diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
index c0550349b..10e6339ea 100644
--- a/.github/workflows/tests.yml
+++ b/.github/workflows/tests.yml
@@ -37,6 +37,8 @@ jobs:
run: |
python -m pip install --upgrade pip
pip install pytest
+ # sending files in form data throwing error in flask 3 while running tests
+ pip install Werkzeug==2.0.2 flask==2.0.2
pip install .
- name: Test with pytest
diff --git a/README.md b/README.md
index 47b0cfae6..8462279dd 100644
--- a/README.md
+++ b/README.md
@@ -341,7 +341,7 @@ cd scripts
-Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Default service endpoints will be `http://localhost:5005/verify` for face recognition, `http://localhost:5005/analyze` for facial attribute analysis, and `http://localhost:5005/represent` for vector representation. You can pass input images as exact image paths on your environment, base64 encoded strings or images on web. [Here](https://github.com/serengil/deepface/tree/master/deepface/api/postman), you can find a postman project to find out how these methods should be called.
+Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Default service endpoints will be `http://localhost:5005/verify` for face recognition, `http://localhost:5005/analyze` for facial attribute analysis, and `http://localhost:5005/represent` for vector representation. The API accepts images as file uploads (via form data), or as exact image paths, URLs, or base64-encoded strings (via either JSON or form data), providing versatile options for different client requirements. [Here](https://github.com/serengil/deepface/tree/master/deepface/api/postman), you can find a postman project to find out how these methods should be called.
**Dockerized Service** - [`Demo`](https://youtu.be/9Tk9lRQareA)
diff --git a/deepface/api/postman/deepface-api.postman_collection.json b/deepface/api/postman/deepface-api.postman_collection.json
index 0cbb0a388..539993d81 100644
--- a/deepface/api/postman/deepface-api.postman_collection.json
+++ b/deepface/api/postman/deepface-api.postman_collection.json
@@ -1,12 +1,54 @@
{
"info": {
- "_postman_id": "4c0b144e-4294-4bdd-8072-bcb326b1fed2",
+ "_postman_id": "26c5ee53-1f4b-41db-9342-3617c90059d3",
"name": "deepface-api",
"schema": "https://schema.getpostman.com/json/collection/v2.1.0/collection.json"
},
"item": [
{
- "name": "Represent",
+ "name": "Represent - form data",
+ "request": {
+ "method": "POST",
+ "header": [],
+ "body": {
+ "mode": "formdata",
+ "formdata": [
+ {
+ "key": "img",
+ "type": "file",
+ "src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
+ },
+ {
+ "key": "model_name",
+ "value": "Facenet",
+ "type": "text"
+ }
+ ],
+ "options": {
+ "raw": {
+ "language": "json"
+ }
+ }
+ },
+ "url": {
+ "raw": "http://127.0.0.1:5005/represent",
+ "protocol": "http",
+ "host": [
+ "127",
+ "0",
+ "0",
+ "1"
+ ],
+ "port": "5005",
+ "path": [
+ "represent"
+ ]
+ }
+ },
+ "response": []
+ },
+ {
+ "name": "Represent - default",
"request": {
"method": "POST",
"header": [],
@@ -20,7 +62,7 @@
}
},
"url": {
- "raw": "http://127.0.0.1:5000/represent",
+ "raw": "http://127.0.0.1:5005/represent",
"protocol": "http",
"host": [
"127",
@@ -28,7 +70,7 @@
"0",
"1"
],
- "port": "5000",
+ "port": "5005",
"path": [
"represent"
]
@@ -37,13 +79,60 @@
"response": []
},
{
- "name": "Face verification",
+ "name": "Face verification - default",
"request": {
"method": "POST",
"header": [],
"body": {
"mode": "raw",
- "raw": " {\n \t\"img1_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"img2_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg\",\n \"model_name\": \"Facenet\",\n \"detector_backend\": \"mtcnn\",\n \"distance_metric\": \"euclidean\"\n }",
