#[test] +#[cfg(reliable_f16_math)] +fn test_min_nan() { + assert_eq!(f16::NAN.min(2.0), 2.0); + assert_eq!(2.0f16.min(f16::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_max_nan() { + assert_eq!(f16::NAN.max(2.0), 2.0); + assert_eq!(2.0f16.max(f16::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_minimum() { + assert!(f16::NAN.minimum(2.0).is_nan()); + assert!(2.0f16.minimum(f16::NAN).is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_maximum() { + assert!(f16::NAN.maximum(2.0).is_nan()); + assert!(2.0f16.maximum(f16::NAN).is_nan()); +} #[test] fn test_nan() { @@ -197,9 +233,100 @@ fn test_classify() { assert_eq!(1e-5f16.classify(), Fp::Subnormal); } -// FIXME(f16_f128): add missing math functions when available +#[test] +#[cfg(reliable_f16_math)] +fn test_floor() { + assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ceil() { + assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_round() { + assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0); + assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_trunc() { + assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_fract() { + assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0); + assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0); + assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0); + assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0); + assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0); + assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0); +} #[test] +#[cfg(reliable_f16_math)] fn test_abs() { assert_eq!(f16::INFINITY.abs(), f16::INFINITY); assert_eq!(1f16.abs(), 1f16); @@ -299,6 +426,24 @@ fn test_next_down() { } #[test] +#[cfg(reliable_f16_math)] +fn test_mul_add() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2); + assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2); + assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0); + assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f16.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] fn test_recip() { let nan: f16 = f16::NAN; let inf: f16 = f16::INFINITY; @@ -307,11 +452,157 @@ fn test_recip() { assert_eq!(2.0f16.recip(), 0.5); assert_eq!((-0.4f16).recip(), -2.5); assert_eq!(0.0f16.recip(), inf); + assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4); assert!(nan.recip().is_nan()); assert_eq!(inf.recip(), 0.0); assert_eq!(neg_inf.recip(), 0.0); } +#[test] +#[cfg(reliable_f16_math)] +fn test_powi() { + // FIXME(llvm19): LLVM misoptimizes `powi.f16` + // + // let nan: f16 = f16::NAN; + // let inf: f16 = f16::INFINITY; + // let neg_inf: f16 = f16::NEG_INFINITY; + // assert_eq!(1.0f16.powi(1), 1.0); + // assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0); + // assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2); + // assert_eq!(8.3f16.powi(0), 1.0); + // assert!(nan.powi(2).is_nan()); + // assert_eq!(inf.powi(3), inf); + // assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_powf() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(1.0f16.powf(1.0), 1.0); + assert_approx_eq!(3.4f16.powf(4.5), 246.408183, TOL_P2); + assert_approx_eq!(2.7f16.powf(-3.2), 0.041652, TOL_N2); + assert_approx_eq!((-3.1f16).powf(2.0), 9.61, TOL_P2); + assert_approx_eq!(5.9f16.powf(-2.0), 0.028727, TOL_N2); + assert_eq!(8.3f16.powf(0.0), 1.0); + assert!(nan.powf(2.0).is_nan()); + assert_eq!(inf.powf(2.0), inf); + assert_eq!(neg_inf.powf(3.0), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_sqrt_domain() { + assert!(f16::NAN.sqrt().is_nan()); + assert!(f16::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f16).sqrt().is_nan()); + assert_eq!((-0.0f16).sqrt(), -0.0); + assert_eq!(0.0f16.sqrt(), 0.0); + assert_eq!(1.0f16.sqrt(), 1.0); + assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_exp() { + assert_eq!(1.0, 0.0f16.exp()); + assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0); + assert_approx_eq!(148.413159, 5.0f16.exp(), TOL_0); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf, inf.exp()); + assert_eq!(0.0, neg_inf.exp()); + assert!(nan.exp().is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_exp2() { + assert_eq!(32.0, 5.0f16.exp2()); + assert_eq!(1.0, 0.0f16.exp2()); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf, inf.exp2()); + assert_eq!(0.0, neg_inf.exp2()); + assert!(nan.exp2().is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ln() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(1.0f16.exp().ln(), 1.0, TOL_0); + assert!(nan.ln().is_nan()); + assert_eq!(inf.ln(), inf); + assert!(neg_inf.ln().is_nan()); + assert!((-2.3f16).ln().is_nan()); + assert_eq!((-0.0f16).ln(), neg_inf); + assert_eq!(0.0f16.ln(), neg_inf); + assert_approx_eq!(4.0f16.ln(), 1.386294, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(10.0f16.log(10.0), 1.0); + assert_approx_eq!(2.3f16.log(3.5), 0.664858, TOL_0); + assert_eq!(1.0f16.exp().log(1.0f16.exp()), 1.0); + assert!(1.0f16.log(1.0).is_nan()); + assert!(1.0f16.log(-13.9).is_nan()); + assert!(nan.log(2.3).is_nan()); + assert_eq!(inf.log(10.0), inf); + assert!(neg_inf.log(8.8).is_nan()); + assert!((-2.3f16).log(0.1).is_nan()); + assert_eq!((-0.0f16).log(2.0), neg_inf); + assert_eq!(0.0f16.log(7.0), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log2() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(10.0f16.log2(), 3.321928, TOL_0); + assert_approx_eq!(2.3f16.log2(), 1.201634, TOL_0); + assert_approx_eq!(1.0f16.exp().log2(), 1.442695, TOL_0); + assert!(nan.log2().is_nan()); + assert_eq!(inf.log2(), inf); + assert!(neg_inf.log2().is_nan()); + assert!((-2.3f16).log2().is_nan()); + assert_eq!((-0.0f16).log2(), neg_inf); + assert_eq!(0.0f16.log2(), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log10() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(10.0f16.log10(), 1.0); + assert_approx_eq!(2.3f16.log10(), 0.361728, TOL_0); + assert_approx_eq!