
PFA: Portable Format for Analytics (version 0.8.1)

Data Mining Group — PFA Working Group

November 10, 2015

Abstract

This specification defines the syntax and semantics of the Portable Format for Analytics (PFA).
PFA is a mini-language for mathematical calculations that is usually generated programmatically, rather

than by hand. A PFA document is a string of JSON-formatted text that describes an executable called a
scoring engine. Each engine has a well-defined input, a well-defined output, and functions for combining
inputs to construct the output in an expression-centric syntax tree. In addition, it has centralized facilities
for maintaining state, with well-defined semantics for sharing state among scoring engines in a thread-safe
way. The specification defines a suite of mathematical and statistical functions for transforming data, but
it does not define any means of communication with an operating system, file system, or network. A PFA
engine must be embedded in a larger system that has these capabilities, and thus an analytic workflow
is decoupled into a part that manages data pipelines (such as Hadoop, Storm, or Akka), and a part that
describes the algorithm to be performed on data (PFA).

PFA is similar to the Predictive Model Markup Language (PMML), an XML-based specification for
statistical models, but whereas PMML’s focus is on statistical models in the abstract, PFA’s focus is on the
scoring procedure itself. The same input given to two PFA-enabled systems must yield the same output,
regardless of platform (e.g. a JVM in Hadoop, a client’s web browser, a GPU kernel function, or even an
IP core directly embedded in an integrated circuit). Unlike PMML, the PFA specification defines the exact
bit-for-bit behavior of any well-formed document, the semantics of data types and data structures, including
behavior in concurrent systems, and all cases in which an exception should be raised. Like PMML, PFA is
a specification, not an implementation, it defines a suite of statistical algorithms for analyzing data, and it
is usually generated programmatically, as the output of a machine learning algorithm, for instance.

Status of this document

This section describes the status of this document at the time of the current draft. Other documents may
supersede this document.

This document is an early draft that has not been endorsed for recommendation by any organization. It
describes a proposed specification that could, in the future, become a standard.

1

Contents

1 Introduction 19
1.1 Motivation for PFA . 19
1.2 Terminology used in this specification . 20
1.3 PFA MIME type and file name extension . 20
1.4 Levels of PFA conformance and PFA subsets . 21
1.5 Updates to the specification . 22
1.6 Open-source implementations . 22

2 PFA document structure 23
2.1 Top-level fields . 23
2.2 Cells and Pools . 25
2.3 Locator marks . 26

3 Scoring engine execution model 27
3.1 Execution phases of a PFA scoring engine . 27
3.2 Scoring method: map, emit, and fold . 28
3.3 Predefined symbols . 29
3.4 Input and output type specification . 30
3.5 Persistent state: cells and pools . 30
3.6 Concurrent access to shared state . 31
3.7 Exceptions . 31
3.8 Execution options . 32
3.9 Pseudorandom number management . 33

4 Type system 34
4.1 Avro types . 34
4.2 Type schemae in the PFA document . 35
4.3 Type inference . 36
4.4 Type resolution, promotion, and covariance . 37
4.5 Narrowest supertype of a collection of types . 38
4.6 Generic library function signatures . 39

5 Symbols, scope, and data structures 43
5.1 Immutable data structures . 43
5.2 Memory management . 45

6 User-defined functions 46
6.1 No first-class functions . 46

2

6.2 Syntax for declaring new functions . 46
6.2.1 Defining function: the “fcndef” special form . 47

6.3 Syntax for referencing functions . 48
6.3.1 Referencing a globally defined function: the “fcnref” special form 48

7 Expressions 50
7.1 Symbol references . 50
7.2 Literal values . 50
7.3 Function calls . 51
7.4 Special forms . 51
7.5 Call a user-defined function that is specified at runtime . 52
7.6 Creating arrays, maps, and records . 52

7.6.1 Creating arrays/maps/records from expressions: the “new” special form 52
7.7 Symbol assignment and reassignment . 53

7.7.1 Creating symbols: the “let” special form . 53
7.7.2 Changing symbol bindings: the “set” special form . 53

7.8 Extracting from and updating arrays, maps, and records . 53
7.8.1 Retrieving nested values: the “attr” special form . 53
7.8.2 Copy with different nested values: the “attr-to” special form 54

7.9 Extracting from and updating cells and pools . 55
7.9.1 Retrieving cell values: the “cell” special form . 55
7.9.2 Changing cell values: the “cell-to” special form . 56
7.9.3 Retrieving pool values: the “pool” special form . 57
7.9.4 Creating or changing pool values: the “pool-to” special form 57
7.9.5 Removing pool values: the “pool-del” special form . 58

7.10 Tree-like structures in the program flow . 58
7.10.1 Expanding an expression into a mini-program: the “do” special form 58

7.11 Branching the program flow . 59
7.11.1 Conditional with one or two cases: the “if” special form 59
7.11.2 Conditional with many cases: the “cond” special form 59

7.12 Loops in the program flow . 60
7.12.1 Generic pre-test loop: the “while” special form . 60
7.12.2 Generic post-test loop: the “do-until” special form . 60
7.12.3 Iteration with dummy variables: the “for” special form 60
7.12.4 Iteration over arrays: the “foreach” special form . 61
7.12.5 Iteration over maps: the “forkey-forval” special form 62

7.13 Type-safe casting . 62
7.13.1 Narrowing a type: the “cast-cases” special form . 62

3

7.13.2 Widening a type: the “upcast” special form . 63
7.13.3 Checking missing values: the “ifnotnull” special form 64
7.13.4 Extracting values from binary: the “unpack” special form 64
7.13.5 Encoding values in binary: the “pack” special form . 66

7.14 Miscellaneous special forms . 66
7.14.1 Inline documentation: the “doc” special form . 66
7.14.2 User-defined exceptions: the “error” special form . 66
7.14.3 Turning exceptions into missing values: the “try” special form 67
7.14.4 Log messages: the “log” special form . 67

8 Core library 69
8.1 Basic arithmetic . 69

8.1.1 Addition of two values (+) . 69
8.1.2 Subtraction (−) . 69
8.1.3 Multiplication of two values (*) . 70
8.1.4 Floating-point division (/) . 70
8.1.5 Integer division (//) . 70
8.1.6 Negation (u−) . 71
8.1.7 Modulo (%) . 71
8.1.8 Remainder (%%) . 71
8.1.9 Raising to a power (**) . 72

8.2 Comparison operators . 72
8.2.1 General comparison (cmp) . 72
8.2.2 Equality (==) . 72
8.2.3 Inequality (!=) . 73
8.2.4 Less than (<) . 73
8.2.5 Less than or equal to (<=) . 73
8.2.6 Greater than (>) . 73
8.2.7 Greater than or equal to (>=) . 74
8.2.8 Maximum of two values (max) . 74
8.2.9 Minimum of two values (min) . 74

8.3 Logical operators . 75
8.3.1 Logical and (&&) . 75
8.3.2 Logical or (||) . 75
8.3.3 Logical xor (ˆˆ) . 75
8.3.4 Logical not (!) . 75

8.4 Kleene operators (three-way logic) . 76
8.4.1 Kleene and (&&&) . 76

4

8.4.2 Kleene or (|||) . 76
8.4.3 Kleene not (!!!) . 76

8.5 Bitwise arithmetic . 77
8.5.1 Bitwise and (&) . 77
8.5.2 Bitwise or (|) . 77
8.5.3 Bitwise xor (ˆ) . 77
8.5.4 Bitwise not (~) . 78

9 Math library 79
9.1 Constants . 79

9.1.1 Archimedes’ constant π (m.pi) . 79
9.1.2 Euler’s constant e (m.e) . 79

9.2 Common functions . 79
9.2.1 Square root (m.sqrt) . 79
9.2.2 Hypotenuse (m.hypot) . 79
9.2.3 Trigonometric sine (m.sin) . 80
9.2.4 Trigonometric cosine (m.cos) . 80
9.2.5 Trigonometric tangent (m.tan) . 80
9.2.6 Inverse trigonometric sine (m.asin) . 81
9.2.7 Inverse trigonometric cosine (m.acos) . 81
9.2.8 Inverse trigonometric tangent (m.atan) . 81
9.2.9 Robust inverse trigonometric tangent (m.atan2) . 81
9.2.10 Hyperbolic sine (m.sinh) . 82
9.2.11 Hyperbolic cosine (m.cosh) . 82
9.2.12 Hyperbolic tangent (m.tanh) . 82
9.2.13 Natural exponential (m.exp) . 83
9.2.14 Natural exponential minus one (m.expm1) . 83
9.2.15 Natural logarithm (m.ln) . 83
9.2.16 Logarithm base 10 (m.log10) . 83
9.2.17 Arbitrary logarithm (m.log) . 84
9.2.18 Natural logarithm of one plus square (m.ln1p) . 84

9.3 Rounding . 85
9.3.1 Absolute value (m.abs) . 85
9.3.2 Floor (m.floor) . 85
9.3.3 Ceiling (m.ceil) . 85
9.3.4 Simple rounding (m.round) . 86
9.3.5 Unbiased rounding (m.rint) . 86
9.3.6 Threshold function (m.signum) . 86

5

9.3.7 Copy sign (m.copysign) . 87
9.4 Special functions . 87

9.4.1 Error function (m.special.erf) . 87
9.4.2 Complimentary error function (m.special.erfc) . 87
9.4.3 Natural log of the gamma function (m.special.lnGamma) 87
9.4.4 Natural log of the beta function (m.special.lnBeta) . 88
9.4.5 Binomial coefficient (m.special.nChooseK) . 88

9.5 Link or activation functions . 88
9.5.1 Logit (m.link.logit) . 88
9.5.2 Probit (m.link.probit) . 89
9.5.3 Log-log (m.link.loglog) . 89
9.5.4 Complement of log-log (m.link.cloglog) . 90
9.5.5 Cauchit (m.link.cauchit) . 90
9.5.6 Hyperbolic tangent (m.link.tanh) . 91
9.5.7 Softmax (m.link.softmax) . 91
9.5.8 SoftPlus (m.link.softplus) . 92
9.5.9 Rectified linear unit (m.link.relu) . 92

9.6 Kernel functions . 92
9.6.1 Linear (m.kernel.linear) . 92
9.6.2 Radial basis function (m.kernel.rbf) . 93
9.6.3 Polynomal (m.kernel.poly) . 93
9.6.4 Sigmoidal (m.kernel.linear) . 94

10 Linear algebra library 96
10.1 Unary scaling of vectors or matrices (la.scale) . 96
10.2 Generalized unary operator (la.map) . 96
10.3 Addition of vectors or matrices (la.add) . 97
10.4 Subtraction of vectors or matrices (la.sub) . 97
10.5 Generalized binary operator (la.zipmap) . 98
10.6 Vector and matrix dot product (la.dot) . 99
10.7 Transpose (la.transpose) . 100
10.8 Inverse and pseudo-inverse (la.inverse) . 100
10.9 Trace (la.trace) . 101
10.10Determinant (la.det) . 101
10.11Check for symmetry (la.symmetric) . 101
10.12Real eigenbasis of symmetric matrix (la.eigenBasis) . 102
10.13Truncate rows (la.truncate) . 103

11 Metric library 104

6

11.1 Euclidean metric without similarity or missing values (metric.simpleEuclidean) 104
11.2 Absolute difference similarity function (metric.absDiff) . 104
11.3 Gaussian similarity function (metric.gaussianSimilarity) . 104
11.4 Euclidean metric (metric.euclidean) . 105
11.5 Squared euclidean metric (metric.squaredEuclidean) . 105
11.6 Chebyshev metric (metric.chebyshev) . 106
11.7 Taxicab metric (metric.taxicab) . 107
11.8 Minkowski metric (metric.minkowski) . 108
11.9 Simple binary metric (metric.simpleMatching) . 109
11.10Jaccard binary similarity (metric.jaccard) . 110
11.11Tanimoto binary similarity (metric.tanimoto) . 110
11.12General binary metric (metric.binarySimilarity) . 111

12 Random number library 112
12.1 Uniform random deviates of basic types . 112

12.1.1 Random integer (rand.int) . 112
12.1.2 Random integer (rand.long) . 112
12.1.3 Random integer (rand.float) . 113
12.1.4 Random integer (rand.double) . 113
12.1.5 Random string (rand.string) . 113
12.1.6 Random bytes (rand.bytes) . 114

12.2 Common statistical distributions . 115
12.2.1 Gaussian deviates (rand.gaussian) . 115

12.3 Common utility types . 116
12.3.1 Type-4 UUID (rand.uuid4) . 116

12.4 Selecting arbitrary objects from a bag . 116
12.4.1 Random object from a bag (rand.choice) . 116
12.4.2 Random set of objects with replacement (rand.choices) 117
12.4.3 Random set of objects without replacement (rand.sample) 117
12.4.4 Random objects with a specified probability distribution (rand.histogram) 117

13 String manipulation library 119
13.1 Basic access . 119

13.1.1 Length (s.len) . 119
13.1.2 Extract substring (s.substr) . 119
13.1.3 Modify substring (s.substrto) . 119

13.2 Search and replace . 120
13.2.1 Contains (s.contains) . 120
13.2.2 Count instances (s.count) . 120

7

13.2.3 Find first index (s.index) . 120
13.2.4 Find last index (s.rindex) . 121
13.2.5 Check start (s.startswith) . 121
13.2.6 Check end (s.endswith) . 121

13.3 Conversions to or from other types . 121
13.3.1 Join an array of strings (s.join) . 121
13.3.2 Split into an array of strings (s.split) . 122
13.3.3 Format an integer as a string (s.int) . 122
13.3.4 Format a positive integer as hexidecimal (s.hex) . 122
13.3.5 Format any number as a string (s.number) . 123

13.4 Conversions to or from other strings . 125
13.4.1 Concatenate two strings (s.concat) . 125
13.4.2 Repeat pattern (s.repeat) . 125
13.4.3 Lowercase (s.lower) . 125
13.4.4 Uppercase (s.upper) . 125
13.4.5 Left-strip (s.lstrip) . 126
13.4.6 Right-strip (s.rstrip) . 126
13.4.7 Strip both ends (s.strip) . 126
13.4.8 Replace all matches (s.replaceall) . 126
13.4.9 Replace first match (s.replacefirst) . 127
13.4.10Replace last match (s.replacelast) . 127
13.4.11Translate characters (s.translate) . 127

14 Regular expressions and text pre-procssing 129
14.1 Basic identification of pattern . 129

14.1.1 Check for existence of a pattern (re.contains) . 129
14.1.2 Count occurrences of a pattern (re.count) . 129

14.2 Get matched parterns . 130
14.2.1 Find the first instance of a pattern (re.findfirst) . 130
14.2.2 Find all instances of a pattern (re.findall) . 130

14.3 Get matched groups . 130
14.3.1 Get first set of matching groups (re.groups) . 130
14.3.2 Get all sets of matching groups (re.groupsall) . 131

14.4 Get matched parterns and groups . 131
14.4.1 Find the first instance of a pattern, with groups (re.findgroupsfirst) 131
14.4.2 Find all instances of a pattern, with groups (re.findgroupsall) 132

14.5 Get index position of match . 132
14.5.1 Find the first index where a pattern appears (re.index) 132

8

14.5.2 Find the last index where a pattern appears (re.rindex) 133
14.5.3 Find all indexes that match a pattern (re.indexall) . 133

14.6 Replacement . 134
14.6.1 Replace the first instance of a pattern (re.replacefirst) 134
14.6.2 Replace the last instance of a pattern (re.replacelast) 134
14.6.3 Replace all instances of a pattern (re.replaceall) . 135

14.7 Splitting . 135
14.7.1 Split a string by a pattern (re.split) . 135

15 Parsing library 136
15.1 Parsing numbers . 136

15.1.1 32-bit integers (parse.int) . 136
15.1.2 64-bit integers (parse.long) . 136
15.1.3 Single-precision floating point (parse.float) . 137
15.1.4 Double-precision floating point (parse.double) . 137

16 Casting library 139
16.1 Casting numbers as numbers of a different type . 139

16.1.1 Signed integers with wrap-around (cast.signed) . 139
16.1.2 Unsigned integers with wrap-around (cast.unsigned) 139
16.1.3 32-bit integers (cast.int) . 139
16.1.4 64-bit integers (cast.long) . 140
16.1.5 Single-precision floating point (cast.float) . 140
16.1.6 Double-precision floating point (cast.double) . 141

16.2 Fanning out variables to arrays of various types . 141
16.2.1 Fan a variable out to an array of booleans (cast.fanoutBoolean) 141
16.2.2 Fan a variable out to an array of ints (cast.fanoutInt) 142
16.2.3 Fan a variable out to an array of longs (cast.fanoutLong) 143
16.2.4 Fan a variable out to an array of floats (cast.fanoutFloat) 144
16.2.5 Fan a variable out to an array of doubles (cast.fanoutDouble) 145

16.3 Serializing arbitrary objects . 145
16.3.1 Serialize an arbitrary object as Avro bytes (cast.avro) 145
16.3.2 Serialize an arbitrary object as a JSON string (cast.json) 146

17 Array manipulation library 147
17.1 Basic access . 147

17.1.1 Length (a.len) . 147
17.1.2 Extract subsequence (a.subseq) . 147
17.1.3 Extract the first item (a.head) . 147

9

17.1.4 Extract all but the first item (a.tail) . 148
17.1.5 Extract the last item (a.last) . 148
17.1.6 Extract all but the last item (a.init) . 148
17.1.7 Modify subsequence (a.subseqto) . 148

17.2 Search and replace . 149
17.2.1 Contains (a.contains) . 149
17.2.2 Count instances (a.count) . 149
17.2.3 Find first index (a.index) . 150
17.2.4 Find last index (a.rindex) . 150
17.2.5 Check start (a.startswith) . 151
17.2.6 Check end (a.endswith) . 151

17.3 Manipulation . 152
17.3.1 Concatenate two arrays (a.concat) . 152
17.3.2 Append (a.append) . 152
17.3.3 Append to a circular buffer with a maximum size (a.cycle) 152
17.3.4 Insert or prepend (a.insert) . 153
17.3.5 Replace item (a.replace) . 153
17.3.6 Remove item (a.remove) . 154
17.3.7 Rotate an array left (a.rotate) . 154

17.4 Reordering . 155
17.4.1 Sort (a.sort) . 155
17.4.2 Sort with a less-than function (a.sortLT) . 155
17.4.3 Randomly shuffle array (a.shuffle) . 155
17.4.4 Reverse order (a.reverse) . 156

17.5 Extreme values . 156
17.5.1 Maximum of all values (a.max) . 156
17.5.2 Minimum of all values (a.min) . 156
17.5.3 Maximum with a less-than function (a.maxLT) . 157
17.5.4 Minimum with a less-than function (a.minLT) . 157
17.5.5 Maximum N items (a.maxN) . 157
17.5.6 Minimum N items (a.minN) . 158
17.5.7 Maximum N with a less-than function (a.maxNLT) 158
17.5.8 Minimum N with a less-than function (a.minNLT) . 158
17.5.9 Argument maximum (a.argmax) . 159
17.5.10Argument minimum (a.argmin) . 159
17.5.11Argument maximum with a less-than function (a.argmaxLT) 159
17.5.12Argument minimum with a less-than function (a.argminLT) 160
17.5.13Maximum N arguments (a.argmaxN) . 160

10

17.5.14Minimum N arguments (a.argminN) . 160
17.5.15Maximum N arguments with a less-than function (a.argmaxNLT) 161
17.5.16Minimum N arguments with a less-than function (a.argminNLT) 161

17.6 Numerical combinations . 162
17.6.1 Add all array values (a.sum) . 162
17.6.2 Multiply all array values (a.product) . 162
17.6.3 Sum of logarithms (a.lnsum) . 162
17.6.4 Log of the sum of exponentials without roundoff error (a.logsumexp) 163
17.6.5 Arithmetic mean (a.mean) . 163
17.6.6 Geometric mean (a.geomean) . 163
17.6.7 Median (a.median) . 163
17.6.8 Percentile in unit interval (a.ntile) . 164
17.6.9 Mode, or most common value (a.mode) . 164

17.7 Set or set-like functions . 165
17.7.1 Distinct items (a.distinct) . 165
17.7.2 Set equality (a.seteq) . 165
17.7.3 Union (a.union) . 165
17.7.4 Intersection (a.intersection) . 166
17.7.5 Set difference (a.diff) . 166
17.7.6 Symmetric set difference (a.symdiff) . 166
17.7.7 Subset check (a.subset) . 167
17.7.8 Disjointness check (a.disjoint) . 167

17.8 Functional programming . 167
17.8.1 Transform array items with function (a.map) . 167
17.8.2 Transform array items, providing access to the index (a.mapWithIndex) 168
17.8.3 Filter array items with a function (a.filter) . 168
17.8.4 Filter array items, providing access to the index (a.filterWithIndex) 168
17.8.5 Filter and map (a.filterMap) . 168
17.8.6 Filter and map, providing access to the index (a.filterMapWithIndex) 169
17.8.7 Map and flatten (a.flatMap) . 169
17.8.8 Map and flatten, providing access to the index (a.flatMapWithIndex) 169
17.8.9 Zip and map (a.zipmap) . 170
17.8.10Zip and map, providing access to the index (a.zipmapWithIndex) 170
17.8.11Reduce array items to a single value (a.reduce) . 171
17.8.12Right-to-left reduce (a.reduceRight) . 172
17.8.13Fold array items to another type (a.fold) . 172
17.8.14Right-to-left fold (a.foldRight) . 172
17.8.15Take items until predicate is false (a.takeWhile) . 173

11

17.8.16Drop items until predicate is true (a.dropWhile) . 173
17.9 Functional tests . 174

17.9.1 Existential check, ∃ (a.any) . 174
17.9.2 Univeral check, ∀ (a.all) . 174
17.9.3 Pairwise check of two arrays (a.corresponds) . 174
17.9.4 Pairwise check, providing access to the index (a.correspondsWithIndex) 175

17.10Restructuring . 175
17.10.1Sliding window (a.slidingWindow) . 175
17.10.2Unique combinations of a fixed size (a.combinations) 175
17.10.3Permutations (a.permutations) . 176
17.10.4Flatten array (a.flatten) . 176
17.10.5Group items by category (a.groupby) . 176

18 Map manipulation library 177
18.1 Basic access . 177

18.1.1 Length (map.len) . 177
18.1.2 Extract the keys (map.keys) . 177
18.1.3 Extract the values (map.values) . 177

18.2 Search and replace . 178
18.2.1 Contains key (map.containsKey) . 178
18.2.2 Contains value (map.containsValue) . 178

18.3 Manipulation . 178
18.3.1 Insert a key-value pair (map.add) . 178
18.3.2 Remove a key (map.remove) . 179
18.3.3 Keep only certain keys (map.only) . 179
18.3.4 Keep all except certain keys (map.except) . 179
18.3.5 Add or replace keys with an overlay map (map.update) 180
18.3.6 Split map into an array of single-key maps (map.split) 180
18.3.7 Join an array of maps into one map (map.join) . 180

18.4 Extreme values by key . 181
18.4.1 Argument maximum (map.argmax) . 181
18.4.2 Argument minimum (map.argmin) . 181
18.4.3 Argument maximum with a less-than function (map.argmaxLT) 181
18.4.4 Argument minimum with a less-than function (map.argminLT) 182
18.4.5 Maximum N arguments (map.argmaxN) . 182
18.4.6 Minimum N arguments (map.argminN) . 183
18.4.7 Maximum N arguments with a less-than function (map.argmaxNLT) 183
18.4.8 Minimum N arguments with a less-than function (map.argminNLT) 183

12

18.5 Set or set-like functions . 184
18.5.1 Convert an array to a map-set (map.toset) . 184
18.5.2 Convert a map to an array-set (map.fromset) . 184
18.5.3 Determine if an object is in the set (map.in) . 185
18.5.4 Union (map.union) . 185
18.5.5 Intersection (map.intersection) . 185
18.5.6 Set difference (map.diff) . 186
18.5.7 Symmetric set difference (map.symdiff) . 186
18.5.8 Subset check (map.subset) . 186
18.5.9 Disjointness check (map.disjoint) . 187

18.6 Functional programming . 187
18.6.1 Transform map items with a function (map.map) . 187
18.6.2 Transform map items, providing access to the key (map.mapWithKey) 187
18.6.3 Filter map items with a function (map.filter) . 188
18.6.4 Filter map items, providing access to the key (map.filterWithKey) 188
18.6.5 Filter and map (map.filterMap) . 188
18.6.6 Filter and map, providing access to the keys (map.filterMapWithKey) 189
18.6.7 Map and flatten (map.flatMap) . 189
18.6.8 Map and flatten, providing access to the keys (map.flatMapWithKey) 189
18.6.9 Zip and map (map.zipmap) . 190
18.6.10Zip and map, providing access to the keys (map.zipmapWithKey) 190

18.7 Functional tests . 191
18.7.1 Pairwise check of two maps (map.corresponds) . 191
18.7.2 Pairwise check, providing access to the keys (map.correspondsWithKey) 191

19 Bytes manipulation library 193
19.1 Basic access . 193

19.1.1 Length (bytes.len) . 193
19.1.2 Extract subsequence (bytes.subseq) . 193
19.1.3 Modify subsequence (bytes.subseqto) . 193

19.2 Test validity . 194
19.2.1 Verify ASCII format (bytes.isAscii) . 194
19.2.2 Verify LATIN-1 format (bytes.isLatin1) . 194
19.2.3 Verify UTF-8 format (bytes.isUtf8) . 194
19.2.4 Verify UTF-16 format (bytes.isUtf16) . 194
19.2.5 Verify UTF-16 big endian format (bytes.isUtf16be) . 195
19.2.6 Verify UTF-16 little endian format (bytes.isUtf16le) 195

19.3 Decode bytes to strings . 195

13

19.3.1 Decode from ASCII format (bytes.decodeAscii) . 195
19.3.2 Decode from LATIN-1 format (bytes.decodeLatin1) 196
19.3.3 Decode from UTF-8 format (bytes.decodeUtf8) . 196
19.3.4 Decode from UTF-16 format (bytes.decodeUtf16) . 196
19.3.5 Decode from UTF-16 big endian format (bytes.decodeUtf16be) 197
19.3.6 Decode from UTF-16 little endian format (bytes.decodeUtf16le) 197

19.4 Encode strings to bytes . 197
19.4.1 Encode to ASCII format (bytes.encodeAscii) . 197
19.4.2 Encode to LATIN-1 format (bytes.encodeLatin1) . 197
19.4.3 Encode to UTF-8 format (bytes.encodeUtf8) . 198
19.4.4 Encode to UTF-16 format (bytes.encodeUtf16) . 198
19.4.5 Encode to UTF-16 big endian format (bytes.encodeUtf16be) 198
19.4.6 Encode to UTF-16 little endian format (bytes.encodeUtf16le) 199

19.5 Base64 encoding . 199
19.5.1 Encode bytes as a base64 string (bytes.toBase64) . 199
19.5.2 Decode base64 string to bytes (bytes.fromBase64) . 199

20 Manipulation of other data structures 200
20.1 Fixed . 200

20.1.1 Convert to bytes (fixed.toBytes) . 200
20.1.2 Convert from bytes (fixed.fromBytes) . 200

20.2 Enum . 200
20.2.1 String representation (enum.toString) . 200
20.2.2 Integer representation (enum.toInt) . 200
20.2.3 Number of symbols (enum.numSymbols) . 201

21 Date/time handling 202
21.1 Extracting conventional time units from timestamp . 202

21.1.1 Year from timestamp (time.year) . 202
21.1.2 Month of year from timestamp (time.monthOfYear) 202
21.1.3 Day of year from timestamp (time.dayOfYear) . 203
21.1.4 Day of month from timestamp (time.dayOfMonth) . 203
21.1.5 Day of week from timestamp (time.dayOfWeek) . 204
21.1.6 Hour of day from timestamp (time.hourOfDay) . 205
21.1.7 Minutes past the hour from timestamp (time.minuteOfHour) 205
21.1.8 Seconds past the minute from timestamp (time.secondOfMinute) 206

21.2 Constructing timestamp from conventional units . 206
21.2.1 Make timestamp (time.makeTimestamp) . 206

21.3 Querying time intervals . 207

14

21.3.1 Seconds of minute range (time.isSecondOfMinute) . 207
21.3.2 Minutes of hour range (time.isMinuteOfHour) . 208
21.3.3 Hour of day range (time.isHourOfDay) . 209
21.3.4 Day of week range (time.isDayOfWeek) . 209
21.3.5 Day of month range (time.isDayOfMonth) . 210
21.3.6 Month of year range (time.isMonthOfYear) . 211
21.3.7 Day of year range (time.isDayOfYear) . 211
21.3.8 Weekend range (time.isWeekend) . 212
21.3.9 Working hours range (time.isWorkHours) . 213

22 Impute library (missing data handling) 214
22.1 Missing values as null . 214

22.1.1 Skip record or halt processing (impute.errorOnNull) 214
22.1.2 Replace with default (impute.defaultOnNull) . 214

22.2 Floating point missing values . 214
22.2.1 Check for not-a-number (impute.isnan) . 214
22.2.2 Check for infinity (impute.isinf) . 215
22.2.3 Ensure a finite number (impute.isnum) . 215
22.2.4 Skip record or halt processing (impute.errorOnNonNum) 215
22.2.5 Replace with default (impute.defaultOnNonNum) . 216

23 Interpolation library 217
23.1 Histogram-like binning (interp.bin) . 217
23.2 Nearest point, vector, or abstract type (interp.nearest) . 217
23.3 Linear interpolation between two nearest 1-dim points (interp.linear) 218
23.4 Linear interpolation with flat endpoints (interp.linearFlat) . 218
23.5 Linear interpolation with missing values after endpoints (interp.linearMissing) 219

24 Probability libraries 221
24.1 Uniform distribution . 221

24.1.1 Probability density function (prob.dist.uniformPDF) 221
24.1.2 Cumulative distribution function (prob.dist.uniformCDF) 221
24.1.3 Quantile function (prob.dist.uniformQF) . 222

24.2 Exponential distribution . 222
24.2.1 Probability density function (prob.dist.exponentialPDF) 222
24.2.2 Cumulative distribution function (prob.dist.exponentialCDF) 223
24.2.3 Quantile function (prob.dist.exponentialQF) . 223

24.3 Gaussian (normal) distribution . 224
24.3.1 Probability density function (prob.dist.gaussianLL) . 224

15

24.3.2 Cumulative distribution function (prob.dist.gaussianCDF) 225
24.3.3 Quantile function (prob.dist.gaussianQF) . 225

24.4 Lognormal distribution . 226
24.4.1 Probability density function (prob.dist.lognormalPDF) 226
24.4.2 Cumulative distribution function (prob.dist.lognormalCDF) 227
24.4.3 Quantile function (prob.dist.lognormalQF) . 227

24.5 Cauchy distribution . 228
24.5.1 Probability density function (prob.dist.cauchyPDF) 228
24.5.2 Cumulative distribution function (prob.dist.cauchyCDF) 228
24.5.3 Quantile function (prob.dist.cauchyQF) . 229

24.6 Binomial distribution . 229
24.6.1 Probability density function (prob.dist.binomialPDF) 229
24.6.2 Cumulative distribution function (prob.dist.binomialCDF) 230
24.6.3 Quantile function (prob.dist.binomialQF) . 230

24.7 Negative Binomial . 231
24.7.1 Probability density function (prob.dist.negativebinomialPDF) 231
24.7.2 Cumulative distribution function (prob.dist.negativebinomialCDF) 232
24.7.3 Quantile function (prob.dist.negativebinomialQF) . 232

24.8 Poisson distribution . 233
24.8.1 Probability density function (prob.dist.poissonPDF) 233
24.8.2 Cumulative distribution function (prob.dist.poissonCDF) 233
24.8.3 Quantile function (prob.dist.poissonQF) . 234

24.9 Student’s t distribution . 234
24.9.1 Probability density function (prob.dist.tPDF) . 234
24.9.2 Cumulative distribution function (prob.dist.tCDF) . 235
24.9.3 Quantile function (prob.dist.tQF) . 235

24.10F distribution . 235
24.10.1Probability density function (prob.dist.fPDF) . 235
24.10.2Cumulative distribution function (prob.dist.fCDF) . 236
24.10.3Quantile function (prob.dist.fQF) . 237

24.11Chi-square distribution . 237
24.11.1Probability density function (prob.dist.chi2PDF) . 237
24.11.2Cumulative distribution function (prob.dist.chi2CDF) 238
24.11.3Quantile function (prob.dist.chi2QF) . 238

24.12Beta distribution . 239
24.12.1Probability density function (prob.dist.betaPDF) . 239
24.12.2Cumulative distribution function (prob.dist.betaCDF) 239
24.12.3Quantile function (prob.dist.betaQF) . 240

16

24.13Gamma distribution . 240
24.13.1Probability density function (prob.dist.gammaPDF) 240
24.13.2Cumulative distribution function (prob.dist.gammaCDF) 241
24.13.3Quantile function (prob.dist.gammaQF) . 241

24.14Geometric distribution . 242
24.14.1Probability density function (prob.dist.geometricPDF) 242
24.14.2Cumulative distribution function (prob.dist.geometricCDF) 242
24.14.3Quantile function (prob.dist.geometricQF) . 243

24.15Hypergeometric distribution . 243
24.15.1Probability density function (prob.dist.hypergeometricPDF) 243
24.15.2Cumulative distribution function (prob.dist.hypergeometricCDF) 244
24.15.3Quantile function (prob.dist.hypergeometricQF) . 245

24.16Weibull distribution . 245
24.16.1Probability density function (prob.dist.weibullPDF) 245
24.16.2Cumulative distribution function (prob.dist.weibullCDF) 246
24.16.3Quantile function (prob.dist.weibullQF) . 246

25 Descriptive statistics libraries 248
25.1 Statistical tests . 248

25.1.1 Kolmogorov-Smirnov test of two distributions (stat.test.kolmogorov) 248
25.1.2 Compute residual of a fit (stat.test.residual) . 248
25.1.3 Compute the pull of a fit (stat.test.pull) . 249
25.1.4 Compute the Mahalanobis of a fit (stat.test.mahalanobis) 250
25.1.5 Update a cumulative χ2 calculation (stat.test.updateChi2) 250
25.1.6 Compute the reduced χ2 (stat.test.reducedChi2) . 251
25.1.7 Compute the χ2 probability (stat.test.chi2Prob) . 251

25.2 Sample statistics . 252
25.2.1 Incremental count, mean, and/or variance (stat.sample.update) 252
25.2.2 Incremental covariance matrix (stat.sample.updateCovariance) 252
25.2.3 Incremental count, mean, and/or variance in a window (stat.sample.updateWindow) . 253
25.2.4 Exponentially weighted moving average (EWMA) (stat.sample.updateEWMA) 254
25.2.5 Doubly exponential average with trend (stat.sample.updateHoltWinters) 255
25.2.6 Triply exponential average: trend and period (stat.sample.updateHoltWintersPeriodic) 256
25.2.7 Make one forecast from a Holt-Winters state (stat.sample.forecast1HoltWinters) . . . 257
25.2.8 Make many forecasts from a Holt-Winters state (stat.sample.forecastHoltWinters) . . 258
25.2.9 Fill a histogram (stat.sample.fillHistogram) . 259
25.2.10Fill a two-dimensional histogram (stat.sample.fillHistogram2d) 261
25.2.11Fill a counter/categorical histogram (stat.sample.fillCounter) 263

17

25.2.12Maintain a top-N list (stat.sample.topN) . 263
25.3 Change detection . 264

25.3.1 Historical record of triggered events (stat.change.updateTrigger) 264
25.3.2 Simple difference over uncertainty (stat.change.zValue) 265
25.3.3 Cumulative sum (stat.change.updateCUSUM) . 265

26 Data mining libraries 267
26.1 Regression . 267

26.1.1 Apply the result of a linear regression (model.reg.linear) 267
26.1.2 Propagate uncertainties through a linear regression (model.reg.linearVariance) 268
26.1.3 Fit and predict a Gaussian Process (model.reg.gaussianProcess) 269

26.2 Decision and regression Trees . 270
26.2.1 All-in-one function for simplest case (model.tree.simpleTree) 271
26.2.2 Simple test function for a tree node (model.tree.simpleTest) 271
26.2.3 Test function for a tree node with logical operators (model.tree.compoundTest) 272
26.2.4 Test function with missing value handling (model.tree.missingTest) 273
26.2.5 Chain of surrogate tests (model.tree.surrogateTest) . 274
26.2.6 Tree walk without explicit missing value handling (model.tree.simpleWalk) 274
26.2.7 Tree walk with three branches: pass, fail, and missing (model.tree.missingWalk) . . . 275

26.3 Cluster models . 275
26.3.1 Closest cluster (model.cluster.closest) . 275
26.3.2 Closest N clusters or N-nearest neighbrs (model.cluster.closestN) 276
26.3.3 Random seeds for online clustering (model.cluster.randomSeeds) 277
26.3.4 Online clustering with k-means (model.cluster.kmeansIteration) 278
26.3.5 Update cluster using the mean of data points (model.cluster.updateMean) 278

26.4 Nearest neighbor models . 279
26.4.1 K nearest points (model.neighbor.nearestK) . 279
26.4.2 All points within R (model.neighbor.ballR) . 280
26.4.3 Mean of a sample of points, with weights (model.neighbor.mean) 280

26.5 Naive Bayes . 281
26.5.1 Bernoulli two-category likelihood (model.naive.bernoulli) 281
26.5.2 Multinomial multi-category likelihood (model.naive.multinomial) 281
26.5.3 Gaussian continuous likelihood (model.naive.gaussian) 282

26.6 Neural networks . 283
26.6.1 Feedforward neural network organized in layers (model.neural.simpleLayers) 283

26.7 Support vector machines . 284
26.7.1 Basic SVM (model.svm.score) . 284

18

1 Introduction

1.1 Motivation for PFA

The Portable Format for Analytics (PFA) is a mini-language for mathematical calculations. It differs from
most programming languages in that it is optimized for automatic code generation, rather than writing
programs by hand. The primary use-case is to represent the output of machine learning algorithms, such
that they can be freely moved between systems. Traditionally, this field has been dominated by special-
purpose file formats, each representing only one type of statistical model. The Predictive Model Markup
Language (PMML) provides a means of unifying the most common model types into one file format. However,
PMML can only express a fixed set of pre-defined model types; new model types must be agreed upon by
the Data Mining Group (DMG) and integrated into a new version of PMML, then that new version must
be adopted by the community before it is widely usable.

PFA represents models and analytic procedures more generally by providing generic programming con-
structs, such as conditionals, loops, persistent state, and callback functions, in addition to a basic suite of
statistical tools. Conventional models like regression, decision trees, and clustering are expressed by refer-
encing the appropriate library function, just as in PMML, but new models can be expressed by composing
library functions or passing user-defined callbacks. Most new statistical techniques are variants of old tech-
niques, so a small number of functions with the appropriate hooks for inserting user code can represent a
wide variety of methods, many of which have not been discovered yet.

Given that flexibility is important, one might consider using a general purpose programming language,
such as C, Java, Python, or especially R, which is specifically designed for statistics. While this is often
the easiest method for small problems that are explored, formulated, and solved on an analyst’s computer,
it is difficult to scale up to network-sized solutions or to deploy on production systems that need to be
more carefully controlled than a personal laptop. The special-purpose code may depend on libraries that
cannot be deployed, or may even be hard to identify exhaustively. In some cases, the custom code might be
regarded as a stability or security threat that must be thoroughly reviewed before deployment. If the analytic
algorithm needs to be deployed multiple times before it is satisfactory and each deployment is reviewed for
reasons unrelated to its analytic content, development would be delayed unnecessarily. This problem is
solved by decoupling the analytic workflow into a part that deals exclusively with mathematics (the PFA
scoring engine) and the rest of the infrastructure (the PFA host). A mathematical algorithm implemented
in PFA can be updated frequently with minimal review, since PFA is incapable of raising most stability or
security issues, due to its limited access.

PFA is restricted to the following operations: mathematical functions on numbers, strings, raw bytes,
homogeneous lists, homogeneous maps (also known as hash-tables, associative arrays, or dictionaries), het-
erogeneous records, and unions of the above, where mathematical functions include basic operations, special
functions, data structure manipulations, missing data handling, descriptive statistics, and common model
types such as regression, decision trees, and clustering, parameterized for flexibility. PFA does not include
any means of accessing the operating system, the file system, or the network, so a rouge PFA engine cannot
expose or manipulate data other than that which is intentionally funneled into it by the host system. The
full PFA specification allows recursion and unterminated loops, but execution time is limited by a timeout.
PFA documents may need to be reviewed for mathematical correctness, but they do not need to be reviewed
for safety.

Another reason to use PFA as an intermediate model representation is for simplicity of code generation.
A machine learning algorithm generates an executable procedure, usually a simple, parameterized decider
algorithm that categorizes or makes predictions based on new data. Although the parameters might be
encoded in a static file, some component must be executable. A PFA document bundles the executable with
its parameters, simplifying version control.

The syntax of PFA is better suited to automatic code generation than most programming languages.

19

Many languages have complex syntax to accommodate the way people think while programming, includ-
ing infix operators, a distinction between statements and expressions, and in some cases even meaningful
whitespace. Though useful when writing programs by hand, these features only complicate automatic code
generation. A PFA document is an expression tree rendered in JSON, and trees are easy to programmatically
compose into larger trees without introducing syntax errors in the generated code. This is well-known in the
Lisp community, since the ease of writing code-modifying macros in Lisp is often credited to its exclusive use
of expression trees, rendered as parenthesized lists (known as S-expressions). PFA uses JSON, rather than
S-expressions, because libraries for manipulating JSON objects are more widely available and JSON provides
a convenient syntax for maps, but the transliteration between JSON and S-expressions is straight-forward.

Another benefit of PFA’s simplicity relative to general programming languages is that it is more amenable
to static analysis. A PFA host can more thoroughly examine an incoming PFA document for undesirable
features. Although PFA makes use of callback functions to provide generic algorithms, functions are not first-
class objects in the language, meaning that they cannot be dynamically assigned to variables. The identity
of every function call can be determined without running the engine, which makes it possible to statically
generate a graph of function calls and identify recursive loops. In very limited runtime environments, such
as some GPUs, the compiler implicitly inlines all function calls, so recursion is not possible. In cases like
these, static analysis of the PFA document is a necessary step in generating the executable.

A PFA document can also be statically type-checked. This allows for faster execution times, since types
do not need to be checked at runtime, but it also provides additional safety to the PFA host.

PFA uses Apache Avro schemae for type annotations. Avro is an open-source serialization protocol,
widely used in Hadoop and related projects, whose type schemae are expressed as JSON objects and whose
data structures can be expressed as JSON objects. Therefore, all parts of the PFA engine, including control
structures, type annotations, and embedded data are all expressed in one seamless JSON object. Avro addi-
tionally has well-defined rules to resolve different but possibly compatible schemae, which PFA reinterprets
as type promotion (allowing integers to be passed to a function that expects floating-point numbers, for
instance). When interpreted this way, Avro also has a type-safe null, which PFA uses to ensure that missing
data are always explicitly handled. Finally, the input and output of every PFA engine can always be readily
(de)serialized into Avro’s binary format or JSON representation, since Avro libraries are available on a wide
variety of platforms.

1.2 Terminology used in this specification

Within this specification, the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be in-
terpreted as described in RFC 2119 (see RFC2119). However, for readability, these words do not appear in
all uppercase letters in this specification.

At times, this specification provides hints and suggestions for implementation. These suggestions are not
normative and conformance with this specification does not depend on their realization. These hints contain
the expression “We suggest. . . ”, “Specific implementations may. . . ”, or similar wording.

This specification uses the terms “JSON object”, “JSON object member name”, “JSON object member
value”, “JSON array”, “JSON array value”, “number”, “integer”, “string”, “boolean”, and “null” as defined
in the JSON specification (RFC-4627), sections 2.2 through 2.5. It also references and quotes sections of the
Avro 1.7.6 specification (http://avro.apache.org/docs/1.7.6/spec.html).

1.3 PFA MIME type and file name extension

The recommended MIME type for PFA is “application/pfa+json”, though this is not yet in the process of
standardization.

20

http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc4627
http://avro.apache.org/docs/1.7.6/spec.html

It is recommended that PFA files have the extension “.pfa” (all lowercase) on all platforms. It is recom-
mended that gzip-compressed PFA files have the extension “.pfaz” (all lowercase) on all platforms.

1.4 Levels of PFA conformance and PFA subsets

PFA is a large specification with many modules, so some projects or vendors may wish to implement some
but not all of the specification. However, interoperability is the reason PFA exists; if an implementation
does not adhere to the standard, it has limited value. It is therefore useful to explicitly define what it means
for a system to partially implement the standard.

JSON subtrees of a PFA document are interpreted in the following six contexts.

• Top-level fields are JSON object member name, value pairs in the outermost JSON object of the PFA
document. They have unique member names and describe global aspects of the scoring engine.

• Special forms are JSON objects that specify executable expressions and function definitions. Each is
associated with a unique name.

• Library functions are strings that specify routines not defined in the PFA document itself. Each is
associated with a unique name that does not conflict with any of the special forms’ names.

• Avro type schemae are JSON objects and strings that describe data types. The syntax and meaning
of Avro types are specified in the Avro 1.7.6 specification.

• Embedded data are JSON objects, JSON arrays, numbers, integers, strings, booleans, and nulls that
describe data structures. The syntax and meaning of these objects are also defined by Avro, as the
format used by the JSONEncoder and JSONDecoder.

• Options are JSON object member values of the options top-level field and may be overridden by the
PFA system. They all have well-defined defaults and unique, hierarchical names.

A system may be partially PFA compliant if it implements some but not all top-level fields, some but
not all special forms, or some but not all library functions. Its coverage may be specified by listing the
object member names of the top-level fields that it does implement, the names of the special forms that
it does implement, and the names of the library functions that it does implement. Those top-level fields,
special forms, and library functions that it does implement must be completely and correctly implemented.
The coverage is therefore atomic and one can immediately determine if a particular system can execute
a particular PFA document by checking the set of names used by the document against the set of names
implemented by the system.

Some special forms and library functions make use of some top-level fields. For example, library functions
that generate random numbers use the randseed field for configuration. These special forms and library
functions cannot be considered implemented unless the corresponding top-level fields are also implemented.
The dependencies are explicitly defined in this specification.

Avro type schemae and JSON-encoded data should be completely implemented, to the extent defined
by the Avro specification. We suggest that implementations use language-specific Avro libraries as much as
possible, rather than implementing Avro-related features in a PFA system.

Options may also be implemented atomically by name. If a named option is not implemented, the system
should behave as though that option had its default value, regardless of whether the option is explicitly set
in the PFA document. Options can in general be overridden by a host system, so if a host system doesn’t
implement an option, it is as though the system enforces the default.

The PFA standard is defined so that a PFA-compliant system can verify that the JSON types of a PFA
document are correctly composed (syntax check), verify that the PFA invariants are maintained and Avro

21

http://avro.apache.org/docs/1.7.6/spec.html

data types are correctly composed (semantic check), and impose additional constraints on the set of top-level
fields, special forms, and library functions used (optional checks). A PFA-compliant system should perform
the syntax and semantic checks, including all type inference and type checking, though it is not strictly
required. A PFA document that does not satisfy these invariants and type constraints is not valid and its
behavior is not defined by this specification. The third set of checks, however, is completely optional and
different systems may apply different constraints on the kinds of scoring engines they are willing to execute.
For instance, an implementation targeting a limited environment in which recursion is not possible may
analyze the document and reject it if any recursive loops are found.

This specification does not define any standardized subsets of PFA. As stated above, partial conformance
is defined by ad hoc subsets of atomic units. However, as experience develops, the community may define
industry-standard subsets of PFA for specific purposes or special environments. Conforming to a standardized
subset would provide better interoperability than defining ad hoc subsets, and we would recommend such a
standard when it exists. At present, we can only recommend a carefully chosen ad hoc subset or complete
conformance.

1.5 Updates to the specification

Updates to the PFA specification are labeled with version numbers. The version numbers have the strict
form [1-9][0-9]*\.[1-9][0-9]*\.[1-9][0-9]* where the first number is the major release number (major
changes to the specification, such as new special forms, behavior, or top-level fields), the second is the minor
release number (new features, such as new functions or function signatures), and the third is the bug-fix
release number (rectifying errors in intention). Version numbers have a strict lexicographic order. FIXME:
Should the first and second numbers be year and month of release, respectively? In that case,
the major revision number would not necessarily imply major changes.

Any changes in which previously valid PFA becomes invalid must go through a deprecation phase for
several versions. When a PFA model uses a deprecated special form, function signature, or top-level field,
the PFA implementation should issue a warning but accept the model until the cut-off version.

Changes in which previously invalid PFA becomes valid can become effective immediately.
Other backward-incompatible changes, such as valid PFA changing its behavior, are not allowed. New

behaviors must introduce new function names, function signatures, special form structures, or top-level field
names and deprecate the old ones.

1.6 Open-source implementations

The following open-source implementations can help clarify this specification.

Hadrian: A PFA system written in Scala for the Java Virtual Machine (JVM). It performs all necessary
checks and dynamically compiles PFA documents into JVM bytecode for fast execution. Available
from https://github.com/opendatagroup/hadrian.

Titus: A PFA system written in Python. It performs all necessary checks, interprets PFA documents
for testing, and transforms Python-based machine learning outputs into PFA. Available from https:
//github.com/opendatagroup/hadrian.

Although these implementations can help clarify the intent of the specification for future implementations,
they are not normative definitions of the standard. Only this document (and those that may supersede it)
are normative. All versions of this document, including the latest version, can be found on the websites
listed above.

If you have a PFA implementation that you would like to see listed here, send an e-mail to info@dmg.org.