+ "raw": " {\n \t\"img1\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"img2\": \"/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg\",\n \"model_name\": \"Facenet\",\n \"detector_backend\": \"mtcnn\",\n \"distance_metric\": \"euclidean\"\n }",
+ "options": {
+ "raw": {
+ "language": "json"
+ }
+ }
+ },
+ "url": {
+ "raw": "http://127.0.0.1:5005/verify",
+ "protocol": "http",
+ "host": [
+ "127",
+ "0",
+ "0",
+ "1"
+ ],
+ "port": "5005",
+ "path": [
+ "verify"
+ ]
+ }
+ },
+ "response": []
+ },
+ {
+ "name": "Face verification - form data",
+ "request": {
+ "method": "POST",
+ "header": [],
+ "body": {
+ "mode": "formdata",
+ "formdata": [
+ {
+ "key": "img1",
+ "type": "file",
+ "src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
+ },
+ {
+ "key": "img2",
+ "type": "file",
+ "src": "/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg"
+ },
+ {
+ "key": "model_name",
+ "value": "Facenet",
+ "type": "text"
+ }
+ ],
"options": {
"raw": {
"language": "json"
@@ -51,7 +140,7 @@
}
},
"url": {
- "raw": "http://127.0.0.1:5000/verify",
+ "raw": "http://127.0.0.1:5005/verify",
"protocol": "http",
"host": [
"127",
@@ -59,7 +148,7 @@
"0",
"1"
],
- "port": "5000",
+ "port": "5005",
"path": [
"verify"
]
@@ -68,13 +157,13 @@
"response": []
},
{
- "name": "Face analysis",
+ "name": "Face analysis - default",
"request": {
"method": "POST",
"header": [],
"body": {
"mode": "raw",
- "raw": "{\n \"img_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/couple.jpg\",\n \"actions\": [\"age\", \"gender\", \"emotion\", \"race\"]\n}",
+ "raw": "{\n \"img\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"actions\": [\"age\", \"gender\", \"emotion\", \"race\"]\n}",
"options": {
"raw": {
"language": "json"
@@ -82,7 +171,7 @@
}
},
"url": {
- "raw": "http://127.0.0.1:5000/analyze",
+ "raw": "http://127.0.0.1:5005/analyze",
"protocol": "http",
"host": [
"127",
@@ -90,7 +179,46 @@
"0",
"1"
],
- "port": "5000",
+ "port": "5005",
+ "path": [
+ "analyze"
+ ]
+ }
+ },
+ "response": []
+ },
+ {
+ "name": "Face analysis - form data",
+ "request": {
+ "method": "POST",
+ "header": [],
+ "body": {
+ "mode": "formdata",
+ "formdata": [
+ {
+ "key": "img",
+ "type": "file",
+ "src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
+ },
+ {
+ "key": "actions",
+ "value": "\"[age, gender]\"",
+ "type": "text"
+ }
+ ],
+ "options": {
+ "raw": {
+ "language": "json"
+ }
+ }
+ },
+ "url": {
+ "raw": "http://localhost:5005/analyze",
+ "protocol": "http",
+ "host": [
+ "localhost"
+ ],
+ "port": "5005",
"path": [
"analyze"
]
diff --git a/deepface/api/src/modules/core/routes.py b/deepface/api/src/modules/core/routes.py
index 4830bec21..9cb2e747a 100644
--- a/deepface/api/src/modules/core/routes.py
+++ b/deepface/api/src/modules/core/routes.py
@@ -1,31 +1,86 @@
+# built-in dependencies
+from typing import Union
+
+# 3rd party dependencies
from flask import Blueprint, request
+import numpy as np
+
+# project dependencies
from deepface import DeepFace
from deepface.api.src.modules.core import service
+from deepface.commons import image_utils
from deepface.commons.logger import Logger
logger = Logger()
blueprint = Blueprint("routes", __name__)
+# pylint: disable=no-else-return, broad-except
+
@blueprint.route("/")
def home():
return f"Welcome to DeepFace API v{DeepFace.__version__}!
"
+def extract_image_from_request(img_key: str) -> Union[str, np.ndarray]:
+ """
+ Extracts an image from the request either from json or a multipart/form-data file.
+
+ Args:
+ img_key (str): The key used to retrieve the image data
+ from the request (e.g., 'img1').
+
+ Returns:
+ img (str or np.ndarray): Given image detail (base64 encoded string, image path or url)
+ or the decoded image as a numpy array.
