diff --git a/src/librustc_trans/trans/base.rs b/src/librustc_trans/trans/base.rs index a049b9a4e49ff..4879975dde695 100644 --- a/src/librustc_trans/trans/base.rs +++ b/src/librustc_trans/trans/base.rs @@ -2182,7 +2182,7 @@ pub fn create_entry_wrapper(ccx: &CrateContext, unsafe { llvm::LLVMPositionBuilderAtEnd(bld, llbb); - debuginfo::insert_reference_to_gdb_debug_scripts_section_global(ccx); + debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx); let (start_fn, args) = if use_start_lang_item { let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) { diff --git a/src/librustc_trans/trans/debuginfo/create_scope_map.rs b/src/librustc_trans/trans/debuginfo/create_scope_map.rs new file mode 100644 index 0000000000000..9af22b788b77b --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/create_scope_map.rs @@ -0,0 +1,514 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use super::metadata::file_metadata; +use super::utils::DIB; + +use llvm; +use llvm::debuginfo::{DIScope, DISubprogram}; +use trans::common::CrateContext; +use middle::pat_util; +use util::nodemap::NodeMap; + +use libc::c_uint; +use syntax::codemap::{Span, Pos}; +use syntax::{ast, codemap, ast_util}; + +// This procedure builds the *scope map* for a given function, which maps any +// given ast::NodeId in the function's AST to the correct DIScope metadata instance. +// +// This builder procedure walks the AST in execution order and keeps track of +// what belongs to which scope, creating DIScope DIEs along the way, and +// introducing *artificial* lexical scope descriptors where necessary. These +// artificial scopes allow GDB to correctly handle name shadowing. +pub fn create_scope_map(cx: &CrateContext, + args: &[ast::Arg], + fn_entry_block: &ast::Block, + fn_metadata: DISubprogram, + fn_ast_id: ast::NodeId) + -> NodeMap { + let mut scope_map = NodeMap(); + + let def_map = &cx.tcx().def_map; + + let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None }); + scope_map.insert(fn_ast_id, fn_metadata); + + // Push argument identifiers onto the stack so arguments integrate nicely + // with variable shadowing. + for arg in args { + pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| { + scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, + name: Some(path1.node.name) }); + scope_map.insert(node_id, fn_metadata); + }) + } + + // Clang creates a separate scope for function bodies, so let's do this too. + with_new_scope(cx, + fn_entry_block.span, + &mut scope_stack, + &mut scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, fn_entry_block, scope_stack, scope_map); + }); + + return scope_map; +} + +// local helper functions for walking the AST. +fn with_new_scope(cx: &CrateContext, + scope_span: Span, + scope_stack: &mut Vec , + scope_map: &mut NodeMap, + inner_walk: F) where + F: FnOnce(&CrateContext, &mut Vec, &mut NodeMap), +{ + // Create a new lexical scope and push it onto the stack + let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo); + let file_metadata = file_metadata(cx, &loc.file.name); + let parent_scope = scope_stack.last().unwrap().scope_metadata; + + let scope_metadata = unsafe { + llvm::LLVMDIBuilderCreateLexicalBlock( + DIB(cx), + parent_scope, + file_metadata, + loc.line as c_uint, + loc.col.to_usize() as c_uint) + }; + + scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None }); + + inner_walk(cx, scope_stack, scope_map); + + // pop artificial scopes + while scope_stack.last().unwrap().name.is_some() { + scope_stack.pop(); + } + + if scope_stack.last().unwrap().scope_metadata != scope_metadata { + cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management."); + } + + scope_stack.pop(); +} + +struct ScopeStackEntry { + scope_metadata: DIScope, + name: Option +} + +fn walk_block(cx: &CrateContext, + block: &ast::Block, + scope_stack: &mut Vec , + scope_map: &mut NodeMap) { + scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata); + + // The interesting things here are statements and the concluding expression. + for statement in &block.stmts { + scope_map.insert(ast_util::stmt_id(&**statement), + scope_stack.last().unwrap().scope_metadata); + + match statement.node { + ast::StmtDecl(ref decl, _) => + walk_decl(cx, &**decl, scope_stack, scope_map), + ast::StmtExpr(ref exp, _) | + ast::StmtSemi(ref exp, _) => + walk_expr(cx, &**exp, scope_stack, scope_map), + ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway). + } + } + + if let Some(ref exp) = block.expr { + walk_expr(cx, &**exp, scope_stack, scope_map); + } +} + +fn walk_decl(cx: &CrateContext, + decl: &ast::Decl, + scope_stack: &mut Vec , + scope_map: &mut NodeMap) { + match *decl { + codemap::Spanned { node: ast::DeclLocal(ref local), .. } => { + scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata); + + walk_pattern(cx, &*local.pat, scope_stack, scope_map); + + if let Some(ref exp) = local.init { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + } + _ => () + } +} + +fn walk_pattern(cx: &CrateContext, + pat: &ast::Pat, + scope_stack: &mut Vec , + scope_map: &mut NodeMap) { + + let def_map = &cx.tcx().def_map; + + // Unfortunately, we cannot just use pat_util::pat_bindings() or + // ast_util::walk_pat() here because we have to visit *all* nodes in + // order to put them into the scope map. The above functions don't do that. + match pat.node { + ast::PatIdent(_, ref path1, ref sub_pat_opt) => { + + // Check if this is a binding. If so we need to put it on the + // scope stack and maybe introduce an artificial scope + if pat_util::pat_is_binding(def_map, &*pat) { + + let name = path1.node.name; + + // LLVM does not properly generate 'DW_AT_start_scope' fields + // for variable DIEs. For this reason we have to introduce + // an artificial scope at bindings whenever a variable with + // the same name is declared in *any* parent scope. + // + // Otherwise the following error occurs: + // + // let x = 10; + // + // do_something(); // 'gdb print x' correctly prints 10 + // + // { + // do_something(); // 'gdb print x' prints 0, because it + // // already reads the uninitialized 'x' + // // from the next line... + // let x = 100; + // do_something(); // 'gdb print x' correctly prints 100 + // } + + // Is there already a binding with that name? + // N.B.: this comparison must be UNhygienic... because + // gdb knows nothing about the context, so any two + // variables with the same name will cause the problem. + let need_new_scope = scope_stack + .iter() + .any(|entry| entry.name == Some(name)); + + if need_new_scope { + // Create a new lexical scope and push it onto the stack + let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo); + let file_metadata = file_metadata(cx, &loc.file.name); + let parent_scope = scope_stack.last().unwrap().scope_metadata; + + let scope_metadata = unsafe { + llvm::LLVMDIBuilderCreateLexicalBlock( + DIB(cx), + parent_scope, + file_metadata, + loc.line as c_uint, + loc.col.to_usize() as c_uint) + }; + + scope_stack.push(ScopeStackEntry { + scope_metadata: scope_metadata, + name: Some(name) + }); + + } else { + // Push a new entry anyway so the name can be found + let prev_metadata = scope_stack.last().unwrap().scope_metadata; + scope_stack.push(ScopeStackEntry { + scope_metadata: prev_metadata, + name: Some(name) + }); + } + } + + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + if let Some(ref sub_pat) = *sub_pat_opt { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatWild(_) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + } + + ast::PatEnum(_, ref sub_pats_opt) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + if let Some(ref sub_pats) = *sub_pats_opt { + for p in sub_pats { + walk_pattern(cx, &**p, scope_stack, scope_map); + } + } + } + + ast::PatQPath(..) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + } + + ast::PatStruct(_, ref field_pats, _) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for &codemap::Spanned { + node: ast::FieldPat { pat: ref sub_pat, .. }, + .. + } in field_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatTup(ref sub_pats) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pat in sub_pats { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat, _) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + ast::PatLit(ref exp) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + ast::PatRange(ref exp1, ref exp2) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_expr(cx, &**exp1, scope_stack, scope_map); + walk_expr(cx, &**exp2, scope_stack, scope_map); + } + + ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pat in front_sub_pats { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + if let Some(ref sub_pat) = *middle_sub_pats { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + for sub_pat in back_sub_pats { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatMac(_) => { + cx.sess().span_bug(pat.span, "debuginfo::create_scope_map() - \ + Found unexpanded macro."); + } + } +} + +fn walk_expr(cx: &CrateContext, + exp: &ast::Expr, + scope_stack: &mut Vec , + scope_map: &mut NodeMap) { + + scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata); + + match exp.node { + ast::ExprLit(_) | + ast::ExprBreak(_) | + ast::ExprAgain(_) | + ast::ExprPath(..) => {} + + ast::ExprCast(ref sub_exp, _) | + ast::ExprAddrOf(_, ref sub_exp) | + ast::ExprField(ref sub_exp, _) | + ast::ExprTupField(ref sub_exp, _) | + ast::ExprParen(ref sub_exp) => + walk_expr(cx, &**sub_exp, scope_stack, scope_map), + + ast::ExprBox(ref place, ref sub_expr) => { + place.as_ref().map( + |e| walk_expr(cx, &**e, scope_stack, scope_map)); + walk_expr(cx, &**sub_expr, scope_stack, scope_map); + } + + ast::ExprRet(ref exp_opt) => match *exp_opt { + Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), + None => () + }, + + ast::ExprUnary(_, ref sub_exp) => { + walk_expr(cx, &**sub_exp, scope_stack, scope_map); + } + + ast::ExprAssignOp(_, ref lhs, ref rhs) | + ast::ExprIndex(ref lhs, ref rhs) | + ast::ExprBinary(_, ref lhs, ref rhs) => { + walk_expr(cx, &**lhs, scope_stack, scope_map); + walk_expr(cx, &**rhs, scope_stack, scope_map); + } + + ast::ExprRange(ref start, ref end) => { + start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); + end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); + } + + ast::ExprVec(ref init_expressions) | + ast::ExprTup(ref init_expressions) => { + for ie in init_expressions { + walk_expr(cx, &**ie, scope_stack, scope_map); + } + } + + ast::ExprAssign(ref sub_exp1, ref sub_exp2) | + ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => { + walk_expr(cx, &**sub_exp1, scope_stack, scope_map); + walk_expr(cx, &**sub_exp2, scope_stack, scope_map); + } + + ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => { + walk_expr(cx, &**cond_exp, scope_stack, scope_map); + + with_new_scope(cx, + then_block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**then_block, scope_stack, scope_map); + }); + + match *opt_else_exp { + Some(ref else_exp) => + walk_expr(cx, &**else_exp, scope_stack, scope_map), + _ => () + } + } + + ast::ExprIfLet(..) => { + cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ + Found unexpanded if-let."); + } + + ast::ExprWhile(ref cond_exp, ref loop_body, _) => { + walk_expr(cx, &**cond_exp, scope_stack, scope_map); + + with_new_scope(cx, + loop_body.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**loop_body, scope_stack, scope_map); + }) + } + + ast::ExprWhileLet(..) => { + cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ + Found unexpanded while-let."); + } + + ast::ExprForLoop(..) => { + cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ + Found unexpanded for loop."); + } + + ast::ExprMac(_) => { + cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ + Found unexpanded macro."); + } + + ast::ExprLoop(ref block, _) | + ast::ExprBlock(ref block) => { + with_new_scope(cx, + block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**block, scope_stack, scope_map); + }) + } + + ast::ExprClosure(_, ref decl, ref block) => { + with_new_scope(cx, + block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + for &ast::Arg { pat: ref pattern, .. } in &decl.inputs { + walk_pattern(cx, &**pattern, scope_stack, scope_map); + } + + walk_block(cx, &**block, scope_stack, scope_map); + }) + } + + ast::ExprCall(ref fn_exp, ref args) => { + walk_expr(cx, &**fn_exp, scope_stack, scope_map); + + for arg_exp in args { + walk_expr(cx, &**arg_exp, scope_stack, scope_map); + } + } + + ast::ExprMethodCall(_, _, ref args) => { + for arg_exp in args { + walk_expr(cx, &**arg_exp, scope_stack, scope_map); + } + } + + ast::ExprMatch(ref discriminant_exp, ref arms, _) => { + walk_expr(cx, &**discriminant_exp, scope_stack, scope_map); + + // For each arm we have to first walk the pattern as these might + // introduce new artificial scopes. It should be sufficient to + // walk only one pattern per arm, as they all must contain the + // same binding names. + + for arm_ref in arms { + let arm_span = arm_ref.pats[0].span; + + with_new_scope(cx, + arm_span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + for pat in &arm_ref.pats { + walk_pattern(cx, &**pat, scope_stack, scope_map); + } + + if let Some(ref guard_exp) = arm_ref.guard { + walk_expr(cx, &**guard_exp, scope_stack, scope_map) + } + + walk_expr(cx, &*arm_ref.body, scope_stack, scope_map); + }) + } + } + + ast::ExprStruct(_, ref fields, ref base_exp) => { + for &ast::Field { expr: ref exp, .. } in fields { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + match *base_exp { + Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map), + None => () + } + } + + ast::ExprInlineAsm(ast::InlineAsm { ref inputs, + ref outputs, + .. }) => { + // inputs, outputs: Vec<(String, P)> + for &(_, ref exp) in inputs { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + for &(_, ref exp, _) in outputs { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + } + } +} \ No newline at end of file diff --git a/src/librustc_trans/trans/debuginfo/doc.rs b/src/librustc_trans/trans/debuginfo/doc.rs new file mode 100644 index 0000000000000..a91619b2f845a --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/doc.rs @@ -0,0 +1,189 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! # Debug Info Module +//! +//! This module serves the purpose of generating debug symbols. We use LLVM's +//! [source level debugging](http://!llvm.org/docs/SourceLevelDebugging.html) +//! features for generating the debug information. The general principle is +//! this: +//! +//! Given the right metadata in the LLVM IR, the LLVM code generator is able to +//! create DWARF debug symbols for the given code. The +//! [metadata](http://!llvm.org/docs/LangRef.html#metadata-type) is structured +//! much like DWARF *debugging information entries* (DIE), representing type +//! information such as datatype layout, function signatures, block layout, +//! variable location and scope information, etc. It is the purpose of this +//! module to generate correct metadata and insert it into the LLVM IR. +//! +//! As the exact format of metadata trees may change between different LLVM +//! versions, we now use LLVM +//! [DIBuilder](http://!llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) +//! to create metadata where possible. This will hopefully ease the adaption of +//! this module to future LLVM versions. +//! +//! The public API of the module is a set of functions that will insert the +//! correct metadata into the LLVM IR when called with the right parameters. +//! The module is thus driven from an outside client with functions like +//! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`. +//! +//! Internally the module will try to reuse already created metadata by +//! utilizing a cache. The way to get a shared metadata node when needed is +//! thus to just call the corresponding function in this module: +//! +//! let file_metadata = file_metadata(crate_context, path); +//! +//! The function will take care of probing the cache for an existing node for +//! that exact file path. +//! +//! All private state used by the module is stored within either the +//! CrateDebugContext struct (owned by the CrateContext) or the +//! FunctionDebugContext (owned by the FunctionContext). +//! +//! This file consists of three conceptual sections: +//! 1. The public interface of the module +//! 2. Module-internal metadata creation functions +//! 3. Minor utility functions +//! +//! +//! ## Recursive Types +//! +//! Some kinds of types, such as structs and enums can be recursive. That means +//! that the type definition of some type X refers to some other type which in +//! turn (transitively) refers to X. This introduces cycles into the type +//! referral graph. A naive algorithm doing an on-demand, depth-first traversal +//! of this graph when describing types, can get trapped in an endless loop +//! when it reaches such a cycle. +//! +//! For example, the following simple type for a singly-linked list... +//! +//! ``` +//! struct List { +//! value: int, +//! tail: Option>, +//! } +//! ``` +//! +//! will generate the following callstack with a naive DFS algorithm: +//! +//! ``` +//! describe(t = List) +//! describe(t = int) +//! describe(t = Option>) +//! describe(t = Box) +//! describe(t = List) // at the beginning again... +//! ... +//! ``` +//! +//! To break cycles like these, we use "forward declarations". That is, when +//! the algorithm encounters a possibly recursive type (any struct or enum), it +//! immediately creates a type description node and inserts it into the cache +//! *before* describing the members of the type. This type description is just +//! a stub (as type members are not described and added to it yet) but it +//! allows the algorithm to already refer to the type. After the stub is +//! inserted into the cache, the algorithm continues as before. If it now +//! encounters a recursive reference, it will hit the cache and does not try to +//! describe the type anew. +//! +//! This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, +//! which represents a kind of continuation, storing all state needed to +//! continue traversal at the type members after the type has been registered +//! with the cache. (This implementation approach might be a tad over- +//! engineered and may change in the future) +//! +//! +//! ## Source Locations and Line Information +//! +//! In addition to data type descriptions the debugging information must also +//! allow to map machine code locations back to source code locations in order +//! to be useful. This functionality is also handled in this module. The +//! following functions allow to control source mappings: +//! +//! + set_source_location() +//! + clear_source_location() +//! + start_emitting_source_locations() +//! +//! `set_source_location()` allows to set the current source location. All IR +//! instructions created after a call to this function will be linked to the +//! given source location, until another location is specified with +//! `set_source_location()` or the source location is cleared with +//! `clear_source_location()`. In the later case, subsequent IR instruction +//! will not be linked to any source location. As you can see, this is a +//! stateful API (mimicking the one in LLVM), so be careful with source +//! locations set by previous calls. It's probably best to not rely on any +//! specific state being present at a given point in code. +//! +//! One topic that deserves some extra attention is *function prologues*. At +//! the beginning of a function's machine code there are typically a few +//! instructions for loading argument values into allocas and checking if +//! there's enough stack space for the function to execute. This *prologue* is +//! not visible in the source code and LLVM puts a special PROLOGUE END marker +//! into the line table at the first non-prologue instruction of the function. +//! In order to find out where the prologue ends, LLVM looks for the first +//! instruction in the function body that is linked to a source location. So, +//! when generating prologue instructions we have to make sure that we don't +//! emit source location information until the 'real' function body begins. For +//! this reason, source location emission is disabled by default for any new +//! function being translated and is only activated after a call to the third +//! function from the list above, `start_emitting_source_locations()`. This +//! function should be called right before regularly starting to translate the +//! top-level block of the given function. +//! +//! There is one exception to the above rule: `llvm.dbg.declare` instruction +//! must be linked to the source location of the variable being declared. For +//! function parameters these `llvm.dbg.declare` instructions typically occur +//! in the middle of the prologue, however, they are ignored by LLVM's prologue +//! detection. The `create_argument_metadata()` and related functions take care +//! of linking the `llvm.dbg.declare` instructions to the correct source +//! locations even while source location emission is still disabled, so there +//! is no need to do anything special with source location handling here. +//! +//! ## Unique Type Identification +//! +//! In order for link-time optimization to work properly, LLVM needs a unique +//! type identifier that tells it across compilation units which types are the +//! same as others. This type identifier is created by +//! TypeMap::get_unique_type_id_of_type() using the following algorithm: +//! +//! (1) Primitive types have their name as ID +//! (2) Structs, enums and traits have a multipart identifier +//! +//! (1) The first part is the SVH (strict version hash) of the crate they +//! wereoriginally defined in +//! +//! (2) The second part is the ast::NodeId of the definition in their +//! originalcrate +//! +//! (3) The final part is a concatenation of the type IDs of their concrete +//! typearguments if they are generic types. +//! +//! (3) Tuple-, pointer and function types are structurally identified, which +//! means that they are equivalent if their component types are equivalent +//! (i.e. (int, int) is the same regardless in which crate it is used). +//! +//! This algorithm also provides a stable ID for types that are defined in one +//! crate but instantiated from metadata within another crate. We just have to +//! take care to always map crate and node IDs back to the original crate +//! context. +//! +//! As a side-effect these unique type IDs also help to solve a problem arising +//! from lifetime parameters. Since lifetime parameters are completely omitted +//! in debuginfo, more than one `Ty` instance may map to the same debuginfo +//! type metadata, that is, some struct `Struct<'a>` may have N instantiations +//! with different concrete substitutions for `'a`, and thus there will be N +//! `Ty` instances for the type `Struct<'a>` even though it is not generic +//! otherwise. Unfortunately this means that we cannot use `ty::type_id()` as +//! cheap identifier for type metadata---we have done this in the past, but it +//! led to unnecessary metadata duplication in the best case and LLVM +//! assertions in the worst. However, the unique type ID as described above +//! *can* be used as identifier. Since it is comparatively expensive to +//! construct, though, `ty::type_id()` is still used additionally as an +//! optimization for cases where the exact same type has been seen before +//! (which is most of the time). diff --git a/src/librustc_trans/trans/debuginfo/gdb.rs b/src/librustc_trans/trans/debuginfo/gdb.rs new file mode 100644 index 0000000000000..a6f1199d0ffe7 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/gdb.rs @@ -0,0 +1,94 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// .debug_gdb_scripts binary section. + +use llvm; +use llvm::ValueRef; + +use trans::common::{C_bytes, CrateContext}; +use trans::declare; +use trans::type_::Type; +use middle::ty::ClosureTyper; +use session::config::NoDebugInfo; + +use std::ffi::CString; +use std::ptr; +use syntax::attr; + + +/// Inserts a side-effect free instruction sequence that makes sure that the +/// .debug_gdb_scripts global is referenced, so it isn't removed by the linker. +pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext) { + if needs_gdb_debug_scripts_section(ccx) { + let empty = CString::new("").unwrap(); + let gdb_debug_scripts_section_global = + get_or_insert_gdb_debug_scripts_section_global(ccx); + unsafe { + let volative_load_instruction = + llvm::LLVMBuildLoad(ccx.raw_builder(), + gdb_debug_scripts_section_global, + empty.as_ptr()); + llvm::LLVMSetVolatile(volative_load_instruction, llvm::True); + } + } +} + +/// Allocates the global variable responsible for the .debug_gdb_scripts binary +/// section. +pub fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext) + -> llvm::ValueRef { + let section_var_name = "__rustc_debug_gdb_scripts_section__"; + + let section_var = unsafe { + llvm::LLVMGetNamedGlobal(ccx.llmod(), + section_var_name.as_ptr() as *const _) + }; + + if section_var == ptr::null_mut() { + let section_name = b".debug_gdb_scripts\0"; + let section_contents = b"\x01gdb_load_rust_pretty_printers.py\0"; + + unsafe { + let llvm_type = Type::array(&Type::i8(ccx), + section_contents.len() as u64); + + let section_var = declare::define_global(ccx, section_var_name, + llvm_type).unwrap_or_else(||{ + ccx.sess().bug(&format!("symbol `{}` is already defined", section_var_name)) + }); + llvm::LLVMSetSection(section_var, section_name.as_ptr() as *const _); + llvm::LLVMSetInitializer(section_var, C_bytes(ccx, section_contents)); + llvm::LLVMSetGlobalConstant(section_var, llvm::True); + llvm::LLVMSetUnnamedAddr(section_var, llvm::True); + llvm::SetLinkage(section_var, llvm::Linkage::LinkOnceODRLinkage); + // This should make sure that the whole section is not larger than + // the string it contains. Otherwise we get a warning from GDB. + llvm::LLVMSetAlignment(section_var, 1); + section_var + } + } else { + section_var + } +} + +pub fn needs_gdb_debug_scripts_section(ccx: &CrateContext) -> bool { + let omit_gdb_pretty_printer_section = + attr::contains_name(&ccx.tcx() + .map + .krate() + .attrs, + "omit_gdb_pretty_printer_section"); + + !omit_gdb_pretty_printer_section && + !ccx.sess().target.target.options.is_like_osx && + !ccx.sess().target.target.options.is_like_windows && + ccx.sess().opts.debuginfo != NoDebugInfo +} diff --git a/src/librustc_trans/trans/debuginfo.rs b/src/librustc_trans/trans/debuginfo/metadata.rs similarity index 51% rename from src/librustc_trans/trans/debuginfo.rs rename to src/librustc_trans/trans/debuginfo/metadata.rs index 516ff443dacb9..9ff69e7f9dd29 100644 --- a/src/librustc_trans/trans/debuginfo.rs +++ b/src/librustc_trans/trans/debuginfo/metadata.rs @@ -1,4 +1,4 @@ -// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // @@ -8,225 +8,46 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -//! # Debug Info Module -//! -//! This module serves the purpose of generating debug symbols. We use LLVM's -//! [source level debugging](http://llvm.org/docs/SourceLevelDebugging.html) -//! features for generating the debug information. The general principle is this: -//! -//! Given the right metadata in the LLVM IR, the LLVM code generator is able to -//! create DWARF debug symbols for the given code. The -//! [metadata](http://llvm.org/docs/LangRef.html#metadata-type) is structured much -//! like DWARF *debugging information entries* (DIE), representing type information -//! such as datatype layout, function signatures, block layout, variable location -//! and scope information, etc. It is the purpose of this module to generate correct -//! metadata and insert it into the LLVM IR. -//! -//! As the exact format of metadata trees may change between different LLVM -//! versions, we now use LLVM -//! [DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to -//! create metadata where possible. This will hopefully ease the adaption of this -//! module to future LLVM versions. -//! -//! The public API of the module is a set of functions that will insert the correct -//! metadata into the LLVM IR when called with the right parameters. The module is -//! thus driven from an outside client with functions like -//! