
ONVM Documentation
Getting Started

This tutorial assumes that you have access to CloudLab and a basic working
knowledge of CloudLab and SSH
Also ensure that you have followed the development environment configuration
instructions in our Dev Environment Wiki page

Specifically, make sure that you follow the steps in “Getting Started”, “Setup
OpenSSH”, and everything up to instantiating an experiment in the “CloudLab
Work Environment” section

Instantiating the ONVM CloudLab Profile
Follow the above link to the ONVM profile on CloudLab
Click “Instantiate”

 

 

 
Enter the number of hosts you want — for a three-node topology, enter “3”
Ensure that the host type is “c220g2”

 

https://cloudlab.us/
https://www.ssh.com/ssh/
https://github.com/sdnfv/openNetVM/wiki/Dev-Environment
https://www.cloudlab.us/show-profile.php?uuid=dada03d2-879e-11e9-93e7-e4434b2381fc


 

 

 
Click “Next”

The generated topology image should somewhat resemble the image below

 

 

Optionally, enter a name for the experiment in the “Name” field
Click “Next”
Click “Finish”
Wait for the experiment to boot up

 

Connecting to CloudLab in Visual Studio Code via SSH
Click “List View” to see the SSH commands to connect to your nodes

 

 



Ensure that your generated SSH command works by running it in terminal
 
For development within the Visual Studio Code environment:

See more detailed setup instructions in our Dev Environment Wiki if you wish to
use the VS Code environment for your setup

The following steps should be performed for each node:
Copy relevant information into your ~/.ssh/config file:

Host NodeXAddress

  HostName NodeXAddress

  Port 22

  User CloudLabUsername

  IdentityFile ~/.ssh/PrivateKeyFile

  AddKeysToAgent yes

Note that you can add other options as necessary
Open Visual Studio Code
Click the green Remote-SSH extension button (SSH logo) in the bottom-left
corner
Select Remote-SSH: Connect to Host from the options that appear in the
command palette
Select the address of the node you want to connect to
Visual Studio Code will automatically connect and set itself up 

See Troubleshooting Tips for connection issues and Fixing SSH File
Permissions for permissions errors

Once connected, navigate to the openNetVM repository folder: cd
/local/onvm/openNetVM

Now, finish configuring your workspace by selecting File → Open or File →
Workspace and selecting the openNetVM folder (/local/onvm/openNetVM)

 

Setting Up a Three-Node Topology 
The goal of this document is to configure the three nodes so that the first can act as
a client, the third as a server, and the second node will act as a middlebox running
OpenNetVM. The first and third nodes will use the kernel network stack, while the
second will use DPDK.
 
Ensuring That Nodes Are Connected

https://github.com/sdnfv/openNetVM/wiki/Dev-Environment
https://code.visualstudio.com/docs/remote/troubleshooting#_troubleshooting-hanging-or-failing-connections
https://code.visualstudio.com/docs/remote/troubleshooting#_fixing-ssh-file-permission-errors


Connect to your CloudLab nodes in either Visual Studio Code or any SSH client
With a three-node topology, your first node (node1) should be connected to one
port in your second node (node2) and your third node (node3) should be
connected to the other port in your second node (node2). Notice that this forms
a “chain-like” structure like the one visualized in the topology image generated by
CloudLab
To determine which NICs are connected on each node, SSH into the node and
run ifconfig

 

Output of ifconfig on node1

The connected NIC is the one with the local IP subnet. For the first node, it
should be 192.168.1.1

Note that the local subnet is 192.168.1.x. This means that each of the
NICs should have their inet addr field in the ifconfig command output
start with 192.168.1.. 
For each NIC in the connection chain, the IP address should be
192.168.1.<previous + 1>. This means that the first should be
192.168.1.1, the second should be 192.168.1.2, and so on. Note that
since node2 (and any other intermediate nodes in the case of a chain with
more than three nodes) has two NICs configured for this, it will have two
NICs with local addresses. This is seen in the below screenshot.



 

Output of ifconfig on node2

The NIC names and ports (eg eth0 or eth1) can be completely random, but
always have the local IP address mask (start with 192.168.1)

Bind Intermediate Nodes to DPDK
Before running the ONVM manager, we need to ensure that the connected NICs on
node2 are bound to DPDK. DPDK has a script to determine whether NICs are bound
or not. 

Identify which NICs are connected to the other nodes using ifconfig on node2
and checking the inet addr against the expected output above
Navigate to the openNetVM folder that comes pre-installed on each node using
cd /local/onvm/openNetVM

Pull the most recent version of openNetVM from GitHub: git pull upstream
master

Unbind the connected NICs: sudo ifconfig ethxxx down
Run the ONVM setup_environment.sh script

cd scripts

source ./setup_cloudlab.sh



./setup_environment.sh

 

Output of ./setup_environment.sh

Ensure that you see the two NICs in the “Network devices using DPDK-
compatible driver”

If you only see one NIC, it’s possible that you did not unbind the other NIC
from the kernel driver using sudo ifconfig ethxxx down. Instructions for
that are above.

Verifying Node Chain Connections with openNetVM
Run the openNetVM Manager and Bridge NF



In the case of the three-node topology, we only need to run openNetVM on node2.
These instructions should only be performed on all intermediate nodes in a longer
chain.

Navigate to the openNetVM folder: cd /local/onvm/openNetVM
Compile the Manager: cd onvm && make && cd ..
Compile the NFs: cd examples && make && cd ..
Run the Manager: ./onvm/go.sh 0,1,2 3 0xF8 -s stdout

The manager should show both ports running

 

 

In another terminal pane, run the Bridge NF
cd examples/bridge

./go.sh 1 1



 

 

Ping Between Nodes in Chain
When the ONVM Manager and Bridge NF are running, we can ping from node1 to
node3, using node3’s local IP address, despite node1 and node3 not being directly
connected. We can also ping node1 from node3 using node1’s local IP address. The
following steps can be performed on either node1 or node3. Just ensure that you are
using the opposite node’s direct IP address. The direct IP of node1 should be
192.168.1.1 and the direct IP of node3 should be 192.168.1.4. Since these are not
bound to DPDK, we can still verify this by doing ipconfig on either node.

Ping the opposite node: ping 192.168.1.x where x is the node’s NIC number in
the chain. You will see the number of packets sent updated in the manager

 

Output from pinging from node1 to node3



Note that there is no output in node3. You can verify that openNetVM is
enabling the connections by closing the Manager and/or Bridge NF and
repeating the ping command

 

Output from pinging node1 to node3 when ONVM Manager is offline

 