22

https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
info@dmg.org

2 PFA document structure

2.1 Top-level fields

A PFA document is a serialized JSON object representing an executable scoring engine. Only the following
JSON object member names may appear at this JSON nesting level. These are the top-level fields referred
to in the conformance section of this specification. Three fields, action, input, and output, are required
for every PFA document and are therefore required for every PFA implementation. The rest are optional
for PFA documents and not strictly required for PFA implementations. As explained in the conformance
section, not implementing some top-level fields can make some special forms and functions unimplementable.

name: A string used to identify the scoring engine.

method: A string that may be “map”, “emit”, or “fold” (see Sec. 3.2). If absent, the default value
is “map”.

input: An Avro schema representing the data type of data provided to the scoring engine (see
Sec. 3.4).

output: An Avro schema representing the data type of data produced by the scoring engine (see
Sec. 3.4). The way that output is returned to the host system depends on the method.

begin: An expression or JSON array of expressions that are executed in the begin phase of the
scoring engine’s run (see Sec. 3.1).

action: An expression or JSON array of expressions that are executed for each input datum in
the active phase of the scoring engine’s run (see Sec. 3.1).

end: An expression or JSON array of expressions that are executed in the end phase of the scoring
engine’s run (see Sec. 3.1).

fcns: A JSON object whose member values are function definitions, defining routines that may
be called by expressions in begin, action, end, or by expressions in other functions.

zero: Embedded JSON data whose type must match the output type of the engine. This must
be present in the “fold” method initialize the fold aggregation, and it must not be present
in the “map” or “emit” method.

merge: An expression or JSON array of expressions that may be executed if the scoring engine
container needs to combine partial results from independent “fold” engines. It must be
present with the “fold” method and it must not be present with the “map” or “emit” method.

cells: A JSON object whose member values specify statically allocated, named, typed units
of persistent state or embedded data (see Sec. 3.5). The format of this JSON object is
restricted: see Sec. 2.2.

pools: A JSON object whose member values specify dynamically allocated namespaces of typed
persistent state (see Sec. 3.5). The format of this JSON object is restricted: see Sec. 2.2.

randseed: An integer which, if present, sets the seed for pseudorandom number generation (see
Sec. 3.9).

23

doc: A string used to describe the scoring engine or its provenance (has no effect on calculations).

version: An optional integer to use in model-version bookkeeping.

metadata: A JSON object mapping strings to strings; used to describe the scoring engine or its
provenance.

options: A JSON object of JSON objects, arrays, strings, numbers, booleans, or nulls used to
control execution.

Example 2.1. This is the simplest possible PFA document. It only reads null values, returns null values,
and performs no calculations.

{"input": "null", "output": "null", "action": null}

Example 2.2. This is a simple yet non-degenerate PFA document. It increments numerical input by 1.

{"input": "double", "output": "double", "action": {"+": ["input", 1]}}

Example 2.3. This example implements a small decision tree. Input data are records with three fields:
“one” (integer), “two” (double), and “three” (string). The decision tree is stored in a cell named “tree” with
type “TreeNode”. The tree has three binary splits (four leaves). The scoring engine walks from the root to
a leaf for each input datum, choosing a path based on values found in the record’s fields, and returns the
string it finds at the tree’s leaf. (See the definitions of the model.tree.simpleWalk and model.tree.simpleTest
functions.)

{"input": {"type": "record", "name": "Datum", "fields":
[{"name": "one", "type": "int"},
{"name": "two", "type": "double"},
{"name": "three", "type": "string"}]},

"output": "string",
"cells": {"tree":

{"type":
{"type": "record",
"name": "TreeNode",
"fields": [
{"name": "field", "type":
{"type": "enum", "name": "TreeFields", "symbols":
["one", "two", "three"]}}

{"name": "operator", "type": "string"},
{"name": "value", "type": ["double", "string"]},
{"name": "pass", "type": ["string", "TreeNode"]},
{"name": "fail", "type": ["string", "TreeNode"]}]},

"init":
{"field": "one",
"operator": "<",
"value": {"double": 12},
"pass":
{"TreeNode":
{"field": "two",
"operator": ">",
"value": {"double": 3.5},
"pass": {"string": "yes-yes"},

24

"fail": {"string": "yes-no"}}},
"fail":
{"TreeNode":
{"field": "three",
"operator": "==",
"value": {"string": "TEST"},
"pass": {"string": "no-yes"},
"fail": {"string": "no-no"}}}}}},

"action":
{"model.tree.simpleWalk": [
"input",
{"cell": "tree"},
{"params": [{"d": "Datum"}, {"t": "TreeNode"}],
"ret": "boolean",
"do": {"model.tree.simpleTest": ["d", "t"]}}

]}}

2.2 Cells and Pools

The cells and pools top-level fields, if present, are JSON objects whose member values are cell-specifications
or pool-specifications, respectively. A cell is a mutable, global data store that holds a single value with a
specific type, and a pool is a mutable map from dynamically allocated names to values of a specific type (see
Sec. 3.5).

A cell-specification is a JSON object with the following fields.

type: (required) An Avro schema representing the data type of this cell.

init: (required) If source (below) is “embedded” or not provided, then this is the initial value
of the cell as embedded JSON, matching type. If source is “json” or “avro”, this is a
file name or URL pointing to the initial value of the cell. The file name may be relative
or absolute and is formatted for the target operating system (e.g. UNIX-formatted with
forward slashes or Windows-formatted with backslashes). It is interpreted as a URL if the
whole string matches the following pattern: [a-zA-Z][a-zA-Z0-9\+\-\.]*://.* (the first
character is a letter, followed by letters or plus, hyphen, or dot, followed by colon-slash-slash
and arbitrary text until the end of the string).

shared: An optional boolean specifying whether this cell is thread-local to one scoring engine or
shared among a battery of similar engines (see Sec. 3.6). The default is false.

rollback: An optional boolean specifying whether this cell should be rolled back to the state it
had at the beginning of an action if an exception occurs during the action. The default
is false, and shared and rollback are mutually incompatible: they cannot both be true.

source: An optional string specifying whether the init data is “embedded” (the default), “json”
(formatted exactly like “embedded”, but in an external file or resource), or “avro” (Avro
formatted in an external file or resource). The data, once retrieved, must have a type that
matches type.

A pool-specification is a JSON object with the following fields.

25

type: (required) An Avro schema representing the data type of an item within this pool. The
whole pool is effectively a map of this type.

init: Same as init for cells, but it is not required for pools. If omitted, a value of {} is
assumed.

shared: Same as shared for cells.

rollback: Same as rollback for cells.

source: Same as source for cells.

Cell and pool names must match the following pattern: [A-Za-z_][A-Za-z0-9_]* (the first character
must be a letter or underscore; subsequent characters, if they exist, may also be numbers). Cells and pools
do not share a namespace with each other or with symbols or functions.

A complete explanation of cells and pools is given in Sec. 3.5.

2.3 Locator marks

PFA documents are usually generated by an automated process, such as by encoding a machine learning
decider into a scoring engine or by transforming user functions from an easily readable language into the
terse PFA representation. In the latter case, there can be a cognitive disconnect between the language in
which the user writes code, for instance a regression fit function written in Python, and the auto-generated
PFA. In particular, if there is an error in the generated PFA due to an error in the original source code,
reporting the error at the line and column number of the generated PFA would not be useful for the Python
programmer. It would be much better if a PFA system could report such an error at the location of the
offending line in the original source code.

To allow individual PFA systems to do this, the PFA specification allows for “@” as a JSON member
name in any JSON object in the PFA document. The associated member value must be a string, and would
ordinarily be a description of the line number of the original source that generated that JSON object in
the PFA document. These “@” key-value pairs can appear in any object at any level, including Avro type
schemae and embedded JSON data. If the library that interprets Avro type schemae and embedded JSON
data does not ignore object members named “@”, then the PFA system must strip these objects before
passing the JSON objects for interpretation.

The generation of and meaning of these locator marks are beyond the scope of the PFA specification—
different PFA systems can generate and interpret them differently, or not at all. However, to ensure that
the locator marks made by one system do not cause unnecessary errors in another system, the locator marks
must abide by the following rules.

• JSON object members named “@” must not cause errors in any PFA system, even if they appear in
Avro type schemae or embedded JSON objects.

• The value associated with this key must be a string.

• The system that generates these marks should place them at the beginning of each JSON object—
that is, in the serialized form of the JSON data, the “@” member name should appear immediately
after the “{“ character that starts the JSON object (apart from any whitespace). This is because some
PFA readers may interpret the JSON data as it streams into a buffer, and they may encounter an error
before reaching the last JSON object member. If the locator mark is not first, PFA systems cannot be
expected to use it.

26

3 Scoring engine execution model

A PFA document (string of JSON-formatted text) describes a PFA scoring engine (executable routine) or
a battery of initially identical engines. An engine behaves as a single-threaded executable with global state
(cells and pools) and local variables. A battery of scoring engines may run in parallel and only share data if
some cells or pools are explicitly marked as shared. Although a battery of scoring engines generated by a
single PFA document start in exactly the same state, they may evolve into different states if they have any
unshared cells or pools.

PFA engines are units of work that may fit into a pipeline system like Hadoop, Storm, or Akka. In
a map-reduce framework such as Hadoop, for instance, one PFA document could describe the calculation
performed by all of the mappers and another could describe the calculation performed by all of the reducers.
The mappers are a battery of independent PFA engines, as are the reducers. In pure map-reduce, the mappers
would not communicate with each other and the reducers would not communicate with each other, so none
of the cells or pools should be marked as shared. With this separation of concerns, issues of transferring
data, interpreting input file types, and formatting output should be handled by the pipeline system (Hadoop
in this case) while the mathematical procedure is handled by PFA. Changing file formats would require an
update to the pipeline code (and possibly a code review), but changing details of the analytic would only
require a new PFA document (a JSON configuration file).

3.1 Execution phases of a PFA scoring engine

A PFA engine has a 7 phase lifecycle. These phases are the following, executed in this order:

1. reading the PFA document and performing a syntax check;

2. verifying PFA invariants and checking type consistency;

3. additional checks, constraints required by a particular PFA system;

4. initialization of the engine;

5. execution of the begin routine;

6. execution of the action routine for each input datum;

7. execution of the end routine.

In phase 1, JSON is decoded and may be used to build an abstract syntax tree of the whole document.
At this stage, JSON types must be correctly matched (e.g. if a number is expected, a string cannot be
provided instead) to build the syntax tree. Incorrectly formatted JSON should also be rejected, though we
recommend that a dedicated JSON decoder is used for this task. Avro schemae should also be interpreted
in this phase (see Sec. 4.1).

In phase 2, the loaded PFA document is interpreted as an executable. If the specific PFA implementation
builds code with macros, compiles bytecode, or synthesizes a circuit for execution, that work should happen
in this phase. Data types should be inferred and checked (see Sec. 4.3), especially if the executable is
compiled.

Phase 3 is provided for optional checks. Due to limitations of a particular environment, some PFA
systems may need to be more restrictive than the general specification and reject what would otherwise be
a valid PFA document. Reasons include unimplemented function calls, inability to implement recursion, or
data structures that are too large. The phase 3 checks may need to be performed concurrently with the
phase 2 checks to build the executable.

27

Phase 4, initialization, is when data structures such as cells and pools are allocated and filled, network
connections are established (if relevant for a particular PFA implementation), pseudorandom number gen-
erators are seeded, etc. These are actions that the engine must perform to work properly but are not a part
of the begin, action, or end routines.

The actions performed in the last three phases, begin, action, and end, are explicitly defined in the
PFA document. A PFA system must implement the action phase, since every PFA document must define
an action. The action accepts input and returns output, though the way it does so depends on the method
(Sec. 3.2).

The begin and end phases do not accept input and do not return output: they can only modify cells
and pools, emit log messages, or raise exceptions. A PFA system is not required to implement begin
and end. If a system that does not implement begin encounters a document that has a begin routine,
it must fail with an error. If a system that does not implement end encounters a document that has an
end routine, it need not fail with an error, though it may. This is because some PFA documents may use
begin to initialize essential data structures and the action would only function properly if begin has been
executed, but the end routine can only affect the state of a completed scoring engine whose interpretation
is implementation-specific. Moreover, some data pipelines do not even have a concept of completion, such
as Storm.

After all input data have been passed to the scoring engine and the last action or end routine has
finished, the scoring engine is said to be completed. This may be considered an eighth phase of the engine,
though its behavior at this point is not defined by this specification. A particular PFA system may extract
aggregated results from a completed engine’s state and it may even call functions defined in the document’s
fcn field, but this is beyond the scope of the standard PFA lifecycle. (Note: if the primary purpose of a
scoring engine is to aggregate data, consider using the “fold” method instead of extracting from the engine’s
internal state.)

A completed scoring engine may be used to create a new PFA document, in which the final state of the
cells and pools are used to define the cell init or pool init of the new document, such that a new scoring
engine would start where the old one left off. A PFA system may even re-use an old scoring engine as a new
scoring engine (repeating phase 4 onward), but a re-used engine must behave exactly like a new engine with
copied state, such that the re-use is an implementation detail and does not affect behavior.

A PFA system may call functions defined in the document’s fcn field at any time, but if the function
modifies state (a “cell-to”, “pool-to”, or “pool-del” special form is reachable in its call graph) and the engine
is not complete, the function call must not be allowed because it could affect the engine’s behavior. A PFA
system must not execute begin, action, or end outside of its lifecycle.

3.2 Scoring method: map, emit, and fold

PFA defines the following three methods for calling the action routine of a scoring engine.

“map”: The action routine is given an input value, which it uses to construct and return an
output. Barring exceptions, the output dataset would have exactly as many values as the
input dataset.

“emit”: The action routine is given an input value and an emit callback function, and the
functional return value is ignored. The scoring engine returns results to the host system by
calling emit. It can call emit any number of times, and thus the output dataset may be
smaller or larger than the input dataset. For example, a filter would call emit zero or one
times for each input.

28

“fold”: The action routine is given an input value and a tally value, which it uses to construct
and return an output. The first time action is invoked, tally is equal to zero (the top-
level field). On the N th time action is invoked, tally is equal to the (N − 1)th return
value. Thus, a “fold” scoring engine is an aggregator: transformed inputs may be counted,
summed, maximized, or otherwise accumulated in the tally. The aggregate of the entire
dataset seen by one scoring engine instance is the last return value of action. The host
system may then combine partial results from these instances using the merge method. The
merge method must be present for “fold” scoring engines, though it might not be used.

For all three methods, the input is available to expressions as a read-only symbol that can be accessed
in an expression as the JSON string "input" (see Sec. 7.1). The input symbol’s scope is limited to the
action routine: it is not accessible in user-defined functions unless explicitly passed. The input symbol’s
data type is specified by the top-level field named input.

For the “map” and “fold” methods, the data type of the last expression in the action routine must be
the type specified by the top-level field named output. For the “emit” method, there is no constraint on the
type of the last expression in action, but the argument passed to the emit function must have output type.

For the “emit” method, the emit function is a globally accessible function. It may be called or referenced
without qualification by any user-defined function or even in the begin and end routines.

For the “fold” method, the tally is available to expressions as a read-only symbol that can be accessed
in an expression as the JSON string "tally" (see Sec. 7.1). The tally symbol’s scope is limited to the
action routine: it is not accessible in user-defined functions unless explicitly passed. The tally symbol’s
data type is specified by the output top-level field. The top-level field named zero must also have output
type.

In the merge method, available only to “fold” engines, the symbols tallyOne and tallyTwo are read-only
symbols that can be accessed in the expression. They have output type, and usually come from independent
runs of the scoring engine on subsamples. Just as calling a scoring engine’s action method replaces its
tally with the action output, calling a scoring engine’s merge method replaces its tally with the merge
result.

The means by which input values are provided to the scoring engine, output values are retrieved, and
the emit function is set or changed are all unspecified. A PFA system may change the emit function at
any time, even while an action is being processed (though we do not recommend this). However, the emit
function must be defined and callable at all times during the begin, action, and end phases of the scoring
engine’s lifecycle.

3.3 Predefined symbols

A small set of symbols are already defined when a begin, action, or end method starts. These symbols
cannot be changed by the method; it is as though the method is executed in a sealed scope within the scope
in which the predefined symbols are defined (see Sec. 5).
The predefined symbols in the begin method are the following.

• name (string): If the name top-level field is present, this is that string; otherwise, it is the name that
the host system has assigned.

• instance (int): The 0-based instance number of the scoring engine. For example, if N engines are
generated from a PFA document, they will be numbered from 0 to N − 1, inclusive.

• version (int): If the version top-level field is present, this symbol is defined and is equal to the
top-level field; otherwise, it is not defined.

29

• metadata (map of string): If the metadata top-level field is present, this symbol is that string-to-string
map; otherwise, it is an empty string-to-string map.

The predefined symbols in the action method are the following.

• input (type defined by top-level field input): The input datum on which the action method acts.

• tally (type defined by top-level field output): If the method is “fold”, this is the result of applying
all actions to date for this scoring engine instance; otherwise, it is not defined.

• name, instance, version, metadata: As above.

• actionsStarted (long): The number of times this scoring engine instance has started to process an
input record. It is always greater than or equal to 1 and it includes action attempts that have failed
due to exceptions.

• actionsFinished (long): The number of times this scoring engine instance has successfully finished
processing an input record. It is always greater than or equal to 0 and it does not include action
attempts that have failed due to exceptions.

The predefined symbols in the end method are the following.

• tally, name, instance, version, metadata, actionsStarted, actionsFinished: As above.

3.4 Input and output type specification

The member values of the top-level fields input and output are Avro schemae (see Sec. 4.1). The way that
these types constrain the input and output of scoring engines depends on the method and is described in
Sec. 3.2.

The input data provided to the scoring engine must conform to the input type in the sense that there
must be an unambiguous way to generate it from Avro-encoded data, though this conversion need not actually
take place. For example, if the input is {"type": "array", "items": "int"}, then the values passed to
the scoring engine must be ordered lists of integers, though they may be implemented as arrays, linked
lists, immutable vectors, or any other functionally equivalent data structure that the PFA implementation
is capable of using in calculations. The data source need not be Avro-encoded; the Avro schema is only used
to specify the type, not to perform conversions. Similarly, the output data must conform to the output
type in the sense that there must be an unambiguous way to convert it to Avro-encoded data, though this
conversion need not actually take place.

Given that the input and output types are described by Avro schemae, the Avro binary and JSON data
formats would be particularly convenient ways to read and write data. However, there is no requirement
that a PFA system should have this capability. Data conversion and internal data format are both outside
the scope of the PFA specification.

3.5 Persistent state: cells and pools

PFA defines two mechanisms to maintain state: cells and pools. Cells are global variables with a fixed name
and type that must be initialized before the scoring engine’s run begins. A cell’s value can change to a new
value of the same type, but the cell cannot be deleted and new cells cannot be created during the scoring
engine’s run. Pools are global namespaces with a fixed type. New named values can be created within a
pool at runtime, as long as they have the correct type, and old values can be deleted at runtime.

30

A pool of type “X” would be equivalent to a cell whose type is “map of X” except for performance and
concurrency issues. All special forms and library functions in the PFA specification treat data structures as
immutable objects (see Sec. 5.1), but scoring engines often need to maintain very large key-value tables. If
pools were not available, a PFA implementation would either incur a performance penalty if it maintained
a large map in a cell as an immutable object or if it maintained all temporary variables as mutable objects.
With both cells and pools, a PFA implementation may maintain all values as immutable objects, including
cells, and maintain pools as mutable maps of immutable objects. See Sec. 3.6 for a discussion of concurrency
issues in cells and pools.

Cells can only be accessed through the “cell” special form and can only be modified through the “cell-to”
special form. Pools can only be accessed through the “pool” special form and modified through the “pool-to”
and “pool-del” special forms (see Sec. 7.9).

One common use of persistent state is to represent a complex statistical model, such as a large decision
tree. In most cases, such a model is constant during the scoring engine’s run, and this constraint may be
enforced through static analysis if the model is stored in a cell. Another common use is to represent recent
or accumulated data in a table, indexed by key. In most cases, this table is updated frequently and new
table entries may be added at any time. Furthermore, it is often useful to distribute the table-fill operation
among a battery of concurrent scoring engines, with different engines modifying different keys at the same
time. These cases are more easily implemented as pools or shared pools.

3.6 Concurrent access to shared state

If the sharedmember of a cell or pool’s specification is true, the cell or pool is not assumed to be thread-local
(see Sec. 2.2). It may be shared among a battery of identical scoring engines in a multi-threaded process,
shared among identical scoring engines distributed across a network, shared in a database among different
types of processes, or shared among components of an integrated circuit, etc. In any case, some rules must
be followed to avoid simultaneous attempts to modify the data, and these rules must be standardized to
ensure that the same scoring engine has the same behavior on different systems.

Shared cells and pools in PFA follow a read-copy-update rule for concurrent access: attempts to read the
shared resource (through the “cell” or “pool” special forms) always succeed without blocking and attempts to
write (through the “cell-to”, “pool-to”, and “pool-del” special forms) lock the resource or wait until another
writer’s lock is released. The writers must operate on a copy of the cell or pool’s data (or on immutable
data) so that readers can access the old version during the update process. The new value must be updated
atomically at the end of the update process.

Although an update operation may only modify a part of the cell’s structure (one value in an array,
for instance), the granularity of the writers’ lock is the entire cell: two writers must not be able to modify
different parts of the same cell at the same time. The granularity of the writers’ lock on pools is limited to
a single named entity within the pool: two writers must be able to modify different entities in the pool at
the same time, but not different parts of the same named entity.

The “cell-to” and “pool-to” special forms accept user-defined update functions (see Sec. 7.9) but these
functions must not directly or indirectly call “cell-to”, “pool-to”, or “pool-del” because such a situation could
lead to deadlock. This rule can be enforced by examining the call graph.

3.7 Exceptions

As much as is reasonably possible, PFA documents can be statically analyzed to avoid errors at runtime.
However, some error states cannot be predicted without runtime information. These error states, their exact
messages, and numerical codes are explicitly defined for each susceptible special form and library function.
If the specified error conditions are met in the begin routine of a scoring engine, processing stops and should
not continue to the action routine. If error conditions occur when the action routine is processing an input

31

datum, processing of that datum stops and may either continue to the next datum or stop the scoring engine
entirely. The PFA host may choose to stop or continue on the basis of the error message or code. If error
conditions occur in the end routine, processing stops.

This abrupt end of processing may occur deep in an expression or array of expressions and behaves like
an exception: control flow exits the routine immediately upon encountering the error condition and is either
caught by the host system or it halts the process. In environments where this is difficult to implement,
control flow may continue to the end of the routine, but side-effects such as modifications to persistent state
and log messages must be avoided.

If the host system catches an exception in action and continues to the next datum, and if a cell or pool’s
rollback member is true, then that cell or pool should be reverted to the value that it had at the beginning
of the action (see Sec. 2.2). If the rollback member is absent or false, then the cell or pool’s value at the
start of the next action should be the value it had at the time of the exception.

In addition to exceptions raised by special forms and library functions, a PFA document can raise custom
exceptions with the “error” special form (see Sec. 7.14.2). The rules described above apply equally to custom
exceptions, though we recommend that PFA systems differentiate between built-in exceptions (whose error
messages are explicitly defined by this specification) and custom exceptions (whose error messages are free-
form). Code numbers for user-defined errors must be negative.

If a timeout is defined in the PFA document’s options or is imposed by the PFA system, a begin,
action, or end routine that exceeds this timeout raises an exception with the message “exceeded timeout of
N milliseconds” where N is the relevant timeout. Timeout exceptions follow the same rules as built-in and
custom exceptions.

If possible in a given system, no exceptions other than PFA exceptions should ever be raised while
executing a begin, action, or end routine.

3.8 Execution options

The options top-level field allows PFA documents to request that they are executed in a particular way.
However, the PFA system may override any of these options with its own values, or with the defaults. When
overriding an option, the PFA system should somehow indicate that this is the case, possibly through a log
message.

Example options, their JSON types, and their default values are given below. If a PFA document attempts
to set an option with the wrong type, it is a semantic error (phase 2 in see Sec. 3.1) and the scoring engine
should not be started. Unrecognized options are ignored.

Option name JSON type Default value Description
timeout integer −1 Number of milliseconds to let the begin,

action, or end routine run; at or after this
time, the PFA system may stop the routine
with an exception (see Sec. 3.7). If negative,
the execution has no timeout.

timeout.begin integer timeout A specific timeout for the begin routine
that overrides the general timeout.

timeout.action integer timeout A specific timeout for the action routine
that overrides the general timeout.

timeout.end integer timeout A specific timeout for the end routine that
overrides the general timeout.

32

3.9 Pseudorandom number management

The randseed top-level field specifies a seed for library functions that generate pseudorandom numbers. If
the randseed is absent, the random number generator should be unpredictable: multiple runs of the same
PFA document would yield different results if the output depends on pseudorandom numbers. If a randseed
is provided, the random number generator should be predictable: multiple runs of the same PFA document
would yield the same results on the same system. Explicitly setting a randseed is useful for tests.

The pseudorandom number generator maintains state between begin, action, and end invocations: the
generator is not reseeded with each call. If a PFA document is used to create a battery of identical scoring
engines, the randseed is used to generate different seeds for all of the scoring engines: they are not guaranteed
to produce identical results.

The algorithm for generating pseudorandom numbers is not specified, so different PFA implementations
may use different algorithms. Therefore, a PFA document with an explicit randseed is only guaranteed to
yield identical results when rerun on the same system. On different systems, it may yield different results.

Every library function that depends on pseudorandom numbers should be seeded by the randseed.
Pseudorandom functions are explicitly denoted by this specification.

33

4 Type system

Rather than invent a new type system, PFA uses Avro type schemae to describe its data types. Avro is
a serialization format, but it also describes the types (sets of possible values) that are to be serialized or
unserialized with JSON-based schemae. Feeding Avro-formatted data into and out of a PFA scoring engine
is particularly easy, since the sets of possible values that can be Avro-serialized perfectly align with the sets
of possible values that PFA can use in its calculations.

However, Avro serialization is by no means necessary to use with PFA: data that can be described by
Avro types can be serialized many different ways. In fact, the Avro project provides two: a binary format
and a JSON format. With the appropriate translations, CSV can be converted to and from a subset of Avro
types, XML can be fully and reversibly transformed, as can many popular data formats. The transformation
of data formats and the internal representation of data in a PFA implementation are beyond the scope of
this specification and should be handled in any way that the designer of a PFA system sees fit.

4.1 Avro types

The normative definition of Avro 1.7.6 types and type schemae is provided online. However, the basics are
duplicated here for convenience. This section is non-normative.

The set of all expressible types is the closure under the following primitives and parameterized types.

null: A type with only one value, null. This is a unit type, and is usually only useful when
combined with other types in a union (see below) or as a return type for functions that do
not have a meaningful value to return.

boolean: A type with only two values, true and false.

int: Signed whole numbers with a 32-bit range: from −2147483648 to 2147483647 inclusive.

long: Signed whole numbers with a 64-bit range: from −9223372036854775808 to
9223372036854775807 inclusive.

float: Signed fractional numbers with 32-bit binary precision as defined by IEEE 754.

double: Signed fractional numbers with 64-bit binary precision according to the same standard.

string: Strings of text characters that can be encoded in Unicode.

bytes: Arrays of uninterpreted bytes with any length.

fixed(L, N, NS): Named arrays of uninterpreted bytes with length L (integer), name N (string),
and optional namespace NS (string).

enum(S, N, NS): Named enumeration of a finite set of symbols S (ordered list of strings), name
N (string), and optional namespace NS (string).

array(X): Homogeneous array of type X (Avro type) with any length.

map(X): Homogeneous map from strings to type X (Avro type). The keys of all maps must be
strings (just like JSON).

record(F, N, NS): Heterogeneous record of fields F (named slots with Avro types) with name N
(string) and optional namespace NS (string). This is a product type; the possible values that
it can have is the Cartesian product of the possible values that each field can have.

34

http://avro.apache.org/docs/1.7.6/spec.html
http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935
http://www.unicode.org/standard/standard.html

union(T): Union of types T (array of Avro types). This is a sum type; the possible values that it
can have is union of the values of each type in T.

This type system has the following limitations and remediations.

• Arrays and maps must be homogeneous (all elements have the same, specified type). This is sufficient
for most mathematical applications and the restriction helps to eliminate common mistakes. Also, it
makes some significant optimizations possible that are difficult or impossible in dynamic languages.

• Map keys must be strings. If an application must represent a map whose keys are not strings, one can
define a unique string representation for each key and look up items by first transforming to the string
representation.

• There is no set or multiset type. This can be emulated with arrays and PFA’s set-like functions or a
map from string-valued keys to null.

• Circular references are not possible, as there are no pointers or references. However, data structures
with conceptual loops can be emulated through weak references in a map. For example, an arbitrary
directed graph can be described as a map of arrays of strings: each key is a node and each element of
an array is a link to another node. These references are weak because there is no guarantee that a key
exists for every array element.
The lack of circular references is, in some ways, an advantage. Non-circular data can be more easily se-
rialized without the possibility of infinite loops. Immutable data can take advantage of more structural
sharing since data structures are purely tree-like.
Note that recursively defined types are possible. A record X could have one or more fields that are
unions of X and Y, or it could have a field that is an array or map of X. The first case would describe a
tree of nodes X with a fixed number of named branches, terminating in leaves of type Y. (This is how
decision trees are described in PFA; the scores have type Y.) The second case would describe a tree of
nodes X with arbitrarily many branches at each node, terminating in empty arrays or maps.

• To make a type such as string nullable, one must construct a union of string and null. This union
type cannot be passed into functions that expect a string.
Again, this restriction can be an advantage. It is often known as a type-safe null: in the example
above, string functions can still be used, but only after explicitly handling the null case. In PFA, one
would use a cast-cases special form to split the program flow into a branch that handles the string
case and a branch that handles the null case, usually by specifying a rule that replaces null with a
string. This restriction eliminates the possibility of null pointer exceptions at runtime.
Most library functions in PFA interpret null as a missing value. Missing value handling is an important
consideration in many statistical analyses, so PFA has a suite of functions for addressing this case.

The advantages of this type system are that (1) it aligns well with types already used by major data
pipeline tools (binary Avro and, with some transformation, Thrift and Protocol Buffers), (2) it is easy to
represent as JSON or XML (the lack of circular references is particularly helpful), (3) any type is nullable,
including primitives, (4) Avro’s rules for schema resolution can be reinterpreted as type promotion for type
inference (see Sec. 4.3), (5) all types have a strict ordering (see Avro sort order specification), and (6) the
type schemae are JSON objects and strings, which fit seamlessly into a PFA document.

4.2 Type schemae in the PFA document

An Avro type schema can be a JSON object or a string. JSON objects construct parameterized types, while
strings specify type primitives or reference previously defined types. Some PFA top-level fields and member

35

http://avro.apache.org/docs/1.7.6/spec.html#order

values of special forms must be Avro schemae: these schema are simply included inline with the JSON
representing the rest of the PFA document.

Below is a summary of the schema syntax that is relevant for PFA. All Avro schema elements must be
accepted by a PFA reader, but these are the only ones that influence PFA.

The following strings are type primitives: “null”, “boolean”, “int”, “long”, “float”, “double”, “string”,
“bytes”. Other strings are either previously defined named types or they are invalid. The form {"type":
"X"} for string X is equivalent to the string on its own.

A byte array with name N and fixed length L is specified by the form {"type": "fixed", "name": "N",
"namespace": "NS", "size": L}. The namespace is optional, but the name is not. The length L must be
a JSON integer. Avro fixed types have additional object members, but they are not relevant for PFA.

An enumeration with name N and symbols S is specified by the form {"type": "enum", "name": "N",
"namespace": "NS", "symbols": S}. The namespace is optional, but the name is not. The symbols S
must be a JSON array of strings. Avro enumeration types have additional object members, but they are not
relevant for PFA.

An array with elements of type X is specified by the form {"type": "array", "items": X}. An array
does not accept a name or any other member values.

An map with values of type X is specified by the form {"type": "map", "values": X}. A map does not
accept a name or any other member values.

A record with name N and fields F is specified by the form {"type": "record", "name": "N", "namespace":
"NS", "fields": F}. The namespace is optional, but the name is not. The fields F must be JSON objects
with the following form: {"name": "FN", "type": "FT", "default": D, "order": O} where name and
type are required and default and order are not. The default D is encoded in the Avro-JSON format
and provides a default value if the input data stream is missing one. The order O is one of these strings:
“ascending”, “descending”, and “ignore”, and it defines the sort order for the record. Avro record types and
field types have additional object members, but they are not relevant for PFA.

A union of types T1 . . . TN is specified by a JSON array form [T ... TN].
If the Avro implementation used by a PFA system supports aliases for schema resolution, the aliases

should be used for type inference (see Sec. 4.3). Aliases only apply to named types and record fields.
Avro schema parsing is usually implemented as a stateful process, in which the parser remembers previ-

ously named types and recognizes its namespace-qualified name in a JSON string as representing the type.
This is especially important for recursively defined types. A PFA document may have many type schemae
embedded within it, often as member values of JSON objects. Systems that load JSON objects into hash-
tables cannot guarantee that the order of JSON object members is preserved, which could cause schemae to
be read in any order.

Therefore, PFA implementations must pass Avro schemae to be parsed in an order that resolves depen-
dencies or PFA implementations must parse the schemae themselves in an order that resolves dependencies.
PFA documents must define named types (as a JSON object) exactly once and reference them (as a string)
elsewhere.

4.3 Type inference

PFA uses a near-minimum of type annotations for static type analysis. Only the inputs to every calculation,
which are function parameters, literal constants, inline arrays/maps/records, the symbols input and tally,
and cell/pool definitions, and the outputs of every calculation, which are function return values and the
scoring engine output, need to be specified. Unlike traditional languages (e.g. C or Java), the types of new
variables are not specified: they are inferred through their initialization expressions (and would have been
redundant if supplied).

36

http://avro.apache.org/docs/1.7.6/spec.html#Aliases

With these annotations, the type check algorithm is simple. Every expression is a tree of subexpressions,
whose leaves are either references to previously defined symbols, function parameters, cells, or pools (with
known type) or constants (with specified type). Every function and special form has a type signature that
may accept its arguments, in which case type-checking continues toward the root of the tree, or reject its
arguments, in which case the PFA document fails with a semantic error. Every function and special form has
a return type, which may depend on the types of its arguments (but not the values of its arguments, which
are only known at runtime). Arguments and return types should be recursively checked until the root of the
tree (the type of the expression as a whole) is reached. This derived type is checked against the declared
function return type or output. If the declared type does not accept the derived type, the PFA document
is rejected with a semantic error.

Some special forms take a JSON array of expressions and either apply no return type constraint or only
constrain the last expression, which is used as a return value. Each case is explicitly specified in Sec. 7.

In passing, we note that the type annotations could have been more minimal if return types were not
required, and some input types could, in principle, be inferred from their position in a function argument
list. However, an explicit output allows a PFA system or casual observer to quickly determine if a scoring
engine will fit into a given workflow, in which the input types and output types are constrained by data
pipelines. Moreover, function return types cannot always be omitted, even in theory: recursive functions
cannot determine their return type from parameters only, for instance. Also, inferring input types from
parents or siblings in the expression tree unnecessarily complicates the type-check algorithm. The algorithm
chosen for PFA is strictly local— only subexpressions and previously defined symbols are needed to infer an
expression type— and uniform— the same rules apply regardless of the function’s call graph.

4.4 Type resolution, promotion, and covariance

At each step in the type inference algorithm, the expected type or type pattern is checked against the
actual or derived type. All types have a non-commutative, binary “accepts” relation, for which “A accepts
B” means that B is an acceptable observed type for expected type A. For example, “double accepts int”
because integers are a subset of double-precision floating point numbers, and any function that needs a
double must be able to use an int instead.

Even though Avro is a serialization protocol, it defines a suite of type promotion rules for the sake of
schema resolution. In Avro, these rules are used to determine if an old version of a schema is compatible with
a new version of a schema: for instance, if the old schema defines a variable as an int and the new schema
defines it as a double, the old serialized dataset is forward-compatible— it can be used in an application as
though it had the new schema. PFA uses the same rules to promote data through an expression.

These rules are described in the Schema Resolution section of the Avro specification, but they are reviewed
here with an emphasis on how the rules are used in PFA type inference.

Expected type Accepts
null Only null or a union of only null (union of exactly one type, which is not a

useful union).
boolean Only boolean or a union of only boolean.
int Only int or a union of only int.
long int or long or a union of any subset of {int, long}.
float int, long, or float or a union of any subset of {int, long, float}.
double int, long, float or double (all numeric types are promoted). Also accepts a

union of any subset of {int, long, float, double}.

37

http://avro.apache.org/docs/1.7.6/spec.html#Schema+Resolution

Expected type Accepts
string Only string or a union of only string.
bytes Only bytes or a union of only bytes.
fixed(L, N, NS) Only a fixed with the same length L and fully-qualified name given by NS and N.

Also accepts a union of only this fixed type.
enum(S, N, NS) An enum whose symbols S are a subset of the expected enum’s symbols with

fully-qualified name given by NS and N. For example, if an enum with symbols
“one”, “two”, and “three” is expected, it will accept an enum of the same name
with symbols “two” and “one”. Also accepts a union of only these enum types.

array(X) An array with items Y for which X accepts Y (arrays are covariant). For example,
an array of double accepts an array of int, but an an array of int does not
accept an an array of double. Also accepts a union of only these array types.

map(X) A map with values Y for which X accepts Y (maps are covariant). Also accepts a
union of only these map types.

record(F, N, NS) A record whose fields are a superset of fields F (in any order) with corresponding
field types such that the expected field accepts the observed field (records are
covariant). For example, an expected record with fields {“one”: double and
“two”: string} accepts an observed record with fields {“one”: double, “two”:
string, and “three”: bytes}. It also accepts an observed record with fields
{“one”: int and “two”: string}. The observed record must also have the same
fully-qualified name given by NS and N. Also accepts a union of only these record
types.

union(T) Either a union(T′) such that for all t′ in T′, there exists a t in T for which t
accepts t′, or a single type t′′ such that there exists a t in T for which t accepts t′′.
For example, a union of {string, bytes, and null} accepts a union of {string
and bytes}, and it also accepts a string. However, the reverse is not true: a
narrow type or union cannot accept a wider union.

4.5 Narrowest supertype of a collection of types

Some circumstances (return type of a special form, solution of a generic type pattern) require a single type
that accepts a given set of types. For example, an “if” conditional with both a “then” and an “else” clause
returns a value that might have the type of the “then” clause or might have the type of the “else” clause.
If both clauses have the same type X, then the return type of the “if” special form is X, but if “then” has
type Y and “else” has type Z, the type of the “if” special form is something that could be (accepts) Y or Z.
In these situations, the resultant type is the narrowest supertype of the possibilities.

The following rules define the narrowest supertype of a collection of at least one type. In cases where
more than one rule matches, the first matching rule is applied.

Collection of types Narrowest supertype
1. all null null
2. all boolean boolean
3. all int int
4. all int or long long
5. all int, long, or float float

38

Collection of types Narrowest supertype
6. all int, long, float, or double double
7. all string string
8. all bytes bytes
9. all fixed with the same length

and fully-qualified name
that fixed type

10. all enum types with the same
symbols and fully-qualified name

that enum type

11. all arrays an array of the narrowest supertype of the items of each array
12. all maps a map of the narrowest supertype of the values of each map
13. all records with the same fields

and fully-qualified name
that record type

14. any other collection of types, ex-
cluding those containing fixed
and enum

a union of those types, merging any unions contained in the col-
lection (e.g. union(X, Y) and union(Y, Z) combine into union(X,
Y, Z)) and combining any types that can be combined with the
rules above (e.g. int and double become double, rather than
union(int, double)).

15. any other case is a type error.

In summary, any cases that cannot be promoted to the same type are combined into a union except for
collections containing fixed or enum. These cases, had they been allowed, would introduce the need for
PFA implementations to perform runtime type conversions: values of different fixed types would need to
be converted into raw bytes and values of different enum types would need to be converted into string
or an enum with a superset of symbols. These new, anonymous types would have potentially unexpected
properties: the broadening of enums cannot maintain the order of a collection of symbols, which are used
in some statistical applications as a finite ordinal set. It is better to raise a type error and force the PFA
author to explicitly convert these types to bytes, string, or explicitly define an enum with a superset of
symbols.

Distinct records are combined into a union of those records, however (rule 13 falls through to rule 14
when the records are not exactly the same).

4.6 Generic library function signatures

User-defined functions in the fcns top-level field have parameter lists and return types specified strictly by
Avro type schemae (see Sec. 6). However, some library functions have more general type signatures so that
they can be more broadly applied.

Library functions are never declared in a PFA document, and thus they are not bound to the same
restrictions. It would be possible to define a JSON format for expressing generic function signatures, but that
format would not be an Avro schema. Moreover, PFA documents are not intended for generic programming,
but for auto-generated code. Since every PFA document is a specific solution to a specific problem, it should
be written in terms of ungeneric functions. (The generality can be in the routine that generates the PFA
document.) The PFA library functions, however, are intended for a wide variety of problems, and thus
should be generic.

Library function type patterns are a superset of Avro types. They include the same primitives:

39

• null, boolean, int, long, float, double, string, bytes

and the same parameterized, product, and sum types, though names are optional:

• fixed (size: L)

• fixed (size: L, name: N)

• enum (symbols: S)

• enum (symbols: S, name: N)

• array of X

• map of X

• record (fields: {name1: type1, name2: type2, . . . namen: typen})

• record (fields: {name1: type1, name2: type2, . . . namen: typen}, name: N)

• union of {T}

When present, names are fully-qualified, rather than being split into namespace-name pairs. A type pattern
of fixed, enum, or record without a name matches any fixed, enum, or record with the specified structure
(structural typing, rather than nominative). For instance, a library function could require a record with
integer, double, and string fields named “one”, “two”, and “three” like this:

record (fields: {one: int, two: double, three: string})

Since this pattern has no name, it would match any record that has exactly these fields with these types.
Unlike Avro types, the parameters of type patterns can be specified by wildcards. Wildcards are labeled

and may be restricted to a set of Avro types (not patterns):

• any A

• any A of {type1, type2, . . . typen}

Wildcards can appear anywhere that a pattern is expected. For instance,

array of any A

is an array with unspecified item type.
Wildcards with repeated labels constrain two types to be the same type. For instance,

record (fields: {one: any A, two: any B, three: any B})

is a record with three fields of unspecified type, though fields “two” and “three” have the same. If they
are not exactly the same, they are promoted to the narrowest supertype of the matches. The following are
examples of Avro types that would match this pattern.

Example 4.1. R1 matches because “two” and “three” are both string.

{"type": "record", "name": "R1", "fields": [
{"name": "one", "type": "int"},
{"name": "two", "type": "string"},
{"name": "three", "type": "string"}]}

40

Example 4.2. R2 matches because “two” and “three” are both int. The type that matches wildcard B does
not need to be different from the type that matches wildcard A (also “int”).

{"type": "record", "name": "R2", "fields": [
{"name": "one", "type": "int"},
{"name": "two", "type": "int"},
{"name": "three", "type": "int"}]}

Example 4.3. R3 matches because “two” and “three” can both be promoted to double.

{"type": "record", "name": "R3", "fields": [
{"name": "one", "type": "string"},
{"name": "two", "type": "int"},
{"name": "three", "type": "double"}]}

The scope of wildcard labels is the entire function signature, including all parameters and return type.

Example 4.4. As an example, the signature of “+” (the library function that adds two numbers) is

{"+": [x, y]}

x any A of {int, long, float, double}
y A

(returns) A

The two parameters, x and y, can be any type in the set {int, long, float, double} and the return type is the
narrowest supertype of x and y. Thus, int + int → int, int + double → double, etc. The restriction on A in
the pattern for x applies equally to y because all constraints must be satisfied for a pattern to match.

Example 4.5. Shared labels are primarily used to carry types from a parameter to the return type. They
allow a function like “a.subseq” (extract a subsequence of an array) to be defined once for any type of items.

{"a.subseq": [a, start, end]}

a array of any A

start int
end int
(returns) array of A

Record substructure can also be matched with wildcards. Such a pattern has one of these two forms:

• any record A

• any record A with {name1: type1, name2: type2, . . . namen: typen}

The first matches any record, regardless of what fields it contains, and the second matches a record with at
least the specified fields. Wildcards with and without specifying record substructure have labels in the same
namespace.

Enumeration lists can also be matched to record fields:

• enum A of fields of B

41

where B refers to a wildcarded record. To match this pattern, the enum’s symbols must be equal to the
record field names— the same strings in the same order, without any missing or any extra. Functions
with this pattern in their signature (such as “model.tree.simpleTest”) not only guarantee that values of the
enumeration correspond to some record field (unlike arbitrary strings), but at runtime, the record field can
be retrieved by index or pointer, rather than by name.

Finally, some library functions can accept functions as arguments, even though functions are not first-
class objects in the language. A function cannot be assigned to a symbol, but it can appear in an argument
list. The following type pattern matches functions:

• function (type1, type2, . . . typen) → type

The pattern does not specify the names of parameters, only their number, order, and types (as patterns).
Only non-generic functions can be matched, and since most library functions are generic, the matched
function would usually be a user-defined function. (Notable exceptions are mathematical special functions,
probability distributions, and clustering metrics.)

Example 4.6. The parameter and return types of a function pattern can be wildcarded, as in this example
of “a.filter”, which filters an array.

{"a.filter": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) array of A

Example 4.7. Library functions with function arguments are primarily used to override the default behavior
of a statistical routine through callbacks. The “model.tree.simpleWalk” function illustrates how a decision
tree traversal can be given an arbitrary or even user-defined predicate.

{"model.tree.simpleWalk": [datum, treeNode, predicate]}

datum any record D

treeNode any record T with {pass:union of {T, any S}, fail: union of {T, S}}
predicate function (D, T) → boolean
(returns) S

Function arguments can only be provided using the fcndef or fcnref special forms, which require explicit
functions to be known during static analysis. Therefore, the platform on which PFA is being implemented
does not need first class functions or the equivalent (e.g. objects with a pre-specified “apply” method). It
does not even need functions in the normal sense: if the platform requires all functions to be expanded inline,
the PFA system can generate specific code for each case. That is, the “a.filter” and “model.tree.simpleWalk”
functions can be expanded into special-case bytecode for each call that takes a different function argument,
possibly mixing the library function implementation with the user-defined callback. This would not be
possible if function arguments could only be resolved at runtime.

42

5 Symbols, scope, and data structures

Calculations in PFA are performed by nesting function calls in argument lists (purely functional program-
ming) and assigning values to symbols, cells, and pools, possibly overwriting previous values (imperative
programming). Some mathematical algorithms are more easily expressed in a functional style while others
are more easily expressed in an imperative style. Cells and pools (global state) are discussed in Sec. 3.5.
Symbols provide temporary local state.

Much like a cell, a symbol is a named container with fixed type whose value can be replaced: it is a
variable. Unlike a cell, a symbol can only be referenced within a limited scope. Symbol scopes in PFA are

• lexical: scopes are defined in terms of character ranges in the text of the PFA document, and

• block-level: they range from the declaration of the symbol to the end of the containing block, which is
either a single expression of a JSON array of expressions.

Since blocks are deeply nested in a moderately complex PFA document, symbol scopes may be deeply
nested as well. A symbol must not be shadowed; that is, it must not be declared twice in the same scope or in
two scopes such that one is nested within the other. The same symbol name may be used in non-overlapping
scopes.

Symbols are declared with the “let” special form and reassigned with the “set” special form (see Sec. 7.7).
This distinction between declaration and reassignment should be enforced, as it allows an observer to deter-
mine which symbols are constant and which algorithms are purely functional at a glance.

Although a symbol is readable anywhere below the point at which it is defined, some special forms limit
the scopes in which a symbol can be reassigned. For example, symbols declared outside of an anonymous
function cannot be modified by the function, since that would be hard to implement in a system that does
not have closures. Looping special forms for which seq is false may be evaluated in any order to allow for
systems that might parallelize the loop— in this case, symbols declared outside the loop cannot be modified
in the loop, since that would lead to race conditions. Special forms that prohibit modification of symbols
declared outside the form are said to be “sealed from above”.

Some forms also do not allow new variable declarations. One such example is the argument list of
a function call, since such a declaration could never be used (each argument of the function call is in a
different scope). These scopes are said to be “sealed within”. In a functional programming style, it is
sometimes desirable to insert whole algorithms in what would otherwise be a restricted block like a function
argument. To allow for this usage, a “do” special form can be placed within such a scope, creating a sub-scope
that allows variable declarations and expands a single-expression block into a JSON array of expressions.
The “do” form is required to ensure that this usage is intentional.

The sealed-from-above or sealed-within status of scopes within each special form is specified in Sec. 7.
Symbol names must match the following pattern: [A-Za-z_][A-Za-z0-9_]* (the first character must

be a letter or underscore; subsequent characters, if they exist, may also be numbers). Symbol names do not
share a namespace with cells, pools, or functions.

5.1 Immutable data structures

All values in PFA, including complex data structures like arrays, maps, and records, are immutable. That is,
there are no special forms or library functions that can change the structure of a value in-place, so in-place
operations cannot be expressed in any routine constructed from those calls. The PFA specification puts
no constraints on how values are implemented, however: they may be immutable in the context of PFA
operations and yet mutable in the context of the host system. We suggest that complex data structures be
implemented with structural sharing to optimize speed and memory usage, but this is an implementation
detail.