(1.0f16.exp().log10(), 0.434294, TOL_0); + assert_eq!(1.0f16.log10(), 0.0); + assert!(nan.log10().is_nan()); + assert_eq!(inf.log10(), inf); + assert!(neg_inf.log10().is_nan()); + assert!((-2.3f16).log10().is_nan()); + assert_eq!((-0.0f16).log10(), neg_inf); + assert_eq!(0.0f16.log10(), neg_inf); +} + #[test] fn test_to_degrees() { let pi: f16 = consts::PI; @@ -319,8 +610,8 @@ fn test_to_degrees() { let inf: f16 = f16::INFINITY; let neg_inf: f16 = f16::NEG_INFINITY; assert_eq!(0.0f16.to_degrees(), 0.0); - assert_approx_eq!((-5.8f16).to_degrees(), -332.315521); - assert_approx_eq!(pi.to_degrees(), 180.0, F16_APPROX_L4); + assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2); assert!(nan.to_degrees().is_nan()); assert_eq!(inf.to_degrees(), inf); assert_eq!(neg_inf.to_degrees(), neg_inf); @@ -334,14 +625,112 @@ fn test_to_radians() { let inf: f16 = f16::INFINITY; let neg_inf: f16 = f16::NEG_INFINITY; assert_eq!(0.0f16.to_radians(), 0.0); - assert_approx_eq!(154.6f16.to_radians(), 2.698279); - assert_approx_eq!((-332.31f16).to_radians(), -5.799903); - assert_approx_eq!(180.0f16.to_radians(), pi, F16_APPROX_L2); + assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0); + assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0); + assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0); assert!(nan.to_radians().is_nan()); assert_eq!(inf.to_radians(), inf); assert_eq!(neg_inf.to_radians(), neg_inf); } +#[test] +#[cfg(reliable_f16_math)] +fn test_asinh() { + assert_eq!(0.0f16.asinh(), 0.0f16); + assert_eq!((-0.0f16).asinh(), -0.0f16); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf.asinh(), inf); + assert_eq!(neg_inf.asinh(), neg_inf); + assert!(nan.asinh().is_nan()); + assert!((-0.0f16).asinh().is_sign_negative()); + // issue 63271 + assert_approx_eq!(2.0f16.asinh(), 1.443635475178810342493276740273105f16, TOL_0); + assert_approx_eq!((-2.0f16).asinh(), -1.443635475178810342493276740273105f16, TOL_0); + // regression test for the catastrophic cancellation fixed in 72486 + assert_approx_eq!((-200.0f16).asinh(), -5.991470797049389, TOL_0); + + // test for low accuracy from issue 104548 + assert_approx_eq!(10.0f16, 10.0f16.sinh().asinh(), TOL_0); + // mul needed for approximate comparison to be meaningful + assert_approx_eq!(1.0f16, 1e-3f16.sinh().asinh() * 1e3f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_acosh() { + assert_eq!(1.0f16.acosh(), 0.0f16); + assert!(0.999f16.acosh().is_nan()); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf.acosh(), inf); + assert!(neg_inf.acosh().is_nan()); + assert!(nan.acosh().is_nan()); + assert_approx_eq!(2.0f16.acosh(), 1.31695789692481670862504634730796844f16, TOL_0); + assert_approx_eq!(3.0f16.acosh(), 1.76274717403908605046521864995958461f16, TOL_0); + + // test for low accuracy from issue 104548 + assert_approx_eq!(10.0f16, 10.0f16.cosh().acosh(), TOL_P2); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_atanh() { + assert_eq!(0.0f16.atanh(), 0.0f16); + assert_eq!((-0.0f16).atanh(), -0.0f16); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(1.0f16.atanh(), inf); + assert_eq!((-1.0f16).atanh(), neg_inf); + assert!(2f16.atanh().atanh().is_nan()); + assert!((-2f16).atanh().atanh().is_nan()); + assert!(inf.atanh().is_nan()); + assert!(neg_inf.atanh().is_nan()); + assert!(nan.atanh().is_nan()); + assert_approx_eq!(0.5f16.atanh(), 0.54930614433405484569762261846126285f16, TOL_0); + assert_approx_eq!((-0.5f16).atanh(), -0.54930614433405484569762261846126285f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_gamma() { + // precision can differ among platforms + assert_approx_eq!(1.0f16.gamma(), 1.0f16, TOL_0); + assert_approx_eq!(2.0f16.gamma(), 1.0f16, TOL_0); + assert_approx_eq!(3.0f16.gamma(), 2.0f16, TOL_0); + assert_approx_eq!(4.0f16.gamma(), 6.0f16, TOL_0); + assert_approx_eq!(5.0f16.gamma(), 24.0f16, TOL_0); + assert_approx_eq!(0.5f16.gamma(), consts::PI.sqrt(), TOL_0); + assert_approx_eq!((-0.5f16).gamma(), -2.0 * consts::PI.sqrt(), TOL_0); + assert_eq!(0.0f16.gamma(), f16::INFINITY); + assert_eq!((-0.0f16).gamma(), f16::NEG_INFINITY); + assert!((-1.0f16).gamma().is_nan()); + assert!((-2.0f16).gamma().is_nan()); + assert!(f16::NAN.gamma().is_nan()); + assert!(f16::NEG_INFINITY.gamma().is_nan()); + assert_eq!(f16::INFINITY.gamma(), f16::INFINITY); + assert_eq!(171.71f16.gamma(), f16::INFINITY); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ln_gamma() { + assert_approx_eq!(1.0f16.ln_gamma().0, 0.0f16, TOL_0); + assert_eq!(1.0f16.ln_gamma().1, 1); + assert_approx_eq!(2.0f16.ln_gamma().0, 0.0f16, TOL_0); + assert_eq!(2.0f16.ln_gamma().1, 1); + assert_approx_eq!(3.0f16.ln_gamma().0, 2.0f16.ln(), TOL_0); + assert_eq!(3.0f16.ln_gamma().1, 1); + assert_approx_eq!((-0.5f16).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_0); + assert_eq!((-0.5f16).ln_gamma().1, -1); +} + #[test] fn test_real_consts() { // FIXME(f16_f128): add math tests when available @@ -355,29 +744,34 @@ fn test_real_consts() { let frac_pi_8: f16 = consts::FRAC_PI_8; let frac_1_pi: f16 = consts::FRAC_1_PI; let frac_2_pi: f16 = consts::FRAC_2_PI; - // let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; - // let sqrt2: f16 = consts::SQRT_2; - // let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; - // let e: f16 = consts::E; - // let log2_e: f16 = consts::LOG2_E; - // let log10_e: f16 = consts::LOG10_E; - // let ln_2: f16 = consts::LN_2; - // let ln_10: f16 = consts::LN_10; - - assert_approx_eq!(frac_pi_2, pi / 2f16); - assert_approx_eq!(frac_pi_3, pi / 3f16); - assert_approx_eq!(frac_pi_4, pi / 4f16); - assert_approx_eq!(frac_pi_6, pi / 6f16); - assert_approx_eq!(frac_pi_8, pi / 8f16); - assert_approx_eq!(frac_1_pi, 1f16 / pi); - assert_approx_eq!(frac_2_pi, 2f16 / pi); - // assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt()); - // assert_approx_eq!