diff --git a/src/sage/rings/finite_rings/residue_field.pyx b/src/sage/rings/finite_rings/residue_field.pyx index b04066cc738..ec0b8f432cc 100644 --- a/src/sage/rings/finite_rings/residue_field.pyx +++ b/src/sage/rings/finite_rings/residue_field.pyx @@ -126,12 +126,10 @@ And now over a large prime field:: sage: S. = PolynomialRing(Rf, order='lex') sage: I = ideal([2*X - Y^2, Y + Z]) sage: I.groebner_basis() - verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation. [X + 2199023255559*Z^2, Y + Z] sage: S. = PolynomialRing(Rf, order='deglex') sage: I = ideal([2*X - Y^2, Y + Z]) sage: I.groebner_basis() - verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation. [Z^2 + 4398046511117*X, Y + Z] """ diff --git a/src/sage/schemes/hyperelliptic_curves/jacobian_morphism.py b/src/sage/schemes/hyperelliptic_curves/jacobian_morphism.py index a40a69398c2..5695653955a 100644 --- a/src/sage/schemes/hyperelliptic_curves/jacobian_morphism.py +++ b/src/sage/schemes/hyperelliptic_curves/jacobian_morphism.py @@ -305,7 +305,6 @@ def cantor_composition(D1,D2,f,h,genus): sage: H = HyperellipticCurve(f, 2*x); H Hyperelliptic Curve over Finite Field of size 1000000000000000000000000000057 defined by y^2 + 2*x*y = x^7 + x^2 + 1 sage: J = H.jacobian()(F); J - verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation. Set of rational points of Jacobian of Hyperelliptic Curve over Finite Field of size 1000000000000000000000000000057 defined by y^2 + 2*x*y = x^7 + x^2 + 1