43

One consequence of all data structures being immutable is that there is no distinction between a value
and a reference to a value or between copying and linking. In languages with mutable values and references,
this distinction is important because linking a reference to the same value in multiple places creates an
unseen connection between them. For instance (in Python),

y.child = x
z.child = x
...
y.child.modify()

modifies z.child as well as y.child, while

y.child = deepcopy(x)
z.child = deepcopy(x)
...
y.child.modify()

only modifies y.child. Since PFA lacks the equivalent of modify(), the above distinction is irrelevant.
Another consequence is that it is impossible to create a circular reference in PFA. In Python, one can

create a circular reference in a list x by

x.append(x)

Attempts to depth-first walk through this list of lists would result in an infinite loop, and modifications of
x would silently change this nested element (as above). In PFA, the equivalent statement

{"set": {"x": {"a.append": ["x", "x"]}}}

creates a new array that contains all of the old items of x with the entire old array x appended. This new
array is assigned to symbol x. Since PFA has no mutable structures (and no lazy evaluation), it is impossible
to create a circular reference.

Example 5.1. In fact, assignments with the same symbol on the left-hand side as the right-hand side behave
like “x = x + 1” in that the right-hand side always deals with the old value of the symbol and the left-hand
side may change the meaning of the symbol to a new value. For instance,

{"do": [
{"let": {"x": {

"type": {"type": "record", "name": "R", "fields": [
{"name": "child", ["R", "null"]}]},

"value": {"child": null}}}},
{"set": {"x": {"attr": "x", "path": ["child"], "to": "x"}}},
{"set": {"x": {"attr": "x", "path": ["child"], "to": "x"}}},
{"set": {"x": {"attr": "x", "path": ["child"], "to": "x"}}},
"x"]}

results in

{"child": {"child": {"child": {"child": null}}}}

just as

44

{"do": [
{"let": {"x": 0}},
{"set": {"x": {"+": ["x", 1]}}},
{"set": {"x": {"+": ["x", 1]}}},
{"set": {"x": {"+": ["x", 1]}}},
"x"]}

results in 3. In languages with mutable data structures, some updates behave like “x = x + 1” while others
create circular references.

Similarly, there is no distinction between passing a function argument by reference versus passing it by
value. Such a distinction would be seen when the function modifies the object that it is given, but in PFA,
these modifications are not possible.

To get this behavior in a language or context that allows in-place modifications, one must make deep
copies of the objects because copies are not linked the way that references are. However, purely immutable
objects can be safely passed without copying and structurally shared when modified. In the examples above,
a PFA implementation may use the same object in memory wherever its value is needed and may always
pass a pointer to the object as a function argument. Since values and references are equivalent, one can
choose the computationally least expensive operation.

Our decision to make all data structures immutable was driven by two needs: (1) to make them fully
expressible by Avro type schemae, which do not allow for circular references or any non-treelike graph, and
(2) to simplify the read-copy-update concurrency algorithm. If objects were mutable, then an explicit copy
would be needed to allow read operations to see the old version of the object while write operations create a
new version. In addition to making implementations more complicated, this would make all write operations
more expensive, since they must do a deep copy on every update. With immutable objects, the copy step is
unnecessary.

5.2 Memory management

PFA does not define any particular memory management technique. The language has constructs for creating
objects but not for deleting them, so some sort of garbage collector will be needed to release objects that are
out of scope. This implicit garbage collector may be the same as the one used by PFA host’s environment
(e.g. the JVM and Python have built-in garbage collectors) or it may be a library used to collect garbage
only in the PFA system (e.g. the boehmgc and boost libraries provide garbage collectors for C++).

45

6 User-defined functions

A PFA document may define new functions that are called as though they were library functions. There are
two differences between these “user-defined” functions and the library functions specified by PFA:

• user-defined functions are prefixed by “u.” when called (in the “u” branch of the module tree);

• their signatures must consist of specific Avro types, since only library functions can have generic
signatures (see Sec. 4.6).

The scope of all functions, including user-defined functions, is global. Functions are also static; they
cannot be declared at runtime. They may be declared in the fcns top-level field, which makes their global,
static nature manifest, or they may be declared inline in the argument list of a special form or library
function that accepts a function as an argument.

In the latter case, the user-defined function has no name (an “anonymous function”) and some features
of a lexical closure. It has access to symbols defined in an enclosing scope (it “closes over” those symbols),
but this access is limited to reading only. A PFA system may implement this by internally adding the closed
symbols to its parameter list. In all other aspects, an anonymous function behaves like a globally defined
function and may be implemented as one (with an auto-generated name).

Function names must match the following: [A-Za-z_]([A-Za-z0-9_]|\.[A-Za-z][A-Za-z0-9_]*)*
(consists of dot-delimited words in which each word starts with a letter or underscore; subsequent char-
acters, if they exist, may also be numbers; there must be at least one word). Functions do not share a
namespace with cells, pools, or symbols.

6.1 No first-class functions

Some languages have first-class functions, meaning that functions are “first-class citizens” and can be treated
like any other data structure. In PFA, functions are second-class, but not coach. Similar to first-class
functions, they may be passed as arguments to other functions (specific library functions that accept functions
as arguments) and they may be defined inline as anonymous functions that close over local variables. Unlike
first-class functions, they cannot be assigned to symbols or be returned from functions, and the closures have
read-only access to the variables they close over.

These restrictions make it possible to implement PFA functions in very limited environments and to be
able to fully analyze the function call graph without executing the scoring engine (thereby statically detecting
recursion, if necessary). If, instead, a function could be assigned to a symbol, then it could be changed at
runtime and not be predicted statically. If an inline function could reassign symbols in its scope, then it
could not be internally implemented as a simple function.

These rules provide enough flexibility to implement callbacks in library functions, but not so much as to
make the call graph unpredictable or make the scoring engine impossible to implement in environments that
only accept inline-expanded functions. Pascal and Algol are two historical examples of languages with the
same set of rules.

6.2 Syntax for declaring new functions

User functions are declared with the “fcndef” special form. If “fcndef” appears in an argument list, it defines
an anonymous function. If it appears as a member value for a name-value pair in the fcns top-level field, it
defines a named function.

46

6.2.1 Defining function: the “fcndef” special form

The “fcndef” special form has the following syntax.

{"params": [{par1: type1}, {par2: type2}, ...], "ret": retType, "do": expr}

par1 string, name of first parameter
type1 Avro schema, type of first parameter
par2 string, name of second parameter
type2 Avro schema, type of second parameter
. . .
retType Avro schema, return type
expr expression or JSON array of expressions

The params, ret, and do fields must be present, though params could be an empty JSON array (no
parameters). The individual parameters are always represented by single-member JSON objects: the name
is the parameter name (used in the function body), and the value is its type.

The do field is the function body, and its return value is the last or only expression it contains. The do
field must contain at least one expression (it must not be an empty JSON array).

If this form appears in the fcns top-level field, the function name (without its namespace qualifier, “u.”)
is given by the associated member name.

Example 6.1. For example,

"fcns": {
"square": {"params": [{"x": "double"}], "ret": "double", "do": {"**": ["x", 2]}},
"cube": {"params": [{"x": "double"}], "ret": "double", "do": {"**": ["x", 3]}}

}

defines u.square (which squares the input value) and u.cube (which cubes the input value). The number
5 may now be squared by {"u.square": 5} or {"u.square": [5]}.

Example 6.2. This Fibonacci number algorithm demonstrates recursion.

"fcns": {
"fib": {"params": [{"n": "int"}], "ret": "int", "do":

{"cond": {"if": {"==": ["n", 0]}, "then": 0},
{"if": {"==": ["n", 1]}, "then": 1},

"else": {"+": [
{"u.fib": [{"-": ["n", 1]}]},
{"u.fib": [{"-": ["n", 2]}]}

]}}}
}

Example 6.3. This iterative Fibonacci number algorithm illustrates a multi-line do field.

"fcns": {
"fib": {"params": [{"n": "int"}], "ret": "int", "do": [

{"let": {"now": 0,
"next": 1}},

{"for": {"i": "n"},

47

"until": {"<": ["i", 0]},
"step": {"i": {"-": ["i", 1]}},
"seq": true,
"do": [

{"let": {"tmp": {"+": ["now", "next"]}}},
{"set": {"now": "next",

"next": "tmp"}}
]},
{"if": {"==": ["n", 0]},
"then": 0,
"else": "next"}

]}
}

6.3 Syntax for referencing functions

Named functions are referenced with the “fcnref” special form, and anonymous functions are both declared
and referenced with an inline “fcndef” special form (see above).

6.3.1 Referencing a globally defined function: the “fcnref” special form

The “fcnref” special form has the following syntax.

{"fcn": name}

name string, the name of the function

or
{"fcn": name, "fill": {param1: value1, param2: value2, ...}}

name string, the name of the function
param# string, the name of a parameter of the function
value# expression, an expression to evaluate and pass to param#

The name string must be an exact name of the function, not an expression that can be evaluated at
runtime.

If the fill field is used, the form represents a new function with fewer parameters than the referenced
function, in which one or more of the referenced function’s fields are filled by an expression. The expression
is evaluated every time the new function is called (relevant if it has any side-effects). Since the new function
has fewer parameters than the referenced function, it has a different type than the referenced function. This
form is usually used to supply default arguments to a general function.

Only non-generic functions with a single signature that does not reference other functions can be rep-
resented by a “fcnref” form. Generic parameters or function parameters are only allowed if they are filled
(hidden) by a fill field. Note that return types may not be generic, either. If you wish to reference a general
function, wrap it in an inline “fcndef”, which is non-generic, single-signature, and hs no explicit function
arguments because it is a user function.

Example 6.4. Here is a complete PFA document that increments and returns a counter every time it is
pinged (the scoring engine is executed with null input).

{"input": "null",
"output": "int",

48

"action": [
{"cell": "counter", "to": {"fcn": "u.increment"}},
{"cell": "counter"}],

"cells":
{"counter": {"type": "int", "init": 0, "shared": true}},

"fcns":
{"increment":

{"params": [{"x": "int"}],
"ret": "int",
"do": {"+": ["x", 1]}}}

}

The increment is defined in a function so that getting the counter value, incrementing it, and putting the
new value in the cell are all one atomic action— other update attempts block until this one is done. Without
ensuring atomicity, the counter could miss an update when a second update attempt reads counter before
the first writes its new value.

Example 6.5. The same operation could be performed with an inline “fcndef”. In the example below, the
scoring engine adds the input value to counter every time it is called. Because of its location, the anonymous
function can close over the input symbol, which exists in the action block but not in fcns.

{"input": "int",
"output": "int",
"action": [

{"cell": "counter", "to": {"params": [{"x": "int"}],
"ret": "int",
"do": {"+": ["x", "input"]}}},

{"cell": "counter"}],
"cells":

{"counter": {"type": "int", "init": 0, "shared": true}}
}

49

7 Expressions

PFA documents may contain simple programs formed by composing expressions. There are four types of
expressions: symbol references, literal values, function calls, and special forms.

7.1 Symbol references

A symbol reference yields the current value of a predefined symbol. For example, the action routine has a
input symbol pre-defined: wherever this appears, the input value is inserted. New symbols can be created
with “let” and old symbols can be changed with “set”, if the current context allows it (see Sec. 5). Cells and
pools are not symbols; they are referenced through a pair of special forms.

A symbol reference is simply a JSON string. JSON strings in contexts where an expression is expected are
interpreted as symbol references (with one exception); JSON strings in other contexts have other meanings.
The exception is the following: a valid symbol name must not contain dots (“.”) as described at the end of
Sec. 5, and if a JSON string where an expression is expected contains dots, it should be interpreted as a
shortcut for the “attr” special form.

7.2 Literal values

Literal values are constants embedded in an expression. Simple examples are numbers, such as the “2” in
this expression that squares x: {"**": ["x", 2]}.

Cells without “cell-to” can also be used to define constants in a PFA document. The differences are:
(1) a literal appears in the midst of an expression, while cells are in the cells top-level field, (2) cells are
named and can be referenced in many places throughout a PFA document, including functions, but literals
are unnamed unless assigned to a symbol of limited scope, (3) constant cells are constructed once, in the
initialization phase of the engine, but literals may or may not be constructed every time the program flow
reaches them (this is an implementation detail). Typically, large data structures like the representation of a
statistical model would be stored in a cell, rather than an inline literal.

Literals are represented by the following special forms:

• {"int": NUMBER} where NUMBER is a JSON integer. The return type is int; a value that is too large to
be represented as a 32-bit number is a syntax error.

• {"long": NUMBER} where NUMBER is a JSON integer. The return type is long; a value that is too large
to be represented as a 64-bit number is a syntax error.

• {"float": NUMBER} where NUMBER is a JSON floating-point number. The return type is float; a value
that is too large, too small, or too precise to be represented as a IEEE 754 32-bit floating point number
is a syntax error.

• {"double": NUMBER} where NUMBER is a JSON floating-point number. The return type is double; a
value that is too large, too small, or too precise to be represented as a IEEE 754 64-bit floating point
number is a syntax error.

• {"string": STRING} where STRING is a quoted string. The return type is string.

• {"base64": STRING} where STRING is a base-64 representation of a binary input. The return type is
bytes.

• {"type": TYPE, "value": VALUE} where TYPE is an Avro schema and VALUE is a JSON literal (not an
expression) whose type matches TYPE. This form can be used to construct arrays, maps, records, etc.

50

http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935
http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935
http://www.ietf.org/rfc/rfc3548.txt

Additionally, if an integer appears where an expression is expected, that number is an int literal if 32-bit,
a long literal if 64-bit, and a syntax error if larger. If a floating point number appears where an expression
is expected, that number is a double literal (not a float, even if small enough). A floating-point number
that is too large, too small, or too precise to be a IEEE 754 64-bit floating point number causes a syntax
error.

There is also a shortcut for making string literals: [STRING] (single-element JSON array containing a
string). Note that a string, by itself is interpreted as a symbol reference (because symbol references are more
common than string literals). In some contexts, such as the argument list of a function, an expression or
an array of expressions is expected. If a [STRING] appears in one of these contexts, it is interpreted as a
one-element array containing a symbol reference, not a literal string.

7.3 Function calls

Most of the functionality of PFA is provided through function calls; data-centric scoring engines, such as
statistical models, would often involve only one function call. Library functions are part of the PFA definition
(see Sec. 8 et seq.); user functions are defined in a PFA document (see Sec. 6).

A function call is expressed in JSON as a single-member object, like this

{"functionName": [argument1, argument2, ... argumentN]}

for a function functionName of N (zero or more) arguments or

{"functionName": argument1}

for a function of exactly one argument.
The arguments of a function call can either be an expression or a function reference (assuming that the

called function accepts functions as arguments).
Functions have strict requirements on the number of arguments (always fixed; there are no optional

arguments or varargs) and their types. Functions return a value with a specific type, though that type may
depend on the argument types (for library functions).

Function call expressions evaluate all of the function’s arguments, from left to right, before calling the
function, unless documented otherwise. For instance, the and function only evaluates its second argument if
the first does not evaluate to false and the or function only evaluates its second argument if the first does
not evaluate to true.

The expression in each argument of a function call is evaluated in a separate, sealed-from-above and
sealed-within scope (see Sec. 5). Thus, one cannot declare or reassign symbols as one progresses through the
argument list.

7.4 Special forms

Special forms are expressions that take arguments, perform an operation, and return a value, much like
function calls. Unlike function calls, however, they may have irregular syntax. Whereas a function call is
always a JSON object with one member name (the function name) and one member value (its arguments,
interpreted as expressions), some special forms have multiple JSON object members and some special forms
have custom interpretations for their member values. These object members may appear in any order. In
addition, special forms have custom scoping rules when they do interpret values as expressions.

51

http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935

7.5 Call a user-defined function that is specified at runtime

PFA excludes first class functions so that the call graph can be analyzed without running the analytic.
Therefore, all function calls and function references are static strings in the JSON text. However, it is
sometimes useful to select a function to call at runtime, so the following special form is available to select a
function from a small set.

{"call": expression, "args": [argument1, argument2, ... argumentN]}

The expression must resolve to an enumeration type, and the values of the enumeration type must be
user-defined functions (without the “u.” prefix).

All functions referenced by the enumeration type must accept the argument types defined by args. The
return type of this special form is the narrowest supertype of the return types of all referenced functions.
Therefore, the types are verified for all possible values of the expression.

In the call graph, this special form is presented as the union of all members of the enumeration type.
Therefore, if the enumeration type has symbols “one”, “two”, and “three”, then there must be user-defined
functions accepting the arguments presented with compatible return types, and the call graph would include
“u.one”, “u.two”, and “u.three”, as well as any functions called in the argument list. Even if function
“u.three” is never called at runtime, this special form reports it because it might be called.

7.6 Creating arrays, maps, and records

7.6.1 Creating arrays/maps/records from expressions: the “new” special form

Arrays, maps, and records can be created with the {"type": TYPE, "value": VALUE} literal form described
above, but the VALUE must be a JSON literal and not an expression. Thus, the literal form cannot depend
on any inputs. The “new” special form exists to create arrays, maps, and records from expressions:

{"new": ARRAY, "type": ARRAY-TYPE}
{"new": OBJECT, "type": MAP-OR-RECORD-TYPE}

where ARRAY is a JSON array of expressions whose type is accepted by Avro schema ARRAY-TYPE, and OBJECT
is a JSON object whose member values are expressions matching Avro schema MAP-OR-RECORD-TYPE.

Example 7.1. The following returns an array of powers of x, which has type double.

{"new": [1, "x", {"**": ["x", 2]}], "type": {"type": "array", "items": "double"}}

Example 7.2. The following returns a map from names to powers of x, which has type double.

{"new": {"p0": 1, "p1": "x", "p2": {"**": ["x", 2]}},
"type": {"type": "array", "items": "double"}}

Example 7.3. The following initializes a record of type R with a string stored in x and its length.

{"new": {"theString": "x", "theLength": {"s.len": "x"}},
"type": {"type": "record", "name": "R", "fields":

[{"name": "theString", "type": "string"},
{"name": "theLength", "type": "int"}]}}

52

7.7 Symbol assignment and reassignment

7.7.1 Creating symbols: the “let” special form

The “let” special form creates new symbols and assigns an initial value. The “set” special form changes the
value associated with a set of symbols. There are no type declarations for new symbols because its types are
inferred from the initial value.

A “let” has the following syntax:

{"let": {"name1": VALUE1, "name2": VALUE2, ...}}

where VALUE1, VALUE2, etc. are expressions. These expressions must not depend on symbols defined in the
same “let” form, and they may be evaluated in any order. (The symbols can be referenced after the end of
the “let” form and before the end of its containing form.) The VALUE expressions are sealed-within: they
may not declare new symbols unless wrapped in a “do” special form, and cannot change externally declared
symbols.

A “let” that only declares one symbol still requires a nested JSON object. The “let” form has return
type null. It must declare at least one symbol.

7.7.2 Changing symbol bindings: the “set” special form

A “set” has the following syntax:

{"set": {"name1": VALUE1, "name2": VALUE2, ...}}

where VALUE1, VALUE2, etc. are expressions. These expressions may depend on symbols that are rebound in
the same “set” form, but if so, they are provided with the old values of those symbols, as defined immediately
before the “set” form. The assignments within a “set” may be evaluated in any order. The VALUE expressions
are sealed-within, just like the “let” form.

A “set” that only changes one symbol still requires a nested JSON object. The “set” form has return
type null. It must reassign at least one symbol.

Example 7.4. If the following appears in a JSON array of expressions, the final values of x and y are 2 and
2 (not 2 and 3 or 3 and 2).

{"let": {"x": 1, "y": 1}},
{"set": {"x": {"+": ["x", "y"]}, "y": {"+": ["x", "y"]}}}

Regardless of whether x is reassigned first or y is reassigned first, each sum sees both x and y as having a
value of 1 at the time of assignment.

7.8 Extracting from and updating arrays, maps, and records

7.8.1 Retrieving nested values: the “attr” special form

The “attr” special form extracts a value from an array, a map, a record, or any combination of these three.
The “attr-to” special form returns an object with one element changed (leaving the original untouched).

The form of “attr” is

{"attr": EXPRESSION, "path": INDEXES}

53

where EXPRESSION is the array, map, or record to extract from and INDEXES is a JSON array of expressions
with int type or string type and string literals. These INDEXES specify a path through the nested objects.
If nesting is only one level deep, INDEXES must have exactly one element. It is a syntax error for INDEXES
to have zero elements.

If the type at a particular nesting level is an array, the path index must resolve to an int, though it can
perform arbitrary calculations to produce the int. If the type at a particular nesting level is a map, the
path index must resolve to a string. If the type at a particular nesting level is a record, the path index
must be a literal string (not just an expression that resolves to a string), and that string must be a field
name of the record. Since it is a literal string, static analysis can verify that the field name exists and a PFA
system should raise a type error if no such field exists. The nesting level is increased for each array element
of the path, and the return type of “attr” is the type of the deepest object referenced by the path.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2000) runtime error is raised. If a map key is not found (at any level of dereferencing along
the path), a “map key not found” (code #2001) runtime error is raised. If a record field is not valid, it is a
semantic error, a scoring engine cannot be built.

As a convenience, “attr” forms may also be expressed as a dot-delimited string resembling a symbol
reference. The first substring is taken to be a symbol reference EXPRESSION and the rest are taken to be
elements of the INDEXES array (literal expressions only). PFA systems should implement this short-cut.

Example 7.5. The following are equivalent:

"x.4.key.field"

and

{"attr": "x", "path": [4, ["key"], ["field"]]}

and

{"attr": {"attr": {"attr": "x", "path": [4]}, "path": [["key"]]}, "path": [["field"]]}

If the type of x is

{"type": "array", "items": {"type": "map", "values": {"type": "record", "name": "R",
"fields": [{"name": "field", "type": X}]}}}

then the example is valid and the return type is X.
(Note: ["key"] and ["field"] are short-cuts for {"string": "key"} and {"string": "field"}, re-

spectively; see Sec. 7.2.)

7.8.2 Copy with different nested values: the “attr-to” special form

The form of “attr-to” is:

{"attr": EXPRESSION, "path": INDEXES, "to": VALUE-OR-FUNCTION}

with the same meaning for EXPRESSION and INDEXES as in “attr”. If the attribute evaluates to X at the end
of its path, the VALUE-OR-FUNCTION argument must either be an expression of type X or a function that
maps X to X. If is an expression, then the form will return a structure like the original, but with the specified
subelement changed to the new value. If VALUE-OR-FUNCTION is a function, then the function is evaluated,
passing in the old value of the subelement and updating the structure with the function’s return value.

54

The INDEXES must contain at least item. There is no equivalent of using the dot-delimited string as a
short-cut. The “attr-to” form returns a whole new structure with one subelement changed; it has the same
type as EXPRESSION. It must be emphasized that “attr-to” does not change the EXPRESSION or the object it
refers to, nor does it reassign any symbols; it returns a new value.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2002) runtime error is raised. If a map key is not found (at any level of dereferencing along
the path), a “map key not found” (code #2003) runtime error is raised. If a record field is not valid, it is a
semantic error, a scoring engine cannot be built.

Example 7.6. If x is an array, we can effectively change one element of x to xn by

{"set": {"x": {"attr": "x", "path": ["n"], "to": "xn"}}}

Example 7.7. If the "x.4.key.field" subelement is a int, following are equivalent:

{"attr": "x", "path": [4, ["key"], ["field"]], "to": {"+": ["x.4.key.field", 1]}}

and

{"attr": "x", "path": [4, ["key"], ["field"]], "to":
{"params": [{"z": "int"}], "ret": "int", "do": {"+": ["z", 1]}}}

The first version represents the same path twice (the second time with dot-notation for brevity), while the
second version represents the path once and applies an updator function when it gets to the end of the path.
This updator function could be referenced by name with fcnref for code re-use.

7.9 Extracting from and updating cells and pools

Cells and pools (see Sec. 2.2) are referenced with “cell” and “pool” special forms and updated with “cell-to”,
“pool-to”, and “pool-del” special forms. Subelements in a cell or pool are referenced/updated with a path
of the same form as “attr”, though the “cell” and “cell-to” forms may be given without any path to specify
the cell as a whole.

7.9.1 Retrieving cell values: the “cell” special form

The “cell” special form has the following syntax.

{"cell": NAME}

or

{"cell": NAME, "path": INDEXES}

where NAME is the name of the cell and INDEXES is a JSON array of int and string valued expressions (for
arrays and maps) and string literals (for records). If a path is not given, this form returns the value of the
specified cell. If a path is given, then it walks down the INDEXES of the path in the same way as “attr”.
Unlike “attr”, INDEXES may be an empty JSON array, in which case the behavior is the same as if path had
not been specified.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2004) runtime error is raised. If a map key is not found (at any level of dereferencing along
the path), a “map key not found” (code #2005) runtime error is raised. If a record field is not valid, it is a
semantic error, a scoring engine cannot be built.

55

7.9.2 Changing cell values: the “cell-to” special form

The “cell-to” special form has the following syntax.

{"cell": NAME, "to": VALUE-OR-FUNCTION}

or

{"cell": NAME, "path": INDEXES, "to": VALUE-OR-FUNCTION}

where VALUE-OR-FUNCTION is expression of type X or a function that maps X to X, assuming that the cell
or subelement has type X. Like “attr-to”, the to field replaces the cell or subelement at the end of the
path with VALUE-OR-FUNCTION if it is a value or evaluates VALUE-OR-FUNCTION on the subelement if it is a
function. Like “attr-to”, the return value is the new cell value. Unlike “attr-to”, the cell is changed in-place:
subsequent calls to extract the cell value will get the new value, rather than the old one. If the old value (or
its parts) were previously copied into a local symbol, those copies are unchanged.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2006) runtime error is raised. If a map key is not found (at any level of dereferencing along
the path), a “map key not found” (code #2007) runtime error is raised. If a record field is not valid, it is a
semantic error, a scoring engine cannot be built.

Example 7.8. For example, suppose that myCell is a cell containing an array of string and n is an index
within the bounds of the array.

{"let": {"x": {"cell": "myCell"}, "y": {"cell": "myCell", "path": ["n"]}}},
{"cell": "myCell", "path": ["n"], "to": {"string": "hello"}}

The first line retrieves the value of the cell and a subelement of the cell, putting them in local symbols x
and y. The second line changes myCell in such a way that element n (only) is now "hello". However, both
x and y are unchanged— they continue to reference the old value of myCell and its components.

For “attr-to”, the difference between the value form and the function form of VALUE-OR-FUNCTION is just
a matter of style (whether the path is repeated or the function can be re-used). For shared cells, choosing
between the value form and the function form of VALUE-OR-FUNCTION in “cell-to” could make a difference
in the behavior of the scoring engine. If a cell is extracted and replaced in two steps, then it is possible for
another scoring engine sharing that value to modify it between the extraction step and the replacement step.
The function form, however, is atomic: all other attempts to modify the value wait until it is done.

Example 7.9. Suppose that myCell is a shared cell that we want to increment by 1. If we use

{"cell": "myCell", "to": {"+": [{"cell": "myCell"}, 1]}}

in multiple scoring engines, then it is possible that their calls to “cell” and “cell-to” might interleave. In this
sequence of operations:

1. value of myCell is 5

2. scoring engine A gets the value of myCell (5)

3. scoring engine B gets the value of myCell (5)

4. scoring engine A adds 1 to 5 and sets the value of myCell to the result (6)

5. scoring engine B adds 1 to 5 and sets the value of myCell to the result (6)

56

myCell is only incremented once, though two scoring engines attempted to increment it. If steps 3 and 4
were reversed (a race condition), the final result would be 7, rather than 6.

Instead, we should increment a cell with the function form:

{"cell": "myCell", "to":
{"params": [{"x": "int"}], "ret": "int", "do": {"+": ["x", 1]}}}

The same applies to subelements of a cell specified by a path. If a path is used, the granularity of the
writers lock is at the level of the whole cell: two scoring engines cannot modify different parts of the same
cell at the same time. Calls to “cell” (readers) are never blocked: they always see the old version of the cell
until the “cell-to” function finishes (see Sec. 3.6).

The functions passed to “cell-to” are restricted: they should not be allowed to call any “cell-to” or “path-
to” at any level of their call graphs. (That is, they cannot modify cells or pools and the functions that they
call cannot modify cells or pools, including any functions those functions call, etc.) This constraint should
be enforced by a PFA system that supports shared cells, since it excludes the possibility of deadlock.

7.9.3 Retrieving pool values: the “pool” special form

The “pool” special form is similar to “cell”, except that a path is always required.

{"pool": NAME, "path": INDEXES}

The INDEXES must not be empty, and the first item must be a literal string naming the desired object in the
pool’s namespace.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2008) runtime error is raised. If a map key is not found (at any level of dereferencing along
the path, including the pool item itself), a “map key not found” (code #2009) runtime error is raised. If a
record field is not valid, it is a semantic error, a scoring engine cannot be built.

7.9.4 Creating or changing pool values: the “pool-to” special form

The “pool-to” special form is similar to “cell-to”, except that the path is always required and an init is
required to handle the case in which the desired pool element is missing.

{"pool": NAME, "path": INDEXES, "to": FUNCTION, "init": VALUE}

Unlike a cell, a pool element might not exist at runtime. If it does not exist, the element is created with
initial value VALUE and then the to replacement or function is applied. The VALUE specified by init must
have the type of a pool element. The “pool-to” form changes the value of the pool element in-place (like
“cell-to”) and returns the new value of the pool element.

The same concurrency issues apply to shared pools as to shared cells. The check for existence and update
or the check for existence, creation, and update are all performed in one atomic operation. The granularity
of the writers lock is on a single pool element, not the whole pool and not a part of the element.

Some PFA systems may implement shared cells and pools with a networked database. If so, they can
take advantage of the path in the “cell” special form or the “pool” special form to only transfer the relevant
subelement of the cell or pool over the network, rather than sending the whole data structure and extracting
the subelement afterward.

If an array index is out of bounds (at any level of dereferencing along the path), an “array index not
found” (code #2010) runtime error is raised. If a map key is not found (at any level of dereferencing along

57

the path), a “map key not found” (code #2011) runtime error is raised. If a record field is not valid, it is a
semantic error, a scoring engine cannot be built.

7.9.5 Removing pool values: the “pool-del” special form

The “pool-del” special form specifies a pool item for removal.

{"pool": NAME, "del": EXPRESSION}

The EXPRESSION must evaluate to a string, naming the pool item, and the special form returns null.
The same concurrency rules apply to “pool-del” as to “pool-to”. If scoring engine A begins a “pool-to”

on an item before scoring engine B begins a “pool-del” on the same item, the end result is that the item will
be deleted (either by letting the update continue and then deleting the item when done or by intelligently
stopping the update). If scoring engine A begins a “pool-del” on an item before scoring engine B begins a
“pool-to” on the same item, the update will proceed as though the item never existed (that is, using the
“pool-to” init).

Some PFA systems may implement shared pools with a networked database. If so, the “pool-del” is an
atomic transaction that must be queued in the same queue with “pool-to” (for the same item). No errors
are raised when the pool item is not found.

7.10 Tree-like structures in the program flow

7.10.1 Expanding an expression into a mini-program: the “do” special form

A “do” special form allows the PFA document author to insert a series of expressions where one expression
is expected. It has the following syntax.

{"do": ARRAY-OF-EXPRESSIONS}

where ARRAY-OF-EXPRESSIONS is a JSON array of expressions and the whole form is one expression. The
return value is the value of the last expression in the JSON array, which must not be empty.

It is also possible for ARRAY-OF-EXPRESSIONS to be replaced with a single expression, though doing so
would defeat the purpose of a “do” block. This option exists for symmetry with other, similar forms.

Example 7.10. A “do” form is also useful for declaring symbols in a sealed-within scope (see Sec. 5). For
instance, new symbols usually cannot be declared in a function’s argument list, but sometimes it is useful to
insert a mini-program as an argument (in a purely functional style). For instance,

{"someFunction": [
"simpleArgument",
{"do": [

{"let": {"x": 0}},
{"while": {"notDone": "x"}, "do": {"set": {"x": {"iterate": "x"}}}}
"x"

]},
"simpleArgument"]}

The first and third arguments to someFunction are just references to a symbol named simpleArgument, but
the second argument is a mini-program that calls iterate on a value until notDone is false.

58

Example 7.11. Although a “do” block can loosen a sealed-within scope, it cannot loosen its sealed-from-
above attribute. Symbols declared outside of a sealed-from-above scope cannot be modified in that scope,
even within a “do” block. For example, the following is invalid (a semantic error).

{"let": {"outerSymbol": 0}},
{"someFunction": [

{"do": [
{"set": {"outerSymbol": 1}},
"outerSymbol"

]}]}

because the scope of function arguments are sealed-from-above.

Example 7.12. A “do” block does not apply any additional constraints on the scope of symbols. The
following attempt to modify an outside symbols is valid.

{"let": {"outerSymbol": 0}},
{"do": [

{"set": {"outerSymbol": 1}},
"outerSymbol"

]}

7.11 Branching the program flow

Conditionals cause a branch in the program flow, in which the expressions that are evaluated depend on
values at runtime.

7.11.1 Conditional with one or two cases: the “if” special form

The “if” special form has the following syntax:

{"if": CONDITION, "then": EXPRESSION-OR-EXPRESSIONS}

or

{"if": CONDITION, "then": EXPRESSION-OR-EXPRESSIONS, "else": EXPRESSION-OR-EXPRESSIONS}

where CONDITION is a single expression that evaluates to boolean and EXPRESSION-OR-EXPRESSIONS is
either a single expression or a JSON array of expressions. The form without an else clause returns null,
but the form with an else clause returns the narrowest supertype of the then and else clauses.

The CONDITION expression is evaluated in a sealed-from-above, sealed-within scope, but the then and
else clauses are unsealed (see Sec. 5). That is, an outside symbol cannot be modified in the CONDITION,
but it can be modified in the then and else clauses. In an imperative programming style, then and else
are primarily used to assign values to symbols defined outside the “if”. In a functional programming style,
the return value of the entire “if” form would be assigned to a symbol.

7.11.2 Conditional with many cases: the “cond” special form

The “cond” special form allows one to chain a series of conditionals.

{"cond": [{"if": CONDITION1, "then": EXPRS1}, {"if": CONDITION2, "then": EXPRS2}, ...]}

59

or

{"cond": [{"if": CONDITION1, "then": EXPRS1}, {"if": CONDITION2, "then": EXPRS2}, ...],
"else": EXPRS}

The “if” forms within a “cond” are like stand-alone “if” forms except that they cannot have else clauses.
The “cond” form can have a single else clause. Much like an “if”, the return value of “cond” is null if else
is absent, and it is the narrowest supertype of all then clauses and the else clause if the else is present.
A “cond” must have at least one “if”. The CONDITION1, CONDITION2, . . . are all single expressions that are
sealed-from-above and sealed-within, and the EXPRS1, EXPRS2, . . . and EXPRS are either single expressions
or JSON arrays of expressions that are unsealed. The then clause corresponding to the first (and only the
first) successful if condition is evaluated, or the else clause is evaluated if no if conditions are successful.

7.12 Loops in the program flow

Loops repeatedly evaluate a set of expressions until some condition is met at runtime.

7.12.1 Generic pre-test loop: the “while” special form

The pre-test “while” special form has the following syntax.

{"while": CONDITION, "do": EXPRESSION-OR-EXPRESSIONS}

where CONDITION is a single expression that evaluates to boolean and EXPRESSION-OR-EXPRESSIONS is
either a single expression or a JSON array of expressions. The return value of the “while” form is null: it
can only be used to modify state. The scope of the CONDITION is sealed-from-above and sealed-within, but
the scope of the EXPRESSION-OR-EXPRESSIONS is unsealed (see Sec. 5).

The CONDITION is evaluated before the EXPRESSION-OR-EXPRESSIONS and the two are evaluated in
alternation until CONDITION returns false. If CONDITION returns false the first time it is called, the
EXPRESSION-OR-EXPRESSIONS would never be evaluated.

7.12.2 Generic post-test loop: the “do-until” special form

The post-test “do-until” special form has the following syntax.

{"do": EXPRESSION-OR-EXPRESSIONS, "until": CONDITION}

Like “while”, the CONDITION is a single expression that evaluates to boolean and EXPRESSION-OR-EXPRESSIONS
is either a single expression or a JSON array of expressions. The return value is null. The difference
is that the alternation between evaluating EXPRESSION-OR-EXPRESSIONS and CONDITION starts with the
EXPRESSION-OR-EXPRESSIONS and continues until CONDITION is true. Thus, the EXPRESSION-OR-EXPRESSIONS
is evaluated at least once, even if CONDITION is always true.

7.12.3 Iteration with dummy variables: the “for” special form

For loops are specialized loops that declare new symbols for use in the loop body. There are three basic
types: “for” loops, which are usually used to increment a numerical index, “foreach” loops, which iterate
over values of an array, and “forkey-forval” loops, which iterate over key-value pairs of a map.

The “for” special form has the following syntax.

60

{"for": NAME-TO-EXPRESSION, "while": CONDITION, "step": NAME-TO-EXPRESSION,
"do": EXPRESSION-OR-EXPRESSIONS}

The for clause’s NAME-TO-EXPRESSION is a JSON object whose members are new symbols to declare, the
step clause’s NAME-TO-EXPRESSION is a JSON object whose members are symbols to modify, and while is
a boolean-valued single expression that stops the iteration when it becomes false. The do expression or
expressions is the body of the loop, and the return value of the “for” form is null.

The for clause’s NAME-TO-EXPRESSION is similar to a let expression in that it declares and initializes
new symbols. The names of the symbols are the member names of the NAME-TO-EXPRESSION and the initial
values are the evaluated results of the member values. The scope of the initialization expressions are sealed-
from-above and sealed-within (see Sec. 5), and they are evaluated before anything else in the “if” form but
the order of initialization expressions is not guaranteed. The symbols declared by the for clause can only
be referenced in the while, step, and do clauses.

The step clause’s NAME-TO-EXPRESSION is similar to a set expression in that it changes symbols, usually by
incrementing them. The names of the symbols to modify are the member names of the NAME-TO-EXPRESSION
and their new values are the evaluated results of the member values. The scope of the updator expressions
are sealed-from-above and sealed-within, and if any updator expressions depend on a symbol that is also
being updated, they will see the old value of the symbol. That way, they can be evaluated in any order
without conflict, which is important because their order is not guaranteed.

The while expression is sealed-from-above and sealed-within. It is evaluated before the loop body (do),
so it is possible for the loop body to never be evaluated.

The do expression or expressions is evaluated while the CONDITION is true. The symbols declared by the
for clause may be referenced and even modified, though it is good practice to modify these loop variables
only in the step clause. The body of the loop is unsealed, meaning that it can modify symbols defined
outside of its scope.

Example 7.13. This is a basic for loop that indexes the loop iteration with an integer i.

{"for": {"i": 0}, "while": {"<": ["i", 10]}, "step": {"i": {"+": ["i", 1]}},
"do": [

{"something": i}
{"somethingElse": i}

]}

The something and somethingElse functions are called with arguments from 0 (inclusive) until 10 (exclu-
sive).

7.12.4 Iteration over arrays: the “foreach” special form

The “foreach” special form iterates over elements of an array. It has the following syntax.

{"foreach": NAME, "in": ARRAY-EXPRESSION, "do": EXPRESSION-OR-EXPRESSIONS}

or

{"foreach": NAME, "in": ARRAY-EXPRESSION, "do": EXPRESSION-OR-EXPRESSIONS,
"seq": TRUE-OR-FALSE}

where NAME is a string naming the new symbol to declare, ARRAY-EXPRESSION is a single expression whose
type is an array, the do expression or expressions is the body of the loop, and the return value of the

61

“for” form is null. The seq flag, if absent or set to true, ensures that the loop order through the array is
sequential. This flag affects the scope of symbols, so that a PFA system has the option to evaluate the loop
body in parallel if the seq flag is present and false.

The symbol declared by the foreach clause can be referenced only in the body of the loop. The
ARRAY-EXPRESSION is sealed-from-above and sealed-within. If the return type of the ARRAY-EXPRESSION
is an array of X, the symbol declared by foreach has type X.

The loop body is evaluated once for every element in the array specified by the in clause. Since the array
might be empty, the loop body might never be evaluated. If seq is absent or false, the order of elements
is not guaranteed and the loop scope is sealed-from-above. Some PFA implementations may take advantage
of this fact to parallelize the loop. (If so, all cells and pools referenced within the loop must be treated as
though they are shared.) If seq is absent or true, then the elements of the array are processed in order and
the loop scope is not sealed-from-above.

7.12.5 Iteration over maps: the “forkey-forval” special form

The “forkey-forval” special form iterates over key-value pairs of a map. It has the following syntax.

{"forkey": NAME1, "forval": NAME2, "in": MAP-EXPRESSION,
"do": EXPRESSION-OR-EXPRESSIONS}

where NAME1 is a string naming a new symbol that iterates through map keys, NAME2 is a string naming a
new symbol that iterates through map values, MAP-EXPRESSION is a single expression whose type is a map,
the do expression or expressions is the body of the loop, and the return value of the “forkey-forval” form is
null.

The symbols declared by the forkey and forval clauses can be referenced only in the body of the loop.
The MAP-EXPRESSION is sealed-from-above and sealed-within. If the return type of the MAP-EXPRESSION is
a map of X, the symbol declared by forval has type X. The symbol declared by forkey has type string.

The loop body is evaluated once for every key-value pair in the map specified by the in clause. Since
the map might be empty, the loop body might never be evaluated. The order of elements is not guaranteed,
but the loop scope is unsealed. An order-dependent calculation may yield different results every time it is
evaluated, so it is good practice to only perform order-independent operations in a “forkey-forval” loop.

7.13 Type-safe casting

Unrestricted type-casting would invalidate the guarantees that a static type check provides. It is allowed in
many popular programming languages, and if an incorrect type-cast is encountered at runtime, an exception
(Java) or undefined behavior (C++) ensues.

However, it is possible to provide the advantages of type-casting without invalidating the static type
check. Instead of returning the type-cast object as a single expression, we split the program flow into
branches, one for each possible down-cast type. For instance, if a possibly-missing input datum has type
union(null, double), we split the program flow into a branch that handles the null case and a branch that
handles the double case. Thus, the type-cast is a special kind of conditional.

7.13.1 Narrowing a type: the “cast-cases” special form

Down-casting (making a value’s type more specific) is handled by the “cast-cases” special form, which has
the following syntax.

62

{"cast": EXPRESSION, "cases": [
{"as": TYPE1, "named": NAME1, "do": EXPRESSION-OR-EXPRESSIONS1},
{"as": TYPE2, "named": NAME2, "do": EXPRESSION-OR-EXPRESSIONS2},
...

]}

or

{"cast": EXPRESSION, "cases": [
{"as": TYPE1, "named": NAME1, "do": EXPRESSION-OR-EXPRESSIONS1},
{"as": TYPE2, "named": NAME2, "do": EXPRESSION-OR-EXPRESSIONS2},
...],

"partial": TRUE-OR-FALSE}

The cast clause evaluates a single EXPRESSION with some type X. The as clauses enumerate possible subtypes
Yi of X. If X does not accept Yi, then branch i can never be reached, which should result in a semantic exception.
If partial is absent or false, then the Avro type schemae named by as clauses should be exhaustive, there
must be at least two cases, and the “cast-cases” form returns the last value of the followed branch. If partial
is present and true, then the types named by as clauses do not need to be exhaustive, there must be at
least one case, and the “cast-cases” form returns null. Only one branch is followed: the one with the first
matching type schema.

The named clause takes a string that declares a new symbol with the given name. The new symbol can
be referenced only within the corresponding do expression or expressions. Since the scopes of the do clauses
do not overlap, cases may re-use names without shadowing.

The cast expression is sealed-from-above and sealed-within, but the do expressions are unsealed (see
Sec. 5).
Example 7.14. This replaces a missing value in the input symbol by a default value, assuming that the
PFA document’s input type [null, double] (union of null and double). The “cast-cases” form is used as
an expression that initializes normalizedInput.

{"let": {"normalizedInput":
{"cast": "input", "cases": [

{"as": "null", "named": "x", "do": -1000.0},
{"as": "double", "named": "x", "do": "x"}

]}}}

Example 7.15. Alternatively, we could use an imperative programming style and overwrite a default value,
like the following.

{"let": {"normalizedInput": -1000.0}},
{"cast": "input", "cases":

[{"as: "double", "named": "x", "do": {"set": {"normalizedInput": "x"}}}]
"partial": true}

7.13.2 Widening a type: the “upcast” special form

It is sometimes (rarely) useful to up-cast a value, making it less specific. This is handled by the “upcast”
expression, which simply returns the casted value.

{"upcast": EXPRESSION, "as": TYPE}

The Avro type schema specified by as should accept the return type of EXPRESSION and raise a semantic
error if it does not.

63

7.13.3 Checking missing values: the “ifnotnull” special form

A special case that is frequently used in PFA is to cast a union of X and null to X. Null is used to represent
missing values, so this would branch the program flow based on whether the value is missing or not. Moreover,
some datasets have many fields that could be missing and it is useful to isolate the case in which none of
them are, in fact, missing. This could be accomplished with nested “cast-cases” forms, but the nesting level
would be very deep and unwieldy, even for automated processing.

To simplify the PFA document, the “ifnotnull” special form only performs a null-removing cast, but it
applies to one or more symbols simultaneously. It has the following syntax.

{"ifnotnull": {SYM1: EXPR1, ... SYMN: EXPRN}, "then": EXPRESSION-OR-EXPRESSIONS}

or

{"ifnotnull": {SYM1: EXPR1, ... SYMN: EXPRN}, "then": EXPRESSION-OR-EXPRESSIONS,
"else": EXPRESSION-OR-EXPRESSIONS}

where SYM1 . . . SYMN are as-yet undefined symbols, EXPR1 . . . EXPRN are single expressions, and
EXPRESSION-OR-EXPRESSIONS are expressions or JSON arrays of expressions.

All of the EXPR1 . . . EXPRN expressions are evaluated, in an unspecified order, with sealed-from-above
and sealed-within scope. Each of these expressions must have a union type that includes null, though they
may have different types from one another.

If all of the EXPR1 . . . EXPRN expressions are not null, their values are assigned to new symbols SYM1 . . .
SYMN, respectively. If the type of some EXPR is union(X, null), the corresponding SYM has type X. If the
type of some EXPR is union(X, Y, . . . null), the corresponding SYM has type union(X, Y, . . .). These
symbols are only defined in the scope of the then clause.

If all of the EXPR1 . . . EXPRN expressions are not null, the then clause is executed with the new symbols
in scope. If any of the EXPR1 . . . EXPRN expressions are null and the else clause exists, the else clause is
executed without any new symbols in scope. The then and else clauses have no scope constraints.

The “ifnotnull” form without an else clause returns null, but the form with an else clause returns the
narrowest supertype of the then and else clauses.

7.13.4 Extracting values from binary: the “unpack” special form

Sometimes inputs to a model are not provided as well-structured values but as a block of binary data. The
“unpack” special form interprets a bytes object as a set of new variables that can be used in a block of
expressions. The syntax is

{"unpack": BYTES-EXPRESSION, "format": [{SYM1: FORMAT1}, ... {SYMN: FORMATN}],
"then": EXPRESSION-OR-EXPRESSIONS}

to simply split the flow (returning null) or

{"unpack": BYTES-EXPRESSION, "format": [{SYM1: FORMAT1}, ... {SYMN: FORMATN}],
"then": EXPRESSION-OR-EXPRESSIONS, "else": EXPRESSION-OR-EXPRESSIONS}

to provide for the case in which the FORMAT does not match the BYTES-EXPRESSION. In both cases,
BYTES-EXPRESSION is an expression whose return value is bytes, SYM1 . . . SYMN are as-yet undefined sym-
bols, FORMAT1 . . . FORMATN are format-specifiers, described below, and EXPRESSION-OR-EXPRESSIONS are

64

expressions or JSON arrays of expressions. The latter case returns the result of the then clause or the else
clause, whose type is the narrowest supertype of the two.

Format specifiers are JSON strings that satisfy one of the following regular expressions, where \E is
(<|>|!|little|big|network)?, \U is unsigned, and \s is any whitespace character. If an endianness is
not provided, big-endian is assumed.

FORMAT Result PFA Type
\s*pad\s* skips one byte null
\s*boolean\s* interprets one byte as

true if nonzero
boolean

\s*(byte|int8)\s* one byte as signed inte-
ger

int

\s*\U\s*(byte|int8)\s* one byte as non-
negative integer

int

\s*\E\s*(short|int16)\s* two bytes as signed in-
teger

int

\s*\E\s*(\U\s*short|\U\s*int16)\s* two bytes as non-
negative integer

int

\s*\E\s*(int|int32)\s* four bytes as signed in-
teger

int

\s*\E\s*(\U\s*int|\U\s*int32)\s* four bytes as non-
negative integer

long

\s*\E\s*(long|long\s+long|int64)\s* eight bytes as signed in-
teger

long

\s*\E\s*(\U\s*long|\U\s*long\s+long|\U\s*int64)\s* eight bytes as non-
negative integer

double

\s*\E\s*(float|float32)\s* four bytes as IEEE 754
floating point number

float

\s*\E\s*(double|float64)\s* eight bytes as IEEE 754
floating point number

double

\s*raw\s*[0-9+\s*] extract fixed number of
bytes

bytes

\s*null\s*?terminated\s* extract bytes until ter-
minated by zero

bytes

(excluding terminus)
\s*length\s*?prefixed\s* interpret first byte as a

size, then extract that
many bytes

bytes

(excluding size byte)

If the fixed-width format specifiers and variable-width pattern specifiers (null-terminated and length-
prefixed) does not use exactly the number of bytes provided in the BYTES-EXPRESSION, the then clause will
not be evaluated. If an else clause is present, this is the clause that would be evaluated in this case.

65

http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935
http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935

7.13.5 Encoding values in binary: the “pack” special form

The “pack” special form does the opposite of the “unpack” form: it encodes a set of values into a byte array.
It has this syntax:

{"pack": [{FORMAT1: EXPRESSION1}, ... {FORMATN: EXPRESSIONN}]}

where FORMAT1 . . . FORMATN are format specifiers and EXPRESSION1 . . . EXPRESSIONN are expressions whose
types must correspond to the format specifiers.