(sqrt2, 2f16.sqrt()); - // assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt()); - // assert_approx_eq!(log2_e, e.log2()); - // assert_approx_eq!(log10_e, e.log10()); - // assert_approx_eq!(ln_2, 2f16.ln()); - // assert_approx_eq!(ln_10, 10f16.ln()); + + assert_approx_eq!(frac_pi_2, pi / 2f16, TOL_0); + assert_approx_eq!(frac_pi_3, pi / 3f16, TOL_0); + assert_approx_eq!(frac_pi_4, pi / 4f16, TOL_0); + assert_approx_eq!(frac_pi_6, pi / 6f16, TOL_0); + assert_approx_eq!(frac_pi_8, pi / 8f16, TOL_0); + assert_approx_eq!(frac_1_pi, 1f16 / pi, TOL_0); + assert_approx_eq!(frac_2_pi, 2f16 / pi, TOL_0); + + #[cfg(reliable_f16_math)] + { + let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; + let sqrt2: f16 = consts::SQRT_2; + let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; + let e: f16 = consts::E; + let log2_e: f16 = consts::LOG2_E; + let log10_e: f16 = consts::LOG10_E; + let ln_2: f16 = consts::LN_2; + let ln_10: f16 = consts::LN_10; + + assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt(), TOL_0); + assert_approx_eq!(sqrt2, 2f16.sqrt(), TOL_0); + assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt(), TOL_0); + assert_approx_eq!(log2_e, e.log2(), TOL_0); + assert_approx_eq!(log10_e, e.log10(), TOL_0); + assert_approx_eq!(ln_2, 2f16.ln(), TOL_0); + assert_approx_eq!(ln_10, 10f16.ln(), TOL_0); + } } #[test] @@ -386,10 +780,10 @@ fn test_float_bits_conv() { assert_eq!((12.5f16).to_bits(), 0x4a40); assert_eq!((1337f16).to_bits(), 0x6539); assert_eq!((-14.25f16).to_bits(), 0xcb20); - assert_approx_eq!(f16::from_bits(0x3c00), 1.0); - assert_approx_eq!(f16::from_bits(0x4a40), 12.5); - assert_approx_eq!(f16::from_bits(0x6539), 1337.0); - assert_approx_eq!(f16::from_bits(0xcb20), -14.25); + assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0); + assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0); + assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4); + assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0); // Check that NaNs roundtrip their bits regardless of signaling-ness let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1; diff --git a/library/std/src/macros.rs b/library/std/src/macros.rs index ba519afc62b07..1b0d7f3dbf2c9 100644 --- a/library/std/src/macros.rs +++ b/library/std/src/macros.rs @@ -382,7 +382,7 @@ macro_rules! assert_approx_eq { let diff = (*a - *b).abs(); assert!( diff < $lim, - "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, actual {diff:?})", + "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})", lim = $lim ); }}; diff --git a/library/std/src/sys/cmath.rs b/library/std/src/sys/cmath.rs index 99df503b82de2..2997e908fa1b2 100644 --- a/library/std/src/sys/cmath.rs +++ b/library/std/src/sys/cmath.rs @@ -28,6 +28,21 @@ extern "C" { pub fn lgamma_r(n: f64, s: &mut i32) -> f64; pub fn lgammaf_r(n: f32, s: &mut i32) -> f32; + pub fn acosf128(n: f128) -> f128; + pub fn asinf128(n: f128) -> f128; + pub fn atanf128(n: f128) -> f128; + pub fn atan2f128(a: f128, b: f128) -> f128; + pub fn cbrtf128(n: f128) -> f128; + pub fn coshf128(n: f128) -> f128; + pub fn expm1f128(n: f128) -> f128; + pub fn hypotf128(x: f128, y: f128) -> f128; + pub fn log1pf128(n: f128) -> f128; + pub fn sinhf128(n: f128) -> f128; + pub fn tanf128(n: f128) -> f128; + pub fn tanhf128(n: f128) -> f128; + pub fn tgammaf128(n: f128) -> f128; + pub fn lgammaf128_r(n: f128, s: &mut i32) -> f128; + cfg_if::cfg_if! { if #[cfg(not(all(target_os = "windows", target_env = "msvc", target_arch = "x86")))] { pub fn acosf(n: f32) -> f32; diff --git a/src/tools/tidy/src/allowed_run_make_makefiles.txt b/src/tools/tidy/src/allowed_run_make_makefiles.txt index a2cfdea712e7c..ce8a4030130b5 100644 --- a/src/tools/tidy/src/allowed_run_make_makefiles.txt +++ b/src/tools/tidy/src/allowed_run_make_makefiles.txt @@ -1,6 +1,5 @@ run-make/branch-protection-check-IBT/Makefile run-make/cat-and-grep-sanity-check/Makefile -run-make/cross-lang-lto-upstream-rlibs/Makefile run-make/dep-info-doesnt-run-much/Makefile run-make/dep-info-spaces/Makefile run-make/dep-info/Makefile @@ -13,8 +12,6 @@ run-make/libs-through-symlinks/Makefile run-make/libtest-json/Makefile run-make/libtest-junit/Makefile run-make/libtest-thread-limit/Makefile -run-make/long-linker-command-lines-cmd-exe/Makefile -run-make/long-linker-command-lines/Makefile run-make/macos-deployment-target/Makefile run-make/min-global-align/Makefile run-make/native-link-modifier-bundle/Makefile @@ -22,9 +19,6 @@ run-make/no-alloc-shim/Makefile run-make/pdb-buildinfo-cl-cmd/Makefile run-make/pgo-gen-lto/Makefile run-make/pgo-indirect-call-promotion/Makefile -run-make/raw-dylib-alt-calling-convention/Makefile -run-make/raw-dylib-c/Makefile -run-make/redundant-libs/Makefile run-make/remap-path-prefix-dwarf/Makefile run-make/reproducible-build/Makefile run-make/rlib-format-packed-bundled-libs/Makefile diff --git a/tests/codegen/sse42-implies-crc32.rs b/tests/codegen/sse42-implies-crc32.rs index 94fcd77bc8842..8a9c496a3a541 100644 --- a/tests/codegen/sse42-implies-crc32.rs +++ b/tests/codegen/sse42-implies-crc32.rs @@ -12,4 +12,4 @@ pub unsafe fn crc32sse(v: u8) -> u32 { _mm_crc32_u8(out, v) } -// CHECK: attributes #0 {{.*"target-features"=".*\+sse4.2,\+crc32"}} +// CHECK: attributes #0 {{.*"target-features"=".*\+sse4.2,\+crc32.*"}} diff --git a/tests/codegen/target-feature-overrides.rs b/tests/codegen/target-feature-overrides.rs index 1e2c364dbbc9a..f38a1ae72de5d 100644 --- a/tests/codegen/target-feature-overrides.rs +++ b/tests/codegen/target-feature-overrides.rs @@ -1,7 +1,7 @@ //@ revisions: COMPAT INCOMPAT //@ needs-llvm-components: x86 //@ compile-flags: --target=x86_64-unknown-linux-gnu -Copt-level=3 -//@ [COMPAT] compile-flags: -Ctarget-feature=+avx2,+avx +//@ [COMPAT] compile-flags: -Ctarget-feature=+avx2 //@ [INCOMPAT] compile-flags: -Ctarget-feature=-avx2,-avx // See also tests/assembly/target-feature-multiple.rs @@ -39,8 +39,8 @@ pub unsafe fn banana() -> u32 { } // CHECK: attributes [[APPLEATTRS]] -// COMPAT-SAME: "target-features"="+avx2,+avx,+avx" -// INCOMPAT-SAME: "target-features"="-avx2,-avx,+avx" +// COMPAT-SAME: "target-features"="+avx,+avx2,{{.