-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
45 lines (35 loc) · 1.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
import transformers
from transformers import VitsModel, AutoTokenizer
import torch
import numpy as np
import io
import soundfile as sf
# Load model and tokenizer
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
def generate_speech(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs).waveform # Corrected typo: waveform (not waveformform)
# Convert the waveform tensor to a NumPy array
waveform = output.squeeze().cpu().numpy()
# Convert the waveform to bytes
audio_bytes_io = io.BytesIO()
sf.write(audio_bytes_io, waveform, samplerate=22050, format='WAV')
audio_bytes_io.seek(0)
return audio_bytes_io
# Streamlit UI
st.title("Text-to-Speech Converter")
st.write("Developed by Safwan Ahmad Saffi")
st.write("Enter text below and click 'Generate Speech' to convert it to audio.")
# Text input
text_input = st.text_area("Text to convert:", "Some example text in the English language")
if st.button("Generate Speech"):
if text_input:
st.write("Generating speech...")
audio_bytes_io = generate_speech(text_input)
# Display audio in Streamlit
st.audio(audio_bytes_io, format="audio/wav")
else:
st.write("Please enter some text.")