+ """
+
+ # Check if the request is multipart/form-data (file input)
+ if request.files:
+ # request.files is instance of werkzeug.datastructures.ImmutableMultiDict
+ # file is instance of werkzeug.datastructures.FileStorage
+ file = request.files.get(img_key)
+
+ if file is None:
+ raise ValueError(f"Request form data doesn't have {img_key}")
+
+ if file.filename == "":
+ raise ValueError(f"No file uploaded for '{img_key}'")
+
+ img = image_utils.load_image_from_file_storage(file)
+
+ return img
+ # Check if the request is coming as base64, file path or url from json or form data
+ elif request.is_json or request.form:
+ input_args = request.get_json() or request.form.to_dict()
+
+ if input_args is None:
+ raise ValueError("empty input set passed")
+
+ # this can be base64 encoded image, and image path or url
+ img = input_args.get(img_key)
+
+ if not img:
+ raise ValueError(f"'{img_key}' not found in either json or form data request")
+
+ return img
+
+ # If neither JSON nor file input is present
+ raise ValueError(f"'{img_key}' not found in request in either json or form data")
+
+
@blueprint.route("/represent", methods=["POST"])
def represent():
- input_args = request.get_json()
+ input_args = request.get_json() or request.form.to_dict()
- if input_args is None:
- return {"message": "empty input set passed"}
-
- img_path = input_args.get("img") or input_args.get("img_path")
- if img_path is None:
- return {"message": "you must pass img_path input"}
+ try:
+ img = extract_image_from_request("img")
+ except Exception as err:
+ return {"exception": str(err)}, 400
obj = service.represent(
- img_path=img_path,
+ img_path=img,
model_name=input_args.get("model_name", "VGG-Face"),
detector_backend=input_args.get("detector_backend", "opencv"),
enforce_detection=input_args.get("enforce_detection", True),
@@ -41,23 +96,21 @@ def represent():
@blueprint.route("/verify", methods=["POST"])
def verify():
- input_args = request.get_json()
-
- if input_args is None:
- return {"message": "empty input set passed"}
-
- img1_path = input_args.get("img1") or input_args.get("img1_path")
- img2_path = input_args.get("img2") or input_args.get("img2_path")
+ input_args = request.get_json() or request.form.to_dict()
- if img1_path is None:
- return {"message": "you must pass img1_path input"}
+ try:
+ img1 = extract_image_from_request("img1")
+ except Exception as err:
+ return {"exception": str(err)}, 400
- if img2_path is None:
- return {"message": "you must pass img2_path input"}
+ try:
+ img2 = extract_image_from_request("img2")
+ except Exception as err:
+ return {"exception": str(err)}, 400
verification = service.verify(
- img1_path=img1_path,
- img2_path=img2_path,
+ img1_path=img1,
+ img2_path=img2,
model_name=input_args.get("model_name", "VGG-Face"),
detector_backend=input_args.get("detector_backend", "opencv"),
distance_metric=input_args.get("distance_metric", "cosine"),
@@ -73,18 +126,31 @@ def verify():
@blueprint.route("/analyze", methods=["POST"])
def analyze():
- input_args = request.get_json()
-
- if input_args is None:
- return {"message": "empty input set passed"}
-
- img_path = input_args.get("img") or input_args.get("img_path")
- if img_path is None:
- return {"message": "you must pass img_path input"}
+ input_args = request.get_json() or request.form.to_dict()
+
+ try:
+ img = extract_image_from_request("img")
+ except Exception as err:
+ return {"exception": str(err)}, 400
+
+ actions = input_args.get("actions", ["age", "gender", "emotion", "race"])
+ # actions is the only argument instance of list or tuple
+ # if request is form data, input args can either be text or file
+ if isinstance(actions, str):
+ actions = (
+ actions.replace("[", "")
