
Input/Output resources
Table of Contents

1. Introduction

1.1. Requirements

2. Design

2.1. Classes

3. Custom implementations

1. Introduction

Input/Output (IO) resources are defined in HTSJDK-NEXT as the file or combination of 
files to read input data. This document describes the design for the classes and how 
could be provided.

1.1. Requirements

• IO resources should be handled independently of the file system in use.

• Linux/MacOS/Windows operating systems should be supported by default.

• IO resources should be able to retrieve companion files.

2. Design

IO resources are implemented in HTSJDK as a Service Provider Interface (SPI). The 
service should be implemented from the 
org.htsjdk.core.spi.IOResourceProvider .

IOResource is the core class in the design. It provides the classes to read/write raw 
data to the resource. In addition, IOResource provides a method to return 
companion resources by identified by an IOCompanionID . IOCompanion is just a 
marker interface that should be recognized by the IOResource to provide the extra 
resource. For example, an IOIndexCompanion might provide a method to get the 
index extension to resolve a sibling file.

Page 1 of 3AsciiDoctor Editor temporary output

15/11/2018file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor_78905352847...



IOResources are created by the IOResourceFactory . IOResourceFactory loads 
the providers through the java.util.ServiceLoader
(https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html).

Only the first provider is used and should be specified. If no provider is added into 
the META-INF/services, it delegates into the DefaultIOResourceProvider The 
DefaultIOResourceProvider returns an implementation reading the resource with 
the java.nio.file.spi.FileSystemProvider
(https://docs.oracle.com/javase/8/docs/api/java/nio/file/spi/FileSystemProvider.html). This allows 
to use the Java SPI for custom file systems.

2.1. Classes


"Raw data IO" design is not final, as it returns java.io raw classes. 
IOResource API for read/write will evolve and probably support 
random access. 

3. Custom implementations

Implementations for the SPI are useful to provide resources out of the scope of the 
core library. For example, a configuration file could be a resource identifying a file 
and their companions. Another example is an URI which identifies a resource that 
should be read in a different way by the high-level interfaces.

Requirements

• Accept all core implementations of IOCompanionID .

• Provide the META-INF/service/org.htsjdk.core.spi.IOResourceProvider file 
with the implementation definition.

Page 2 of 3AsciiDoctor Editor temporary output

15/11/2018file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor_78905352847...



Optional

• Fall-back to default implementation if not present.

Examples

• Provider for configuration files.

◦ If a resource represents a file defining the master file and their companions.

◦ If a resource requires some extra-configuration, like encrypted keys for 
decoding.

• Provider for custom URI schemas.

◦ If an URI represents an specific format of the file, with a header that shouldn’t 
be read.

◦ If the resource represents a format that should be read in a different way by 
the high-level interfaces.

◦ If an URI should propagate signatures to the companion files.

• Generic provider.

◦ If a provider chooses between several loaded implementations depending on 
the String or URI.

Page 3 of 3AsciiDoctor Editor temporary output

15/11/2018file:///C:/Users/Din/AppData/Local/Temp/asciidoctor-editor-gen/editor_78905352847...


