forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_tf2.py
290 lines (254 loc) · 8.78 KB
/
eval_tf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""
Script for evaluating trained model on TensorFlow 2.0 (validate/test).
"""
import os
import time
import logging
import argparse
from sys import version_info
import tensorflow as tf
from common.logger_utils import initialize_logging
from tensorflow2.utils import prepare_model
from tensorflow2.tf2cv.models.model_store import _model_sha1
from tensorflow2.dataset_utils import get_dataset_metainfo, get_val_data_source, get_test_data_source
from tensorflow2.utils import get_composite_metric
from tensorflow2.utils import report_accuracy
def add_eval_parser_arguments(parser):
"""
Create python script parameters (for eval specific subpart).
Parameters:
----------
parser : ArgumentParser
ArgumentParser instance.
"""
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters")
parser.add_argument(
"--calc-flops-only",
dest="calc_flops_only",
action="store_true",
help="calculate FLOPs without quality estimation")
parser.add_argument(
"--data-subset",
type=str,
default="val",
help="data subset. options are val and test")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="tensorflow-gpu",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="tensorflow-gpu",
help="list of pip packages for logging")
parser.add_argument(
"--disable-cudnn-autotune",
action="store_true",
help="disable cudnn autotune for segmentation models")
parser.add_argument(
"--show-progress",
action="store_true",
help="show progress bar")
parser.add_argument(
"--all",
action="store_true",
help="test all pretrained models for partucular dataset")
def parse_args():
"""
Create python script parameters (common part).
Returns
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Evaluate a model for image classification/segmentation (TensorFlow 2.0)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--dataset",
type=str,
default="ImageNet1K",
help="dataset name. options are ImageNet1K, ImageNet1K_rec, CUB200_2011, CIFAR10, CIFAR100, SVHN, VOC2012, "
"ADE20K, Cityscapes, COCO")
parser.add_argument(
"--work-dir",
type=str,
default=os.path.join("..", "imgclsmob_data"),
help="path to working directory only for dataset root path preset")
args, _ = parser.parse_known_args()
dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
dataset_metainfo.add_dataset_parser_arguments(
parser=parser,
work_dir_path=args.work_dir)
add_eval_parser_arguments(parser)
args = parser.parse_args()
return args
def test_model(args,
use_cuda,
data_format):
"""
Main test routine.
Parameters:
----------
args : ArgumentParser
Main script arguments.
use_cuda : bool
Whether to use CUDA.
data_format : str
The ordering of the dimensions in tensors.
Returns
-------
float
Main accuracy value.
"""
ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
ds_metainfo.update(args=args)
assert (ds_metainfo.ml_type != "imgseg") or (args.batch_size == 1)
assert (ds_metainfo.ml_type != "imgseg") or args.disable_cudnn_autotune
batch_size = args.batch_size
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
net_extra_kwargs=ds_metainfo.test_net_extra_kwargs,
load_ignore_extra=ds_metainfo.load_ignore_extra,
batch_size=batch_size,
use_cuda=use_cuda)
assert (hasattr(net, "in_size"))
if not args.calc_flops_only:
tic = time.time()
get_test_data_source_class = get_val_data_source if args.data_subset == "val" else get_test_data_source
test_data, total_img_count = get_test_data_source_class(
ds_metainfo=ds_metainfo,
batch_size=args.batch_size,
data_format=data_format)
if args.data_subset == "val":
test_metric = get_composite_metric(
metric_names=ds_metainfo.val_metric_names,
metric_extra_kwargs=ds_metainfo.val_metric_extra_kwargs)
else:
test_metric = get_composite_metric(
metric_names=ds_metainfo.test_metric_names,
metric_extra_kwargs=ds_metainfo.test_metric_extra_kwargs)
if args.show_progress:
from tqdm import tqdm
test_data = tqdm(test_data)
processed_img_count = 0
for test_images, test_labels in test_data:
predictions = net(test_images)
test_metric.update(test_labels, predictions)
processed_img_count += len(test_images)
if processed_img_count >= total_img_count:
break
accuracy_msg = report_accuracy(
metric=test_metric,
extended_log=True)
logging.info("Test: {}".format(accuracy_msg))
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
acc_values = test_metric.get()[1]
acc_values = acc_values if type(acc_values) == list else [acc_values]
else:
acc_values = []
return acc_values
def main():
"""
Main body of script.
"""
args = parse_args()
if args.disable_cudnn_autotune:
os.environ["TF_CUDNN_USE_AUTOTUNE"] = "0"
# os.environ["TF_CUDNN_DETERMINISTIC"] = "1"
# os.environ["TF_DETERMINISTIC_OPS"] = "1"
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
data_format = "channels_last"
tf.keras.backend.set_image_data_format(data_format)
use_cuda = (args.num_gpus > 0)
if args.all:
args.use_pretrained = True
dataset_name_map = {
"in1k": "ImageNet1K",
"cub": "CUB200_2011",
"cf10": "CIFAR10",
"cf100": "CIFAR100",
"svhn": "SVHN",
"voc": "VOC",
"ade20k": "ADE20K",
"cs": "Cityscapes",
"cocoseg": "CocoSeg",
"cocohpe": "CocoHpe",
"hp": "HPatches",
}
for model_name, model_metainfo in (_model_sha1.items() if version_info[0] >= 3 else _model_sha1.iteritems()):
error, checksum, repo_release_tag, ds, scale = model_metainfo
args.dataset = dataset_name_map[ds]
args.model = model_name
args.resize_inv_factor = scale
logging.info("==============")
logging.info("Checking model: {}".format(model_name))
acc_value = test_model(
args=args,
use_cuda=use_cuda,
data_format=data_format)
if acc_value is not None:
exp_value = int(error) * 1e-4
if abs(acc_value - exp_value) > 2e-4:
logging.info("----> Wrong value detected (expected value: {})!".format(exp_value))
tf.keras.backend.clear_session()
else:
test_model(
args=args,
use_cuda=use_cuda,
data_format=data_format)
if __name__ == "__main__":
main()