The “pack” special form has the same format specifiers as “unpack” except for one additional specifier:

FORMAT Result PFA Type
\s*raw\s* any number of bytes bytes

The return type of the “pack” special form is bytes.
If the size of a fixed-width bytes format does not match the size of the bytes expression, a “raw bytes

does not have specified size” (code #3000) runtime error is raised. If a bytes expression for a length-prefixed
format is too large, a “length prefixed bytes is larger than 255 bytes” (code #3001) runtime error is raised.

7.14 Miscellaneous special forms

7.14.1 Inline documentation: the “doc” special form

JSON has no means of including comments. Auto-generated code usually doesn’t need comments, but there
may be occasions in which it is useful to embed inactive statements in a PFA document.

The “doc” special form has the following syntax.

{"doc": STRING}

Unlike a comment in a programming language, it occupies a slot in the syntax tree. If inactive expressions
are ever needed (the equivalent of Python’s pass keyword), one could use a “doc” with an empty STRING.
This form returns null.

7.14.2 User-defined exceptions: the “error” special form

PFA provides non-local exits to stop the evaluation of a begin, action, or end routine that behave like
exceptions (see Sec. 3.7). Some library functions raise exceptions, but the PFA author can also raise user-
defined exceptions. The PFA engine is free to halt execution or just skip to the next input datum upon
encountering an exception.

The “error” special form raises user-defined exceptions. It has the following syntax.

{"error": STRING}

or

{"error": STRING, "code": NEGATIVE-INTEGER}

66

The STRING is the error message, and if a code is provided, it provides a safer way to identify specific errors
than a human-readable message. User-defined error codes are negative to distinguish themselves from the
library functions.

The “error” form has no return type: specifically, its return type is a type that can never be instantiated,
called a bottom type. The narrowest supertype of the bottom type with X is X, and thus if an if statement
has a “then” branch that ends in a value and an “else” branch that ends in an error, the type of the if
statement is the type of the value. The same is true of “cond” forms, “cast” blocks, and anything else that
branches the program flow. If place at a point that does not branch the program flow (e.g. at the end of a
“do” form), then the type is converted into null.

7.14.3 Turning exceptions into missing values: the “try” special form

A running scoring engine should only encounter two types of errors: a runtime error in a library call or a
user-defined error. Sometimes, it is better to treat exceptional cases as missing values than non-local exits.
The “try” special form evaluates an expression or array of expressions, catches errors, and either returns the
result of the calculation or null to indicate a missing value. It has the following syntax.

{"try": EXPRESSION-OR-EXPRESSIONS}

or

{"try": EXPRESSION-OR-EXPRESSIONS, "filter": ARRAY-OF-STRINGS-AND-INTEGERS}

The return type of the “try” form is a union of “null” and the type of the last expression in the block.
Thus, if the EXPRESSION-OR-EXPRESSIONS calculates a numerical result (e.g. “double”), the try returns a
possibly missing numerical result (e.g. [“double”, “null”]). This missing value may be returned directly or
wrapped in an “ifnotnull” form to build a traditional try-catch block: the “ifnotnull” would perform the
catch logic.

Example 7.16. Example of a traditional try-catch block.

{"ifnotnull": {result: {"try": TRY-LOGIC}},
"then": result,
"else": CATCH-LOGIC}

If a “filter” is provided, only the specified error messages would be caught— the rest are passed through.
The strings need to match the error message text exactly, and the integers match error codes.

7.14.4 Log messages: the “log” special form

The only three outputs that a PFA scoring engine can emit are (1) normal output, the result of a calculation,
(2) an exception, and (3) log messages. Log messages should not be used for normal output, as they may or
may not be handled by the host PFA system. The PFA system has full discretion to ignore, filter, collate,
forward, or merge log messages.

The “log” special form emits a log message. It has the following syntax.

{"log": EXPRESSION-OR-EXPRESSIONS}

or

{"log": EXPRESSION-OR-EXPRESSIONS, "namespace": NAME}

67

The EXPRESSION-OR-EXPRESSIONS are the expressions to dump to the log (remember to wrap plain strings
in {"string": " . . . "} or [" . . . "]); the optional NAMESPACE is a token that may be used for filtering or
collating. The “log” form returns null.

68

8 Core library

The core library contains functions that would, in most languages, be infix operators. Following a LISP style
of defining them as functions makes it easier to manipulate the expression tree with an automated algorithm.

8.1 Basic arithmetic

8.1.1 Addition of two values (+)

Signature: {"+": [x, y]}

x any A of {int, long, float, double}
y A

(returns) A

Description: Add x and y.

Details:
Float and double overflows do not produce runtime errors but result in positive or negative
infinity, which would be carried through any subsequent calculations (see IEEE 754). Use
impute.ensureFinite to produce errors from infinite or NaN values.

Runtime Errors:
#18000: Integer results above or below -2147483648 and 2147483647 (inclusive) produce an “int
overflow” runtime error.
#18001: Long-integer results above or below -9223372036854775808 and 9223372036854775807 (in-
clusive) produce a “long overflow” runtime error.

8.1.2 Subtraction (−)

Signature: {"-": [x, y]}

x any A of {int, long, float, double}
y A

(returns) A

Description: Subtract y from x.

Details:
Float and double overflows do not produce runtime errors but result in positive or negative
infinity, which would be carried through any subsequent calculations (see IEEE 754). Use
impute.ensureFinite to produce errors from infinite or NaN values.

Runtime Errors:
#18010: Integer results above or below -2147483648 and 2147483647 (inclusive) produce an “int
overflow” runtime error.
#18011: Long-integer results above or below -9223372036854775808 and 9223372036854775807 (in-
clusive) produce a “long overflow” runtime error.

69

8.1.3 Multiplication of two values (*)

Signature: {"*": [x, y]}

x any A of {int, long, float, double}
y A

(returns) A

Description: Multiply x and y.

Details:
Float and double overflows do not produce runtime errors but result in positive or negative
infinity, which would be carried through any subsequent calculations (see IEEE 754). Use
impute.ensureFinite to produce errors from infinite or NaN values.

Runtime Errors:
#18020: Integer results above or below -2147483648 and 2147483647 (inclusive) produce an “int
overflow” runtime error.
#18021: Long-integer results above or below -9223372036854775808 and 9223372036854775807 (in-
clusive) produce a “long overflow” runtime error.

8.1.4 Floating-point division (/)

Signature: {"/": [x, y]}

x double
y double
(returns) double

Description: Divide y from x, returning a floating-point number (even if x and y are integers).

Details:

This function returns an infinite value if x is non-zero and y is zero and NaN if both are zero.

8.1.5 Integer division (//)

Signature: {"//": [x, y]}

x any A of {int, long}
y A

(returns) A

Description: Divide y from x, returning the largest whole number N for which N ≤ x/y (integral floor
division).

Runtime Errors:

#18040: If y is zero, this function raises a “integer division by zero” runtime error.

70

8.1.6 Negation (u−)

Signature: {"u-": [x]}

x any A of {int, long, float, double}
(returns) A

Description: Return the additive inverse of x.

Runtime Errors:
#18050: For exactly one integer value, -2147483648, this function raises an “int overflow” runtime
error.
#18051: For exactly one long value, -9223372036854775808, this function raises a “long overflow”
runtime error.

8.1.7 Modulo (%)

Signature: {"%": [k, n]}

k any A of {int, long, float, double}
n A

(returns) A

Description: Return k modulo n; the result has the same sign as the modulus n.

Details:

This is the behavior of the % operator in Python, mod/modulo in Ada, Haskell, and Scheme.

Runtime Errors:
#18060: If n is zero and k and n are int or long, this function raises a “integer division by zero”
runtime error.

8.1.8 Remainder (%%)

Signature: {"%%": [k, n]}

k any A of {int, long, float, double}
n A

(returns) A

Description: Return the remainder of k divided by n; the result has the same sign as the dividend k.

Details:
This is the behavior of the % operator in Fortran, C/C++, and Java, rem/remainder in Ada, Haskell,
and Scheme.

71

Runtime Errors:
#18070: If n is zero and k and n are int or long, this function raises a “integer division by zero”
runtime error.

8.1.9 Raising to a power (**)

Signature: {"**": [x, y]}

x any A of {int, long, float, double}
y A

(returns) A

Description: Raise x to the power n.

Details:
Float and double overflows do not produce runtime errors but result in positive or negative
infinity, which would be carried through any subsequent calculations (see IEEE 754). Use
impute.ensureFinite to produce errors from infinite or NaN values.

Runtime Errors:
#18080: Integer results above or below -2147483648 and 2147483647 (inclusive) produce an “int
overflow” runtime error.
#18081: Long-integer results above or below -9223372036854775808 and 9223372036854775807 (in-
clusive) produce a “long overflow” runtime error.

8.2 Comparison operators

Avro defines a sort order for every pair of values with a compatible type, so any two objects of compatible
type can be compared in PFA.

8.2.1 General comparison (cmp)

Signature: {"cmp": [x, y]}

x any A

y A

(returns) int

Description: Return 1 if x is greater than y, -1 if x is less than y, and 0 if x and y are equal.

8.2.2 Equality (==)

Signature: {"==": [x, y]}

72

http://avro.apache.org/docs/1.7.6/spec.html#order

x any A

y A

(returns) boolean

Description: Return true if x is equal to y, false otherwise.

8.2.3 Inequality (!=)

Signature: {"!=": [x, y]}

x any A

y A

(returns) boolean

Description: Return true if x is not equal to y, false otherwise.

8.2.4 Less than (<)

Signature: {"<": [x, y]}

x any A

y A

(returns) boolean

Description: Return true if x is less than y, false otherwise.

8.2.5 Less than or equal to (<=)

Signature: {"<=": [x, y]}

x any A

y A

(returns) boolean

Description: Return true if x is less than or equal to y, false otherwise.

8.2.6 Greater than (>)

Signature: {">": [x, y]}

73

x any A

y A

(returns) boolean

Description: Return true if x is greater than y, false otherwise.

8.2.7 Greater than or equal to (>=)

Signature: {">=": [x, y]}

x any A

y A

(returns) boolean

Description: Return true if x is greater than or equal to y, false otherwise.

8.2.8 Maximum of two values (max)

Signature: {"max": [x, y]}

x any A

y A

(returns) A

Description: Return x if x ≥ y, y otherwise.

Details:

For the maximum of more than two values, see a.max

8.2.9 Minimum of two values (min)

Signature: {"min": [x, y]}

x any A

y A

(returns) A

Description: Return x if x < y, y otherwise.

Details:

For the minimum of more than two values, see a.min

74

8.3 Logical operators

8.3.1 Logical and (&&)

Signature: {"&&": [x, y]}

x boolean
y boolean
(returns) boolean

Description: Return true if x and y are both true, false otherwise.

Details:

If x is false, y won’t be evaluated. (Only relevant for arguments with side effects.)

8.3.2 Logical or (||)

Signature: {"||": [x, y]}

x boolean
y boolean
(returns) boolean

Description: Return true if either x or y (or both) are true, false otherwise.

Details:

If x is true, y won’t be evaluated. (Only relevant for arguments with side effects.)

8.3.3 Logical xor (ˆˆ)

Signature: {"ˆˆ": [x, y]}

x boolean
y boolean
(returns) boolean

Description: Return true if x is true and y is false or if x is false and y is true, but return false
for any other case.

8.3.4 Logical not (!)

Signature: {"!": [x]}

75

x boolean
(returns) boolean

Description: Return true if x is false and false if x is true.

8.4 Kleene operators (three-way logic)

8.4.1 Kleene and (&&&)

Signature: {"&&&": [x, y]}

x union of {boolean, null}
y union of {boolean, null}
(returns) union of {boolean, null}

Description: Return false if x or y is false, true if x and y are true, and null otherwise.

Details:
This corresponds to Kleene’s three-state logic, in which null represents a boolean quantity whose
value is unknown.
If x is false, y won’t be evaluated. (Only relevant for arguments with side effects.)

8.4.2 Kleene or (|||)

Signature: {"|||": [x, y]}

x union of {boolean, null}
y union of {boolean, null}
(returns) union of {boolean, null}

Description: Return true if x or y is true, false if both x and y is false, or null otherwise.

Details:
This corresponds to Kleene’s three-state logic, in which null represents a boolean quantity whose
value is unknown.
If x is true, y won’t be evaluated. (Only relevant for arguments with side effects.)

8.4.3 Kleene not (!!!)

Signature: {"!!!": [x]}

x union of {boolean, null}
(returns) union of {boolean, null}

Description: Return true if x is false, false if x is true, or null if x is null.

76

Details:
This corresponds to Kleene’s three-state logic, in which null represents a boolean quantity whose
value is unknown.

8.5 Bitwise arithmetic

8.5.1 Bitwise and (&)

Signature: {"&": [x, y]}

x int
y int
(returns) int

or

x long
y long
(returns) long

Description: Calculate the bitwise-and of x and y.

8.5.2 Bitwise or (|)

Signature: {"|": [x, y]}

x int
y int
(returns) int

or

x long
y long
(returns) long

Description: Calculate the bitwise-or of x and y.

8.5.3 Bitwise xor (ˆ)

Signature: {"ˆ": [x, y]}

x int
y int
(returns) int

77

or

x long
y long
(returns) long

Description: Calculate the bitwise-exclusive-or of x and y.

8.5.4 Bitwise not (~)

Signature: {"~": [x]}

x int
(returns) int

or

x long
(returns) long

Description: Calculate the bitwise-not of x.

78

9 Math library

9.1 Constants

Constants such as π and e are represented as stateless functions with no arguments. Specific implementations
may choose to replace the function call with its inline value.

9.1.1 Archimedes’ constant π (m.pi)

Signature: {"m.pi": []}

(returns) double

Description: The double-precision number that is closer than any other to π, the ratio of a circumference
of a circle to its diameter.

9.1.2 Euler’s constant e (m.e)

Signature: {"m.e": []}

(returns) double

Description: The double-precision number that is closer than any other to e, the base of natural loga-
rithms.

9.2 Common functions

9.2.1 Square root (m.sqrt)

Signature: {"m.sqrt": [x]}

x double
(returns) double

Description: Return the positive square root of x.

Details:
The domain of this function is from 0 (inclusive) to infinity. Beyond this domain, the result is NaN,
not an exception (see IEEE 754). Use impute.ensureFinite to produce errors from infinite or NaN
values."

9.2.2 Hypotenuse (m.hypot)

Signature: {"m.hypot": [x, y]}

79

x double
y double
(returns) double

Description: Return
√
x2 + y2.

Details:
Avoids round-off or overflow errors in the intermediate steps.
The domain of this function is the whole real line; no input is invalid.

9.2.3 Trigonometric sine (m.sin)

Signature: {"m.sin": [x]}

x double
(returns) double

Description: Return the trigonometric sine of x, which is assumed to be in radians.

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.4 Trigonometric cosine (m.cos)

Signature: {"m.cos": [x]}

x double
(returns) double

Description: Return the trigonometric cosine of x, which is assumed to be in radians.

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.5 Trigonometric tangent (m.tan)

Signature: {"m.tan": [x]}

x double
(returns) double

Description: Return the trigonometric tangent of x, which is assumed to be in radians.

Details:

The domain of this function is the whole real line; no input is invalid.

80

9.2.6 Inverse trigonometric sine (m.asin)

Signature: {"m.asin": [x]}

x double
(returns) double

Description: Return the arc-sine (inverse of the sine function) of x as an angle in radians between −π/2
and π/2.

Details:
The domain of this function is from -1 to 1 (inclusive). Beyond this domain, the result is NaN, not an
exception (see IEEE 754). Use impute.ensureFinite to produce errors from infinite or NaN values."

9.2.7 Inverse trigonometric cosine (m.acos)

Signature: {"m.acos": [x]}

x double
(returns) double

Description: Return the arc-cosine (inverse of the cosine function) of x as an angle in radians between
0 and π.

Details:
The domain of this function is from -1 to 1 (inclusive). Beyond this domain, the result is NaN, not an
exception (see IEEE 754). Use impute.ensureFinite to produce errors from infinite or NaN values."

9.2.8 Inverse trigonometric tangent (m.atan)

Signature: {"m.atan": [x]}

x double
(returns) double

Description: Return the arc-tangent (inverse of the tangent function) of x as an angle in radians between
−π/2 and π/2.

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.9 Robust inverse trigonometric tangent (m.atan2)

Signature: {"m.atan2": [y, x]}

81

y double
x double
(returns) double

Description: Return the arc-tangent (inverse of the tangent function) of y/x without loss of precision
for small x.

Details:
The domain of this function is the whole real plane; no pair of inputs is invalid.
Note that y is the first parameter and x is the second parameter.

9.2.10 Hyperbolic sine (m.sinh)

Signature: {"m.sinh": [x]}

x double
(returns) double

Description: Return the hyperbolic sine of x, which is equal to ex−e−x

2 .

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.11 Hyperbolic cosine (m.cosh)

Signature: {"m.cosh": [x]}

x double
(returns) double

Description: Return the hyperbolic cosine of x, which is equal to ex+e−x

2

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.12 Hyperbolic tangent (m.tanh)

Signature: {"m.tanh": [x]}

x double
(returns) double

Description: Return the hyperbolic tangent of x, which is equal to ex−e−x

ex+e−x .

Details:

82

The domain of this function is the whole real line; no input is invalid.

9.2.13 Natural exponential (m.exp)

Signature: {"m.exp": [x]}

x double
(returns) double

Description: Return m.e raised to the power of x.

Details:

The domain of this function is the whole real line; no input is invalid.

9.2.14 Natural exponential minus one (m.expm1)

Signature: {"m.expm1": [x]}

x double
(returns) double

Description: Return ex − 1.

Details:
Avoids round-off or overflow errors in the intermediate steps.
The domain of this function is the whole real line; no input is invalid.

9.2.15 Natural logarithm (m.ln)

Signature: {"m.ln": [x]}

x double
(returns) double

Description: Return the natural logarithm of x.

Details:
The domain of this function is from 0 to infinity (exclusive). Given zero, the result is negative infinity,
and below zero, the result is NaN, not an exception (see IEEE 754). Use impute.ensureFinite to
produce errors from infinite or NaN values."

9.2.16 Logarithm base 10 (m.log10)

Signature: {"m.log10": [x]}

83

x double
(returns) double

Description: Return the logarithm base 10 of x.

Details:
The domain of this function is from 0 to infinity (exclusive). Given zero, the result is negative infinity,
and below zero, the result is NaN, not an exception (see IEEE 754). Use impute.ensureFinite to
produce errors from infinite or NaN values."

9.2.17 Arbitrary logarithm (m.log)

Signature: {"m.log": [x, base]}

x double
base int
(returns) double

Description: Return the logarithm of x with a given base.

Details:
The domain of this function is from 0 to infinity (exclusive). Given zero, the result is negative infinity,
and below zero, the result is NaN, not an exception (see IEEE 754). Use impute.ensureFinite to
produce errors from infinite or NaN values."

Runtime Errors:
#27170: If base is less than or equal to zero, this function produces a “base must be positive”
runtime error.

9.2.18 Natural logarithm of one plus square (m.ln1p)

Signature: {"m.ln1p": [x]}

x double
(returns) double

Description: Return ln(x2 + 1).

Details:
Avoids round-off or overflow errors in the intermediate steps.
The domain of this function is from -1 to infinity (exclusive). Given -1, the result is negative infinity,
and below -1, the result is NaN, not an exception (see IEEE 754). Use impute.ensureFinite to
produce errors from infinite or NaN values."

84

9.3 Rounding

9.3.1 Absolute value (m.abs)

Signature: {"m.abs": [x]}

x any A of {int, long, float, double}
(returns) A

Description: Return the absolute value of x.

Details:

The domain of this function is the whole real line; no input is invalid.

Runtime Errors:
#27020: For exactly one integer value, -2147483648, this function produces an “int overflow” runtime
error.
#27021: For exactly one long value, -9223372036854775808, this function produces a “long overflow”
runtime error.

9.3.2 Floor (m.floor)

Signature: {"m.floor": [x]}

x double
(returns) double

Description: Return the largest (closest to positive infinity) whole number that is less than or equal to
the input.

Details:

The domain of this function is the whole real line; no input is invalid.

9.3.3 Ceiling (m.ceil)

Signature: {"m.ceil": [x]}

x double
(returns) double

Description: Return the smallest (closest to negative infinity, not closest to zero) whole number that is
greater than or equal to the input.

Details:

The domain of this function is the whole real line; no input is invalid.

85

9.3.4 Simple rounding (m.round)

Signature: {"m.round": [x]}

x float
(returns) int

or

x double
(returns) long

Description: Return the closest whole number to x, rounding up if the fractional part is exactly one-half.

Details:

Equal to m.floor of (x + 0.5).

Runtime Errors:
#27190: Integer results outside of -2147483648 and 2147483647 (inclusive) produce an “int overflow”
runtime error.
#27191: Long-integer results outside of -9223372036854775808 and 9223372036854775807 (inclusive)
produce a “long overflow” runtime error.

9.3.5 Unbiased rounding (m.rint)

Signature: {"m.rint": [x]}

x double
(returns) double

Description: Return the closest whole number to x, rounding toward the nearest even number if the
fractional part is exactly one-half.

9.3.6 Threshold function (m.signum)

Signature: {"m.signum": [x]}

x double
(returns) int

Description: Return 0 if x is zero, 1 if x is positive, and -1 if x is negative.

Details:

The domain of this function is the whole real line; no input is invalid.

86

9.3.7 Copy sign (m.copysign)

Signature: {"m.copysign": [mag, sign]}

mag any A of {int, long, float, double}
sign A

(returns) A

Description: Return a number with the magnitude of mag and the sign of sign.

Details:

The domain of this function is the whole real or integer plane; no pair of inputs is invalid.

9.4 Special functions

9.4.1 Error function (m.special.erf)

Signature: {"m.special.erf": [x]}

x double
(returns) double

Description: Return the error function of x.

9.4.2 Complimentary error function (m.special.erfc)

Signature: {"m.special.erfc": [x]}

x double
(returns) double

Description: Return the complimentary error function of x.

9.4.3 Natural log of the gamma function (m.special.lnGamma)

Signature: {"m.special.lnGamma": [x]}

x double
(returns) double

Description: Return the natural log of the gamma function of x.

87

9.4.4 Natural log of the beta function (m.special.lnBeta)

Signature: {"m.special.lnBeta": [a, b]}

a double
b double
(returns) double

Description: Compute the beta function parameterized by a and b.

Parameters:

(return value) With a and b, this function evaluates natural logarithm of the beta function. The beta
function is

∫ 1
0 t

a−1(1− t)b−1dt.

Runtime Errors:

#36010: Raises “domain error” if a ≤ 0 or if b ≤ 0.

9.4.5 Binomial coefficient (m.special.nChooseK)

Signature: {"m.special.nChooseK": [n, k]}

n int
k int
(returns) int

Description: The number of ways to choose k elements from a set of n elements.

Parameters:

n Total number of elements.
k Numer of elements chosen.
(return value) With n and k, this function evaluates the binomial coefficient.

Runtime Errors:

#36000: Raises “domain error” if k ≤ 0 or k ≥ n.

9.5 Link or activation functions

9.5.1 Logit (m.link.logit)

Signature: {"m.link.logit": [x]}

x double
(returns) double

or

88

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the logit function.

Parameters:

(return value) Each element xi is mapped to 1/(1 + exp(−xi)).

9.5.2 Probit (m.link.probit)

Signature: {"m.link.probit": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the probit function.

Parameters:

(return value) Each element xi is mapped to (erf(xi/
√

2) + 1)/2.

9.5.3 Log-log (m.link.loglog)

Signature: {"m.link.loglog": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

89

x map of double
(returns) map of double

Description: Normalize a prediction with the loglog function.

Parameters:

(return value) Each element xi is mapped to exp(− exp(xi)).

9.5.4 Complement of log-log (m.link.cloglog)

Signature: {"m.link.cloglog": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the cloglog function.

Parameters:

(return value) Each element xi is mapped to 1− exp(− exp(xi)).

9.5.5 Cauchit (m.link.cauchit)

Signature: {"m.link.cauchit": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the cauchit function.

90

Parameters:

(return value) Each element xi is mapped to 0.5 + (1/π) tan−1(xi).

9.5.6 Hyperbolic tangent (m.link.tanh)

Signature: {"m.link.tanh": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the hyperbolic tangent function.

Parameters:

(return value) Each element xi is mapped to tanh(xi).

9.5.7 Softmax (m.link.softmax)

Signature: {"m.link.softmax": [x]}

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the softmax function.

Parameters:

(return value) Each element xi is mapped to exp(xi)/
∑
j exp(xj).

Runtime Errors:

#25000: If x is an empty array or an empty map, this function raises an “empty input” error.

91

9.5.8 SoftPlus (m.link.softplus)

Signature: {"m.link.softplus": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the softplus function.

Parameters:

(return value) Each element xi is mapped to log(1.0 + exp(xi)).

9.5.9 Rectified linear unit (m.link.relu)

Signature: {"m.link.relu": [x]}

x double
(returns) double

or

x array of double
(returns) array of double

or

x map of double
(returns) map of double

Description: Normalize a prediction with the rectified linear unit (ReLu) function.

Parameters:

(return value) Each element xi is mapped to log(1.0 + exp(xi)).

9.6 Kernel functions

9.6.1 Linear (m.kernel.linear)

Signature: {"m.kernel.linear": [x, y]}

92

x array of double
y array of double
(returns) double

Description: Linear kernel function.

Parameters:

x Length n vector.
y Length n vector.
(return value) Returns the dot product of x and y,

∑n
i=1 xiyj .

Runtime Errors:

#23000: Raises a “arrays must have same length” error if the lengths of x and y are not the same.

9.6.2 Radial basis function (m.kernel.rbf)

Signature: {"m.kernel.rbf": [x, y, gamma]}

x array of double
y array of double
gamma double
(returns) double

Description: Radial Basis Function (RBF) kernel function.

Parameters:

x Length n vector.
y Length n vector.
gamma Gamma coefficient.
(return value) Returns the result of exp(−γ||x− y||2).

Runtime Errors:

#23010: Raises a “arrays must have same length” error if the lengths of x and y are not the same.

9.6.3 Polynomal (m.kernel.poly)

Signature: {"m.kernel.poly": [x, y, gamma, intercept, degree]}

93

x array of double
y array of double
gamma double
intercept double
degree double
(returns) double

Description: Polynomial kernel function.

Parameters:

x Length n vector.
y Length n vector.
gamma Gamma coefficient.
intecept Intercept constant.
degree Degree of the polynomial kernel.
(return value) Returns the result of (γ

∑n
i=1 xiyj + intercept)degree.

Runtime Errors:

#23020: Raises a “arrays must have same length” error if the lengths of x and y are not the same.

9.6.4 Sigmoidal (m.kernel.linear)

Signature: {"m.kernel.sigmoid": [x, y, gamma, intercept]}

x array of double
y array of double
gamma double
intercept double
(returns) double

Description: Sigmoid kernel function.

Parameters:

x Length n vector.
y Length n vector.
gamma Gamma coefficient.
intecept Intercept constant.
(return value) Returns the result of tanh(gamma

∑n
i=1 xiyj + intercept).

Runtime Errors:

#23030: Raises a “arrays must have same length” error if the lengths of x and y are not the same.

94

95

10 Linear algebra library

10.1 Unary scaling of vectors or matrices (la.scale)

Signature: {"la.scale": [x, alpha]}

x array of double
alpha double
(returns) array of double

or

x array of array of double
alpha double
(returns) array of array of double

or

x map of double
alpha double
(returns) map of double

or

x map of map of double
alpha double
(returns) map of map of double

Description: Scale vector or matrix x by factor alpha.

Details:

The order in which elements are computed is not specified, and may be in parallel.

10.2 Generalized unary operator (la.map)

Signature: {"la.map": [x, fcn]}

x array of array of double
fcn function (double) → double
(returns) array of array of double

or

x map of map of double
fcn function (double) → double
(returns) map of map of double

Description: Apply fcn to each element from x.

Details:

96

This can be used to perform scalar multiplication on a matrix: supply a function that multiplies each
element by a constant.
The order in which elements are computed is not specified, and may be in parallel.

10.3 Addition of vectors or matrices (la.add)

Signature: {"la.add": [x, y]}

x array of double
y array of double
(returns) array of double

or

x array of array of double
y array of array of double
(returns) array of array of double

or

x map of double
y map of double
(returns) map of double

or

x map of map of double
y map of map of double
(returns) map of map of double

Description: Add two vectors or matrices x and y.

Details:
The order in which elements are computed is not specified, and may be in parallel.
Like most functions that deal with matrices, this function has an array signature and a map signature.
In the array signature, the number of rows and/or columns in x must be equal to the number of
rows and/or columns of y, respectively (dense matrix). In the map signature, missing row-column
combinations are assumed to be zero (sparse matrix).

Runtime Errors:
#24030: In the array signature, if any element in x does not have a corresponding element in y (or
vice-versa), this function raises a “misaligned matrices” error.

10.4 Subtraction of vectors or matrices (la.sub)

Signature: {"la.sub": [x, y]}

97

x array of double
y array of double
(returns) array of double

or

x array of array of double
y array of array of double
(returns) array of array of double

or

x map of double
y map of double
(returns) map of double

or

x map of map of double
y map of map of double
(returns) map of map of double

Description: Subtract vector or matrix y from x (returns x− y).

Details:
The order in which elements are computed is not specified, and may be in parallel.
Like most functions that deal with matrices, this function has an array signature and a map signature.
In the array signature, the number of rows and/or columns in x must be equal to the number of
rows and/or columns of y, respectively (dense matrix). In the map signature, missing row-column
combinations are assumed to be zero (sparse matrix).

Runtime Errors:
#24040: In the array signature, if any element in x does not have a corresponding element in y (or
vice-versa), this function raises a “misaligned matrices” error.

10.5 Generalized binary operator (la.zipmap)

Signature: {"la.zipmap": [x, y, fcn]}

x array of array of double
y array of array of double
fcn function (double, double) → double
(returns) array of array of double

or

98

x map of map of double
y map of map of double
fcn function (double, double) → double
(returns) map of map of double

Description: Apply fcn to each pair of elements from x and y.

Details:
This can be used to perform matrix addition: supply a function that adds each pair of elements.
Like most functions that deal with matrices, this function has an array signature and a map signature.
In the array signature, the number of rows and columns in x must be equal to the number of rows and
columns of y, respectively (dense matrix). In the map signature, missing row-column combinations
are assumed to be zero (sparse matrix).
The order in which elements are computed is not specified, and may be in parallel.

Runtime Errors:
#24020: In the array signature, if any element in x does not have a corresponding element in y (or
vice-versa), this function raises a “misaligned matrices” error.

10.6 Vector and matrix dot product (la.dot)

Signature: {"la.dot": [x, y]}

x array of array of double
y array of double
(returns) array of double

or

x map of map of double
y map of double
(returns) map of double

or

x array of array of double
y array of array of double
(returns) array of array of double

or

x map of map of double
y map of map of double
(returns) map of map of double

Description: Multiply two matrices or a matrix and a vector, which may be represented as dense arrays
or potentially sparse maps.

Details:

99

Like most functions that deal with matrices, this function has an array signature and a map signature.
In the array signature, the number of columns of xmust be equal to the number of rows (or the number
of elements) of y (dense matrix). In the map signature, missing values are assumed to be zero (sparse
matrix).
Matrices supplied as maps may be computed using sparse methods.

Runtime Errors:
#24050: In the array signature, if the dimensions of x do not correspond to the dimension(s) of y,
this function raises a “misaligned matrices” error.
#24051: If x or y has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24052: If x or y contains any non-finite values, this function raises a “contains non-finite value”
error.

10.7 Transpose (la.transpose)

Signature: {"la.transpose": [x]}

x array of array of double
(returns) array of array of double

or

x map of map of double
(returns) map of map of double

Description: Transpose a rectangular matrix.

Runtime Errors:
#24060: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24061: If the columns are ragged (arrays of different lengths or maps with different sets of keys),
this function raises a “ragged columns” error.

10.8 Inverse and pseudo-inverse (la.inverse)

Signature: {"la.inverse": [x]}

x array of array of double
(returns) array of array of double

or

x map of map of double
(returns) map of map of double

Description: Compute the inverse (or Moore-Penrose pseudoinverse, if not square) of x.

Runtime Errors:

100

#24070: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24071: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.

10.9 Trace (la.trace)

Signature: {"la.trace": [x]}

x array of array of double
(returns) double

or

x map of map of double
(returns) double

Description: Compute the trace of a matrix (sum of diagonal elements).

Runtime Errors:
#24080: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.

10.10 Determinant (la.det)

Signature: {"la.det": [x]}

x array of array of double
(returns) double

or

x map of map of double
(returns) double

Description: Compute the determinant of a matrix.

Runtime Errors:
#24090: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24091: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.
#24092: In the array signature, if x is not a square matrix, this function raises a “non-square matrix”
error.

10.11 Check for symmetry (la.symmetric)

Signature: {"la.symmetric": [x, tolerance]}

101

x array of array of double
tolerance double
(returns) boolean

or

x map of map of double
tolerance double
(returns) boolean

Description: Determine if a matrix is symmetric withing tolerance.

Parameters:

(return value) Returns true if the absolute value of element i, j minus element j, i is less than
tolerance.

Runtime Errors:
#24100: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24101: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.
#24102: If x is not a square matrix, this function raises a “non-square matrix” error.

10.12 Real eigenbasis of symmetric matrix (la.eigenBasis)

Signature: {"la.eigenBasis": [x]}

x array of array of double
(returns) array of array of double

or

x map of map of double
(returns) map of map of double

Description: Compute the eigenvalues and eigenvectors of a real, symmetric matrix x (which are all
real).

Parameters:

(return value) A matrix in which each row (first level of array or map hierarchy) is a normalized
eigenvector of x divided by the square root of the corresponding eigenvalue (The sign
is chosen such that the first component is positive.). If provided as an array, the rows
are in decreasing order of eigenvalue (increasing order of inverse square root eigenvalue).
If provided as a map, the rows are keyed by string representations of integers starting
with “0”, and increasing row keys are in decreasing order of eigenvalue.

Details:

102

If x is the covariance matrix of a zero-mean dataset, the matrix that this function returns would
transform the dataset to one with unit variances and zero covariances.
If x is not symmetric or not exactly symmetric, it will first be symmetrized ((x+xT)/2). For example,
a matrix represented by only the upper triangle (other elements are zero or missing from the map)
becomes a symmetric matrix with the upper triangle unchanged.
Nondeterministic: unstable. This function gives the same results every time it is executed, but
those results may not be exactly the same on all systems.

Runtime Errors:
#24110: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24111: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.
#24112: If x is not a square matrix, this function raises a “non-square matrix” error.
#24113: If x contains non-finite values, this function raises a “non-finite matrix” error.

10.13 Truncate rows (la.truncate)

Signature: {"la.truncate": [x, keep]}

x array of array of double
keep int
(returns) array of array of double

or

x map of map of double
keep array of string
(returns) map of map of double

Description: Remove rows from a matrix so that it becomes a projection operator.

Parameters:

x The matrix to truncate.
keep If x is an array, this is the number of rows to keep, starting with the first row. If x is

a map, this is the set of keys to keep. If keep is larger than the number of rows or is
not a subset of the keys, the excess is ignored.

Details:
In Principle Component Analysis (PCA), this would be applied to the eigenbasis transformation
(la.eigenBasis) to keep only a specified number (or set) of transformed components.

Runtime Errors:
#24120: If the matrix has fewer than 1 row or fewer than 1 column, this function raises a “too few
rows/cols” error.
#24121: If x is an array with ragged columns (arrays of different lengths), this function raises a
“ragged columns” error.

103

11 Metric library

11.1 Euclidean metric without similarity or missing values (metric.simpleEuclidean)

Signature: {"metric.simpleEuclidean": [x, y]}

x array of double
y array of double
(returns) double

Description: Euclidean metric without a special similarity function and without any handling of missing
values.

Parameters:

x First sample vector.
y Second sample vector. (Must have the same dimension as x.)
(return value) Returns

√∑
i(xi − yi)2.

Runtime Errors:

#28000: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

11.2 Absolute difference similarity function (metric.absDiff)

Signature: {"metric.absDiff": [x, y]}

x double
y double
(returns) double

Description: Similarity function (1-dimensional metric) that returns the absolute Euclidean distance
between x and y.

11.3 Gaussian similarity function (metric.gaussianSimilarity)

Signature: {"metric.gaussianSimilarity": [x, y, sigma]}

x double
y double
sigma double
(returns) double

Description: Similarity function (1-dimensional metric) that returns exp(− ln(2)(x− y)2/sigma2).

104

11.4 Euclidean metric (metric.euclidean)

Signature: {"metric.euclidean": [similarity, x, y]} or {"metric.euclidean": [similarity, x, y, missingWeight]}

similarity function (any A, any B) → double
x array of union of {null, A}
y array of union of {null, B}
(returns) double

or

similarity function (any A, any B) → double
x array of union of {null, A}
y array of union of {null, B}
missingWeight array of double
(returns) double

Description: Euclidean metric, which is the distance function for ordinary space, given by the Pythagorean
formula (also known as the 2-norm).

Parameters:

similarity Similarity function (1-dimensional metric) that quantifies the distance between com-
ponents of x and components of y.

x First sample vector, which may have missing values.
y Second sample vector, which may have missing values. (Must have the same dimension

as x.)
missingWeight Optional missing-value weights: a vector with the same dimension as x and y that

determines the normalized contribution of missing values in the sum. If not provided,
missing-value weights of 1.0 are assumed.

(return value) With I(xi, yi) = 0 if component i of x or y is missing, 1 otherwise, this function returns√
(
∑
i I(xi, yi)similarity(xi, yi)2)(

∑
i qi)/(

∑
i I(xi, yi)qi) where qi are components of

the missing-value weights. Without missing values, it is
√∑

i similarity(xi, yi)2.

Details:

If all values are missing, the function returns NaN.

Runtime Errors:

#28030: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

11.5 Squared euclidean metric (metric.squaredEuclidean)

Signature: {"metric.squaredEuclidean": [similarity, x, y]} or {"metric.squaredEuclidean": [similarity, x, y, missingWeight]}

105

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
(returns) double

or

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
missingWeight array of double
(returns) double

Description: Euclidean metric squared, which has the same ordering as the Euclidean metric, but avoids
a square root calculation.

Parameters:

similarity Similarity function (1-dimensional metric) that quantifies the distance between com-
ponents of x and components of y.

x First sample vector, which may have missing values.
y Second sample vector, which may have missing values. (Must have the same dimension

as x.)
missingWeight Optional missing-value weights: a vector with the same dimension as x and y that

determines the normalized contribution of missing values in the sum. If not provided,
missing-value weights of 1.0 are assumed.

(return value) With I(xi, yi) = 0 if component i of x or y is missing, 1 otherwise, this function returns
(
∑
i I(xi, yi)similarity(xi, yi)2)(

∑
i qi)/(

∑
i I(xi, yi)qi) where qi are components of the

missing-value weights. Without missing values, it is
∑
i similarity(xi, yi)2.

Details:

If all values are missing, the function returns NaN.

Runtime Errors:

#28040: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

11.6 Chebyshev metric (metric.chebyshev)

Signature: {"metric.chebyshev": [similarity, x, y]} or {"metric.chebyshev": [similarity, x, y, missingWeight]}

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
(returns) double

106

or

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
missingWeight array of double
(returns) double

Description: Chebyshev metric, also known as the infinity norm or chessboard distance (since it is the
number of moves required for a chess king to travel between two points).

Parameters:

similarity Similarity function (1-dimensional metric) that quantifies the distance between com-
ponents of x and components of y.

x First sample vector, which may have missing values.
y Second sample vector, which may have missing values. (Must have the same dimension

as x.)
missingWeight Optional missing-value weights: a vector with the same dimension as x and y that

determines the normalized contribution of missing values in the sum. If not provided,
missing-value weights of 1.0 are assumed.

(return value) With I(xi, yi) = 0 if component i of x or y is missing, 1 otherwise, this function returns
(maxi I(xi, yi)similarity(xi, yi))(

∑
i qi)/(

∑
i I(xi, yi)qi) where qi are components of the

missing-value weights. Without missing values, it is maxi similarity(xi, yi).

Details:

If all values are missing, the function returns NaN.

Runtime Errors:

#28050: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

11.7 Taxicab metric (metric.taxicab)

Signature: {"metric.taxicab": [similarity, x, y]} or {"metric.taxicab": [similarity, x, y, missingWeight]}

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
(returns) double

or

107

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
missingWeight array of double
(returns) double

Description: Taxicab metric, also known as the 1-norm, city-block or Manhattan distance (since it is
the distance when confined to a rectilinear city grid).

Parameters:

similarity Similarity function (1-dimensional metric) that quantifies the distance between com-
ponents of x and components of y.

x First sample vector, which may have missing values.
y Second sample vector, which may have missing values. (Must have the same dimension

as x.)
missingWeight Optional missing-value weights: a vector with the same dimension as x and y that

determines the normalized contribution of missing values in the sum. If not provided,
missing-value weights of 1.0 are assumed.

(return value) With I(xi, yi) = 0 if component i of x or y is missing, 1 otherwise, this function returns
(
∑
i I(xi, yi)similarity(xi, yi))(

∑
i qi)/(

∑
i I(xi, yi)qi) where qi are components of the

missing-value weights. Without missing values, it is
∑
i similarity(xi, yi).

Details:

If all values are missing, the function returns NaN.

Runtime Errors:

#28060: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

11.8 Minkowski metric (metric.minkowski)

Signature: {"metric.minkowski": [similarity, x, y, p]} or {"metric.minkowski": [similarity, x, y, p, missingWeight]}

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
p double
(returns) double

or

108

similarity function (double, double) → double
x array of union of {null, double}
y array of union of {null, double}
p double
missingWeight array of double
(returns) double

Description: Minkowski metric, also known as the p-norm, a generalized norm whose limits include
Euclidean, Chebyshev, and Taxicab.

Parameters:

similarity Similarity function (1-dimensional metric) that quantifies the distance between com-
ponents of x and components of y.

x First sample vector, which may have missing values.
y Second sample vector, which may have missing values. (Must have the same dimension

as x.)
missingWeight Optional missing-value weights: a vector with the same dimension as x and y that

determines the normalized contribution of missing values in the sum. If not provided,
missing-value weights of 1.0 are assumed.

(return value) With I(xi, yi) = 0 if component i of x or y is missing, 1 otherwise, this function returns
((

∑
i I(xi, yi)similarity(xi, yi)p)(

∑
i qi)/(

∑
i I(xi, yi)qi))1/p where qi are components of

the missing-value weights. Without missing values, it is (
∑
i similarity(xi, yi)p)1/p.

Details:
If all values are missing, the function returns NaN.
If p is positive infinity, this function is equivalent to metric.chebyshev.

Runtime Errors:
#28070: Raises “dimensions of vectors do not match” if all vectors do not have the same dimension.

#28071: Raises “Minkowski parameter p must be positive” if p is less than or equal to zero.

11.9 Simple binary metric (metric.simpleMatching)

Signature: {"metric.simpleMatching": [x, y]}

x array of boolean
y array of boolean
(returns) double

Description: Simple metric on binary vectors.

Parameters:

109

x First sample vector.
y Second sample vector. (Must have the same dimension as x.)
(return value) Where a11 is the number of x, y coordinate pairs that are equal to true, true, a10 is

the number of true, false, a01 is the number of false, true, and a00 is the number
of false, false, this function returns (a11 + a00)/(a11 + a10 + a01 + a00).

Runtime Errors:

#28080: Raises “dimensions of vectors do not match” if x and y do not have the same dimension.

11.10 Jaccard binary similarity (metric.jaccard)

Signature: {"metric.jaccard": [x, y]}

x array of boolean
y array of boolean
(returns) double

Description: Jaccard similarity of binary vectors.

Parameters:

x First sample vector.
y Second sample vector. (Must have the same dimension as x.)
(return value) Where a11 is the number of x, y coordinate pairs that are equal to true, true, a10 is

the number of true, false, a01 is the number of false, true, and a00 is the number
of false, false, this function returns a11/(a11 + a10 + a01).

Runtime Errors:

#28090: Raises “dimensions of vectors do not match” if x and y do not have the same dimension.

11.11 Tanimoto binary similarity (metric.tanimoto)

Signature: {"metric.tanimoto": [x, y]}

x array of boolean
y array of boolean
(returns) double

Description: Tanimoto similarity of binary vectors.

Parameters:

110

x First sample vector.
y Second sample vector. (Must have the same dimension as x.)
(return value) Where a11 is the number of x, y coordinate pairs that are equal to true, true, a10 is

the number of true, false, a01 is the number of false, true, and a00 is the number
of false, false, this function returns (a11 + a00)/(a11 + 2 ∗ (a10 + a01) + a00).

Runtime Errors:

#28100: Raises “dimensions of vectors do not match” if x and y do not have the same dimension.

11.12 General binary metric (metric.binarySimilarity)

Signature: {"metric.binarySimilarity": [x, y, c00, c01, c10, c11, d00, d01, d10, d11]}

x array of boolean
y array of boolean
c00 double
c01 double
c10 double
c11 double
d00 double
d01 double
d10 double
d11 double
(returns) double

Description: Genaralized similarity of binary vectors, using c00, c01, c10, c11, d00, d01, d10, and d11
as parameters to reproduce all other binary similarity metrics.

Parameters:

x First sample vector.
y Second sample vector. (Must have the same dimension as x.)
(return value) Where a11 is the number of x, y coordinate pairs that are equal to true, true, a10 is

the number of true, false, a01 is the number of false, true, and a00 is the number
of false, false, this function returns (c11a11 + c10a10 + c01a01 + c00a00)/(d11a11 +
d10a10 + d01a01 + d00a00).

Runtime Errors:

#28110: Raises “dimensions of vectors do not match” if x and y do not have the same dimension.

111

12 Random number library

All pseudorandom functions are seeded by the top-level field randseed. If absent, the return values of
these functions are unpredictable. If present, they are reproducible for scoring engines generated from the
same PFA file on the same PFA implementation. Different PFA implementations may use different random
number generators, so reproducibility among implementations is not guaranteed.

12.1 Uniform random deviates of basic types

12.1.1 Random integer (rand.int)

Signature: {"rand.int": []} or {"rand.int": [low, high]}

(returns) int
or

low int
high int
(returns) int

Description: Return a random integer, either on the entire entire 32-bit range or between low (inclusive)
and high (exclusive).

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

#34000: Raises a “high must be greater than low” error if high is less than or equal to low.

12.1.2 Random integer (rand.long)

Signature: {"rand.long": []} or {"rand.long": [low, high]}

(returns) long
or

low long
high long
(returns) long

Description: Return a random long integer, either on the entire 64-bit range or between low (inclusive)
and high (exclusive).

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

112

#34010: Raises a “high must be greater than low” error if high is less than or equal to low.

12.1.3 Random integer (rand.float)

Signature: {"rand.float": [low, high]}

low float
high float
(returns) float

Description: Return a random float between low and high.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

#34020: Raises a “high must be greater than low” error if high is less than or equal to low.

12.1.4 Random integer (rand.double)

Signature: {"rand.double": [low, high]}

low double
high double
(returns) double

Description: Return a random double between low and high.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

#34030: Raises a “high must be greater than low” error if high is less than or equal to low.

12.1.5 Random string (rand.string)

Signature: {"rand.string": [size]} or {"rand.string": [size, population]} or {"rand.string": [size, low, high]}

size int
(returns) string

or

113

size int
population string
(returns) string

or

size int
low int
high int
(returns) string

Description: Return a random string with size characters from a range, if provided.

Parameters:

size Number of characters in the resulting string.
population Bag of characters to choose from. Characters repeated N times in the population

have probability N/size, but order is irrelevant.
low Minimum code-point to sample (inclusive).
high Maximum code-point to sample (exclusive).

Details:
Without a range, this function samples the entire Unicode table up to and including 0xD800; ASCII
characters are rare.
The ASCII printable range is low = 33, high = 127.
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:
#34080: Raises a “size must be positive” error if size is less than or equal to zero.
#34081: Raises a “high must be greater than low” error if high is less than or equal to low.
#34082: Raises an “invalid char” error if low is less than 1 or greater than 0xD800 or if high is less
than 1 or greater than 0xD800.
#34083: Raises an “population must be non-empty” error if population is empty.

12.1.6 Random bytes (rand.bytes)

Signature: {"rand.bytes": [size]} or {"rand.bytes": [size, population]} or {"rand.bytes": [size, low, high]}

size int
(returns) bytes

or

size int
population bytes
(returns) bytes

114

or

size int
low int
high int
(returns) bytes

Description: Return size random bytes from a range, if provided.

Parameters:

size Number of bytes in the result.
population Bag of bytes to choose from. Bytes repeated N times in the population have proba-

bility N/size, but order is irrelevant.
low Minimum byte value to sample (inclusive).
high Maximum byte value to sample (exclusive).

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:
#34090: Raises a “size must be positive” error if size is less than or equal to zero.
#34091: Raises a “high must be greater than low” error if high is less than or equal to low.
#34092: Raises an “invalid byte” error if low is less than 0 or greater than 255 or if high is less
than 0 or greater than 256.
#34093: Raises an “population must be non-empty” error if population is empty.

12.2 Common statistical distributions

12.2.1 Gaussian deviates (rand.gaussian)

Signature: {"rand.gaussian": [mu, sigma]}

mu double
sigma double
(returns) double

Description: Return a random number from a Gaussian (normal) distribution with mean mu and stan-
dard deviation sigma.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

115

12.3 Common utility types

12.3.1 Type-4 UUID (rand.uuid4)

Signature: {"rand.uuid": []}

(returns) string

Deprecated; exists until PFA 0.9.0: use rand.uuid4 instead.

Description: Return a random (type 4) UUID with IETF variant (8).