+ .replace("]", "")
+ .replace("(", "")
+ .replace(")", "")
+ .replace('"', "")
+ .replace("'", "")
+ .replace(" ", "")
+ .split(",")
+ )
demographies = service.analyze(
- img_path=img_path,
- actions=input_args.get("actions", ["age", "gender", "emotion", "race"]),
+ img_path=img,
+ actions=actions,
detector_backend=input_args.get("detector_backend", "opencv"),
enforce_detection=input_args.get("enforce_detection", True),
align=input_args.get("align", True),
diff --git a/deepface/api/src/modules/core/service.py b/deepface/api/src/modules/core/service.py
index 299430055..45fc8c452 100644
--- a/deepface/api/src/modules/core/service.py
+++ b/deepface/api/src/modules/core/service.py
@@ -1,15 +1,22 @@
# built-in dependencies
import traceback
-from typing import Optional
+from typing import Optional, Union
+
+# 3rd party dependencies
+import numpy as np
# project dependencies
from deepface import DeepFace
+from deepface.commons.logger import Logger
+
+logger = Logger()
+
# pylint: disable=broad-except
def represent(
- img_path: str,
+ img_path: Union[str, np.ndarray],
model_name: str,
detector_backend: str,
enforce_detection: bool,
@@ -32,12 +39,14 @@ def represent(
return result
except Exception as err:
tb_str = traceback.format_exc()
+ logger.error(str(err))
+ logger.error(tb_str)
return {"error": f"Exception while representing: {str(err)} - {tb_str}"}, 400
def verify(
- img1_path: str,
- img2_path: str,
+ img1_path: Union[str, np.ndarray],
+ img2_path: Union[str, np.ndarray],
model_name: str,
detector_backend: str,
distance_metric: str,
@@ -59,11 +68,13 @@ def verify(
return obj
except Exception as err:
tb_str = traceback.format_exc()
+ logger.error(str(err))
+ logger.error(tb_str)
return {"error": f"Exception while verifying: {str(err)} - {tb_str}"}, 400
def analyze(
- img_path: str,
+ img_path: Union[str, np.ndarray],
actions: list,
detector_backend: str,
enforce_detection: bool,
@@ -85,4 +96,6 @@ def analyze(
return result
except Exception as err:
tb_str = traceback.format_exc()
+ logger.error(str(err))
+ logger.error(tb_str)
return {"error": f"Exception while analyzing: {str(err)} - {tb_str}"}, 400
diff --git a/deepface/commons/image_utils.py b/deepface/commons/image_utils.py
index c2ae1ed67..b72ce0b43 100644
--- a/deepface/commons/image_utils.py
+++ b/deepface/commons/image_utils.py
@@ -11,6 +11,7 @@
import numpy as np
import cv2
from PIL import Image
+from werkzeug.datastructures import FileStorage
def list_images(path: str) -> List[str]:
@@ -133,6 +134,21 @@ def load_image_from_base64(uri: str) -> np.ndarray:
return img_bgr
+def load_image_from_file_storage(file: FileStorage) -> np.ndarray:
+ """
+ Loads an image from a FileStorage object and decodes it into an OpenCV image.
+ Args:
+ file (FileStorage): The FileStorage object containing the image file.
+ Returns:
+ img (np.ndarray): The decoded image as a numpy array (OpenCV format).
+ """
+ file_bytes = np.frombuffer(file.read(), np.uint8)
+ image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
+ if image is None:
+ raise ValueError("Failed to decode image")
+ return image
+
+
def load_image_from_web(url: str) -> np.ndarray:
"""
Loading an image from web
diff --git a/requirements_local b/requirements_local
index 22bbe11d1..1705b13a2 100644
--- a/requirements_local
+++ b/requirements_local
@@ -3,4 +3,4 @@ pandas==2.0.3
Pillow==9.0.0
opencv-python==4.9.0.80
tensorflow==2.13.1
-keras==2.13.1
+keras==2.13.1
\ No newline at end of file
diff --git a/tests/test_api.py b/tests/test_api.py
index ef2db73d2..0506143f8 100644
--- a/tests/test_api.py
+++ b/tests/test_api.py
@@ -1,16 +1,29 @@
# built-in dependencies
+import os
import base64
import unittest
+# 3rd party dependencies
+import gdown
+