*}}" +// INCOMPAT-SAME: "target-features"="-avx2,-avx,+avx,{{.*}}" // CHECK: attributes [[BANANAATTRS]] -// COMPAT-SAME: "target-features"="+avx2,+avx" +// COMPAT-SAME: "target-features"="+avx,+avx2,{{.*}}" // INCOMPAT-SAME: "target-features"="-avx2,-avx" diff --git a/tests/codegen/tied-features-strength.rs b/tests/codegen/tied-features-strength.rs index 7f0805bc1b435..1b4596ae2cb57 100644 --- a/tests/codegen/tied-features-strength.rs +++ b/tests/codegen/tied-features-strength.rs @@ -8,7 +8,7 @@ // is LLVM-14 we can remove the optional regex matching for this feature. //@ [ENABLE_SVE] compile-flags: -C target-feature=+sve -Copt-level=0 -// ENABLE_SVE: attributes #0 = { {{.*}} "target-features"="{{((\+outline-atomics,?)|(\+v8a,?)?|(\+sve,?)|(\+neon,?))*}}" } +// ENABLE_SVE: attributes #0 = { {{.*}} "target-features"="{{((\+outline-atomics,?)|(\+v8a,?)?|(\+sve,?)|(\+neon,?)|(\+fp-armv8,?))*}}" } //@ [DISABLE_SVE] compile-flags: -C target-feature=-sve -Copt-level=0 // DISABLE_SVE: attributes #0 = { {{.*}} "target-features"="{{((\+outline-atomics,?)|(\+v8a,?)?|(-sve,?)|(\+neon,?))*}}" } diff --git a/tests/run-make/cross-lang-lto-upstream-rlibs/Makefile b/tests/run-make/cross-lang-lto-upstream-rlibs/Makefile deleted file mode 100644 index 6f1caa31a8061..0000000000000 --- a/tests/run-make/cross-lang-lto-upstream-rlibs/Makefile +++ /dev/null @@ -1,32 +0,0 @@ -include ../tools.mk - -# ignore windows due to libLLVM being present in PATH and the PATH and library path being the same -# (so fixing it is harder). See #57765 for context -ifndef IS_WINDOWS - -# This test makes sure that we don't loose upstream object files when compiling -# staticlibs with -C linker-plugin-lto - -all: staticlib.rs upstream.rs - $(RUSTC) upstream.rs -C linker-plugin-lto -Ccodegen-units=1 - - # Check No LTO - $(RUSTC) staticlib.rs -C linker-plugin-lto -Ccodegen-units=1 -L. -o $(TMPDIR)/staticlib.a - (cd $(TMPDIR); "$(LLVM_BIN_DIR)"/llvm-ar x ./staticlib.a) - # Make sure the upstream object file was included - ls $(TMPDIR)/upstream.*.rcgu.o - - # Cleanup - rm $(TMPDIR)/* - - # Check ThinLTO - $(RUSTC) upstream.rs -C linker-plugin-lto -Ccodegen-units=1 -Clto=thin - $(RUSTC) staticlib.rs -C linker-plugin-lto -Ccodegen-units=1 -Clto=thin -L. -o $(TMPDIR)/staticlib.a - (cd $(TMPDIR); "$(LLVM_BIN_DIR)"/llvm-ar x ./staticlib.a) - ls $(TMPDIR)/upstream.*.rcgu.o - -else - -all: - -endif diff --git a/tests/run-make/cross-lang-lto-upstream-rlibs/rmake.rs b/tests/run-make/cross-lang-lto-upstream-rlibs/rmake.rs new file mode 100644 index 0000000000000..f0b8fa75bee3e --- /dev/null +++ b/tests/run-make/cross-lang-lto-upstream-rlibs/rmake.rs @@ -0,0 +1,57 @@ +// When using the flag -C linker-plugin-lto, static libraries could lose their upstream object +// files during compilation. This bug was fixed in #53031, and this test compiles a staticlib +// dependent on upstream, checking that the upstream object file still exists after no LTO and +// thin LTO. +// See https://github.com/rust-lang/rust/pull/53031 + +use run_make_support::{ + cwd, has_extension, has_prefix, has_suffix, llvm_ar, rfs, rustc, shallow_find_files, + static_lib_name, +}; + +fn main() { + // The test starts with no LTO enabled. + rustc().input("upstream.rs").arg("-Clinker-plugin-lto").codegen_units(1).run(); + rustc() + .input("staticlib.rs") + .arg("-Clinker-plugin-lto") + .codegen_units(1) + .output(static_lib_name("staticlib")) + .run(); + llvm_ar().extract().arg(static_lib_name("staticlib")).run(); + // Ensure the upstream object file was included. + assert_eq!( + shallow_find_files(cwd(), |path| { + has_prefix(path, "upstream.") && has_suffix(path, ".rcgu.o") + }) + .len(), + 1 + ); + // Remove all output files that are not source Rust code for cleanup. + for file in shallow_find_files(cwd(), |path| !has_extension(path, "rs")) { + rfs::remove_file(file) + } + + // Check it again, with Thin LTO. + rustc() + .input("upstream.rs") + .arg("-Clinker-plugin-lto") + .codegen_units(1) + .arg("-Clto=thin") + .run(); + rustc() + .input("staticlib.rs") + .arg("-Clinker-plugin-lto") + .codegen_units(1) + .arg("-Clto=thin") + .output(static_lib_name("staticlib")) + .run(); + llvm_ar().extract().arg(static_lib_name("staticlib")).run(); + assert_eq!( + shallow_find_files(cwd(), |path| { + has_prefix(path, "upstream.") && has_suffix(path, ".rcgu.o") + }) + .len(), + 1 + ); +} diff --git a/tests/run-make/link-args-order/rmake.rs b/tests/run-make/link-args-order/rmake.rs index d238ad23f27c7..b7ef8333267f2 100644 --- a/tests/run-make/link-args-order/rmake.rs +++ b/tests/run-make/link-args-order/rmake.rs @@ -3,15 +3,14 @@ // checks that linker arguments remain intact and in the order they were originally passed in. // See https://github.com/rust-lang/rust/pull/70665 -//@ ignore-msvc -// Reason: the ld linker does not exist on Windows. - -use run_make_support::rustc; +use run_make_support::{is_msvc, rustc}; fn main() { + let linker = if is_msvc() { "msvc" } else { "ld" }; + rustc() .input("empty.rs") - .linker_flavor("ld") + .linker_flavor(linker) .link_arg("a") .link_args("b c") .link_args("d e") @@ -20,7 +19,7 @@ fn main() { .assert_stderr_contains(r#""a" "b" "c" "d" "e" "f""#); rustc() .input("empty.rs") - .linker_flavor("ld") + .linker_flavor(linker) .arg("-Zpre-link-arg=a") .arg("-Zpre-link-args=b c") .arg("-Zpre-link-args=d e") diff --git a/tests/run-make/long-linker-command-lines-cmd-exe/Makefile b/tests/run-make/long-linker-command-lines-cmd-exe/Makefile deleted file mode 100644 index