-
Notifications
You must be signed in to change notification settings - Fork 14
/
index.yaml
455 lines (442 loc) · 14.4 KB
/
index.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# This defines what the user sees in the library dialog -- smc-webapp/library.cjsx
# see index.py for more details.
---
# an entry can have a list of tags
tags:
calc:
name: Calculus
linalg:
name: Linear Algebra
stats:
name: Statistics
intro:
name: Introduction
python:
name: Python
info: "Make sure to pick a suitable Python environment (Python 2, Python 3, Anaconda, ...)"
math:
name: Mathematics
julia:
name: Julia
info: "Be patient. Starting Julia the first time might require to recompile some modules."
finance:
name: Finance
datascience:
name: Data science
# an entry can have exactly one license
licenses:
a20: Apache 2.0
asis: AS IS
bsd: BSD
cc0: CC0 1.0 Universal
ccby: CC BY 4.0
ccbysa: CC BY-SA
ccbync3: CC BY-NC 3.0
mit: MIT
gpl3: GPLv3
gfdl: GNU Free Documentation License
mpl2: Mozilla Public License, v. 2.0.
# each entry must have exactly one category
# weight: additional weighting for sorting by category – default 0
categories:
intro:
name: Introduction
weight: -1
stats:
name: Statistics
cs:
name: Computer science
datascience:
name: Data science
math:
name: Mathematics
physics:
name: Physics
chemistry:
name: Chemistry
latex:
name: LaTeX templates
science:
name: Science
misc:
name: Miscellaneous
weight: 1
finance:
name: Finance
references:
- cocalc-example-files/index.yaml
---
id: "bayes-for-hackers"
title: "Bayesian Methods for Hackers"
src: bayesian-methods-for-hackers/
thumbnail: thumbs/bayesian.png
description: |
Hands-on tutorial how Bayesian Methods work, based on Python's PyMC library.
author: Cameron Davidson-Pilon
license: asis
category: stats
preview: "https://cocalc.com/share/8d8556442c370812af9f5268e7fa66a5262931f5/examples/bayesian-methods-for-hackers?viewer=share"
tags:
- stats
- python
---
id: cmichi-latex-templates
src: cmichi-latex-templates/
title: "Michael Müller's LaTeX Templates"
thumbnail: thumbs/muller-latex.png
category: latex
license: mit
description: |
Collection of different LaTeX/XeTeX templates (cv, invoices, timesheets, letters, etc.).
website: "https://github.com/cmichi/latex-template-collection"
---
id: deedy-latex-templates
src: deedy-latex-templates/
title: "Deedy LaTeX Templates"
thumbnail: thumbs/deedy-latex.png
license: cc0
category: latex
description: |
A concise set of Latex templates that serves a small set of needs - CV, Essays, Articles and Problem Sets.
website: https://github.com/deedy/Latex-Templates
#---
#src: martinthoma-latex-examples/
#license: None
#title: "More than 570 LaTeX examples"
#description: "More than 570 examples for the usage of LaTeX -- https://github.com/MartinThoma/LaTeX-examples/"
---
id: schymanski-leaf-scale
src: Schymanski_leaf-scale_2016/
license: gpl3
category: misc
title: "Leaf-scale experiments reveal an important omission in the Penman–Monteith equation"
description: |
Support information for article: http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-363/
---
id: datasci-notebooks
src: data-science-ipython-notebooks/
title: "Data science Python notebooks"
thumbnail: thumbs/datascience-tutorials.png
category: datascience
license: a20
tags:
- python
website: https://github.com/donnemartin/data-science-ipython-notebooks
description: |
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle,
big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
---
id: beezer-linear-algebra
src: beezer-linear-algebra/
category: math
title: "Sage and Linear Algebra"
description: "This is a collection of classroom-tested worksheets to accompany Beezer's [First Course in Linear Algebra](http://linear.pugetsound.edu/)."
website: http://linear.pugetsound.edu/
author: "Robert A. Beezer"
license: ccbysa
thumbnail: thumbs/sage-lin-alg.png
---
id: paulsen-abstract-algebra
src: paulsen-abstract-algebra/
category: math
title: "Abstract Algebra: An Interactive Approach"
description: "Jupyter notebooks to accompany William Paulsen's [Abstract Algebra: An Interactive Approach, Second Edition](https://www.crcpress.com/Abstract-Algebra-An-Interactive-Approach-Second-Edition/Paulsen/p/book/9781498719766)."