# project dependencies
from deepface.api.src.app import create_app
from deepface.commons.logger import Logger
logger = Logger()
+IMG1_SOURCE = (
+ "https://raw.githubusercontent.com/serengil/deepface/refs/heads/master/tests/dataset/img1.jpg"
+)
+IMG2_SOURCE = (
+ "https://raw.githubusercontent.com/serengil/deepface/refs/heads/master/tests/dataset/img2.jpg"
+)
+
class TestVerifyEndpoint(unittest.TestCase):
def setUp(self):
+ download_test_images(IMG1_SOURCE)
+ download_test_images(IMG2_SOURCE)
app = create_app()
app.config["DEBUG"] = True
app.config["TESTING"] = True
@@ -18,8 +31,8 @@ def setUp(self):
def test_tp_verify(self):
data = {
- "img1_path": "dataset/img1.jpg",
- "img2_path": "dataset/img2.jpg",
+ "img1": "dataset/img1.jpg",
+ "img2": "dataset/img2.jpg",
}
response = self.app.post("/verify", json=data)
assert response.status_code == 200
@@ -40,8 +53,8 @@ def test_tp_verify(self):
def test_tn_verify(self):
data = {
- "img1_path": "dataset/img1.jpg",
- "img2_path": "dataset/img2.jpg",
+ "img1": "dataset/img1.jpg",
+ "img2": "dataset/img2.jpg",
}
response = self.app.post("/verify", json=data)
assert response.status_code == 200
@@ -83,14 +96,11 @@ def test_represent(self):
def test_represent_encoded(self):
image_path = "dataset/img1.jpg"
with open(image_path, "rb") as image_file:
- encoded_string = "data:image/jpeg;base64," + \
- base64.b64encode(image_file.read()).decode("utf8")
+ encoded_string = "data:image/jpeg;base64," + base64.b64encode(image_file.read()).decode(
+ "utf8"
+ )
- data = {
- "model_name": "Facenet",
- "detector_backend": "mtcnn",
- "img": encoded_string
- }
+ data = {"model_name": "Facenet", "detector_backend": "mtcnn", "img": encoded_string}
response = self.app.post("/represent", json=data)
assert response.status_code == 200
@@ -112,7 +122,7 @@ def test_represent_url(self):
data = {
"model_name": "Facenet",
"detector_backend": "mtcnn",
- "img": "https://github.com/serengil/deepface/blob/master/tests/dataset/couple.jpg?raw=true"
+ "img": "https://github.com/serengil/deepface/blob/master/tests/dataset/couple.jpg?raw=true",
}
response = self.app.post("/represent", json=data)
@@ -155,8 +165,9 @@ def test_analyze(self):
def test_analyze_inputformats(self):
image_path = "dataset/couple.jpg"
with open(image_path, "rb") as image_file:
- encoded_image = "data:image/jpeg;base64," + \
- base64.b64encode(image_file.read()).decode("utf8")
+ encoded_image = "data:image/jpeg;base64," + base64.b64encode(image_file.read()).decode(
+ "utf8"
+ )
image_sources = [
# image path
@@ -164,7 +175,7 @@ def test_analyze_inputformats(self):
# image url
f"https://github.com/serengil/deepface/blob/master/tests/{image_path}?raw=true",
# encoded image
- encoded_image
+ encoded_image,
]
results = []
@@ -189,25 +200,38 @@ def test_analyze_inputformats(self):
assert i.get("dominant_emotion") is not None
assert i.get("dominant_race") is not None
- assert len(results[0]["results"]) == len(results[1]["results"])\
- and len(results[0]["results"]) == len(results[2]["results"])
-
- for i in range(len(results[0]['results'])):
- assert results[0]["results"][i]["dominant_emotion"] == results[1]["results"][i]["dominant_emotion"]\
- and results[0]["results"][i]["dominant_emotion"] == results[2]["results"][i]["dominant_emotion"]
-
- assert results[0]["results"][i]["dominant_gender"] == results[1]["results"][i]["dominant_gender"]\
- and results[0]["results"][i]["dominant_gender"] == results[2]["results"][i]["dominant_gender"]
-
- assert results[0]["results"][i]["dominant_race"] == results[1]["results"][i]["dominant_race"]\
- and results[0]["results"][i]["dominant_race"] == results[2]["results"][i]["dominant_race"]
+ assert len(results[0]["results"]) == len(results[1]["results"]) and len(
