diff --git a/src/sage/categories/finite_complex_reflection_groups.py b/src/sage/categories/finite_complex_reflection_groups.py index f4ab8a943ce..69762bb353a 100644 --- a/src/sage/categories/finite_complex_reflection_groups.py +++ b/src/sage/categories/finite_complex_reflection_groups.py @@ -78,7 +78,7 @@ def example(self): Reducible real reflection group of rank 4 and type A2 x B2 """ from sage.combinat.root_system.reflection_group_real import ReflectionGroup - return ReflectionGroup((1,1,3), (2,1,2)) + return ReflectionGroup((1, 1, 3), (2, 1, 2)) class SubcategoryMethods: @@ -417,7 +417,7 @@ def cardinality(self): from sage.rings.integer_ring import ZZ return ZZ.prod(self.degrees()) - def is_well_generated(self): + def is_well_generated(self) -> bool: r""" Return whether ``self`` is well-generated. @@ -662,7 +662,7 @@ def example(self): Irreducible complex reflection group of rank 3 and type G(4,2,3) """ from sage.combinat.root_system.reflection_group_real import ReflectionGroup - return ReflectionGroup((4,2,3)) + return ReflectionGroup((4, 2, 3)) class ParentMethods: def coxeter_number(self): @@ -787,28 +787,8 @@ def succ(seed): structure='graded', enumeration='breadth') if return_lengths: - return (x for x in step) - else: - return (x[0] for x in step) - - def elements_below_coxeter_element(self, c=None): - r""" - Deprecated method. - - Superseded by :meth:`absolute_order_ideal` - - TESTS:: - - sage: W = CoxeterGroup(['A', 3]) # optional - sage.combinat sage.groups - sage: len(list(W.elements_below_coxeter_element())) # optional - sage.combinat sage.groups - doctest:...: DeprecationWarning: The method elements_below_coxeter_element - is deprecated. Please use absolute_order_ideal instead. - See https://github.com/sagemath/sage/issues/27924 for details. - 14 - """ - from sage.misc.superseded import deprecation - deprecation(27924, "The method elements_below_coxeter_element is deprecated. Please use absolute_order_ideal instead.") - return self.absolute_order_ideal(gens=c) + return step + return (x[0] for x in step) # TODO: have a cached and an uncached version @cached_method @@ -877,11 +857,11 @@ def noncrossing_partition_lattice(self, c=None, L=None, else: L = [(pi, pi.reflection_length()) for pi in L] rels = [] - ref_lens = {pi:l for (pi, l) in L} + ref_lens = {pi: l for (pi, l) in L} for (pi, l) in L: for t in R: tau = pi * t - if tau in ref_lens and l+1 == ref_lens[tau]: + if tau in ref_lens and l + 1 == ref_lens[tau]: rels.append((pi, tau)) P = Poset(([], rels), cover_relations=True, facade=True) @@ -1028,7 +1008,7 @@ def example(self): Reducible complex reflection group of rank 4 and type A2 x G(3,1,2) """ from sage.combinat.root_system.reflection_group_real import ReflectionGroup - return ReflectionGroup((1,1,3), (3,1,2)) + return ReflectionGroup((1, 1, 3), (3, 1, 2)) class ParentMethods: def _test_well_generated(self, **options): @@ -1213,7 +1193,7 @@ def rational_catalan_number(self, p, polynomial=False): from sage.combinat.q_analogues import q_int h = self.coxeter_number() - if not gcd(h,p) == 1: + if not gcd(h, p) == 1: raise ValueError("parameter p = %s is not coprime to the Coxeter number %s" % (p, h)) if polynomial: