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a b s t r a c t 

The popularity of smart things constructs sensing networks for the Internet of Things (IoT), and promotes 

intelligent decision-makings to support industrial IoT applications, where multi-attribute query process- 

ing is an essential ingredient. Considering the huge number of smart things and large-scale of the net- 

work, traditional query processing mechanisms may not be applicable, since they mostly depend on a 

centralized index tree structure. To remedy this issue, this article proposes a multi-attribute aggregation 

query mechanism in the context of edge computing, where an energy-aware IR-tree is constructed to 

process query processing in single edge networks, while an edge node routing graph is established to 

facilitate query processing for marginal smart things contained in contiguous edge networks. This de- 

centralized and localized strategy has shown its efficiency and applicability of query processing in IoT 

sensing networks. Experimental evaluation results demonstrate that this technique performs better than 

the rivals in reducing the traffic and energy consumption of the network. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the popularity of smart things being ubiquitously de-

ployed, adopting smart things to facilitate industrial applications

becomes a reality nowadays. Intuitively, smart things in the In-

ternet of Things (IoT) include sensors, actuators, and smart em-

bedded devices [1] , and they can provide sensory data to pro-

mote the validity and applicability of a proper decision-making.

Due to the fact that smart things are mostly scarce in their com-

putational, communication, and energy resources, aggregating sen-

sory data of certain IoT smart things, and functional combination

and collaboration [3] , requires to reduce the amount/size of data

packets to be transmitted in the network, and thus, to decrease

the energy consumption. With the swift growth of the number of

smart things being deployed in tremendous fields, traditional cen-

tralized sensory data gathering mechanisms through constructing

routing trees may not be an appropriate strategy, when sensory
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ata of smart things located within a certain sub-region are in-

erested. Instead, sensory data should be gathered, and processed

henever possible, in a localized fashion, while only the result

hould be aggregated and routed to the centre for further ex-

loration. We argue that this strategy is proper, especially when

ensory data, like multimedia data, are large in volume. Due to

his concern, edge computing [2,4] has been proposed in recent

ears as the complement of cloud computing [32] , where indus-

rial IoT applications should be processed in a distributed and lo-

alized fashion as much as possible [5] . It is worth noting that

ensory data query processing is an essential ingredient of typi-

al industrial IoT applications [6] . Considering the functional diver-

ity of smart things and the complexity of potential events to be

tudied, this article aims to explore the query processing, where

arious kinds of smart things contained in a certain sub-region in

n IoT sensing network [7] are necessary to cooperate and collab-

rate for environment monitoring and potential event detection.

aking the assumption that the kind of smart things corresponds

o a certain sensing attribute into consideration, an aggregated

ulti-attribute query processing mechanism is essential to support

ndustrial IoT applications, where edge computing is applied to

romote sensory data processing and aggregation at the network

dge. 
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Traditional techniques have been developed to study the multi-

ttribute query processing. Generally, an index tree, like an R-tree,

s built to manage smart things distributed in a network. Queries

re processed leveraging this index tree, where the result can be

i) a single object, which can satisfy certain spatial and multi-

ttribute constraints [8–12] , or (ii) a set of contiguous objects,

hich can collectively satisfy certain constraints [13–15] . Since ob-

ects may be unevenly distributed in the network, authors adopt

roper mechanisms for handling objects contained in dense and

parse sub-regions. Objects in dense sub-regions should be prone

o be recommended, since they can have more counterparts to be

eplaced when found improper [16] . Note that objects in certain

irections may be more appropriate in certain settings, and thus, a

irection-aware spatial keyword query method is proposed to sat-

sfy direction-aware requirements [17] . Generally, these techniques

onstruct a single index tree to support the query of spatial ob-

ects, where a single or multiple attribute(s) is/are to be examined.

his centralized query processing strategy may not be appropriate

hen an IoT sensing network is large in scale, and things are huge

n quantity. Besides, the network greenness requires to reduce the

raffic and energy consumption of the network. Consequently, sen-

ory data should be processed in a localized and distributed fash-

on when possible. In recent years, techniques have been devel-

ped to enable the search of IoT things, where a single thing is

ostly interested [18,19] . Other techniques explore the network

ommunication topology [20] , an effective collection [21] , manage-

ent [22] , and aggregation [23] of sensory data, a load-balancing

outing [24] , and the prolonging of network lifetime [25,26] . To the

est of our knowledge, a distributed and localized mechanism has

ot been explored extensively to support the multi-attribute query

rocessing in IoT sensing networks. 

To address this challenge, this article proposes a M ulti-attribute

 ggregation Q uery ( MAQ ) processing technique in edge comput-

ng. In this context, the network is divided into sub-regions, where

hese sub-regions, corresponding to the regions of edge networks,

re regulated by respective edge nodes. Generally, an edge net-

ork can have one edge node. Queries are processed firstly at the

etwork edge by edge nodes, and the results are aggregated and

outed to the centre afterwards. It is worth emphasising that smart

hings regulated by contiguous edge nodes may satisfy the require-

ent in a collective fashion, which requires the examination of

ensory data provided by marginal smart things contained in con-

iguous edge networks. Major contributions of this article are sum-

arized as follows: 

• Query processing in single edge networks . An E nergy IR -tree (i.e.,

EIR -tree) is constructed to facilitate the query processing of

smart things contained in a single edge network. Besides the

inverted files specified upon the R-tree for indexing attributes

of smart things, an energy factor is adopted to estimate the

amount of energy consumption with respect to the number and

density of smart things in certain sub-regions. 