e43aab7f8e0fd..0000000000000 --- a/tests/run-make/long-linker-command-lines-cmd-exe/Makefile +++ /dev/null @@ -1,7 +0,0 @@ -# ignore-cross-compile -include ../tools.mk - -all: - $(RUSTC) foo.rs -g - cp foo.bat $(TMPDIR)/ - OUT_DIR="$(TMPDIR)" RUSTC="$(RUSTC_ORIGINAL)" $(call RUN,foo) diff --git a/tests/run-make/long-linker-command-lines-cmd-exe/foo.rs b/tests/run-make/long-linker-command-lines-cmd-exe/foo.rs index 1d5202dcdb493..a28cc7909fefb 100644 --- a/tests/run-make/long-linker-command-lines-cmd-exe/foo.rs +++ b/tests/run-make/long-linker-command-lines-cmd-exe/foo.rs @@ -1,16 +1,3 @@ -// Like the `long-linker-command-lines` test this test attempts to blow -// a command line limit for running the linker. Unlike that test, however, -// this test is testing `cmd.exe` specifically rather than the OS. -// -// Unfortunately `cmd.exe` has a 8192 limit which is relatively small -// in the grand scheme of things and anyone sripting rustc's linker -// is probably using a `*.bat` script and is likely to hit this limit. -// -// This test uses a `foo.bat` script as the linker which just simply -// delegates back to this program. The compiler should use a lower -// limit for arguments before passing everything via `@`, which -// means that everything should still succeed here. - use std::env; use std::fs::{self, File}; use std::io::{BufWriter, Read, Write}; @@ -18,13 +5,8 @@ use std::path::PathBuf; use std::process::Command; fn main() { - if !cfg!(windows) { - return; - } - - let tmpdir = PathBuf::from(env::var_os("OUT_DIR").unwrap()); - let ok = tmpdir.join("ok"); - let not_ok = tmpdir.join("not_ok"); + let ok = PathBuf::from("ok"); + let not_ok = PathBuf::from("not_ok"); if env::var("YOU_ARE_A_LINKER").is_ok() { match env::args_os().find(|a| a.to_string_lossy().contains("@")) { Some(file) => { @@ -45,7 +27,7 @@ fn main() { for i in (1..).map(|i| i * 10) { println!("attempt: {}", i); - let file = tmpdir.join("bar.rs"); + let file = PathBuf::from("bar.rs"); let mut f = BufWriter::new(File::create(&file).unwrap()); let mut lib_name = String::new(); for _ in 0..i { @@ -63,8 +45,6 @@ fn main() { .arg(&file) .arg("-C") .arg(&bat_linker) - .arg("--out-dir") - .arg(&tmpdir) .env("YOU_ARE_A_LINKER", "1") .env("MY_LINKER", &me) .status() diff --git a/tests/run-make/long-linker-command-lines-cmd-exe/rmake.rs b/tests/run-make/long-linker-command-lines-cmd-exe/rmake.rs new file mode 100644 index 0000000000000..60ed2c5bcd203 --- /dev/null +++ b/tests/run-make/long-linker-command-lines-cmd-exe/rmake.rs @@ -0,0 +1,26 @@ +// Like the `long-linker-command-lines` test this test attempts to blow +// a command line limit for running the linker. Unlike that test, however, +// this test is testing `cmd.exe` specifically rather than the OS. +// +// Unfortunately, the maximum length of the string that you can use at the +// command prompt (`cmd.exe`) is 8191 characters. +// Anyone scripting rustc's linker +// is probably using a `*.bat` script and is likely to hit this limit. +// +// This test uses a `foo.bat` script as the linker which just simply +// delegates back to this program. The compiler should use a lower +// limit for arguments before passing everything via `@`, which +// means that everything should still succeed here. +// See https://github.com/rust-lang/rust/pull/47507 + +//@ ignore-cross-compile +// Reason: the compiled binary is executed +//@ only-windows +// Reason: this test is specific to Windows executables + +use run_make_support::{run, rustc}; + +fn main() { + rustc().input("foo.rs").arg("-g").run(); + run("foo"); +} diff --git a/tests/run-make/long-linker-command-lines/Makefile b/tests/run-make/long-linker-command-lines/Makefile deleted file mode 100644 index b573038e344aa..0000000000000 --- a/tests/run-make/long-linker-command-lines/Makefile +++ /dev/null @@ -1,8 +0,0 @@ -# ignore-cross-compile -include ../tools.mk - -export LD_LIBRARY_PATH := $(HOST_RPATH_DIR) - -all: - $(RUSTC) foo.rs -g -O - RUSTC="$(RUSTC_ORIGINAL)" $(call RUN,foo) diff --git a/tests/run-make/long-linker-command-lines/foo.rs b/tests/run-make/long-linker-command-lines/foo.rs index 9d4a701ad8769..5b30c06fac9e0 100644 --- a/tests/run-make/long-linker-command-lines/foo.rs +++ b/tests/run-make/long-linker-command-lines/foo.rs @@ -1,12 +1,3 @@ -// This is a test which attempts to blow out the system limit with how many -// arguments can be passed to a process. This'll successively call rustc with -// larger and larger argument lists in an attempt to find one that's way too -// big for the system at hand. This file itself is then used as a "linker" to -// detect when the process creation succeeds. -// -// Eventually we should see an argument that looks like `@` as we switch from -// passing literal arguments to passing everything in the file. - use std::collections::HashSet; use std::env; use std::fs::{self, File}; @@ -43,8 +34,7 @@ fn read_linker_args(path: &Path) -> String { } fn main() { - let tmpdir = PathBuf::from(env::var_os("TMPDIR").unwrap()); - let ok = tmpdir.join("ok"); + let ok = PathBuf::from("ok"); if env::var("YOU_ARE_A_LINKER").is_ok() { if let Some(file) = env::args_os().find(|a| a.to_string_lossy().contains("@")) { let file = file.to_str().expect("non-utf8 file argument"); @@ -53,11 +43,11 @@ fn main() { return; } - let rustc = env::var_os("RUSTC").unwrap_or("rustc".into()); + let rustc = env::var_os("RUSTC").unwrap(); let me_as_linker = format!("linker={}", env::current_exe().unwrap().display()); for i in (1..).map(|i| i * 100) { println!