/** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD+Patents license found in the * LICENSE file in the root directory of this source tree. */ // -*- c++ -*- #include "ProductQuantizer.h" #include <cstddef> #include <cstring> #include <cstdio> #include <algorithm> #include "FaissAssert.h" #include "VectorTransform.h" #include "IndexFlat.h" #include "utils.h" extern "C" { /* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */ int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER * n, FINTEGER *k, const float *alpha, const float *a, FINTEGER *lda, const float *b, FINTEGER * ldb, float *beta, float *c, FINTEGER *ldc); } namespace faiss { /* compute an estimator using look-up tables for typical values of M */ template <typename CT, class C> void pq_estimators_from_tables_Mmul4 (int M, const CT * codes, size_t ncodes, const float * __restrict dis_table, size_t ksub, size_t k, float * heap_dis, long * heap_ids) { for (size_t j = 0; j < ncodes; j++) { float dis = 0; const float *dt = dis_table; for (size_t m = 0; m < M; m+=4) { float dism = 0; dism = dt[*codes++]; dt += ksub; dism += dt[*codes++]; dt += ksub; dism += dt[*codes++]; dt += ksub; dism += dt[*codes++]; dt += ksub; dis += dism; } if (C::cmp (heap_dis[0], dis)) { heap_pop<C> (k, heap_dis, heap_ids); heap_push<C> (k, heap_dis, heap_ids, dis, j); } } } template <typename CT, class C> void pq_estimators_from_tables_M4 (const CT * codes, size_t ncodes, const float * __restrict dis_table, size_t ksub, size_t k, float * heap_dis, long * heap_ids) { for (size_t j = 0; j < ncodes; j++) { float dis = 0; const float *dt = dis_table; dis = dt[*codes++]; dt += ksub; dis += dt[*codes++]; dt += ksub; dis += dt[*codes++]; dt += ksub; dis += dt[*codes++]; if (C::cmp (heap_dis[0], dis)) { heap_pop<C> (k, heap_dis, heap_ids); heap_push<C> (k, heap_dis, heap_ids, dis, j); } } } template <typename CT, class C> static inline void pq_estimators_from_tables (const ProductQuantizer * pq, const CT * codes, size_t ncodes, const float * dis_table, size_t k, float * heap_dis, long * heap_ids) { if (pq->M == 4) { pq_estimators_from_tables_M4<CT, C> (codes, ncodes, dis_table, pq->ksub, k, heap_dis, heap_ids); return; } if (pq->M % 4 == 0) { pq_estimators_from_tables_Mmul4<CT, C> (pq->M, codes, ncodes, dis_table, pq->ksub, k, heap_dis, heap_ids); return; } /* Default is relatively slow */ const size_t M = pq->M; const size_t ksub = pq->ksub; for (size_t j = 0; j < ncodes; j++) { float dis = 0; const float * __restrict dt = dis_table; for (int m = 0; m < M; m++) { dis += dt[*codes++]; dt += ksub; } if (C::cmp (heap_dis[0], dis)) { heap_pop<C> (k, heap_dis, heap_ids); heap_push<C> (k, heap_dis, heap_ids, dis, j); } } } /********************************************* * PQ implementation *********************************************/ ProductQuantizer::ProductQuantizer (size_t d, size_t M, size_t nbits): d(d), M(M), nbits(nbits), assign_index(nullptr) { set_derived_values (); } ProductQuantizer::ProductQuantizer (): d(0), M(1), nbits(0), assign_index(nullptr) { set_derived_values (); } void ProductQuantizer::set_derived_values () { // quite a few derived values FAISS_THROW_IF_NOT (d % M == 0); dsub = d / M; byte_per_idx = (nbits + 7) / 8; code_size = byte_per_idx * M; ksub = 1 << nbits; centroids.resize (d * ksub); verbose = false; train_type = Train_default; } void ProductQuantizer::set_params (const float * centroids_, int m) { memcpy (get_centroids(m, 0), centroids_, ksub * dsub * sizeof (centroids_[0])); } static void init_hypercube (int d, int nbits, int n, const float * x, float *centroids) { std::vector<float> mean (d); for (int i = 0; i < n; i++) for (int j = 0; j < d; j++) mean [j] += x[i * d + j]; float maxm = 0; for (int j = 0; j < d; j++) { mean [j] /= n; if (fabs(mean[j]) > maxm) maxm = fabs(mean[j]); } for (int i = 0; i < (1 << nbits); i++) { float * cent = centroids + i * d; for (int j = 0; j < nbits; j++) cent[j] = mean [j] + (((i >> j) & 1) ? 1 : -1) * maxm; for (int j = nbits; j < d; j++) cent[j] = mean [j]; } } static void init_hypercube_pca (int d, int nbits, int n, const float * x, float *centroids) { PCAMatrix pca (d, nbits); pca.train (n, x); for (int i = 0; i < (1 << nbits); i++) { float * cent = centroids + i * d; for (int j = 0; j < d; j++) { cent[j] = pca.mean[j]; float f = 1.0; for (int k = 0; k < nbits; k++) cent[j] += f * sqrt (pca.eigenvalues [k]) * (((i >> k) & 1) ? 