website: https://www.crcpress.com/Abstract-Algebra-An-Interactive-Approach-Second-Edition/Paulsen/p/book/9781498719766
author: "William Paulsen"
license: asis
thumbnail: thumbs/aa-paulsen.png
---
id: ml-with-python
src: introduction_to_ml_with_python/
title: "Introduction to Machine Learning with Python"
author: "Andreas Mueller and Sarah Guido"
description: 'Notebooks and code for the book "Introduction to Machine Learning with Python"'
website: https://github.com/amueller/introduction_to_ml_with_python
thumbnail: thumbs/intro-to-ml.jpg
category: datascience
tags:
- python
---
id: sci-comp-python
src: scientific-python-lectures/
title: Lectures on scientific computing with Python
author: Robert Johansson
website: https://github.com/jrjohansson/scientific-python-lectures
thumbnail: thumbs/sci-computing-python.png
category: datascience
tags:
- python
license: ccby
---
id: python-data-science-handbook
category: datascience
src: PythonDataScienceHandbook/
title: Python Data Science Handbook
author: Jake Vanderplas
thumbnail: thumbs/PDSH-cover.png
tags:
- python
license: mit
---
id: stanford-tensorflow-tutorials
category: datascience
src: stanford-tensorflow-tutorials/
title: Stanford Tensorflow Tutorials
description: >
This repository contains code examples for the course **CS 20SI: TensorFlow for Deep Learning Research**.
website: http://cs20si.stanford.edu
tags:
- python
---
id: aaron-tresham-calc
category: math
src: tresham-calculus-worksheets/
title: Aaron Tresham Calculus Materials
author: Aaron Tresham
description: |
A collection of classroom-tested worksheets to accompany Tresham's [Math 205](http://www2.hawaii.edu/~tresham/Math205%20Lab/math205lab.html) and [Math 206](http://www2.hawaii.edu/~tresham/Math206%20Lab/math206lab.html).
Files are publicly hosted [here](https://cocalc.com/share/f8df5b36830778dde7b3c3c4e68c542bbaeeefba/Aaron%20Tresham%20Calculus%20Material/?viewer=share).
thumbnail: thumbs/tresham-calc.png
tags:
- calc
- sage
license: ccbysa
---
id: statistical-rethinking-python-PyMC3
category: stats
src: statistical-rethinking-python-PyMC3/
title: "Statistical Rethinking with Python and PyMC3"
license: ccby
description: |
Statistical Rethinking by Richard McElreath is an incredible good introductory book to Bayesian Statistics.
It follows a *Jaynesian* and practical approach with very good examples and clear explanations.
In [this repository](https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3)
we ported the codes (originally in R and Stan) in the book to PyMC3.
We are trying to keep the examples as close as possible to those in the book,
while at the same time trying to express them in the most Pythonic and PyMC3onic way we can.
---
id: aata
src: aata/
category: math
title: "Abstract Algebra: Theory and Applications"
author: "Tom Judson"
website: "http://abstract.pugetsound.edu/"
thumbnail: thumbs/aata.jpg
tags:
- sage
description: |
This open source textbook designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner.
Its strengths include a wide range of exercises, both computational and theoretical, plus many nontrivial applications.
license: gfdl
---
id: cmws
src: cmws/
category: math
tags:
- sage
title: "Computational Mathematics with SageMath"
author: "Paul Zimmermann et al."
thumbnail: thumbs/cmws.jpg
license: ccbysa
description: |
A book about the mathematics needed to use Sage efficiently, illustrated by concrete examples. The first part is accessible to high school and undergraduate students. The remainder is suited for graduate students, teachers, and researchers.
website: http://sagebook.gforge.inria.fr/english.html
---
id: math157
src: math157/
category: math
tags:
- sage
title: "Math 157: Intro to Mathematical Software"
author: "Kiran S. Kedlaya and William Stein"
thumbnail: thumbs/math157.png
license: ccbysa
description: |
Course materials from *Math 157: Intro to Mathematical Software*, taught by Kiran Kedlaya at UC San Diego during the winter 2018 quarter.
These were adapted from a similar course (Math 152) taught by Kedlaya at UCSD during winter 2017,
and ultimately from several courses (Math 480) taught by William Stein at University of Washington.
---
id: think-complexity-2ed
src: think-complexity-2ed/code/
subdir: think-complexity-code
category: science
license: mit
title: Think Complexity
author: Allen B. Downey
description: |
This is the accompanying code for this book.
It is primarily about complexity science, but studying complexity science gives you a chance to explore topics and ideas
you might not encounter otherwise, practice programming in Python, and learn about data structures and algorithms.
tags:
- python
thumbnail: thumbs/think_complexity_cover.png
website: http://greenteapress.com/wp/think-complexity-2e/
---
id: think-dsp
src: think-dsp/code/
subdir: think-dsp-code
category: physics
title: Think DSP
description: |
*Think DSP* is an introduction to Digital Signal Processing in Python.
*This is the accompanying code for this book.*
author: Allen B. Downey
thumbnail: thumbs/think_dsp_cover.jpg
website: http://greenteapress.com/wp/think-dsp/
tags:
- python
license: gpl3
---
id: think-stats-2ed
src: think-stats-2ed/code/
subdir: think-stats-code
category: stats
title: Think Stats
author: Allen B. Downey
website: "http://greenteapress.com/wp/think-stats-2e/"
thumbnail: thumbs/thinkstats2cover.jpg
description: |
*Think Stats* is an introduction to Probability and Statistics for Python programmers.