Parameters:

(return value) The return value is a string with the form xxxxxxxx-xxxx-4xxx-8xxx-xxxxxxxxxxxx
where x are random, lowercase hexidecimal digits (0-9a-f), 4 is the version, and 8 is
the IETF variant.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Signature: {"rand.uuid4": []}

(returns) string

Description: Return a random (type 4) UUID with IETF variant (8).

Parameters:

(return value) The return value is a string with the form xxxxxxxx-xxxx-4xxx-8xxx-xxxxxxxxxxxx
where x are random, lowercase hexidecimal digits (0-9a-f), 4 is the version, and 8 is
the IETF variant.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

12.4 Selecting arbitrary objects from a bag

12.4.1 Random object from a bag (rand.choice)

Signature: {"rand.choice": [population]}

population array of any A

(returns) A

Description: Return a random item from a bag of items.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

116

Runtime Errors:

#34040: Raises a “population must not be empty” error if population is empty.

12.4.2 Random set of objects with replacement (rand.choices)

Signature: {"rand.choices": [size, population]}

size int
population array of any A

(returns) array of A

Description: Return an array of random items (with replacement) from a bag of items.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

#34050: Raises a “population must not be empty” error if population is empty.

12.4.3 Random set of objects without replacement (rand.sample)

Signature: {"rand.sample": [size, population]}

size int
population array of any A

(returns) array of A

Description: Return an array of random items (without replacement) from a bag of items.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:
#34060: Raises a “population must not be empty” error if population is empty.
#34061: Raises a “population smaller than requested subsample” error if the size of population is
less than size.

12.4.4 Random objects with a specified probability distribution (rand.histogram)

Signature: {"rand.histogram": [distribution]}

distribution array of double
(returns) int

117

or

distribution array of any record A with {prob: double}
(returns) A

Description: Return a random index of distribution with probability proportional to the value of that
index or a random item from distribution with probability proportional to the prob field.

Details:
If the probabilities do not sum to 1.0, they will be normalized first.
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:
#34070: Raises a “distribution must be non-empty” error if no items of distribution are non-zero.

#34071: Raises a “distribution must be finite” error if any items of distribution are infinite or
NaN.
#34072: Raises a “distribution must be non-negative” error if any items of distribution are
negative.

118

13 String manipulation library

Strings are immutable, so none of the following functions modifies a string in-place. Some return a modified
version of the original string.

13.1 Basic access

13.1.1 Length (s.len)

Signature: {"s.len": [s]}

s string
(returns) int

Description: Return the length of string s.

13.1.2 Extract substring (s.substr)

Signature: {"s.substr": [s, start, end]}

s string
start int
end int
(returns) string

Description: Return the substring of s from start (inclusive) until end (exclusive).

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.

13.1.3 Modify substring (s.substrto)

Signature: {"s.substrto": [s, start, end, replacement]}

s string
start int
end int
replacement string
(returns) string

Description: Replace s from start (inclusive) until end (exclusive) with replacement.

Details:

119

Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.

13.2 Search and replace

Search and replace functions in the basic string library do not use regular expressions.

13.2.1 Contains (s.contains)

Signature: {"s.contains": [haystack, needle]}

haystack string
needle string
(returns) boolean

Description: Return true if haystack contains needle, false otherwise.

13.2.2 Count instances (s.count)

Signature: {"s.count": [haystack, needle]}

haystack string
needle string
(returns) int

Description: Count the number of times needle appears in haystack.

Details:

If the needle is an empty string, the result is zero.

13.2.3 Find first index (s.index)

Signature: {"s.index": [haystack, needle]}

haystack string
needle string
(returns) int

Description: Return the lowest index where haystack contains needle or -1 if haystack does not con-
tain needle.

120

13.2.4 Find last index (s.rindex)

Signature: {"s.rindex": [haystack, needle]}

haystack string
needle string
(returns) int

Description: Return the highest index where haystack contains needle or -1 if haystack does not
contain needle.

13.2.5 Check start (s.startswith)

Signature: {"s.startswith": [haystack, needle]}

haystack string
needle string
(returns) boolean

Description: Return true if the first (leftmost) subseqence of haystack is equal to needle, false other-
wise.

13.2.6 Check end (s.endswith)

Signature: {"s.endswith": [haystack, needle]}

haystack string
needle string
(returns) boolean

Description: Return true if the last (rightmost) subseqence of haystack is equal to needle, false oth-
erwise.

13.3 Conversions to or from other types

13.3.1 Join an array of strings (s.join)

Signature: {"s.join": [array, sep]}

array array of string
sep string
(returns) string

Description: Combine strings from array into a single string, delimited by sep.

121

13.3.2 Split into an array of strings (s.split)

Signature: {"s.split": [s, sep]}

s string
sep string
(returns) array of string

Description: Divide a string into an array of substrings, splitting at and removing delimiters sep.

Details:
If s does not contain sep, this function returns an array whose only element is s. If sep appears at
the beginning or end of s, the array begins with or ends with an empty string. These conventions
match Python’s behavior.
If sep is an empty string, this function returns an empty array.

13.3.3 Format an integer as a string (s.int)

Signature: {"s.int": [x]} or {"s.int": [x, width, zeroPad]}

x long
(returns) string

or

x long
width int
zeroPad boolean
(returns) string

Description: Format an integer as a decimal string.

Parameters:

x The integer.
width Width of the string. If negative, left-justify. If omitted, the string will be as wide as it

needs to be to provide enough precision.
zeroPad If true, pad the integer with zeros to fill up to width.

Runtime Errors:
#39240: If width is negative and zeroPad is true, a “negative width cannot be used with zero-
padding” error is raised.

13.3.4 Format a positive integer as hexidecimal (s.hex)

Signature: {"s.hex": [x]} or {"s.hex": [x, width, zeroPad]}

122

x long
(returns) string

or

x long
width int
zeroPad boolean
(returns) string

Description: Format an unsigned number as a hexidecimal string.

Parameters:

x The number.
width Width of the string. If negative, left-justify. If omitted, the string will be as wide as it

needs to be to provide the precision.
zeroPad If true, pad the integer with zeros to fill up to width.

Details:
If the precision requires more space than width, the string will be wide enough to accommodate
the precision.
Digits “a” (decimal 10) through “f” (decimal 15) are represented by lowercase letters.

Runtime Errors:
#39110: If width is negative and zeroPad is true, a “negative width cannot be used with zero-
padding” error is raised.
#39111: If x is negative, a “negative number” error is raised.

13.3.5 Format any number as a string (s.number)

Signature: {"s.number": [x]} or {"s.number": [x, width, zeroPad]} or {"s.number": [x, width, precision]} or {"s.number": [x, width, precision, minNoExp, maxNoExp]}

x long
(returns) string

Deprecated; exists until PFA 0.9.0: use s.int for integers.

or

x long
width int
zeroPad boolean
(returns) string

Deprecated; exists until PFA 0.9.0: use s.int for integers.

or

123

x double
width union of {int, null}
precision union of {int, null}
(returns) string

or

x double
width union of {int, null}
precision union of {int, null}
minNoExp double
maxNoExp double
(returns) string

Description: Format a number as a decimal string.

Parameters:

x The number. Note that different signatures apply to integers and floating point num-
bers.

width Width of the string. If negative, left-justify. If omitted, the string will be as wide as it
needs to be to provide the precision.

zeroPad If true, pad the integer with zeros to fill up to width.
precision Optional precision with which to represent the number. If omitted, at most six digits

after the decimal point will be shown, unless they are zero.
minNoExp Minimum absolute value that is not presented in scientific notation; 0.0001 if omitted.
maxNoExp Maxiumum absolute value that is not presented in scientific notation; 100000 if omitted.

Details:
If the precision requires more space than width, the string will be wide enough to accommodate
the precision.
Floating point numbers always have a decimal point with at least one digit after the decimal, even if
it is zero.
Exponents are represented by a lowercase “e” which is always followed by a sign, whether positive or
negative, and an exponent of two or more digits (single-digit exponents are zero-padded).
The base of a number is preceded by a “-” if negative, but not a “+” if positive.
Special floating point values are represented in the following ways: negative zero as zero (no negative
sign), not a number as “nan”, positive infinity as “inf”, and negative infinity as “-inf” (lowercase).
They follow the same precision and width rules as normal numbers, where applicable.
Nondeterministic: unstable. This function gives the same results every time it is executed, but
those results may not be exactly the same on all systems.

Runtime Errors:
#39120: If width is negative and zeroPad is true, a “negative width cannot be used with zero-
padding” error is raised.
#39121: If precision is provided and is less than zero, a “negative precision” error is raised.

124

13.4 Conversions to or from other strings

13.4.1 Concatenate two strings (s.concat)

Signature: {"s.concat": [x, y]}

x string
y string
(returns) string

Description: Append y to x to form a single string.

Details:

To concatenate an array of strings, use s.join with an empty string as sep.

13.4.2 Repeat pattern (s.repeat)

Signature: {"s.repeat": [s, n]}

s string
n int
(returns) string

Description: Create a string by concatenating s with itself n times.

13.4.3 Lowercase (s.lower)

Signature: {"s.lower": [s]}

s string
(returns) string

Description: Convert s to lower-case.

13.4.4 Uppercase (s.upper)

Signature: {"s.upper": [s]}

s string
(returns) string

Description: Convert s to upper-case.

125

13.4.5 Left-strip (s.lstrip)

Signature: {"s.lstrip": [s, chars]}

s string
chars string
(returns) string

Description: Remove any characters found in chars from the beginning (left) of s.

Details:

The order of characters in chars is irrelevant.

13.4.6 Right-strip (s.rstrip)

Signature: {"s.rstrip": [s, chars]}

s string
chars string
(returns) string

Description: Remove any characters found in chars from the end (right) of s.

Details:

The order of characters in chars is irrelevant.

13.4.7 Strip both ends (s.strip)

Signature: {"s.strip": [s, chars]}

s string
chars string
(returns) string

Description: Remove any characters found in chars from the beginning or end of s.

Details:

The order of characters in chars is irrelevant.

13.4.8 Replace all matches (s.replaceall)

Signature: {"s.replaceall": [s, original, replacement]}

126

s string
original string
replacement string
(returns) string

Description: Replace every instance of the substring original from s with replacement.

13.4.9 Replace first match (s.replacefirst)

Signature: {"s.replacefirst": [s, original, replacement]}

s string
original string
replacement string
(returns) string

Description: Replace the first (leftmost) instance of the substring original from s with replacement.

13.4.10 Replace last match (s.replacelast)

Signature: {"s.replacelast": [s, original, replacement]}

s string
original string
replacement string
(returns) string

Description: Replace the last (rightmost) instance of the substring original from s with replacement.

13.4.11 Translate characters (s.translate)

Signature: {"s.translate": [s, oldchars, newchars]}

s string
oldchars string
newchars string
(returns) string

Description: For each character in s that is also in oldchars with some index i, replace it with the
character at index i in newchars. Any character in s that is not in oldchars is unchanged. Any index i
that is greater than the length of newchars is replaced with nothing.

127

Details:
This is the behavior of the the Posix command tr, where s takes the place of standard input and
oldchars and newchars are the tr commandline options.

128

14 Regular expressions and text pre-procssing

The regular expression syntax follows the POSIX extended standard (like grep -e in Linux and UNIX).

14.1 Basic identification of pattern

14.1.1 Check for existence of a pattern (re.contains)

Signature: {"re.contains": [haystack, pattern]}

haystack string
pattern string
(returns) boolean

or

haystack bytes
pattern bytes
(returns) boolean

Description: Return true if pattern matches anywhere within haystack, otherwise return false.

Runtime Errors:

#35010: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.1.2 Count occurrences of a pattern (re.count)

Signature: {"re.count": [haystack, pattern]}

haystack string
pattern string
(returns) int

or

haystack bytes
pattern bytes
(returns) int

Description: Count the number of times pattern matches in haystack.

Runtime Errors:

#35020: If pattern is not a valid regular expression, a “bad pattern” error is raised.

129

14.2 Get matched parterns

14.2.1 Find the first instance of a pattern (re.findfirst)

Signature: {"re.findfirst": [haystack, pattern]}

haystack string
pattern string
(returns) union of {string, null}

or

haystack bytes
pattern bytes
(returns) union of {bytes, null}

Description: Return the first occurance of what pattern matched in haystack.

Runtime Errors:

#35070: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.2.2 Find all instances of a pattern (re.findall)

Signature: {"re.findall": [haystack, pattern]}

haystack string
pattern string
(returns) array of string

or

haystack bytes
pattern bytes
(returns) array of bytes

Description: Return an array containing each string that pattern matched in haystack.

Runtime Errors:

#35060: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.3 Get matched groups

14.3.1 Get first set of matching groups (re.groups)

Signature: {"re.groups": [haystack, pattern]}

130

haystack string
pattern string
(returns) array of array of int

or

haystack bytes
pattern bytes
(returns) array of array of int

Description: Return the location indices of each pattern sub-match (group-match) in haystack.

Runtime Errors:

#35040: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.3.2 Get all sets of matching groups (re.groupsall)

Signature: {"re.groupsall": [haystack, pattern]}

haystack string
pattern string
(returns) array of array of array of int

or

haystack bytes
pattern bytes
(returns) array of array of array of int

Description: Return the location indices of each pattern sub-match (group-match) for each occurance
of pattern in haystack.

Runtime Errors:

#35100: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.4 Get matched parterns and groups

14.4.1 Find the first instance of a pattern, with groups (re.findgroupsfirst)

Signature: {"re.findgroupsfirst": [haystack, pattern]}

haystack string
pattern string
(returns) array of string

or

131

haystack bytes
pattern bytes
(returns) array of bytes

Description: Return an array of strings or bytes for each pattern sub-match (group-match) at the first
occurance of pattern in haystack.

Runtime Errors:

#35080: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.4.2 Find all instances of a pattern, with groups (re.findgroupsall)

Signature: {"re.findgroupsall": [haystack, pattern]}

haystack string
pattern string
(returns) array of array of string

or

haystack bytes
pattern bytes
(returns) array of array of bytes

Description: Return an array of strings or bytes for each pattern sub-match (group-match) at every
occurance of pattern in haystack.

Runtime Errors:

#35090: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.5 Get index position of match

14.5.1 Find the first index where a pattern appears (re.index)

Signature: {"re.index": [haystack, pattern]}

haystack string
pattern string
(returns) array of int

or

haystack bytes
pattern bytes
(returns) array of int

132

Description: Return the indices in haystack of the begining and end of the first match defined by
pattern.

Runtime Errors:

#35000: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.5.2 Find the last index where a pattern appears (re.rindex)

Signature: {"re.rindex": [haystack, pattern]}

haystack string
pattern string
(returns) array of int

or

haystack bytes
pattern bytes
(returns) array of int

Description: Return the location indices of the last pattern match in haystack.

Runtime Errors:

#35030: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.5.3 Find all indexes that match a pattern (re.indexall)

Signature: {"re.indexall": [haystack, pattern]}

haystack string
pattern string
(returns) array of array of int

or

haystack bytes
pattern bytes
(returns) array of array of int

Description: Return the location indices of every pattern match in haystack.

Runtime Errors:

#35050: If pattern is not a valid regular expression, a “bad pattern” error is raised.

133

14.6 Replacement

14.6.1 Replace the first instance of a pattern (re.replacefirst)

Signature: {"re.replacefirst": [haystack, pattern, replacement]}

haystack string
pattern string
replacement string
(returns) string

or

haystack bytes
pattern bytes
replacement bytes
(returns) bytes

Description: Replace the first pattern match in haystack with replacement.

Runtime Errors:

#35110: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.6.2 Replace the last instance of a pattern (re.replacelast)

Signature: {"re.replacelast": [haystack, pattern, replacement]}

haystack string
pattern string
replacement string
(returns) string

or

haystack bytes
pattern bytes
replacement bytes
(returns) bytes

Description: Replace the last pattern match in haystack with replacement.

Runtime Errors:

#35120: If pattern is not a valid regular expression, a “bad pattern” error is raised.

134

14.6.3 Replace all instances of a pattern (re.replaceall)

Signature: {"re.replaceall": [haystack, pattern, replacement]}

haystack string
pattern string
replacement string
(returns) string

or

haystack bytes
pattern bytes
replacement bytes
(returns) bytes

Description: Replace the all pattern matches in haystack with replacement.

Runtime Errors:

#35140: If pattern is not a valid regular expression, a “bad pattern” error is raised.

14.7 Splitting

14.7.1 Split a string by a pattern (re.split)

Signature: {"re.split": [haystack, pattern]}

haystack string
pattern string
(returns) array of string

or

haystack bytes
pattern bytes
(returns) array of bytes

Description: Break haystack into an array of strings or bytes on the separator defined by pattern.

Runtime Errors:

#35130: If pattern is not a valid regular expression, a “bad pattern” error is raised.

135

15 Parsing library

15.1 Parsing numbers

15.1.1 32-bit integers (parse.int)

Signature: {"parse.int": [str, base]}

str string
base int
(returns) int

Description: Parse str and return its value as an integer with base base, if possible.

Details:
The string is interpreted as though leading and trailing whitespace were removed and is case-
insensitive.
Leading or trailing whitespace and any capitalization is allowed.

Runtime Errors:
#33000: Raises “not an integer” if the string does not conform to “[-+]?[0-9a-z]+” or the number
it evaluates to is too large to represent as a 32-bit integer or uses characters as large as or larger than
base (’0’ through ’9’ encode 0 through 9 and ’a’ through ’z’ encode 10 through 35).
#33001: Raises “base out of range” if base is less than 2 or greater than 36.

15.1.2 64-bit integers (parse.long)

Signature: {"parse.long": [str, base]}

str string
base int
(returns) long

Description: Parse str and return its value as a long integer with base base, if possible.

Details:
The string is interpreted as though leading and trailing whitespace were removed and is case-
insensitive.
Leading or trailing whitespace and any capitalization is allowed.

Runtime Errors:
#33010: Raises “not a long integer” if the string does not conform to “[-+]?[0-9a-z]+” or the
number it evaluates to is too large to represent as a 64-bit integer or uses characters as large as or
larger than base (’0’ through ’9’ encode 0 through 9 and ’a’ through ’z’ encode 10 through 35).
#33011: Raises “base out of range” if base is less than 2 or greater than 36.

136

15.1.3 Single-precision floating point (parse.float)

Signature: {"parse.float": [str]}

str string
(returns) float

Description: Parse str and return its value as a single-precision floating point number.

Details:
The string is interpreted as though leading and trailing whitespace were removed and is case-
insensitive.
If the string is “nan”, the resulting value is not-a-number and if the string is “inf”, “+inf”, or “-inf”,
the resulting value is positive infinity, positive infinity, or negative infinity, respectively (see IEEE
754).
If the number’s magnitude is too large to be represented as a single-precision float, the resulting value
is positive or negative infinity (depending on the sign). If the numbers magnitude is too small to be
represented as a single-precision float, the resulting value is zero.
Leading or trailing whitespace and any capitalization is allowed.

Runtime Errors:
#33020: Raises “not a single-precision float” if the string does not conform to “[-+]?(
.?[0-9]+|[0-9]+
.[0-9]*)([eE][-+]?[0-9]+)?”, “inf”, “+inf”, “-inf”, or “nan”.

15.1.4 Double-precision floating point (parse.double)

Signature: {"parse.double": [str]}

str string
(returns) double

Description: Parse str and return its value as a double-precision floating point number.

Details:
The string is interpreted as though leading and trailing whitespace were removed and is case-
insensitive.
If the string is “nan”, the resulting value is not-a-number and if the string is “inf”, “+inf”, or “-inf”,
the resulting value is positive infinity, positive infinity, or negative infinity, respectively (see IEEE
754).
If the number’s magnitude is too large to be represented as a double-precision float, the resulting
value is positive or negative infinity (depending on the sign). If the numbers magnitude is too small
to be represented as a double-precision float, the resulting value is zero.
Leading or trailing whitespace and any capitalization is allowed.

Runtime Errors:
#33030: Raises “not a double-precision float” if the string does not conform to “[-+]?(
.?[0-9]+|[0-9]+
.[0-9]*)([eE][-+]?[0-9]+)?”, “inf”, “+inf”, “-inf”, or “nan”.

137

138

16 Casting library

16.1 Casting numbers as numbers of a different type

16.1.1 Signed integers with wrap-around (cast.signed)

Signature: {"cast.signed": [x, bits]}

x long
bits int
(returns) long

Description: Truncate x as though its signed long two’s complement representation were inserted, bit-
for-bit, into a signed two’s complement representation that is bits wide, removing the most significant bits.

Details:

The result of this function may be negative, zero, or positive.

Runtime Errors:
#17000: If bits is less than 2 or greater than 64, an “unrepresentable unsigned number” error is
raised.

16.1.2 Unsigned integers with wrap-around (cast.unsigned)

Signature: {"cast.unsigned": [x, bits]}

x long
bits int
(returns) long

Description: Truncate x as though its signed long two’s complement representation were inserted, bit-
for-bit, into an unsigned register that is bits wide, removing the most significant bits.

Details:

The result of this function is always nonnegative.

Runtime Errors:
#17010: If bits is less than 1 or greater than 63, an “unrepresentable unsigned number” error is
raised.

16.1.3 32-bit integers (cast.int)

Signature: {"cast.int": [x]}

x int
(returns) int

139

or

x long
(returns) int

or

x float
(returns) int

or

x double
(returns) int

Description: Cast x to an integer, rounding if necessary.

Runtime Errors:
#17020: Results outside of -2147483648 and 2147483647 (inclusive) produce an “int overflow” run-
time error.

16.1.4 64-bit integers (cast.long)

Signature: {"cast.long": [x]}

x int
(returns) long

or

x long
(returns) long

or

x float
(returns) long

or

x double
(returns) long

Description: Cast x to a 64-bit integer, rounding if necessary.

Runtime Errors:
#17030: Results outside of -9223372036854775808 and 9223372036854775807 (inclusive) produce a
“long overflow” runtime error.

16.1.5 Single-precision floating point (cast.float)

Signature: {"cast.float": [x]}

140

x int
(returns) float

or

x long
(returns) float

or

x float
(returns) float

or

x double
(returns) float

Description: Cast x to a single-precision floating point number, rounding if necessary.

16.1.6 Double-precision floating point (cast.double)

Signature: {"cast.double": [x]}

x int
(returns) double

or

x long
(returns) double

or

x float
(returns) double

or

x double
(returns) double

Description: Cast x to a double-precision floating point number.

16.2 Fanning out variables to arrays of various types

16.2.1 Fan a variable out to an array of booleans (cast.fanoutBoolean)

Signature: {"cast.fanoutBoolean": [x]} or {"cast.fanoutBoolean": [x, dictionary, outOfRange]} or {"cast.fanoutBoolean": [x, minimum, maximum, outOfRange]}

141

x any enum A

(returns) array of boolean
or

x string
dictionary array of string
outOfRange boolean
(returns) array of boolean

or

x int
minimum int
maximum int
outOfRange boolean
(returns) array of boolean

Description: Fanout x to an array of booleans, all false except the matching value.

Parameters:

x Categorical datum
dictionary Possible values of x, which is needed if x is an arbitrary string.
minimum Inclusive minimum value of x.
maximum Excluded maximum value of x.
outOfRange If true, include an extra item in the output to represent values of x that are outside

of the specified range.

Runtime Errors:
#17060: If not all values in dictionary are unique, this function raises a “non-distinct values in
dictionary” runtime error.

16.2.2 Fan a variable out to an array of ints (cast.fanoutInt)

Signature: {"cast.fanoutInt": [x]} or {"cast.fanoutInt": [x, dictionary, outOfRange]} or {"cast.fanoutInt": [x, minimum, maximum, outOfRange]}

x any enum A

(returns) array of int
or

x string
dictionary array of string
outOfRange boolean
(returns) array of int

or

142

x int
minimum int
maximum int
outOfRange boolean
(returns) array of int

Description: Fanout x to an array of booleans, all false except the matching value.

Parameters:

x Categorical datum
dictionary Possible values of x, which is needed if x is an arbitrary string.
minimum Inclusive minimum value of x.
maximum Excluded maximum value of x.
outOfRange If true, include an extra item in the output to represent values of x that are outside

of the specified range.

Runtime Errors:
#17070: If not all values in dictionary are unique, this function raises a “non-distinct values in
dictionary” runtime error.

16.2.3 Fan a variable out to an array of longs (cast.fanoutLong)

Signature: {"cast.fanoutLong": [x]} or {"cast.fanoutLong": [x, dictionary, outOfRange]} or {"cast.fanoutLong": [x, minimum, maximum, outOfRange]}

x any enum A

(returns) array of long
or

x string
dictionary array of string
outOfRange boolean
(returns) array of long

or

x int
minimum int
maximum int
outOfRange boolean
(returns) array of long

Description: Fanout x to an array of booleans, all false except the matching value.

Parameters:

143

x Categorical datum
dictionary Possible values of x, which is needed if x is an arbitrary string.
minimum Inclusive minimum value of x.
maximum Excluded maximum value of x.
outOfRange If true, include an extra item in the output to represent values of x that are outside

of the specified range.

Runtime Errors:
#17080: If not all values in dictionary are unique, this function raises a “non-distinct values in
dictionary” runtime error.

16.2.4 Fan a variable out to an array of floats (cast.fanoutFloat)

Signature: {"cast.fanoutFloat": [x]} or {"cast.fanoutFloat": [x, dictionary, outOfRange]} or {"cast.fanoutFloat": [x, minimum, maximum, outOfRange]}

x any enum A

(returns) array of float
or

x string
dictionary array of string
outOfRange boolean
(returns) array of float

or

x int
minimum int
maximum int
outOfRange boolean
(returns) array of float

Description: Fanout x to an array of booleans, all false except the matching value.

Parameters:

x Categorical datum
dictionary Possible values of x, which is needed if x is an arbitrary string.
minimum Inclusive minimum value of x.
maximum Excluded maximum value of x.
outOfRange If true, include an extra item in the output to represent values of x that are outside

of the specified range.

Runtime Errors:
#17090: If not all values in dictionary are unique, this function raises a “non-distinct values in
dictionary” runtime error.

144

16.2.5 Fan a variable out to an array of doubles (cast.fanoutDouble)

Signature: {"cast.fanoutDouble": [x]} or {"cast.fanoutDouble": [x, dictionary, outOfRange]} or {"cast.fanoutDouble": [x, minimum, maximum, outOfRange]}

x any enum A

(returns) array of double
or

x string
dictionary array of string
outOfRange boolean
(returns) array of double

or

x int
minimum int
maximum int
outOfRange boolean
(returns) array of double

Description: Fanout x to an array of booleans, all false except the matching value.

Parameters:

x Categorical datum
dictionary Possible values of x, which is needed if x is an arbitrary string.
minimum Inclusive minimum value of x.
maximum Excluded maximum value of x.
outOfRange If true, include an extra item in the output to represent values of x that are outside

of the specified range.

Runtime Errors:
#17100: If not all values in dictionary are unique, this function raises a “non-distinct values in
dictionary” runtime error.

16.3 Serializing arbitrary objects

16.3.1 Serialize an arbitrary object as Avro bytes (cast.avro)

Signature: {"cast.avro": [x]}

x any A

(returns) bytes

145

Description: Encode an arbitrary object as Avro bytes.

Details:

May be composed with bytes.toBase64 to get an efficient string representation (e.g. for map keys).

16.3.2 Serialize an arbitrary object as a JSON string (cast.json)

Signature: {"cast.json": [x]}

x any A

(returns) string

Description: Encode an arbitrary object as a JSON string.

Details:
The form of this JSON string (spacing, order of keys in objects, etc.) is not guaranteed from one
system to another.
Should exclude unnecessary whitespace.
Nondeterministic: unstable. This function gives the same results every time it is executed, but
those results may not be exactly the same on all systems.

146

17 Array manipulation library

Arrays are immutable, so none of the following functions modifies an array in-place. Some return a modified
version of the original array.

17.1 Basic access

17.1.1 Length (a.len)

Signature: {"a.len": [a]}

a array of any A

(returns) int

Description: Return the length of array a.

17.1.2 Extract subsequence (a.subseq)

Signature: {"a.subseq": [a, start, end]}

a array of any A

start int
end int
(returns) array of A

Description: Return the subsequence of a from start (inclusive) until end (exclusive).

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.

17.1.3 Extract the first item (a.head)

Signature: {"a.head": [a]}

a array of any A

(returns) A

Description: Return the first item of the array.

Runtime Errors:

#15020: If a is empty, an “empty array” runtime error is raised.

147

17.1.4 Extract all but the first item (a.tail)

Signature: {"a.tail": [a]}

a array of any A

(returns) array of A

Description: Return all but the first item of the array.

Runtime Errors:

#15030: If a is empty, an “empty array” runtime error is raised.

17.1.5 Extract the last item (a.last)

Signature: {"a.last": [a]}

a array of any A

(returns) A

Description: Return the last item of the array.

Runtime Errors:

#15040: If a is empty, an “empty array” runtime error is raised.

17.1.6 Extract all but the last item (a.init)

Signature: {"a.init": [a]}

a array of any A

(returns) array of A

Description: Return all but the last item of the array.

Runtime Errors:

#15050: If a is empty, an “empty array” runtime error is raised.

17.1.7 Modify subsequence (a.subseqto)

Signature: {"a.subseqto": [a, start, end, replacement]}

148

a array of any A

start int
end int
replacement array of A
(returns) array of A

Description: Return a new array by replacing a from start (inclusive) until end (exclusive) with
replacement.

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.
Note: a is not changed in-place; this is a side-effect-free function.

17.2 Search and replace

17.2.1 Contains (a.contains)

Signature: {"a.contains": [haystack, needle]}

haystack array of any A

needle array of A
(returns) boolean

or

haystack array of any A

needle A

(returns) boolean
or

haystack array of any A

needle function (A) → boolean
(returns) boolean

Description: Return true if haystack contains needle or the needle function evaluates to true, false
otherwise.

17.2.2 Count instances (a.count)

Signature: {"a.count": [haystack, needle]}

149

haystack array of any A

needle array of A
(returns) int

or

haystack array of any A

needle A

(returns) int
or

haystack array of any A

needle function (A) → boolean
(returns) int

Description: Count the number of times needle appears in haystack or the number of times the needle
function evaluates to true.

Details:

If the needle is an empty array, the result is zero.

17.2.3 Find first index (a.index)

Signature: {"a.index": [haystack, needle]}

haystack array of any A

needle array of A
(returns) int

or

haystack array of any A

needle A

(returns) int
or

haystack array of any A

needle function (A) → boolean
(returns) int

Description: Return the lowest index where haystack contains needle or the needle function evaluates
to true, −1 if there is no such element.

17.2.4 Find last index (a.rindex)

Signature: {"a.rindex": [haystack, needle]}

150

haystack array of any A

needle array of A
(returns) int

or

haystack array of any A

needle A

(returns) int
or

haystack array of any A

needle function (A) → boolean
(returns) int

Description: Return the highest index where haystack contains needle or the needle function evaluates
to true, −1 if there is no such element.

17.2.5 Check start (a.startswith)

Signature: {"a.startswith": [haystack, needle]}

haystack array of any A

needle array of A
(returns) boolean

or

haystack array of any A

needle A

(returns) boolean

Description: Return true if the first (leftmost) subseqence of haystack is equal to needle, false other-
wise.

17.2.6 Check end (a.endswith)

Signature: {"a.endswith": [haystack, needle]}

haystack array of any A

needle array of A
(returns) boolean

or

151

haystack array of any A

needle A

(returns) boolean

Description: Return true if the last (rightmost) subseqence of haystack is equal to needle, false oth-
erwise.

17.3 Manipulation

17.3.1 Concatenate two arrays (a.concat)

Signature: {"a.concat": [a, b]}

a array of any A

b array of A
(returns) array of A

Description: Concatenate a and b to make a new array of the same type.

Details:

The length of the returned array is the sum of the lengths of a and b.

17.3.2 Append (a.append)

Signature: {"a.append": [a, item]}

a array of any A

item A

(returns) array of A

Description: Return a new array by adding item at the end of a.

Details:
Note: a is not changed in-place; this is a side-effect-free function.
The length of the returned array is one more than a.

17.3.3 Append to a circular buffer with a maximum size (a.cycle)

Signature: {"a.cycle": [a, item, maxLength]}

152

a array of any A

item A

maxLength int
(returns) array of A

Description: Return a new array by adding item at the end of a, but keep the length less than or equal
to maxLength by removing items from the beginning.

Details:

Note: a is not changed in-place; this is a side-effect-free function.

Runtime Errors:

#15150: If maxLength is less than 0, this function raises a “maxLength out of range” error.

17.3.4 Insert or prepend (a.insert)

Signature: {"a.insert": [a, index, item]}

a array of any A

index int
item A

(returns) array of A

Description: Return a new array by inserting item at index of a.

Details:
Negative indexes count from the right (-1 is just before the last item), following Python’s index
behavior.
Note: a is not changed in-place; this is a side-effect-free function.
The length of the returned array is one more than a.

Runtime Errors:

#15160: If index is beyond the range of a, an “index out of range” runtime error is raised.

17.3.5 Replace item (a.replace)

Signature: {"a.replace": [a, index, item]}

a array of any A

index int
item A

(returns) array of A

153

Description: Return a new array by replacing index of a with item.

Details:
Negative indexes count from the right (-1 is just before the last item), following Python’s index
behavior.
Note: a is not changed in-place; this is a side-effect-free function.
The length of the returned array is equal to that of a.

Runtime Errors:

#15170: If index is beyond the range of a, an “index out of range” runtime error is raised.

17.3.6 Remove item (a.remove)

Signature: {"a.remove": [a, start, end]} or {"a.remove": [a, index]}

a array of any A

start int
end int
(returns) array of A

or

a array of any A

index int
(returns) array of A

Description: Return a new array by removing elements from a from start (inclusive) until end (exclu-
sive) or just a single index.

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.
Note: a is not changed in-place; this is a side-effect-free function.
The length of the returned array is one less than a.

Runtime Errors:

#15180: If index is beyond the range of a, an “index out of range” runtime error is raised.

17.3.7 Rotate an array left (a.rotate)

Signature: {"a.rotate": [a, steps]}

154

a array of any A

steps int
(returns) array of A

Description: Return an array formed by rotating a left steps spaces.

Runtime Errors:

#15190: If steps is less than zero, a “steps out of range” error is raised.

17.4 Reordering

17.4.1 Sort (a.sort)

Signature: {"a.sort": [a]}

a array of any A

(returns) array of A

Description: Return an array with the same elements as a but in ascending order (as defined by Avro’s
sort order).

Details:

Note: a is not changed in-place; this is a side-effect-free function.

17.4.2 Sort with a less-than function (a.sortLT)

Signature: {"a.sortLT": [a, lessThan]}

a array of any A

lessThan function (A, A) → boolean
(returns) array of A

Description: Return an array with the same elements as a but in ascending order as defined by the
lessThan function.

Details:

Note: a is not changed in-place; this is a side-effect-free function.

17.4.3 Randomly shuffle array (a.shuffle)

Signature: {"a.shuffle": [a]}

a array of any A

(returns) array of A

155

Description: Return an array with the same elements as a but in a random order.

Details:
Note: a is not changed in-place; this is a side-effect-free function (except for updating the random
number generator).
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

17.4.4 Reverse order (a.reverse)

Signature: {"a.reverse": [a]}

a array of any A

(returns) array of A

Description: Return the elements of a in reversed order.

17.5 Extreme values

The functions listed here provide the Cartesian product of the following features: (1) minimization and
maximization, (2) using the natural Avro sort order or a custom less-than function, (3) returning only the
most extreme value or an array of the N most extreme values, (4) returning the values themselves or the
indexes of the values in the array. Each combination is provided as a separate function to avoid complicating
the type signatures of the functions.

17.5.1 Maximum of all values (a.max)

Signature: {"a.max": [a]}

a array of any A

(returns) A

Description: Return the maximum value in a (as defined by Avro’s sort order).

Runtime Errors:

#15240: If a is empty, an “empty array” runtime error is raised.

17.5.2 Minimum of all values (a.min)

Signature: {"a.min": [a]}

a array of any A

(returns) A

Description: Return the minimum value in a (as defined by Avro’s sort order).

156

Runtime Errors:

#15250: If a is empty, an “empty array” runtime error is raised.

17.5.3 Maximum with a less-than function (a.maxLT)

Signature: {"a.maxLT": [a, lessThan]}

a array of any A

lessThan function (A, A) → boolean
(returns) A

Description: Return the maximum value in a as defined by the lessThan function.

Runtime Errors:

#15260: If a is empty, an “empty array” runtime error is raised.

17.5.4 Minimum with a less-than function (a.minLT)

Signature: {"a.minLT": [a, lessThan]}

a array of any A

lessThan function (A, A) → boolean
(returns) A

Description: Return the minimum value in a as defined by the lessThan function.

Runtime Errors:

#15270: If a is empty, an “empty array” runtime error is raised.

17.5.5 Maximum N items (a.maxN)

Signature: {"a.maxN": [a, n]}

a array of any A

n int
(returns) array of A

Description: Return the n highest values in a (as defined by Avro’s sort order).

Runtime Errors:
#15280: If a is empty, an “empty array” runtime error is raised.
#15281: If n is negative, an “n < 0” runtime error is raised.

157

17.5.6 Minimum N items (a.minN)

Signature: {"a.minN": [a, n]}

a array of any A

n int
(returns) array of A

Description: Return the n lowest values in a (as defined by Avro’s sort order).

Runtime Errors:
#15290: If a is empty, an “empty array” runtime error is raised.
#15291: If n is negative, an “n < 0” runtime error is raised.

17.5.7 Maximum N with a less-than function (a.maxNLT)

Signature: {"a.maxNLT": [a, n, lessThan]}

a array of any A

n int
lessThan function (A, A) → boolean
(returns) array of A

Description: Return the n highest values in a as defined by the lessThan function.

Runtime Errors:
#15300: If a is empty, an “empty array” runtime error is raised.
#15301: If n is negative, an “n < 0” runtime error is raised.

17.5.8 Minimum N with a less-than function (a.minNLT)

Signature: {"a.minNLT": [a, n, lessThan]}

a array of any A

n int
lessThan function (A, A) → boolean
(returns) array of A

Description: Return the n lowest values in a as defined by the lessThan function.

Runtime Errors:
#15310: If a is empty, an “empty array” runtime error is raised.
#15311: If n is negative, an “n < 0” runtime error is raised.

158

17.5.9 Argument maximum (a.argmax)

Signature: {"a.argmax": [a]}

a array of any A

(returns) int

Description: Return the index of the maximum value in a (as defined by Avro’s sort order).

Details:

If the maximum is not unique, this function returns the index of the first maximal value.

Runtime Errors:

#15320: If a is empty, an “empty array” runtime error is raised.

17.5.10 Argument minimum (a.argmin)

Signature: {"a.argmin": [a]}

a array of any A

(returns) int

Description: Return the index of the minimum value in a (as defined by Avro’s sort order).

Details:

If the minimum is not unique, this function returns the index of the first minimal value.

Runtime Errors:

#15330: If a is empty, an “empty array” runtime error is raised.

17.5.11 Argument maximum with a less-than function (a.argmaxLT)

Signature: {"a.argmaxLT": [a, lessThan]}

a array of any A

lessThan function (A, A) → boolean
(returns) int

Description: Return the index of the maximum value in a as defined by the lessThan function.

Details:

If the maximum is not unique, this function returns the index of the first maximal value.

Runtime Errors:

#15340: If a is empty, an “empty array” runtime error is raised.

159

17.5.12 Argument minimum with a less-than function (a.argminLT)

Signature: {"a.argminLT": [a, lessThan]}

a array of any A

lessThan function (A, A) → boolean
(returns) int

Description: Return the index of the minimum value in a as defined by the lessThan function.

Details:

If the minimum is not unique, this function returns the index of the first minimal value.

Runtime Errors:

#15350: If a is empty, an “empty array” runtime error is raised.

17.5.13 Maximum N arguments (a.argmaxN)

Signature: {"a.argmaxN": [a, n]}

a array of any A

n int
(returns) array of int

Description: Return the indexes of the n highest values in a (as defined by Avro’s sort order).

Details:

If any values are not unique, their indexes will be returned in ascending order.

Runtime Errors:
#15360: If a is empty, an “empty array” runtime error is raised.
#15361: If n is negative, an “n < 0” runtime error is raised.

17.5.14 Minimum N arguments (a.argminN)

Signature: {"a.argminN": [a, n]}

a array of any A

n int
(returns) array of int

Description: Return the indexes of the n lowest values in a (as defined by Avro’s sort order).

Details:

160

If any values are not unique, their indexes will be returned in ascending order.

Runtime Errors:
#15370: If a is empty, an “empty array” runtime error is raised.
#15371: If n is negative, an “n < 0” runtime error is raised.

17.5.15 Maximum N arguments with a less-than function (a.argmaxNLT)

Signature: {"a.argmaxNLT": [a, n, lessThan]}

a array of any A

n int
lessThan function (A, A) → boolean
(returns) array of int

Description: Return the indexes of the n highest values in a as defined by the lessThan function.

Details:

If any values are not unique, their indexes will be returned in ascending order.

Runtime Errors:
#15380: If a is empty, an “empty array” runtime error is raised.
#15381: If n is negative, an “n < 0” runtime error is raised.

17.5.16 Minimum N arguments with a less-than function (a.argminNLT)

Signature: {"a.argminNLT": [a, n, lessThan]}

a array of any A

n int
lessThan function (A, A) → boolean
(returns) array of int

Description: Return the indexes of the n lowest values in a as defined by the lessThan function.

Details:

If any values are not unique, their indexes will be returned in ascending order.

Runtime Errors:
#15390: If a is empty, an “empty array” runtime error is raised.
#15391: If n is negative, an “n < 0” runtime error is raised.

161

17.6 Numerical combinations

17.6.1 Add all array values (a.sum)

Signature: {"a.sum": [a]}

a array of any A of {int, long, float, double}
(returns) A

Description: Return the sum of numbers in a.

Details:

Returns zero if the array is empty.

Runtime Errors:
#15400: If the array items have integer type and the final result is too large or small to be represented
as an integer, an “int overflow” error is raised.
#15401: If the array items have long integer type and the final result is too large or small to be
represented as a long integer, an “long overflow” error is raised.

17.6.2 Multiply all array values (a.product)

Signature: {"a.product": [a]}

a array of any A of {int, long, float, double}
(returns) A

Description: Return the product of numbers in a.

Details:

Returns one if the array is empty.

Runtime Errors:
#15410: If the array items have integer type and the final result is too large or small to be represented
as an integer, an “int overflow” error is raised.
#15411: If the array items have long integer type and the final result is too large or small to be
represented as a long integer, an “long overflow” error is raised.

17.6.3 Sum of logarithms (a.lnsum)

Signature: {"a.lnsum": [a]}

a array of double
(returns) double

Description: Return the sum of the natural logarithm of numbers in a.

Details:

162

Returns zero if the array is empty and NaN if any value in the array is zero or negative.

17.6.4 Log of the sum of exponentials without roundoff error (a.logsumexp)

Signature: {"a.logsumexp": [a]}

a array of double
(returns) double

Description: Compute z =
log(
sumN

n=1e
xn) in a numerically stable way.

Details:

Returns NaN if the array is empty.

17.6.5 Arithmetic mean (a.mean)

Signature: {"a.mean": [a]}

a array of double
(returns) double

Description: Return the arithmetic mean of numbers in a.

Details:

Returns NaN if the array is empty.

17.6.6 Geometric mean (a.geomean)

Signature: {"a.geomean": [a]}

a array of double
(returns) double

Description: Return the geometric mean of numbers in a.

Details:

Returns NaN if the array is empty.

17.6.7 Median (a.median)

Signature: {"a.median": [a]}

163

a array of any A

(returns) A

Description: Return the value that is in the center of a sorted version of a.

Details:
If a has an odd number of elements, the median is the exact center of the sorted array. If a has an
even number of elements and is a float or double, the median is the average of the two elements
closest to the center of the sorted array. For any other type, the median is the left (first) of the two
elements closest to the center of the sorted array.

Runtime Errors:

#15450: If a is empty, an “empty array” runtime error is raised.

17.6.8 Percentile in unit interval (a.ntile)

Signature: {"a.ntile": [a, p]}

a array of any A

p double
(returns) A

Description: Return the value that is at the “n-tile” of a (like a percentile).

Parameters:

a Array of objects to be take the percentile of.
p A double between 0 and 1.

Details:
If a has an even number of elements and is a float or double, this function will take the average
of the two elements closest to the center of the sorted array. For any other type, it returns the left
(first) of the two elements closest to the center of the sorted array. If p is exactly one (or greater),
the max of the array is returned. If p is zero (or less), the min of the array is returned.

Runtime Errors:
#15460: If a is empty, an “empty array” runtime error is raised.
#15461: If p is NaN, this function raises a “p not a number” error.

17.6.9 Mode, or most common value (a.mode)

Signature: {"a.mode": [a]}

a array of any A

(returns) A

Description: Return the mode (most common) value of a.

164

Details:

If several different values are equally common, the median of these is returned.

Runtime Errors:

#15470: If a is empty, an “empty array” runtime error is raised.

17.7 Set or set-like functions

PFA does not have a set datatype, but arrays can be interpreted as sets with the following functions, which
provide access and update times that scale with the length of the array. To represent sets using constant-time
hashtables, see the corresponding functions in Sec. 18.5.

17.7.1 Distinct items (a.distinct)

Signature: {"a.distinct": [a]}

a array of any A

(returns) array of A

Description: Return an array with the same contents as a but with duplicates removed.

Details:

The order of the original array is preserved.

17.7.2 Set equality (a.seteq)

Signature: {"a.seteq": [a, b]}

a array of any A

b array of A
(returns) boolean

Description: Return true if a and b are equivalent, ignoring order and duplicates, false otherwise.

17.7.3 Union (a.union)

Signature: {"a.union": [a, b]}

a array of any A

b array of A
(returns) array of A

Description: Return an array that represents the union of a and b, treated as sets (ignoring order and

165

duplicates).

Details:

The order of the original arrays is preserved.

17.7.4 Intersection (a.intersection)

Signature: {"a.intersection": [a, b]}

a array of any A

b array of A
(returns) array of A

Description: Return an array that represents the intersection of a and b, treated as sets (ignoring order
and duplicates).

Details:

The order of the original arrays is preserved.

17.7.5 Set difference (a.diff)

Signature: {"a.diff": [a, b]}

a array of any A

b array of A
(returns) array of A

Description: Return an array that represents the difference of a and b, treated as sets (ignoring order
and duplicates).

Details:

The order of the original arrays is preserved.

17.7.6 Symmetric set difference (a.symdiff)

Signature: {"a.symdiff": [a, b]}

a array of any A

b array of A
(returns) array of A

Description: Return an array that represents the symmetric difference of a and b, treated as sets (ig-
noring order and duplicates).

166

Details:
The symmetric difference is (a diff b) union (b diff a).
The order of the original arrays is preserved.

17.7.7 Subset check (a.subset)

Signature: {"a.subset": [little, big]}

little array of any A

big array of A
(returns) boolean

Description: Return true if little is a subset of big, false otherwise.

17.7.8 Disjointness check (a.disjoint)

Signature: {"a.disjoint": [a, b]}

a array of any A

b array of A
(returns) boolean

Description: Return true if a and b are disjoint, false otherwise.

17.8 Functional programming

These are the standard functors found in most functional programming contexts.

17.8.1 Transform array items with function (a.map)

Signature: {"a.map": [a, fcn]}

a array of any A

fcn function (A) → any B

(returns) array of B

Description: Apply fcn to each element of a and return an array of the results.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

167

17.8.2 Transform array items, providing access to the index (a.mapWithIndex)

Signature: {"a.mapWithIndex": [a, fcn]}

a array of any A

fcn function (int, A) → any B

(returns) array of B

Description: Apply fcn to index, element pairs from a and return an array of the results.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.3 Filter array items with a function (a.filter)

Signature: {"a.filter": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) array of A

Description: Apply fcn to each element of a and return an array of the elements for which fcn returns
true.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.4 Filter array items, providing access to the index (a.filterWithIndex)

Signature: {"a.filterWithIndex": [a, fcn]}

a array of any A

fcn function (int, A) → boolean
(returns) array of A

Description: Apply fcn to each index, element pair of a and return an array of the elements for which
fcn returns true.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.5 Filter and map (a.filterMap)

Signature: {"a.filterMap": [a, fcn]}

168

a array of any A

fcn function (A) → union of {any B, null}
(returns) array of B

Description: Apply fcn to each element of a and return an array of the results that are not null.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.6 Filter and map, providing access to the index (a.filterMapWithIndex)

Signature: {"a.filterMapWithIndex": [a, fcn]}

a array of any A

fcn function (int, A) → union of {any B, null}
(returns) array of B

Description: Apply fcn to each index, element pair of a and return an array of the results that are not
null.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.7 Map and flatten (a.flatMap)

Signature: {"a.flatMap": [a, fcn]}

a array of any A

fcn function (A) → array of any B

(returns) array of B

Description: Apply fcn to each element of a and flatten the resulting arrays into a single array.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.8 Map and flatten, providing access to the index (a.flatMapWithIndex)

Signature: {"a.flatMapWithIndex": [a, fcn]}

a array of any A

fcn function (int, A) → array of any B

(returns) array of B

169

Description: Apply fcn to each index, element pair of a and flatten the resulting arrays into a single
array.

Details:
The order in which fcn is called on elements of a is not guaranteed, though it will be called exactly
once for each element.

17.8.9 Zip and map (a.zipmap)

Signature: {"a.zipmap": [a, b, fcn]} or {"a.zipmap": [a, b, c, fcn]} or {"a.zipmap": [a, b, c, d, fcn]}

a array of any A

b array of any B

fcn function (A, B) → any Z

(returns) array of Z
or

a array of any A

b array of any B

c array of any C

fcn function (A, B, C) → any Z

(returns) array of Z
or

a array of any A

b array of any B

c array of any C

d array of any D

fcn function (A, B, C, D) → any Z

(returns) array of Z

Description: Apply fcn to the elements of a, b, c, d in lock-step and return a result for row.