("attempt: {}", i); - let file = tmpdir.join("bar.rs"); + let file = PathBuf::from("bar.rs"); let mut expected_libs = write_test_case(&file, i); drop(fs::remove_file(&ok)); @@ -65,8 +55,6 @@ fn main() { .arg(&file) .arg("-C") .arg(&me_as_linker) - .arg("--out-dir") - .arg(&tmpdir) .env("YOU_ARE_A_LINKER", "1") .output() .unwrap(); diff --git a/tests/run-make/long-linker-command-lines/rmake.rs b/tests/run-make/long-linker-command-lines/rmake.rs new file mode 100644 index 0000000000000..e832d7f03e27e --- /dev/null +++ b/tests/run-make/long-linker-command-lines/rmake.rs @@ -0,0 +1,19 @@ +// This is a test which attempts to blow out the system limit with how many +// arguments can be passed to a process. This'll successively call rustc with +// larger and larger argument lists in an attempt to find one that's way too +// big for the system at hand. This file itself is then used as a "linker" to +// detect when the process creation succeeds. +// +// Eventually we should see an argument that looks like `@` as we switch from +// passing literal arguments to passing everything in the file. +// See https://github.com/rust-lang/rust/issues/41190 + +//@ ignore-cross-compile +// Reason: the compiled binary is executed + +use run_make_support::{run, rustc}; + +fn main() { + rustc().input("foo.rs").arg("-g").opt().run(); + run("foo"); +} diff --git a/tests/run-make/raw-dylib-alt-calling-convention/Makefile b/tests/run-make/raw-dylib-alt-calling-convention/Makefile deleted file mode 100644 index 14d23a5d20106..0000000000000 --- a/tests/run-make/raw-dylib-alt-calling-convention/Makefile +++ /dev/null @@ -1,24 +0,0 @@ -# Test the behavior of #[link(.., kind = "raw-dylib")] with alternative calling conventions. - -# only-x86 -# only-windows - -include ../tools.mk - -all: - $(RUSTC) --crate-type lib --crate-name raw_dylib_alt_calling_convention_test lib.rs - $(RUSTC) --crate-type bin driver.rs -L "$(TMPDIR)" - $(call COMPILE_OBJ,"$(TMPDIR)"/extern.obj,extern.c) -ifdef IS_MSVC - $(CC) "$(TMPDIR)"/extern.obj -link -dll -out:"$(TMPDIR)"/extern.dll -noimplib -else - $(CC) "$(TMPDIR)"/extern.obj -shared -o "$(TMPDIR)"/extern.dll -endif - - "$(TMPDIR)"/driver > "$(TMPDIR)"/output.txt - $(RUSTC_TEST_OP) "$(TMPDIR)"/output.txt output.txt - -ifdef IS_MSVC - "$(TMPDIR)"/driver true > "$(TMPDIR)"/output.msvc.txt - $(RUSTC_TEST_OP) "$(TMPDIR)"/output.msvc.txt output.msvc.txt -endif diff --git a/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs b/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs new file mode 100644 index 0000000000000..1a1622f275421 --- /dev/null +++ b/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs @@ -0,0 +1,32 @@ +// `raw-dylib` is a Windows-specific attribute which emits idata sections for the items in the +// attached extern block, +// so they may be linked against without linking against an import library. +// To learn more, read https://github.com/rust-lang/rfcs/blob/master/text/2627-raw-dylib-kind.md +// This test uses this feature alongside alternative calling conventions, checking that both +// features are compatible and result in the expected output upon execution of the binary. +// See https://github.com/rust-lang/rust/pull/84171 + +//@ only-x86 +//@ only-windows + +use run_make_support::{build_native_dynamic_lib, diff, is_msvc, run, run_with_args, rustc}; + +fn main() { + rustc() + .crate_type("lib") + .crate_name("raw_dylib_alt_calling_convention_test") + .input("lib.rs") + .run(); + rustc().crate_type("bin").input("driver.rs").run(); + build_native_dynamic_lib("extern"); + let out = run("driver").stdout_utf8(); + diff().expected_file("output.txt").actual_text("actual", out).normalize(r#"\r"#, "").run(); + if is_msvc() { + let out_msvc = run_with_args("driver", &["true"]).stdout_utf8(); + diff() + .expected_file("output.msvc.txt") + .actual_text("actual", out_msvc) + .normalize(r#"\r"#, "") + .run(); + } +} diff --git a/tests/run-make/raw-dylib-c/Makefile b/tests/run-make/raw-dylib-c/Makefile deleted file mode 100644 index af5c4a6edd7ba..0000000000000 --- a/tests/run-make/raw-dylib-c/Makefile +++ /dev/null @@ -1,28 +0,0 @@ -# Test the behavior of #[link(.., kind = "raw-dylib")] on windows-msvc - -# only-windows - -include ../tools.mk - -all: - $(RUSTC) --crate-type lib --crate-name raw_dylib_test lib.rs - $(RUSTC) --crate-type bin driver.rs -L "$(TMPDIR)" - $(RUSTC) --crate-type bin --crate-name raw_dylib_test_bin lib.rs - $(call COMPILE_OBJ,"$(TMPDIR)"/extern_1.obj,extern_1.c) - $(call COMPILE_OBJ,"$(TMPDIR)"/extern_2.obj,extern_2.c) -ifdef IS_MSVC - $(CC) "$(TMPDIR)"/extern_1.obj -link -dll -out:"$(TMPDIR)"/extern_1.dll -noimplib - $(CC) "$(TMPDIR)"/extern_2.obj -link -dll -out:"$(TMPDIR)"/extern_2.dll -noimplib -else - $(CC) "$(TMPDIR)"/extern_1.obj -shared -o "$(TMPDIR)"/extern_1.dll - $(CC) "$(TMPDIR)"/extern_2.obj -shared -o "$(TMPDIR)"/extern_2.dll -endif - "$(TMPDIR)"/driver | tr -d '\r' > "$(TMPDIR)"/output.txt - "$(TMPDIR)"/raw_dylib_test_bin > "$(TMPDIR)"/output_bin.txt - -ifdef RUSTC_BLESS_TEST - cp "$(TMPDIR)"/output.txt output.txt -else - $(DIFF) output.txt "$(TMPDIR)"/output.txt - $(DIFF) output.txt "$(TMPDIR)"/output_bin.txt -endif diff --git a/tests/run-make/raw-dylib-c/rmake.rs b/tests/run-make/raw-dylib-c/rmake.rs new file mode 100644 index 0000000000000..3cfd8cb400bbf --- /dev/null +++ b/tests/run-make/raw-dylib-c/rmake.rs @@ -0,0 +1,29 @@ +// `raw-dylib` is a Windows-specific attribute which emits idata sections for the items in the +// attached extern block, +// so they may be linked against without linking against an import library. +// To learn more, read https://github.com/rust-lang/rfcs/blob/master/text/2627-raw-dylib-kind.md +// This test is the simplest of the raw-dylib tests, simply smoke-testing that the feature +// can be used to build an executable binary with an expected output with native C files +// compiling into dynamic libraries. +// See https://github.com/rust-lang/rust/pull/86419 + +//@ only-windows + +use run_make_support::{build_native_dynamic_lib, diff, run, rustc}; + +fn