• Query processing for marginal smart things in contiguous edge

networks . Considering the amount of sensory data generated

by smart things in the marginal sub-region of contiguous edge

networks, a packet transmission graph is constructed upon

edge nodes, in order to decrease the network traffic. Sensory

data packets are transmitted between edge nodes, only when

these sensory data are examined highly possible to benefit the

query answering. The results with respect to independent and

marginal edge networks are assembled and aggregated for pro-

cessing this query. 

Extensive experiments are conducted to evaluate the efficiency

nd applicability of our technique. The results demonstrate that

his technique performs better than the rivals in reducing the net-

ork traffic and energy consumption of smart things. 
The rest of this article is organized as follows. Section 2 in-

roduces relevant concepts and the energy model, which are used

n our query. Section 3 introduces the query processing which is

pplied to single edge networks. Section 4 presents sensory data

outing mechanism in edge nodes and the query mechanism in

arginal edge networks. Section 5 shows the implementation and

valuates the approach developed in this article. Section 6 reviews

nd discusses related techniques. Finally, Section 7 concludes this

ork. 

. Preliminaries: concepts and energy model 

This section presents relevant concepts and the energy con-

umption model. 

.1. Concept definition 

In edge computing, a network region can be represented by dis-

oint edge networks, where an edge node is responsible for man-

ging smart things in the respective edge network. Edge nodes can

e (i) a super smart thing, which can have more computational,

ommunication, and energy resources than ordinary smart things,

r (ii) an ordinary smart thing. In this setting, smart things should

ake the role of edge nodes in a rotation manner for instance, to

nsure the overall energy consumption of smart things as balanced

omehow at the network level as possible. A marginal edge net-

ork of sensory data routing for contiguous edge nodes is defined

s follows: 

Def. 1. Edge Node Data Routing Network . An edge node data

outing network is defined as a tuple g = ( Dgn, Rlt, Cst ), where: 

• Dgn is the set of edge nodes contained in marginal edge net-

works. 

• Rlt is the set of sensory data routing relationships between con-

tiguous edge nodes. 

• Cst is the set of sensory data routing cost for contiguous edge

nodes, corresponding to the weights specified on the edges in

Rlt . 

In marginal edge networks, by means of edge computing, g.Dgn

s responsible for data interaction transmission, which is only the

esult of localization processing. An edge node data routing net-

ork is represented in terms of a weighted directed graph, where

he vertexes are edge nodes and the weights on the directed edges

epresent sensory data routing cost for contiguous edge nodes. The

dge node routing graph is stored in the form of an adjacency ma-

rix, which specifies the sensory data forwarding strategy between

dge nodes. 

Considering the diversity of smart things and the complexity of

pplications to be supported, various kinds of attributes are sensed

y smart things. Without loss of generality and for simplicity, in

his article we assume that a smart thing is relevant to a single

ind of attribute. A query can be defined as follows: 

Def. 2. Multi-Attribute Aggregation Query . A multi-attribute

ggregation query is defined as a tuple q = ( Rgn, Kd, Cst ), where: 

• Rgn = ( x, y, wdt, hgt ) is a regular region of q , such that x and

y are the top-left x - or y -coordinate, and wdt and hgt are the

width and height of query region. 

• Kd = { k 1 , k 2 , . . . , k m 

} is a set of attributes that are interested

by q . 

• Cst is a set of constraints defined upon Kd to specify the condi-

tions that should be satisfied by neighboring smart things in a

collective fashion. 

Generally, q.Rgn is a rectangle and smart things are deployed in

 two-dimensional network space. q.Rgn may be contained by an

dge network, or by multiple contiguous edge networks. A sample

NC
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Fig. 1. A sample multi-attribute aggregation query network. 
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multi-attribute aggregation query network is presented as follows

to illustrate the relationship between a multi-attribute aggregation

query and the edge node data routing network: 

A multi-attribute aggregation query q is specified in terms of

three attributes hmt, tmp and prs , representing humidity, temper-

ature and pressure, respectively. In Fig. 1 (a), four edge networks

(e.g., Rgn 0 , Rgn 1 , Rgn 2 , Rgn 3 ) is displayed and q.Rgn are determined.

Besides, the boundary range of data communication between edge

networks is identified. In Fig. 1 (b), edge networks are represented

in terms of a graph, where vertexes are edge nodes in the corre-

sponding edge networks (e.g., v 0 , v 1 , v 2 , v 3 ). Note that edge nodes

are responsible for the propagation and localization of the query.

Prior to data transmission, neighboring edge nodes send control

packets to determine whether sensory data exchanges in-between

are necessary or not. This strategy should decrease sensory data

packets forwarding between neighboring edge nodes and thus, it

can reduce the energy consumption of the query upon marginal

edge networks. Subsequently, the edge node data routing net-

work is built and represented as an adjacency matrix, as shown in

Fig. 1 (c), and (d), respectively, where the value is either 0 or 1. Note

that 0 represents no data packets to be sent between edge nodes,

1 represents data packet to be sent between edge nodes. A query

is typically injected into the network from an edge node, and this

query should be processed by a single edge node, or through the

collaboration of multiple edge nodes to achieve the multi-attribute

aggregation in single edge network and marginal edge network. 

2.2. Energy model 

This article applies the first-order radio model [27] , which has

been widely adopted in wireless sensor networks (WSNs), to cal-

culate the energy consumption between smart things, since sen-

sor nodes in WSNs are indeed a typical kind of smart things, and
SNs can be regarded as a special type of IoT sensing networks.

arameters of this energy model are presented in Table 1 . 