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`. -//! -//! Internally the module will try to reuse already created metadata by utilizing a -//! cache. The way to get a shared metadata node when needed is thus to just call -//! the corresponding function in this module: -//! -//! let file_metadata = file_metadata(crate_context, path); -//! -//! The function will take care of probing the cache for an existing node for that -//! exact file path. -//! -//! All private state used by the module is stored within either the -//! CrateDebugContext struct (owned by the CrateContext) or the FunctionDebugContext -//! (owned by the FunctionContext). -//! -//! This file consists of three conceptual sections: -//! 1. The public interface of the module -//! 2. Module-internal metadata creation functions -//! 3. Minor utility functions -//! -//! -//! ## Recursive Types -//! -//! Some kinds of types, such as structs and enums can be recursive. That means that -//! the type definition of some type X refers to some other type which in turn -//! (transitively) refers to X. This introduces cycles into the type referral graph. -//! A naive algorithm doing an on-demand, depth-first traversal of this graph when -//! describing types, can get trapped in an endless loop when it reaches such a -//! cycle. -//! -//! For example, the following simple type for a singly-linked list... -//! -//! ``` -//! struct List { -//! value: int, -//! tail: Option>, -//! } -//! ``` -//! -//! will generate the following callstack with a naive DFS algorithm: -//! -//! ``` -//! describe(t = List) -//! describe(t = int) -//! describe(t = Option>) -//! describe(t = Box) -//! describe(t = List) // at the beginning again... -//! ... -//! ``` -//! -//! To break cycles like these, we use "forward declarations". That is, when the -//! algorithm encounters a possibly recursive type (any struct or enum), it -//! immediately creates a type description node and inserts it into the cache -//! *before* describing the members of the type. This type description is just a -//! stub (as type members are not described and added to it yet) but it allows the -//! algorithm to already refer to the type. After the stub is inserted into the -//! cache, the algorithm continues as before. If it now encounters a recursive -//! reference, it will hit the cache and does not try to describe the type anew. -//! -//! This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which -//! represents a kind of continuation, storing all state needed to continue -//! traversal at the type members after the type has been registered with the cache. -//! (This implementation approach might be a tad over-engineered and may change in -//! the future) -//! -//! -//! ## Source Locations and Line Information -//! -//! In addition to data type descriptions the debugging information must also allow -//! to map machine code locations back to source code locations in order to be useful. -//! This functionality is also handled in this module. The following functions allow -//! to control source mappings: -//! -//! + set_source_location() -//! + clear_source_location() -//! + start_emitting_source_locations() -//! -//! `set_source_location()` allows to set the current source location. All IR -//! instructions created after a call to this function will be linked to the given -//! source location, until another location is specified with -//! `set_source_location()` or the source location is cleared with -//! `clear_source_location()`. In the later case, subsequent IR instruction will not -//! be linked to any source location. As you can see, this is a stateful API -//! (mimicking the one in LLVM), so be careful with source locations set by previous -//! calls. It's probably best to not rely on any specific state being present at a -//! given point in code. -//! -//! One topic that deserves some extra attention is *function prologues*. At the -//! beginning of a function's machine code there are typically a few instructions -//! for loading argument values into allocas and checking if there's enough stack -//! space for the function to execute. This *prologue* is not visible in the source -//! code and LLVM puts a special PROLOGUE END marker into the line table at the -//! first non-prologue instruction of the function. In order to find out where the -//! prologue ends, LLVM looks for the first instruction in the function body that is -//! linked to a source location. So, when generating prologue instructions we have -//! to make sure that we don't emit source location information until the 'real' -//! function body begins. For this reason, source location emission is disabled by -//! default for any new function being translated and is only activated after a call -//! to the third function from the list above, `start_emitting_source_locations()`. -//! This function should be called right before regularly starting to translate the -//! top-level block of the given function. -//! -//! There is one exception to the above rule: `llvm.dbg.declare` instruction must be -//! linked to the source location of the variable being declared. For function -//! parameters these `llvm.dbg.declare` instructions typically occur in the middle -//! of the prologue, however, they are ignored by LLVM's prologue detection. The -//! `create_argument_metadata()` and related functions take care of linking the -//! `llvm.dbg.declare` instructions to the correct source locations even while -//! source location emission is still disabled, so there is no need to do anything -//! special with source location handling here. -//! -//! ## Unique Type Identification -//! -//! In order for link-time optimization to work properly, LLVM needs a unique type -//! identifier that tells it across compilation units which types are the same as -//! others. This type identifier is created by TypeMap::get_unique_type_id_of_type() -//! using the following algorithm: -//! -//! (1) Primitive types have their name as ID -//! (2) Structs, enums and traits have a multipart identifier -//! -//! (1) The first part is the SVH (strict version hash) of the crate they were -//! originally defined in -//! -//! (2) The second part is the ast::NodeId of the definition in their original -//! crate -//! -//! (3) The final part is a concatenation of the type IDs of their concrete type -//! arguments if they are generic types. -//! -//! (3) Tuple-, pointer and function types are structurally identified, which means -//! that they are equivalent if their component types are equivalent (i.e. (int, -//! int) is the same regardless in which crate it is used). -//! -//! This algorithm also provides a stable ID for types that are defined in one crate -//! but instantiated from metadata within another crate. We just have to take care -//! to always map crate and node IDs back to the original crate context. -//! -//! As a side-effect these unique type IDs also help to solve a problem arising from -//! lifetime parameters. Since lifetime parameters are completely omitted in -//! debuginfo, more than one `Ty` instance may map to the same debuginfo type -//! metadata, that is, some struct `Struct<'a>` may have N instantiations with -//! different concrete substitutions for `'a`, and thus there will be N `Ty` -//! instances for the type `Struct<'a>` even though it is not generic otherwise. -//! Unfortunately this means that we cannot use `ty::type_id()` as cheap identifier -//! for type metadata---we have done this in the past, but it led to unnecessary -//! metadata duplication in the best case and LLVM assertions in the worst. However, -//! the unique type ID as described above *can* be used as identifier. Since it is -//! comparatively expensive to construct, though, `ty::type_id()` is still used -//! additionally as an optimization for cases where the exact same type has been -//! seen before (which is most of the time). -use self::VariableAccess::*; -use self::VariableKind::*; +use self::RecursiveTypeDescription::*; use self::MemberOffset::*; use self::MemberDescriptionFactory::*; -use self::RecursiveTypeDescription::*; use self::EnumDiscriminantInfo::*; -use self::InternalDebugLocation::*; -use llvm; -use llvm::{ModuleRef, ContextRef, ValueRef}; -use llvm::debuginfo::*; +use super::utils::{debug_context, DIB, span_start, bytes_to_bits, size_and_align_of, + get_namespace_and_span_for_item, create_DIArray, + fn_should_be_ignored, is_node_local_to_unit}; +use super::namespace::namespace_for_item; +use super::type_names::{compute_debuginfo_type_name, push_debuginfo_type_name}; +use super::{declare_local, VariableKind, VariableAccess}; + +use llvm::{self, ValueRef}; +use llvm::debuginfo::{DIType, DIFile, DIScope, DIDescriptor, DICompositeType}; + use metadata::csearch; +use middle::pat_util; use middle::subst::{self, Substs}; -use trans::{self, adt, machine, type_of}; -use trans::common::{self, NodeIdAndSpan, CrateContext, FunctionContext, Block, C_bytes, - NormalizingClosureTyper}; -use trans::declare; +use trans::{type_of, adt, machine, monomorphize}; +use trans::common::{self, CrateContext, FunctionContext, NormalizingClosureTyper, Block}; use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef}; -use trans::monomorphize; use trans::type_::Type; use middle::ty::{self, Ty, ClosureTyper}; -use middle::pat_util; -use session::config::{self, FullDebugInfo, LimitedDebugInfo, NoDebugInfo}; -use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet}; +use session::config::{self, FullDebugInfo}; +use util::nodemap::FnvHashMap; use util::ppaux; use util::common::path2cstr; use libc::{c_uint, c_longlong}; -use std::cell::{Cell, RefCell}; use std::ffi::CString; use std::path::Path; use std::ptr; -use std::rc::{Rc, Weak}; +use std::rc::Rc; use syntax::util::interner::Interner; -use syntax::codemap::{Span, Pos}; -use syntax::{ast, codemap, ast_util, ast_map, attr}; +use syntax::codemap::Span; +use syntax::{ast, codemap, ast_util, ast_map}; use syntax::parse::token::{self, special_idents}; -const DW_LANG_RUST: c_uint = 0x9000; - -#[allow(non_upper_case_globals)] -const DW_TAG_auto_variable: c_uint = 0x100; -#[allow(non_upper_case_globals)] -const DW_TAG_arg_variable: c_uint = 0x101; +const DW_LANG_RUST: c_uint = 0x9000; #[allow(non_upper_case_globals)] const DW_ATE_boolean: c_uint = 0x02; #[allow(non_upper_case_globals)] @@ -238,8 +59,8 @@ const DW_ATE_unsigned: c_uint = 0x07; #[allow(non_upper_case_globals)] const DW_ATE_unsigned_char: c_uint = 0x08; -const UNKNOWN_LINE_NUMBER: c_uint = 0; -const UNKNOWN_COLUMN_NUMBER: c_uint = 0; +pub const UNKNOWN_LINE_NUMBER: c_uint = 0; +pub const UNKNOWN_COLUMN_NUMBER: c_uint = 0; // ptr::null() doesn't work :( const UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile); @@ -247,18 +68,14 @@ const UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope); const FLAGS_NONE: c_uint = 0; -//=----------------------------------------------------------------------------- -// Public Interface of debuginfo module -//=----------------------------------------------------------------------------- - #[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)] -struct UniqueTypeId(ast::Name); +pub struct UniqueTypeId(ast::Name); // The TypeMap is where the CrateDebugContext holds the type metadata nodes // created so far. The metadata nodes are indexed by UniqueTypeId, and, for // faster lookup, also by Ty. The TypeMap is responsible for creating // UniqueTypeIds. -struct TypeMap<'tcx> { +pub struct TypeMap<'tcx> { // The UniqueTypeIds created so far unique_id_interner: Interner>, // A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping. @@ -270,8 +87,7 @@ struct TypeMap<'tcx> { } impl<'tcx> TypeMap<'tcx> { - - fn new() -> TypeMap<'tcx> { + pub fn new() -> TypeMap<'tcx> { TypeMap { unique_id_interner: Interner::new(), type_to_metadata: FnvHashMap(), @@ -609,6 +425,92 @@ impl<'tcx> TypeMap<'tcx> { } } +// A description of some recursive type. It can either be already finished (as +// with FinalMetadata) or it is not yet finished, but contains all information +// needed to generate the missing parts of the description. See the +// documentation section on Recursive Types at the top of this file for more +// information. +enum RecursiveTypeDescription<'tcx> { + UnfinishedMetadata { + unfinished_type: Ty<'tcx>, + unique_type_id: UniqueTypeId, + metadata_stub: DICompositeType, + llvm_type: Type, + member_description_factory: MemberDescriptionFactory<'tcx>, + }, + FinalMetadata(DICompositeType) +} + +fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>( + cx: &CrateContext<'a, 'tcx>, + unfinished_type: Ty<'tcx>, + unique_type_id: UniqueTypeId, + metadata_stub: DICompositeType, + llvm_type: Type, + member_description_factory: MemberDescriptionFactory<'tcx>) + -> RecursiveTypeDescription<'tcx> { + + // Insert the stub into the TypeMap in order to allow for recursive references + let mut type_map = debug_context(cx).type_map.borrow_mut(); + type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub); + type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub); + + UnfinishedMetadata { + unfinished_type: unfinished_type, + unique_type_id: unique_type_id, + metadata_stub: metadata_stub, + llvm_type: llvm_type, + member_description_factory: member_description_factory, + } +} + +impl<'tcx> RecursiveTypeDescription<'tcx> { + // Finishes up the description of the type in question (mostly by providing + // descriptions of the fields of the given type) and returns the final type + // metadata. + fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult { + match *self { + FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false), + UnfinishedMetadata { + unfinished_type, + unique_type_id, + metadata_stub, + llvm_type, + ref member_description_factory, + .. + } => { + // Make sure that we have a forward declaration of the type in + // the TypeMap so that recursive references are possible. This + // will always be the case if the RecursiveTypeDescription has + // been properly created through the + // create_and_register_recursive_type_forward_declaration() + // function. + { + let type_map = debug_context(cx).type_map.borrow(); + if type_map.find_metadata_for_unique_id(unique_type_id).is_none() || + type_map.find_metadata_for_type(unfinished_type).is_none() { + cx.sess().bug(&format!("Forward declaration of potentially recursive type \ + '{}' was not found in TypeMap!", + ppaux::ty_to_string(cx.tcx(), unfinished_type)) + ); + } + } + + // ... then create the member descriptions ... + let member_descriptions = + member_description_factory.create_member_descriptions(cx); + + // ... and attach them to the stub to complete it. + set_members_of_composite_type(cx, + metadata_stub, + llvm_type, + &member_descriptions[..]); + return MetadataCreationResult::new(metadata_stub, true); + } + } + } +} + // Returns from the enclosing function if the type metadata with the given // unique id can be found in the type map macro_rules! return_if_metadata_created_in_meantime { @@ -622,1002 +524,479 @@ macro_rules! return_if_metadata_created_in_meantime { ) } +fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + unique_type_id: UniqueTypeId, + element_type: Ty<'tcx>, + len: Option, + span: Span) + -> MetadataCreationResult { + let element_type_metadata = type_metadata(cx, element_type, span); + + return_if_metadata_created_in_meantime!(cx, unique_type_id); -/// A context object for maintaining all state needed by the debuginfo module. -pub struct CrateDebugContext<'tcx> { - llcontext: ContextRef, - builder: DIBuilderRef, - current_debug_location: Cell, - created_files: RefCell>, - created_enum_disr_types: RefCell>, + let element_llvm_type = type_of::type_of(cx, element_type); + let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type); - type_map: RefCell>, - namespace_map: RefCell, Rc>>, + let (array_size_in_bytes, upper_bound) = match len { + Some(len) => (element_type_size * len, len as c_longlong), + None => (0, -1) + }; - // This collection is used to assert that composite types (structs, enums, - // ...) have their members only set once: - composite_types_completed: RefCell>, -} + let subrange = unsafe { + llvm::LLVMDIBuilderGetOrCreateSubrange(DIB(cx), 0, upper_bound) + }; -impl<'tcx> CrateDebugContext<'tcx> { - pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> { - debug!("CrateDebugContext::new"); - let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) }; - // DIBuilder inherits context from the module, so we'd better use the same one - let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) }; - return CrateDebugContext { - llcontext: llcontext, - builder: builder, - current_debug_location: Cell::new(UnknownLocation), - created_files: RefCell::new(FnvHashMap()), - created_enum_disr_types: RefCell::new(DefIdMap()), - type_map: RefCell::new(TypeMap::new()), - namespace_map: RefCell::new(FnvHashMap()), - composite_types_completed: RefCell::new(FnvHashSet()), - }; - } -} + let subscripts = create_DIArray(DIB(cx), &[subrange]); + let metadata = unsafe { + llvm::LLVMDIBuilderCreateArrayType( + DIB(cx), + bytes_to_bits(array_size_in_bytes), + bytes_to_bits(element_type_align), + element_type_metadata, + subscripts) + }; -pub enum FunctionDebugContext { - RegularContext(Box), - DebugInfoDisabled, - FunctionWithoutDebugInfo, + return MetadataCreationResult::new(metadata, false); } -impl FunctionDebugContext { - fn get_ref<'a>(&'a self, - cx: &CrateContext, - span: Span) - -> &'a FunctionDebugContextData { - match *self { - FunctionDebugContext::RegularContext(box ref data) => data, - FunctionDebugContext::DebugInfoDisabled => { - cx.sess().span_bug(span, - FunctionDebugContext::debuginfo_disabled_message()); - } - FunctionDebugContext::FunctionWithoutDebugInfo => { - cx.sess().span_bug(span, - FunctionDebugContext::should_be_ignored_message()); - } - } - } +fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + vec_type: Ty<'tcx>, + element_type: Ty<'tcx>, + unique_type_id: UniqueTypeId, + span: Span) + -> MetadataCreationResult { + let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt { + ty: element_type, + mutbl: ast::MutImmutable + }); - fn debuginfo_disabled_message() -> &'static str { - "debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!" - } + let element_type_metadata = type_metadata(cx, data_ptr_type, span); - fn should_be_ignored_message() -> &'static str { - "debuginfo: Error trying to access FunctionDebugContext for function that should be \ - ignored by debug info!" - } -} + return_if_metadata_created_in_meantime!(cx, unique_type_id); -struct FunctionDebugContextData { - scope_map: RefCell>, - fn_metadata: DISubprogram, - argument_counter: Cell, - source_locations_enabled: Cell, - source_location_override: Cell, -} + let slice_llvm_type = type_of::type_of(cx, vec_type); + let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true); -enum VariableAccess<'a> { - // The llptr given is an alloca containing the variable's value - DirectVariable { alloca: ValueRef }, - // The llptr given is an alloca containing the start of some pointer chain - // leading to the variable's content. - IndirectVariable { alloca: ValueRef, address_operations: &'a [i64] } -} + let member_llvm_types = slice_llvm_type.field_types(); + assert!(slice_layout_is_correct(cx, + &member_llvm_types[..], + element_type)); + let member_descriptions = [ + MemberDescription { + name: "data_ptr".to_string(), + llvm_type: member_llvm_types[0], + type_metadata: element_type_metadata, + offset: ComputedMemberOffset, + flags: FLAGS_NONE + }, + MemberDescription { + name: "length".to_string(), + llvm_type: member_llvm_types[1], + type_metadata: type_metadata(cx, cx.tcx().types.usize, span), + offset: ComputedMemberOffset, + flags: FLAGS_NONE + }, + ]; -enum VariableKind { - ArgumentVariable(usize /*index*/), - LocalVariable, - CapturedVariable, -} + assert!(member_descriptions.len() == member_llvm_types.len()); -/// Create any deferred debug metadata nodes -pub fn finalize(cx: &CrateContext) { - if cx.dbg_cx().is_none() { - return; - } + let loc = span_start(cx, span); + let file_metadata = file_metadata(cx, &loc.file.name); - debug!("finalize"); - let _ = compile_unit_metadata(cx); + let metadata = composite_type_metadata(cx, + slice_llvm_type, + &slice_type_name[..], + unique_type_id, + &member_descriptions, + UNKNOWN_SCOPE_METADATA, + file_metadata, + span); + return MetadataCreationResult::new(metadata, false); - if needs_gdb_debug_scripts_section(cx) { - // Add a .debug_gdb_scripts section to this compile-unit. This will - // cause GDB to try and load the gdb_load_rust_pretty_printers.py file, - // which activates the Rust pretty printers for binary this section is - // contained in. - get_or_insert_gdb_debug_scripts_section_global(cx); + fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + member_llvm_types: &[Type], + element_type: Ty<'tcx>) + -> bool { + member_llvm_types.len() == 2 && + member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() && + member_llvm_types[1] == cx.int_type() } +} - unsafe { - llvm::LLVMDIBuilderFinalize(DIB(cx)); - llvm::LLVMDIBuilderDispose(DIB(cx)); - // Debuginfo generation in LLVM by default uses a higher - // version of dwarf than OS X currently understands. We can - // instruct LLVM to emit an older version of dwarf, however, - // for OS X to understand. For more info see #11352 - // This can be overridden using --llvm-opts -dwarf-version,N. - // Android has the same issue (#22398) - if cx.sess().target.target.options.is_like_osx || - cx.sess().target.target.options.is_like_android { - llvm::LLVMRustAddModuleFlag(cx.llmod(), - "Dwarf Version\0".as_ptr() as *const _, - 2) - } +fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + unique_type_id: UniqueTypeId, + signature: &ty::PolyFnSig<'tcx>, + span: Span) + -> MetadataCreationResult +{ + let signature = ty::erase_late_bound_regions(cx.tcx(), signature); - // Prevent bitcode readers from deleting the debug info. - let ptr = "Debug Info Version\0".as_ptr(); - llvm::LLVMRustAddModuleFlag(cx.llmod(), ptr as *const _, - llvm::LLVMRustDebugMetadataVersion); - }; -} + let mut signature_metadata: Vec = Vec::with_capacity(signature.inputs.len() + 1); -/// Creates debug information for the given global variable. -/// -/// Adds the created metadata nodes directly to the crate's IR. -pub fn create_global_var_metadata(cx: &CrateContext, - node_id: ast::NodeId, - global: ValueRef) { - if cx.dbg_cx().is_none() { - return; - } + // return type + signature_metadata.push(match signature.output { + ty::FnConverging(ret_ty) => match ret_ty.sty { + ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(), + _ => type_metadata(cx, ret_ty, span) + }, + ty::FnDiverging => diverging_type_metadata(cx) + }); - // Don't create debuginfo for globals inlined from other crates. The other - // crate should already contain debuginfo for it. More importantly, the - // global might not even exist in un-inlined form anywhere which would lead - // to a linker errors. - if cx.external_srcs().borrow().contains_key(&node_id) { - return; + // regular arguments + for &argument_type in &signature.inputs { + signature_metadata.push(type_metadata(cx, argument_type, span)); } - let var_item = cx.tcx().map.get(node_id); + return_if_metadata_created_in_meantime!(cx, unique_type_id); - let (name, span) = match var_item { - ast_map::NodeItem(item) => { - match item.node { - ast::ItemStatic(..) => (item.ident.name, item.span), - ast::ItemConst(..) => (item.ident.name, item.span), - _ => { - cx.sess() - .span_bug(item.span, - &format!("debuginfo::\ - create_global_var_metadata() - - Captured var-id refers to \ - unexpected ast_item variant: {:?}", - var_item)) - } - } + return MetadataCreationResult::new( + unsafe { + llvm::LLVMDIBuilderCreateSubroutineType( + DIB(cx), + UNKNOWN_FILE_METADATA, + create_DIArray(DIB(cx), &signature_metadata[..])) }, - _ => cx.sess().bug(&format!("debuginfo::create_global_var_metadata() \ - - Captured var-id refers to unexpected \ - ast_map variant: {:?}", - var_item)) - }; + false); +} - let (file_metadata, line_number) = if span != codemap::DUMMY_SP { - let loc = span_start(cx, span); - (file_metadata(cx, &loc.file.name), loc.line as c_uint) - } else { - (UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER) +// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill- +// defined concept. For the case of an actual trait pointer (i.e., Box, +// &Trait), trait_object_type should be the whole thing (e.g, Box) and +// trait_type should be the actual trait (e.g., Trait). Where the trait is part +// of a DST struct, there is no trait_object_type and the results of this +// function will be a little bit weird. +fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + trait_type: Ty<'tcx>, + trait_object_type: Option>, + unique_type_id: UniqueTypeId) + -> DIType { + // The implementation provided here is a stub. It makes sure that the trait + // type is assigned the correct name, size, namespace, and source location. + // But it does not describe the trait's methods. + + let def_id = match trait_type.sty { + ty::ty_trait(ref data) => data.principal_def_id(), + _ => { + let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type); + cx.sess().bug(&format!