main() { + rustc().crate_type("lib").crate_name("raw_dylib_test").input("lib.rs").run(); + rustc().crate_type("bin").input("driver.rs").run(); + rustc().crate_type("bin").crate_name("raw_dylib_test_bin").input("lib.rs").run(); + build_native_dynamic_lib("extern_1"); + build_native_dynamic_lib("extern_2"); + let out_driver = run("driver").stdout_utf8(); + let out_raw = run("raw_dylib_test_bin").stdout_utf8(); + + diff() + .expected_file("output.txt") + .actual_text("actual", out_driver) + .normalize(r#"\r"#, "") + .run(); + diff().expected_file("output.txt").actual_text("actual", out_raw).normalize(r#"\r"#, "").run(); +} diff --git a/tests/run-make/redundant-libs/Makefile b/tests/run-make/redundant-libs/Makefile deleted file mode 100644 index 0a48b2b280136..0000000000000 --- a/tests/run-make/redundant-libs/Makefile +++ /dev/null @@ -1,24 +0,0 @@ -# ignore-cross-compile -include ../tools.mk - -# ignore-windows-msvc - -# rustc will remove one of the two redundant references to foo below. Depending -# on which one gets removed, we'll get a linker error on SOME platforms (like -# Linux). On these platforms, when a library is referenced, the linker will -# only pull in the symbols needed _at that point in time_. If a later library -# depends on additional symbols from the library, they will not have been pulled -# in, and you'll get undefined symbols errors. -# -# So in this example, we need to ensure that rustc keeps the _later_ reference -# to foo, and not the former one. -RUSTC_FLAGS = \ - -l static=bar \ - -l foo \ - -l static=baz \ - -l foo \ - --print link-args - -all: $(call DYLIB,foo) $(call STATICLIB,bar) $(call STATICLIB,baz) - $(RUSTC) $(RUSTC_FLAGS) main.rs - $(call RUN,main) diff --git a/tests/run-make/redundant-libs/rmake.rs b/tests/run-make/redundant-libs/rmake.rs new file mode 100644 index 0000000000000..fb1b3bca8ade3 --- /dev/null +++ b/tests/run-make/redundant-libs/rmake.rs @@ -0,0 +1,34 @@ +// rustc will remove one of the two redundant references to foo below. Depending +// on which one gets removed, we'll get a linker error on SOME platforms (like +// Linux). On these platforms, when a library is referenced, the linker will +// only pull in the symbols needed _at that point in time_. If a later library +// depends on additional symbols from the library, they will not have been pulled +// in, and you'll get undefined symbols errors. +// +// So in this example, we need to ensure that rustc keeps the _later_ reference +// to foo, and not the former one. + +//@ ignore-cross-compile +// Reason: the compiled binary is executed +//@ ignore-windows-msvc +// Reason: this test links libraries via link.exe, which only accepts the import library +// for the dynamic library, i.e. `foo.dll.lib`. However, build_native_dynamic_lib only +// produces `foo.dll` - the dynamic library itself. To make this test work on MSVC, one +// would need to derive the import library from the dynamic library. +// See https://stackoverflow.com/questions/9360280/ + +use run_make_support::{ + build_native_dynamic_lib, build_native_static_lib, cwd, is_msvc, rfs, run, rustc, +}; + +fn main() { + build_native_dynamic_lib("foo"); + build_native_static_lib("bar"); + build_native_static_lib("baz"); + rustc() + .args(&["-lstatic=bar", "-lfoo", "-lstatic=baz", "-lfoo"]) + .input("main.rs") + .print("link-args") + .run(); + run("main"); +} diff --git a/tests/run-make/rust-lld/rmake.rs b/tests/run-make/rust-lld/rmake.rs index 87477c122301d..d0bc19130d7cb 100644 --- a/tests/run-make/rust-lld/rmake.rs +++ b/tests/run-make/rust-lld/rmake.rs @@ -2,15 +2,17 @@ // see https://github.com/rust-lang/compiler-team/issues/510 for more info //@ needs-rust-lld -//@ ignore-msvc //@ ignore-s390x lld does not yet support s390x as target use std::process::Output; use run_make_support::regex::Regex; -use run_make_support::rustc; +use run_make_support::{is_msvc, rustc}; fn main() { + // lld-link is used if msvc, otherwise a gnu-compatible lld is used. + let linker_version_flag = if is_msvc() { "--version" } else { "-Wl,-v" }; + // Opt-in to lld and the self-contained linker, to link with rust-lld. We'll check that by // asking the linker to display its version number with a link-arg. let output = rustc() @@ -18,7 +20,7 @@ fn main() { .arg("-Zlinker-features=+lld") .arg("-Clink-self-contained=+linker") .arg("-Zunstable-options") - .link_arg("-Wl,-v") + .link_arg(linker_version_flag) .input("main.rs") .run(); assert!( @@ -27,10 +29,10 @@ fn main() { output.stderr_utf8() ); - // It should not be used when we explictly opt-out of lld. + // It should not be used when we explicitly opt-out of lld. let output = rustc() .env("RUSTC_LOG", "rustc_codegen_ssa::back::link=info") - .link_arg("-Wl,-v") + .link_arg(linker_version_flag) .arg("-Zlinker-features=-lld") .input("main.rs") .run(); @@ -44,7 +46,7 @@ fn main() { // times to rustc. let output = rustc() .env("RUSTC_LOG", "rustc_codegen_ssa::back::link=info") - .link_arg("-Wl,-v") + .link_arg(linker_version_flag) .arg("-Clink-self-contained=+linker") .arg("-Zunstable-options") .arg("-Zlinker-features=-lld") diff --git a/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.rs b/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.rs index de002ef71d7d3..fec4e75290fc8 100644 --- a/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.rs +++ b/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.rs @@ -34,6 +34,7 @@ fn foo() { #[target_feature(enable = "sse2")] fn bar() { + sse2(); avx_bmi2(); //~^ ERROR call to function `avx_bmi2` with `#[target_feature]` is unsafe Quux.avx_bmi2(); @@ -43,7 +44,6 @@ fn bar() { #[target_feature(enable = "avx")] fn baz() { sse2(); - //~^ ERROR call to function `sse2` with `#[target_feature]` is unsafe avx_bmi2(); //~^ ERROR call to function `avx_bmi2` with `#[target_feature]` is unsafe Quux.avx_bmi2(); @@ -54,7 +54,8 @@ fn baz() { #[target_feature(enable = "bmi2")] fn qux() { sse2(); - //~^ ERROR call to