Specifically, the energy consumption to transmit a k bit data

acket with a distance d are denoted as E Tx ( k, d ), and the energy

onsumption to receive a k bit data packet are denoted as E Rx ( k ),

hich can be calculated as follows: 

 T x ( k, d ) = E elec × k + εamp × k × d n (1)

 Rx (k ) = E elec × k (2)

Note that E elec is the constant of energy consumption for trans-

ission and receiver electronics, and εamp is the constant of trans-

ission amplifier. In the course of transmitting a packet of k bits

rom one thing to another, the energy consumption E ij ( k ) is calcu-

ated as follows: 

 i j (k ) = E T x ( k, d ) + E Rx (k ) (3)

here the parameter d represents the distance between one smart

hing nd i and another nd j . E ij ( k ) is assumed the same as E ji ( k )

or smart things and edge nodes. The parameter n of the atten-

ation index for packet transmission depends on the surrounding

nvironment. Generally, when smart things are barrier-free for for-

arding data packets, n is set to 2. Otherwise, n is set to a value

etween 3 to 5. 

. Single edge network query processing 

Leveraging an IR-tree [10] , this section constructs an E nergy IR -

ree ( EIR -tree) to support the multi-attribute query processing in a

ingle edge network. 

.1. EIR-Tree Construction 

Before presenting the construction of our EIR -tree, we briefly

ntroduce the IR-tree as the background. Generally, a node in an

NC
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Table 1 

Parameters in the energy model. 

Name Description 

E elec Energy consumption constant of the transmit and receiver electronics. 

εamp Energy consumption constant of the transmit amplifier. 

k The number of bits in one packet. 

d The distance of transmission. 

n The attenuation index of transmission. 

E Tx (k,d) The energy consumption to transmit a k bit packet with a distance d . 

E Rx (k) The energy consumption to receive a k bit packet. 

E ij (k) Energy consumption for transmitting a k bit packet from a smart thing SmT i to a neighboring smart thing SmT j . 

Fig. 2. Query processing of the attribute k 2 upon the EIR -tree. 
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Table 2 

Sample inverted file for the EIR -tree as shown in 

Fig. 2 . 

IF_Node k 1 k 2 k 3 

R1 (1, o 1 ) null (1, o 2 ) 

R2 (1, o 3 ) (1, o 5 ) (1, o 4 ) 

R3 (1, o 7 ) (1, o 6 ) (1, o 8 ) 

R4 null (1, o 10 ) (1, o 9 ) 

R5 (2, R1, R2 ) (1, R2 ) (2, R1, R2 ) 

R6 (1, R3 ) (2, R3, R4 ) (2, R3, R4 ) 

Root (3, R5, R6 ) (3, R5, R6 ) (4, R5, R6 ) 
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R-tree can be represented as a tuple ( id, mbr, O ), where (i) id is an

dentifier of this node, (ii) mbr is the M inimum B oundary R egion

 MBR ) covered by this node, and (iii) O refers to the set of objects

ontained in mbr . A node has a pointer to an inverted file, and at-

ributes sensed by objects in O are recorded in this inverted file.

everaging the IR-tree structure, an EIR -tree is constructed as pre-

ented by Algorithm 1 , where the energy consumed for sensory

ata packets transmission between smart things and edge nodes is

onsidered. 

lgorithm 1 EIRTreeConstruction. 

equire: 

- MBR set : the set of leaf nodes in an IR-tree 

nsure: 

- tr : the root node of constructed EIR -tree 

1: leaf nodes ← nodes in MBR set 

2: num ← the number of nodes in MBR set 

3: while num > 1 do 

4: for nd i ∈ MBR set do 

5: E( k ) ← calculated by Eq. (3) 

6: end for 

7: tn ← nd 1 and nd 2 with the biggest E( k ) in the MBR set 

8: tn.mbr ← covered by nd 1 and nd 2 
9: tn.O ← contained by nd 1 .O and nd 2 .O 

10: M BR set ← M BR set - { nd 1 , nd 2 } 

11: M BR set ← M BR set ∪ { tn } 

12: num ← the number of nodes in MBR set 

13: end while 

14: tr ← MBR set 

As presented by Algorithm 1 , based on the IR-tree structure,

e obtain the mbr collection that covers smart things. These smart

hings in this collection serve as the leaf nodes of our EIR -tree (line

). For instance, in Fig. 2 (a), for a single edge network, ten smart

hings (e.g., o 1 , o 2 , . . . , o 10 ) are displayed. Meanwhile, according to

he spatial division of [10] , leaf nodes (e.g., R 1 , R 2 , R 3 and R 4 ) are

dentified. In addition, we deploy three attributes denoted as k 1 ,

 2 and k 3 , which are represented in terms of triangle, square and

ircular, respectively. An inverted file is appended to represent the

ttributes sensed by tree nodes (leaf nodes and non-leaf nodes)
denoted k ), the frequency of k , and the list of tree nodes or smart

hings which have the attribute k , where each tree node contain-

ng smart things as an item in the inverted file are is described by

able 2 (e.g., R 1 , R 2 , R 3 and R 4 ). 

In this article, high energy consumption means that the inten-

ity of data packets exchange is relatively strong. When construct-

ng an index tree, energy consumption is considered as an essen-

ial factor, and a fusion strategy of energy consumption is adopted.

pecifically, given a set of tree nodes, we calculate the energy con-

umption of each tree node in the collection MBR set (lines 4–6).

ere, the E ( k ) represents the energy consumption of collecting sen-

ory data in each tree node, which is calculated by Eq. (3) (line 5).