("debuginfo: Unexpected trait-object type in \ + trait_pointer_metadata(): {}", + &pp_type_name[..])); + } }; - let is_local_to_unit = is_node_local_to_unit(cx, node_id); - let variable_type = ty::node_id_to_type(cx.tcx(), node_id); - let type_metadata = type_metadata(cx, variable_type, span); - let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id)); - let var_name = token::get_name(name).to_string(); - let linkage_name = - namespace_node.mangled_name_of_contained_item(&var_name[..]); - let var_scope = namespace_node.scope; + let trait_object_type = trait_object_type.unwrap_or(trait_type); + let trait_type_name = + compute_debuginfo_type_name(cx, trait_object_type, false); - let var_name = CString::new(var_name).unwrap(); - let linkage_name = CString::new(linkage_name).unwrap(); - unsafe { - llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx), - var_scope, - var_name.as_ptr(), - linkage_name.as_ptr(), - file_metadata, - line_number, - type_metadata, - is_local_to_unit, - global, - ptr::null_mut()); - } -} + let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); -/// Creates debug information for the given local variable. -/// -/// This function assumes that there's a datum for each pattern component of the -/// local in `bcx.fcx.lllocals`. -/// Adds the created metadata nodes directly to the crate's IR. -pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) { - if bcx.unreachable.get() || - fn_should_be_ignored(bcx.fcx) || - bcx.sess().opts.debuginfo != FullDebugInfo { - return; - } + let trait_llvm_type = type_of::type_of(cx, trait_object_type); - let cx = bcx.ccx(); - let def_map = &cx.tcx().def_map; - let locals = bcx.fcx.lllocals.borrow(); + composite_type_metadata(cx, + trait_llvm_type, + &trait_type_name[..], + unique_type_id, + &[], + containing_scope, + UNKNOWN_FILE_METADATA, + codemap::DUMMY_SP) +} - pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| { - let datum = match locals.get(&node_id) { - Some(datum) => datum, +pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + t: Ty<'tcx>, + usage_site_span: Span) + -> DIType { + // Get the unique type id of this type. + let unique_type_id = { + let mut type_map = debug_context(cx).type_map.borrow_mut(); + // First, try to find the type in TypeMap. If we have seen it before, we + // can exit early here. + match type_map.find_metadata_for_type(t) { + Some(metadata) => { + return metadata; + }, None => { - bcx.sess().span_bug(span, - &format!("no entry in lllocals table for {}", - node_id)); + // The Ty is not in the TypeMap but maybe we have already seen + // an equivalent type (e.g. only differing in region arguments). + // In order to find out, generate the unique type id and look + // that up. + let unique_type_id = type_map.get_unique_type_id_of_type(cx, t); + match type_map.find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => { + // There is already an equivalent type in the TypeMap. + // Register this Ty as an alias in the cache and + // return the cached metadata. + type_map.register_type_with_metadata(cx, t, metadata); + return metadata; + }, + None => { + // There really is no type metadata for this type, so + // proceed by creating it. + unique_type_id + } + } } - }; - - if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { - cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \ - Referenced variable location is not an alloca!"); } + }; - let scope_metadata = scope_metadata(bcx.fcx, node_id, span); - - declare_local(bcx, - var_ident.node.name, - datum.ty, - scope_metadata, - DirectVariable { alloca: datum.val }, - LocalVariable, - span); - }) -} - -/// Creates debug information for a variable captured in a closure. -/// -/// Adds the created metadata nodes directly to the crate's IR. -pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, - node_id: ast::NodeId, - env_pointer: ValueRef, - env_index: usize, - captured_by_ref: bool, - span: Span) { - if bcx.unreachable.get() || - fn_should_be_ignored(bcx.fcx) || - bcx.sess().opts.debuginfo != FullDebugInfo { - return; - } - - let cx = bcx.ccx(); - - let ast_item = cx.tcx().map.find(node_id); + debug!("type_metadata: {:?}", t); - let variable_name = match ast_item { - None => { - cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found"); + let sty = &t.sty; + let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty { + ty::ty_bool | + ty::ty_char | + ty::ty_int(_) | + ty::ty_uint(_) | + ty::ty_float(_) => { + MetadataCreationResult::new(basic_type_metadata(cx, t), false) } - Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => { - match pat.node { - ast::PatIdent(_, ref path1, _) => { - path1.node.name + ty::ty_tup(ref elements) if elements.is_empty() => { + MetadataCreationResult::new(basic_type_metadata(cx, t), false) + } + ty::ty_enum(def_id, _) => { + prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx) + } + ty::ty_vec(typ, len) => { + fixed_vec_metadata(cx, unique_type_id, typ, len.map(|x| x as u64), usage_site_span) + } + ty::ty_str => { + fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, None, usage_site_span) + } + ty::ty_trait(..) => { + MetadataCreationResult::new( + trait_pointer_metadata(cx, t, None, unique_type_id), + false) + } + ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => { + match ty.sty { + ty::ty_vec(typ, None) => { + vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span) + } + ty::ty_str => { + vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span) + } + ty::ty_trait(..) => { + MetadataCreationResult::new( + trait_pointer_metadata(cx, ty, Some(t), unique_type_id), + false) } _ => { - cx.sess() - .span_bug(span, - &format!( - "debuginfo::create_captured_var_metadata() - \ - Captured var-id refers to unexpected \ - ast_map variant: {:?}", - ast_item)); + let pointee_metadata = type_metadata(cx, ty, usage_site_span); + + match debug_context(cx).type_map + .borrow() + .find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => return metadata, + None => { /* proceed normally */ } + }; + + MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata), + false) } } } + ty::ty_bare_fn(_, ref barefnty) => { + subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span) + } + ty::ty_closure(def_id, substs) => { + let typer = NormalizingClosureTyper::new(cx.tcx()); + let sig = typer.closure_type(def_id, substs).sig; + subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span) + } + ty::ty_struct(def_id, substs) => { + prepare_struct_metadata(cx, + t, + def_id, + substs, + unique_type_id, + usage_site_span).finalize(cx) + } + ty::ty_tup(ref elements) => { + prepare_tuple_metadata(cx, + t, + &elements[..], + unique_type_id, + usage_site_span).finalize(cx) + } _ => { - cx.sess() - .span_bug(span, - &format!("debuginfo::create_captured_var_metadata() - \ - Captured var-id refers to unexpected \ - ast_map variant: {:?}", - ast_item)); + cx.sess().bug(&format!("debuginfo: unexpected type in type_metadata: {:?}", + sty)) } }; - let variable_type = common::node_id_type(bcx, node_id); - let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata; + { + let mut type_map = debug_context(cx).type_map.borrow_mut(); - // env_pointer is the alloca containing the pointer to the environment, - // so it's type is **EnvironmentType. In order to find out the type of - // the environment we have to "dereference" two times. - let llvm_env_data_type = common::val_ty(env_pointer).element_type() - .element_type(); - let byte_offset_of_var_in_env = machine::llelement_offset(cx, - llvm_env_data_type, - env_index); - - let address_operations = unsafe { - [llvm::LLVMDIBuilderCreateOpDeref(), - llvm::LLVMDIBuilderCreateOpPlus(), - byte_offset_of_var_in_env as i64, - llvm::LLVMDIBuilderCreateOpDeref()] - }; - - let address_op_count = if captured_by_ref { - address_operations.len() - } else { - address_operations.len() - 1 - }; - - let variable_access = IndirectVariable { - alloca: env_pointer, - address_operations: &address_operations[..address_op_count] - }; - - declare_local(bcx, - variable_name, - variable_type, - scope_metadata, - variable_access, - CapturedVariable, - span); -} - -/// Creates debug information for a local variable introduced in the head of a -/// match-statement arm. -/// -/// Adds the created metadata nodes directly to the crate's IR. -pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, - variable_name: ast::Name, - binding: BindingInfo<'tcx>) { - if bcx.unreachable.get() || - fn_should_be_ignored(bcx.fcx) || - bcx.sess().opts.debuginfo != FullDebugInfo { - return; - } + if already_stored_in_typemap { + // Also make sure that we already have a TypeMap entry entry for the unique type id. + let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => metadata, + None => { + let unique_type_id_str = + type_map.get_unique_type_id_as_string(unique_type_id); + let error_message = format!("Expected type metadata for unique \ + type id '{}' to already be in \ + the debuginfo::TypeMap but it \ + was not. (Ty = {})", + &unique_type_id_str[..], + ppaux::ty_to_string(cx.tcx(), t)); + cx.sess().span_bug(usage_site_span, &error_message[..]); + } + }; - let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span); - let aops = unsafe { - [llvm::LLVMDIBuilderCreateOpDeref()] - }; - // Regardless of the actual type (`T`) we're always passed the stack slot (alloca) - // for the binding. For ByRef bindings that's a `T*` but for ByMove bindings we - // actually have `T**`. So to get the actual variable we need to dereference once - // more. For ByCopy we just use the stack slot we created for the binding. - let var_access = match binding.trmode { - TrByCopy(llbinding) => DirectVariable { - alloca: llbinding - }, - TrByMove => IndirectVariable { - alloca: binding.llmatch, - address_operations: &aops - }, - TrByRef => DirectVariable { - alloca: binding.llmatch + match type_map.find_metadata_for_type(t) { + Some(metadata) => { + if metadata != metadata_for_uid { + let unique_type_id_str = + type_map.get_unique_type_id_as_string(unique_type_id); + let error_message = format!("Mismatch between Ty and \ + UniqueTypeId maps in \ + debuginfo::TypeMap. \ + UniqueTypeId={}, Ty={}", + &unique_type_id_str[..], + ppaux::ty_to_string(cx.tcx(), t)); + cx.sess().span_bug(usage_site_span, &error_message[..]); + } + } + None => { + type_map.register_type_with_metadata(cx, t, metadata); + } + } + } else { + type_map.register_type_with_metadata(cx, t, metadata); + type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata); } - }; + } - declare_local(bcx, - variable_name, - binding.ty, - scope_metadata, - var_access, - LocalVariable, - binding.span); + metadata } -/// Creates debug information for the given function argument. -/// -/// This function assumes that there's a datum for each pattern component of the -/// argument in `bcx.fcx.lllocals`. -/// Adds the created metadata nodes directly to the crate's IR. -pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) { - if bcx.unreachable.get() || - fn_should_be_ignored(bcx.fcx) || - bcx.sess().opts.debuginfo != FullDebugInfo { - return; +pub fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile { + match debug_context(cx).created_files.borrow().get(full_path) { + Some(file_metadata) => return *file_metadata, + None => () } - let def_map = &bcx.tcx().def_map; - let scope_metadata = bcx - .fcx - .debug_context - .get_ref(bcx.ccx(), arg.pat.span) - .fn_metadata; - let locals = bcx.fcx.lllocals.borrow(); - - pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| { - let datum = match locals.get(&node_id) { - Some(v) => v, - None => { - bcx.sess().span_bug(span, - &format!("no entry in lllocals table for {}", - node_id)); - } - }; - - if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { - bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \ - Referenced variable location is not an alloca!"); - } + debug!("file_metadata: {}", full_path); - let argument_index = { - let counter = &bcx - .fcx - .debug_context - .get_ref(bcx.ccx(), span) - .argument_counter; - let argument_index = counter.get(); - counter.set(argument_index + 1); - argument_index + // FIXME (#9639): This needs to handle non-utf8 paths + let work_dir = cx.sess().working_dir.to_str().unwrap(); + let file_name = + if full_path.starts_with(work_dir) { + &full_path[work_dir.len() + 1..full_path.len()] + } else { + full_path }; - declare_local(bcx, - var_ident.node.name, - datum.ty, - scope_metadata, - DirectVariable { alloca: datum.val }, - ArgumentVariable(argument_index), - span); - }) -} - -pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - node_id: ast::NodeId, - node_span: Span, - is_block: bool) - -> NodeIdAndSpan { - // A debug location needs two things: - // (1) A span (of which only the beginning will actually be used) - // (2) An AST node-id which will be used to look up the lexical scope - // for the location in the functions scope-map - // - // This function will calculate the debug location for compiler-generated - // cleanup calls that are executed when control-flow leaves the - // scope identified by `node_id`. - // - // For everything but block-like things we can simply take id and span of - // the given expression, meaning that from a debugger's view cleanup code is - // executed at the same source location as the statement/expr itself. - // - // Blocks are a special case. Here we want the cleanup to be linked to the - // closing curly brace of the block. The *scope* the cleanup is executed in - // is up to debate: It could either still be *within* the block being - // cleaned up, meaning that locals from the block are still visible in the - // debugger. - // Or it could be in the scope that the block is contained in, so any locals - // from within the block are already considered out-of-scope and thus not - // accessible in the debugger anymore. - // - // The current implementation opts for the second option: cleanup of a block - // already happens in the parent scope of the block. The main reason for - // this decision is that scoping becomes controlflow dependent when variable - // shadowing is involved and it's impossible to decide statically which - // scope is actually left when the cleanup code is executed. - // In practice it shouldn't make much of a difference. - - let mut cleanup_span = node_span; - - if is_block { - // Not all blocks actually have curly braces (e.g. simple closure - // bodies), in which case we also just want to return the span of the - // whole expression. - let code_snippet = cx.sess().codemap().span_to_snippet(node_span); - if let Ok(code_snippet) = code_snippet { - let bytes = code_snippet.as_bytes(); - - if !bytes.is_empty() && &bytes[bytes.len()-1..] == b"}" { - cleanup_span = Span { - lo: node_span.hi - codemap::BytePos(1), - hi: node_span.hi, - expn_id: node_span.expn_id - }; - } - } - } + let file_name = CString::new(file_name).unwrap(); + let work_dir = CString::new(work_dir).unwrap(); + let file_metadata = unsafe { + llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name.as_ptr(), + work_dir.as_ptr()) + }; - NodeIdAndSpan { - id: node_id, - span: cleanup_span - } + let mut created_files = debug_context(cx).created_files.borrow_mut(); + created_files.insert(full_path.to_string(), file_metadata); + return file_metadata; } -#[derive(Copy, Clone, PartialEq, Eq, Debug)] -pub enum DebugLoc { - At(ast::NodeId, Span), - None -} +/// Finds the scope metadata node for the given AST node. +pub fn scope_metadata(fcx: &FunctionContext, + node_id: ast::NodeId, + error_reporting_span: Span) + -> DIScope { + let scope_map = &fcx.debug_context + .get_ref(fcx.ccx, error_reporting_span) + .scope_map; + match scope_map.borrow().get(&node_id).cloned() { + Some(scope_metadata) => scope_metadata, + None => { + let node = fcx.ccx.tcx().map.get(node_id); -impl DebugLoc { - pub fn apply(&self, fcx: &FunctionContext) { - match *self { - DebugLoc::At(node_id, span) => { - set_source_location(fcx, node_id, span); - } - DebugLoc::None => { - clear_source_location(fcx); - } + fcx.ccx.sess().span_bug(error_reporting_span, + &format!("debuginfo: Could not find scope info for node {:?}", + node)); } } } -pub trait ToDebugLoc { - fn debug_loc(&self) -> DebugLoc; -} - -impl ToDebugLoc for ast::Expr { - fn debug_loc(&self) -> DebugLoc { - DebugLoc::At(self.id, self.span) - } -} - -impl ToDebugLoc for NodeIdAndSpan { - fn debug_loc(&self) -> DebugLoc { - DebugLoc::At(self.id, self.span) - } -} - -impl ToDebugLoc for Option { - fn debug_loc(&self) -> DebugLoc { - match *self { - Some(NodeIdAndSpan { id, span }) => DebugLoc::At(id, span), - None => DebugLoc::None - } +fn diverging_type_metadata(cx: &CrateContext) -> DIType { + unsafe { + llvm::LLVMDIBuilderCreateBasicType( + DIB(cx), + "!\0".as_ptr() as *const _, + bytes_to_bits(0), + bytes_to_bits(0), + DW_ATE_unsigned) } } -/// Sets the current debug location at the beginning of the span. -/// -/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id -/// parameter is used to reliably find the correct visibility scope for the code -/// position. -pub fn set_source_location(fcx: &FunctionContext, - node_id: ast::NodeId, - span: Span) { - match fcx.debug_context { - FunctionDebugContext::DebugInfoDisabled => return, - FunctionDebugContext::FunctionWithoutDebugInfo => { - set_debug_location(fcx.ccx, UnknownLocation); - return; - } - FunctionDebugContext::RegularContext(box ref function_debug_context) => { - if function_debug_context.source_location_override.get() { - // Just ignore any attempts to set a new debug location while - // the override is active. - return; - } +fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + t: Ty<'tcx>) -> DIType { - let cx = fcx.ccx; + debug!("basic_type_metadata: {:?}", t); - debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span)); + let (name, encoding) = match t.sty { + ty::ty_tup(ref elements) if elements.is_empty() => + ("()".to_string(), DW_ATE_unsigned), + ty::ty_bool => ("bool".to_string(), DW_ATE_boolean), + ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char), + ty::ty_int(int_ty) => match int_ty { + ast::TyIs => ("isize".to_string(), DW_ATE_signed), + ast::TyI8 => ("i8".to_string(), DW_ATE_signed), + ast::TyI16 => ("i16".to_string(), DW_ATE_signed), + ast::TyI32 => ("i32".to_string(), DW_ATE_signed), + ast::TyI64 => ("i64".to_string(), DW_ATE_signed) + }, + ty::ty_uint(uint_ty) => match uint_ty { + ast::TyUs => ("usize".to_string(), DW_ATE_unsigned), + ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned), + ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned), + ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned), + ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned) + }, + ty::ty_float(float_ty) => match float_ty { + ast::TyF32 => ("f32".to_string(), DW_ATE_float), + ast::TyF64 => ("f64".to_string(), DW_ATE_float), + }, + _ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type") + }; - if function_debug_context.source_locations_enabled.get() { - let loc = span_start(cx, span); - let scope = scope_metadata(fcx, node_id, span); + let llvm_type = type_of::type_of(cx, t); + let (size, align) = size_and_align_of(cx, llvm_type); + let name = CString::new(name).unwrap(); + let ty_metadata = unsafe { + llvm::LLVMDIBuilderCreateBasicType( + DIB(cx), + name.as_ptr(), + bytes_to_bits(size), + bytes_to_bits(align), + encoding) + }; - set_debug_location(cx, InternalDebugLocation::new(scope, - loc.line, - loc.col.to_usize())); - } else { - set_debug_location(cx, UnknownLocation); - } - } - } + return ty_metadata; } -/// This function makes sure that all debug locations emitted while executing -/// `wrapped_function` are set to the given `debug_loc`. -pub fn with_source_location_override(fcx: &FunctionContext, - debug_loc: DebugLoc, - wrapped_function: F) -> R - where F: FnOnce() -> R -{ - match fcx.debug_context { - FunctionDebugContext::DebugInfoDisabled => { - wrapped_function() - } - FunctionDebugContext::FunctionWithoutDebugInfo => { - set_debug_location(fcx.ccx, UnknownLocation); - wrapped_function() - } - FunctionDebugContext::RegularContext(box ref function_debug_context) => { - if function_debug_context.source_location_override.get() { - wrapped_function() - } else { - debug_loc.apply(fcx); - function_debug_context.source_location_override.set(true); - let result = wrapped_function(); - function_debug_context.source_location_override.set(false); - result - } - } - } -} - -/// Clears the current debug location. -/// -/// Instructions generated hereafter won't be assigned a source location. -pub fn clear_source_location(fcx: &FunctionContext) { - if fn_should_be_ignored(fcx) { - return; - } - - set_debug_location(fcx.ccx, UnknownLocation); -} - -/// Enables emitting source locations for the given functions. -/// -/// Since we don't want source locations to be emitted for the function prelude, -/// they are disabled when beginning to translate a new function. This functions -/// switches source location emitting on and must therefore be called before the -/// first real statement/expression of the function is translated. -pub fn start_emitting_source_locations(fcx: &FunctionContext) { - match fcx.debug_context { - FunctionDebugContext::RegularContext(box ref data) => { - data.source_locations_enabled.set(true) - }, - _ => { /* safe to ignore */ } - } -} - -/// Creates the function-specific debug context. -/// -/// Returns the FunctionDebugContext for the function which holds state needed -/// for debug info creation. The function may also return another variant of the -/// FunctionDebugContext enum which indicates why no debuginfo should be created -/// for the function. -pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - fn_ast_id: ast::NodeId, - param_substs: &Substs<'tcx>, - llfn: ValueRef) -> FunctionDebugContext { - if cx.sess().opts.debuginfo == NoDebugInfo { - return FunctionDebugContext::DebugInfoDisabled; - } - - // Clear the debug location so we don't assign them in the function prelude. - // Do this here already, in case we do an early exit from this function. - set_debug_location(cx, UnknownLocation); - - if fn_ast_id == ast::DUMMY_NODE_ID { - // This is a function not linked to any source location, so don't - // generate debuginfo for it. - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - - let empty_generics = ast_util::empty_generics(); - - let fnitem = cx.tcx().map.get(fn_ast_id); - - let (name, fn_decl, generics, top_level_block, span, has_path) = match fnitem { - ast_map::NodeItem(ref item) => { - if contains_nodebug_attribute(&item.attrs) { - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - - match item.node { - ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => { - (item.ident.name, fn_decl, generics, top_level_block, item.span, true) - } - _ => { - cx.sess().span_bug(item.span, - "create_function_debug_context: item bound to non-function"); - } - } - } - ast_map::NodeImplItem(impl_item) => { - match impl_item.node { - ast::MethodImplItem(ref sig, ref body) => { - if contains_nodebug_attribute(&impl_item.attrs) { - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - - (impl_item.ident.name, - &sig.decl, - &sig.generics, - body, - impl_item.span, - true) - } - _ => { - cx.sess().span_bug(impl_item.span, - "create_function_debug_context() \ - called on non-method impl item?!") - } - } - } - ast_map::NodeExpr(ref expr) => { - match expr.node { - ast::ExprClosure(_, ref fn_decl, ref top_level_block) => { - let name = format!("fn{}", token::gensym("fn")); - let name = token::intern(&name[..]); - (name, fn_decl, - // This is not quite right. It should actually inherit - // the generics of the enclosing function. - &empty_generics, - top_level_block, - expr.span, - // Don't try to lookup the item path: - false) - } - _ => cx.sess().span_bug(expr.span, - "create_function_debug_context: expected an expr_fn_block here") - } - } - ast_map::NodeTraitItem(trait_item) => { - match trait_item.node { - ast::MethodTraitItem(ref sig, Some(ref body)) => { - if contains_nodebug_attribute(&trait_item.attrs) { - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - - (trait_item.ident.name, - &sig.decl, - &sig.generics, - body, - trait_item.span, - true) - } - _ => { - cx.sess() - .bug(&format!("create_function_debug_context: \ - unexpected sort of node: {:?}", - fnitem)) - } - } - } - ast_map::NodeForeignItem(..) | - ast_map::NodeVariant(..) | - ast_map::NodeStructCtor(..) => { - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - _ => cx.sess().bug(&format!("create_function_debug_context: \ - unexpected sort of node: {:?}", - fnitem)) - }; - - // This can be the case for functions inlined from another crate - if span == codemap::DUMMY_SP { - return FunctionDebugContext::FunctionWithoutDebugInfo; - } - - let loc = span_start(cx, span); - let file_metadata = file_metadata(cx, &loc.file.name); - - let function_type_metadata = unsafe { - let fn_signature = get_function_signature(cx, - fn_ast_id, - &*fn_decl, - param_substs, - span); - llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature) - }; - - // Get_template_parameters() will append a `<...