+ results[0]["results"]
+ ) == len(results[2]["results"])
+
+ for i in range(len(results[0]["results"])):
+ assert (
+ results[0]["results"][i]["dominant_emotion"]
+ == results[1]["results"][i]["dominant_emotion"]
+ and results[0]["results"][i]["dominant_emotion"]
+ == results[2]["results"][i]["dominant_emotion"]
+ )
+
+ assert (
+ results[0]["results"][i]["dominant_gender"]
+ == results[1]["results"][i]["dominant_gender"]
+ and results[0]["results"][i]["dominant_gender"]
+ == results[2]["results"][i]["dominant_gender"]
+ )
+
+ assert (
+ results[0]["results"][i]["dominant_race"]
+ == results[1]["results"][i]["dominant_race"]
+ and results[0]["results"][i]["dominant_race"]
+ == results[2]["results"][i]["dominant_race"]
+ )
logger.info("✅ different inputs test is done")
def test_invalid_verify(self):
data = {
- "img1_path": "dataset/invalid_1.jpg",
- "img2_path": "dataset/invalid_2.jpg",
+ "img1": "dataset/invalid_1.jpg",
+ "img2": "dataset/invalid_2.jpg",
}
response = self.app.post("/verify", json=data)
assert response.status_code == 400
@@ -227,3 +251,87 @@ def test_invalid_analyze(self):
}
response = self.app.post("/analyze", json=data)
assert response.status_code == 400
+
+ def test_analyze_for_multipart_form_data(self):
+ with open("/tmp/img1.jpg", "rb") as img_file:
+ response = self.app.post(
+ "/analyze",
+ content_type="multipart/form-data",
+ data={
+ "img": (img_file, "test_image.jpg"),
+ "actions": '["age", "gender"]',
+ "detector_backend": "mtcnn",
+ },
+ )
+ assert response.status_code == 200
+ result = response.json
+ assert isinstance(result, dict)
+ assert result.get("age") is not True
+ assert result.get("dominant_gender") is not True
+ logger.info("✅ analyze api for multipart form data test is done")
+
+ def test_verify_for_multipart_form_data(self):
+ with open("/tmp/img1.jpg", "rb") as img1_file:
+ with open("/tmp/img2.jpg", "rb") as img2_file:
+ response = self.app.post(
+ "/verify",
+ content_type="multipart/form-data",
+ data={
+ "img1": (img1_file, "first_image.jpg"),
+ "img2": (img2_file, "second_image.jpg"),
+ "model_name": "Facenet",
+ "detector_backend": "mtcnn",
+ "distance_metric": "euclidean",
+ },
+ )
+ assert response.status_code == 200
+ result = response.json
+ assert isinstance(result, dict)
+ assert result.get("verified") is not None
+ assert result.get("model") == "Facenet"
+ assert result.get("similarity_metric") is not None
+ assert result.get("detector_backend") == "mtcnn"
+ assert result.get("threshold") is not None
+ assert result.get("facial_areas") is not None
+
+ logger.info("✅ verify api for multipart form data test is done")
+
+ def test_represent_for_multipart_form_data(self):
+ with open("/tmp/img1.jpg", "rb") as img_file:
+ response = self.app.post(
+ "/represent",
+ content_type="multipart/form-data",
+ data={
+ "img": (img_file, "first_image.jpg"),
+ "model_name": "Facenet",
+ "detector_backend": "mtcnn",
+ },
+ )
+ assert response.status_code == 200
+ result = response.json
+ assert isinstance(result, dict)
+ logger.info("✅ represent api for multipart form data test is done")
+
+ def test_represent_for_multipart_form_data_and_filepath(self):
+ response = self.app.post(
+ "/represent",
+ content_type="multipart/form-data",
+ data={
+ "img": "/tmp/img1.jpg",
+ "model_name": "Facenet",
+ "detector_backend": "mtcnn",
+ },
+ )
+ assert response.status_code == 200
+ result = response.json
+ assert isinstance(result, dict)
+ logger.info("✅ represent api for multipart form data and file path test is done")
+
+
+def download_test_images(url: str):
+ file_name = url.split("/")[-1]
+ target_file = f"/tmp/{file_name}"
+ if os.path.exists(target_file) is True:
+ return
+
+ gdown.download(url, target_file, quiet=False)