For instance, the weight of the tree node R 1 , is computed as

ollows: 

 R 1 (k ) = 2 × E elec × k + εamp × k × d n o 1 ,o 2 
(4)

Note that a certain tree node in MBR set has a relatively high en-

rgy consumption, which means that the intensity of sensory data

xchange is large. Such tree nodes are selected as a merged new

ree node according to their energy consumption. At each merg-

ng step, two tree nodes with the biggest weight are selected to be

erged (lines 7–11). The EIR -tree is constructed through merging

ree nodes from bottom to top, until the root node has been es-

ablished (line 14). An example of constructed EIR -tree is shown in

ig. 2 (b). 

.2. Query processing in single edge networks 

In general, the single edge network query processing is per-

ormed by traversing EIR -tree, and the inverted file is used to check

hether there is an attribute of interest in the edge network. By

liminating smart things that are not in the scope of interest for

he query as early and prompt as possible, the query can avoid

rocessing non-target things. 

Leveraging the EIR -tree, Algorithm 2 presents the procedure of

uerying smart things with a set of attributes. In the similar fash-

on, the query q in each single edge network is executed. Moreover,

he relevant definition of the involved parameters in the query is

resented in Section 2.1 . In general, the query starts at the root

ode of EIR -tree (line 2). When the inverted file of one tree node

n contains certain attribute, the query is propagated to the tree

ode tn ’s children (lines 3–7). This procedure iterates until (i) the
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inverted file of a non-leaf node does not contain any attribute, or

(ii) the leaf node is reached. So far, we obtain a set that consists of

collections, where each collection is associated with an attribute

(lines 8–9). Consequently, via iteration, the result set that satisfies

the query specification is constructed (lines 1–12). 

Algorithm 2 IndexQuery. 

Require: 

- q : the tuple ( Rgn , Kd, Cst) 

- tn : the tree node to launch the query, and initially set to the

root node of EIR -tree 

Ensure: 

- Rst set : a set of collections, where each collection is associated

with an attribute 

1: O set ← ∅ 
2: if tn � = NULL then 

3: if ∃ attribute k i ∈ Kd in tn .inverted file then 

4: if tn .hasChild() then 

5: IndexQuery( q , tn .leftChild) 

6: IndexQuery( q , tn .rightChild) 

7: else 

8: O set ← t n .getFilterObject( Cst ) 

9: Rst set ← Rst set ∪ O set 

10: end if 

11: end if 

12: end if 

For instance, smart things with the attribute of k 2 are to be re-

trieved. Based on the example of EIR -tree as shown in Fig. 2 (b),

the root node contains the attribute k 2 from Table 2 , and the child

nodes R 5 and R 6 contain k 2 as well. Therefore, the query is propa-

gated to the non-leaf node R 5 and R 6 . We also note that R 2 , a child

of R 5 , contains k 2 , while another child R 1 does not. At the same

time, R 3 and R 4 , the children of R 6 , contain k 2 . As the result, the

query is propagated to the leaf nodes R 2 , R 3 , and R 4 . Specifically,

from Table 2 , o 5 , o 6 and o 10 correspond to the smart things for R 2 ,

R 3 and R 4 , respectively, contain attribute k 2 . 

4. Marginal edge network query processing 

To facilitate query processing leveraging smart things located in

the marginal sub-regions of contiguous edge networks, this section

constructs a packet transmission graph for specifying the sensory

data forwarding strategy between edge nodes, and sensory data

are gathered and routed along the paths in this graph for examin-

ing the fact that whether queries can be answered by these smart

things in marginal edge networks or not. 

4.1. Sensory data routing cost calculation for contiguous edge nodes 

A parameter is used to denote the percentage of boundary dis-

tance λ, which represents a range about the ratio of the distance

between a smart thing and corresponding edge node to the length

of the current region, to specify the number of smart things which

require to transmit sensory data transmission. Generally, given the

coordinates of a smart thing P 0 ( x 0 , y 0 ) and an edge node P 1 ( x 1 ,

y 1 ), they have the following relationship: 

JS = 

√ 

(x 0 − x 1 ) 2 + (y 0 − y 1 ) 2 ÷ rSide (5)

where rSide refers to the size of the region in which the edge node

is located. JS is used to judge the spatial scope of transmitted data.

If the value JS is not more than the specified standard parameter

λ, this means that the smart thing P 0 is within the scope of inter-

active data. 
The presentation of Eq. (5) is to specify the number of smart

hings that need to transmit their sensory data. Defining bound-

ry data transmission regulations, we can obtain the transmission

ata at the boundary which is delivered to the corresponding edge

ode. Edge nodes are responsible for sensory data transmission.

hereafter, we can use Eq. (3) to calculate the communication cost

etween edge nodes. 