>` clause to the function - // name if necessary. - let mut function_name = String::from_str(&token::get_name(name)); - let template_parameters = get_template_parameters(cx, - generics, - param_substs, - file_metadata, - &mut function_name); - - // There is no ast_map::Path for ast::ExprClosure-type functions. For now, - // just don't put them into a namespace. In the future this could be improved - // somehow (storing a path in the ast_map, or construct a path using the - // enclosing function). - let (linkage_name, containing_scope) = if has_path { - let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id)); - let linkage_name = namespace_node.mangled_name_of_contained_item( - &function_name[..]); - let containing_scope = namespace_node.scope; - (linkage_name, containing_scope) - } else { - (function_name.clone(), file_metadata) - }; - - // Clang sets this parameter to the opening brace of the function's block, - // so let's do this too. - let scope_line = span_start(cx, top_level_block.span).line; - - let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id); - - let function_name = CString::new(function_name).unwrap(); - let linkage_name = CString::new(linkage_name).unwrap(); - let fn_metadata = unsafe { - llvm::LLVMDIBuilderCreateFunction( +fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + pointer_type: Ty<'tcx>, + pointee_type_metadata: DIType) + -> DIType { + let pointer_llvm_type = type_of::type_of(cx, pointer_type); + let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type); + let name = compute_debuginfo_type_name(cx, pointer_type, false); + let name = CString::new(name).unwrap(); + let ptr_metadata = unsafe { + llvm::LLVMDIBuilderCreatePointerType( DIB(cx), - containing_scope, - function_name.as_ptr(), - linkage_name.as_ptr(), - file_metadata, - loc.line as c_uint, - function_type_metadata, - is_local_to_unit, - true, - scope_line as c_uint, - FlagPrototyped as c_uint, - cx.sess().opts.optimize != config::No, - llfn, - template_parameters, - ptr::null_mut()) - }; - - let scope_map = create_scope_map(cx, - &fn_decl.inputs, - &*top_level_block, - fn_metadata, - fn_ast_id); - - // Initialize fn debug context (including scope map and namespace map) - let fn_debug_context = box FunctionDebugContextData { - scope_map: RefCell::new(scope_map), - fn_metadata: fn_metadata, - argument_counter: Cell::new(1), - source_locations_enabled: Cell::new(false), - source_location_override: Cell::new(false), - }; - - - - return FunctionDebugContext::RegularContext(fn_debug_context); - - fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - fn_ast_id: ast::NodeId, - fn_decl: &ast::FnDecl, - param_substs: &Substs<'tcx>, - error_reporting_span: Span) -> DIArray { - if cx.sess().opts.debuginfo == LimitedDebugInfo { - return create_DIArray(DIB(cx), &[]); - } - - let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1); - - // Return type -- llvm::DIBuilder wants this at index 0 - assert_type_for_node_id(cx, fn_ast_id, error_reporting_span); - let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id); - let return_type = monomorphize::apply_param_substs(cx.tcx(), - param_substs, - &return_type); - if ty::type_is_nil(return_type) { - signature.push(ptr::null_mut()) - } else { - signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP)); - } - - // Arguments types - for arg in &fn_decl.inputs { - assert_type_for_node_id(cx, arg.pat.id, arg.pat.span); - let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id); - let arg_type = monomorphize::apply_param_substs(cx.tcx(), - param_substs, - &arg_type); - signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP)); - } - - return create_DIArray(DIB(cx), &signature[..]); - } - - fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - generics: &ast::Generics, - param_substs: &Substs<'tcx>, - file_metadata: DIFile, - name_to_append_suffix_to: &mut String) - -> DIArray - { - let self_type = param_substs.self_ty(); - let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type); - - // Only true for static default methods: - let has_self_type = self_type.is_some(); - - if !generics.is_type_parameterized() && !has_self_type { - return create_DIArray(DIB(cx), &[]); - } - - name_to_append_suffix_to.push('<'); - - // The list to be filled with template parameters: - let mut template_params: Vec = - Vec::with_capacity(generics.ty_params.len() + 1); - - // Handle self type - if has_self_type { - let actual_self_type = self_type.unwrap(); - // Add self type name to <...> clause of function name - let actual_self_type_name = compute_debuginfo_type_name( - cx, - actual_self_type, - true); - - name_to_append_suffix_to.push_str(&actual_self_type_name[..]); - - if generics.is_type_parameterized() { - name_to_append_suffix_to.push_str(","); - } - - // Only create type information if full debuginfo is enabled - if cx.sess().opts.debuginfo == FullDebugInfo { - let actual_self_type_metadata = type_metadata(cx, - actual_self_type, - codemap::DUMMY_SP); - - let name = token::get_name(special_idents::type_self.name); - - let name = CString::new(name.as_bytes()).unwrap(); - let param_metadata = unsafe { - llvm::LLVMDIBuilderCreateTemplateTypeParameter( - DIB(cx), - file_metadata, - name.as_ptr(), - actual_self_type_metadata, - ptr::null_mut(), - 0, - 0) - }; - - template_params.push(param_metadata); - } - } - - // Handle other generic parameters - let actual_types = param_substs.types.get_slice(subst::FnSpace); - for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() { - let actual_type = actual_types[index]; - // Add actual type name to <...> clause of function name - let actual_type_name = compute_debuginfo_type_name(cx, - actual_type, - true); - name_to_append_suffix_to.push_str(&actual_type_name[..]); - - if index != generics.ty_params.len() - 1 { - name_to_append_suffix_to.push_str(","); - } - - // Again, only create type information if full debuginfo is enabled - if cx.sess().opts.debuginfo == FullDebugInfo { - let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP); - let ident = token::get_ident(ident); - let name = CString::new(ident.as_bytes()).unwrap(); - let param_metadata = unsafe { - llvm::LLVMDIBuilderCreateTemplateTypeParameter( - DIB(cx), - file_metadata, - name.as_ptr(), - actual_type_metadata, - ptr::null_mut(), - 0, - 0) - }; - template_params.push(param_metadata); - } - } - - name_to_append_suffix_to.push('>'); - - return create_DIArray(DIB(cx), &template_params[..]); - } -} - -//=----------------------------------------------------------------------------- -// Module-Internal debug info creation functions -//=----------------------------------------------------------------------------- - -fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool -{ - // The is_local_to_unit flag indicates whether a function is local to the - // current compilation unit (i.e. if it is *static* in the C-sense). The - // *reachable* set should provide a good approximation of this, as it - // contains everything that might leak out of the current crate (by being - // externally visible or by being inlined into something externally visible). - // It might better to use the `exported_items` set from `driver::CrateAnalysis` - // in the future, but (atm) this set is not available in the translation pass. - !cx.reachable().contains(&node_id) -} - -#[allow(non_snake_case)] -fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray { - return unsafe { - llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32) + pointee_type_metadata, + bytes_to_bits(pointer_size), + bytes_to_bits(pointer_align), + name.as_ptr()) }; + return ptr_metadata; } -fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor { +pub fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor { let work_dir = &cx.sess().working_dir; let compile_unit_name = match cx.sess().local_crate_source_file { None => fallback_path(cx), @@ -1667,500 +1046,230 @@ fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor { } } -fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, - variable_name: ast::Name, - variable_type: Ty<'tcx>, - scope_metadata: DIScope, - variable_access: VariableAccess, - variable_kind: VariableKind, - span: Span) { - let cx: &CrateContext = bcx.ccx(); +struct MetadataCreationResult { + metadata: DIType, + already_stored_in_typemap: bool +} - let filename = span_start(cx, span).file.name.clone(); - let file_metadata = file_metadata(cx, &filename[..]); +impl MetadataCreationResult { + fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult { + MetadataCreationResult { + metadata: metadata, + already_stored_in_typemap: already_stored_in_typemap + } + } +} - let name = token::get_name(variable_name); - let loc = span_start(cx, span); - let type_metadata = type_metadata(cx, variable_type, span); +enum MemberOffset { + FixedMemberOffset { bytes: usize }, + // For ComputedMemberOffset, the offset is read from the llvm type definition. + ComputedMemberOffset +} - let (argument_index, dwarf_tag) = match variable_kind { - ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable), - LocalVariable | - CapturedVariable => (0, DW_TAG_auto_variable) - }; +// Description of a type member, which can either be a regular field (as in +// structs or tuples) or an enum variant. +struct MemberDescription { + name: String, + llvm_type: Type, + type_metadata: DIType, + offset: MemberOffset, + flags: c_uint +} - let name = CString::new(name.as_bytes()).unwrap(); - match (variable_access, &[][..]) { - (DirectVariable { alloca }, address_operations) | - (IndirectVariable {alloca, address_operations}, _) => { - let metadata = unsafe { - llvm::LLVMDIBuilderCreateVariable( - DIB(cx), - dwarf_tag, - scope_metadata, - name.as_ptr(), - file_metadata, - loc.line as c_uint, - type_metadata, - cx.sess().opts.optimize != config::No, - 0, - address_operations.as_ptr(), - address_operations.len() as c_uint, - argument_index) - }; - set_debug_location(cx, InternalDebugLocation::new(scope_metadata, - loc.line, - loc.col.to_usize())); - unsafe { - let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd( - DIB(cx), - alloca, - metadata, - address_operations.as_ptr(), - address_operations.len() as c_uint, - bcx.llbb); +// A factory for MemberDescriptions. It produces a list of member descriptions +// for some record-like type. MemberDescriptionFactories are used to defer the +// creation of type member descriptions in order to break cycles arising from +// recursive type definitions. +enum MemberDescriptionFactory<'tcx> { + StructMDF(StructMemberDescriptionFactory<'tcx>), + TupleMDF(TupleMemberDescriptionFactory<'tcx>), + EnumMDF(EnumMemberDescriptionFactory<'tcx>), + VariantMDF(VariantMemberDescriptionFactory<'tcx>) +} - llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr); +impl<'tcx> MemberDescriptionFactory<'tcx> { + fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) + -> Vec { + match *self { + StructMDF(ref this) => { + this.create_member_descriptions(cx) + } + TupleMDF(ref this) => { + this.create_member_descriptions(cx) + } + EnumMDF(ref this) => { + this.create_member_descriptions(cx) + } + VariantMDF(ref this) => { + this.create_member_descriptions(cx) } } } - - match variable_kind { - ArgumentVariable(_) | CapturedVariable => { - assert!(!bcx.fcx - .debug_context - .get_ref(cx, span) - .source_locations_enabled - .get()); - set_debug_location(cx, UnknownLocation); - } - _ => { /* nothing to do */ } - } } -fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile { - match debug_context(cx).created_files.borrow().get(full_path) { - Some(file_metadata) => return *file_metadata, - None => () - } +//=----------------------------------------------------------------------------- +// Structs +//=----------------------------------------------------------------------------- - debug!("file_metadata: {}", full_path); +// Creates MemberDescriptions for the fields of a struct +struct StructMemberDescriptionFactory<'tcx> { + fields: Vec>, + is_simd: bool, + span: Span, +} - // FIXME (#9639): This needs to handle non-utf8 paths - let work_dir = cx.sess().working_dir.to_str().unwrap(); - let file_name = - if full_path.starts_with(work_dir) { - &full_path[work_dir.len() + 1..full_path.len()] +impl<'tcx> StructMemberDescriptionFactory<'tcx> { + fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) + -> Vec { + if self.fields.is_empty() { + return Vec::new(); + } + + let field_size = if self.is_simd { + machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as usize } else { - full_path + 0xdeadbeef }; - let file_name = CString::new(file_name).unwrap(); - let work_dir = CString::new(work_dir).unwrap(); - let file_metadata = unsafe { - llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name.as_ptr(), - work_dir.as_ptr()) - }; + self.fields.iter().enumerate().map(|(i, field)| { + let name = if field.name == special_idents::unnamed_field.name { + format!("__{}", i) + } else { + token::get_name(field.name).to_string() + }; - let mut created_files = debug_context(cx).created_files.borrow_mut(); - created_files.insert(full_path.to_string(), file_metadata); - return file_metadata; -} + let offset = if self.is_simd { + assert!(field_size != 0xdeadbeef); + FixedMemberOffset { bytes: i * field_size } + } else { + ComputedMemberOffset + }; -/// Finds the scope metadata node for the given AST node. -fn scope_metadata(fcx: &FunctionContext, - node_id: ast::NodeId, - error_reporting_span: Span) - -> DIScope { - let scope_map = &fcx.debug_context - .get_ref(fcx.ccx, error_reporting_span) - .scope_map; - match scope_map.borrow().get(&node_id).cloned() { - Some(scope_metadata) => scope_metadata, - None => { - let node = fcx.ccx.tcx().map.get(node_id); - - fcx.ccx.sess().span_bug(error_reporting_span, - &format!("debuginfo: Could not find scope info for node {:?}", - node)); - } + MemberDescription { + name: name, + llvm_type: type_of::type_of(cx, field.mt.ty), + type_metadata: type_metadata(cx, field.mt.ty, self.span), + offset: offset, + flags: FLAGS_NONE, + } + }).collect() } } -fn diverging_type_metadata(cx: &CrateContext) -> DIType { - unsafe { - llvm::LLVMDIBuilderCreateBasicType( - DIB(cx), - "!\0".as_ptr() as *const _, - bytes_to_bits(0), - bytes_to_bits(0), - DW_ATE_unsigned) - } -} -fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - t: Ty<'tcx>) -> DIType { +fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + struct_type: Ty<'tcx>, + def_id: ast::DefId, + substs: &subst::Substs<'tcx>, + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription<'tcx> { + let struct_name = compute_debuginfo_type_name(cx, struct_type, false); + let struct_llvm_type = type_of::type_of(cx, struct_type); - debug!("basic_type_metadata: {:?}", t); + let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); - let (name, encoding) = match t.sty { - ty::ty_tup(ref elements) if elements.is_empty() => - ("()".to_string(), DW_ATE_unsigned), - ty::ty_bool => ("bool".to_string(), DW_ATE_boolean), - ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char), - ty::ty_int(int_ty) => match int_ty { - ast::TyIs => ("isize".to_string(), DW_ATE_signed), - ast::TyI8 => ("i8".to_string(), DW_ATE_signed), - ast::TyI16 => ("i16".to_string(), DW_ATE_signed), - ast::TyI32 => ("i32".to_string(), DW_ATE_signed), - ast::TyI64 => ("i64".to_string(), DW_ATE_signed) - }, - ty::ty_uint(uint_ty) => match uint_ty { - ast::TyUs => ("usize".to_string(), DW_ATE_unsigned), - ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned), - ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned), - ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned), - ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned) - }, - ty::ty_float(float_ty) => match float_ty { - ast::TyF32 => ("f32".to_string(), DW_ATE_float), - ast::TyF64 => ("f64".to_string(), DW_ATE_float), - }, - _ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type") - }; + let struct_metadata_stub = create_struct_stub(cx, + struct_llvm_type, + &struct_name[..], + unique_type_id, + containing_scope); - let llvm_type = type_of::type_of(cx, t); - let (size, align) = size_and_align_of(cx, llvm_type); - let name = CString::new(name).unwrap(); - let ty_metadata = unsafe { - llvm::LLVMDIBuilderCreateBasicType( - DIB(cx), - name.as_ptr(), - bytes_to_bits(size), - bytes_to_bits(align), - encoding) - }; + let mut fields = ty::struct_fields(cx.tcx(), def_id, substs); - return ty_metadata; -} + // The `Ty` values returned by `ty::struct_fields` can still contain + // `ty_projection` variants, so normalize those away. + for field in &mut fields { + field.mt.ty = monomorphize::normalize_associated_type(cx.tcx(), &field.mt.ty); + } -fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - pointer_type: Ty<'tcx>, - pointee_type_metadata: DIType) - -> DIType { - let pointer_llvm_type = type_of::type_of(cx, pointer_type); - let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type); - let name = compute_debuginfo_type_name(cx, pointer_type, false); - let name = CString::new(name).unwrap(); - let ptr_metadata = unsafe { - llvm::LLVMDIBuilderCreatePointerType( - DIB(cx), - pointee_type_metadata, - bytes_to_bits(pointer_size), - bytes_to_bits(pointer_align), - name.as_ptr()) - }; - return ptr_metadata; + create_and_register_recursive_type_forward_declaration( + cx, + struct_type, + unique_type_id, + struct_metadata_stub, + struct_llvm_type, + StructMDF(StructMemberDescriptionFactory { + fields: fields, + is_simd: ty::type_is_simd(cx.tcx(), struct_type), + span: span, + }) + ) } + //=----------------------------------------------------------------------------- -// Common facilities for record-like types (structs, enums, tuples) +// Tuples //=----------------------------------------------------------------------------- -enum MemberOffset { - FixedMemberOffset { bytes: usize }, - // For ComputedMemberOffset, the offset is read from the llvm type definition - ComputedMemberOffset -} - -// Description of a type member, which can either be a regular field (as in -// structs or tuples) or an enum variant -struct MemberDescription { - name: String, - llvm_type: Type, - type_metadata: DIType, - offset: MemberOffset, - flags: c_uint -} - -// A factory for MemberDescriptions. It produces a list of member descriptions -// for some record-like type. MemberDescriptionFactories are used to defer the -// creation of type member descriptions in order to break cycles arising from -// recursive type definitions. -enum MemberDescriptionFactory<'tcx> { - StructMDF(StructMemberDescriptionFactory<'tcx>), - TupleMDF(TupleMemberDescriptionFactory<'tcx>), - EnumMDF(EnumMemberDescriptionFactory<'tcx>), - VariantMDF(VariantMemberDescriptionFactory<'tcx>) +// Creates MemberDescriptions for the fields of a tuple +struct TupleMemberDescriptionFactory<'tcx> { + component_types: Vec>, + span: Span, } -impl<'tcx> MemberDescriptionFactory<'tcx> { +impl<'tcx> TupleMemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { - match *self { - StructMDF(ref this) => { - this.create_member_descriptions(cx) - } - TupleMDF(ref this) => { - this.create_member_descriptions(cx) - } - EnumMDF(ref this) => { - this.create_member_descriptions(cx) - } - VariantMDF(ref this) => { - this.create_member_descriptions(cx) + self.component_types + .iter() + .enumerate() + .map(|(i, &component_type)| { + MemberDescription { + name: format!("__{}", i), + llvm_type: type_of::type_of(cx, component_type), + type_metadata: type_metadata(cx, component_type, self.span), + offset: ComputedMemberOffset, + flags: FLAGS_NONE, } - } + }).collect() } } -// A description of some recursive type. It can either be already finished (as -// with FinalMetadata) or it is not yet finished, but contains all information -// needed to generate the missing parts of the description. See the documentation -// section on Recursive Types at the top of this file for more information. -enum RecursiveTypeDescription<'tcx> { - UnfinishedMetadata { - unfinished_type: Ty<'tcx>, - unique_type_id: UniqueTypeId, - metadata_stub: DICompositeType, - llvm_type: Type, - member_description_factory: MemberDescriptionFactory<'tcx>, - }, - FinalMetadata(DICompositeType) +fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + tuple_type: Ty<'tcx>, + component_types: &[Ty<'tcx>], + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription<'tcx> { + let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false); + let tuple_llvm_type = type_of::type_of(cx, tuple_type); + + create_and_register_recursive_type_forward_declaration( + cx, + tuple_type, + unique_type_id, + create_struct_stub(cx, + tuple_llvm_type, + &tuple_name[..], + unique_type_id, + UNKNOWN_SCOPE_METADATA), + tuple_llvm_type, + TupleMDF(TupleMemberDescriptionFactory { + component_types: component_types.to_vec(), + span: span, + }) + ) } -fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>( - cx: &CrateContext<'a, 'tcx>, - unfinished_type: Ty<'tcx>, - unique_type_id: UniqueTypeId, - metadata_stub: DICompositeType, - llvm_type: Type, - member_description_factory: MemberDescriptionFactory<'tcx>) - -> RecursiveTypeDescription<'tcx> { - // Insert the stub into the TypeMap in order to allow for recursive references - let mut type_map = debug_context(cx).type_map.borrow_mut(); - type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub); - type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub); +//=----------------------------------------------------------------------------- +// Enums +//=----------------------------------------------------------------------------- - UnfinishedMetadata { - unfinished_type: unfinished_type, - unique_type_id: unique_type_id, - metadata_stub: metadata_stub, - llvm_type: llvm_type, - member_description_factory: member_description_factory, - } -} - -impl<'tcx> RecursiveTypeDescription<'tcx> { - // Finishes up the description of the type in question (mostly by providing - // descriptions of the fields of the given type) and returns the final type metadata. - fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult { - match *self { - FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false), - UnfinishedMetadata { - unfinished_type, - unique_type_id, - metadata_stub, - llvm_type, - ref member_description_factory, - .. - } => { - // Make sure that we have a forward declaration of the type in - // the TypeMap so that recursive references are possible. This - // will always be the case if the RecursiveTypeDescription has - // been properly created through the - // create_and_register_recursive_type_forward_declaration() function. - { - let type_map = debug_context(cx).type_map.borrow(); - if type_map.find_metadata_for_unique_id(unique_type_id).is_none() || - type_map.find_metadata_for_type(unfinished_type).is_none() { - cx.sess().bug(&format!("Forward declaration of potentially recursive type \ - '{}' was not found in TypeMap!", - ppaux::ty_to_string(cx.tcx(), unfinished_type)) - ); - } - } - - // ... then create the member descriptions ... - let member_descriptions = - member_description_factory.create_member_descriptions(cx); - - // ... and attach them to the stub to complete it. - set_members_of_composite_type(cx, - metadata_stub, - llvm_type, - &member_descriptions[..]); - return MetadataCreationResult::new(metadata_stub, true); - } - } - } -} - - -//=----------------------------------------------------------------------------- -// Structs -//=----------------------------------------------------------------------------- - -// Creates MemberDescriptions for the fields of a struct -struct StructMemberDescriptionFactory<'tcx> { - fields: Vec>, - is_simd: bool, - span: Span, -} - -impl<'tcx> StructMemberDescriptionFactory<'tcx> { - fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) - -> Vec { - if self.fields.is_empty() { - return Vec::new(); - } - - let field_size = if self.is_simd { - machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as usize - } else { - 0xdeadbeef - }; - - self.fields.iter().enumerate().map(|(i, field)| { - let name = if field.name == special_idents::unnamed_field.name { - format!("__{}", i) - } else { - token::get_name(field.name).to_string() - }; - - let offset = if self.is_simd { - assert!(field_size != 0xdeadbeef); - FixedMemberOffset { bytes: i * field_size } - } else { - ComputedMemberOffset - }; - - MemberDescription { - name: name, - llvm_type: type_of::type_of(cx, field.mt.ty), - type_metadata: type_metadata(cx, field.mt.ty, self.span), - offset: offset, - flags: FLAGS_NONE, - } - }).collect() - } -} - - -fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - struct_type: Ty<'tcx>, - def_id: ast::DefId, - substs: &subst::Substs<'tcx>, - unique_type_id: UniqueTypeId, - span: Span) - -> RecursiveTypeDescription<'tcx> { - let struct_name = compute_debuginfo_type_name(cx, struct_type, false); - let struct_llvm_type = type_of::type_of(cx, struct_type); - - let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); - - let struct_metadata_stub = create_struct_stub(cx, - struct_llvm_type, - &struct_name[..], - unique_type_id, - containing_scope); - - let mut fields = ty::struct_fields(cx.tcx(), def_id, substs); - - // The `Ty` values returned by `ty::struct_fields` can still contain - // `ty_projection` variants, so normalize those away. - for field in &mut fields { - field.mt.ty = monomorphize::normalize_associated_type(cx.tcx(), &field.mt.ty); - } - - create_and_register_recursive_type_forward_declaration( - cx, - struct_type, - unique_type_id, - struct_metadata_stub, - struct_llvm_type, - StructMDF(StructMemberDescriptionFactory { - fields: fields, - is_simd: ty::type_is_simd(cx.tcx(), struct_type), - span: span, - }) - ) -} - - -//=----------------------------------------------------------------------------- -// Tuples -//=----------------------------------------------------------------------------- - -// Creates MemberDescriptions for the fields of a tuple -struct TupleMemberDescriptionFactory<'tcx> { - component_types: Vec>, - span: Span, -} - -impl<'tcx> TupleMemberDescriptionFactory<'tcx> { - fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) - -> Vec { - self.component_types - .iter() - .enumerate() - .map(|(i, &component_type)| { - MemberDescription { - name: format!("__{}", i), - llvm_type: type_of::type_of(cx, component_type), - type_metadata: type_metadata(cx, component_type, self.span), - offset: ComputedMemberOffset, - flags: FLAGS_NONE, - } - }).collect() - } -} - -fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - tuple_type: Ty<'tcx>, - component_types: &[Ty<'tcx>], - unique_type_id: UniqueTypeId, - span: Span) - -> RecursiveTypeDescription<'tcx> { - let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false); - let tuple_llvm_type = type_of::type_of(cx, tuple_type); - - create_and_register_recursive_type_forward_declaration( - cx, - tuple_type, - unique_type_id, - create_struct_stub(cx, - tuple_llvm_type, - &tuple_name[..], - unique_type_id, - UNKNOWN_SCOPE_METADATA), - tuple_llvm_type, - TupleMDF(TupleMemberDescriptionFactory { - component_types: component_types.to_vec(), - span: span, - }) - ) -} - - -//=----------------------------------------------------------------------------- -// Enums -//=----------------------------------------------------------------------------- - -// Describes the members of an enum value: An enum is described as a union of -// structs in DWARF. This MemberDescriptionFactory provides the description for -// the members of this union; so for every variant of the given enum, this factory -// will produce one MemberDescription (all with no name and a fixed offset of -// zero bytes). -struct EnumMemberDescriptionFactory<'tcx> { - enum_type: Ty<'tcx>, - type_rep: Rc>, - variants: Rc>>>, - discriminant_type_metadata: Option, - containing_scope: DIScope, - file_metadata: DIFile, - span: Span, +// Describes the members of an enum value: An enum is described as a union of +// structs in DWARF. This MemberDescriptionFactory provides the description for +// the members of this union; so for every variant of the given enum, this +// factory will produce one MemberDescription (all with no name and a fixed +// offset of zero bytes). +struct EnumMemberDescriptionFactory<'tcx> { + enum_type: Ty<'tcx>, + type_rep: Rc>, + variants: Rc>>>, + discriminant_type_metadata: Option, + containing_scope: DIScope, + file_metadata: DIFile, + span: Span, } impl<'tcx> EnumMemberDescriptionFactory<'tcx> { @@ -2355,1753 +1464,683 @@ impl<'tcx> EnumMemberDescriptionFactory<'tcx> { } } -// Creates MemberDescriptions for the fields of a single enum variant. -struct VariantMemberDescriptionFactory<'tcx> { - args: Vec<(String, Ty<'tcx>)>, - discriminant_type_metadata: Option, - span: Span, -} - -impl<'tcx> VariantMemberDescriptionFactory<'tcx> { - fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) - -> Vec { - self.args.iter().enumerate().map(|(i, &(ref name, ty))| { - MemberDescription { - name: name.to_string(), - llvm_type: type_of::type_of(cx, ty), - type_metadata: match self.discriminant_type_metadata { - Some(metadata) if i == 0 => metadata, - _ => type_metadata(cx, ty, self.span) - }, - offset: ComputedMemberOffset, - flags: FLAGS_NONE - } - }).collect() - } -} - -#[derive(Copy, Clone)] -enum EnumDiscriminantInfo { - RegularDiscriminant(DIType), - OptimizedDiscriminant, - NoDiscriminant -} - -// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type -// of the variant, and (3) a MemberDescriptionFactory for producing the -// descriptions of the fields of the variant. This is a rudimentary version of a -// full RecursiveTypeDescription. -fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - enum_type: Ty<'tcx>, - struct_def: &adt::Struct<'tcx>, - variant_info: &ty::VariantInfo<'tcx>, - discriminant_info: EnumDiscriminantInfo, - containing_scope: DIScope, - span: Span) - -> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) { - let variant_llvm_type = - Type::struct_(cx, &struct_def.fields - .iter() - .map(|&t| type_of::type_of(cx, t)) - .collect::>() - , - struct_def.packed); - // Could do some consistency checks here: size, align, field count, discr type - - let variant_name = token::get_name(variant_info.name); - let variant_name = &variant_name; - let unique_type_id = debug_context(cx).type_map - .borrow_mut() - .get_unique_type_id_of_enum_variant( - cx, - enum_type, - variant_name); - - let metadata_stub = create_struct_stub(cx, - variant_llvm_type, - variant_name, - unique_type_id, - containing_scope); - - // Get the argument names from the enum variant info - let mut arg_names: Vec<_> = match variant_info.arg_names { - Some(ref names) => { - names.iter() - .map(|&name| token::get_name(name).to_string()) - .collect() - } - None => { - variant_info.args - .iter() - .enumerate() - .map(|(i, _)| format!