Runtime Errors:

#15650: Raises a “misaligned arrays” error if a, b, c, d do not all have the same length.

17.8.10 Zip and map, providing access to the index (a.zipmapWithIndex)

Signature: {"a.zipmapWithIndex": [a, b, fcn]} or {"a.zipmapWithIndex": [a, b, c, fcn]} or {"a.zipmapWithIndex": [a, b, c, d, fcn]}

170

a array of any A

b array of any B

fcn function (int, A, B) → any Z

(returns) array of Z
or

a array of any A

b array of any B

c array of any C

fcn function (int, A, B, C) → any Z

(returns) array of Z
or

a array of any A

b array of any B

c array of any C

d array of any D

fcn function (int, A, B, C, D) → any Z

(returns) array of Z

Description: Apply fcn to the indexes and elements of a, b, c, d in lock-step and return a result for row.

Runtime Errors:

#15660: Raises a “misaligned arrays” error if a, b, c, d do not all have the same length.

17.8.11 Reduce array items to a single value (a.reduce)

Signature: {"a.reduce": [a, fcn]}

a array of any A

fcn function (A, A) → A

(returns) A

Description: Apply fcn to each element of a and accumulate a tally.

Details:
The first parameter of fcn is the running tally and the second parameter is an element from a.
The order in which fcn is called on elements of a is not guaranteed, though it accumulates from left
(beginning) to right (end), called exactly once for each element. For predictable results, fcn should
be associative. It need not be commutative.

Runtime Errors:

#15670: If a is empty, an “empty array” runtime error is raised.

171

17.8.12 Right-to-left reduce (a.reduceRight)

Signature: {"a.reduceRight": [a, fcn]}

a array of any A

fcn function (A, A) → A

(returns) A

Description: Apply fcn to each element of a and accumulate a tally.

Details:
The first parameter of fcn is an element from a and the second parameter is the running tally.
The order in which fcn is called on elements of a is not guaranteed, though it accumulates from right
(end) to left (beginning), called exactly once for each element. For predictable results, fcn should be
associative. It need not be commutative.

Runtime Errors:

#15680: If a is empty, an “empty array” runtime error is raised.

17.8.13 Fold array items to another type (a.fold)

Signature: {"a.fold": [a, zero, fcn]}

a array of any A

zero any B

fcn function (B, A) → B

(returns) B

Description: Apply fcn to each element of a and accumulate a tally, starting with zero.

Details:
The first parameter of fcn is the running tally and the second parameter is an element from a.
The order in which fcn is called on elements of a is not guaranteed, though it accumulates from left
(beginning) to right (end), called exactly once for each element. For predictable results, fcn should be
associative with zero as its identity; that is, fcn(zero, zero) = zero. It need not be commutative.

17.8.14 Right-to-left fold (a.foldRight)

Signature: {"a.foldRight": [a, zero, fcn]}

172

a array of any A

zero any B

fcn function (A, B) → B

(returns) B

Description: Apply fcn to each element of a and accumulate a tally, starting with zero.

Details:
The first parameter of fcn is an element from a and the second parameter is the running tally.
The order in which fcn is called on elements of a is not guaranteed, though it accumulates from right
(end) to left (beginning), called exactly once for each element. For predictable results, fcn should be
associative with zero as its identity; that is, fcn(zero, zero) = zero. It need not be commutative.

17.8.15 Take items until predicate is false (a.takeWhile)

Signature: {"a.takeWhile": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) array of A

Description: Apply fcn to elements of a and create an array of the longest prefix that returns true,
stopping with the first false.

Details:

Beyond the prefix, the number of fcn calls is not guaranteed.

17.8.16 Drop items until predicate is true (a.dropWhile)

Signature: {"a.dropWhile": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) array of A

Description: Apply fcn to elements of a and create an array of all elements after the longest prefix that
returns true.

Details:

Beyond the prefix, the number of fcn calls is not guaranteed.

173

17.9 Functional tests

17.9.1 Existential check, ∃ (a.any)

Signature: {"a.any": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) boolean

Description: Return true if fcn is true for any element in a (logical or).

Details:

The number of fcn calls is not guaranteed.

17.9.2 Univeral check, ∀ (a.all)

Signature: {"a.all": [a, fcn]}

a array of any A

fcn function (A) → boolean
(returns) boolean

Description: Return true if fcn is true for all elements in a (logical and).

Details:

The number of fcn calls is not guaranteed.

17.9.3 Pairwise check of two arrays (a.corresponds)

Signature: {"a.corresponds": [a, b, fcn]}

a array of any A

b array of any B

fcn function (A, B) → boolean
(returns) boolean

Description: Return true if fcn is true when applied to all pairs of elements, one from a and the other
from b (logical relation).

Details:
The number of fcn calls is not guaranteed.
If the lengths of a and b are not equal, this function returns false.

174

17.9.4 Pairwise check, providing access to the index (a.correspondsWithIndex)

Signature: {"a.correspondsWithIndex": [a, b, fcn]}

a array of any A

b array of any B

fcn function (int, A, B) → boolean
(returns) boolean

Description: Return true if fcn is true when applied to all triples of index, element from a, element
from b (logical relation).

Details:
The number of fcn calls is not guaranteed.
If the lengths of a and b are not equal, this function returns false.

17.10 Restructuring

17.10.1 Sliding window (a.slidingWindow)

Signature: {"a.slidingWindow": [a, size, step]}

a array of any A

size int
step int
(returns) array of array of A

Description: Return an array of subsequences of a with length size that slide through a in steps of
length step from left to right.

Runtime Errors:
#15770: If size is non-positive, a “size < 1” runtime error is raised.
#15771: If step is non-positive, a “step < 1” runtime error is raised.

17.10.2 Unique combinations of a fixed size (a.combinations)

Signature: {"a.combinations": [a, size]}

a array of any A

size int
(returns) array of array of A

Description: Return all combinations of elements of a with length size.

Runtime Errors:

#15780: If size is non-positive, a “size < 1” runtime error is raised.

175

17.10.3 Permutations (a.permutations)

Signature: {"a.permutations": [a]}

a array of any A

(returns) array of array of A

Description: Return all permutations of elements of a.

Details:
This function scales rapidly with the length of the array. For reasonably large arrays, it will result in
timeout exceptions.

17.10.4 Flatten array (a.flatten)

Signature: {"a.flatten": [a]}

a array of array of any A

(returns) array of A

Description: Concatenate the arrays in a.

17.10.5 Group items by category (a.groupby)

Signature: {"a.groupby": [a, fcn]}

a array of any A

fcn function (A) → string
(returns) map of array of A

Description: Groups elements of a by the string that fcn maps them to.

176

18 Map manipulation library

Maps are immutable, so none of the following functions modifies a map in-place. Some return a modified
version of the original map.

18.1 Basic access

18.1.1 Length (map.len)

Signature: {"map.len": [m]}

m map of any A

(returns) int

Description: Return the length of a map.

18.1.2 Extract the keys (map.keys)

Signature: {"map.keys": [m]}

m map of any A

(returns) array of string

Description: Return the keys of a map (in no particular order).

Details:
Nondeterministic: unordered. This function gives the same set of values every time it is executed
on all systems, but the values may have a different order.

18.1.3 Extract the values (map.values)

Signature: {"map.values": [m]}

m map of any A

(returns) array of A

Description: Return the values of a map (in no particular order).

Details:
Nondeterministic: unordered. This function gives the same set of values every time it is executed
on all systems, but the values may have a different order.

177

18.2 Search and replace

18.2.1 Contains key (map.containsKey)

Signature: {"map.containsKey": [m, key]} or {"map.containsKey": [m, fcn]}

m map of any A

key string
(returns) boolean

or

m map of any A

fcn function (string) → boolean
(returns) boolean

Description: Return true if the keys of m contains key or fcn evaluates to true for some key of m, false
otherwise.

18.2.2 Contains value (map.containsValue)

Signature: {"map.containsValue": [m, value]} or {"map.containsValue": [m, fcn]}

m map of any A

value A

(returns) boolean
or

m map of any A

fcn function (A) → boolean
(returns) boolean

Description: Return true if the values of m contains value or fcn evaluates to true for some key of m,
false otherwise.

18.3 Manipulation

18.3.1 Insert a key-value pair (map.add)

Signature: {"map.add": [m, key, value]} or {"map.add": [m, item]}

m map of any A

key string
value A

(returns) map of A
or

178

m map of any A

item A

(returns) map of A

Description: Return a new map by adding the key value pair to m or a new set by adding the item to
set m, where a set is represented as a map from serialized objects to objects.

Details:
Note: m is not changed in-place; this is a side-effect-free function.
If key is in m, its value will be replaced.
The serialization format for keys of sets is base64-encoded Avro.

18.3.2 Remove a key (map.remove)

Signature: {"map.remove": [m, key]}

m map of any A

key string
(returns) map of A

Description: Return a new map by removing key from m.

Details:
Note: m is not changed in-place; this is a side-effect-free function.
If key is not in m, the return value is simply m.

18.3.3 Keep only certain keys (map.only)

Signature: {"map.only": [m, keys]}

m map of any A

keys array of string
(returns) map of A

Description: Return a new map, keeping only keys from m.

Details:
Note: m is not changed in-place; this is a side-effect-free function.
If some keys are not in m, they are ignored and do not appear in the return value.

18.3.4 Keep all except certain keys (map.except)

Signature: {"map.except": [m, keys]}

179

m map of any A

keys array of string
(returns) map of A

Description: Return a new map, keeping all but keys from m.

Details:
Note: m is not changed in-place; this is a side-effect-free function.
If some keys are not in m, they are ignored and do not appear in the return value.

18.3.5 Add or replace keys with an overlay map (map.update)

Signature: {"map.update": [base, overlay]}

base map of any A

overlay map of A
(returns) map of A

Description: Return a new map with key-value pairs from overlay in place of or in addition to key-value
pairs from base.

Details:
Note: m is not changed in-place; this is a side-effect-free function.
Keys of overlay that are not in base are added to those in base and keys of overlay that are in
base supersede those in base.

18.3.6 Split map into an array of single-key maps (map.split)

Signature: {"map.split": [m]}

m map of any A

(returns) array of map of A

Description: Split the map into an array of maps, each containing only one key-value pair (in no partic-
ular order).

Details:
Nondeterministic: unordered. This function gives the same set of values every time it is executed
on all systems, but the values may have a different order.

18.3.7 Join an array of maps into one map (map.join)

Signature: {"map.join": [a]}

a array of map of any A

(returns) map of A

180

Description: Join an array of maps into one map, overlaying from left to right.

18.4 Extreme values by key

To get the maximum or minimum value of a map, simply call map.values and then use one of the array
max/min functions. If, however, you need to know the key of the maximum or minimum value, use one of
the below.

18.4.1 Argument maximum (map.argmax)

Signature: {"map.argmax": [m]}

m map of any A

(returns) string

Description: Return the key of the highest value in m (as defined by Avro’s sort order).

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:

#26120: If m is empty, an “empty map” runtime error is raised.

18.4.2 Argument minimum (map.argmin)

Signature: {"map.argmin": [m]}

m map of any A

(returns) string

Description: Return the key of the lowest value in m (as defined by Avro’s sort order).

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:

#26130: If m is empty, an “empty map” runtime error is raised.

18.4.3 Argument maximum with a less-than function (map.argmaxLT)

Signature: {"map.argmaxLT": [m, lessThan]}

181

m map of any A

lessThan function (A, A) → boolean
(returns) string

Description: Return the key of the highest value in m as defined by the lessThan function.

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:

#26140: If m is empty, an “empty map” runtime error is raised.

18.4.4 Argument minimum with a less-than function (map.argminLT)

Signature: {"map.argminLT": [m, lessThan]}

m map of any A

lessThan function (A, A) → boolean
(returns) string

Description: Return the key of the lowest value in m as defined by the lessThan function.

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:

#26150: If m is empty, an “empty map” runtime error is raised.

18.4.5 Maximum N arguments (map.argmaxN)

Signature: {"map.argmaxN": [m, n]}

m map of any A

n int
(returns) array of string

Description: Return the keys of the n highest values in m (as defined by Avro’s sort order).

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:
#26160: If m is empty, an “empty map” runtime error is raised.
#26161: If n is negative, an “n < 0” runtime error is raised.

182

18.4.6 Minimum N arguments (map.argminN)

Signature: {"map.argminN": [m, n]}

m map of any A

n int
(returns) array of string

Description: Return the keys of the n lowest values in m (as defined by Avro’s sort order).

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:
#26170: If m is empty, an “empty map” runtime error is raised.
#26171: If n is negative, an “n < 0” runtime error is raised.

18.4.7 Maximum N arguments with a less-than function (map.argmaxNLT)

Signature: {"map.argmaxNLT": [m, n, lessThan]}

m map of any A

n int
lessThan function (A, A) → boolean
(returns) array of string

Description: Return the keys of the n highest values in a as defined by the lessThan function.

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:
#26180: If m is empty, an “empty map” runtime error is raised.
#26181: If n is negative, an “n < 0” runtime error is raised.

18.4.8 Minimum N arguments with a less-than function (map.argminNLT)

Signature: {"map.argminNLT": [m, n, lessThan]}

m map of any A

n int
lessThan function (A, A) → boolean
(returns) array of string

183

Description: Return the keys of the n highest values in a as defined by the lessThan function.

Details:

If any values are not unique, their keys will be returned in lexicographic order.

Runtime Errors:
#26190: If m is empty, an “empty map” runtime error is raised.
#26191: If n is negative, an “n < 0” runtime error is raised.

18.5 Set or set-like functions

PFA does not have a set datatype, but maps can be interpreted as sets with the following functions, which
provide some constant-time access times. For a simpler implementation, see the corresponding sections in
Sec. 17.7.

18.5.1 Convert an array to a map-set (map.toset)

Signature: {"map.toset": [a]}

a array of any A

(returns) map of A

Description: Convert an array of objects into a set of objects, where a set is represented as a map from
serialized objects to objects.

Details:

The serialization format is base64-encoded Avro.

18.5.2 Convert a map to an array-set (map.fromset)

Signature: {"map.fromset": [s]}

s map of any A

(returns) array of A

Description: Convert a set of objects into an array of objects (in no particular order), where a set is
represented as a map from serialized objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only values, not keys.
Nondeterministic: unordered. This function gives the same set of values every time it is executed
on all systems, but the values may have a different order.

184

18.5.3 Determine if an object is in the set (map.in)

Signature: {"map.in": [s, x]}

s map of any A

x A

(returns) boolean

Description: Return true if x is contained in set s, false otherwise, where a set is represented as a
map from serialized objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

18.5.4 Union (map.union)

Signature: {"map.union": [a, b]}

a map of any A

b map of A
(returns) map of A

Description: Return the union of sets a and b, where a set is represented as a map from serialized objects
to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

18.5.5 Intersection (map.intersection)

Signature: {"map.intersection": [a, b]}

a map of any A

b map of A
(returns) map of A

Description: Return the intersection of sets a and b, where a set is represented as a map from serialized
objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

185

18.5.6 Set difference (map.diff)

Signature: {"map.diff": [a, b]}

a map of any A

b map of A
(returns) map of A

Description: Return the difference of sets a and b, where a set is represented as a map from serialized
objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

18.5.7 Symmetric set difference (map.symdiff)

Signature: {"map.symdiff": [a, b]}

a map of any A

b map of A
(returns) map of A

Description: Return the difference of sets a and b, where a set is represented as a map from serialized
objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

18.5.8 Subset check (map.subset)

Signature: {"map.subset": [little, big]}

little map of any A

big map of A
(returns) boolean

Description: Return true if set little is a subset of set big, false otherwise, where a set is represented
as a map from serialized objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

186

18.5.9 Disjointness check (map.disjoint)

Signature: {"map.disjoint": [a, b]}

a map of any A

b map of A
(returns) boolean

Description: Return true if set a and set b are disjoint, false otherwise, where a set is represented as
a map from serialized objects to objects.

Details:
The serialization format is base64-encoded Avro.
This function does not verify that the serialized objects (keys) and objects (values) match: it considers
only keys, not values.

18.6 Functional programming

18.6.1 Transform map items with a function (map.map)

Signature: {"map.map": [m, fcn]}

m map of any A

fcn function (A) → any B

(returns) map of B

Description: Apply fcn to each value of m and return a map of transformed values (keys are unchanged).

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.
To transform both keys and values, consider applying map.split, a.map, then map.join.

18.6.2 Transform map items, providing access to the key (map.mapWithKey)

Signature: {"map.mapWithKey": [m, fcn]}

m map of any A

fcn function (string, A) → any B

(returns) map of B

Description: Apply fcn to each key, value pair of m and return a map of transformed values (keys are
unchanged).

Details:

187

The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.
To transform both keys and values, consider applying map.split, a.map, then map.join.

18.6.3 Filter map items with a function (map.filter)

Signature: {"map.filter": [m, fcn]}

m map of any A

fcn function (A) → boolean
(returns) map of A

Description: Apply fcn to each value of m and return a map of the values for which fcn returns true
(keys are unchanged).

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

18.6.4 Filter map items, providing access to the key (map.filterWithKey)

Signature: {"map.filterWithKey": [m, fcn]}

m map of any A

fcn function (string, A) → boolean
(returns) map of A

Description: Apply fcn to each value of m and return a map of the values for which fcn returns true
(keys are unchanged).

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

18.6.5 Filter and map (map.filterMap)

Signature: {"map.filterMap": [m, fcn]}

m map of any A

fcn function (A) → union of {any B, null}
(returns) map of B

Description: Apply fcn to each value of m and return a map of the results that are not null.

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

188

18.6.6 Filter and map, providing access to the keys (map.filterMapWithKey)

Signature: {"map.filterMapWithKey": [m, fcn]}

m map of any A

fcn function (string, A) → union of {any B, null}
(returns) map of B

Description: Apply fcn to each key-value pair of m and return a map of the results that are not null.

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

18.6.7 Map and flatten (map.flatMap)

Signature: {"map.flatMap": [m, fcn]}

m map of any A

fcn function (A) → map of any B

(returns) map of B

Description: Apply fcn to each value of m and return a map of overlaid results.

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

18.6.8 Map and flatten, providing access to the keys (map.flatMapWithKey)

Signature: {"map.flatMapWithKey": [m, fcn]}

m map of any A

fcn function (string, A) → map of any B

(returns) map of B

Description: Apply fcn to each key-value pair of m and return a map of overlaid results.

Details:
The order in which fcn is called on items in m is not guaranteed, though it will be called exactly once
for each value.

189

18.6.9 Zip and map (map.zipmap)

Signature: {"map.zipmap": [a, b, fcn]} or {"map.zipmap": [a, b, c, fcn]} or {"map.zipmap": [a, b, c, d, fcn]}

a map of any A

b map of any B

fcn function (A, B) → any Z

(returns) map of Z
or

a map of any A

b map of any B

c map of any C

fcn function (A, B, C) → any Z

(returns) map of Z
or

a map of any A

b map of any B

c map of any C

d map of any D

fcn function (A, B, C, D) → any Z

(returns) map of Z

Description: Apply fcn to the elements of a, b, c, d in lock-step and return a result for row.

Runtime Errors:

#26370: Raises a “misaligned maps” error if a, b, c, d do not all have the same keys.

18.6.10 Zip and map, providing access to the keys (map.zipmapWithKey)

Signature: {"map.zipmapWithKey": [a, b, fcn]} or {"map.zipmapWithKey": [a, b, c, fcn]} or {"map.zipmapWithKey": [a, b, c, d, fcn]}

a map of any A

b map of any B

fcn function (string, A, B) → any Z

(returns) map of Z
or

190

a map of any A

b map of any B

c map of any C

fcn function (string, A, B, C) → any Z

(returns) map of Z
or

a map of any A

b map of any B

c map of any C

d map of any D

fcn function (string, A, B, C, D) → any Z

(returns) map of Z

Description: Apply fcn to the keys and elements of a, b, c, d in lock-step and return a result for row.

Runtime Errors:

#26380: Raises a “misaligned maps” error if a, b, c, d do not all have the same keys.

18.7 Functional tests

18.7.1 Pairwise check of two maps (map.corresponds)

Signature: {"map.corresponds": [a, b, fcn]}

a map of any A

b map of any B

fcn function (A, B) → boolean
(returns) boolean

Description: Return true if fcn is true when applied to all pairs of values, one from a and the other
from b (logical relation).

Details:
The number of fcn calls is not guaranteed.
If the key sets of a and b are not equal, this function returns false.

18.7.2 Pairwise check, providing access to the keys (map.correspondsWithKey)

Signature: {"map.correspondsWithKey": [a, b, fcn]}

191

a map of any A

b map of any B

fcn function (string, A, B) → boolean
(returns) boolean

Description: Return true if fcn is true when applied to all triples of key, value from a, value from b
(logical relation).

Details:
The number of fcn calls is not guaranteed.
If the key sets of a and b are not equal, this function returns false.

192

19 Bytes manipulation library

19.1 Basic access

19.1.1 Length (bytes.len)

Signature: {"bytes.len": [x]}

x bytes
(returns) int

Description: Return the length of byte array x.

19.1.2 Extract subsequence (bytes.subseq)

Signature: {"bytes.subseq": [x, start, end]}

x bytes
start int
end int
(returns) bytes

Description: Return the subsequence of x from start (inclusive) until end (exclusive).

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.

19.1.3 Modify subsequence (bytes.subseqto)

Signature: {"bytes.subseqto": [x, start, end, replacement]}

x bytes
start int
end int
replacement bytes
(returns) bytes

Description: Replace x from start (inclusive) until end (exclusive) with replacement.

Details:
Negative indexes count from the right (-1 is just before the last item), indexes beyond the legal range
are truncated, and end ≤ start specifies a zero-length subsequence just before the start character.
All of these rules follow Python’s slice behavior.

193

19.2 Test validity

19.2.1 Verify ASCII format (bytes.isAscii)

Signature: {"bytes.isAscii": [x]}

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid ASCII; false otherwise.

19.2.2 Verify LATIN-1 format (bytes.isLatin1)

Signature: {"bytes.isLatin1": [x]}

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid latin-1 (ISO-8859-1); false otherwise.

19.2.3 Verify UTF-8 format (bytes.isUtf8)

Signature: {"bytes.isUtf8": [x]}

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid utf-8; false otherwise.

19.2.4 Verify UTF-16 format (bytes.isUtf16)

Signature: {"bytes.isUtf16": [x]}

194

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid utf-16 (byte order identified by optional byte-order mark); false
otherwise.

19.2.5 Verify UTF-16 big endian format (bytes.isUtf16be)

Signature: {"bytes.isUtf16be": [x]}

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid big endian utf-16; false otherwise.

19.2.6 Verify UTF-16 little endian format (bytes.isUtf16le)

Signature: {"bytes.isUtf16le": [x]}

x bytes
(returns) boolean

or

x string
(returns) boolean

Description: Returns true if x is valid little endian utf-16; false otherwise.

19.3 Decode bytes to strings

19.3.1 Decode from ASCII format (bytes.decodeAscii)

Signature: {"bytes.decodeAscii": [x]}

x bytes
(returns) string

195

Description: Decode a bytes object as an ASCII string.

Runtime Errors:

#16090: Raises an “invalid bytes” error if the bytes cannot be converted.

19.3.2 Decode from LATIN-1 format (bytes.decodeLatin1)

Signature: {"bytes.decodeLatin1": [x]}

x bytes
(returns) string

Description: Decode a bytes object as a latin-1 (ISO-8859-1) string.

Runtime Errors:

#16100: Raises an “invalid bytes” error if the bytes cannot be converted.

19.3.3 Decode from UTF-8 format (bytes.decodeUtf8)

Signature: {"bytes.decodeUtf8": [x]}

x bytes
(returns) string

Description: Decode a bytes object as a utf-8 string.

Runtime Errors:

#16110: Raises an “invalid bytes” error if the bytes cannot be converted.

19.3.4 Decode from UTF-16 format (bytes.decodeUtf16)

Signature: {"bytes.decodeUtf16": [x]}

x bytes
(returns) string

Description: Decode a bytes object as a utf-16 (byte order identified by optional byte-order mark) string.

Runtime Errors:

#16120: Raises an “invalid bytes” error if the bytes cannot be converted.

196

19.3.5 Decode from UTF-16 big endian format (bytes.decodeUtf16be)

Signature: {"bytes.decodeUtf16be": [x]}

x bytes
(returns) string

Description: Decode a bytes object as a big endian utf-16 string.

Runtime Errors:

#16130: Raises an “invalid bytes” error if the bytes cannot be converted.

19.3.6 Decode from UTF-16 little endian format (bytes.decodeUtf16le)

Signature: {"bytes.decodeUtf16le": [x]}

x bytes
(returns) string

Description: Decode a bytes object as a little endian utf-16 string.

Runtime Errors:

#16140: Raises an “invalid bytes” error if the bytes cannot be converted.

19.4 Encode strings to bytes

19.4.1 Encode to ASCII format (bytes.encodeAscii)

Signature: {"bytes.encodeAscii": [s]}

s string
(returns) bytes

Description: Encode a string as ASCII bytes.

Runtime Errors:

#16150: Raises an “invalid string” error if the string cannot be converted.

19.4.2 Encode to LATIN-1 format (bytes.encodeLatin1)

Signature: {"bytes.encodeLatin1": [s]}

s string
(returns) bytes

197

Description: Encode a string as latin-1 (ISO-8859-1) bytes.

Runtime Errors:

#16160: Raises an “invalid string” error if the string cannot be converted.

19.4.3 Encode to UTF-8 format (bytes.encodeUtf8)

Signature: {"bytes.encodeUtf8": [s]}

s string
(returns) bytes

Description: Encode a string as utf-8 bytes.

Runtime Errors:

#16170: Raises an “invalid string” error if the string cannot be converted.

19.4.4 Encode to UTF-16 format (bytes.encodeUtf16)

Signature: {"bytes.encodeUtf16": [s]}

s string
(returns) bytes

Description: Encode a string as utf-16 (byte order identified by optional byte-order mark) bytes.

Details:
Nondeterministic: unstable. This function gives the same results every time it is executed, but
those results may not be exactly the same on all systems.

Runtime Errors:

#16180: Raises an “invalid string” error if the string cannot be converted.

19.4.5 Encode to UTF-16 big endian format (bytes.encodeUtf16be)

Signature: {"bytes.encodeUtf16be": [s]}

s string
(returns) bytes

Description: Encode a string as big endian utf-16 bytes.

Runtime Errors:

#16190: Raises an “invalid string” error if the string cannot be converted.

198

19.4.6 Encode to UTF-16 little endian format (bytes.encodeUtf16le)

Signature: {"bytes.encodeUtf16le": [s]}

s string
(returns) bytes

Description: Encode a string as little endian utf-16 bytes.

Runtime Errors:

#16200: Raises an “invalid string” error if the string cannot be converted.

19.5 Base64 encoding

19.5.1 Encode bytes as a base64 string (bytes.toBase64)

Signature: {"bytes.toBase64": [x]}

x bytes
(returns) string

Description: Convert an arbitrary bytes object to a base64-encoded string.

19.5.2 Decode base64 string to bytes (bytes.fromBase64)

Signature: {"bytes.fromBase64": [s]}

s string
(returns) bytes

Description: Convert a base64-encoded string to a bytes object.

Runtime Errors:

#16220: Raises an “invalid base64” error if the string is not valid base64.

199

20 Manipulation of other data structures

20.1 Fixed

20.1.1 Convert to bytes (fixed.toBytes)

Signature: {"fixed.toBytes": [x]}

x any fixed A

(returns) bytes

Description: Convert fixed-length, named bytes into arbitrary-length, anonymous bytes.

20.1.2 Convert from bytes (fixed.fromBytes)

Signature: {"fixed.fromBytes": [original, replacement]}

original any fixed A

replacement bytes
(returns) A

Description: Overlay replacement on top of original.

Details:
If replacement is shorter than original, the bytes beyond replacement’s length are taken from
original.
If replacement is longer than original, the excess bytes are truncated.

20.2 Enum

20.2.1 String representation (enum.toString)

Signature: {"enum.toString": [x]}

x any enum A

(returns) string

Description: Return the string representation of an enum.

20.2.2 Integer representation (enum.toInt)

Signature: {"enum.toInt": [x]}

x any enum A

(returns) int

200

Description: Return the integer representation of an enum.

20.2.3 Number of symbols (enum.numSymbols)

Signature: {"enum.numSymbols": [x]}

x any enum A

(returns) int

Description: Return the number of symbols associated with this enum (a constant).

201

21 Date/time handling

PFA does not have a special data type for time (because there is no such type in Avro), so times are
represented as the floating-point number of seconds since the beginning of 1970 in UTC. For whole-numbered
seconds, this corresponds to the UNIX timestamp. Double precision (IEEE 64-bit representation), provides
microsecond resolution until May 30, 2514.

21.1 Extracting conventional time units from timestamp

Time units within a second (e.g. millisecond past the second or microsecond past the second) can be obtained
using the modulo function: {"*", [{"%": ["timestamp", 1.0]}, 1000]} for milliseconds.

21.1.1 Year from timestamp (time.year)

Signature: {"time.year": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the four-digit year that the timestamp falls within.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40000: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40001: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.1.2 Month of year from timestamp (time.monthOfYear)

Signature: {"time.monthOfYear": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the month that the timestamp falls within, with 1 being January and 12 being Decem-
ber.

202

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40010: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40011: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.1.3 Day of year from timestamp (time.dayOfYear)

Signature: {"time.dayOfYear": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the day of the year that the timestamp falls within, from 1 to 365 or 366 inclusive,
depending on leap year.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40020: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40021: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.1.4 Day of month from timestamp (time.dayOfMonth)

Signature: {"time.dayOfMonth": [ts, zone]}

203

ts double
zone string
(returns) int

Description: Get the day of the month that the timestamp falls within, a number from 1 to 28, 29, 30,
or 31, inclusive, depending on month.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40030: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40031: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.1.5 Day of week from timestamp (time.dayOfWeek)

Signature: {"time.dayOfWeek": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the day of the week that the timestamp falls within, with 0 being Monday and 6 being
Sunday.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40040: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40041: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

204

21.1.6 Hour of day from timestamp (time.hourOfDay)

Signature: {"time.hourOfDay": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the hour of the day that the timestamp falls within, from 0 to 23 inclusive.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40050: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40051: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.1.7 Minutes past the hour from timestamp (time.minuteOfHour)

Signature: {"time.minuteOfHour": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the minute of the hour that the timestamp falls within, from 0 to 59 inclusive.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40060: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40061: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

205

21.1.8 Seconds past the minute from timestamp (time.secondOfMinute)

Signature: {"time.secondOfMinute": [ts, zone]}

ts double
zone string
(returns) int

Description: Get the second of the minute that the timestamp falls within, from 0 to 59 inclusive.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40070: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40071: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.2 Constructing timestamp from conventional units

21.2.1 Make timestamp (time.makeTimestamp)

Signature: {"time.makeTimestamp": [year, month, day, hour, minute, second, millisecond, zone]}

year int
month int
day int
hour int
minute int
second int
millisecond int
zone string
(returns) double

Description: Given the date and time that this time occurs in, return the timestamp.

206

Parameters:

year The four-digit year, from 1 to 9999 inclusive.
month The month of the year, from 1 to 12 inclusive.
day The day of the month, from 1 to 28, 29, 30, or 31 inclusive, depending on month.
hour The hour of the day, from 0 to 23 inclusive.
minute The minute of the hour, from 0 to 59 inclusive.
second The second of the minute, from 0 to 59 inclusive.
millisecond The millisecond of the second, from 0 to 999 inclusive.
zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
(return value) The number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E.

in UTC.

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40080: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40081: Raises “timestamp undefined for given parameters” if any one (or more) of the inputs have
impossible values.

21.3 Querying time intervals

Since the timestamp is a simple number on a continuous range, one can use greater than or less than to
determine if it falls within an absolute interval (e.g. between 3 and 5 PM on July 2, 2015). Often, one wants
to know if a timestamp falls within a repeating interval, such as between 3 and 5 PM of any day. The
following functions provide this kind of access. (Note: if the interval is non-sensical, such as the 70th minute
of an hour, the function returns false, rather than raising an exception.)

21.3.1 Seconds of minute range (time.isSecondOfMinute)

Signature: {"time.isSecondOfMinute": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified number of seconds in any minute.

Parameters:

207

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum number of seconds (inclusive).
high Maximum number of seconds (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40090: Raises “bad time range” if low low ≥ high.
#40091: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40092: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.2 Minutes of hour range (time.isMinuteOfHour)

Signature: {"time.isMinuteOfHour": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified number of minutes in any hour.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum number of minutes (inclusive)
high Maximum number of minutes (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40100: Raises “bad time range” if low low ≥ high.
#40101: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40102: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

208

21.3.3 Hour of day range (time.isHourOfDay)

Signature: {"time.isHourOfDay": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified number of hours in any day.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum number of hours (inclusive).
high Maximum number of hours (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40110: Raises “bad time range” if low low ≥ high.
#40111: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40112: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.4 Day of week range (time.isDayOfWeek)

Signature: {"time.isDayOfWeek": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified day of week range, with 0 being Monday
and 6 being Sunday.

Parameters:

209

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum day of the week (inclusive).
high Maximum day of the week (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40120: Raises “bad time range” if low low ≥ high.
#40121: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40122: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.5 Day of month range (time.isDayOfMonth)

Signature: {"time.isDayOfMonth": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified day of month range, with 1 being the
first of the month..

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum day of the month (inclusive).
high Maximum day of the month (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:

210

#40130: Raises “bad time range” if low low ≥ high.
#40131: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40132: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.6 Month of year range (time.isMonthOfYear)

Signature: {"time.isMonthOfYear": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

Description: Determines if a timestamp falls within a specified month of year range, with 1 being Jan-
uary and 12 being December.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum month of the year (inclusive).
high Maximum month of the year (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40140: Raises “bad time range” if low low ≥ high.
#40141: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40142: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.7 Day of year range (time.isDayOfYear)

Signature: {"time.isDayOfYear": [ts, zone, low, high]}

ts double
zone string
low double
high double
(returns) boolean

211

Description: Determines if a timestamp falls within a specified day of year range, with 1 being the first
of the year.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).
low Minimum day of year (inclusive).
high Maximum day of year (exclusive).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40150: Raises “bad time range” if low low ≥ high.
#40151: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40152: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

21.3.8 Weekend range (time.isWeekend)

Signature: {"time.isWeekend": [ts, zone]}

ts double
zone string
(returns) boolean

Description: Returns true if the timestamp falls on a Saturday or Sunday, false otherwise.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40160: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40161: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

212

21.3.9 Working hours range (time.isWorkHours)

Signature: {"time.isWorkHours": [ts, zone]}

ts double
zone string
(returns) boolean

Description: Returns true if the timestamp falls between 9 am (inclusive) and 5 pm (exclusive) on
Monday through Friday, otherwise false.

Parameters:

ts Number of seconds since the beginning (just after midnight) of Jan 1, 1970 C.E. in
UTC.

zone Timezone name from the Olson timezone database, version 2015f (UTC if blank).

Details:
The earliest expressible date is the beginning (just after midnight) of Jan 1, 1 C.E. in UTC on the
proleptic Gregorian calendar, which is a timestamp of -62135596800. The latest expressible date is
the end (just before midnight) of Dec 31, 9999 C.E. in UTC on the Gregorian calendar, which is a
timestamp of 253402300799.

Runtime Errors:
#40170: Raises “unrecognized timezone string” if zone is not in the Olson 2015f database.
#40171: Raises “timestamp out of range” if ts less than -62135596800 or greater than 253402300799.

213

22 Impute library (missing data handling)

Some methods for dealing with missing data are inseparable from the statistical model in question, such
as adjustment factors for clustering or surrogate predicates for decision trees. Those that can be separated
have been collected here.

“To impute” means to replace missing data with substituted values.

22.1 Missing values as null

22.1.1 Skip record or halt processing (impute.errorOnNull)

Signature: {"impute.errorOnNull": [x]}

x union of {any A, null}
(returns) A

Description: Skip an action by raising a runtime error when x is null.

Runtime Errors:

#21000: Raises an “encountered null” error if x is null.

22.1.2 Replace with default (impute.defaultOnNull)

Signature: {"impute.defaultOnNull": [x, default]}

x union of {any A, null}
default A

(returns) A

Description: Replace null values in x with default.

22.2 Floating point missing values

22.2.1 Check for not-a-number (impute.isnan)

Signature: {"impute.isnan": [x]}

x float
(returns) boolean

or

x double
(returns) boolean

Description: Return true if x is nan, false otherwise.

214

http://en.wikipedia.org/wiki/Imputation_(statistics)

22.2.2 Check for infinity (impute.isinf)

Signature: {"impute.isinf": [x]}

x float
(returns) boolean

or

x double
(returns) boolean

Description: Return true if x is positive or negative infinity, false otherwise.

22.2.3 Ensure a finite number (impute.isnum)

Signature: {"impute.isnum": [x]}

x float
(returns) boolean

or

x double
(returns) boolean

Description: Return true if x is neither nan nor infinite, false otherwise.

22.2.4 Skip record or halt processing (impute.errorOnNonNum)

Signature: {"impute.errorOnNonNum": [x]}

x float
(returns) float

or

x double
(returns) double

Description: Pass through x if it is neither nan nor infinite, but raise an error otherwise.

Runtime Errors:
#21050: Raises an “encountered nan” if x is nan.
#21051: Raises an “encountered +inf” if x is positive infinity.
#21052: Raises an “encountered -inf” if x is negative infinity.

215

22.2.5 Replace with default (impute.defaultOnNonNum)

Signature: {"impute.defaultOnNonNum": [x, default]}

x float
default float
(returns) float

or

x double
default double
(returns) double

Description: Pass through x if it is neither nan nor infinite, and return default otherwise.

216

23 Interpolation library

23.1 Histogram-like binning (interp.bin)

Signature: {"interp.bin": [x, numbins, low, high]} or {"interp.bin": [x, origin, width]}

x double
numbins int
low double
high double
(returns) int

or

x double
origin double
width double
(returns) int

Description: Finds the bin that contains x, declared either as numbins between two endpoints or a bin
width starting at some origin.

Details:
Bins are inclusive on the low end and exclusive on the high end, so if x equal low or origin, the
resulting bin is 0, but if x is equal to high, it is out of range.
If the first signature is used, the resulting bin must be between 0 (inclusive) and numbins (exclusive).
If the second signature is used, the resulting bin may be any integer, including negative numbers.

Runtime Errors:
#22000: If low is greater or equal to high or origin is not finite, raises “bad histogram range”
#22001: If numbins is less than 1 or width is less or equal to 0, raises “bad histogram scale”
#22002: Raises “x out of range” if x is less than low or greater or equal to high.

23.2 Nearest point, vector, or abstract type (interp.nearest)

Signature: {"interp.nearest": [x, table]} or {"interp.nearest": [x, table, metric]}

x double
table array of any record R with {x:double, to: any T}
(returns) T

or

x array of double
table array of any record R with {x: array of double, to: any T}
(returns) T

or

217

x any X1

table array of any record R with {x: any X2, to: any T}
metric function (X1, X2) → double
(returns) T

Description: Finds the closest x value in the table to the input x and returns the corresponding to
value.

Details:

Any ties in distance are resolved in favor of the first instance in the table.

Runtime Errors:
#22010: Raises a “table must have at least one entry” error if table has fewer than one entry.
#22011: Raises an “inconsistent dimensionality” error if any input x and record x have different
numbers of dimensions.

23.3 Linear interpolation between two nearest 1-dim points (interp.linear)

Signature: {"interp.linear": [x, table]}

x double
table array of any record R with {x:double, to: double}
(returns) double

or

x double
table array of any record R with {x:double, to: array of double}
(returns) array of double

Description: Finds the closest x values in the table that are below and above the input x and linearly
projects their to values to the input x.

Details:
Any ties in distance are resolved in favor of the first instance in the table.
If the to values are arrays, each component will be interpolated.

Runtime Errors:
#22020: Raises a “table must have at least two distinct x values” error if fewer than two of the
table x entries are unique.
#22021: Raises an “inconsistent dimensionality” error if the to values of the two closest entries have
different numbers of dimensions.

23.4 Linear interpolation with flat endpoints (interp.linearFlat)

Signature: {"interp.linearFlat": [x, table]}

218

x double
table array of any record R with {x:double, to: double}
(returns) double

or

x double
table array of any record R with {x:double, to: array of double}
(returns) array of double

Description: Like interp.linear, but returns the closest entry’s to if the input x is beyond the table.

Details:
Any ties in distance are resolved in favor of the first instance in the table.
If the to values are arrays, each component will be interpolated.

Runtime Errors:
#22030: Raises a “table must have at least two distinct x values” error if table has fewer than two
entries.
#22031: Raises an “inconsistent dimensionality” error if the to values of the two closest entries have
different numbers of dimensions.

23.5 Linear interpolation with missing values after endpoints (interp.linearMissing)

Signature: {"interp.linearMissing": [x, table]}

x double
table array of any record R with {x:double, to: double}
(returns) union of {null, double}

or

x double
table array of any record R with {x:double, to: array of double}
(returns) union of {null, array of double}

Description: Like interp.linear, but returns a missing value (null) if the input x is beyond the table.

Details:
Any ties in distance are resolved in favor of the first instance in the table.
If the to values are arrays, each component will be interpolated.

Runtime Errors:
#22040: Raises a “table must have at least two distinct x values” error if table has fewer than two
entries.
#22041: Raises an “inconsistent dimensionality” error if the to values of the two closest entries have
different numbers of dimensions.

219

220

24 Probability libraries

This library contains methods for calculating properties of probability distributions, many of which are used
by descriptive statistics and data mining models.

24.1 Uniform distribution

24.1.1 Probability density function (prob.dist.uniformPDF)

Signature: {"prob.dist.uniformPDF": [x, min, max]}

x double
min double
max double
(returns) double

Description: Compute the density (PDF) of the uniform distribution parameterized by min and max.

Parameters:

x Value at which to compute the PDF.
min Lower bound.
max Upper bound.
(return value) With min, max and x, this function evaluates the probability density function at x.

The PDF implemented is 1
max−min .

Runtime Errors:
#13330: Raises “invalid parameterization” if min ≥ max or any argument is not finite.
#13331: Raises “invalid input” if x is not finite.

24.1.2 Cumulative distribution function (prob.dist.uniformCDF)

Signature: {"prob.dist.uniformCDF": [x, min, max]}

x double
min double
max double
(returns) double

Description: Compute the distribution function (CDF) of the uniform distribution parameterized by
min and max.

Parameters:

221

x Value at which to compute the CDF.
min Lower bound.
max Upper bound.
(return value) With min, max and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13340: Raises “invalid parameterization” if min ≥ max or any argument is not finite.
#13341: Raises “invalid input” if x is not finite.

24.1.3 Quantile function (prob.dist.uniformQF)

Signature: {"prob.dist.uniformQF": [p, min, max]}

p double
min double
max double
(returns) double

Description: Compute the quantile function (QF) of the uniform distribution parameterized by min and
max.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
min Lower bound.
max Upper bound.
(return value) With min, max and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13350: Raises “invalid parameterization” if min ≥ max or any argument is not finite.
#13351: Raises “invalid input” if p < 0 OR if p > 1.

24.2 Exponential distribution

24.2.1 Probability density function (prob.dist.exponentialPDF)

Signature: {"prob.dist.exponentialPDF": [x, lambda]}

x double
lambda double
(returns) double

Description: Compute the density (PDF) of the exponential distribution parameterized by lambda.

222

Parameters:

x Value at which to compute the PDF.
lambda Rate parameter.
(return value) With lambda and x, this function evaluates the probability density function at x. The

PDF implemented is λe−λx.

Runtime Errors:
#13030: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.
#13031: Raises “invalid input” if x is not finite.

24.2.2 Cumulative distribution function (prob.dist.exponentialCDF)

Signature: {"prob.dist.exponentialCDF": [x, lambda]}

x double
lambda double
(returns) double

Description: Compute the distribution function (CDF) of the exponential distribution parameterized by
lambda.

Parameters:

x Value at which to compute the CDF.
lambda Rate parameter.
(return value) With lambda and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13040: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.
#13041: Raises “invalid input” if x is not finite.

24.2.3 Quantile function (prob.dist.exponentialQF)

Signature: {"prob.dist.exponentialQF": [p, lambda]}

p double
lambda double
(returns) double

Description: Compute the quantile function (QF) of the exponential distribution parameterized by
lambda.

Parameters:

223

p Value at which to compute the QF. Must be a value between 0 and 1.
lambda Rate parameter.
(return value) With lambda and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13050: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.
#13051: Raises an “invalid input” error if p is less than zero or greater than one.

24.3 Gaussian (normal) distribution

24.3.1 Probability density function (prob.dist.gaussianLL)

Signature: {"prob.dist.gaussianLL": [x, mu, sigma]} or {"prob.dist.gaussianLL": [x, params]}

x double
mu double
sigma double
(returns) double

or

x double
params any record A with {mean:double, variance: double}
(returns) double

Description: Compute the log-likelihood of a Gaussian (normal) distribution parameterized by mu and
sigma or a record params.

Parameters:

x Value at which to compute the log-likelihood.
mu Centroid of the distribution (same as mean).
sigma Width of the distribution (same as the square root of variance).
params Alternate way of specifying the parameters of the distribution; this record could be

created by stat.sample.update.
(return value) With µ = mu or mean and σ = sigma or the square root of variance, this function

returns −(x− µ)2/(2σ2)− log(σ
√

2π).

Runtime Errors:
#13000: Raises an “invalid parameterization” error if sigma or variance is negative or any argument
is not finite.
#13001: Raises “invalid input” if x is not finite.

224

24.3.2 Cumulative distribution function (prob.dist.gaussianCDF)

Signature: {"prob.dist.gaussianCDF": [x, mu, sigma]} or {"prob.dist.gaussianCDF": [x, params]}

x double
mu double
sigma double
(returns) double

or

x double
params any record A with {mean:double, variance: double}
(returns) double

Description: Compute the cumultive distribution function (CDF) for the normal distribution, parame-
terized by mu and sigma or a record params.

Parameters:

x Value at which to compute the CDF.
mu Centroid of the distribution (same as mean).
sigma Width of the distribution (same as the square root of variance).
params Alternate way of specifying the parameters of the distribution; this record could be

created by stat.sample.update.
(return value) With µ = mu or mean and σ = sigma or the square root of variance, this function

returns 0.5 ∗ (1.0 + Erf(x−µ
σ
√

2)).

Runtime Errors:
#13010: Raises an “invalid parameterization” error if sigma or variance is negative or any argument
is not finite.
#13011: Raises “invalid input” if x is not finite.

24.3.3 Quantile function (prob.dist.gaussianQF)

Signature: {"prob.dist.gaussianQF": [p, mu, sigma]} or {"prob.dist.gaussianQF": [p, params]}

p double
mu double
sigma double
(returns) double

or

225

p double
params any record A with {mean:double, variance: double}
(returns) double

Description: Compute the normal quantile (QF, the inverse of the CDF) parameterized by mu and sigma
or a record params.

Parameters:

p Probability at which to compute the QF. Must be a value between 0 and 1.
mu Centroid of the distribution (same as mean).
sigma Width of the distribution (same as the square root of variance).
params Alternate way of specifying the parameters of the distribution; this record could be

created by stat.sample.update.
(return value) With µ = mu or mean and σ = sigma or the square root of variance, this function

returns µ+ σ
√

2Erf−1(2p− 1).

Runtime Errors:
#13020: Raises an “invalid parameterization” error if sigma or variance is negative or any argument
is not finite.
#13021: Raises an “invalid input” error if p is less than zero or greater than one.

24.4 Lognormal distribution

24.4.1 Probability density function (prob.dist.lognormalPDF)

Signature: {"prob.dist.lognormalPDF": [x, meanlog, sdlog]}

x double
meanlog double
sdlog double
(returns) double

Description: Compute the density (PDF) of the lognormal distribution parameterized by meanlog and
sdlog.

Parameters:

x Value at which to compute the PDF.
meanlog Mean of the distribution on the log scale (µ).
sdlog Standard deviation of the distribution on the log scale (σ).
(return value) With meanlog, sdlog and x, this function evaluates the probability density function at

x. The PDF implemented is 1√
2πσxe−

log(x)−µ
2σ2 .

Runtime Errors:
#13240: Raises “invalid parameterization” if sdlog ≤ 0 or any argument is not finite.
#13241: Raises “invalid input” if x is not finite.

226

24.4.2 Cumulative distribution function (prob.dist.lognormalCDF)

Signature: {"prob.dist.lognormalCDF": [x, meanlog, sdlog]}

x double
meanlog double
sdlog double
(returns) double

Description: Compute the distribution function (CDF) of the lognormal distribution parameterized by
meanlog and sdlog.

Parameters:

x Value at which to compute the CDF.
meanlog Mean of the distribution on the log scale.
sdlog Standard deviation of the distribution on the log scale.
(return value) With meanlog, sdlog and x, this function returns the value p where p = FX(x) =

P (X ≤ x).

Runtime Errors:
#13250: Raises “invalid parameterization” if sdlog ≤ 0 or any argument is not finite.
#13251: Raises “invalid input” if x is not finite.

24.4.3 Quantile function (prob.dist.lognormalQF)

Signature: {"prob.dist.lognormalQF": [p, meanlog, sdlog]}

p double
meanlog double
sdlog double
(returns) double

Description: Compute the quantile function (QF) of the lognormal distribution parameterized by
meanlog and sdlog.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
meanlog Mean of the distribution on the log scale.
sdlog Standard deviation of the distribution on the log scale.
(return value) With meanlog, sdlog and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:

227

#13260: Raises “invalid parameterization” if sdlog ≤ 0 or any argument is not finite.
#13261: Raises “invalid input” if p < 0 OR if p > 1.