Algorithm 3 presents the cost calculation procedure for trans-

itting sensory data packets between edge nodes. Based on query

esults of single edge networks, we calculate the energy consump-

ion of communication between edge nodes. For each single edge

etwork, we obtain the result set of its region by Algorithm 2 .

hen a result set in a certain single edge network exists, the

oundary data of this region is performed (lines 4–15). Based on

his result set, we acquire the negotiated transmission smart thing

ata from an edge node to its neighbors within the specified pa-

ameter of percentage of boundary distance λ and JS (lines 10–12).

he amount of data transmission between edge nodes is identi-

ed by localization processing, which consists of collections of data

mart thing identified by each attribute (line 14). The distance be-

ween two edge nodes gn i and gn j is defined as a 2-d Euclidean

istance (line 18). Finally, the cost of sensory data transmission be-

ween edge nodes is calculated by Eq. (3) (line 19), and the result

f sensory data routing cost for contiguous edge nodes is stored in

he form of an adjacency matrix (line 20). 

lgorithm 3 CostCalculation. 

equire: 

- λ : a parameter of percentage for boundary distance 

- num : the number of edge nodes 

- Rst sets : sets consists of the result set in each edge node’s re-

gion 

nsure: 

- wgt mtx : a weighted adjacency matrix, whose values repre-

sent the cost of sensory data communication energy between

contiguous edge nodes 

1: gnData mtx ← ∅ 
2: for i = 0 ; i < num ; i + + do 

3: for j = 0 ; j < num ; j + + do 

4: if i � = j and gn i and gn j are contiguous then 

5: gnRst set ← ∅ 
6: while each Rst set j ⊂ Rst sets � = NULL do 

7: T emp set ← get one attribute set from Rst set j 

8: O set ← ∅ 
9: while T emp set � = NULL do 

10: if JS ≤ λ then 

11: O set ← O set ∪ { o} 

12: end if 

13: end while 

14: gnRst set ← gnRst set ∪ O set 

15: end while 

16: gnData mtx [ i ][ j] ← gnRst set 

17: k ← Calculate the transmission data of gnRst set 

18: d ← Euclidean distance of gn i and gn j 
19: E i j ( k ) ← calculated by Eq. (3) 

0: wgt mtx [ i ][ j] ← E i j ( k ) 

21: end if 

2: end for 

3: end for 

.2. Edge node routing graph construction 

Considering the amount of sensory data generated by smart

hings in the marginal sub-region, a packet transmission graph is
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Algorithm 4 MarginalRegionQuery. 

Require: 

- drgh mtx : an edge node routing graph 

Ensure: 

- CrsRst set : a set of numerous groups, where each group on the 

whole satisfies the query 

1: Z ← 0; num ← drgh mtx .row 

2: for i = 0 ; i < num ; i + + do 

3: for j = 0 ; j < num ; j + + do 

4: if d rgh mtx [ i ][ j ] � = 0 then 

5: f lag ← check the data demand of neighbor node gn j 
6: if f lag then 

7: gn i transmit data to gn j 
8: Z ← calculated by Eq. (6) 

9: CrsRst set ← get enumeration groups 

10: end if 

11: end if 

12: end for 

13: end for 

4
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onstructed upon edge nodes, in order to decrease the network

raffic. The edge node data routing can be modeled as an optimiza-

ion problem, where the energy consumption is considered as the

ecision factor: 

 = �n 
i =1 �

n 
j=1 w i j × c i j (6) 

here: 

 i j = 

{
0 otherwise 

1 (w ji � = 0 and w i j ≤ w ji ) 
(7) 

here w ij (non-zero value) represents the energy consumption of

n edge node to another edge node, and c ij is calculated depending

n the comparison of the energy values between two edge nodes.

y objective function, we can achieve a minimum of energy con-

umption for data communication within a reasonably acceptable

ange. 

Based on this function, a two-step strategy for graph construc-

ion is presented as follows: (i) the filter step is to filter out sen-

ory data packets that do not contribute to the query results. Some

dges are filtered by heuristic greedy algorithm. According to the

esults of Algorithm 3 , by traversing neighbor edge nodes in turn,

e reserve the directed edge with the smallest energy value, so

hat the total transmitted energy is minimized in the edge node

outing graph construction. For example, the energy consumption

rom an edge node gn i to a contiguous edge node gn j is w 1 , and the

nergy consumption from gn j to gn i is w 2 ( w 1 ≤ w 2 ). We naturally

eserve the edge from gn i to gn j , and remove the edge from gn j 
o gn i . After this step of filtering, we have preserved the one-way

ransmission edge between the edge nodes. Considering the situa-

ion that a loop exists in the process of sensory data transmission,

e propose (ii) the refinement step is to avoid the repeated trans-

ission of data packets. It is worth noting that the graph we built

s used to integrate the results of the query between the regions,

he ring is not allowed to exist. However, in the filter step, we con-

ider that there may be one ring in the filtered graph. Hence, we

dopt a strategy as a refinement step during the construction of

he edge node routing graph, which detects whether there is a ring

n current graph. If there is a ring, we change the flow of data be-

ween the newly added edges. Ultimately, a unidirectional acyclic

outing graph is constructed accordingly to represent edge node

outing graph. 

.3. Marginal edge network query mechanism 

Sensory data packets are transmitted between edge nodes,

hen these data are examined highly possible to benefit query an-

wering. A pruning method is adopted to accelerate the query data

ransmission progress. 