("__{}", i)) - .collect() - } - }; - - // If this is not a univariant enum, there is also the discriminant field. - match discriminant_info { - RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()), - _ => { /* do nothing */ } - }; - - // Build an array of (field name, field type) pairs to be captured in the factory closure. - let args: Vec<(String, Ty)> = arg_names.iter() - .zip(struct_def.fields.iter()) - .map(|(s, &t)| (s.to_string(), t)) - .collect(); - - let member_description_factory = - VariantMDF(VariantMemberDescriptionFactory { - args: args, - discriminant_type_metadata: match discriminant_info { - RegularDiscriminant(discriminant_type_metadata) => { - Some(discriminant_type_metadata) - } - _ => None - }, - span: span, - }); - - (metadata_stub, variant_llvm_type, member_description_factory) -} - -fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - enum_type: Ty<'tcx>, - enum_def_id: ast::DefId, - unique_type_id: UniqueTypeId, - span: Span) - -> RecursiveTypeDescription<'tcx> { - let enum_name = compute_debuginfo_type_name(cx, enum_type, false); - - let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id); - let loc = span_start(cx, definition_span); - let file_metadata = file_metadata(cx, &loc.file.name); - - let variants = ty::enum_variants(cx.tcx(), enum_def_id); - - let enumerators_metadata: Vec = variants - .iter() - .map(|v| { - let token = token::get_name(v.name); - let name = CString::new(token.as_bytes()).unwrap(); - unsafe { - llvm::LLVMDIBuilderCreateEnumerator( - DIB(cx), - name.as_ptr(), - v.disr_val as u64) - } - }) - .collect(); - - let discriminant_type_metadata = |inttype| { - // We can reuse the type of the discriminant for all monomorphized - // instances of an enum because it doesn't depend on any type parameters. - // The def_id, uniquely identifying the enum's polytype acts as key in - // this cache. - let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types - .borrow() - .get(&enum_def_id).cloned(); - match cached_discriminant_type_metadata { - Some(discriminant_type_metadata) => discriminant_type_metadata, - None => { - let discriminant_llvm_type = adt::ll_inttype(cx, inttype); - let (discriminant_size, discriminant_align) = - size_and_align_of(cx, discriminant_llvm_type); - let discriminant_base_type_metadata = - type_metadata(cx, - adt::ty_of_inttype(cx.tcx(), inttype), - codemap::DUMMY_SP); - let discriminant_name = get_enum_discriminant_name(cx, enum_def_id); - - let name = CString::new(discriminant_name.as_bytes()).unwrap(); - let discriminant_type_metadata = unsafe { - llvm::LLVMDIBuilderCreateEnumerationType( - DIB(cx), - containing_scope, - name.as_ptr(), - UNKNOWN_FILE_METADATA, - UNKNOWN_LINE_NUMBER, - bytes_to_bits(discriminant_size), - bytes_to_bits(discriminant_align), - create_DIArray(DIB(cx), &enumerators_metadata), - discriminant_base_type_metadata) - }; - - debug_context(cx).created_enum_disr_types - .borrow_mut() - .insert(enum_def_id, discriminant_type_metadata); - - discriminant_type_metadata - } - } - }; - - let type_rep = adt::represent_type(cx, enum_type); - - let discriminant_type_metadata = match *type_rep { - adt::CEnum(inttype, _, _) => { - return FinalMetadata(discriminant_type_metadata(inttype)) - }, - adt::RawNullablePointer { .. } | - adt::StructWrappedNullablePointer { .. } | - adt::Univariant(..) => None, - adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)), - }; - - let enum_llvm_type = type_of::type_of(cx, enum_type); - let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type); - - let unique_type_id_str = debug_context(cx) - .type_map - .borrow() - .get_unique_type_id_as_string(unique_type_id); - - let enum_name = CString::new(enum_name).unwrap(); - let unique_type_id_str = CString::new(unique_type_id_str.as_bytes()).unwrap(); - let enum_metadata = unsafe { - llvm::LLVMDIBuilderCreateUnionType( - DIB(cx), - containing_scope, - enum_name.as_ptr(), - UNKNOWN_FILE_METADATA, - UNKNOWN_LINE_NUMBER, - bytes_to_bits(enum_type_size), - bytes_to_bits(enum_type_align), - 0, // Flags - ptr::null_mut(), - 0, // RuntimeLang - unique_type_id_str.as_ptr()) - }; - - return create_and_register_recursive_type_forward_declaration( - cx, - enum_type, - unique_type_id, - enum_metadata, - enum_llvm_type, - EnumMDF(EnumMemberDescriptionFactory { - enum_type: enum_type, - type_rep: type_rep.clone(), - variants: variants, - discriminant_type_metadata: discriminant_type_metadata, - containing_scope: containing_scope, - file_metadata: file_metadata, - span: span, - }), - ); - - fn get_enum_discriminant_name(cx: &CrateContext, - def_id: ast::DefId) - -> token::InternedString { - let name = if def_id.krate == ast::LOCAL_CRATE { - cx.tcx().map.get_path_elem(def_id.node).name() - } else { - csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name() - }; - - token::get_name(name) - } -} - -/// Creates debug information for a composite type, that is, anything that -/// results in a LLVM struct. -/// -/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums. -fn composite_type_metadata(cx: &CrateContext, - composite_llvm_type: Type, - composite_type_name: &str, - composite_type_unique_id: UniqueTypeId, - member_descriptions: &[MemberDescription], - containing_scope: DIScope, - - // Ignore source location information as long as it - // can't be reconstructed for non-local crates. - _file_metadata: DIFile, - _definition_span: Span) - -> DICompositeType { - // Create the (empty) struct metadata node ... - let composite_type_metadata = create_struct_stub(cx, - composite_llvm_type, - composite_type_name, - composite_type_unique_id, - containing_scope); - // ... and immediately create and add the member descriptions. - set_members_of_composite_type(cx, - composite_type_metadata, - composite_llvm_type, - member_descriptions); - - return composite_type_metadata; -} - -fn set_members_of_composite_type(cx: &CrateContext, - composite_type_metadata: DICompositeType, - composite_llvm_type: Type, - member_descriptions: &[MemberDescription]) { - // In some rare cases LLVM metadata uniquing would lead to an existing type - // description being used instead of a new one created in create_struct_stub. - // This would cause a hard to trace assertion in DICompositeType::SetTypeArray(). - // The following check makes sure that we get a better error message if this - // should happen again due to some regression. - { - let mut composite_types_completed = - debug_context(cx).composite_types_completed.borrow_mut(); - if composite_types_completed.contains(&composite_type_metadata) { - cx.sess().bug("debuginfo::set_members_of_composite_type() - \ - Already completed forward declaration re-encountered."); - } else { - composite_types_completed.insert(composite_type_metadata); - } - } - - let member_metadata: Vec = member_descriptions - .iter() - .enumerate() - .map(|(i, member_description)| { - let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type); - let member_offset = match member_description.offset { - FixedMemberOffset { bytes } => bytes as u64, - ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i) - }; - - let member_name = member_description.name.as_bytes(); - let member_name = CString::new(member_name).unwrap(); - unsafe { - llvm::LLVMDIBuilderCreateMemberType( - DIB(cx), - composite_type_metadata, - member_name.as_ptr(), - UNKNOWN_FILE_METADATA, - UNKNOWN_LINE_NUMBER, - bytes_to_bits(member_size), - bytes_to_bits(member_align), - bytes_to_bits(member_offset), - member_description.flags, - member_description.type_metadata) - } - }) - .collect(); - - unsafe { - let type_array = create_DIArray(DIB(cx), &member_metadata[..]); - llvm::LLVMDICompositeTypeSetTypeArray(DIB(cx), composite_type_metadata, type_array); - } -} - -// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any -// caching, does not add any fields to the struct. This can be done later with -// set_members_of_composite_type(). -fn create_struct_stub(cx: &CrateContext, - struct_llvm_type: Type, - struct_type_name: &str, - unique_type_id: UniqueTypeId, - containing_scope: DIScope) - -> DICompositeType { - let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type); - - let unique_type_id_str = debug_context(cx).type_map - .borrow() - .get_unique_type_id_as_string(unique_type_id); - let name = CString::new(struct_type_name).unwrap(); - let unique_type_id = CString::new(unique_type_id_str.as_bytes()).unwrap(); - let metadata_stub = unsafe { - // LLVMDIBuilderCreateStructType() wants an empty array. A null - // pointer will lead to hard to trace and debug LLVM assertions - // later on in llvm/lib/IR/Value.cpp. - let empty_array = create_DIArray(DIB(cx), &[]); - - llvm::LLVMDIBuilderCreateStructType( - DIB(cx), - containing_scope, - name.as_ptr(), - UNKNOWN_FILE_METADATA, - UNKNOWN_LINE_NUMBER, - bytes_to_bits(struct_size), - bytes_to_bits(struct_align), - 0, - ptr::null_mut(), - empty_array, - 0, - ptr::null_mut(), - unique_type_id.as_ptr()) - }; - - return metadata_stub; -} - -fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - unique_type_id: UniqueTypeId, - element_type: Ty<'tcx>, - len: Option, - span: Span) - -> MetadataCreationResult { - let element_type_metadata = type_metadata(cx, element_type, span); - - return_if_metadata_created_in_meantime!(cx, unique_type_id); - - let element_llvm_type = type_of::type_of(cx, element_type); - let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type); - - let (array_size_in_bytes, upper_bound) = match len { - Some(len) => (element_type_size * len, len as c_longlong), - None => (0, -1) - }; - - let subrange = unsafe { - llvm::LLVMDIBuilderGetOrCreateSubrange(DIB(cx), 0, upper_bound) - }; - - let subscripts = create_DIArray(DIB(cx), &[subrange]); - let metadata = unsafe { - llvm::LLVMDIBuilderCreateArrayType( - DIB(cx), - bytes_to_bits(array_size_in_bytes), - bytes_to_bits(element_type_align), - element_type_metadata, - subscripts) - }; - - return MetadataCreationResult::new(metadata, false); -} - -fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - vec_type: Ty<'tcx>, - element_type: Ty<'tcx>, - unique_type_id: UniqueTypeId, - span: Span) - -> MetadataCreationResult { - let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt { - ty: element_type, - mutbl: ast::MutImmutable - }); - - let element_type_metadata = type_metadata(cx, data_ptr_type, span); - - return_if_metadata_created_in_meantime!(cx, unique_type_id); - - let slice_llvm_type = type_of::type_of(cx, vec_type); - let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true); - - let member_llvm_types = slice_llvm_type.field_types(); - assert!(slice_layout_is_correct(cx, - &member_llvm_types[..], - element_type)); - let member_descriptions = [ - MemberDescription { - name: "data_ptr".to_string(), - llvm_type: member_llvm_types[0], - type_metadata: element_type_metadata, - offset: ComputedMemberOffset, - flags: FLAGS_NONE - }, - MemberDescription { - name: "length".to_string(), - llvm_type: member_llvm_types[1], - type_metadata: type_metadata(cx, cx.tcx().types.usize, span), - offset: ComputedMemberOffset, - flags: FLAGS_NONE - }, - ]; - - assert!(member_descriptions.len() == member_llvm_types.len()); - - let loc = span_start(cx, span); - let file_metadata = file_metadata(cx, &loc.file.name); - - let metadata = composite_type_metadata(cx, - slice_llvm_type, - &slice_type_name[..], - unique_type_id, - &member_descriptions, - UNKNOWN_SCOPE_METADATA, - file_metadata, - span); - return MetadataCreationResult::new(metadata, false); - - fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - member_llvm_types: &[Type], - element_type: Ty<'tcx>) - -> bool { - member_llvm_types.len() == 2 && - member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() && - member_llvm_types[1] == cx.int_type() - } -} - -fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - unique_type_id: UniqueTypeId, - signature: &ty::PolyFnSig<'tcx>, - span: Span) - -> MetadataCreationResult -{ - let signature = ty::erase_late_bound_regions(cx.tcx(), signature); - - let mut signature_metadata: Vec = Vec::with_capacity(signature.inputs.len() + 1); - - // return type - signature_metadata.push(match signature.output { - ty::FnConverging(ret_ty) => match ret_ty.sty { - ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(), - _ => type_metadata(cx, ret_ty, span) - }, - ty::FnDiverging => diverging_type_metadata(cx) - }); - - // regular arguments - for &argument_type in &signature.inputs { - signature_metadata.push(type_metadata(cx, argument_type, span)); - } - - return_if_metadata_created_in_meantime!(cx, unique_type_id); - - return MetadataCreationResult::new( - unsafe { - llvm::LLVMDIBuilderCreateSubroutineType( - DIB(cx), - UNKNOWN_FILE_METADATA, - create_DIArray(DIB(cx), &signature_metadata[..])) - }, - false); -} - -// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill- -// defined concept. For the case of an actual trait pointer (i.e., Box, -// &Trait), trait_object_type should be the whole thing (e.g, Box) and -// trait_type should be the actual trait (e.g., Trait). Where the trait is part -// of a DST struct, there is no trait_object_type and the results of this -// function will be a little bit weird. -fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - trait_type: Ty<'tcx>, - trait_object_type: Option>, - unique_type_id: UniqueTypeId) - -> DIType { - // The implementation provided here is a stub. It makes sure that the trait - // type is assigned the correct name, size, namespace, and source location. - // But it does not describe the trait's methods. - - let def_id = match trait_type.sty { - ty::ty_trait(ref data) => data.principal_def_id(), - _ => { - let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type); - cx.sess().bug(&format!("debuginfo: Unexpected trait-object type in \ - trait_pointer_metadata(): {}", - &pp_type_name[..])); - } - }; - - let trait_object_type = trait_object_type.unwrap_or(trait_type); - let trait_type_name = - compute_debuginfo_type_name(cx, trait_object_type, false); - - let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); - - let trait_llvm_type = type_of::type_of(cx, trait_object_type); - - composite_type_metadata(cx, - trait_llvm_type, - &trait_type_name[..], - unique_type_id, - &[], - containing_scope, - UNKNOWN_FILE_METADATA, - codemap::DUMMY_SP) -} - -fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - t: Ty<'tcx>, - usage_site_span: Span) - -> DIType { - // Get the unique type id of this type. - let unique_type_id = { - let mut type_map = debug_context(cx).type_map.borrow_mut(); - // First, try to find the type in TypeMap. If we have seen it before, we - // can exit early here. - match type_map.find_metadata_for_type(t) { - Some(metadata) => { - return metadata; - }, - None => { - // The Ty is not in the TypeMap but maybe we have already seen - // an equivalent type (e.g. only differing in region arguments). - // In order to find out, generate the unique type id and look - // that up. - let unique_type_id = type_map.get_unique_type_id_of_type(cx, t); - match type_map.find_metadata_for_unique_id(unique_type_id) { - Some(metadata) => { - // There is already an equivalent type in the TypeMap. - // Register this Ty as an alias in the cache and - // return the cached metadata. - type_map.register_type_with_metadata(cx, t, metadata); - return metadata; - }, - None => { - // There really is no type metadata for this type, so - // proceed by creating it. - unique_type_id - } - } - } - } - }; - - debug!("type_metadata: {:?}", t); - - let sty = &t.sty; - let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty { - ty::ty_bool | - ty::ty_char | - ty::ty_int(_) | - ty::ty_uint(_) | - ty::ty_float(_) => { - MetadataCreationResult::new(basic_type_metadata(cx, t), false) - } - ty::ty_tup(ref elements) if elements.is_empty() => { - MetadataCreationResult::new(basic_type_metadata(cx, t), false) - } - ty::ty_enum(def_id, _) => { - prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx) - } - ty::ty_vec(typ, len) => { - fixed_vec_metadata(cx, unique_type_id, typ, len.map(|x| x as u64), usage_site_span) - } - ty::ty_str => { - fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, None, usage_site_span) - } - ty::ty_trait(..) => { - MetadataCreationResult::new( - trait_pointer_metadata(cx, t, None, unique_type_id), - false) - } - ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => { - match ty.sty { - ty::ty_vec(typ, None) => { - vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span) - } - ty::ty_str => { - vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span) - } - ty::ty_trait(..) => { - MetadataCreationResult::new( - trait_pointer_metadata(cx, ty, Some(t), unique_type_id), - false) - } - _ => { - let pointee_metadata = type_metadata(cx, ty, usage_site_span); - - match debug_context(cx).type_map - .borrow() - .find_metadata_for_unique_id(unique_type_id) { - Some(metadata) => return metadata, - None => { /* proceed normally */ } - }; - - MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata), - false) - } - } - } - ty::ty_bare_fn(_, ref barefnty) => { - subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span) - } - ty::ty_closure(def_id, substs) => { - let typer = NormalizingClosureTyper::new(cx.tcx()); - let sig = typer.closure_type(def_id, substs).sig; - subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span) - } - ty::ty_struct(def_id, substs) => { - prepare_struct_metadata(cx, - t, - def_id, - substs, - unique_type_id, - usage_site_span).finalize(cx) - } - ty::ty_tup(ref elements) => { - prepare_tuple_metadata(cx, - t, - &elements[..], - unique_type_id, - usage_site_span).finalize(cx) - } - _ => { - cx.sess().bug(&format!("debuginfo: unexpected type in type_metadata: {:?}", - sty)) - } - }; - - { - let mut type_map = debug_context(cx).type_map.borrow_mut(); - - if already_stored_in_typemap { - // Also make sure that we already have a TypeMap entry entry for the unique type id. - let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) { - Some(metadata) => metadata, - None => { - let unique_type_id_str = - type_map.get_unique_type_id_as_string(unique_type_id); - let error_message = format!("Expected type metadata for unique \ - type id '{}' to already be in \ - the debuginfo::TypeMap but it \ - was not. (Ty = {})", - &unique_type_id_str[..], - ppaux::ty_to_string(cx.tcx(), t)); - cx.sess().span_bug(usage_site_span, &error_message[..]); - } - }; - - match type_map.find_metadata_for_type(t) { - Some(metadata) => { - if metadata != metadata_for_uid { - let unique_type_id_str = - type_map.get_unique_type_id_as_string(unique_type_id); - let error_message = format!("Mismatch between Ty and \ - UniqueTypeId maps in \ - debuginfo::TypeMap. \ - UniqueTypeId={}, Ty={}", - &unique_type_id_str[..], - ppaux::ty_to_string(cx.tcx(), t)); - cx.sess().span_bug(usage_site_span, &error_message[..]); - } - } - None => { - type_map.register_type_with_metadata(cx, t, metadata); - } - } - } else { - type_map.register_type_with_metadata(cx, t, metadata); - type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata); - } - } - - metadata -} - -struct MetadataCreationResult { - metadata: DIType, - already_stored_in_typemap: bool -} - -impl MetadataCreationResult { - fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult { - MetadataCreationResult { - metadata: metadata, - already_stored_in_typemap: already_stored_in_typemap - } - } -} - -#[derive(Copy, Clone, PartialEq)] -enum InternalDebugLocation { - KnownLocation { scope: DIScope, line: usize, col: usize }, - UnknownLocation -} - -impl InternalDebugLocation { - fn new(scope: DIScope, line: usize, col: usize) -> InternalDebugLocation { - KnownLocation { - scope: scope, - line: line, - col: col, - } - } -} - -fn set_debug_location(cx: &CrateContext, debug_location: InternalDebugLocation) { - if debug_location == debug_context(cx).current_debug_location.get() { - return; - } - - let metadata_node; - - match debug_location { - KnownLocation { scope, line, .. } => { - // Always set the column to zero like Clang and GCC - let col = UNKNOWN_COLUMN_NUMBER; - debug!("setting debug location to {} {}", line, col); - - unsafe { - metadata_node = llvm::LLVMDIBuilderCreateDebugLocation( - debug_context(cx).llcontext, - line as c_uint, - col as c_uint, - scope, - ptr::null_mut()); - } - } - UnknownLocation => { - debug!("clearing debug location "); - metadata_node = ptr::null_mut(); - } - }; - - unsafe { - llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node); - } - - debug_context(cx).current_debug_location.set(debug_location); -} - -//=----------------------------------------------------------------------------- -// Utility Functions -//=----------------------------------------------------------------------------- - -fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool { - attributes.iter().any(|attr| { - let meta_item: &ast::MetaItem = &*attr.node.value; - match meta_item.node { - ast::MetaWord(ref value) => &value[..] == "no_debug", - _ => false - } - }) -} - -/// Return codemap::Loc corresponding to the beginning of the span -fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc { - cx.sess().codemap().lookup_char_pos(span.lo) -} - -fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) { - (machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64) -} - -fn bytes_to_bits(bytes: u64) -> u64 { - bytes * 8 -} - -#[inline] -fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>) - -> &'a CrateDebugContext<'tcx> { - let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap(); - debug_context -} - -#[inline] -#[allow(non_snake_case)] -fn DIB(cx: &CrateContext) -> DIBuilderRef { - cx.dbg_cx().as_ref().unwrap().builder -} - -fn fn_should_be_ignored(fcx: &FunctionContext) -> bool { - match fcx.debug_context { - FunctionDebugContext::RegularContext(_) => false, - _ => true - } +// Creates MemberDescriptions for the fields of a single enum variant. +struct VariantMemberDescriptionFactory<'tcx> { + args: Vec<(String, Ty<'tcx>)>, + discriminant_type_metadata: Option, + span: Span, } -fn assert_type_for_node_id(cx: &CrateContext, - node_id: ast::NodeId, - error_reporting_span: Span) { - if !cx.tcx().node_types().contains_key(&node_id) { - cx.sess().span_bug(error_reporting_span, - "debuginfo: Could not find type for node id!"); +impl<'tcx> VariantMemberDescriptionFactory<'tcx> { + fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) + -> Vec { + self.args.iter().enumerate().map(|(i, &(ref name, ty))| { + MemberDescription { + name: name.to_string(), + llvm_type: type_of::type_of(cx, ty), + type_metadata: match self.discriminant_type_metadata { + Some(metadata) if i == 0 => metadata, + _ => type_metadata(cx, ty, self.span) + }, + offset: ComputedMemberOffset, + flags: FLAGS_NONE + } + }).collect() } } -fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId) - -> (DIScope, Span) { - let containing_scope = namespace_for_item(cx, def_id).scope; - let definition_span = if def_id.krate == ast::LOCAL_CRATE { - cx.tcx().map.span(def_id.node) - } else { - // For external items there is no span information - codemap::DUMMY_SP - }; - - (containing_scope, definition_span) +#[derive(Copy, Clone)] +enum EnumDiscriminantInfo { + RegularDiscriminant(DIType), + OptimizedDiscriminant, + NoDiscriminant } -// This procedure builds the *scope map* for a given function, which maps any -// given ast::NodeId in the function's AST to the correct DIScope metadata instance. -// -// This builder procedure walks the AST in execution order and keeps track of -// what belongs to which scope, creating DIScope DIEs along the way, and -// introducing *artificial* lexical scope descriptors where necessary. These -// artificial scopes allow GDB to correctly handle name shadowing. -fn create_scope_map(cx: &CrateContext, - args: &[ast::Arg], - fn_entry_block: &ast::Block, - fn_metadata: DISubprogram, - fn_ast_id: ast::NodeId) - -> NodeMap { - let mut scope_map = NodeMap(); - - let def_map = &cx.tcx().def_map; - - struct ScopeStackEntry { - scope_metadata: DIScope, - name: Option - } - - let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None }); - scope_map.insert(fn_ast_id, fn_metadata); - - // Push argument identifiers onto the stack so arguments integrate nicely - // with variable shadowing. - for arg in args { - pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| { - scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, - name: Some(path1.node.name) }); - scope_map.insert(node_id, fn_metadata); - }) - } - - // Clang creates a separate scope for function bodies, so let's do this too. - with_new_scope(cx, - fn_entry_block.span, - &mut scope_stack, - &mut scope_map, - |cx, scope_stack, scope_map| { - walk_block(cx, fn_entry_block, scope_stack, scope_map); - }); - - return scope_map; - - - // local helper functions for walking the AST. - fn with_new_scope(cx: &CrateContext, - scope_span: Span, - scope_stack: &mut