24.5 Cauchy distribution

24.5.1 Probability density function (prob.dist.cauchyPDF)

Signature: {"prob.dist.cauchyPDF": [x, location, scale]}

x double
location double
scale double
(returns) double

Description: Compute the density (PDF) of the cauchy distribution parameterized by location and
scale.

Parameters:

x Value at which to compute the PDF.
location Location parameter (l).
scale Scale parameter (s).
(return value) With location, scale and x, this function evaluates the probability density function at

x. The PDF implemented is 1
(πs(1+(x−l

s)2)) .

Runtime Errors:
#13180: Raises “invalid parameterization” if scale ≤ 0 or any argument is not finite.
#13181: Raises “invalid input” if x is not finite.

24.5.2 Cumulative distribution function (prob.dist.cauchyCDF)

Signature: {"prob.dist.cauchyCDF": [x, location, scale]}

x double
location double
scale double
(returns) double

Description: Compute the distribution function (CDF) of the cauchy distribution parameterized by
location and scale.

Parameters:

228

x Value at which to compute the CDF.
location Location parameter.
scale Scale parameter.
(return value) With location, scale and x, this function returns the value p where p = FX(x) =

P (X ≤ x).

Runtime Errors:
#13190: Raises “invalid parameterization” if scale ≤ 0 or any argument is not finite.
#13191: Raises “invalid input” if x is not finite.

24.5.3 Quantile function (prob.dist.cauchyQF)

Signature: {"prob.dist.cauchyQF": [p, location, scale]}

p double
location double
scale double
(returns) double

Description: Compute the quantile function (QF) of the cauchy distribution parameterized by location
and scale.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
location Location parameter.
scale Scale parameter.
(return value) With location, scale and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13200: Raises “invalid parameterization” if scale ≤ 0 or any argument is not finite.
#13201: Raises “invalid input” if p < 0 OR if p > 1.

24.6 Binomial distribution

24.6.1 Probability density function (prob.dist.binomialPDF)

Signature: {"prob.dist.binomialPDF": [x, size, prob]}

x int
size int
prob double
(returns) double

229

Description: Compute the density (PDF) of the binomial distribution parameterized by size and prob.

Parameters:

x Value at which to compute the PDF.
size The number of trials (n).
prob The probability of success in each trial (p).
(return value) With size, prob and x, this function evaluates the probability density function at x.

The PDF implemented is choose(n, x)px(1− p)n−x.

Runtime Errors:
#13300: Raises “invalid parameterization” if size < 0 OR if prob < 0 OR if prob > 1 or any
argument is not finite.
#13301: Raises “invalid input” if x is not finite.

24.6.2 Cumulative distribution function (prob.dist.binomialCDF)

Signature: {"prob.dist.binomialCDF": [x, size, prob]}

x double
size int
prob double
(returns) double

Description: Compute the distribution function (CDF) of the binomial distribution parameterized by
size and prob.

Parameters:

x Value at which to compute the CDF.
size The number of trials.
prob The probability of success in each trial.
(return value) With size, prob and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13310: Raises “invalid parameterization” if size < 0 OR if prob < 0 OR if prob > 1 or any
argument is not finite.
#13311: Raises “invalid input” if x is not finite.

24.6.3 Quantile function (prob.dist.binomialQF)

Signature: {"prob.dist.binomialQF": [p, size, prob]}

230

p double
size int
prob double
(returns) double

Description: Compute the quantile function (QF) of the binomial distribution parameterized by size
and prob.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
size The number of trials.
prob The probability of success in each trial.
(return value) With size, prob and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13320: Raises “invalid parameterization” if size < 0 OR if prob < 0 OR if prob > 1 or any
argument is not finite.
#13321: Raises “invalid input” if p < 0 OR if p > 1.

24.7 Negative Binomial

24.7.1 Probability density function (prob.dist.negativebinomialPDF)

Signature: {"prob.dist.negativeBinomialPDF": [x, size, prob]}

x int
size int
prob double
(returns) double

Description: Compute the density (PDF) of the negative binomial distribution parameterized by size
and prob.

Parameters:

x Value at which to compute the PDF (integer) .
size Size parameter (integer). Target number of successful trials (n).
prob Probability of success in each trial (p).
(return value) With size, prob and x, this function evaluates the probability density function at x.

The PDF implemented is Γ(x+n)
Γ(n)x! p

n(1− p)x.

Runtime Errors:
#13450: Raises “invalid parameterization” if prob < 0, if prob > 1 or if size < 0 or any argument
is not finite.
#13451: Raises “invalid input” if x is not finite.

231

24.7.2 Cumulative distribution function (prob.dist.negativebinomialCDF)

Signature: {"prob.dist.negativeBinomialCDF": [x, size, prob]}

x double
size int
prob double
(returns) double

Description: Compute the distribution function (CDF) of the negative binomial distribution parameter-
ized by size and prob.

Parameters:

x Value at which to compute the CDF.
size Size parameter (integer). Target number of successful trials.
prob Probability of success in each trial.
(return value) With size, prob and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13460: Raises “invalid parameterization” if prob < 0, if prob > 1, or if size < 0 or any argument
is not finite.
#13461: Raises “invalid input” if x is not finite.

24.7.3 Quantile function (prob.dist.negativebinomialQF)

Signature: {"prob.dist.negativeBinomialQF": [p, size, prob]}

p double
size int
prob double
(returns) double

Description: Compute the quantile function (QF) of the negative binomial distribution parameterized
by size and prob.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
size Size parameter (integer). Target number of successful trials.
prob Probability of success in each trial.
(return value) With size, prob and p, this function returns the value x such that FX(x) := P (X ≤

x) = p.

Runtime Errors:

232

#13470: Raises “invalid parameterization” if prob < 0, if prob > 1, or if size ≤ 0, or if size or any
argument is not finite.
#13471: Raises “invalid input” if p < 0 OR if p > 1.

24.8 Poisson distribution

24.8.1 Probability density function (prob.dist.poissonPDF)

Signature: {"prob.dist.poissonPDF": [x, lambda]}

x int
lambda double
(returns) double

Description: Compute the density (PDF) of the poisson distribution parameterized by lambda.

Parameters:

x Value at which to compute the PDF.
lambda Mean and variance parameter.
(return value) With lambda and x, this function evaluates the probability density function at x. The

PDF implemented is λx

x! e−λ.

Runtime Errors:

#13090: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.

24.8.2 Cumulative distribution function (prob.dist.poissonCDF)

Signature: {"prob.dist.poissonCDF": [x, lambda]}

x int
lambda double
(returns) double

Description: Compute the distribution function (CDF) of the poisson distribution parameterized by
lambda.

Parameters:

x Value at which to compute the CDF.
lambda Mean and variance parameter.
(return value) With lambda and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13100: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.
#13101: Raises “invalid input” if x is not finite.

233

24.8.3 Quantile function (prob.dist.poissonQF)

Signature: {"prob.dist.poissonQF": [p, lambda]}

p double
lambda double
(returns) double

Description: Compute the quantile function (QF) of the poisson distribution parameterized by lambda.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
lambda Mean and variance parameter.
(return value) With lambda, lambda and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13110: Raises “invalid parameterization” if lambda < 0 or any argument is not finite.
#13111: Raises “invalid input” if p < 0 OR if p > 1.

24.9 Student’s t distribution

24.9.1 Probability density function (prob.dist.tPDF)

Signature: {"prob.dist.tPDF": [x, dof]}

x double
dof int
(returns) double

Description: Compute the density (PDF) of the student’s t distribution parameterized by dof and x2.

Parameters:

x Value at which to compute the PDF.
dof Degrees of freedom parameter.
(return value) With dof and x, this function evaluates the probability density function at x. The

PDF implemented is Γ(df+1
2)√

dfπΓ df
2

(1 + x
2
n)− df+1

2 .

Runtime Errors:
#13270: Raises “invalid parameterization” if df ≤ 0 or any argument is not finite.
#13271: Raises “invalid input” if x is not finite.

234

24.9.2 Cumulative distribution function (prob.dist.tCDF)

Signature: {"prob.dist.tCDF": [x, dof]}

x double
dof int
(returns) double

Description: Compute the distribution function (CDF) of the student’s t distribution parameterized by
dof and x2.

Parameters:

x Value at which to compute the CDF.
dof Degrees of freedom parameter.
(return value) With dof and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13280: Raises “invalid parameterization” if df ≤ 0 or any argument is not finite.
#13281: Raises “invalid input” if x is not finite.

24.9.3 Quantile function (prob.dist.tQF)

Signature: {"prob.dist.tQF": [p, dof]}

p double
dof int
(returns) double

Description: Compute the quantile function (QF) of the student’s t distribution parameterized by dof
and x2.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
dof Degrees of freedom parameter.
(return value) With dof and p, this function returns the value x such that FX(x) := P (X ≤ x) = p.

Runtime Errors:
#13290: Raises “invalid parameterization” if df ≤ 0 or any argument is not finite.
#13291: Raises “invalid input” if p < 0 OR if p > 1.

24.10 F distribution

24.10.1 Probability density function (prob.dist.fPDF)

Signature: {"prob.dist.fPDF": [x, d1, d2]}

235

x double
d1 int
d2 int
(returns) double

Description: Compute the density (PDF) of the F distribution parameterized by d1 and d2.

Parameters:

x Value at which to compute the PDF.
d1 Numerator degrees of freedom parameter.
d2 Denominator degrees of freedom parameter.
(return value) With d1, d2 and x, this function evaluates the probability density function at x. The

PDF implemented is Γ(d1+d2
2)

Γ(d1
2)Γ(d2

2)
d1
d2

d1
2 −1(1 + d1

d2x)− d1+d2
2 .

Runtime Errors:
#13210: Raises “invalid parameterization” if the d1 ≤ 0 OR if d2 ≤ 0 or any argument is not finite.

#13211: Raises “invalid input” if x is not finite.

24.10.2 Cumulative distribution function (prob.dist.fCDF)

Signature: {"prob.dist.fCDF": [x, d1, d2]}

x double
d1 int
d2 int
(returns) double

Description: Compute the distribution function (CDF) of the F distribution parameterized by d1 and
d2.

Parameters:

x Value at which to compute the CDF.
d1 Numerator degrees of freedom parameter.
d2 Denominator degrees of freedom parameter.
(return value) With d1, d2 and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13220: Raises “invalid parameterization” if the d1 ≤ 0 OR if d2 ≤ 0 or any argument is not finite.

#13221: Raises “invalid input” if x is not finite.

236

24.10.3 Quantile function (prob.dist.fQF)

Signature: {"prob.dist.fQF": [p, d1, d2]}

p double
d1 int
d2 int
(returns) double

Description: Compute the quantile function (QF) of the F distribution parameterized by d1 and d2.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
d1 Numerator degrees of freedom parameter.
d2 Denominator degrees of freedom parameter.
(return value) With d1, d2 and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13230: Raises “invalid parameterization” if the d1 ≤ 0 OR if d2 ≤ 0 or any argument is not finite.

#13231: Raises “invalid input” if p < 0 OR if p > 1.

24.11 Chi-square distribution

24.11.1 Probability density function (prob.dist.chi2PDF)

Signature: {"prob.dist.chi2PDF": [x, dof]}

x double
dof int
(returns) double

Description: Compute the density (PDF) of the Chi-squared distribution parameterized by its degrees
of freedom dof.

Parameters:

x Value at which to compute the PDF.
dof Degrees of freedom parameter.
(return value) With dof and x, this function evaluates the probability density function at x. The

PDF implemented is 1
2

df
2 Γ(df

2)
x

df
2 −1e− x2 .

Runtime Errors:
#13060: Raises “invalid parameterization” if dof < 0 or any argument is not finite.
#13061: Raises “invalid input” if x is not finite.

237

24.11.2 Cumulative distribution function (prob.dist.chi2CDF)

Signature: {"prob.dist.chi2CDF": [x, dof]}

x double
dof int
(returns) double

Description: Compute the distribution function (CDF) of the Chi-squared distribution parameterized
by its degrees of freedom dof.

Parameters:

x Value at which to compute the CDF.
dof Degrees of freedom parameter.
(return value) With x1, x1 and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13070: Raises “invalid parameterization” if dof < 0 or any argument is not finite.
#13071: Raises “invalid input” if x is not finite.

24.11.3 Quantile function (prob.dist.chi2QF)

Signature: {"prob.dist.chi2QF": [p, dof]}

p double
dof int
(returns) double

Description: Compute the quantile function (QF) of the Chi-squared distribution parameterized by its
degrees of freedom dof.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
dof Degrees of freedom parameter.
(return value) With x1, x1 and p, this function returns the value x such that FX(x) := P (X ≤ x) = p.

Runtime Errors:
#13080: Raises “invalid parameterization” if dof < 0 or any argument is not finite.
#13081: Raises “invalid input” if p < 0 OR if p > 1.

238

24.12 Beta distribution

24.12.1 Probability density function (prob.dist.betaPDF)

Signature: {"prob.dist.betaPDF": [x, a, b]}

x double
a double
b double
(returns) double

Description: Compute the density (PDF) of the beta distribution parameterized by shape1 and shape2.

Parameters:

x Value at which to compute the PDF, defined between zero and one.
a First shape parameter.
b Second shape parameter.
(return value) With a, b and x, this function evaluates the probability density function at x. The

PDF implemented is Γ(a+n)
Γ(a)Γ(b)x

a−1(1− x)b−1.

Runtime Errors:
#13150: Raises “invalid parameterization” if a ≤ 0 OR if b ≤ 0 or any argument is not finite.
#13151: Raises “invalid input” if x is not finite.

24.12.2 Cumulative distribution function (prob.dist.betaCDF)

Signature: {"prob.dist.betaCDF": [x, a, b]}

x double
a double
b double
(returns) double

Description: Compute the distribution function (CDF) of the beta distribution parameterized by shape1
and shape2.

Parameters:

x Value at which to compute the CDF.
a First shape parameter.
b Second shape parameter.
(return value) With a, b and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:

239

#13160: Raises “invalid parameterization” if a ≤ 0 OR if b ≤ 0 or any argument is not finite.
#13161: Raises “invalid input” if x is not finite.

24.12.3 Quantile function (prob.dist.betaQF)

Signature: {"prob.dist.betaQF": [p, a, b]}

p double
a double
b double
(returns) double

Description: Compute the quantile function (QF) of the beta distribution parameterized by shape1 and
shape2.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
a First shape parameter.
b Second shape parameter.
(return value) With a, b and p, this function returns the value x such that FX(x) := P (X ≤ x) = p.

Runtime Errors:
#13170: Raises “invalid parameterization” if the a ≤ 0 OR if b ≤ 0 or any argument is not finite.
#13171: Raises “invalid input” if p < 0 OR if p > 1.

24.13 Gamma distribution

24.13.1 Probability density function (prob.dist.gammaPDF)

Signature: {"prob.dist.gammaPDF": [x, shape, scale]}

x double
shape double
scale double
(returns) double

Description: Compute the density (PDF) of the gamma distribution parameterized by shape and scale.

Parameters:

240

x Value at which to compute the PDF.
shape Shape parameter (a).
scale Scale parameter (s).
(return value) With shape, scale and x, this function evaluates the probability density function at x.

The PDF implemented is 1
saΓ(a)x

a−1e− xs .

Runtime Errors:
#13120: Raises “invalid parameterization” if the shape < 0 OR if scale < 0 or any argument is not
finite.
#13121: Raises “invalid input” if x is not finite.

24.13.2 Cumulative distribution function (prob.dist.gammaCDF)

Signature: {"prob.dist.gammaCDF": [x, shape, scale]}

x double
shape double
scale double
(returns) double

Description: Compute the distribution function (CDF) of the gamma distribution parameterized by
shape and scale.

Parameters:

x Value at which to compute the CDF.
shape Shape parameter.
scale Scale parameter.
(return value) With shape, scale and x, this function returns the value p where p = FX(x) =

P (X ≤ x).

Runtime Errors:
#13130: Raises “invalid parameterization” if the shape < 0 OR if scale < 0 or any argument is not
finite.
#13131: Raises “invalid input” if x is not finite.

24.13.3 Quantile function (prob.dist.gammaQF)

Signature: {"prob.dist.gammaQF": [p, shape, scale]}

p double
shape double
scale double
(returns) double

241

Description: Compute the quantile function (QF) of the gamma distribution parameterized by shape
and scale.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
shape Shape parameter.
scale Scale parameter.
(return value) With shape, scale and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13140: Raises “invalid parameterization” if the shape ≤ 0 OR if scale ≤ 0 or any argument is not
finite.
#13141: Raises “invalid input” if p < 0 OR if p > 1.

24.14 Geometric distribution

24.14.1 Probability density function (prob.dist.geometricPDF)

Signature: {"prob.dist.geometricPDF": [x, prob]}

x int
prob double
(returns) double

Description: Compute the density (PDF) of the geometric distribution parameterized by prob.

Parameters:

x Value at which to compute the PDF.
prob Probability of success of each trial (p).
(return value) With prob and x, this function evaluates the probability density function at x. The

PDF implemented is p(1− p)x.

Runtime Errors:
#13360: Raises “invalid parameterization” if prob ≤ 0 OR if prob > 1 or any argument is not finite.

#13361: Raises “invalid input” if x is not finite.

24.14.2 Cumulative distribution function (prob.dist.geometricCDF)

Signature: {"prob.dist.geometricCDF": [x, prob]}

x double
prob double
(returns) double

242

Description: Compute the distribution function (CDF) of the geometric distribution parameterized by
prob.

Parameters:

x Value at which to compute the CDF.
prob Probability of success of each trial.
(return value) With prob and x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:
#13370: Raises “invalid parameterization” if prob ≤ 0 OR if prob > 1 or any argument is not finite.

#13371: Raises “invalid input” if x is not finite.

24.14.3 Quantile function (prob.dist.geometricQF)

Signature: {"prob.dist.geometricQF": [p, prob]}

p double
prob double
(returns) double

Description: Compute the quantile function (QF) of the geometric distribution parameterized by prob.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
prob Probability of success of each trial.
(return value) With prob and p, this function returns the value x such that FX(x) := P (X ≤ x) = p.

Runtime Errors:
#13380: Raises “invalid parameterization” if prob ≤ 0 OR if prob > 1 or any argument is not finite.

#13381: Raises “invalid input” if p < 0 OR if p > 1.

24.15 Hypergeometric distribution

24.15.1 Probability density function (prob.dist.hypergeometricPDF)

Signature: {"prob.dist.hypergeometricPDF": [x, m, n, k]}

243

x int
m int
n int
k int
(returns) double

Description: Compute the density (PDF) of the hypergeometric distribution parameterized by m, n and
k.

Parameters:

x The number of white balls drawn without replacement from the urn.
m The number of white balls in the urn.
n The number of black balls in the urn.
k The number of balls drawn from the urn.
(return value) With m, n and k, this function evaluates the probability density function at x. The

PDF implemented is choose(m,x)choose(n,k−x)
choose(m+n,k) .

Runtime Errors:

#13390: Raises “invalid parameterization” if m + n < k, m < 0, n < 0, m+ n = 0, or k < 0.

24.15.2 Cumulative distribution function (prob.dist.hypergeometricCDF)

Signature: {"prob.dist.hypergeometricCDF": [x, m, n, k]}

x int
m int
n int
k int
(returns) double

Description: Compute the distribution function (CDF) of the hypergeometric distribution parameterized
by m, n and k.

Parameters:

x The number of white balls drawn without replacement.
m The number of white balls in the urn.
n The number of black balls in the urn.
k The number of balls drawn from the urn.
(return value) With m, n and k at x, this function returns the value p where p = FX(x) = P (X ≤ x).

Runtime Errors:

244

#13400: Raises “invalid parameterization” if m + n < k, m < 0, n < 0, m+ n = 0, or k < 0.
#13401: Raises “invalid input” if x is not finite.

24.15.3 Quantile function (prob.dist.hypergeometricQF)

Signature: {"prob.dist.hypergeometricQF": [p, m, n, k]}

p double
m int
n int
k int
(returns) double

Description: Compute the quantile function (QF) of the hypergeometric distribution parameterized by
m, n and k.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
m The number of white balls in the urn.
n The number of black balls in the urn.
k The number of balls drawn from the urn.
(return value) With m, n and k at p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13410: Raises “invalid parameterization” if m + n < k, m < 0, n < 0, m+ n = 0, or k < 0 or any
argument is not finite.
#13411: Raises “invalid input” if p < 0 OR if p > 1.

24.16 Weibull distribution

24.16.1 Probability density function (prob.dist.weibullPDF)

Signature: {"prob.dist.weibullPDF": [x, shape, scale]}

x double
shape double
scale double
(returns) double

Description: Compute the density (PDF) of the weibull distribution parameterized by shape and scale.

Parameters:

245

x Value at which to compute the PDF.
shape Shape parameter (a).
scale Scale parameter (b).
(return value) With shape, scale, this function evaluates the probability density function at x. The

PDF implemented is a
b (xb)a−1e−(xb)a .

Runtime Errors:
#13420: Raises “invalid parameterization” if the shape ≤ 0 OR if scale ≤ 0 or any argument is not
finite.
#13421: Raises “invalid input” if x is not finite.

24.16.2 Cumulative distribution function (prob.dist.weibullCDF)

Signature: {"prob.dist.weibullCDF": [x, shape, scale]}

x double
shape double
scale double
(returns) double

Description: Compute the distribution function (CDF) of the weibull distribution parameterized by
shape and scale.

Parameters:

x Value at which to compute the CDF.
shape Shape parameter.
scale Scale parameter.
(return value) With shape, scale and x, this function returns the value p where p = FX(x) =

P (X ≤ x).

Runtime Errors:
#13430: Raises “invalid parameterization” if the shape ≤ 0 OR if scale ≤ 0 or any argument is not
finite.
#13431: Raises “invalid input” if x is not finite.

24.16.3 Quantile function (prob.dist.weibullQF)

Signature: {"prob.dist.weibullQF": [p, shape, scale]}

p double
shape double
scale double
(returns) double

246

Description: Compute the quantile function (QF) of the weibull distribution parameterized by shape
and scale.

Parameters:

p Value at which to compute the QF. Must be a value between 0 and 1.
shape Shape parameter.
scale Scale parameter.
(return value) With shape, scale and p, this function returns the value x such that FX(x) :=

P (X ≤ x) = p.

Runtime Errors:
#13440: Raises “invalid parameterization” if the shape ≤ 0 OR if scale ≤ 0 or any argument is not
finite.
#13441: Raises “invalid input” if p < 0 OR if p > 1.

247

25 Descriptive statistics libraries

This library contains methods for characterizing a dataset empirically. These are generally more lightweight
than data mining models.

25.1 Statistical tests

25.1.1 Kolmogorov-Smirnov test of two distributions (stat.test.kolmogorov)

Signature: {"stat.test.kolmogorov": [x, y]}

x array of double
y array of double
(returns) double

Description: Compare two datasets using the Kolmogorov-Smirnov test to determine if they might have
been drawn from the same parent distribution.

Parameters:

x A bag of data.
y Another bag of data.
(return value) Returns a value between 0.0 and 1.0 representing the cumulative probability that x

and y were drawn from the same distribution: 1.0 indicates a perfect match.

Details:

If both datasets (ignoring NaN values) are empty, this function returns 1.0

25.1.2 Compute residual of a fit (stat.test.residual)

Signature: {"stat.test.residual": [observation, prediciton]}

observation double
prediciton double
(returns) double

or

observation array of double
prediciton array of double
(returns) array of double

or

observation map of double
prediciton map of double
(returns) map of double

248

Description: Compare an observation with its prediction by element-wise subtraction.

Parameters:

observation Scalar or vector of observations.
prediction Scalar or vector of predictions.
(return value) Scalar or vector of observation minus prediction.

Runtime Errors:
#38010: Raises a “misaligned prediction” error if prediction does not have the same indexes or
keys as observation.

25.1.3 Compute the pull of a fit (stat.test.pull)

Signature: {"stat.test.pull": [observation, prediciton, uncertainty]}

observation double
prediciton double
uncertainty double
(returns) double

or

observation array of double
prediciton array of double
uncertainty array of double
(returns) array of double

or

observation map of double
prediciton map of double
uncertainty map of double
(returns) map of double

Description: Compare an observation with its prediction by element-wise subtraction, weighted by
element-wise uncertainties.

Parameters:

observation Scalar or vector of observations.
prediction Scalar or vector of predictions.
uncertainty Scalar or vector of predictions.
(return value) Scalar or vector of observation minus prediction divided by uncertainty.

249

Runtime Errors:
#38020: Raises a “misaligned prediction” error if prediction does not have the same indexes or
keys as observation.
#38021: Raises a “misaligned uncertainty” error if prediction does not have the same indexes or
keys as uncertainty.

25.1.4 Compute the Mahalanobis of a fit (stat.test.mahalanobis)

Signature: {"stat.test.mahalanobis": [observation, prediction, covariance]}

observation array of double
prediction array of double
covariance array of array of double
(returns) double

or

observation map of double
prediction map of double
covariance map of map of double
(returns) double

Description: Compare an observation with its prediction by computing the Mahalanobis distance for a
given covariance matrix.

Parameters:

observation Vector of observations ~o.
prediction Vector of predictions ~p.
covariance Matrix of covariance C.
(return value) Scalar result of a similarity transformation:

√
(~o− ~p)TC−1(~o− ~p).

Runtime Errors:
#38030: Raises a “too few rows/cols” error if observation has fewer than one element.
#38031: Raises a “misaligned prediction” error if prediction does not have the same indexes or
keys as observation.
#38032: Raises a “misaligned covariance” error if covariance does not have the same indexes or
keys as observation.

25.1.5 Update a cumulative χ2 calculation (stat.test.updateChi2)

Signature: {"stat.test.updateChi2": [pull, state]}

250

pull double
state any record A with {chi2:double, dof: int}
(returns) A

or

pull array of double
state any record A with {chi2:double, dof: int}
(returns) A

or

pull map of double
state any record A with {chi2:double, dof: int}
(returns) A

Description: Update the state of a chi-square calculation.

Parameters:

pull Observation minus prediction divided by uncertainty. If this is a scalar, it will be
squared and added to the chi-square. If a vector, each component will be squared and
added to the chi-square.

state Record of the previous chi2 and dof.

25.1.6 Compute the reduced χ2 (stat.test.reducedChi2)

Signature: {"stat.test.reducedChi2": [state]}

state any record A with {chi2:double, dof: int}
(returns) double

Description: Return the reduced chi-square, which is chi2/dof.

Parameters:

state Record of the chi2 and dof.

25.1.7 Compute the χ2 probability (stat.test.chi2Prob)

Signature: {"stat.test.chi2Prob": [state]}

state any record A with {chi2:double, dof: int}
(returns) double

Description: Return the chi-square probability, which is the CDF of the chi-square function.

Parameters:

state Record of the chi2 and dof.

251

Runtime Errors:

#38060: Raises “invalid parameterization” if dof is less than zero.

25.2 Sample statistics

25.2.1 Incremental count, mean, and/or variance (stat.sample.update)

Signature: {"stat.sample.update": [x, w, state]}

x double
w double
state any record A with {count:double}
(returns) A

Description: Update the state of a counter, a counter and a mean, or a counter, mean, and variance.

Parameters:

x Sample value.
w Sample weight; set to 1 for no weights.
state Record of the previous count, mean, and/or variance.

count: The sum of weights w.
mean: The mean of x, weighted by w. This field is optional, but if provided, it must

be a double.
variance: The variance of x −mean, weighted by w. This field is optional, but if it

is provided, it must be a double, and there must be a mean as well. No attempt
is made to unbias the estimator, so multiply this by count/(count− 1) to correct
for the bias due to centering on the mean.

(return value) Returns an updated version of state with count incremented by w, mean updated to
the current mean of all x, and variance updated to the current variance of all x. If
the state has fields other than count, mean, and variance, they are copied unaltered
to the output state.

25.2.2 Incremental covariance matrix (stat.sample.updateCovariance)

Signature: {"stat.sample.updateCovariance": [x, w, state]}

x array of double
w double
state any record A with {count: double, mean: array of double, covariance: array of array

of double}
(returns) A

or

252

x map of double
w double
state any record A with {count:map of map of double, mean:map of double, covariance:

map of map of double}
(returns) A

Description: Update the state of a covariance calculation.

Parameters:

x Sample vector, expressed as an array or map; must have at least two components.
w Sample weight; set to 1 for no weights.
state Record of the previous count, mean, and covariance.

count: The sum of weights w. If x is an array, then count is a single value representing
the sum of weights for all records seen so far. If x is a map, then count is a matrix
in which entry i, j is the sum of weights for records in which key i and key j both
appear in x.

mean: The componentwise mean of x, weighted by w.
covariance: The covariance matrix of all pairs of components of x, weighted by w.

If x is an array, this matrix is represented by a list of lists. If x is a map, this
matrix is represented by a map of maps.

(return value) Returns an updated version of state with count incremented by w, mean updated to the
current componentwise mean of all x, and covariance updated to the current covari-
ance matrix of all x. If the state has fields other than count, mean, and covariance,
they are copied unaltered to the output state.

Details:
Like most functions that deal with matrices, this function has an array signature and a map signature.
In the array signature, indexes of x correspond to the same indexes of mean and rows and columns
of covariance, where a row is an index of covariance and a column is an index of an element of
covariance. In the map signature, keys of x correspond to the same keys of mean, as well as rows
and columns of count and covariance, where a row is a key of the object and a column is a key of
a value of the object. In the array signature, all arrays must have equal length (including the nested
arrays within covariance) and all components are updated with each call. In the map signature, a
previously unseen key in x creates a new key in mean with value x, a new row and column in count
with value w for all key pairs existing in x and zero for key pairs not in x, as well as a new row and
column in covariance filled with zeros.
In the map signature, missing keys in x are equivalent to contributions with zero weight.

Runtime Errors:
#14011: If x has fewer than 2 components, a “too few components” error is raised.
#14012: If x, mean, and covariance are arrays with unequal lengths, an “unequal length arrays”
error is raised.

25.2.3 Incremental count, mean, and/or variance in a window (stat.sample.updateWindow)

Signature: {"stat.sample.updateWindow": [x, w, state, windowSize]}

253

x double
w double
state array of any record A with {x:double, w:double, count: double}
windowSize int
(returns) array of A

Description: Update the state of a counter, a counter and a mean, or a counter, mean, and variance,
within a window of windowSize recent samples.

Parameters:

x Sample value.
w Sample weight; set to 1 for no weights.
state Array of previous count, mean, and/or variance and samples in the window.

x: Sample value, saved so that it can be removed from the running mean and variance
when it goes out of scope.

w: Sample weight, saved for the same reason.
count: The sum of weights w within the window.
mean: The mean of x within the window, weighted by w. This field is optional, but if

provided, it must be a double.
variance: The variance of x − mean within the window, weighted by w. This field

is optional, but if it is provided, it must be a double, and there must be a
mean as well. No attempt is made to unbias the estimator, so multiply this by
count/(count− 1) to correct for the bias due to centering on the mean.

windowSize Size of the window. When the length of state is less than windowSize, this function
is equivalent to stat.sample.update.

(return value) If the length of state is zero, this function returns a singleton array with count = w,
mean = x, and/or variance = 0. If the length of state is less than windowSize, then
it returns a copy of state with the next record added. Otherwise, it is trunctated to
windowSize, removing the old values from the running count/mean/variance. In all
cases, the a.last item is the latest result.

Runtime Errors:
#14020: If windowSize is less than 2, a “windowSize must be at least 2” error is raised.
#14021: If state is empty and the record type has fields other than x, w, count, mean, and variance,
then a “cannot initialize unrecognized fields” error is raised. Unrecognized fields are only allowed if
an initial record is provided.

25.2.4 Exponentially weighted moving average (EWMA) (stat.sample.updateEWMA)

Signature: {"stat.sample.updateEWMA": [x, alpha, state]}

254

x double
alpha double
state any record A with {mean:double}
(returns) A

Description: Update the state of an exponentially weighted moving average (EWMA).

Parameters:

x Sample value.
alpha Weighting factor (usually a constant) between 0 and 1, inclusive. If alpha is close to

1, recent data are heavily weighted at the expense of old data; if alpha is close to 0,
the EWMA approaches a simple mean.

state Record of the previous mean and variance.
mean: The exponentially weighted mean of x, weighted by alpha.
variance: The exponentially weighted variance of x, weighted by alpha. This field is

optional, but if provided, it must be a double.

(return value) Returns a new record with updated mean and variance. If the input state has fields
other than mean and variance, they are copied unaltered to the output state.

Runtime Errors:

#14030: If alpha is less than 0 or greater than 1, an “alpha out of range” error is raised.

25.2.5 Doubly exponential average with trend (stat.sample.updateHoltWinters)

Signature: {"stat.sample.updateHoltWinters": [x, alpha, beta, state]}

x double
alpha double
beta double
state any record A with {level:double, trend: double}
(returns) A

Description: Update the state of a time series analysis with an exponentially weighted linear fit.

Parameters:

255

x Sample value.
alpha Weighting factor (usually a constant) between 0 and 1, inclusive, that governs the

responsiveness of the level. If alpha is close to 1, recent data are heavily weighted at
the expense of old data.

beta Weighting factor (usually a constant) between 0 and 1, inclusive, that governs the
responsiveness of the trend. If beta is close to 1, recent data are heavily weighted at
the expense of old data.

state Record of the previous level and trend.
level: The constant term in an exponentially weighted linear fit of recent data,

weighted by alpha.
trend: The linear term in an exponentially weighted linear fit of recent data, weighted

by beta.

(return value) Returns an updated version of the state.

Details:
Use stat.sample.forecast1HoltWinters or stat.sample.forecastHoltWinters to make predic-
tions from the state record.
For at = the level at a time t and bt = the trend at a time t, at = αx + (1 − α)(at−1 + bt−1) and
bt = β(at − at−1) + (1− β)bt−1.

Runtime Errors:
#14040: If alpha is less than 0 or greater than 1, an “alpha out of range” error is raised.
#14041: If beta is less than 0 or greater than 1, an “beta out of range” error is raised.

25.2.6 Triply exponential average: trend and period (stat.sample.updateHoltWintersPeriodic)

Signature: {"stat.sample.updateHoltWintersPeriodic": [x, alpha, beta, gamma, state]}

x double
alpha double
beta double
gamma double
state any record A with {level: double, trend: double, cycle: array of double,

multiplicative:boolean}
(returns) A

Description: Update the state of a time series analysis with an exponentially weighted periodic-plus-
linear fit.

Parameters:

256

x Sample value.
alpha Weighting factor (usually a constant) between 0 and 1, inclusive, that governs the

responsiveness of the level. If alpha is close to 1, recent data are heavily weighted at
the expense of old data.

beta Weighting factor (usually a constant) between 0 and 1, inclusive, that governs the
responsiveness of the trend. If beta is close to 1, recent data are heavily weighted at
the expense of old data.

gamma Weighting factor (usually a constant) between 0 and 1, inclusive, that governs the
responsiveness of the cycle. If gamma is close to 1, recent data are heavily weighted at
the expense of old data.

state Record of the previous level, trend, and cycle.
level: The constant term in an exponentially weighted linear fit of recent data,

weighted by alpha.
trend: The linear term in an exponentially weighted linear fit of recent data, weighted

by beta.
cycle: The history of the previous cycle, weighted by gamma. If the length of this

array is L, then the built-in period is L time steps long.
multiplicative: If true, interpret cycle as multiplicative; if false, interpret it as

additive.

(return value) Returns an updated version of the state.

Details:
Use stat.sample.forecast1HoltWinters or stat.sample.forecastHoltWinters to make predic-
tions from the state record.
For at = the level at a time t, bt = the trend at a time t, and ct = the cycle at a time t with period
L, at = αxt/ct−L+(1−α)(at−1 +bt−1), bt = β(at−at−1)+(1−β)bt−1, and ct = γxt/at+(1−γ)ct−L
for the multiplicative case and at = α(xt−ct−L)+(1−α)(at−1 +bt−1), bt = β(at−at−1)+(1−β)bt−1,
and ct = γ(xt − at) + (1− γ)ct−L for the additive case.
In each call to this function, cycle is rotated left, such that the first item is ct.

Runtime Errors:
#14050: If alpha is less than 0 or greater than 1, an “alpha out of range” error is raised.
#14051: If beta is less than 0 or greater than 1, an “beta out of range” error is raised.
#14052: If gamma is less than 0 or greater than 1, an “gamma out of range” error is raised.
#14053: If cycle is empty, an “empty cycle” error is raised.

25.2.7 Make one forecast from a Holt-Winters state (stat.sample.forecast1HoltWinters)

Signature: {"stat.sample.forecast1HoltWinters": [state]}

state any record A with {level:double, trend: double}
(returns) double

Description: Forecast one time-step from a state record prepared by stat.state.updateHoltWinters
or stat.state.updateHoltWintersPeriodic.

257

Parameters:

state Record of level, trend, and possibly cycle and multiplicative.
level: The constant term in an exponentially weighted linear fit of recent data.
trend: The linear term in an exponentially weighted linear fit of recent data.
cycle: The history of the previous cycle. This field is optional, but if provided, it

must be an array of double and must be accompanied by multiplicative.
multiplicative: If true, interpret cycle as multiplicative; if false, interpret it as

additive. This field is optional, but if provided, it must be a boolean and must
be accompanied by cycle.

(return value) Returns a prediction of the next time-step.

Details:
For at = the level at a time t, bt = the trend at a time t, and ct = the cycle at a time t with
period L, this function returns at + bt (non-periodic), (at + bt)ct+1 (multiplicative), or at + bt + ct+1
(additive) for each i from 0 to n− 1

Runtime Errors:

#14060: If cycle is empty, an “empty cycle” error is raised.

25.2.8 Make many forecasts from a Holt-Winters state (stat.sample.forecastHoltWinters)

Signature: {"stat.sample.forecastHoltWinters": [n, state]}

n int
state any record A with {level:double, trend: double}
(returns) array of double

Description: Forecast n time-steps from a state record prepared by stat.state.updateHoltWinters or
stat.state.updateHoltWintersPeriodic.

Parameters:

state Record of level, trend, and possibly cycle and multiplicative.
level: The constant term in an exponentially weighted linear fit of recent data.
trend: The linear term in an exponentially weighted linear fit of recent data.
cycle: The history of the previous cycle. This field is optional, but if provided, it

must be a double and must be accompanied by multiplicative.
multiplicative: If true, interpret cycle as multiplicative; if false, interpret it as

additive. This field is optional, but if provided, it must be a boolean and must
be accompanied by cycle.

(return value) Returns a series of predictions for the next n time-steps.

Details:

258

For at = the level at a time t, bt = the trend at a time t, and ct = the cycle at a time t
with period L, this function returns at + ibt (non-periodic), (at + ibt)c(t+i)modn (multiplicative), or
at + ibt + c(t+i)modn (additive) for each i from 1 to n

Runtime Errors:

#14070: If cycle is empty, an “empty cycle” error is raised.

25.2.9 Fill a histogram (stat.sample.fillHistogram)

Signature: {"stat.sample.fillHistogram": [x, w, histogram]}

x double
w double
histogram any record A with {numbins: int, low:double, high:double, values:array of double}
(returns) A

or

x double
w double
histogram any record A with {low:double, binsize: double, values: array of double}
(returns) A

or

x double
w double
histogram any record A with {ranges: array of array of double, values: array of double}
(returns) A

Description: Update a histogram by filling it with one value.

Parameters:

259

x Sample value.
w Sample weight; set to 1 for no weights.
histogram The histogram prior to filling. It must have numbins, low, high, and values (fixed

bins) xor it must have low, binsize, and values (number of equal-sized bins grows),
xor it must have ranges and values (arbitrary interval bins). Only one set of required
fields is allowed (semantic error otherwise), and the rest of the fields are optional.
numbins: The fixed number of bins in the histogram.
low: The low edge of the histogram range (inclusive).
high: The high edge of the histogram range (exclusive).
binsize: The size of a bin for a histogram whose number of bins and right edge grows

with the data.
ranges: Pairs of values describing arbitrary interval bins. The first number of each

pair is the inclusive left edge and the second number is the exclusive right edge.
values: Histogram contents, which are updated by this function.
underflow: If present, this double-valued field counts x values that are less than low

or not contained in any ranges.
overflow: If present, this double-valued field counts x values that are greater than

high.
nanflow: If present, this double-valued field counts x values that are nan. nan values

would never enter values, underflow, or overflow.
: If present, this double-valued field counts x values that are infinite. Infinite values

would only enter underflow or overflow if infflow is not present, so that they
are not double-counted.

(return value) Returns an updated version of histogram: all fields are unchanged except for values,
underflow, overflow, nanflow, and infflow.

Details:
If the histogram is growable (described by low and binsize) and x minus low is greater than or equal
to binsize times the length of values, the values will be padded with zeros to reach it.
If the histogram is growable (described by low and binsize), only finite values can extend the size of
the histogram: infinite values are entered into overflow or infflow, depending on whether infflow
is present.
If the histogram is described by ranges and an element of ranges contains two equal values, then x
is considered in the interval if it is exactly equal to the value.
If the histogram is described by ranges and x falls within multiple, overlapping intervals, then all
matching counters are updated (values can be double-counted).

Runtime Errors:
#14080: If the length of values is not equal to numbins or the length of ranges, then a “wrong
histogram size” error is raised.
#14081: If low is greater than or equal to high, then a “bad histogram range” error is raised.
#14082: If numbins is less than 1 or binsize is less than or equal to 0, then a “bad histogram scale”
error is raised.
#14083: If ranges contains an array of doubles with length not equal to 2 or if the first element is
greater than the second element, then a “bad histogram ranges” error is raised.

260

25.2.10 Fill a two-dimensional histogram (stat.sample.fillHistogram2d)

Signature: {"stat.sample.fillHistogram2d": [x, y, w, histogram]}

x double
y double
w double
histogram any record A with {xnumbins: int, xlow: double, xhigh: double, ynumbins: int, ylow:

double, yhigh:double, values: array of array of double}
(returns) A

Description: Update a two-dimensional histogram by filling it with one value.

Parameters:

261

x Sample x value.
y Sample y value.
w Sample weight; set to 1 for no weights.
histogram The histogram prior to filling.

xnumbins: The number of bins in the x dimension.
xlow: The low edge of the histogram range in the x dimension (inclusive).
xhigh: The high edge of the histogram range in the x dimension (exclusive).
ynumbins: The number of bins in the y dimension.
ylow: The low edge of the histogram range in the y dimension (inclusive).
yhigh: The high edge of the histogram range in the y dimension (exclusive).
values: Histogram contents, which are updated by this function. The outer array

iterates over x and the inner array iterates over y.
underunderflow: If present, this double-valued field counts instances in which x is

less than xlow and y is less than ylow.
undermidflow: If present, this double-valued field counts instances in which x is less

than xlow and y between ylow (inclusive) and yhigh (exclusive).
underoverflow: If present, this double-valued field counts instances in which x is less

than xlow and y is greater than or equal to yhigh.
midunderflow: If present, this double-valued field counts instances in which x is be-

tween xlow (inclusive) and xhigh (exclusive) and y is less than ylow.
midoverflow: If present, this double-valued field counts instances in which x is be-

tween xlow (inclusive) and xhigh (exclusive) and y is greater than or equal to
yhigh.

overunderflow: If present, this double-valued field counts instances in which x is
greater than or equal to xhigh and y is less than ylow.

overmidflow: If present, this double-valued field counts instances in which x is greater
than or equal to xhigh and y between ylow (inclusive) and yhigh (exclusive).

overoverflow: If present, this double-valued field counts instances in which x is
greater than or equal to xhigh and y is greater than or equal to yhigh.

nanflow: If present, this double-valued field counts instances in which x or y is nan.
nan values would never enter any other counter.

infflow: If present, this double-valued field counts instances in which x or y is infinite.
Infinite values would only enter the other under/mid/overflow counters if infflow
were not present, so that they are not double-counted.

(return value) Returns an updated version of histogram: all fields are unchanged except for values
and the under/mid/over/nan/infflow counters.

Details:
If x is infinite and y is nan or x is nan and y is infinite, the entry is counted as nan, rather than
infinite.

Runtime Errors:

262

#14090: If the length of values is not equal to xnumbins or the length of any element of values is
not equal to ynumbins, then a “wrong histogram size” error is raised.
#14091: If xlow is greater than or equal to xhigh or if ylow is greater than or equal to yhigh, then
a “bad histogram range” error is raised.
#14092: If xnumbins is less than 1 or ynumbins is less than 1, then a “bad histogram scale” error
is raised.

25.2.11 Fill a counter/categorical histogram (stat.sample.fillCounter)

Signature: {"stat.sample.fillCounter": [x, w, counter]}

x string
w double
counter any record A with {values:map of double}
(returns) A

Description: Update a counter (sparse histogram) by filling it with one value.

Parameters:

x Sample category.
w Sample weight; set to 1 for no weights.
histogram The counter prior to filling.

values: Number of instances seen of each category.

(return value) Returns the updated counter.

Details:

If a category is not present in the initial values, it is added with initial value zero prior to filling.

25.2.12 Maintain a top-N list (stat.sample.topN)

Signature: {"stat.sample.topN": [x, top, n, lessThan]}

x any A

top array of A
n int
lessThan function (A, A) → boolean
(returns) array of A

Description: Update an array of the top n sorted items by potentially adding x to that array, using
lessThan as a comparison function.

Parameters:

263

x Sample value.
top Array of items to which x might be added. This array is assumed to be sorted according

to lessThan.
n Maximum number of items to keep.
lessThan Comparison function; should return true if its first argument is less than its second

argument, false otherwise.
(return value) Returns an updated version of top. If x is among the top n values seen, then it is

included in the output. Otherwise, the output is top.

Details:
The x value is inserted after the first element of top that it is greater than or equal to (lessThan
applied to that array element and x returns true) and the result is truncated to size n. Thus, the
result only represents a top-n list if top is already sorted and equal elements already in the array get
precedence.
The top array is unchanged by this function because all values in PFA are immutable. The updated
array is the return value.

25.3 Change detection

25.3.1 Historical record of triggered events (stat.change.updateTrigger)

Signature: {"stat.change.updateTrigger": [predicate, history]}

predicate boolean
history any record A with {numEvents: int, numRuns: int, currentRun: int, longestRun: int}
(returns) A

Description: Update the state of a trigger that counts the number of times predicate is satisfied (true),
as well as the number and lengths of runs of true.

Parameters:

predicate Expression that evaluates to true or false.
history Summary of previous results of the predicate.

numEvents: The number of times predicate evaluated to true.
numRuns: The number of contiguous intervals in which predicate was true, including

the current one.
currentRun: If predicate is false, currentRun is 0. Otherwise, currentRun is in-

cremented (greater than or equal to 1 if predicate evaluated to true).
longestRun: The longest run observed so far; may be equal to currentRun.

(return value) Returns a new record with updated fields: numEvents is always incremented; numRuns is
incremented if predicate is true and currentRun is zero; currentRun is incremented
if predicate is true and set to zero if predicate is false; longestRun is set to
currentRun if predicate is true and currentRun is longer than longestRun. If the
input history has fields other than numEvents, numRuns, currentRun, or longestRun,
they are copied unaltered to the output.

264

Runtime Errors:
#37000: If any of numEvents, numRuns, currentRun, and longestRun are less than 0, a “counter
out of range” error is raised.

25.3.2 Simple difference over uncertainty (stat.change.zValue)

Signature: {"stat.change.zValue": [x, meanVariance]} or {"stat.change.zValue": [x, meanVariance, unbiased]}

x double
meanVariance any record A with {mean:double, variance: double}
(returns) double

or

x double
meanVariance any record A with {count: double, mean:double, variance: double}
unbiased boolean
(returns) double

Description: Calculate the z-value between x and a normal distribution with a given mean and variance.

Parameters:

x Value to test.
meanVariance A record with mean, variance, and possibly count, such as the output of

stat.sample.Update.
unbiased If true, use count to correct for the bias due to the fact that a variance centered on

the mean has one fewer degrees of freedom than the dataset that it was sampled from
(Bessel’s correction).

(return value) If unbiased is false, (x − mean)/
√
variance; otherwise (x −

mean)(1/
√
variance)

√
count/(count− 1).

25.3.3 Cumulative sum (stat.change.updateCUSUM)

Signature: {"stat.change.updateCUSUM": [logLikelihoodRatio, last, reset]}

logLikelihoodRatio double
last double
reset double
(returns) double

265

Description: Update a cumulative sum (CUSUM) to detect the transition of a dataset from one distri-
bution to another.

Parameters:

logLikelihoodRatio The logarithm of the ratio of the likelihood of a value for the alterate and baseline
distributions: ln(altL/baseL), which is altLL − baseLL where L is likelihood and LL
is log-likelihood. Consider using something like “-”: [“prob.dist.gaussianLL”:
[...], “prob.dist.gaussianLL”: [...]].

last The previous return value from this function.
reset A low value (usually consistent with the baseline hypothesis, such as 0) at which the

cumulative sum resets, rather than accumulate very low values and become insensitive
to future changes.

(return value) An incremented cumulative sum. The output is max{logLikelihoodRatio+last, reset}.

266

26 Data mining libraries

This library contains methods of analyzing data using trained models. Many of these are usually the outputs
of machine learning algorithms.

26.1 Regression

26.1.1 Apply the result of a linear regression (model.reg.linear)

Signature: {"model.reg.linear": [datum, model]}

datum array of double
model any record M with {coeff: array of double, const: double}
(returns) double

or

datum array of double
model any record M with {coeff: array of array of double, const: array of double}
(returns) array of double

or

datum map of double
model any record M with {coeff:map of double, const: double}
(returns) double

or

datum map of double
model any record M with {coeff:map of map of double, const:map of double}
(returns) map of double

Description: Apply matrix model to independent variables datum to predict the dependent, predicted
variables.