As presented by Algorithm 4 , we achieve the decrease of energy

onsumption. We adopt control package pruning strategy which

s designed as reducing packet transmission. As the input for an

dge node routing graph, we send a control packet to determine

hether gn i needs to send data to gn j (line 5). If the neighbor edge

ode needs the data, current edge node sends data (line 7). Oth-

rwise, the procedure will detect the next edge node (lines 2–13).

ased on this pruning strategy, we can calculate the optimized en-

rgy consumption Z (line 8) by Eq. (6) , which is greatly beneficial

o improve the processing performance. Note that the enumera-

ion procedure applies only to some situations where the number

f possible solutions is not too large. Given the limited number

f query attributes, we can take an enumeration strategy to get

n enumerated set of query between regions (line 9). Meanwhile,

he time complexity of the enumeration algorithm depends on the

umber of loop nesting, which is the number of query attribute

eywords. 
.4. Query processing 

A query, which combines the queries for single edge networks

nd marginal edge networks, is handled. The combinations of

mart things, which can satisfy certain queries in a collective fash-

on, can be retrieved and evaluated. Generally, the more cohesive

he smart things in a collection are, the more appropriate the col-

ection of smart things is with respect to the specification of cer-

ain queries. The clustering technique involving the Euclidean dis-

ance is adopted for evaluating the cohesive of smart things in a

ollection. The objective function is presented as followed: 

C(g) = 

K ∑ 

i =1 

dst(g c , o i ) 
2 (o i ∈ g) (8)

here K denotes the number of smart things in a collection, g c 
enotes the geographical centre of these smart things in this col-

ection, and dst denotes the Euclidean distance between the smart

hing and the geographical centre of the collection. 

The procedure of query processing is presented at Algorithm 5 .

uery processing in single edge networks is handled as presented

y Algorithm 2 (lines 2–11). Besides, an enumeration combination

ethod is adopted for the result combination of single edge net-

orks into collections (line 5). Furthermore, Eq. (8) is adopted to

alculate the score for each collection in all single edge network

esult sets (lines 6–10). In addition, the query of the marginal

dge network is performed by Algorithm 4 (line 12), where the

ame collection scoring rules is adopted for the data processing

f marginal edge network (lines 13–17). A queue is used to store

lobal query result collections, where each collection is arranged

n the descending order (lines 9,16). 

. Implementation and evaluation 

The prototype has been implemented in a Java program. Exper-

ments are conducted upon a desktop with an Intel i5-6500 CPU at

.20GHz, 8-GB of memory and a 64-bit Windows 10 system. In the

ollowing we introduce experiment settings and discuss evaluation

esults. 

.1. Experiment settings 

Table 3 presents the parameter settings of our experiments.

ithout loss of generality, a query is assumed to be relevant with

 to 4 kinds of attributes, since queries are typically not very
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Table 3 

Parameters settings in the experiments. 

Parameters name Value 

Network query region (m 

2 ) 200 × 200 

Number of smart things 200 to 1000 

Skewness degree 10% to 50% 

Kinds of queried attributes 1 to 4 

Percentage of boundary distance 40% to 80% 

Number of bits in one pocket (k) 1 

Attenuation index of transmission (n) 2 

Energy consumption constants of transmit and receiver electronics (E elec ) 50 nJ/bit 

Energy consumption constant for transmit amplifier ( εamp ) 0.1 nJ /( bit × m 

2 ) 

Algorithm 5 QueryProcessing. 

Require: 

- q : a tuple ( Rgn , Kd , Cstr) 

- tr set : a set consists of the root nodes for each region 

- drgh mtx : an edge node routing graph 

Ensure: 

- queue : a max-priority queue, where it is ranked according to 

Eq. (8) 

1: IntrGRst set ← ∅ ; ExtrGRst set ← ∅ ; n ← tr set .size 

2: for each t r i ⊂ t r set , where i = 0 , 1 , …, n do 

3: IntrRst set ← ∅ 
4: IntrRst set ← IndexQuery( q , tr i ) 

5: IntrGRst set ← get enumeration groups from IntrRst set 

6: while IntrGRst set � = NULL do 

7: g ← extract certain group from IntrGRst set 

8: RC(g) ← calculated by Eq. (8) 

9: queue .Enqueue( g, RC(g) ) 

10: end while 

11: end for 

12: Extr GRst set ← MarginalRegionQuery( dr gh mtx ) 

13: while ExtrGRst set � = NULL do 

14: g ← extract certain group from ExtrGRst set 

15: RC(g) ← calculated by Eq. (8) 

16: queue .Enqueue( g, RC(g) ) 

17: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Energy consumption for various percentages of boundary distance and num- 

bers of smart things. 
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complex for the majority of domain applications. Besides, when

the kinds of attributes that queries interest are large in number,

queries should hardly be clearly explained and easily understood.

The number of smart things ranges from 200 to 1000 with an in-

crement of 200, and a smart thing is randomly assigned with a

sensing attribute. Due to the fact that smart things may be dis-

tributed unevenly in the network, a skewness degree (denoted sd )

is adopted to quantify this character. Intuitively, sd is calculated in

terms of ( dn - sn ) ÷ N , where (i) dn and sn refer to the number

of smart things deployed in dense and sparse sub-regions, respec-

tively, and (ii) N is the sum of dn and sn [28] . 

As far as we know, this is the first technique to explore the

distributed and localized query processing in the context of edge

computing, where an IoT sensing network is composed by edge

networks. To evaluate the efficiency of our technique, we have

compared our technique with the LEACH routing protocol [29] ,

where a routing tree is constructed to aggregate and forward sen-

sory data packets to the sink. Note that in our experiments, the

smart thing located in the network centre is selected to serve as

the sink. Without loss of generality, the sink node is assumed to

have unlimited energy. Therefore, the energy consumed for receiv-

ing data packets is specified as follows: 

E i j (k ) = 

{
E elec × k + εamp × k × d n if j is SN 

2 × E elec + εamp × k × d n otherwise 
(9)
The results of experimental evaluation are presented and com-

ared as follows, where various number of attributes, various

kewness degrees, and different percentage of smart things de-

loyed in the marginal region of edge networks are the factors to

e considered in experiments. To reduce the randomness caused

y the environmental configuration, experiments with a certain pa-

ameter setting is conducted ten times, and an average value is

dopted as the final result as shown in the following figures. 