Vec , - scope_map: &mut NodeMap, - inner_walk: F) where - F: FnOnce(&CrateContext, &mut Vec, &mut NodeMap), - { - // Create a new lexical scope and push it onto the stack - let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo); - let file_metadata = file_metadata(cx, &loc.file.name); - let parent_scope = scope_stack.last().unwrap().scope_metadata; - - let scope_metadata = unsafe { - llvm::LLVMDIBuilderCreateLexicalBlock( - DIB(cx), - parent_scope, - file_metadata, - loc.line as c_uint, - loc.col.to_usize() as c_uint) - }; - - scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None }); - - inner_walk(cx, scope_stack, scope_map); - - // pop artificial scopes - while scope_stack.last().unwrap().name.is_some() { - scope_stack.pop(); - } - - if scope_stack.last().unwrap().scope_metadata != scope_metadata { - cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management."); - } - - scope_stack.pop(); - } - - fn walk_block(cx: &CrateContext, - block: &ast::Block, - scope_stack: &mut Vec , - scope_map: &mut NodeMap) { - scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata); - - // The interesting things here are statements and the concluding expression. - for statement in &block.stmts { - scope_map.insert(ast_util::stmt_id(&**statement), - scope_stack.last().unwrap().scope_metadata); - - match statement.node { - ast::StmtDecl(ref decl, _) => - walk_decl(cx, &**decl, scope_stack, scope_map), - ast::StmtExpr(ref exp, _) | - ast::StmtSemi(ref exp, _) => - walk_expr(cx, &**exp, scope_stack, scope_map), - ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway). - } - } - - if let Some(ref exp) = block.expr { - walk_expr(cx, &**exp, scope_stack, scope_map); - } - } +// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type +// of the variant, and (3) a MemberDescriptionFactory for producing the +// descriptions of the fields of the variant. This is a rudimentary version of a +// full RecursiveTypeDescription. +fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + enum_type: Ty<'tcx>, + struct_def: &adt::Struct<'tcx>, + variant_info: &ty::VariantInfo<'tcx>, + discriminant_info: EnumDiscriminantInfo, + containing_scope: DIScope, + span: Span) + -> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) { + let variant_llvm_type = + Type::struct_(cx, &struct_def.fields + .iter() + .map(|&t| type_of::type_of(cx, t)) + .collect::>() + , + struct_def.packed); + // Could do some consistency checks here: size, align, field count, discr type - fn walk_decl(cx: &CrateContext, - decl: &ast::Decl, - scope_stack: &mut Vec , - scope_map: &mut NodeMap) { - match *decl { - codemap::Spanned { node: ast::DeclLocal(ref local), .. } => { - scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata); + let variant_name = token::get_name(variant_info.name); + let variant_name = &variant_name; + let unique_type_id = debug_context(cx).type_map + .borrow_mut() + .get_unique_type_id_of_enum_variant( + cx, + enum_type, + variant_name); - walk_pattern(cx, &*local.pat, scope_stack, scope_map); + let metadata_stub = create_struct_stub(cx, + variant_llvm_type, + variant_name, + unique_type_id, + containing_scope); - if let Some(ref exp) = local.init { - walk_expr(cx, &**exp, scope_stack, scope_map); - } - } - _ => () + // Get the argument names from the enum variant info + let mut arg_names: Vec<_> = match variant_info.arg_names { + Some(ref names) => { + names.iter() + .map(|&name| token::get_name(name).to_string()) + .collect() } - } - - fn walk_pattern(cx: &CrateContext, - pat: &ast::Pat, - scope_stack: &mut Vec , - scope_map: &mut NodeMap) { - - let def_map = &cx.tcx().def_map; - - // Unfortunately, we cannot just use pat_util::pat_bindings() or - // ast_util::walk_pat() here because we have to visit *all* nodes in - // order to put them into the scope map. The above functions don't do that. - match pat.node { - ast::PatIdent(_, ref path1, ref sub_pat_opt) => { - - // Check if this is a binding. If so we need to put it on the - // scope stack and maybe introduce an artificial scope - if pat_util::pat_is_binding(def_map, &*pat) { - - let name = path1.node.name; - - // LLVM does not properly generate 'DW_AT_start_scope' fields - // for variable DIEs. For this reason we have to introduce - // an artificial scope at bindings whenever a variable with - // the same name is declared in *any* parent scope. - // - // Otherwise the following error occurs: - // - // let x = 10; - // - // do_something(); // 'gdb print x' correctly prints 10 - // - // { - // do_something(); // 'gdb print x' prints 0, because it - // // already reads the uninitialized 'x' - // // from the next line... - // let x = 100; - // do_something(); // 'gdb print x' correctly prints 100 - // } - - // Is there already a binding with that name? - // N.B.: this comparison must be UNhygienic... because - // gdb knows nothing about the context, so any two - // variables with the same name will cause the problem. - let need_new_scope = scope_stack + None => { + variant_info.args .iter() - .any(|entry| entry.name == Some(name)); - - if need_new_scope { - // Create a new lexical scope and push it onto the stack - let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo); - let file_metadata = file_metadata(cx, &loc.file.name); - let parent_scope = scope_stack.last().unwrap().scope_metadata; - - let scope_metadata = unsafe { - llvm::LLVMDIBuilderCreateLexicalBlock( - DIB(cx), - parent_scope, - file_metadata, - loc.line as c_uint, - loc.col.to_usize() as c_uint) - }; - - scope_stack.push(ScopeStackEntry { - scope_metadata: scope_metadata, - name: Some(name) - }); - - } else { - // Push a new entry anyway so the name can be found - let prev_metadata = scope_stack.last().unwrap().scope_metadata; - scope_stack.push(ScopeStackEntry { - scope_metadata: prev_metadata, - name: Some(name) - }); - } - } - - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - - if let Some(ref sub_pat) = *sub_pat_opt { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } - } - - ast::PatWild(_) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - } - - ast::PatEnum(_, ref sub_pats_opt) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - - if let Some(ref sub_pats) = *sub_pats_opt { - for p in sub_pats { - walk_pattern(cx, &**p, scope_stack, scope_map); - } - } - } + .enumerate() + .map(|(i, _)| format!("__{}", i)) + .collect() + } + }; - ast::PatQPath(..) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - } + // If this is not a univariant enum, there is also the discriminant field. + match discriminant_info { + RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()), + _ => { /* do nothing */ } + }; - ast::PatStruct(_, ref field_pats, _) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + // Build an array of (field name, field type) pairs to be captured in the factory closure. + let args: Vec<(String, Ty)> = arg_names.iter() + .zip(struct_def.fields.iter()) + .map(|(s, &t)| (s.to_string(), t)) + .collect(); - for &codemap::Spanned { - node: ast::FieldPat { pat: ref sub_pat, .. }, - .. - } in field_pats.iter() { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + let member_description_factory = + VariantMDF(VariantMemberDescriptionFactory { + args: args, + discriminant_type_metadata: match discriminant_info { + RegularDiscriminant(discriminant_type_metadata) => { + Some(discriminant_type_metadata) } - } + _ => None + }, + span: span, + }); - ast::PatTup(ref sub_pats) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + (metadata_stub, variant_llvm_type, member_description_factory) +} - for sub_pat in sub_pats { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } - } +fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + enum_type: Ty<'tcx>, + enum_def_id: ast::DefId, + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription<'tcx> { + let enum_name = compute_debuginfo_type_name(cx, enum_type, false); - ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat, _) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } + let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id); + let loc = span_start(cx, definition_span); + let file_metadata = file_metadata(cx, &loc.file.name); - ast::PatLit(ref exp) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - walk_expr(cx, &**exp, scope_stack, scope_map); - } + let variants = ty::enum_variants(cx.tcx(), enum_def_id); - ast::PatRange(ref exp1, ref exp2) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - walk_expr(cx, &**exp1, scope_stack, scope_map); - walk_expr(cx, &**exp2, scope_stack, scope_map); + let enumerators_metadata: Vec = variants + .iter() + .map(|v| { + let token = token::get_name(v.name); + let name = CString::new(token.as_bytes()).unwrap(); + unsafe { + llvm::LLVMDIBuilderCreateEnumerator( + DIB(cx), + name.as_ptr(), + v.disr_val as u64) } + }) + .collect(); - ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => { - scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); - - for sub_pat in front_sub_pats { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } + let discriminant_type_metadata = |inttype| { + // We can reuse the type of the discriminant for all monomorphized + // instances of an enum because it doesn't depend on any type + // parameters. The def_id, uniquely identifying the enum's polytype acts + // as key in this cache. + let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types + .borrow() + .get(&enum_def_id).cloned(); + match cached_discriminant_type_metadata { + Some(discriminant_type_metadata) => discriminant_type_metadata, + None => { + let discriminant_llvm_type = adt::ll_inttype(cx, inttype); + let (discriminant_size, discriminant_align) = + size_and_align_of(cx, discriminant_llvm_type); + let discriminant_base_type_metadata = + type_metadata(cx, + adt::ty_of_inttype(cx.tcx(), inttype), + codemap::DUMMY_SP); + let discriminant_name = get_enum_discriminant_name(cx, enum_def_id); - if let Some(ref sub_pat) = *middle_sub_pats { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } + let name = CString::new(discriminant_name.as_bytes()).unwrap(); + let discriminant_type_metadata = unsafe { + llvm::LLVMDIBuilderCreateEnumerationType( + DIB(cx), + containing_scope, + name.as_ptr(), + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(discriminant_size), + bytes_to_bits(discriminant_align), + create_DIArray(DIB(cx), &enumerators_metadata), + discriminant_base_type_metadata) + }; - for sub_pat in back_sub_pats { - walk_pattern(cx, &**sub_pat, scope_stack, scope_map); - } - } + debug_context(cx).created_enum_disr_types + .borrow_mut() + .insert(enum_def_id, discriminant_type_metadata); - ast::PatMac(_) => { - cx.sess().span_bug(pat.span, "debuginfo::create_scope_map() - \ - Found unexpanded macro."); + discriminant_type_metadata } } - } - - fn walk_expr(cx: &CrateContext, - exp: &ast::Expr, - scope_stack: &mut Vec , - scope_map: &mut NodeMap) { - - scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata); - - match exp.node { - ast::ExprLit(_) | - ast::ExprBreak(_) | - ast::ExprAgain(_) | - ast::ExprPath(..) => {} - - ast::ExprCast(ref sub_exp, _) | - ast::ExprAddrOf(_, ref sub_exp) | - ast::ExprField(ref sub_exp, _) | - ast::ExprTupField(ref sub_exp, _) | - ast::ExprParen(ref sub_exp) => - walk_expr(cx, &**sub_exp, scope_stack, scope_map), - - ast::ExprBox(ref place, ref sub_expr) => { - place.as_ref().map( - |e| walk_expr(cx, &**e, scope_stack, scope_map)); - walk_expr(cx, &**sub_expr, scope_stack, scope_map); - } - - ast::ExprRet(ref exp_opt) => match *exp_opt { - Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), - None => () - }, - - ast::ExprUnary(_, ref sub_exp) => { - walk_expr(cx, &**sub_exp, scope_stack, scope_map); - } + }; - ast::ExprAssignOp(_, ref lhs, ref rhs) | - ast::ExprIndex(ref lhs, ref rhs) | - ast::ExprBinary(_, ref lhs, ref rhs) => { - walk_expr(cx, &**lhs, scope_stack, scope_map); - walk_expr(cx, &**rhs, scope_stack, scope_map); - } + let type_rep = adt::represent_type(cx, enum_type); - ast::ExprRange(ref start, ref end) => { - start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); - end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); - } + let discriminant_type_metadata = match *type_rep { + adt::CEnum(inttype, _, _) => { + return FinalMetadata(discriminant_type_metadata(inttype)) + }, + adt::RawNullablePointer { .. } | + adt::StructWrappedNullablePointer { .. } | + adt::Univariant(..) => None, + adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)), + }; - ast::ExprVec(ref init_expressions) | - ast::ExprTup(ref init_expressions) => { - for ie in init_expressions { - walk_expr(cx, &**ie, scope_stack, scope_map); - } - } + let enum_llvm_type = type_of::type_of(cx, enum_type); + let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type); - ast::ExprAssign(ref sub_exp1, ref sub_exp2) | - ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => { - walk_expr(cx, &**sub_exp1, scope_stack, scope_map); - walk_expr(cx, &**sub_exp2, scope_stack, scope_map); - } + let unique_type_id_str = debug_context(cx) + .type_map + .borrow() + .get_unique_type_id_as_string(unique_type_id); - ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => { - walk_expr(cx, &**cond_exp, scope_stack, scope_map); - - with_new_scope(cx, - then_block.span, - scope_stack, - scope_map, - |cx, scope_stack, scope_map| { - walk_block(cx, &**then_block, scope_stack, scope_map); - }); - - match *opt_else_exp { - Some(ref else_exp) => - walk_expr(cx, &**else_exp, scope_stack, scope_map), - _ => () - } - } + let enum_name = CString::new(enum_name).unwrap(); + let unique_type_id_str = CString::new(unique_type_id_str.as_bytes()).unwrap(); + let enum_metadata = unsafe { + llvm::LLVMDIBuilderCreateUnionType( + DIB(cx), + containing_scope, + enum_name.as_ptr(), + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(enum_type_size), + bytes_to_bits(enum_type_align), + 0, // Flags + ptr::null_mut(), + 0, // RuntimeLang + unique_type_id_str.as_ptr()) + }; - ast::ExprIfLet(..) => { - cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ - Found unexpanded if-let."); - } + return create_and_register_recursive_type_forward_declaration( + cx, + enum_type, + unique_type_id, + enum_metadata, + enum_llvm_type, + EnumMDF(EnumMemberDescriptionFactory { + enum_type: enum_type, + type_rep: type_rep.clone(), + variants: variants, + discriminant_type_metadata: discriminant_type_metadata, + containing_scope: containing_scope, + file_metadata: file_metadata, + span: span, + }), + ); - ast::ExprWhile(ref cond_exp, ref loop_body, _) => { - walk_expr(cx, &**cond_exp, scope_stack, scope_map); + fn get_enum_discriminant_name(cx: &CrateContext, + def_id: ast::DefId) + -> token::InternedString { + let name = if def_id.krate == ast::LOCAL_CRATE { + cx.tcx().map.get_path_elem(def_id.node).name() + } else { + csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name() + }; - with_new_scope(cx, - loop_body.span, - scope_stack, - scope_map, - |cx, scope_stack, scope_map| { - walk_block(cx, &**loop_body, scope_stack, scope_map); - }) - } + token::get_name(name) + } +} - ast::ExprWhileLet(..) => { - cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ - Found unexpanded while-let."); - } +/// Creates debug information for a composite type, that is, anything that +/// results in a LLVM struct. +/// +/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums. +fn composite_type_metadata(cx: &CrateContext, + composite_llvm_type: Type, + composite_type_name: &str, + composite_type_unique_id: UniqueTypeId, + member_descriptions: &[MemberDescription], + containing_scope: DIScope, - ast::ExprForLoop(..) => { - cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ - Found unexpanded for loop."); - } + // Ignore source location information as long as it + // can't be reconstructed for non-local crates. + _file_metadata: DIFile, + _definition_span: Span) + -> DICompositeType { + // Create the (empty) struct metadata node ... + let composite_type_metadata = create_struct_stub(cx, + composite_llvm_type, + composite_type_name, + composite_type_unique_id, + containing_scope); + // ... and immediately create and add the member descriptions. + set_members_of_composite_type(cx, + composite_type_metadata, + composite_llvm_type, + member_descriptions); - ast::ExprMac(_) => { - cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ - Found unexpanded macro."); - } + return composite_type_metadata; +} - ast::ExprLoop(ref block, _) | - ast::ExprBlock(ref block) => { - with_new_scope(cx, - block.span, - scope_stack, - scope_map, - |cx, scope_stack, scope_map| { - walk_block(cx, &**block, scope_stack, scope_map); - }) - } +fn set_members_of_composite_type(cx: &CrateContext, + composite_type_metadata: DICompositeType, + composite_llvm_type: Type, + member_descriptions: &[MemberDescription]) { + // In some rare cases LLVM metadata uniquing would lead to an existing type + // description being used instead of a new one created in + // create_struct_stub. This would cause a hard to trace assertion in + // DICompositeType::SetTypeArray(). The following check makes sure that we + // get a better error message if this should happen again due to some + // regression. + { + let mut composite_types_completed = + debug_context(cx).composite_types_completed.borrow_mut(); + if composite_types_completed.contains(&composite_type_metadata) { + cx.sess().bug("debuginfo::set_members_of_composite_type() - \ + Already completed forward declaration re-encountered."); + } else { + composite_types_completed.insert(composite_type_metadata); + } + } - ast::ExprClosure(_, ref decl, ref block) => { - with_new_scope(cx, - block.span, - scope_stack, - scope_map, - |cx, scope_stack, scope_map| { - for &ast::Arg { pat: ref pattern, .. } in &decl.inputs { - walk_pattern(cx, &**pattern, scope_stack, scope_map); - } + let member_metadata: Vec = member_descriptions + .iter() + .enumerate() + .map(|(i, member_description)| { + let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type); + let member_offset = match member_description.offset { + FixedMemberOffset { bytes } => bytes as u64, + ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i) + }; - walk_block(cx, &**block, scope_stack, scope_map); - }) + let member_name = member_description.name.as_bytes(); + let member_name = CString::new(member_name).unwrap(); + unsafe { + llvm::LLVMDIBuilderCreateMemberType( + DIB(cx), + composite_type_metadata, + member_name.as_ptr(), + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(member_size), + bytes_to_bits(member_align), + bytes_to_bits(member_offset), + member_description.flags, + member_description.type_metadata) } + }) + .collect(); - ast::ExprCall(ref fn_exp, ref args) => { - walk_expr(cx, &**fn_exp, scope_stack, scope_map); + unsafe { + let type_array = create_DIArray(DIB(cx), &member_metadata[..]); + llvm::LLVMDICompositeTypeSetTypeArray(DIB(cx), composite_type_metadata, type_array); + } +} - for arg_exp in args { - walk_expr(cx, &**arg_exp, scope_stack, scope_map); - } - } +// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any +// caching, does not add any fields to the struct. This can be done later with +// set_members_of_composite_type(). +fn create_struct_stub(cx: &CrateContext, + struct_llvm_type: Type, + struct_type_name: &str, + unique_type_id: UniqueTypeId, + containing_scope: DIScope) + -> DICompositeType { + let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type); - ast::ExprMethodCall(_, _, ref args) => { - for arg_exp in args { - walk_expr(cx, &**arg_exp, scope_stack, scope_map); - } - } + let unique_type_id_str = debug_context(cx).type_map + .borrow() + .get_unique_type_id_as_string(unique_type_id); + let name = CString::new(struct_type_name).unwrap(); + let unique_type_id = CString::new(unique_type_id_str.as_bytes()).unwrap(); + let metadata_stub = unsafe { + // LLVMDIBuilderCreateStructType() wants an empty array. A null + // pointer will lead to hard to trace and debug LLVM assertions + // later on in llvm/lib/IR/Value.cpp. + let empty_array = create_DIArray(DIB(cx), &[]); - ast::ExprMatch(ref discriminant_exp, ref arms, _) => { - walk_expr(cx, &**discriminant_exp, scope_stack, scope_map); + llvm::LLVMDIBuilderCreateStructType( + DIB(cx), + containing_scope, + name.as_ptr(), + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(struct_size), + bytes_to_bits(struct_align), + 0, + ptr::null_mut(), + empty_array, + 0, + ptr::null_mut(), + unique_type_id.as_ptr()) + }; - // For each arm we have to first walk the pattern as these might - // introduce new artificial scopes. It should be sufficient to - // walk only one pattern per arm, as they all must contain the - // same binding names. + return metadata_stub; +} - for arm_ref in arms { - let arm_span = arm_ref.pats[0].span; +/// Creates debug information for the given global variable. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_global_var_metadata(cx: &CrateContext, + node_id: ast::NodeId, + global: ValueRef) { + if cx.dbg_cx().is_none() { + return; + } - with_new_scope(cx, - arm_span, - scope_stack, - scope_map, - |cx, scope_stack, scope_map| { - for pat in &arm_ref.pats { - walk_pattern(cx, &**pat, scope_stack, scope_map); - } + // Don't create debuginfo for globals inlined from other crates. The other + // crate should already contain debuginfo for it. More importantly, the + // global might not even exist in un-inlined form anywhere which would lead + // to a linker errors. + if cx.external_srcs().borrow().contains_key(&node_id) { + return; + } - if let Some(ref guard_exp) = arm_ref.guard { - walk_expr(cx, &**guard_exp, scope_stack, scope_map) - } + let var_item = cx.tcx().map.get(node_id); - walk_expr(cx, &*arm_ref.body, scope_stack, scope_map); - }) + let (name, span) = match var_item { + ast_map::NodeItem(item) => { + match item.node { + ast::ItemStatic(..) => (item.ident.name, item.span), + ast::ItemConst(..) => (item.ident.name, item.span), + _ => { + cx.sess() + .span_bug(item.span, + &format!("debuginfo::\ + create_global_var_metadata() - + Captured var-id refers to \ + unexpected ast_item variant: {:?}", + var_item)) } } + }, + _ => cx.sess().bug(&format!("debuginfo::create_global_var_metadata() \ + - Captured var-id refers to unexpected \ + ast_map variant: {:?}", + var_item)) + }; - ast::ExprStruct(_, ref fields, ref base_exp) => { - for &ast::Field { expr: ref exp, .. } in fields { - walk_expr(cx, &**exp, scope_stack, scope_map); - } + let (file_metadata, line_number) = if span != codemap::DUMMY_SP { + let loc = span_start(cx, span); + (file_metadata(cx, &loc.file.name), loc.line as c_uint) + } else { + (UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER) + }; - match *base_exp { - Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map), - None => () - } - } + let is_local_to_unit = is_node_local_to_unit(cx, node_id); + let variable_type = ty::node_id_to_type(cx.tcx(), node_id); + let type_metadata = type_metadata(cx, variable_type, span); + let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id)); + let var_name = token::get_name(name).to_string(); + let linkage_name = + namespace_node.mangled_name_of_contained_item(&var_name[..]); + let var_scope = namespace_node.scope; - ast::ExprInlineAsm(ast::InlineAsm { ref inputs, - ref outputs, - .. }) => { - // inputs, outputs: Vec<(String, P)> - for &(_, ref exp) in inputs { - walk_expr(cx, &**exp, scope_stack, scope_map); - } + let var_name = CString::new(var_name).unwrap(); + let linkage_name = CString::new(linkage_name).unwrap(); + unsafe { + llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx), + var_scope, + var_name.as_ptr(), + linkage_name.as_ptr(), + file_metadata, + line_number, + type_metadata, + is_local_to_unit, + global, + ptr::null_mut()); + } +} - for &(_, ref exp, _) in outputs { - walk_expr(cx, &**exp, scope_stack, scope_map); - } - } - } +/// Creates debug information for the given local variable. +/// +/// This function assumes that there's a datum for each pattern component of the +/// local in `bcx.fcx.lllocals`. +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) { + if bcx.unreachable.get() || + fn_should_be_ignored(bcx.fcx) || + bcx.sess().opts.debuginfo != FullDebugInfo { + return; } -} - - -//=----------------------------------------------------------------------------- -// Type Names for Debug Info -//=----------------------------------------------------------------------------- - -// Compute the name of the type as it should be stored in debuginfo. Does not do -// any caching, i.e. calling the function twice with the same type will also do -// the work twice. The `qualified` parameter only affects the first level of the -// type name, further levels (i.e. type parameters) are always fully qualified. -fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - t: Ty<'tcx>, - qualified: bool) - -> String { - let mut result = String::with_capacity(64); - push_debuginfo_type_name(cx, t, qualified, &mut result); - result -} -// Pushes the name of the type as it should be stored in debuginfo on the -// `output` String. See also compute_debuginfo_type_name(). -fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - t: Ty<'tcx>, - qualified: bool, - output: &mut String) { - match t.sty { - ty::ty_bool => output.push_str("bool"), - ty::ty_char => output.push_str("char"), - ty::ty_str => output.push_str("str"), - ty::ty_int(ast::TyIs) => output.push_str("isize"), - ty::ty_int(ast::TyI8) => output.push_str("i8"), - ty::ty_int(ast::TyI16) => output.push_str("i16"), - ty::ty_int(ast::TyI32) => output.push_str("i32"), - ty::ty_int(ast::TyI64) => output.push_str("i64"), - ty::ty_uint(ast::TyUs) => output.push_str("usize"), - ty::ty_uint(ast::TyU8) => output.push_str("u8"), - ty::ty_uint(ast::TyU16) => output.push_str("u16"), - ty::ty_uint(ast::TyU32) => output.push_str("u32"), - ty::ty_uint(ast::TyU64) => output.push_str("u64"), - ty::ty_float(ast::TyF32) => output.push_str("f32"), - ty::ty_float(ast::TyF64) => output.push_str("f64"), - ty::ty_struct(def_id, substs) | - ty::ty_enum(def_id, substs) => { - push_item_name(cx, def_id, qualified, output); - push_type_params(cx, substs, output); - }, - ty::ty_tup(ref component_types) => { - output.push('('); - for &component_type in component_types { - push_debuginfo_type_name(cx, component_type, true, output); - output.push_str(", "); - } - if !component_types.is_empty() { - output.pop(); - output.pop(); - } - output.push(')'); - }, - ty::ty_uniq(inner_type) => { - output.push_str("Box<"); - push_debuginfo_type_name(cx, inner_type, true, output); - output.push('>'); - }, - ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { - output.push('*'); - match mutbl { - ast::MutImmutable => output.push_str("const "), - ast::MutMutable => output.push_str("mut "), - } + let cx = bcx.ccx(); + let def_map = &cx.tcx().def_map; + let locals = bcx.fcx.lllocals.borrow(); - push_debuginfo_type_name(cx, inner_type, true, output); - }, - ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { - output.push('&'); - if mutbl == ast::MutMutable { - output.push_str("mut "); + pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| { + let datum = match locals.get(&node_id) { + Some(datum) => datum, + None => { + bcx.sess().span_bug(span, + &format!