AsciiDoctor Editor temporary output Page 1 of 3

Input/Output resources

Table of Contents

1. Introduction
1.1. Requirements
2. Design
2.1. Classes
3. Custom implementations

1. Introduction

Input/Output (I0) resources are defined in HTSJDK-NEXT as the file or combination of
files to read input data. This document describes the design for the classes and how
could be provided.

1.1. Requirements
10 resources should be handled independently of the file system in use.
» Linux/MacOS/Windows operating systems should be supported by default.

10 resources should be able to retrieve companion files.

2. Design

IO resources are implemented in HTSJDK as a Service Provider Interface (SPI). The
service should be implemented from the
org.htsjdk.core.spi.I0OResourceProvider.

I0Resource isthe core class in the design. It provides the classes to read/write raw
data to the resource. In addition, I0Resource provides a method to return
companion resources by identified by an I0CompanionID. IOCompanion isjusta
marker interface that should be recognized by the IOResource to provide the extra
resource. For example, an I0IndexCompanion might provide a method to get the
index extension to resolve a sibling file.

file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor 78905352847... 15/11/2018



AsciiDoctor Editor temporary output Page 2 of 3

I0Resources are created by the IOResourceFactory. I0ResourceFactory loads
the providers through the java.util.Serviceloader

(https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html).

Only the first provider is used and should be specified. If no provider is added into
the META-INF/services, it delegates into the DefaultIOResourceProvider The
DefaultIOResourceProvider returns an implementation reading the resource with
the java.nio.file.spi.FileSystemProvider
(https://docs.oracle.com/javase/8/docs/api/java/nio/file/spi/FileSystemProvider.html). This allows

to use the Java SPI for custom file systems.

HTSJDK-NEXT Implementation | Rawgata 10y
© DefaultiOResourceProvider| _Creates 3 ©PathIOResource @ OutputStream ©Inputstream '
P - s -
A
I
implements implements lopen
|
I
(@) 1oresourcerrovicer | whrials @ roresource
uses I0ResourceFactory creates
e === 5 %
o IOResource create(String) T Z Irce)::Scurce getCompanionilOCompanioniD)
@ [OResource create(URI) | & [DOResource get(URI © writef)

"Raw data IO" design is not final, as it returns java.io raw classes.
I0Resource API for read/write will evolve and probably support

random access.

3. Custom implementations

Implementations for the SPI are useful to provide resources out of the scope of the
core library. For example, a configuration file could be a resource identifying a file
and their companions. Another example is an URI which identifies a resource that
should be read in a different way by the high-level interfaces.

Requirements
» Accept all core implementations of I0CompanionID .

» Provide the META-INF/service/org.htsjdk.core.spi.IOResourceProvider file
with the implementation definition.

file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor 78905352847... 15/11/2018



AsciiDoctor Editor temporary output Page 3 of 3

Optional
 Fall-back to default implementation if not present.

Examples

 Provider for configuration files.
o If a resource represents a file defining the master file and their companions.

o If a resource requires some extra-configuration, like encrypted keys for

decoding.
* Provider for custom URI schemas.

o If an URI represents an specific format of the file, with a header that shouldn’t

be read.

o If the resource represents a format that should be read in a different way by
the high-level interfaces.

o If an URI should propagate signatures to the companion files.
» Generic provider.

o If a provider chooses between several loaded implementations depending on
the String or URL

file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor 78905352847... 15/11/2018