.2. Evaluation results 

This section presents and discusses the experimental results

bout the performance of query processing. 

.2.1. Various percentages of boundary distance and numbers of 

mart things 

Fig. 3 shows the comparison of energy consumption when the

ercentage of boundary distance ranges from 40% to 80% with an

ncrement of 10%. The number of smart things varies from 200 to

0 0 0, with the 40% skewness degree. The number of attributes is

et to 4 in query specification. Generally, the percentage of bound-

ry distance specifies the size of marginal regions in contiguous

dge networks, which determines the number of smart things in-

olved in marginal edge networks query processing. This figure

hows that the energy consumption increases slightly, rather than

ignificantly, when the percentage of boundary distance changes

rom a relatively small value to a quite large one, since the en-

rgy is mostly consumed by forwarding sensory data packets along

he edge node routing graph for gathering and aggregating data in

ur experiments. However, in the case when there are few sensory

ata packets are to be transmitted, the energy consumption should

e impacted largely by the percentage of boundary distance. 
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Fig. 4. Energy consumption for MAQ and LEACH when various numbers of smart 

things are deployed in the network. 
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Fig. 5. Energy consumption for MAQ and LEACH when various kinds of attributes 

are specified in query specification. 

Fig. 6. Energy consumption for MAQ and LEACH when smart things are distributed 

in the network with various skewness degrees. 
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.2.2. Comparison for MAQ and LEACH considering various numbers 

f smart things 

Fig. 4 shows the energy consumption for our MAQ and LEACH ,

hen the numbers of smart things is set from 200 to 10,0 0 0 with

n increment of 200. The percentage of boundary distance is set

o 80%, and the other parameters are set to the same values as

hose in Fig. 3 , which is convenient to eliminate the influence of

ther factors and interference on the experimental results. This

gure shows that LEACH requires more energy consumption than

AQ . In fact, LEACH routes sensory data of smart things with at-

ributes specified by query specifications to the centre for central-

zed processing. On the other hand, MAQ gathers sensory data of

mart things in edge networks, processes these data in a local-

zed fashion, and routes the result of certain edge networks to the

entre. Note that sensory data of marginal smart things contained

n contiguous edge networks are required to be route along the

outing graph. However, the amount is much smaller than that of

he packets to be transmitted in LEACH . This figure also shows that

he increase of energy consumption for LEACH is much larger than

hat for MAQ . In fact, when smart things are relatively larger in

umber, the amount of sensory data that are processed locally by

dge networks should be larger in percentage, and hence, more en-

rgy should be reduced by MAQ than LEACH . This result indicates

hat MAQ can perform better than LEACH in decreasing energy con-

umption when the network is relatively large in the number of

mart things. 

.2.3. Comparison for MAQ and LEACH considering various kinds of 

ueried attributes 

Fig. 5 shows the energy consumption for MAQ and LEACH , when

he number of attributes is set to 2, 3 or 4 in query specification.

he number of smart things is set to 10 0 0, and other parameters

re set to the same values as those in Fig. 4 . This figure shows

hat the energy consumption is largely increased in a linear man-

er with respect to the increasing of the attribute number. This

esult is reasonable since the number of attributes is proportional

o the number of smart things to be explored. On the other hand,

he increasing of energy consumption is much smaller in scale for

ur MAQ than LEACH , since the majority of the query processing

ask is conducted locally in edge networks, and we argue that this

trategy should decrease the network traffic and energy consump-

ion significantly. 

.2.4. Comparison for MAQ and LEACH considering various skewness 

egrees 

Fig. 6 shows the energy consumption for MAQ and LEACH , when

he skewness degree is set from 10% to 50% with an increment
f 20%. Other parameters are set to the same values as those in

ig. 5 . This figure shows that LEACH consumes much more energy

han MAQ , due to the same reason as presented in Fig. 4 . Besides,

he energy consumption is relatively smaller when the skewness

egree is larger (i.e., 50%). In fact, head nodes in LEACH , as well

s edge nodes in MAQ , are mostly chosen from sensor nodes (or

mart things) which are located within dense sub-regions. When

he skewness degree is large, the majority of sensory data gather-

ng and routing tasks should be conducted in dense sub-regions,

nd this suggests that the transmission distance of most packets

hould be shorter. On the other hand, when the skewness degree

s small, which means that smart things are distributed in a rel-

tively even manner in the network, sensory data packets should

e longer in their average transmission distance. Generally, MAQ

s more energy efficient when smart things are distributed in a

kewed fashion. 

. Related works and comparison 

Along with the huge and increasing number of smart things de-

loyed in IoT sensing networks, multi-attribute query processing is

onsidered as fundamental to support domain applications. Tradi-

ional techniques have been developed to support the query pro-

essing in single edge networks. In [15] , authors explore the prob-

em of retrieving a group of spatial web objects. The group’s key-

ords require to cover the query’s keywords, and the objects in the

roup should be geographically as close as possible. A cost function

s defined to evaluate the merits of the results, which is composed

f two kinds of semantic types. One takes into account the sum of
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the distance between each object in the group and the query lo-

cation, which may fit with applications where the objects need to

meet at the query location, such as incident handling or the find-

ing of project partners. Another type is the maximal distance be-

tween any object in the group and the query location, which may

be understood as the situation where tourists plan to visit several

points of interest. This query for the object groups inspires the re-

search presented in this article. Note that a centralized index tree

is constructed to support the query of object groups. This strategy

should be applied to single edge networks, but may not be applica-

ble to large-scale IoT sensing networks composed of multiple edge

networks. 