("no entry in lllocals table for {}", + node_id)); } + }; - push_debuginfo_type_name(cx, inner_type, true, output); - }, - ty::ty_vec(inner_type, optional_length) => { - output.push('['); - push_debuginfo_type_name(cx, inner_type, true, output); - - match optional_length { - Some(len) => { - output.push_str(&format!("; {}", len)); - } - None => { /* nothing to do */ } - }; - - output.push(']'); - }, - ty::ty_trait(ref trait_data) => { - let principal = ty::erase_late_bound_regions(cx.tcx(), &trait_data.principal); - push_item_name(cx, principal.def_id, false, output); - push_type_params(cx, principal.substs, output); - }, - ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { - if unsafety == ast::Unsafety::Unsafe { - output.push_str("unsafe "); - } + if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { + cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \ + Referenced variable location is not an alloca!"); + } - if abi != ::syntax::abi::Rust { - output.push_str("extern \""); - output.push_str(abi.name()); - output.push_str("\" "); - } + let scope_metadata = scope_metadata(bcx.fcx, node_id, span); - output.push_str("fn("); + declare_local(bcx, + var_ident.node.name, + datum.ty, + scope_metadata, + VariableAccess::DirectVariable { alloca: datum.val }, + VariableKind::LocalVariable, + span); + }) +} - let sig = ty::erase_late_bound_regions(cx.tcx(), sig); - if !sig.inputs.is_empty() { - for ¶meter_type in &sig.inputs { - push_debuginfo_type_name(cx, parameter_type, true, output); - output.push_str(", "); - } - output.pop(); - output.pop(); - } +/// Creates debug information for a variable captured in a closure. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, + node_id: ast::NodeId, + env_pointer: ValueRef, + env_index: usize, + captured_by_ref: bool, + span: Span) { + if bcx.unreachable.get() || + fn_should_be_ignored(bcx.fcx) || + bcx.sess().opts.debuginfo != FullDebugInfo { + return; + } - if sig.variadic { - if !sig.inputs.is_empty() { - output.push_str(", ..."); - } else { - output.push_str("..."); - } - } + let cx = bcx.ccx(); - output.push(')'); + let ast_item = cx.tcx().map.find(node_id); - match sig.output { - ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} - ty::FnConverging(result_type) => { - output.push_str(" -> "); - push_debuginfo_type_name(cx, result_type, true, output); + let variable_name = match ast_item { + None => { + cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found"); + } + Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => { + match pat.node { + ast::PatIdent(_, ref path1, _) => { + path1.node.name } - ty::FnDiverging => { - output.push_str(" -> !"); + _ => { + cx.sess() + .span_bug(span, + &format!( + "debuginfo::create_captured_var_metadata() - \ + Captured var-id refers to unexpected \ + ast_map variant: {:?}", + ast_item)); } } - }, - ty::ty_closure(..) => { - output.push_str("closure"); } - ty::ty_err | - ty::ty_infer(_) | - ty::ty_projection(..) | - ty::ty_param(_) => { - cx.sess().bug(&format!("debuginfo: Trying to create type name for \ - unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t))); + _ => { + cx.sess() + .span_bug(span, + &format!("debuginfo::create_captured_var_metadata() - \ + Captured var-id refers to unexpected \ + ast_map variant: {:?}", + ast_item)); } - } - - fn push_item_name(cx: &CrateContext, - def_id: ast::DefId, - qualified: bool, - output: &mut String) { - ty::with_path(cx.tcx(), def_id, |path| { - if qualified { - if def_id.krate == ast::LOCAL_CRATE { - output.push_str(crate_root_namespace(cx)); - output.push_str("::"); - } - - let mut path_element_count = 0; - for path_element in path { - let name = token::get_name(path_element.name()); - output.push_str(&name); - output.push_str("::"); - path_element_count += 1; - } - - if path_element_count == 0 { - cx.sess().bug("debuginfo: Encountered empty item path!"); - } + }; - output.pop(); - output.pop(); - } else { - let name = token::get_name(path.last() - .expect("debuginfo: Empty item path?") - .name()); - output.push_str(&name); - } - }); - } + let variable_type = common::node_id_type(bcx, node_id); + let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata; - // Pushes the type parameters in the given `Substs` to the output string. - // This ignores region parameters, since they can't reliably be - // reconstructed for items from non-local crates. For local crates, this - // would be possible but with inlining and LTO we have to use the least - // common denominator - otherwise we would run into conflicts. - fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, - substs: &subst::Substs<'tcx>, - output: &mut String) { - if substs.types.is_empty() { - return; - } + // env_pointer is the alloca containing the pointer to the environment, + // so it's type is **EnvironmentType. In order to find out the type of + // the environment we have to "dereference" two times. + let llvm_env_data_type = common::val_ty(env_pointer).element_type() + .element_type(); + let byte_offset_of_var_in_env = machine::llelement_offset(cx, + llvm_env_data_type, + env_index); - output.push('<'); + let address_operations = unsafe { + [llvm::LLVMDIBuilderCreateOpDeref(), + llvm::LLVMDIBuilderCreateOpPlus(), + byte_offset_of_var_in_env as i64, + llvm::LLVMDIBuilderCreateOpDeref()] + }; - for &type_parameter in substs.types.iter() { - push_debuginfo_type_name(cx, type_parameter, true, output); - output.push_str(", "); - } + let address_op_count = if captured_by_ref { + address_operations.len() + } else { + address_operations.len() - 1 + }; - output.pop(); - output.pop(); + let variable_access = VariableAccess::IndirectVariable { + alloca: env_pointer, + address_operations: &address_operations[..address_op_count] + }; - output.push('>'); - } + declare_local(bcx, + variable_name, + variable_type, + scope_metadata, + variable_access, + VariableKind::CapturedVariable, + span); } +/// Creates debug information for a local variable introduced in the head of a +/// match-statement arm. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, + variable_name: ast::Name, + binding: BindingInfo<'tcx>) { + if bcx.unreachable.get() || + fn_should_be_ignored(bcx.fcx) || + bcx.sess().opts.debuginfo != FullDebugInfo { + return; + } -//=----------------------------------------------------------------------------- -// Namespace Handling -//=----------------------------------------------------------------------------- - -struct NamespaceTreeNode { - name: ast::Name, - scope: DIScope, - parent: Option>, -} - -impl NamespaceTreeNode { - fn mangled_name_of_contained_item(&self, item_name: &str) -> String { - fn fill_nested(node: &NamespaceTreeNode, output: &mut String) { - match node.parent { - Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output), - None => {} - } - let string = token::get_name(node.name); - output.push_str(&format!("{}", string.len())); - output.push_str(&string); + let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span); + let aops = unsafe { + [llvm::LLVMDIBuilderCreateOpDeref()] + }; + // Regardless of the actual type (`T`) we're always passed the stack slot + // (alloca) for the binding. For ByRef bindings that's a `T*` but for ByMove + // bindings we actually have `T**`. So to get the actual variable we need to + // dereference once more. For ByCopy we just use the stack slot we created + // for the binding. + let var_access = match binding.trmode { + TrByCopy(llbinding) => VariableAccess::DirectVariable { + alloca: llbinding + }, + TrByMove => VariableAccess::IndirectVariable { + alloca: binding.llmatch, + address_operations: &aops + }, + TrByRef => VariableAccess::DirectVariable { + alloca: binding.llmatch } + }; - let mut name = String::from_str("_ZN"); - fill_nested(self, &mut name); - name.push_str(&format!("{}", item_name.len())); - name.push_str(item_name); - name.push('E'); - name - } -} - -fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str { - &cx.link_meta().crate_name + declare_local(bcx, + variable_name, + binding.ty, + scope_metadata, + var_access, + VariableKind::LocalVariable, + binding.span); } -fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc { - ty::with_path(cx.tcx(), def_id, |path| { - // prepend crate name if not already present - let krate = if def_id.krate == ast::LOCAL_CRATE { - let crate_namespace_name = token::intern(crate_root_namespace(cx)); - Some(ast_map::PathMod(crate_namespace_name)) - } else { - None - }; - let mut path = krate.into_iter().chain(path).peekable(); - - let mut current_key = Vec::new(); - let mut parent_node: Option> = None; - - // Create/Lookup namespace for each element of the path. - loop { - // Emulate a for loop so we can use peek below. - let path_element = match path.next() { - Some(e) => e, - None => break - }; - // Ignore the name of the item (the last path element). - if path.peek().is_none() { - break; - } - - let name = path_element.name(); - current_key.push(name); - - let existing_node = debug_context(cx).namespace_map.borrow() - .get(¤t_key).cloned(); - let current_node = match existing_node { - Some(existing_node) => existing_node, - None => { - // create and insert - let parent_scope = match parent_node { - Some(ref node) => node.scope, - None => ptr::null_mut() - }; - let namespace_name = token::get_name(name); - let namespace_name = CString::new(namespace_name.as_bytes()).unwrap(); - let scope = unsafe { - llvm::LLVMDIBuilderCreateNameSpace( - DIB(cx), - parent_scope, - namespace_name.as_ptr(), - // cannot reconstruct file ... - ptr::null_mut(), - // ... or line information, but that's not so important. - 0) - }; - - let node = Rc::new(NamespaceTreeNode { - name: name, - scope: scope, - parent: parent_node.map(|parent| parent.downgrade()), - }); - - debug_context(cx).namespace_map.borrow_mut() - .insert(current_key.clone(), node.clone()); - - node - } - }; +/// Creates debug information for the given function argument. +/// +/// This function assumes that there's a datum for each pattern component of the +/// argument in `bcx.fcx.lllocals`. +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) { + if bcx.unreachable.get() || + fn_should_be_ignored(bcx.fcx) || + bcx.sess().opts.debuginfo != FullDebugInfo { + return; + } - parent_node = Some(current_node); - } + let def_map = &bcx.tcx().def_map; + let scope_metadata = bcx + .fcx + .debug_context + .get_ref(bcx.ccx(), arg.pat.span) + .fn_metadata; + let locals = bcx.fcx.lllocals.borrow(); - match parent_node { - Some(node) => node, + pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| { + let datum = match locals.get(&node_id) { + Some(v) => v, None => { - cx.sess().bug(&format!("debuginfo::namespace_for_item(): \ - path too short for {:?}", - def_id)); + bcx.sess().span_bug(span, + &format!("no entry in lllocals table for {}", + node_id)); } - } - }) -} - - -//=----------------------------------------------------------------------------- -// .debug_gdb_scripts binary section -//=----------------------------------------------------------------------------- + }; -/// Inserts a side-effect free instruction sequence that makes sure that the -/// .debug_gdb_scripts global is referenced, so it isn't removed by the linker. -pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext) { - if needs_gdb_debug_scripts_section(ccx) { - let empty = CString::new("").unwrap(); - let gdb_debug_scripts_section_global = - get_or_insert_gdb_debug_scripts_section_global(ccx); - unsafe { - let volative_load_instruction = - llvm::LLVMBuildLoad(ccx.raw_builder(), - gdb_debug_scripts_section_global, - empty.as_ptr()); - llvm::LLVMSetVolatile(volative_load_instruction, llvm::True); + if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { + bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \ + Referenced variable location is not an alloca!"); } - } -} - -/// Allocates the global variable responsible for the .debug_gdb_scripts binary -/// section. -fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext) - -> llvm::ValueRef { - let section_var_name = "__rustc_debug_gdb_scripts_section__"; - let section_var = unsafe { - llvm::LLVMGetNamedGlobal(ccx.llmod(), - section_var_name.as_ptr() as *const _) - }; - - if section_var == ptr::null_mut() { - let section_name = b".debug_gdb_scripts\0"; - let section_contents = b"\x01gdb_load_rust_pretty_printers.py\0"; - - unsafe { - let llvm_type = Type::array(&Type::i8(ccx), - section_contents.len() as u64); - - let section_var = declare::define_global(ccx, section_var_name, - llvm_type).unwrap_or_else(||{ - ccx.sess().bug(&format!("symbol `{}` is already defined", section_var_name)) - }); - llvm::LLVMSetSection(section_var, section_name.as_ptr() as *const _); - llvm::LLVMSetInitializer(section_var, C_bytes(ccx, section_contents)); - llvm::LLVMSetGlobalConstant(section_var, llvm::True); - llvm::LLVMSetUnnamedAddr(section_var, llvm::True); - llvm::SetLinkage(section_var, llvm::Linkage::LinkOnceODRLinkage); - // This should make sure that the whole section is not larger than - // the string it contains. Otherwise we get a warning from GDB. - llvm::LLVMSetAlignment(section_var, 1); - section_var - } - } else { - section_var - } -} + let argument_index = { + let counter = &bcx + .fcx + .debug_context + .get_ref(bcx.ccx(), span) + .argument_counter; + let argument_index = counter.get(); + counter.set(argument_index + 1); + argument_index + }; -fn needs_gdb_debug_scripts_section(ccx: &CrateContext) -> bool { - let omit_gdb_pretty_printer_section = - attr::contains_name(&ccx.tcx() - .map - .krate() - .attrs, - "omit_gdb_pretty_printer_section"); - - !omit_gdb_pretty_printer_section && - !ccx.sess().target.target.options.is_like_osx && - !ccx.sess().target.target.options.is_like_windows && - ccx.sess().opts.debuginfo != NoDebugInfo + declare_local(bcx, + var_ident.node.name, + datum.ty, + scope_metadata, + VariableAccess::DirectVariable { alloca: datum.val }, + VariableKind::ArgumentVariable(argument_index), + span); + }) } diff --git a/src/librustc_trans/trans/debuginfo/mod.rs b/src/librustc_trans/trans/debuginfo/mod.rs new file mode 100644 index 0000000000000..e4312b669ad98 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/mod.rs @@ -0,0 +1,651 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// See doc.rs for documentation. +mod doc; + +use self::VariableAccess::*; +use self::VariableKind::*; + +use self::utils::{DIB, span_start, assert_type_for_node_id, contains_nodebug_attribute, + create_DIArray, is_node_local_to_unit}; +use self::namespace::{namespace_for_item, NamespaceTreeNode}; +use self::type_names::compute_debuginfo_type_name; +use self::metadata::{type_metadata, file_metadata, scope_metadata, TypeMap, compile_unit_metadata}; +use self::source_loc::InternalDebugLocation; + +use llvm; +use llvm::{ModuleRef, ContextRef, ValueRef}; +use llvm::debuginfo::{DIFile, DIType, DIScope, DIBuilderRef, DISubprogram, DIArray, + DIDescriptor, FlagPrototyped}; +use middle::subst::{self, Substs}; +use trans::common::{NodeIdAndSpan, CrateContext, FunctionContext, Block}; +use trans; +use trans::monomorphize; +use middle::ty::{self, Ty, ClosureTyper}; +use session::config::{self, FullDebugInfo, LimitedDebugInfo, NoDebugInfo}; +use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet}; + +use libc::c_uint; +use std::cell::{Cell, RefCell}; +use std::ffi::CString; +use std::ptr; +use std::rc::Rc; +use syntax::codemap::{Span, Pos}; +use syntax::{ast, codemap, ast_util, ast_map}; +use syntax::parse::token::{self, special_idents}; + +pub mod gdb; +mod utils; +mod namespace; +mod type_names; +mod metadata; +mod create_scope_map; +mod source_loc; + +pub use self::source_loc::set_source_location; +pub use self::source_loc::clear_source_location; +pub use self::source_loc::start_emitting_source_locations; +pub use self::source_loc::get_cleanup_debug_loc_for_ast_node; +pub use self::source_loc::with_source_location_override; +pub use self::metadata::create_match_binding_metadata; +pub use self::metadata::create_argument_metadata; +pub use self::metadata::create_captured_var_metadata; +pub use self::metadata::create_global_var_metadata; +pub use self::metadata::create_local_var_metadata; + +#[allow(non_upper_case_globals)] +const DW_TAG_auto_variable: c_uint = 0x100; +#[allow(non_upper_case_globals)] +const DW_TAG_arg_variable: c_uint = 0x101; + +/// A context object for maintaining all state needed by the debuginfo module. +pub struct CrateDebugContext<'tcx> { + llcontext: ContextRef, + builder: DIBuilderRef, + current_debug_location: Cell, + created_files: RefCell>, + created_enum_disr_types: RefCell>, + + type_map: RefCell>, + namespace_map: RefCell, Rc>>, + + // This collection is used to assert that composite types (structs, enums, + // ...) have their members only set once: + composite_types_completed: RefCell>, +} + +impl<'tcx> CrateDebugContext<'tcx> { + pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> { + debug!("CrateDebugContext::new"); + let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) }; + // DIBuilder inherits context from the module, so we'd better use the same one + let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) }; + return CrateDebugContext { + llcontext: llcontext, + builder: builder, + current_debug_location: Cell::new(InternalDebugLocation::UnknownLocation), + created_files: RefCell::new(FnvHashMap()), + created_enum_disr_types: RefCell::new(DefIdMap()), + type_map: RefCell::new(TypeMap::new()), + namespace_map: RefCell::new(FnvHashMap()), + composite_types_completed: RefCell::new(FnvHashSet()), + }; + } +} + +pub enum FunctionDebugContext { + RegularContext(Box), + DebugInfoDisabled, + FunctionWithoutDebugInfo, +} + +impl FunctionDebugContext { + fn get_ref<'a>(&'a self, + cx: &CrateContext, + span: Span) + -> &'a FunctionDebugContextData { + match *self { + FunctionDebugContext::RegularContext(box ref data) => data, + FunctionDebugContext::DebugInfoDisabled => { + cx.sess().span_bug(span, + FunctionDebugContext::debuginfo_disabled_message()); + } + FunctionDebugContext::FunctionWithoutDebugInfo => { + cx.sess().span_bug(span, + FunctionDebugContext::should_be_ignored_message()); + } + } + } + + fn debuginfo_disabled_message() -> &'static str { + "debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!" + } + + fn should_be_ignored_message() -> &'static str { + "debuginfo: Error trying to access FunctionDebugContext for function that should be \ + ignored by debug info!" + } +} + +struct FunctionDebugContextData { + scope_map: RefCell>, + fn_metadata: DISubprogram, + argument_counter: Cell, + source_locations_enabled: Cell, + source_location_override: Cell, +} + +pub enum VariableAccess<'a> { + // The llptr given is an alloca containing the variable's value + DirectVariable { alloca: ValueRef }, + // The llptr given is an alloca containing the start of some pointer chain + // leading to the variable's content. + IndirectVariable { alloca: ValueRef, address_operations: &'a [i64] } +} + +pub enum VariableKind { + ArgumentVariable(usize /*index*/), + LocalVariable, + CapturedVariable, +} + +/// Create any deferred debug metadata nodes +pub fn finalize(cx: &CrateContext) { + if cx.dbg_cx().is_none() { + return; + } + + debug!("finalize"); + let _ = compile_unit_metadata(cx); + + if gdb::needs_gdb_debug_scripts_section(cx) { + // Add a .debug_gdb_scripts section to this compile-unit. This will + // cause GDB to try and load the gdb_load_rust_pretty_printers.py file, + // which activates the Rust pretty printers for binary this section is + // contained in. + gdb::get_or_insert_gdb_debug_scripts_section_global(cx); + } + + unsafe { + llvm::LLVMDIBuilderFinalize(DIB(cx)); + llvm::LLVMDIBuilderDispose(DIB(cx)); + // Debuginfo generation in LLVM by default uses a higher + // version of dwarf than OS X currently understands. We can + // instruct LLVM to emit an older version of dwarf, however, + // for OS X to understand. For more info see #11352 + // This can be overridden using --llvm-opts -dwarf-version,N. + // Android has the same issue (#22398) + if cx.sess().target.target.options.is_like_osx || + cx.sess().target.target.options.is_like_android { + llvm::LLVMRustAddModuleFlag(cx.llmod(), + "Dwarf Version\0".as_ptr() as *const _, + 2) + } + + // Prevent bitcode readers from deleting the debug info. + let ptr = "Debug Info Version\0".as_ptr(); + llvm::LLVMRustAddModuleFlag(cx.llmod(), ptr as *const _, + llvm::LLVMRustDebugMetadataVersion); + }; +} + +/// Creates the function-specific debug context. +/// +/// Returns the FunctionDebugContext for the function which holds state needed +/// for debug info creation. The function may also return another variant of the +/// FunctionDebugContext enum which indicates why no debuginfo should be created +/// for the function. +pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + fn_ast_id: ast::NodeId, + param_substs: &Substs<'tcx>, + llfn: ValueRef) -> FunctionDebugContext { + if cx.sess().opts.debuginfo == NoDebugInfo { + return FunctionDebugContext::DebugInfoDisabled; + } + + // Clear the debug location so we don't assign them in the function prelude. + // Do this here already, in case we do an early exit from this function. + source_loc::set_debug_location(cx, InternalDebugLocation::UnknownLocation); + + if fn_ast_id == ast::DUMMY_NODE_ID { + // This is a function not linked to any source location, so don't + // generate debuginfo for it. + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + + let empty_generics = ast_util::empty_generics(); + + let fnitem = cx.tcx().map.get(fn_ast_id); + + let (name, fn_decl, generics, top_level_block, span, has_path) = match fnitem { + ast_map::NodeItem(ref item) => { + if contains_nodebug_attribute(&item.attrs) { + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + + match item.node { + ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => { + (item.ident.name, fn_decl, generics, top_level_block, item.span, true) + } + _ => { + cx.sess().span_bug(item.span, + "create_function_debug_context: item bound to non-function"); + } + } + } + ast_map::NodeImplItem(impl_item) => { + match impl_item.node { + ast::MethodImplItem(ref sig, ref body) => { + if contains_nodebug_attribute(&impl_item.attrs) { + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + + (impl_item.ident.name, + &sig.decl, + &sig.generics, + body, + impl_item.span, + true) + } + _ => { + cx.sess().span_bug(impl_item.span, + "create_function_debug_context() \ + called on non-method impl item?!") + } + } + } + ast_map::NodeExpr(ref expr) => { + match expr.node { + ast::ExprClosure(_, ref fn_decl, ref top_level_block) => { + let name = format!("fn{}", token::gensym("fn")); + let name = token::intern(&name[..]); + (name, fn_decl, + // This is not quite right. It should actually inherit + // the generics of the enclosing function. + &empty_generics, + top_level_block, + expr.span, + // Don't try to lookup the item path: + false) + } + _ => cx.sess().span_bug(expr.span, + "create_function_debug_context: expected an expr_fn_block here") + } + } + ast_map::NodeTraitItem(trait_item) => { + match trait_item.node { + ast::MethodTraitItem(ref sig, Some(ref body)) => { + if contains_nodebug_attribute(&trait_item.attrs) { + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + + (trait_item.ident.name, + &sig.decl, + &sig.generics, + body, + trait_item.span, + true) + } + _ => { + cx.sess() + .bug(&format!("create_function_debug_context: \ + unexpected sort of node: {:?}", + fnitem)) + } + } + } + ast_map::NodeForeignItem(..) | + ast_map::NodeVariant(..) | + ast_map::NodeStructCtor(..) => { + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + _ => cx.sess().bug(&format!("create_function_debug_context: \ + unexpected sort of node: {:?}", + fnitem)) + }; + + // This can be the case for functions inlined from another crate + if span == codemap::DUMMY_SP { + return FunctionDebugContext::FunctionWithoutDebugInfo; + } + + let loc = span_start(cx, span); + let file_metadata = file_metadata(cx, &loc.file.name); + + let function_type_metadata = unsafe { + let fn_signature = get_function_signature(cx, + fn_ast_id, + &*fn_decl, + param_substs, + span); + llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature) + }; + + // Get_template_parameters() will append a `<...>` clause to the function + // name if necessary. + let mut function_name = String::from_str(&token::get_name(name)); + let template_parameters = get_template_parameters(cx, + generics, + param_substs, + file_metadata, + &mut function_name); + + // There is no ast_map::Path for ast::ExprClosure-type functions. For now, + // just don't put them into a namespace. In the future this could be improved + // somehow (storing a path in the ast_map, or construct a path using the + // enclosing function). + let (linkage_name, containing_scope) = if has_path { + let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id)); + let linkage_name = namespace_node.mangled_name_of_contained_item( + &function_name[..]); + let containing_scope = namespace_node.scope; + (linkage_name, containing_scope) + } else { + (function_name.clone(), file_metadata) + }; + + // Clang sets this parameter to the opening brace of the function's block, + // so let's do this too. + let scope_line = span_start(cx, top_level_block.span).line; + + let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id); + + let function_name = CString::new(function_name).unwrap(); + let linkage_name = CString::new(linkage_name).unwrap(); + let fn_metadata = unsafe { + llvm::LLVMDIBuilderCreateFunction( + DIB(cx), + containing_scope, + function_name.as_ptr(), + linkage_name.as_ptr(), + file_metadata, + loc.line as c_uint, + function_type_metadata, + is_local_to_unit, + true, + scope_line as c_uint, + FlagPrototyped as c_uint, + cx.sess().opts.optimize != config::No, + llfn, + template_parameters, + ptr::null_mut()) + }; + + let scope_map = create_scope_map::create_scope_map(cx, + &fn_decl.inputs, + &*top_level_block, + fn_metadata, + fn_ast_id); + + // Initialize fn debug context (including scope map and namespace map) + let fn_debug_context = box FunctionDebugContextData { + scope_map: RefCell::new(scope_map), + fn_metadata: fn_metadata, + argument_counter: Cell::new(1), + source_locations_enabled: Cell::new(false), + source_location_override: Cell::new(false), + }; + + + + return FunctionDebugContext::RegularContext(fn_debug_context); + + fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + fn_ast_id: ast::NodeId, + fn_decl: &ast::FnDecl, + param_substs: &Substs<'tcx>, + error_reporting_span: Span) -> DIArray { + if cx.sess().opts.debuginfo == LimitedDebugInfo { + return create_DIArray(DIB(cx), &[]); + } + + let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1); + + // Return type -- llvm::DIBuilder wants this at index 0 + assert_type_for_node_id(cx, fn_ast_id, error_reporting_span); + let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id); + let return_type = monomorphize::apply_param_substs(cx.tcx(), + param_substs, + &return_type); + if ty::type_is_nil(return_type) { + signature.push(ptr::null_mut()) + } else { + signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP)); + } + + // Arguments types + for arg in &fn_decl.inputs { + assert_type_for_node_id(cx, arg.pat.id, arg.pat.span); + let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id); + let arg_type = monomorphize::apply_param_substs(cx.tcx(), + param_substs, + &arg_type); + signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP)); + } + + return create_DIArray(DIB(cx), &signature[..]); + } + + fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + generics: &ast::Generics, + param_substs: &Substs<'tcx>, + file_metadata: DIFile, + name_to_append_suffix_to: &mut String) + -> DIArray + { + let self_type = param_substs.self_ty(); + let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type); + + // Only true for static default methods: + let has_self_type = self_type.is_some(); + + if !generics.is_type_parameterized() && !has_self_type { + return create_DIArray(DIB(cx), &[]); + } + + name_to_append_suffix_to.push('<'); + + // The list to be filled with template parameters: + let mut template_params: Vec = + Vec::with_capacity(generics.ty_params.len() + 1); + + // Handle self type + if has_self_type { + let actual_self_type = self_type.unwrap(); + // Add self type name to <...