Parameters:

datum Vector of independent variables with d dimensions.
model Parameters of the linear model.

coeff: Vector or matrix of coefficients that multiply the input variables, which has p
rows and d columns.

const: Scalar or vector of constant offsets, which has p dimensions.

(return value) Returns a p dimensional vector of dependent, predicted variables.

Details:
The vectors and matrix may be expressed as arrays (indexed by integers) or maps (indexed by strings).
In the array signature, the number of rows and/or columns in x must be equal to the number of
rows and/or columns of y, respectively (dense matrix). In the map signature, missing row-column
combinations are assumed to be zero (sparse matrix).
The simpler signature is may be used in the p = 1case.

267

Runtime Errors:
#31000: The array signature raises a “misaligned coeff” error if any row of coeff does not have the
same indexes as datum.
#31001: The array signature raises a “misaligned const” error if const does not have the same
indexes as coeff.

26.1.2 Propagate uncertainties through a linear regression (model.reg.linearVariance)

Signature: {"model.reg.linearVariance": [datum, model]}

datum array of double
model any record M with {covar: array of array of double}
(returns) double

or

datum array of double
model any record M with {covar: array of array of array of double}
(returns) array of double

or

datum map of double
model any record M with {covar:map of map of double}
(returns) double

or

datum map of double
model any record M with {covar:map of map of map of double}
(returns) map of double

Description: Propagate variances from model covar (covariance matrix) to the dependent, predicted
variable(s).

Parameters:

datum Vector of independent variables ~o with d dimensions.
model Parameters of the linear model.

covar: Covariance matrix C or array/map of covariance matrices, one for each de-
pendent, predicted variable. Each matrix has d+ 1 rows and d+ 1 columns: the
last (array) or empty string (map) row and column corresponds to the model’s
constant term. If there are p dependent, predicted variables, the outermost ar-
ray/map has p items.

(return value) Propagated variance(s) ~oTC~o for each dependent, predicted variable.

Details:

268

The “error” or “uncertainty” in the predicted variable(s) is the square root of this value/these values.

The vectors and matrix may be expressed as arrays (indexed by integers) or maps (indexed by strings).
In the array signature, the number of rows and/or columns in x must be equal to the number of
rows and/or columns of y, respectively (dense matrix). In the map signature, missing row-column
combinations are assumed to be zero (sparse matrix).

Runtime Errors:
#31010: The array signature raises a “misaligned covariance” error if any covariance matrix does
not have the same indexes as datum plus the implicit index for a constant (last in array signature).

26.1.3 Fit and predict a Gaussian Process (model.reg.gaussianProcess)

Signature: {"model.reg.gaussianProcess": [x, table, krigingWeight, kernel]}

x double
table array of any record R with {x:double, to: double}
krigingWeight union of {null, double}
kernel function (array of double, array of double) → double
(returns) double

or

x double
table array of any record R with {x:double, to: array of double}
krigingWeight union of {null, double}
kernel function (array of double, array of double) → double
(returns) array of double

or

x array of double
table array of any record R with {x: array of double, to: double}
krigingWeight union of {null, double}
kernel function (array of double, array of double) → double
(returns) double

or

x array of double
table array of any record R with {x: array of double, to: array of double}
krigingWeight union of {null, double}
kernel function (array of double, array of double) → double
(returns) array of double

269

Description: Fit the training data in table with a Gaussian Process model and predict the value of
model at x.

Parameters:

x Position (scalar or vector) at which to predict the value of the model.
table Training data for the Gaussian Process.

x: Independent variable (scalar or vector, but same as x) of a training datum.
to: Dependent variable (scalar or vector) of a training datum.
sigma: Optional uncertainty for the datum. If present, it must have the same type as

to and is used in the Gaussian Process fit as a nugget.

krigingWeight If a number, the Gaussian Process is performed with the specified Kriging weight. If
null, universal Kriging is performed.

kernel A function to use as a kernel. For instance, m.kernel.rbf (radial basis function) with
partially applied gamma is a squared exponential kernel.

(return value) Returns a scalar or vector prediction with the same type as to.

Details:
Nondeterministic: unstable. This function gives the same results every time it is executed, but
those results may not be exactly the same on all systems.

Runtime Errors:
#31080: If table is empty, a “table must have at least 1 entry” error is raised.
#31081: If x is an empty array, an “x must have at least 1 feature” error is raised.
#31082: If any x in the table has a different length than the input parameter x, a “table must have
the same number of features as x” error is raised.
#31083: If any to in the table is an empty array, a “table outputs must have at least 1 dimension”
error is raised.
#31084: If the to fields in table do not all have the same dimensions, a “table outputs must all
have the same number of dimensions” error is raised.
#31085: If x or a component of x is not finite, an “x is not finite” error is raised.
#31086: If any value in the table is not finite, a “table value is not finite” error is raised.
#31087: If krigingWeight is a number but is not finite, a “krigingWeight is not finite” error is
raised.
#31088: If evaluating kernel on all combinations of table x (with 1+(sigma/to)2 on the diagonal)
yields a non-positive definite matrix, a “matrix of kernel results is not positive definite” error is raised.

26.2 Decision and regression Trees

This library is organized into test functions (for deciding which branch to take from a given node) and
walk functions (for repeatedly applying a test function until reaching a leaf). Different combinations of test
functions and walk functions generate a large space of tree-scoring algorithms.

For convenience, the simplest case (simpleTree = simpleTest + simpleWalk) is provided as a single
function.

270

26.2.1 All-in-one function for simplest case (model.tree.simpleTree)

Signature: {"model.tree.simpleTree": [datum, treeNode]}

datum any record D

treeNode any record T with {field:enum F of fields of D, operator:string, value:any V, pass:
union of {T, any S}, fail:union of {T, S}}

(returns) S

Description: Descend through a tree, testing datum with field, operator, value, following pass or
fail until reaching a leaf node of type S (score).

Parameters:

datum Sample value to test.
treeNode Record that describes a tree node (predicate test with branches).

field: Field name from datum: the enumeration type must include all fields of D in
their declaration order.

operator: One of the following: “==” (equal), “!=” (not equal), “<” (less than),
“<=” (less or equal), “>” (greater than), “>=” (greater or equal), “in” (member
of a set), “notIn” (not a member of a set), “alwaysTrue” (ignore value, return
true), “alwaysFalse” (ignore value, return false), “isMissing” (ignore value,
return true iff the field of datum is null), and “notMissing” (ignore value,
return false iff the field of datum is null).

value: Value to which the field of datum is compared.
pass: Branch to follow if the comparison is successful.
fail: Branch to follow if the comparison fails.

(return value) Leaf node of type S, which must be different from the tree nodes. For a classification
tree, S could be a string or an enumeration set. For a regression tree, S would be a
numerical type. For a multivariate regression tree, S would be an array of numbers,
etc.

Details:
This is a convenience function, a combination of model.tree.simpleWalk with
model.tree.simpleTest.

Runtime Errors:
#32060: Raises an “invalid comparison operator” if operator is not one of “==”, “!=”, “<”, “<=”,
“>”, “>=”, “in”, “notIn”, “alwaysTrue”, “alwaysFalse”, “isMissing”, “notMissing”.
#32061: Raises a “bad value type” if the field of datum and V are not both numbers and the field
cannot be upcast to V.

26.2.2 Simple test function for a tree node (model.tree.simpleTest)

Signature: {"model.tree.simpleTest": [datum, comparison]}

271

datum any record D

comparison any record T with {field: enum F of fields of D, operator: string, value: any V}
(returns) boolean

Description: Determine if datum passes a test defined by comparison.

Parameters:

datum Sample value to test.
comparison Record that describes a test.

field: Field name from datum: the enumeration type must include all fields of D in
their declaration order.

operator: One of the following: “==” (equal), “!=” (not equal), “<” (less than),
“<=” (less or equal), “>” (greater than), “>=” (greater or equal), “in” (member
of a set), “notIn” (not a member of a set), “alwaysTrue” (ignore value, return
true), “alwaysFalse” (ignore value, return false), “isMissing” (ignore value,
return true iff the field of datum is null), and “notMissing” (ignore value,
return false iff the field of datum is null).

value: Value to which the field of datum is compared.

(return value) Returns true if the field of datum <op> value is true, false otherwise, where <op>
is the operator.

Runtime Errors:
#32000: Raises an “invalid comparison operator” if operator is not one of “==”, “!=”, “<”, “<=”,
“>”, “>=”, “in”, “notIn”, “alwaysTrue”, “alwaysFalse”, “isMissing”, “notMissing”.
#32001: Raises a “bad value type” if the field of datum and V are not both numbers and the field
cannot be upcast to V.

26.2.3 Test function for a tree node with logical operators (model.tree.compoundTest)

Signature: {"model.tree.compoundTest": [datum, operator, comparisons, test]}

datum any record D

operator string
comparisons array of any record T

test function (D, T) → boolean
(returns) boolean

Description: Apply test to an array of comparisons, returning their logical and, or, or xor, depending
on operator.

Parameters:

272

datum Simple value to test.
operator If “and”, return true if no false is encountered, if “or”, return true if any true is

encountered, and if “xor”, return true if an odd number of true is encountered among
the comparisons.

comparisons Array of records that describe the tests.
test Test function applied to each item of comparisons until the result is certain.
(return value) Logical combination of comparisons.

Details:
If operator is “and”, the test will only be applied until the first false is encountered. If operator
is “or”, the test will only be applied until the first true is encountered. If operator is “xor”, the
test will be applied to all items of comparisons.

Runtime Errors:

#32020: If operator is not “and”, “or”, or “xor”, an “unrecognized logical operator” error is raised.

26.2.4 Test function with missing value handling (model.tree.missingTest)

Signature: {"model.tree.missingTest": [datum, comparison]}

datum any record D

comparison any record T with {field: enum F of fields of D, operator: string, value: any V}
(returns) union of {null, boolean}

Description: Determine if datum passes a test defined by comparison, allowing for missing values.

Parameters:

datum Sample value to test.
comparison Record that describes a test.

field: Field name from datum: the enumeration type must include all fields of D in
their declaration order.

operator: One of the following: “==” (equal), “!=” (not equal), “<” (less than),
“<=” (less or equal), “>” (greater than), “>=” (greater or equal), “in” (member
of a set), “notIn” (not a member of a set), “alwaysTrue” (ignore value, return
true), “alwaysFalse” (ignore value, return false).

value: Value to which the field of datum is compared.

(return value) If the field of datum is null, this function returns null (unknown test result). Other-
wise, it returns datum field <op> value, where <op> is the operator

Runtime Errors:
#32010: Raises an “invalid comparison operator” if operator is not one of “==”, “!=”, “<”, “<=”,
“>”, “>=”, “in”, “notIn”, “alwaysTrue”, “alwaysFalse”.
#32011: Raises a “bad value type” if the field of datum and V are not both numbers and the field
cannot be upcast to V.

273

26.2.5 Chain of surrogate tests (model.tree.surrogateTest)

Signature: {"model.tree.surrogateTest": [datum, comparisons, missingTest]}

datum any record D

comparisons array of any record T

missingTest function (D, T) → union of {null, boolean}
(returns) boolean

Description: Apply missingTest to an array of comparisons until one yields a non-null result.

Parameters:

datum Sample value to test.
comparisons Array of records that describe the tests.
missingTest Test function applied to each item of comparisons until one returns a non-null result.
(return value) Returns the value of the first test that returns true or false.

Runtime Errors:

#32030: If all tests return null, this function raises a “no successful surrogate” error.

26.2.6 Tree walk without explicit missing value handling (model.tree.simpleWalk)

Signature: {"model.tree.simpleWalk": [datum, treeNode, test]}

datum any record D

treeNode any record T with {pass:union of {T, any S}, fail: union of {T, S}}
test function (D, T) → boolean
(returns) S

Description: Descend through a tree, testing the fields of datum with the test function using treeNode
to define the comparison, continuing to pass or fail until reaching a leaf node of type S (score).

Parameters:

274

datum Sample value to test.
treeNode Node of the tree, which contains a predicate to be interpreted by test.

pass: Branch to follow if test returns true.
fail: Branch to follow if test returns false.

test Test function that converts datum and treeNode into true or false.
(return value) Leaf node of type S, which must be different from the tree nodes. For a classification

tree, S could be a string or an enumeration set. For a regression tree, S would be a
numerical type. For a multivariate regression tree, S would be an array of numbers,
etc.

26.2.7 Tree walk with three branches: pass, fail, and missing (model.tree.missingWalk)

Signature: {"model.tree.missingWalk": [datum, treeNode, test]}

datum any record D

treeNode any record T with {pass: union of {T, any S}, fail: union of {T, S}, missing: union
of {T, S}}

test function (D, T) → union of {null, boolean}
(returns) S

Description: Descend through a tree, testing the fields of datum with the test function using treeNode
to define the comparison, continuing to pass, fail, or missing until reaching a leaf node of type S (score).

Parameters:

datum Sample value to test.
treeNode Node of the tree, which contains a predicate to be interpreted by test.

pass: Branch to follow if test returns true.
fail: Branch to follow if test returns false.
missing: Branch to follow if test returns null.

test Test function that converts datum and treeNode into true, false, or null.
(return value) Leaf node of type S, which must be different from the tree nodes. For a classification

tree, S could be a string or an enumeration set. For a regression tree, S would be a
numerical type. For a multivariate regression tree, S would be an array of numbers,
etc.

26.3 Cluster models

26.3.1 Closest cluster (model.cluster.closest)

Signature: {"model.cluster.closest": [datum, clusters]} or {"model.cluster.closest": [datum, clusters, metric]}

275

datum array of double
clusters array of any record C with {center: array of double}
(returns) C

or

datum any A

clusters array of any record C with {center: any B}
metric function (A, B) → double
(returns) C

Description: Find the cluster C whose center is closest to the datum, according to the metric.

Parameters:

datum Sample datum.
clusters Set of clusters; the record type C may contain additional identifying information for

post-processing.
metric Function used to compare each datum with the center of the clusters. (See, for

example, metric.euclidean.)
(return value) Returns the closest cluster record.

Details:

If metric is not provided, a Euclidean metric over floating point numbers is assumed.

Runtime Errors:

#29000: Raises a “no clusters” error if clusters is empty.

26.3.2 Closest N clusters or N-nearest neighbrs (model.cluster.closestN)

Signature: {"model.cluster.closestN": [n, datum, clusters]} or {"model.cluster.closestN": [n, datum, clusters, metric]}

n int
datum array of double
clusters array of any record C with {center: array of double}
(returns) array of C

or

n int
datum any A

clusters array of any record C with {center: any B}
metric function (A, B) → double
(returns) array of C

276

Description: Find the n clusters C whose centers are closest to the datum, according to the metric.

Parameters:

n Number of clusters to search for.
datum Sample datum.
clusters Set of clusters; the record type C may contain additional identifying information for

post-processing.
metric Function used to compare each datum with the center of the clusters. (See, for

example, metric.euclidean.)
(return value) An array of the closest cluster records in order from the closest to the farthest. The

length of the array is minimum of n and the length of clusters.

Details:

If metric is not provided, a Euclidean metric over floating point numbers is assumed.

Runtime Errors:

#29010: If n is negative, an “n must be nonnegative” error will be raised.

26.3.3 Random seeds for online clustering (model.cluster.randomSeeds)

Signature: {"model.cluster.randomSeeds": [data, k, newCluster]}

data array of array of any A

k int
newCluster function (int, array of A) → any record C with {center: array of any B}
(returns) array of C

Description: Call newCluster to create k cluster records with random, unique cluster centers drawn
from data.

Parameters:

data Sample data.
k Number of times to call newCluster.
newCluster Function that creates a cluster record, given an index (ranges from zero up to but not

including k) and a random vector from data.
(return value) The cluster records created by newCluster.

Details:
Nondeterministic: pseudorandom. This function intentionally gives different results every time
it is executed.

Runtime Errors:

277

#29020: Raises a “k must be greater than zero” error if k is less than or equal to zero.
#29021: Raises a “not enough unique points” error if data has fewer than k unique elements.
#29022: Raises a “dimensions of vectors do not match” error if the elements of data are not all the
same size.

26.3.4 Online clustering with k-means (model.cluster.kmeansIteration)

Signature: {"model.cluster.kmeansIteration": [data, clusters, metric, update]}

data array of array of any A

clusters array of any record C with {center: array of any B}
metric function (array of A, array of B) → double
update function (array of array of A, C) → C

(returns) array of C

Description: Update a cluster set by applying one iteration of k-means (Lloyd’s algorithm).

Parameters:

data Sample data.
clusters Set of clusters; the record type C may contain additional identifying information for

post-processing.
metric Function used to compare each datum with the center of the clusters. (See, for

example, metric.euclidean.)
update Function of matched data and old cluster records that yields new cluster records. (See,

for example, model.cluster.updateMean with weight = 0.)
(return value) Returns a new cluster set with each of the centers located at the average of all points

that match the corresponding cluster in the old cluster set.

Details:

The update function is only called if the number of matched data points is greater than zero.

Runtime Errors:
#29030: Raises a “no data” error if data is empty.
#29031: Raises a “no clusters” error if clusters is empty.

26.3.5 Update cluster using the mean of data points (model.cluster.updateMean)

Signature: {"model.cluster.updateMean": [data, cluster, weight]}

data array of array of double
cluster any record C with {center: array of double}
weight double
(returns) C

278

Description: Update a cluster record by computing the mean of the data vectors and weight times the
old cluster center.

Details:

If weight is zero, the new center is equal to the mean of data, ignoring the old center.

Runtime Errors:
#29040: Raises a “no data” error if data is empty.
#29041: Raises a “dimensions of vectors do not match” error if all elements of data and the cluster
center do not match.

26.4 Nearest neighbor models

26.4.1 K nearest points (model.neighbor.nearestK)

Signature: {"model.neighbor.nearestK": [k, datum, codebook]} or {"model.neighbor.nearestK": [k, datum, codebook, metric]}

k int
datum array of double
codebook array of array of double
(returns) array of array of double

or

k int
datum any A

codebook array of any B

metric function (A, B) → double
(returns) array of B

Description: Find the k items in the codebook that are closest to the datum, according to the metric.

Parameters:

k Number of codebook points to attempt to return.
datum Sample datum.
codebook Set of training data that is compared to the datum.
metric Function used to compare each datum to each element of the codebook. (See, for

example, metric.euclidean.)
(return value) An array of the closest codebook elements in any order. The length of the array is

minimum of k and the length of codebook.

Runtime Errors:
#30010: If k is negative, an “k must be nonnegative” error will be raised.
#30011: If arrays in the codebook or the codebook and the datum have different sizes (without a
metric), an “inconsistent dimensionality” error will be raised.

279

26.4.2 All points within R (model.neighbor.ballR)

Signature: {"model.neighbor.ballR": [r, datum, codebook]} or {"model.neighbor.ballR": [r, datum, codebook, metric]}

r double
datum array of double
codebook array of array of double
(returns) array of array of double

or

r double
datum any A

codebook array of any B

metric function (A, B) → double
(returns) array of B

Description: Find the items in codebook that are within r of the datum, according to the metric.

Parameters:

r Maximum distance (exclusive) of points to return.
datum Sample datum.
codebook Set of training data that is compared to the datum.
metric Function used to compare each datum to each element of the codebook. (See, for

example, metric.euclidean.)
(return value) An array of the codebook elements within a distance r in any order. The length of the

array could be as low as zero or as high as the length of codebook.

26.4.3 Mean of a sample of points, with weights (model.neighbor.mean)

Signature: {"model.neighbor.mean": [points]} or {"model.neighbor.mean": [points, weight]}

points array of array of double
(returns) array of double

or

points array of array of double
weight function (array of double) → double
(returns) array of double

Description: Return the vector-wise mean of points, possibly weighted by weight.

280

Parameters:

points Points from a codebook, for instance from model.neighbor.nearestK.
weight Optional weighting function from each element of points to a value. If these values

do not add up to 1.0, they will be internally normalized.
(return value) The vector-wise mean, which is by construction within the convex hull of the points.

Runtime Errors:
#30000: If points is empty, a “not enough points” error will be raised.
#30001: If the points have different sizes, an “inconsistent dimensionality” error will be raised.

26.5 Naive Bayes

26.5.1 Bernoulli two-category likelihood (model.naive.bernoulli)

Signature: {"model.naive.bernoulli": [datum, classModel]}

datum array of string
classModel map of double
(returns) double

or

datum array of string
classModel any record C with {values:map of double}
(returns) double

Description: Score datum using a Bernoulli Naive Bayes model.

Parameters:

datum Vector of independent variables with d dimensions. The record form is for histograms
built by stat.sample.fillCounter.

classModel Array or map of d likelihoods of the presence of each independent variable for this
class.

(return value) Returns the unscaled log-likelihood of datum for this class.

Runtime Errors:
#10020: Raises a “probability in classModel must be strictly between 0 and 1” error if a value in
classModel is not strictly between zero and one.

26.5.2 Multinomial multi-category likelihood (model.naive.multinomial)

Signature: {"model.naive.multinomial": [datum, classModel]}

281

datum array of double
classModel array of double
(returns) double

or

datum map of double
classModel map of double
(returns) double

or

datum array of double
classModel any record C with {values: array of double}
(returns) double

or

datum map of double
classModel any record C with {values:map of double}
(returns) double

Description: Score datum using a Multinomial Naive Bayes model.

Parameters:

datum Vector of independent variables with d dimensions.
classModel Array or map of multinomial (d different) likelihoods of each independent variable for

this class. The record form is for histograms built by stat.sample.fillHistogram or
stat.sample.fillCounter.

(return value) Returns the unscaled log-likelihood of datum for this class.

Details:

datum or classModel may be expressed as arrays (indexed by integers), or maps (indexed by strings).

Runtime Errors:
#10010: Raises a “datum and classModel misaligned” error if when using the map signature the
keys of datum and classModel don’t match one to one, of if when using the array signature they are
different lengths.
#10011: Raises a “classModel must be non-empty and strictly positive” error if classModel is empty
or any items are less than or equal to zero.

26.5.3 Gaussian continuous likelihood (model.naive.gaussian)

Signature: {"model.naive.gaussian": [datum, classModel]}

datum array of double
classModel array of any record A with {mean:double, variance: double}
(returns) double

282

or

datum map of double
classModel map of any record A with {mean: double, variance: double}
(returns) double

Description: Score datum using a Gaussian Naive Bayes model.

Parameters:

datum Vector of independent variables with d dimensions.
classModel Array or map of d records, each containing the mean and variance of each of indepen-

dent variable, for one class.
(return value) Returns the unscaled log-likelihood that datum is a member of the class specified by

classModel.

Details:

datum or classModel may be expressed as arrays (indexed by integers), or maps (indexed by strings).

Runtime Errors:
#10000: Raises a “datum and classModel misaligned” error if datum and classModel have different
lengths, of if their keys if using the map signature don’t match one to one.
#10001: Raises a “variance less than or equal to zero” error if a variance inside of classModel is
incorrectly specified.

26.6 Neural networks

26.6.1 Feedforward neural network organized in layers (model.neural.simpleLayers)

Signature: {"model.neural.simpleLayers": [datum, model, activation]}

datum array of double
model array of any record M with {weights: array of array of double, bias: array of double}
activation function (double) → double
(returns) array of double

Description: Apply a feedforward artificial neural network model to an input datum.

Parameters:

datum Length d vector of independent variables.
model Array containing the parameters of each layer of the feedforward neural network model.
activation Function applied at the output of each node, except the last. Usually an “S”-shaped

sigmoid or hyperbolic tangent.
(return value) Returns an array of network outputs. For a neural network with a single neuron in the

last layer (single output), this is an array of length one.

Runtime Errors:

283

#11000: Raises a “no layers” error if the length of model is zero.
#11001: Raises a “weights, bias, or datum misaligned” error if there is any misalignment between
inputs and outputs through the layers of the network.

26.7 Support vector machines

26.7.1 Basic SVM (model.svm.score)

Signature: {"model.svm.score": [datum, model, kernel]}

datum array of double
model any record L with {const: double, posClass: array of any record M with {supVec:

array of double, coeff:double}, negClass:array of any record N with {supVec:array
of double, coeff:double}}

kernel function (array of double, array of double) → double
(returns) double

Description: Score an input datum with a two-class support vector machine classifier given a model and
a kernel function kernel.

Parameters:

datum Length d vector of independent variables.
model Record containing the support vectors, dual space coefficients and constant needed to

score new data.
kernel Kernel function used to map data and support vectors into the dual space.
(return value) Returns the score. If positive, datum classified as same group as posClass support

vectors. If negative, datum classified as same group as negClass support vectors.

Runtime Errors:
#12000: Raises a “no support vectors” error if the length of negClass and length of posClass is
zero.
#12001: Raises a “support vectors must have same length as datum” error if the length of the
support vectors is not the same as the length of datum.

284

	Introduction
	Motivation for PFA
	Terminology used in this specification
	PFA MIME type and file name extension
	Levels of PFA conformance and PFA subsets
	Updates to the specification
	Open-source implementations

	PFA document structure
	Top-level fields
	Cells and Pools
	Locator marks

	Scoring engine execution model
	Execution phases of a PFA scoring engine
	Scoring method: map, emit, and fold
	Predefined symbols
	Input and output type specification
	Persistent state: cells and pools
	Concurrent access to shared state
	Exceptions
	Execution options
	Pseudorandom number management

	Type system
	Avro types
	Type schemae in the PFA document
	Type inference
	Type resolution, promotion, and covariance
	Narrowest supertype of a collection of types
	Generic library function signatures

	Symbols, scope, and data structures
	Immutable data structures
	Memory management

	User-defined functions
	No first-class functions
	Syntax for declaring new functions
	Defining function: the ``fcndef'' special form

	Syntax for referencing functions
	Referencing a globally defined function: the ``fcnref'' special form

	Expressions
	Symbol references
	Literal values
	Function calls
	Special forms
	Call a user-defined function that is specified at runtime
	Creating arrays, maps, and records
	Creating arrays/maps/records from expressions: the ``new'' special form

	Symbol assignment and reassignment
	Creating symbols: the ``let'' special form
	Changing symbol bindings: the ``set'' special form

	Extracting from and updating arrays, maps, and records
	Retrieving nested values: the ``attr'' special form
	Copy with different nested values: the ``attr-to'' special form

	Extracting from and updating cells and pools
	Retrieving cell values: the ``cell'' special form
	Changing cell values: the ``cell-to'' special form
	Retrieving pool values: the ``pool'' special form
	Creating or changing pool values: the ``pool-to'' special form
	Removing pool values: the ``pool-del'' special form

	Tree-like structures in the program flow
	Expanding an expression into a mini-program: the ``do'' special form

	Branching the program flow
	Conditional with one or two cases: the ``if'' special form
	Conditional with many cases: the ``cond'' special form

	Loops in the program flow
	Generic pre-test loop: the ``while'' special form
	Generic post-test loop: the ``do-until'' special form
	Iteration with dummy variables: the ``for'' special form
	Iteration over arrays: the ``foreach'' special form
	Iteration over maps: the ``forkey-forval'' special form

	Type-safe casting
	Narrowing a type: the ``cast-cases'' special form
	Widening a type: the ``upcast'' special form
	Checking missing values: the ``ifnotnull'' special form
	Extracting values from binary: the ``unpack'' special form
	Encoding values in binary: the ``pack'' special form

	Miscellaneous special forms
	Inline documentation: the ``doc'' special form
	User-defined exceptions: the ``error'' special form
	Turning exceptions into missing values: the ``try'' special form
	Log messages: the ``log'' special form

	Core library
	Basic arithmetic
	Addition of two values (+)
	Subtraction (-)
	Multiplication of two values (*)
	Floating-point division (/)
	Integer division (//)
	Negation (u-)
	Modulo (%)
	Remainder (%%)
	Raising to a power (**)

	Comparison operators
	General comparison (cmp)
	Equality (==)
	Inequality (!=)
	Less than (<)
	Less than or equal to (<=)
	Greater than (>)
	Greater than or equal to (>=)
	Maximum of two values (max)
	Minimum of two values (min)

	Logical operators
	Logical and (&&)
	Logical or (||)
	Logical xor (^^)
	Logical not (!)

	Kleene operators (three-way logic)
	Kleene and (&&&)
	Kleene or (|||)
	Kleene not (!!!)

	Bitwise arithmetic
	Bitwise and (&)
	Bitwise or (|)
	Bitwise xor (^)
	Bitwise not (~)

	Math library
	Constants
	Archimedes' constant (m.pi)
	Euler's constant e (m.e)

	Common functions
	Square root (m.sqrt)
	Hypotenuse (m.hypot)
	Trigonometric sine (m.sin)
	Trigonometric cosine (m.cos)
	Trigonometric tangent (m.tan)
	Inverse trigonometric sine (m.asin)
	Inverse trigonometric cosine (m.acos)
	Inverse trigonometric tangent (m.atan)
	Robust inverse trigonometric tangent (m.atan2)
	Hyperbolic sine (m.sinh)
	Hyperbolic cosine (m.cosh)
	Hyperbolic tangent (m.tanh)
	Natural exponential (m.exp)
	Natural exponential minus one (m.expm1)
	Natural logarithm (m.ln)
	Logarithm base 10 (m.log10)
	Arbitrary logarithm (m.log)
	Natural logarithm of one plus square (m.ln1p)

	Rounding
	Absolute value (m.abs)
	Floor (m.floor)
	Ceiling (m.ceil)
	Simple rounding (m.round)
	Unbiased rounding (m.rint)
	Threshold function (m.signum)
	Copy sign (m.copysign)

	Special functions
	Error function (m.special.erf)
	Complimentary error function (m.special.erfc)
	Natural log of the gamma function (m.special.lnGamma)
	Natural log of the beta function (m.special.lnBeta)
	Binomial coefficient (m.special.nChooseK)

	Link or activation functions
	Logit (m.link.logit)
	Probit (m.link.probit)
	Log-log (m.link.loglog)
	Complement of log-log (m.link.cloglog)
	Cauchit (m.link.cauchit)
	Hyperbolic tangent (m.link.tanh)
	Softmax (m.link.softmax)
	SoftPlus (m.link.softplus)
	Rectified linear unit (m.link.relu)

	Kernel functions
	Linear (m.kernel.linear)
	Radial basis function (m.kernel.rbf)
	Polynomal (m.kernel.poly)
	Sigmoidal (m.kernel.linear)

	Linear algebra library
	Unary scaling of vectors or matrices (la.scale)
	Generalized unary operator (la.map)
	Addition of vectors or matrices (la.add)
	Subtraction of vectors or matrices (la.sub)
	Generalized binary operator (la.zipmap)
	Vector and matrix dot product (la.dot)
	Transpose (la.transpose)
	Inverse and pseudo-inverse (la.inverse)
	Trace (la.trace)
	Determinant (la.det)
	Check for symmetry (la.symmetric)
	Real eigenbasis of symmetric matrix (la.eigenBasis)
	Truncate rows (la.truncate)

	Metric library
	Euclidean metric without similarity or missing values (metric.simpleEuclidean)
	Absolute difference similarity function (metric.absDiff)
	Gaussian similarity function (metric.gaussianSimilarity)
	Euclidean metric (metric.euclidean)
	Squared euclidean metric (metric.squaredEuclidean)
	Chebyshev metric (metric.chebyshev)
	Taxicab metric (metric.taxicab)
	Minkowski metric (metric.minkowski)
	Simple binary metric (metric.simpleMatching)
	Jaccard binary similarity (metric.jaccard)
	Tanimoto binary similarity (metric.tanimoto)
	General binary metric (metric.binarySimilarity)

	Random number library
	Uniform random deviates of basic types
	Random integer (rand.int)
	Random integer (rand.long)
	Random integer (rand.float)
	Random integer (rand.double)
	Random string (rand.string)
	Random bytes (rand.bytes)

	Common statistical distributions
	Gaussian deviates (rand.gaussian)

	Common utility types
	Type-4 UUID (rand.uuid4)

	Selecting arbitrary objects from a bag
	Random object from a bag (rand.choice)
	Random set of objects with replacement (rand.choices)
	Random set of objects without replacement (rand.sample)
	Random objects with a specified probability distribution (rand.histogram)

	String manipulation library
	Basic access
	Length (s.len)
	Extract substring (s.substr)
	Modify substring (s.substrto)

	Search and replace
	Contains (s.contains)
	Count instances (s.count)
	Find first index (s.index)
	Find last index (s.rindex)
	Check start (s.startswith)
	Check end (s.endswith)

	Conversions to or from other types
	Join an array of strings (s.join)
	Split into an array of strings (s.split)
	Format an integer as a string (s.int)
	Format a positive integer as hexidecimal (s.hex)
	Format any number as a string (s.number)

	Conversions to or from other strings
	Concatenate two strings (s.concat)
	Repeat pattern (s.repeat)
	Lowercase (s.lower)
	Uppercase (s.upper)
	Left-strip (s.lstrip)
	Right-strip (s.rstrip)
	Strip both ends (s.strip)
	Replace all matches (s.replaceall)
	Replace first match (s.replacefirst)
	Replace last match (s.replacelast)
	Translate characters (s.translate)

	Regular expressions and text pre-procssing
	Basic identification of pattern
	Check for existence of a pattern (re.contains)
	Count occurrences of a pattern (re.count)

	Get matched parterns
	Find the first instance of a pattern (re.findfirst)
	Find all instances of a pattern (re.findall)

	Get matched groups
	Get first set of matching groups (re.groups)
	Get all sets of matching groups (re.groupsall)

	Get matched parterns and groups
	Find the first instance of a pattern, with groups (re.findgroupsfirst)
	Find all instances of a pattern, with groups (re.findgroupsall)

	Get index position of match
	Find the first index where a pattern appears (re.index)
	Find the last index where a pattern appears (re.rindex)
	Find all indexes that match a pattern (re.indexall)

	Replacement
	Replace the first instance of a pattern (re.replacefirst)
	Replace the last instance of a pattern (re.replacelast)
	Replace all instances of a pattern (re.replaceall)

	Splitting
	Split a string by a pattern (re.split)

	Parsing library
	Parsing numbers
	32-bit integers (parse.int)
	64-bit integers (parse.long)
	Single-precision floating point (parse.float)
	Double-precision floating point (parse.double)

	Casting library
	Casting numbers as numbers of a different type
	Signed integers with wrap-around (cast.signed)
	Unsigned integers with wrap-around (cast.unsigned)
	32-bit integers (cast.int)
	64-bit integers (cast.long)
	Single-precision floating point (cast.float)
	Double-precision floating point (cast.double)

	Fanning out variables to arrays of various types
	Fan a variable out to an array of booleans (cast.fanoutBoolean)
	Fan a variable out to an array of ints (cast.fanoutInt)
	Fan a variable out to an array of longs (cast.fanoutLong)
	Fan a variable out to an array of floats (cast.fanoutFloat)
	Fan a variable out to an array of doubles (cast.fanoutDouble)

	Serializing arbitrary objects
	Serialize an arbitrary object as Avro bytes (cast.avro)
	Serialize an arbitrary object as a JSON string (cast.json)

	Array manipulation library
	Basic access
	Length (a.len)
	Extract subsequence (a.subseq)
	Extract the first item (a.head)
	Extract all but the first item (a.tail)
	Extract the last item (a.last)
	Extract all but the last item (a.init)
	Modify subsequence (a.subseqto)

	Search and replace
	Contains (a.contains)
	Count instances (a.count)
	Find first index (a.index)
	Find last index (a.rindex)
	Check start (a.startswith)
	Check end (a.endswith)

	Manipulation
	Concatenate two arrays (a.concat)
	Append (a.append)
	Append to a circular buffer with a maximum size (a.cycle)
	Insert or prepend (a.insert)
	Replace item (a.replace)
	Remove item (a.remove)
	Rotate an array left (a.rotate)

	Reordering
	Sort (a.sort)
	Sort with a less-than function (a.sortLT)
	Randomly shuffle array (a.shuffle)
	Reverse order (a.reverse)

	Extreme values
	Maximum of all values (a.max)
	Minimum of all values (a.min)
	Maximum with a less-than function (a.maxLT)
	Minimum with a less-than function (a.minLT)
	Maximum N items (a.maxN)
	Minimum N items (a.minN)
	Maximum N with a less-than function (a.maxNLT)
	Minimum N with a less-than function (a.minNLT)
	Argument maximum (a.argmax)
	Argument minimum (a.argmin)
	Argument maximum with a less-than function (a.argmaxLT)
	Argument minimum with a less-than function (a.argminLT)
	Maximum N arguments (a.argmaxN)
	Minimum N arguments (a.argminN)
	Maximum N arguments with a less-than function (a.argmaxNLT)
	Minimum N arguments with a less-than function (a.argminNLT)

	Numerical combinations
	Add all array values (a.sum)
	Multiply all array values (a.product)
	Sum of logarithms (a.lnsum)
	Log of the sum of exponentials without roundoff error (a.logsumexp)
	Arithmetic mean (a.mean)
	Geometric mean (a.geomean)
	Median (a.median)
	Percentile in unit interval (a.ntile)
	Mode, or most common value (a.mode)

	Set or set-like functions
	Distinct items (a.distinct)
	Set equality (a.seteq)
	Union (a.union)
	Intersection (a.intersection)
	Set difference (a.diff)
	Symmetric set difference (a.symdiff)
	Subset check (a.subset)
	Disjointness check (a.disjoint)

	Functional programming
	Transform array items with function (a.map)
	Transform array items, providing access to the index (a.mapWithIndex)
	Filter array items with a function (a.filter)
	Filter array items, providing access to the index (a.filterWithIndex)
	Filter and map (a.filterMap)
	Filter and map, providing access to the index (a.filterMapWithIndex)
	Map and flatten (a.flatMap)
	Map and flatten, providing access to the index (a.flatMapWithIndex)
	Zip and map (a.zipmap)
	Zip and map, providing access to the index (a.zipmapWithIndex)
	Reduce array items to a single value (a.reduce)
	Right-to-left reduce (a.reduceRight)
	Fold array items to another type (a.fold)
	Right-to-left fold (a.foldRight)
	Take items until predicate is false (a.takeWhile)
	Drop items until predicate is true (a.dropWhile)

	Functional tests
	Existential check, (a.any)
	Univeral check, (a.all)
	Pairwise check of two arrays (a.corresponds)
	Pairwise check, providing access to the index (a.correspondsWithIndex)

	Restructuring
	Sliding window (a.slidingWindow)
	Unique combinations of a fixed size (a.combinations)
	Permutations (a.permutations)
	Flatten array (a.flatten)
	Group items by category (a.groupby)

	Map manipulation library
	Basic access
	Length (map.len)
	Extract the keys (map.keys)
	Extract the values (map.values)

	Search and replace
	Contains key (map.containsKey)
	Contains value (map.containsValue)

	Manipulation
	Insert a key-value pair (map.add)
	Remove a key (map.remove)
	Keep only certain keys (map.only)
	Keep all except certain keys (map.except)
	Add or replace keys with an overlay map (map.update)
	Split map into an array of single-key maps (map.split)
	Join an array of maps into one map (map.join)

	Extreme values by key
	Argument maximum (map.argmax)
	Argument minimum (map.argmin)
	Argument maximum with a less-than function (map.argmaxLT)
	Argument minimum with a less-than function (map.argminLT)
	Maximum N arguments (map.argmaxN)
	Minimum N arguments (map.argminN)
	Maximum N arguments with a less-than function (map.argmaxNLT)
	Minimum N arguments with a less-than function (map.argminNLT)

	Set or set-like functions
	Convert an array to a map-set (map.toset)
	Convert a map to an array-set (map.fromset)
	Determine if an object is in the set (map.in)
	Union (map.union)
	Intersection (map.intersection)
	Set difference (map.diff)
	Symmetric set difference (map.symdiff)
	Subset check (map.subset)
	Disjointness check (map.disjoint)

	Functional programming
	Transform map items with a function (map.map)
	Transform map items, providing access to the key (map.mapWithKey)
	Filter map items with a function (map.filter)
	Filter map items, providing access to the key (map.filterWithKey)
	Filter and map (map.filterMap)
	Filter and map, providing access to the keys (map.filterMapWithKey)
	Map and flatten (map.flatMap)
	Map and flatten, providing access to the keys (map.flatMapWithKey)
	Zip and map (map.zipmap)
	Zip and map, providing access to the keys (map.zipmapWithKey)

	Functional tests
	Pairwise check of two maps (map.corresponds)
	Pairwise check, providing access to the keys (map.correspondsWithKey)

	Bytes manipulation library
	Basic access
	Length (bytes.len)
	Extract subsequence (bytes.subseq)
	Modify subsequence (bytes.subseqto)

	Test validity
	Verify ASCII format (bytes.isAscii)
	Verify LATIN-1 format (bytes.isLatin1)
	Verify UTF-8 format (bytes.isUtf8)
	Verify UTF-16 format (bytes.isUtf16)
	Verify UTF-16 big endian format (bytes.isUtf16be)
	Verify UTF-16 little endian format (bytes.isUtf16le)

	Decode bytes to strings
	Decode from ASCII format (bytes.decodeAscii)
	Decode from LATIN-1 format (bytes.decodeLatin1)
	Decode from UTF-8 format (bytes.decodeUtf8)
	Decode from UTF-16 format (bytes.decodeUtf16)
	Decode from UTF-16 big endian format (bytes.decodeUtf16be)
	Decode from UTF-16 little endian format (bytes.decodeUtf16le)

	Encode strings to bytes
	Encode to ASCII format (bytes.encodeAscii)
	Encode to LATIN-1 format (bytes.encodeLatin1)
	Encode to UTF-8 format (bytes.encodeUtf8)
	Encode to UTF-16 format (bytes.encodeUtf16)
	Encode to UTF-16 big endian format (bytes.encodeUtf16be)
	Encode to UTF-16 little endian format (bytes.encodeUtf16le)

	Base64 encoding
	Encode bytes as a base64 string (bytes.toBase64)
	Decode base64 string to bytes (bytes.fromBase64)

	Manipulation of other data structures
	Fixed
	Convert to bytes (fixed.toBytes)
	Convert from bytes (fixed.fromBytes)

	Enum
	String representation (enum.toString)
	Integer representation (enum.toInt)
	Number of symbols (enum.numSymbols)

	Date/time handling
	Extracting conventional time units from timestamp
	Year from timestamp (time.year)
	Month of year from timestamp (time.monthOfYear)
	Day of year from timestamp (time.dayOfYear)
	Day of month from timestamp (time.dayOfMonth)
	Day of week from timestamp (time.dayOfWeek)
	Hour of day from timestamp (time.hourOfDay)
	Minutes past the hour from timestamp (time.minuteOfHour)
	Seconds past the minute from timestamp (time.secondOfMinute)

	Constructing timestamp from conventional units
	Make timestamp (time.makeTimestamp)

	Querying time intervals
	Seconds of minute range (time.isSecondOfMinute)
	Minutes of hour range (time.isMinuteOfHour)
	Hour of day range (time.isHourOfDay)
	Day of week range (time.isDayOfWeek)
	Day of month range (time.isDayOfMonth)
	Month of year range (time.isMonthOfYear)
	Day of year range (time.isDayOfYear)
	Weekend range (time.isWeekend)
	Working hours range (time.isWorkHours)

	Impute library (missing data handling)
	Missing values as null
	Skip record or halt processing (impute.errorOnNull)
	Replace with default (impute.defaultOnNull)

	Floating point missing values
	Check for not-a-number (impute.isnan)
	Check for infinity (impute.isinf)
	Ensure a finite number (impute.isnum)
	Skip record or halt processing (impute.errorOnNonNum)
	Replace with default (impute.defaultOnNonNum)

	Interpolation library
	Histogram-like binning (interp.bin)
	Nearest point, vector, or abstract type (interp.nearest)
	Linear interpolation between two nearest 1-dim points (interp.linear)
	Linear interpolation with flat endpoints (interp.linearFlat)
	Linear interpolation with missing values after endpoints (interp.linearMissing)

	Probability libraries
	Uniform distribution
	Probability density function (prob.dist.uniformPDF)
	Cumulative distribution function (prob.dist.uniformCDF)
	Quantile function (prob.dist.uniformQF)

	Exponential distribution
	Probability density function (prob.dist.exponentialPDF)
	Cumulative distribution function (prob.dist.exponentialCDF)
	Quantile function (prob.dist.exponentialQF)

	Gaussian (normal) distribution
	Probability density function (prob.dist.gaussianLL)
	Cumulative distribution function (prob.dist.gaussianCDF)
	Quantile function (prob.dist.gaussianQF)

	Lognormal distribution
	Probability density function (prob.dist.lognormalPDF)
	Cumulative distribution function (prob.dist.lognormalCDF)
	Quantile function (prob.dist.lognormalQF)

	Cauchy distribution
	Probability density function (prob.dist.cauchyPDF)
	Cumulative distribution function (prob.dist.cauchyCDF)
	Quantile function (prob.dist.cauchyQF)

	Binomial distribution
	Probability density function (prob.dist.binomialPDF)
	Cumulative distribution function (prob.dist.binomialCDF)
	Quantile function (prob.dist.binomialQF)

	Negative Binomial
	Probability density function (prob.dist.negativebinomialPDF)
	Cumulative distribution function (prob.dist.negativebinomialCDF)
	Quantile function (prob.dist.negativebinomialQF)

	Poisson distribution
	Probability density function (prob.dist.poissonPDF)
	Cumulative distribution function (prob.dist.poissonCDF)
	Quantile function (prob.dist.poissonQF)

	Student's t distribution
	Probability density function (prob.dist.tPDF)
	Cumulative distribution function (prob.dist.tCDF)
	Quantile function (prob.dist.tQF)

	F distribution
	Probability density function (prob.dist.fPDF)
	Cumulative distribution function (prob.dist.fCDF)
	Quantile function (prob.dist.fQF)

	Chi-square distribution
	Probability density function (prob.dist.chi2PDF)
	Cumulative distribution function (prob.dist.chi2CDF)
	Quantile function (prob.dist.chi2QF)

	Beta distribution
	Probability density function (prob.dist.betaPDF)
	Cumulative distribution function (prob.dist.betaCDF)
	Quantile function (prob.dist.betaQF)

	Gamma distribution
	Probability density function (prob.dist.gammaPDF)
	Cumulative distribution function (prob.dist.gammaCDF)
	Quantile function (prob.dist.gammaQF)

	Geometric distribution
	Probability density function (prob.dist.geometricPDF)
	Cumulative distribution function (prob.dist.geometricCDF)
	Quantile function (prob.dist.geometricQF)

	Hypergeometric distribution
	Probability density function (prob.dist.hypergeometricPDF)
	Cumulative distribution function (prob.dist.hypergeometricCDF)
	Quantile function (prob.dist.hypergeometricQF)

	Weibull distribution
	Probability density function (prob.dist.weibullPDF)
	Cumulative distribution function (prob.dist.weibullCDF)
	Quantile function (prob.dist.weibullQF)

	Descriptive statistics libraries
	Statistical tests
	Kolmogorov-Smirnov test of two distributions (stat.test.kolmogorov)
	Compute residual of a fit (stat.test.residual)
	Compute the pull of a fit (stat.test.pull)
	Compute the Mahalanobis of a fit (stat.test.mahalanobis)
	Update a cumulative 2 calculation (stat.test.updateChi2)
	Compute the reduced 2 (stat.test.reducedChi2)
	Compute the 2 probability (stat.test.chi2Prob)

	Sample statistics
	Incremental count, mean, and/or variance (stat.sample.update)
	Incremental covariance matrix (stat.sample.updateCovariance)
	Incremental count, mean, and/or variance in a window (stat.sample.updateWindow)
	Exponentially weighted moving average (EWMA) (stat.sample.updateEWMA)
	Doubly exponential average with trend (stat.sample.updateHoltWinters)
	Triply exponential average: trend and period (stat.sample.updateHoltWintersPeriodic)
	Make one forecast from a Holt-Winters state (stat.sample.forecast1HoltWinters)
	Make many forecasts from a Holt-Winters state (stat.sample.forecastHoltWinters)
	Fill a histogram (stat.sample.fillHistogram)
	Fill a two-dimensional histogram (stat.sample.fillHistogram2d)
	Fill a counter/categorical histogram (stat.sample.fillCounter)
	Maintain a top-N list (stat.sample.topN)

	Change detection
	Historical record of triggered events (stat.change.updateTrigger)
	Simple difference over uncertainty (stat.change.zValue)
	Cumulative sum (stat.change.updateCUSUM)

	Data mining libraries
	Regression
	Apply the result of a linear regression (model.reg.linear)
	Propagate uncertainties through a linear regression (model.reg.linearVariance)
	Fit and predict a Gaussian Process (model.reg.gaussianProcess)

	Decision and regression Trees
	All-in-one function for simplest case (model.tree.simpleTree)
	Simple test function for a tree node (model.tree.simpleTest)
	Test function for a tree node with logical operators (model.tree.compoundTest)
	Test function with missing value handling (model.tree.missingTest)
	Chain of surrogate tests (model.tree.surrogateTest)
	Tree walk without explicit missing value handling (model.tree.simpleWalk)
	Tree walk with three branches: pass, fail, and missing (model.tree.missingWalk)

	Cluster models
	Closest cluster (model.cluster.closest)
	Closest N clusters or N-nearest neighbrs (model.cluster.closestN)
	Random seeds for online clustering (model.cluster.randomSeeds)
	Online clustering with k-means (model.cluster.kmeansIteration)
	Update cluster using the mean of data points (model.cluster.updateMean)

	Nearest neighbor models
	K nearest points (model.neighbor.nearestK)
	All points within R (model.neighbor.ballR)
	Mean of a sample of points, with weights (model.neighbor.mean)

	Naive Bayes
	Bernoulli two-category likelihood (model.naive.bernoulli)
	Multinomial multi-category likelihood (model.naive.multinomial)
	Gaussian continuous likelihood (model.naive.gaussian)

	Neural networks
	Feedforward neural network organized in layers (model.neural.simpleLayers)

	Support vector machines
	Basic SVM (model.svm.score)