In [14] , authors present an R-tree-based indexing technique that

stores compact histograms in node entries, while preserving rea-

sonable node fanout. Leveraging the index and histogram, a prun-

ing strategy is implemented to prune the search space and guide

the search while considering the factors including group diameter,

distance, and relevance to the query. Generally, this histogram for

pruning the search space is a promising mechanism for supporting

query processing. Hence, an improved pruning strategy is proposed

in [16] . Since objects may be unevenly distributed in the network,

authors adopt proper mechanisms for handling objects contained

in dense and sparse sub-regions. Assuming there are two sets of

groups that can satisfy the query, objects in one group is in a

hotspot region, and objects in the other group is in a sparse region.

When the distance cost is almost the same, objects in dense sub-

regions should be prone to be recommended, since they can have

more counterparts to be replaced when found improper. Therefore,

dealing with spatial keyword queries, the region density is also a

factor to be considered. Authors propose a method to calculate the

lower bound of the density cost of a node, and to prune nodes

with the lower bound of density cost than the past minimum cost.

To manage objects in a network, an index tree like an R-tree

is usually constructed to support spatial and multi-attribute query

processing. An R-tree index is proposed in [30] to handle spatial

keyword queries. In computer aided design and geo-data applica-

tions, the mechanism about the search of massive information in

spatial databases is fundamental. The processing of non-zero-sized

data in a multidimensional space can hardly be solved with the

traditional indexing method. Therefore, authors propose an R-tree

to facilitate regular access methods in relational databases. Gen-

erally, this technique considers the spatial query processing, while

the text relevancy is not the focus. To remedy this issue, an in-

dex tree integrating the inverted file for text retrieval and R-tree

for spatial proximity query is developed [10] , such that the spatial

and text relevance is considered with respect to query specifica-

tion. Besides, a range region query is proposed in [31] , in order

to retrieve objects with keywords in a certain range. A direction-

aware spatial keyword query method [17] is proposed to inherently

support object query within certain directions. 

Note that searching strategy for smart things is popular nowa-

days. In [33] , the concept of multi-region attribute aggregation

query over sensors in skewness distribution is presented. Authors

establish an energy-efficient spatial index tree to resolve the multi-

region attribute aggregation query. Generally, this technique con-

structs an index tree to support query in all region, which is quite

different from the aggregation query proposed in our technique.

The processing of the multi-region attribute aggregation query in-

spires us to develop the marginal edge network query processing.

With the popularity of big data applications [34,35] , information

is no longer stored in a single region. The distributed technology

is increasingly used. In [36] , interoperability is assumed as a chal-

lenge in implementing IoT applications.A distributed Internet-like

architecture for things is proposed for the process of large-scale

expansion of IoT. In general, this proposed distributed architecture

helps intelligent decision-making and enables automated service
reation. It is worth noting that some service matching and allo-

ation strategies [38–40] are also beneficial for searching objects.

n [38] , considering the explosion of Internet of things, big data

nd fog computing in cloud computing environment, authors ex-

lore the scheduling strategy of cloud and fog resources. This ex-

loration has an enlightening effect on the collaboration of mul-

iple edge nodes in the edge computing environment. Other tech-

iques explore the network communication topology [20] , an ef-

ective collection [21] , management [22] , and aggregation [23] of

ensory data, a load-balancing routing [24] , and the prolonging of

etwork lifetime [25,26] , in the context of IoT. In [37] , in order to

olve the mobile environment, the data source can not be accessed

ue to the partition of the network. The author proposes C ontent

 entric N etworks ( CCN ) use in-network caching. In general, based

n the reliable strategies in networks of [37] , this work provides

eliable data transmission and routing mechanism for us to han-

le queries in the marginal edge network. However, sensory data

usion in marginal edge network and the query processing mecha-

ism in single edge networks are not explored. 

To summarize, current techniques construct a centralized in-

ex tree to support spatial and multi-attribute objects query pro-

essing. They are inspiring for us when developing our technique,

owever we argue that they should not be efficient when the net-

ork is large in scale. Due to this consideration, we propose a

istributed and localized query processing mechanism to support

ulti-attribute query processing in edge computing. 

. Conclusions 

With the swift growth of smart things being deployed in indus-

rial environments, sensory data gathering and aggregation is fun-

amental to support IoT applications. Considering the large-scale of

he network, the traditional centralized mechanism may not be ef-

cient and applicable when considering the factors including net-

ork traffic and energy consumption, edge computing is adopted

o promote the distributed and localized query processing. In this

ontext, this article proposes a multi-attribute aggregation query

echanism in edge computing to support large-scale industrial IoT

pplications. Specifically, an energy-aware IR-tree is constructed to

rocess query processing in certain edge networks, and an edge

ode routing graph is established for aggregating and forwarding

ensory data packets between edge nodes, in order to facilitate

uery processing for marginal smart things in contiguous edge net-

orks. Extensive experiments have been conducted to evaluate the

fficiency and applicability of our technique. The results demon-

trate that this technique performs better than the rivals in re-

ucing the network traffic and energy consumption. This article

etrieves the set of sensory data relevant to the query specifica-

ion. This strategy requires to examine all IoT nodes in the query

ub-region. In fact, when IoT nodes are densely deployed in the

etwork, partial IoT nodes may reflect the fact with certain accu-

acy and may satisfy the requirement of domain application. Con-

equently, discovering partial IoT nodes in the query sub-region for

atisfying certain requirements is our future research challenge. 
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