> clause of function name + let actual_self_type_name = compute_debuginfo_type_name( + cx, + actual_self_type, + true); + + name_to_append_suffix_to.push_str(&actual_self_type_name[..]); + + if generics.is_type_parameterized() { + name_to_append_suffix_to.push_str(","); + } + + // Only create type information if full debuginfo is enabled + if cx.sess().opts.debuginfo == FullDebugInfo { + let actual_self_type_metadata = type_metadata(cx, + actual_self_type, + codemap::DUMMY_SP); + + let name = token::get_name(special_idents::type_self.name); + + let name = CString::new(name.as_bytes()).unwrap(); + let param_metadata = unsafe { + llvm::LLVMDIBuilderCreateTemplateTypeParameter( + DIB(cx), + file_metadata, + name.as_ptr(), + actual_self_type_metadata, + ptr::null_mut(), + 0, + 0) + }; + + template_params.push(param_metadata); + } + } + + // Handle other generic parameters + let actual_types = param_substs.types.get_slice(subst::FnSpace); + for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() { + let actual_type = actual_types[index]; + // Add actual type name to <...> clause of function name + let actual_type_name = compute_debuginfo_type_name(cx, + actual_type, + true); + name_to_append_suffix_to.push_str(&actual_type_name[..]); + + if index != generics.ty_params.len() - 1 { + name_to_append_suffix_to.push_str(","); + } + + // Again, only create type information if full debuginfo is enabled + if cx.sess().opts.debuginfo == FullDebugInfo { + let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP); + let ident = token::get_ident(ident); + let name = CString::new(ident.as_bytes()).unwrap(); + let param_metadata = unsafe { + llvm::LLVMDIBuilderCreateTemplateTypeParameter( + DIB(cx), + file_metadata, + name.as_ptr(), + actual_type_metadata, + ptr::null_mut(), + 0, + 0) + }; + template_params.push(param_metadata); + } + } + + name_to_append_suffix_to.push('>'); + + return create_DIArray(DIB(cx), &template_params[..]); + } +} + +fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, + variable_name: ast::Name, + variable_type: Ty<'tcx>, + scope_metadata: DIScope, + variable_access: VariableAccess, + variable_kind: VariableKind, + span: Span) { + let cx: &CrateContext = bcx.ccx(); + + let filename = span_start(cx, span).file.name.clone(); + let file_metadata = file_metadata(cx, &filename[..]); + + let name = token::get_name(variable_name); + let loc = span_start(cx, span); + let type_metadata = type_metadata(cx, variable_type, span); + + let (argument_index, dwarf_tag) = match variable_kind { + ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable), + LocalVariable | + CapturedVariable => (0, DW_TAG_auto_variable) + }; + + let name = CString::new(name.as_bytes()).unwrap(); + match (variable_access, &[][..]) { + (DirectVariable { alloca }, address_operations) | + (IndirectVariable {alloca, address_operations}, _) => { + let metadata = unsafe { + llvm::LLVMDIBuilderCreateVariable( + DIB(cx), + dwarf_tag, + scope_metadata, + name.as_ptr(), + file_metadata, + loc.line as c_uint, + type_metadata, + cx.sess().opts.optimize != config::No, + 0, + address_operations.as_ptr(), + address_operations.len() as c_uint, + argument_index) + }; + source_loc::set_debug_location(cx, InternalDebugLocation::new(scope_metadata, + loc.line, + loc.col.to_usize())); + unsafe { + let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd( + DIB(cx), + alloca, + metadata, + address_operations.as_ptr(), + address_operations.len() as c_uint, + bcx.llbb); + + llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr); + } + } + } + + match variable_kind { + ArgumentVariable(_) | CapturedVariable => { + assert!(!bcx.fcx + .debug_context + .get_ref(cx, span) + .source_locations_enabled + .get()); + source_loc::set_debug_location(cx, InternalDebugLocation::UnknownLocation); + } + _ => { /* nothing to do */ } + } +} + +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub enum DebugLoc { + At(ast::NodeId, Span), + None +} + +impl DebugLoc { + pub fn apply(&self, fcx: &FunctionContext) { + match *self { + DebugLoc::At(node_id, span) => { + source_loc::set_source_location(fcx, node_id, span); + } + DebugLoc::None => { + source_loc::clear_source_location(fcx); + } + } + } +} + +pub trait ToDebugLoc { + fn debug_loc(&self) -> DebugLoc; +} + +impl ToDebugLoc for ast::Expr { + fn debug_loc(&self) -> DebugLoc { + DebugLoc::At(self.id, self.span) + } +} + +impl ToDebugLoc for NodeIdAndSpan { + fn debug_loc(&self) -> DebugLoc { + DebugLoc::At(self.id, self.span) + } +} + +impl ToDebugLoc for Option { + fn debug_loc(&self) -> DebugLoc { + match *self { + Some(NodeIdAndSpan { id, span }) => DebugLoc::At(id, span), + None => DebugLoc::None + } + } +} diff --git a/src/librustc_trans/trans/debuginfo/namespace.rs b/src/librustc_trans/trans/debuginfo/namespace.rs new file mode 100644 index 0000000000000..0aa0408c0ef33 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/namespace.rs @@ -0,0 +1,134 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Namespace Handling. + +use super::utils::{DIB, debug_context}; + +use llvm; +use llvm::debuginfo::DIScope; +use trans::common::CrateContext; +use middle::ty::{self, ClosureTyper}; + +use std::ffi::CString; +use std::ptr; +use std::rc::{Rc, Weak}; +use syntax::{ast, ast_map}; +use syntax::parse::token; + +pub struct NamespaceTreeNode { + pub name: ast::Name, + pub scope: DIScope, + pub parent: Option>, +} + +impl NamespaceTreeNode { + pub fn mangled_name_of_contained_item(&self, item_name: &str) -> String { + fn fill_nested(node: &NamespaceTreeNode, output: &mut String) { + match node.parent { + Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output), + None => {} + } + let string = token::get_name(node.name); + output.push_str(&format!("{}", string.len())); + output.push_str(&string); + } + + let mut name = String::from_str("_ZN"); + fill_nested(self, &mut name); + name.push_str(&format!("{}", item_name.len())); + name.push_str(item_name); + name.push('E'); + name + } +} + +pub fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str { + &cx.link_meta().crate_name +} + +pub fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc { + ty::with_path(cx.tcx(), def_id, |path| { + // prepend crate name if not already present + let krate = if def_id.krate == ast::LOCAL_CRATE { + let crate_namespace_name = token::intern(crate_root_namespace(cx)); + Some(ast_map::PathMod(crate_namespace_name)) + } else { + None + }; + let mut path = krate.into_iter().chain(path).peekable(); + + let mut current_key = Vec::new(); + let mut parent_node: Option> = None; + + // Create/Lookup namespace for each element of the path. + loop { + // Emulate a for loop so we can use peek below. + let path_element = match path.next() { + Some(e) => e, + None => break + }; + // Ignore the name of the item (the last path element). + if path.peek().is_none() { + break; + } + + let name = path_element.name(); + current_key.push(name); + + let existing_node = debug_context(cx).namespace_map.borrow() + .get(¤t_key).cloned(); + let current_node = match existing_node { + Some(existing_node) => existing_node, + None => { + // create and insert + let parent_scope = match parent_node { + Some(ref node) => node.scope, + None => ptr::null_mut() + }; + let namespace_name = token::get_name(name); + let namespace_name = CString::new(namespace_name.as_bytes()).unwrap(); + let scope = unsafe { + llvm::LLVMDIBuilderCreateNameSpace( + DIB(cx), + parent_scope, + namespace_name.as_ptr(), + // cannot reconstruct file ... + ptr::null_mut(), + // ... or line information, but that's not so important. + 0) + }; + + let node = Rc::new(NamespaceTreeNode { + name: name, + scope: scope, + parent: parent_node.map(|parent| parent.downgrade()), + }); + + debug_context(cx).namespace_map.borrow_mut() + .insert(current_key.clone(), node.clone()); + + node + } + }; + + parent_node = Some(current_node); + } + + match parent_node { + Some(node) => node, + None => { + cx.sess().bug(&format!("debuginfo::namespace_for_item(): \ + path too short for {:?}", + def_id)); + } + } + }) +} diff --git a/src/librustc_trans/trans/debuginfo/source_loc.rs b/src/librustc_trans/trans/debuginfo/source_loc.rs new file mode 100644 index 0000000000000..981a23fd664a9 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/source_loc.rs @@ -0,0 +1,231 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use self::InternalDebugLocation::*; + +use super::utils::{debug_context, span_start, fn_should_be_ignored}; +use super::metadata::{scope_metadata,UNKNOWN_COLUMN_NUMBER}; +use super::{FunctionDebugContext, DebugLoc}; + +use llvm; +use llvm::debuginfo::DIScope; +use trans::common::{NodeIdAndSpan, CrateContext, FunctionContext}; + +use libc::c_uint; +use std::ptr; +use syntax::codemap::{Span, Pos}; +use syntax::{ast, codemap}; + +pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + node_id: ast::NodeId, + node_span: Span, + is_block: bool) + -> NodeIdAndSpan { + // A debug location needs two things: + // (1) A span (of which only the beginning will actually be used) + // (2) An AST node-id which will be used to look up the lexical scope + // for the location in the functions scope-map + // + // This function will calculate the debug location for compiler-generated + // cleanup calls that are executed when control-flow leaves the + // scope identified by `node_id`. + // + // For everything but block-like things we can simply take id and span of + // the given expression, meaning that from a debugger's view cleanup code is + // executed at the same source location as the statement/expr itself. + // + // Blocks are a special case. Here we want the cleanup to be linked to the + // closing curly brace of the block. The *scope* the cleanup is executed in + // is up to debate: It could either still be *within* the block being + // cleaned up, meaning that locals from the block are still visible in the + // debugger. + // Or it could be in the scope that the block is contained in, so any locals + // from within the block are already considered out-of-scope and thus not + // accessible in the debugger anymore. + // + // The current implementation opts for the second option: cleanup of a block + // already happens in the parent scope of the block. The main reason for + // this decision is that scoping becomes controlflow dependent when variable + // shadowing is involved and it's impossible to decide statically which + // scope is actually left when the cleanup code is executed. + // In practice it shouldn't make much of a difference. + + let mut cleanup_span = node_span; + + if is_block { + // Not all blocks actually have curly braces (e.g. simple closure + // bodies), in which case we also just want to return the span of the + // whole expression. + let code_snippet = cx.sess().codemap().span_to_snippet(node_span); + if let Ok(code_snippet) = code_snippet { + let bytes = code_snippet.as_bytes(); + + if !bytes.is_empty() && &bytes[bytes.len()-1..] == b"}" { + cleanup_span = Span { + lo: node_span.hi - codemap::BytePos(1), + hi: node_span.hi, + expn_id: node_span.expn_id + }; + } + } + } + + NodeIdAndSpan { + id: node_id, + span: cleanup_span + } +} + + +/// Sets the current debug location at the beginning of the span. +/// +/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id +/// parameter is used to reliably find the correct visibility scope for the code +/// position. +pub fn set_source_location(fcx: &FunctionContext, + node_id: ast::NodeId, + span: Span) { + match fcx.debug_context { + FunctionDebugContext::DebugInfoDisabled => return, + FunctionDebugContext::FunctionWithoutDebugInfo => { + set_debug_location(fcx.ccx, UnknownLocation); + return; + } + FunctionDebugContext::RegularContext(box ref function_debug_context) => { + if function_debug_context.source_location_override.get() { + // Just ignore any attempts to set a new debug location while + // the override is active. + return; + } + + let cx = fcx.ccx; + + debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span)); + + if function_debug_context.source_locations_enabled.get() { + let loc = span_start(cx, span); + let scope = scope_metadata(fcx, node_id, span); + + set_debug_location(cx, InternalDebugLocation::new(scope, + loc.line, + loc.col.to_usize())); + } else { + set_debug_location(cx, UnknownLocation); + } + } + } +} + +/// This function makes sure that all debug locations emitted while executing +/// `wrapped_function` are set to the given `debug_loc`. +pub fn with_source_location_override(fcx: &FunctionContext, + debug_loc: DebugLoc, + wrapped_function: F) -> R + where F: FnOnce() -> R +{ + match fcx.debug_context { + FunctionDebugContext::DebugInfoDisabled => { + wrapped_function() + } + FunctionDebugContext::FunctionWithoutDebugInfo => { + set_debug_location(fcx.ccx, UnknownLocation); + wrapped_function() + } + FunctionDebugContext::RegularContext(box ref function_debug_context) => { + if function_debug_context.source_location_override.get() { + wrapped_function() + } else { + debug_loc.apply(fcx); + function_debug_context.source_location_override.set(true); + let result = wrapped_function(); + function_debug_context.source_location_override.set(false); + result + } + } + } +} + +/// Clears the current debug location. +/// +/// Instructions generated hereafter won't be assigned a source location. +pub fn clear_source_location(fcx: &FunctionContext) { + if fn_should_be_ignored(fcx) { + return; + } + + set_debug_location(fcx.ccx, UnknownLocation); +} + +/// Enables emitting source locations for the given functions. +/// +/// Since we don't want source locations to be emitted for the function prelude, +/// they are disabled when beginning to translate a new function. This functions +/// switches source location emitting on and must therefore be called before the +/// first real statement/expression of the function is translated. +pub fn start_emitting_source_locations(fcx: &FunctionContext) { + match fcx.debug_context { + FunctionDebugContext::RegularContext(box ref data) => { + data.source_locations_enabled.set(true) + }, + _ => { /* safe to ignore */ } + } +} + + +#[derive(Copy, Clone, PartialEq)] +pub enum InternalDebugLocation { + KnownLocation { scope: DIScope, line: usize, col: usize }, + UnknownLocation +} + +impl InternalDebugLocation { + pub fn new(scope: DIScope, line: usize, col: usize) -> InternalDebugLocation { + KnownLocation { + scope: scope, + line: line, + col: col, + } + } +} + +pub fn set_debug_location(cx: &CrateContext, debug_location: InternalDebugLocation) { + if debug_location == debug_context(cx).current_debug_location.get() { + return; + } + + let metadata_node; + + match debug_location { + KnownLocation { scope, line, .. } => { + // Always set the column to zero like Clang and GCC + let col = UNKNOWN_COLUMN_NUMBER; + debug!("setting debug location to {} {}", line, col); + + unsafe { + metadata_node = llvm::LLVMDIBuilderCreateDebugLocation( + debug_context(cx).llcontext, + line as c_uint, + col as c_uint, + scope, + ptr::null_mut()); + } + } + UnknownLocation => { + debug!("clearing debug location "); + metadata_node = ptr::null_mut(); + } + }; + + unsafe { + llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node); + } + + debug_context(cx).current_debug_location.set(debug_location); +} diff --git a/src/librustc_trans/trans/debuginfo/type_names.rs b/src/librustc_trans/trans/debuginfo/type_names.rs new file mode 100644 index 0000000000000..2d0003d93a5d2 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/type_names.rs @@ -0,0 +1,230 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Type Names for Debug Info. + +use super::namespace::crate_root_namespace; + +use trans::common::CrateContext; +use middle::subst::{self, Substs}; +use middle::ty::{self, Ty, ClosureTyper}; +use syntax::ast; +use syntax::parse::token; +use util::ppaux; + + +// Compute the name of the type as it should be stored in debuginfo. Does not do +// any caching, i.e. calling the function twice with the same type will also do +// the work twice. The `qualified` parameter only affects the first level of the +// type name, further levels (i.e. type parameters) are always fully qualified. +pub fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + t: Ty<'tcx>, + qualified: bool) + -> String { + let mut result = String::with_capacity(64); + push_debuginfo_type_name(cx, t, qualified, &mut result); + result +} + +// Pushes the name of the type as it should be stored in debuginfo on the +// `output` String. See also compute_debuginfo_type_name(). +pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + t: Ty<'tcx>, + qualified: bool, + output: &mut String) { + match t.sty { + ty::ty_bool => output.push_str("bool"), + ty::ty_char => output.push_str("char"), + ty::ty_str => output.push_str("str"), + ty::ty_int(ast::TyIs) => output.push_str("isize"), + ty::ty_int(ast::TyI8) => output.push_str("i8"), + ty::ty_int(ast::TyI16) => output.push_str("i16"), + ty::ty_int(ast::TyI32) => output.push_str("i32"), + ty::ty_int(ast::TyI64) => output.push_str("i64"), + ty::ty_uint(ast::TyUs) => output.push_str("usize"), + ty::ty_uint(ast::TyU8) => output.push_str("u8"), + ty::ty_uint(ast::TyU16) => output.push_str("u16"), + ty::ty_uint(ast::TyU32) => output.push_str("u32"), + ty::ty_uint(ast::TyU64) => output.push_str("u64"), + ty::ty_float(ast::TyF32) => output.push_str("f32"), + ty::ty_float(ast::TyF64) => output.push_str("f64"), + ty::ty_struct(def_id, substs) | + ty::ty_enum(def_id, substs) => { + push_item_name(cx, def_id, qualified, output); + push_type_params(cx, substs, output); + }, + ty::ty_tup(ref component_types) => { + output.push('('); + for &component_type in component_types { + push_debuginfo_type_name(cx, component_type, true, output); + output.push_str(", "); + } + if !component_types.is_empty() { + output.pop(); + output.pop(); + } + output.push(')'); + }, + ty::ty_uniq(inner_type) => { + output.push_str("Box<"); + push_debuginfo_type_name(cx, inner_type, true, output); + output.push('>'); + }, + ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { + output.push('*'); + match mutbl { + ast::MutImmutable => output.push_str("const "), + ast::MutMutable => output.push_str("mut "), + } + + push_debuginfo_type_name(cx, inner_type, true, output); + }, + ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { + output.push('&'); + if mutbl == ast::MutMutable { + output.push_str("mut "); + } + + push_debuginfo_type_name(cx, inner_type, true, output); + }, + ty::ty_vec(inner_type, optional_length) => { + output.push('['); + push_debuginfo_type_name(cx, inner_type, true, output); + + match optional_length { + Some(len) => { + output.push_str(&format!("; {}", len)); + } + None => { /* nothing to do */ } + }; + + output.push(']'); + }, + ty::ty_trait(ref trait_data) => { + let principal = ty::erase_late_bound_regions(cx.tcx(), &trait_data.principal); + push_item_name(cx, principal.def_id, false, output); + push_type_params(cx, principal.substs, output); + }, + ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { + if unsafety == ast::Unsafety::Unsafe { + output.push_str("unsafe "); + } + + if abi != ::syntax::abi::Rust { + output.push_str("extern \""); + output.push_str(abi.name()); + output.push_str("\" "); + } + + output.push_str("fn("); + + let sig = ty::erase_late_bound_regions(cx.tcx(), sig); + if !sig.inputs.is_empty() { + for ¶meter_type in &sig.inputs { + push_debuginfo_type_name(cx, parameter_type, true, output); + output.push_str(", "); + } + output.pop(); + output.pop(); + } + + if sig.variadic { + if !sig.inputs.is_empty() { + output.push_str(", ..."); + } else { + output.push_str("..."); + } + } + + output.push(')'); + + match sig.output { + ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} + ty::FnConverging(result_type) => { + output.push_str(" -> "); + push_debuginfo_type_name(cx, result_type, true, output); + } + ty::FnDiverging => { + output.push_str(" -> !"); + } + } + }, + ty::ty_closure(..) => { + output.push_str("closure"); + } + ty::ty_err | + ty::ty_infer(_) | + ty::ty_projection(..) | + ty::ty_param(_) => { + cx.sess().bug(&format!("debuginfo: Trying to create type name for \ + unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t))); + } + } + + fn push_item_name(cx: &CrateContext, + def_id: ast::DefId, + qualified: bool, + output: &mut String) { + ty::with_path(cx.tcx(), def_id, |path| { + if qualified { + if def_id.krate == ast::LOCAL_CRATE { + output.push_str(crate_root_namespace(cx)); + output.push_str("::"); + } + + let mut path_element_count = 0; + for path_element in path { + let name = token::get_name(path_element.name()); + output.push_str(&name); + output.push_str("::"); + path_element_count += 1; + } + + if path_element_count == 0 { + cx.sess().bug("debuginfo: Encountered empty item path!"); + } + + output.pop(); + output.pop(); + } else { + let name = token::get_name(path.last() + .expect("debuginfo: Empty item path?") + .name()); + output.push_str(&name); + } + }); + } + + // Pushes the type parameters in the given `Substs` to the output string. + // This ignores region parameters, since they can't reliably be + // reconstructed for items from non-local crates. For local crates, this + // would be possible but with inlining and LTO we have to use the least + // common denominator - otherwise we would run into conflicts. + fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, + substs: &subst::Substs<'tcx>, + output: &mut String) { + if substs.types.is_empty() { + return; + } + + output.push('<'); + + for &type_parameter in substs.types.iter() { + push_debuginfo_type_name(cx, type_parameter, true, output); + output.push_str(", "); + } + + output.pop(); + output.pop(); + + output.push('>'); + } +} + diff --git a/src/librustc_trans/trans/debuginfo/utils.rs b/src/librustc_trans/trans/debuginfo/utils.rs new file mode 100644 index 0000000000000..0c12f6ed095f1 --- /dev/null +++ b/src/librustc_trans/trans/debuginfo/utils.rs @@ -0,0 +1,108 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Utility Functions. + +use super::{FunctionDebugContext, CrateDebugContext}; +use super::namespace::namespace_for_item; + +use llvm; +use llvm::debuginfo::{DIScope, DIBuilderRef, DIDescriptor, DIArray}; +use trans::machine; +use trans::common::{CrateContext, FunctionContext}; +use trans::type_::Type; + +use syntax::codemap::Span; +use syntax::{ast, codemap}; + +pub fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool +{ + // The is_local_to_unit flag indicates whether a function is local to the + // current compilation unit (i.e. if it is *static* in the C-sense). The + // *reachable* set should provide a good approximation of this, as it + // contains everything that might leak out of the current crate (by being + // externally visible or by being inlined into something externally + // visible). It might better to use the `exported_items` set from + // `driver::CrateAnalysis` in the future, but (atm) this set is not + // available in the translation pass. + !cx.reachable().contains(&node_id) +} + +#[allow(non_snake_case)] +pub fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray { + return unsafe { + llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32) + }; +} + +pub fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool { + attributes.iter().any(|attr| { + let meta_item: &ast::MetaItem = &*attr.node.value; + match meta_item.node { + ast::MetaWord(ref value) => &value[..] == "no_debug", + _ => false + } + }) +} + +/// Return codemap::Loc corresponding to the beginning of the span +pub fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc { + cx.sess().codemap().lookup_char_pos(span.lo) +} + +pub fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) { + (machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64) +} + +pub fn bytes_to_bits(bytes: u64) -> u64 { + bytes * 8 +} + +#[inline] +pub fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>) + -> &'a CrateDebugContext<'tcx> { + let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap(); + debug_context +} + +#[inline] +#[allow(non_snake_case)] +pub fn DIB(cx: &CrateContext) -> DIBuilderRef { + cx.dbg_cx().as_ref().unwrap().builder +} + +pub fn fn_should_be_ignored(fcx: &FunctionContext) -> bool { + match fcx.debug_context { + FunctionDebugContext::RegularContext(_) => false, + _ => true + } +} + +pub fn assert_type_for_node_id(cx: &CrateContext, + node_id: ast::NodeId, + error_reporting_span: Span) { + if !cx.tcx().node_types().contains_key(&node_id) { + cx.sess().span_bug(error_reporting_span, + "debuginfo: Could not find type for node id!"); + } +} + +pub fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId) + -> (DIScope, Span) { + let containing_scope = namespace_for_item(cx, def_id).scope; + let definition_span = if def_id.krate == ast::LOCAL_CRATE { + cx.tcx().map.span(def_id.node) + } else { + // For external items there is no span information + codemap::DUMMY_SP + }; + + (containing_scope, definition_span) +}