diff --git a/anndata/_core/anndata.py b/anndata/_core/anndata.py index fc2163e65..b5767eac6 100644 --- a/anndata/_core/anndata.py +++ b/anndata/_core/anndata.py @@ -22,13 +22,13 @@ from pandas.api.types import infer_dtype, is_string_dtype, is_categorical_dtype from scipy import sparse from scipy.sparse import issparse, csr_matrix +from anndata._core.anndata_base import AbstractAnnData from anndata._warnings import ImplicitModificationWarning from .raw import Raw from .index import _normalize_indices, _subset, Index, Index1D, get_vector from .file_backing import AnnDataFileManager, to_memory from .access import ElementRef -from .anndata_base import AbstractAnnData from .aligned_mapping import ( AxisArrays, AxisArraysView, @@ -285,7 +285,7 @@ def __init__( vidx: Index1D = None, ): if asview: - if not issubclass(type(X), AnnData): + if not issubclass(type(X), AbstractAnnData): raise ValueError("`X` has to be an AnnData object.") self._init_as_view(X, oidx, vidx) else: @@ -364,44 +364,74 @@ def _init_as_view(self, adata_ref: "AnnData", oidx: Index, vidx: Index): else: self._raw = None - def _reformat_axes_args_from_X( - self, X, obs, var, uns, obsm, varm, obsp, varp, layers, raw + def _init_as_actual( + self, + X=None, + obs=None, + var=None, + uns=None, + obsm=None, + varm=None, + varp=None, + obsp=None, + raw=None, + layers=None, + dtype=None, + shape=None, + filename=None, + filemode=None, ): + # view attributes + self._is_view = False + self._adata_ref = None + self._oidx = None + self._vidx = None + + # ---------------------------------------------------------------------- + # various ways of initializing the data + # ---------------------------------------------------------------------- + + # If X is a data frame, we store its indices for verification x_indices = [] - # init from AnnData - if isinstance(X, AnnData): - if any((obs, var, uns, obsm, varm, obsp, varp)): - raise ValueError( - "If `X` is a dict no further arguments must be provided." + + # init from file + if filename is not None: + self.file = AnnDataFileManager(self, filename, filemode) + else: + self.file = AnnDataFileManager(self, None) + + # init from AnnData + if issubclass(type(X), AbstractAnnData): + if any((obs, var, uns, obsm, varm, obsp, varp)): + raise ValueError( + "If `X` is a dict no further arguments must be provided." + ) + X, obs, var, uns, obsm, varm, obsp, varp, layers, raw = ( + X._X, + X.obs, + X.var, + X.uns, + X.obsm, + X.varm, + X.obsp, + X.varp, + X.layers, + X.raw, ) - X, obs, var, uns, obsm, varm, obsp, varp, layers, raw = ( - X._X, - X.obs, - X.var, - X.uns, - X.obsm, - X.varm, - X.obsp, - X.varp, - X.layers, - X.raw, - ) - # init from DataFrame - elif isinstance(X, pd.DataFrame): - # to verify index matching, we wait until obs and var are DataFrames - if obs is None: - obs = pd.DataFrame(index=X.index) - elif not isinstance(X.index, pd.RangeIndex): - x_indices.append(("obs", "index", X.index)) - if var is None: - var = pd.DataFrame(index=X.columns) - elif not isinstance(X.columns, pd.RangeIndex): - x_indices.append(("var", "columns", X.columns)) - X = ensure_df_homogeneous(X, "X") - return (X, obs, var, uns, obsm, varm, obsp, varp, layers, raw, x_indices) - - def _assign_X(self, X, shape, dtype): + # init from DataFrame + elif isinstance(X, pd.DataFrame): + # to verify index matching, we wait until obs and var are DataFrames + if obs is None: + obs = pd.DataFrame(index=X.index) + elif not isinstance(X.index, pd.RangeIndex): + x_indices.append(("obs", "index", X.index)) + if var is None: + var = pd.DataFrame(index=X.columns) + elif not isinstance(X.columns, pd.RangeIndex): + x_indices.append(("var", "columns", X.columns)) + X = ensure_df_homogeneous(X, "X") + # ---------------------------------------------------------------------- # actually process the data # ---------------------------------------------------------------------- @@ -436,18 +466,9 @@ def _assign_X(self, X, shape, dtype): X = np.array(X, dtype, copy=False) # data matrix and shape self._X = X - else: - self._X = None - - def _initialize_indices(self, shape, obs, var): - # ---------------------------------------------------------------------- - # actually process the data - # ---------------------------------------------------------------------- - - # check data type of X - if self._X is not None: self._n_obs, self._n_vars = self._X.shape else: + self._X = None self._n_obs = len([] if obs is None else obs) self._n_vars = len([] if var is None else var) # check consistency with shape @@ -463,38 +484,34 @@ def _initialize_indices(self, shape, obs, var): if self._n_vars != shape[1]: raise ValueError("`shape` is inconsistent with `var`") - # annotations - def _assign_obs(self, obs): + # annotations self._obs = _gen_dataframe(obs, self._n_obs, ["obs_names", "row_names"]) - - def _assign_var(self, var): self._var = _gen_dataframe(var, self._n_vars, ["var_names", "col_names"]) - # unstructured annotations - def _assign_uns(self, uns): + # now we can verify if indices match! + for attr_name, x_name, idx in x_indices: + attr = getattr(self, attr_name) + if isinstance(attr.index, pd.RangeIndex): + attr.index = idx + elif not idx.equals(attr.index): + raise ValueError(f"Index of {attr_name} must match {x_name} of X.") + + # unstructured annotations self.uns = uns or OrderedDict() - # TODO: Think about consequences of making obsm a group in hdf - def _assign_obsm(self, obsm): + # TODO: Think about consequences of making obsm a group in hdf self._obsm = AxisArrays(self, 0, vals=convert_to_dict(obsm)) - - def _assign_varm(self, varm): self._varm = AxisArrays(self, 1, vals=convert_to_dict(varm)) - def _assign_obsp(self, obsp): self._obsp = PairwiseArrays(self, 0, vals=convert_to_dict(obsp)) - - def _assign_varp(self, varp): self._varp = PairwiseArrays(self, 1, vals=convert_to_dict(varp)) - def _run_checks(self): # Backwards compat for connectivities matrices in uns["neighbors"] _move_adj_mtx({"uns": self._uns, "obsp": self._obsp}) self._check_dimensions() self._check_uniqueness() - def _cleanup_raw_and_uns(self, raw, uns): if self.filename: assert not isinstance( raw, Raw @@ -511,7 +528,6 @@ def _cleanup_raw_and_uns(self, raw, uns): # clean up old formats self._clean_up_old_format(uns) - def _assign_layers(self, layers): # layers self._layers = Layers(self, layers) @@ -572,6 +588,11 @@ def __eq__(self, other): "instead compare the desired attributes." ) + @property + def shape(self) -> Tuple[int, int]: + """Shape of data matrix (:attr:`n_obs`, :attr:`n_vars`).""" + return self.n_obs, self.n_vars + @property def X(self) -> Optional[Union[np.ndarray, sparse.spmatrix, ArrayView]]: """Data matrix of shape :attr:`n_obs` × :attr:`n_vars`."""