*This is the accompanying code for this book.*
tags:
- python
license: gpl3
---
id: think-bayes
src: think-bayes/code/
subdir: think-bayes-code
category: stats
title: Think Bayes
author: Allen B. Downey
website: "http://greenteapress.com/wp/think-bayes/"
description: |
*Think Bayes* is an introduction to Bayesian statistics using computational methods.
*This is the accompanying code for this book.*
tags:
- python
license: gpl3
thumbnail: thumbs/think_bayes_cover_medium.png
---
id: think-python-2ed
src: think-python-2ed/code/
subdir: think-python-code
title: Think Python
author: Allen B. Downey
thumbnail: thumbs/think_python2_medium.jpg
category: cs
description: |
*Think Python* is an introduction to Python programming for beginners.
It starts with basic concepts of programming, and is carefully designed to define all terms when they are first used
and to develop each new concept in a logical progression.
*This is the accompanying code for this book.*
tags:
- python
license: ccby
website: "http://greenteapress.com/wp/think-python-2e/"
---
id: think-OS
src: think-OS/code/
subdir: think-OS-code
title: Think OS
author: Allen B. Downey
category: cs
description: |
*Think OS* is an introduction to Operating Systems for programmers.
*This is the accompanying code for this book.*
website: http://greenteapress.com/thinkos/
license: ccbysa
---
id: scikit-image-tutorials
src: scikit-image-tutorials/
title: Scikit-Image Tutorials
category: datascience
thumbnail: thumbs/scikit-image.png
website: "https://github.com/scikit-image/skimage-tutorials"
preview: "https://share.cocalc.com/share/bf8bd3b9a338f447bf053411c13165e35d66b9a5/examples/scikit-image-tutorials/?viewer=share"
license: cc0
description: |
A collection of tutorials for the scikit-image package.
#---
#id: public-finance-2018-2019
#src: public_finance_2018_2019/
#title: "Public Finance 2018/2019 UCSC"
#author: "Duccio Gamannossi degl'Innocenti"
#website: "https://github.com/dgdi/public_finance_2018_2019"
#license: bsd
#category: finance
#tags:
# - finance
#description: |
# This repository stores the [SageMath](http://www.sagemath.org/) notebooks for the course
# Public Finance 2018/2019 at the Catholic University of the Sacred Heart, Milan.
# Author: [Duccio Gamannossi degl'Innocenti](http://www.dgdi.me)
---
id: nbgrader-demo
title: NBGrader Examples
src: nbgrader-demo/instructor/source/ps1/
subdir: nbgrader-demo
website: "https://github.com/jhamrick/nbgrader-demo"
category: intro
description: |
A demonstration how to write [NBGrader](https://nbgrader.readthedocs.io/en/stable/) notebooks.
---
id: whirldwind-tour-of-python
src: WhirlwindTourOfPython/
title: "A Whirlwind Tour of Python"
website: "https://www.oreilly.com/library/view/a-whirlwind-tour/9781492037859/"
license: cc0
category: cs
tags:
- python
thumbnail: thumbs/whirlwind.jpg
description: |
*A Whirlwind Tour of Python* is a fast-paced introduction to essential
components of the Python language for researchers and developers who are
already familiar with programming in another language.
This repository contains the Jupyter Notebooks behind the O'Reilly report,
[*A Whirlwind Tour of Python*](http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp)
(free [100-page pdf](http://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf)).
---
id: practical-statistics-for-data-scientists
src: practical-statistics-for-data-scientists/
thumbnail: thumbs/practical-statistics-for-data-scientists.jpeg
title: "Code for Practical Statistics for Data Scientists"
website: "https://github.com/gedeck/practical-statistics-for-data-scientists"
license: gpl3
category: datascience
tags:
- python
description: |
This contains the code files for the book
**Practical Statistics for Data Scientists:** 50+ Essential Concepts Using R and Python
by Peter Bruce, Andrew Bruce, and Peter Gedeck
Publisher: O'Reilly Media; 2 edition (June 9, 2020)
Errata: http://oreilly.com/catalog/errata.csp?isbn=9781492072942
---
id: hub
src: Hub/examples/
thumbnail: thumbs/hub_logo.png
title: "Hub: access and manage datasets for PyTorch and TensorFlow"
website: "https://github.com/activeloopai/Hub"
license: mpl2
category: datascience
tags:
- datascience
- python
description: |
The fastest way to access and manage datasets for PyTorch and TensorFlow
Hub provides fast access to the state-of-the-art datasets for Deep Learning,
enabling data scientists to manage them,
build scalable data pipelines and connect to Pytorch and Tensorflow
---
id: mew-cats
title: Mathematical Explorations With Computer Algebra Technology
src: mew_cats/
subdir: mew_cats/
license: ccbysa
thumbnail: mew_cats/graphics/mew_cats/mews_parabola_mouse.png
category: math
tags:
- intro
- math
author: John Harris, Karen Kohl, and John Perry