function `sse2` with `#[target_feature]` is unsafe + avx_bmi2(); + Quux.avx_bmi2(); } const _: () = sse2(); @@ -64,8 +65,6 @@ const _: () = sse2_and_fxsr(); //~^ ERROR call to function `sse2_and_fxsr` with `#[target_feature]` is unsafe #[deny(unsafe_op_in_unsafe_fn)] -#[target_feature(enable = "avx")] -#[target_feature(enable = "bmi2")] unsafe fn needs_unsafe_block() { sse2(); //~^ ERROR call to function `sse2` with `#[target_feature]` is unsafe diff --git a/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.stderr b/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.stderr index 537819ab8595c..1ddf05b40a606 100644 --- a/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.stderr +++ b/tests/ui/rfcs/rfc-2396-target_feature-11/safe-calls.stderr @@ -24,7 +24,7 @@ LL | Quux.avx_bmi2(); = help: in order for the call to be safe, the context requires the following additional target features: avx and bmi2 error[E0133]: call to function `avx_bmi2` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:37:5 + --> $DIR/safe-calls.rs:38:5 | LL | avx_bmi2(); | ^^^^^^^^^^ call to function with `#[target_feature]` @@ -32,22 +32,13 @@ LL | avx_bmi2(); = help: in order for the call to be safe, the context requires the following additional target features: avx and bmi2 error[E0133]: call to function `Quux::avx_bmi2` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:39:5 + --> $DIR/safe-calls.rs:40:5 | LL | Quux.avx_bmi2(); | ^^^^^^^^^^^^^^^ call to function with `#[target_feature]` | = help: in order for the call to be safe, the context requires the following additional target features: avx and bmi2 -error[E0133]: call to function `sse2` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:45:5 - | -LL | sse2(); - | ^^^^^^ call to function with `#[target_feature]` - | - = help: in order for the call to be safe, the context requires the following additional target feature: sse2 - = note: the sse2 target feature being enabled in the build configuration does not remove the requirement to list it in `#[target_feature]` - error[E0133]: call to function `avx_bmi2` with `#[target_feature]` is unsafe and requires unsafe function or block --> $DIR/safe-calls.rs:47:5 | @@ -65,16 +56,7 @@ LL | Quux.avx_bmi2(); = help: in order for the call to be safe, the context requires the following additional target feature: bmi2 error[E0133]: call to function `sse2` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:56:5 - | -LL | sse2(); - | ^^^^^^ call to function with `#[target_feature]` - | - = help: in order for the call to be safe, the context requires the following additional target feature: sse2 - = note: the sse2 target feature being enabled in the build configuration does not remove the requirement to list it in `#[target_feature]` - -error[E0133]: call to function `sse2` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:60:15 + --> $DIR/safe-calls.rs:61:15 | LL | const _: () = sse2(); | ^^^^^^ call to function with `#[target_feature]` @@ -83,7 +65,7 @@ LL | const _: () = sse2(); = note: the sse2 target feature being enabled in the build configuration does not remove the requirement to list it in `#[target_feature]` error[E0133]: call to function `sse2_and_fxsr` with `#[target_feature]` is unsafe and requires unsafe function or block - --> $DIR/safe-calls.rs:63:15 + --> $DIR/safe-calls.rs:64:15 | LL | const _: () = sse2_and_fxsr(); | ^^^^^^^^^^^^^^^ call to function with `#[target_feature]` @@ -92,7 +74,7 @@ LL | const _: () = sse2_and_fxsr(); = note: the fxsr and sse2 target features being enabled in the build configuration does not remove the requirement to list them in `#[target_feature]` error[E0133]: call to function `sse2` with `#[target_feature]` is unsafe and requires unsafe block - --> $DIR/safe-calls.rs:70:5 + --> $DIR/safe-calls.rs:69:5 | LL | sse2(); | ^^^^^^ call to function with `#[target_feature]` @@ -101,16 +83,16 @@ LL | sse2(); = help: in order for the call to be safe, the context requires the following additional target feature: sse2 = note: the sse2 target feature being enabled in the build configuration does not remove the requirement to list it in `#[target_feature]` note: an unsafe function restricts its caller, but its body is safe by default - --> $DIR/safe-calls.rs:69:1 + --> $DIR/safe-calls.rs:68:1 | LL | unsafe fn needs_unsafe_block() { | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ note: the lint level is defined here - --> $DIR/safe-calls.rs:66:8 + --> $DIR/safe-calls.rs:67:8 | LL | #[deny(unsafe_op_in_unsafe_fn)] | ^^^^^^^^^^^^^^^^^^^^^^ -error: aborting due to 12 previous errors +error: aborting due to 10 previous errors For more information about this error, try `rustc --explain E0133`. diff --git a/tests/ui/target-feature/asm-implied-features-issue-128125.rs b/tests/ui/target-feature/asm-implied-features-issue-128125.rs new file mode 100644 index 0000000000000..2b4f1d7df8563 --- /dev/null +++ b/tests/ui/target-feature/asm-implied-features-issue-128125.rs @@ -0,0 +1,10 @@ +//@ only-x86_64 +//@ build-pass +#![allow(dead_code)] + +#[target_feature(enable = "avx2")] +unsafe fn demo(v: std::arch::x86_64::__m256i) { + std::arch::asm!("/* {v} */", v = in(ymm_reg) v); +} + +fn main() {} diff --git a/tests/ui/target-feature/implied-features.rs b/tests/ui/target-feature/implied-features.rs new file mode 100644 index 0000000000000..4fdd843e6c289 --- /dev/null +++ b/tests/ui/target-feature/implied-features.rs @@ -0,0 +1,24 @@ +//@ only-x86_64 +//@ build-pass +#![feature(target_feature_11)] +#![allow(dead_code)] + +#[target_feature(enable = "ssse3")] +fn call_ssse3() {} + +#[target_feature(enable = "avx")] +fn call_avx() {} + +#[target_feature(enable = "avx2")] +fn test_avx2() { + call_ssse3(); + call_avx(); +} + +#[target_feature(enable = "fma")] +fn test_fma() { + call_ssse3(); + call_avx(); +} + +fn main() {}