1 : -1) * pca.PCAMat [j + k * d]; } } } void ProductQuantizer::train (int n, const float * x) { if (train_type != Train_shared) { train_type_t final_train_type; final_train_type = train_type; if (train_type == Train_hypercube || train_type == Train_hypercube_pca) { if (dsub < nbits) { final_train_type = Train_default; printf ("cannot train hypercube: nbits=%ld > log2(d=%ld)\n", nbits, dsub); } } float * xslice = new float[n * dsub]; ScopeDeleter<float> del (xslice); for (int m = 0; m < M; m++) { for (int j = 0; j < n; j++) memcpy (xslice + j * dsub, x + j * d + m * dsub, dsub * sizeof(float)); Clustering clus (dsub, ksub, cp); // we have some initialization for the centroids if (final_train_type != Train_default) { clus.centroids.resize (dsub * ksub); } switch (final_train_type) { case Train_hypercube: init_hypercube (dsub, nbits, n, xslice, clus.centroids.data ()); break; case Train_hypercube_pca: init_hypercube_pca (dsub, nbits, n, xslice, clus.centroids.data ()); break; case Train_hot_start: memcpy (clus.centroids.data(), get_centroids (m, 0), dsub * ksub * sizeof (float)); break; default: ; } if(verbose) { clus.verbose = true; printf ("Training PQ slice %d/%zd\n", m, M); } IndexFlatL2 index (dsub); clus.train (n, xslice, assign_index ? *assign_index : index); set_params (clus.centroids.data(), m); } } else { Clustering clus (dsub, ksub, cp); if(verbose) { clus.verbose = true; printf ("Training all PQ slices at once\n"); } IndexFlatL2 index (dsub); clus.train (n * M, x, assign_index ? *assign_index : index); for (int m = 0; m < M; m++) { set_params (clus.centroids.data(), m); } } } void ProductQuantizer::compute_code (const float * x, uint8_t * code) const { float distances [ksub]; for (size_t m = 0; m < M; m++) { float mindis = 1e20; int idxm = -1; const float * xsub = x + m * dsub; fvec_L2sqr_ny (distances, xsub, get_centroids(m, 0), dsub, ksub); /* Find best centroid */ size_t i; for (i = 0; i < ksub; i++) { float dis = distances [i]; if (dis < mindis) { mindis = dis; idxm = i; } } switch (byte_per_idx) { case 1: code[m] = (uint8_t) idxm; break; case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break; } } } void ProductQuantizer::decode (const uint8_t *code, float *x) const { if (byte_per_idx == 1) { for (size_t m = 0; m < M; m++) { memcpy (x + m * dsub, get_centroids(m, code[m]), sizeof(float) * dsub); } } else { const uint16_t *c = (const uint16_t*) code; for (size_t m = 0; m < M; m++) { memcpy (x + m * dsub, get_centroids(m, c[m]), sizeof(float) * dsub); } } } void ProductQuantizer::decode (const uint8_t *code, float *x, size_t n) const { for (size_t i = 0; i < n; i++) { this->decode (code + code_size * i, x + d * i); } } void ProductQuantizer::compute_code_from_distance_table (const float *tab, uint8_t *code) const { for (size_t m = 0; m < M; m++) { float mindis = 1e20; int idxm = -1; /* Find best centroid */ for (size_t j = 0; j < ksub; j++) { float dis = *tab++; if (dis < mindis) { mindis = dis; idxm = j; } } switch (byte_per_idx) { case 1: code[m] = (uint8_t) idxm; break; case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break; } } } void ProductQuantizer::compute_codes (const float * x, uint8_t * codes, size_t n) const { if (dsub < 16) { // simple direct computation #pragma omp parallel for for (size_t i = 0; i < n; i++) compute_code (x + i * d, codes + i * code_size); } else { // worthwile to use BLAS float *dis_tables = new float [n * ksub * M]; ScopeDeleter<float> del (dis_tables); compute_distance_tables (n, x, dis_tables); #pragma omp parallel for for (size_t i = 0; i < n; i++) { uint8_t * code = codes + i * code_size; const float * tab = dis_tables + i * ksub * M; compute_code_from_distance_table (tab, code); } } } void ProductQuantizer::compute_distance_table (const float * x, float * dis_table) const { size_t m; for (m = 0; m < M; m++) { fvec_L2sqr_ny (dis_table + m * ksub, x + m * dsub, get_centroids(m, 0), dsub, ksub); } } void ProductQuantizer::compute_inner_prod_table (const float * x, float * dis_table) const { size_t m; for (m = 0; m < M; m++) { fvec_inner_products_ny (dis_table + m * ksub, x + m * dsub, get_centroids(m, 0), dsub, ksub); } } void ProductQuantizer::compute_distance_tables ( size_t nx, const float * x, float * dis_tables) const { if (dsub < 16) { #pragma omp parallel for for (size_t i = 0; i < nx; i++) { compute_distance_table (x + i * d, dis_tables + i * ksub * M); } } else { // use BLAS for (int m = 0; m < M; m++) { pairwise_L2sqr (dsub, nx, x + dsub * m, ksub, centroids.data() + m * dsub * ksub, dis_tables + ksub * m, d, dsub, ksub * M); } } } void ProductQuantizer::compute_inner_prod_tables ( size_t nx, const float * x, float * dis_tables) const { if (dsub < 16) { #pragma omp parallel for for (size_t i = 0; i < nx; i++) { compute_inner_prod_table (x + i * d, dis_tables + i * ksub * M); } } else { // use BLAS // compute distance tables for (int m = 0; m < M; m++) { FINTEGER ldc = ksub * M, nxi = nx, ksubi = ksub, dsubi = dsub, di = d; float one = 1.0, zero = 0; sgemm_ ("Transposed", "Not transposed", &ksubi, &nxi, &dsubi, &one, ¢roids [m * dsub * ksub], &dsubi, x + dsub * m, &di, &zero, dis_tables + ksub * m, &ldc); } } } template <typename CT, class C> static void pq_knn_search_with_tables ( const ProductQuantizer * pq, const float *dis_tables, const uint8_t * codes, const size_t ncodes, HeapArray<C> * res, bool init_finalize_heap) { size_t k = res->k, nx = res->nh; size_t ksub = pq->ksub, M = pq->M; #pragma omp parallel for for (size_t i = 0; i < nx; i++) { /* query preparation for asymmetric search: compute look-up tables */ const float* dis_table = dis_tables + i * ksub * M; /* Compute distances and keep smallest values */ long * __restrict heap_ids = res->ids + i * k; float * __restrict heap_dis = res->val + i * k; if (init_finalize_heap) { heap_heapify<C> (k, heap_dis, heap_ids); } pq_estimators_from_tables<CT, C> (pq, (CT*)codes, ncodes, dis_table, k, heap_dis, heap_ids); if (init_finalize_heap) { heap_reorder<C> (k, heap_dis, heap_ids); } } } /* static inline void pq_estimators_from_tables (const ProductQuantizer * pq, const CT * codes, size_t ncodes, const float * dis_table, size_t k, float * heap_dis, long * heap_ids) */ void ProductQuantizer::search (const float * __restrict x, size_t nx, const uint8_t * codes, const size_t ncodes, float_maxheap_array_t * res, bool init_finalize_heap) const { FAISS_THROW_IF_NOT (nx == res->nh); float * dis_tables = new float [nx * ksub * M]; ScopeDeleter<float> del(dis_tables); compute_distance_tables (nx, x, dis_tables); if (byte_per_idx == 1) { pq_knn_search_with_tables<uint8_t, CMax<float, long> > ( this, dis_tables, codes, ncodes, res, init_finalize_heap); } else if (byte_per_idx == 2) { pq_knn_search_with_tables<uint16_t, CMax<float, long> > ( this, dis_tables, codes, ncodes, res, init_finalize_heap); } } void ProductQuantizer::search_ip (const float * __restrict x, size_t nx, const uint8_t * codes, const size_t ncodes, float_minheap_array_t * res, bool init_finalize_heap) const { FAISS_THROW_IF_NOT (nx == res->nh); float * dis_tables = new float [nx * ksub * M]; ScopeDeleter<float> del(dis_tables); compute_inner_prod_tables (nx, x, dis_tables); if (byte_per_idx == 1) { pq_knn_search_with_tables<uint8_t, CMin<float, long> > ( this, dis_tables, codes, ncodes, res, init_finalize_heap); } else if (byte_per_idx == 2) { pq_knn_search_with_tables<uint16_t, CMin<float, long> > ( this, dis_tables, codes, ncodes, res, init_finalize_heap); } } static float sqr (float x) { return x * x; } void ProductQuantizer::compute_sdc_table () { sdc_table.resize (M * ksub * ksub); for (int m = 0; m < M; m++) { const float *cents = centroids.data() + m * ksub * dsub; float * dis_tab = sdc_table.data() + m * ksub * ksub; // TODO optimize with BLAS for (int i = 0; i < ksub; i++) { const float *centi = cents + i * dsub; for (int j = 0; j < ksub; j++) { float accu = 0; const float *centj = cents + j * dsub; for (int k = 0; k < dsub; k++) accu += sqr (centi[k] - centj[k]); dis_tab [i + j * ksub] = accu; } } } } void ProductQuantizer::search_sdc (const uint8_t * qcodes, size_t nq, const uint8_t * bcodes, const size_t nb, float_maxheap_array_t * res, bool init_finalize_heap) const { FAISS_THROW_IF_NOT (sdc_table.size() == M * ksub * ksub); FAISS_THROW_IF_NOT (byte_per_idx == 1); size_t k = res->k; #pragma omp parallel for for (size_t i = 0; i < nq; i++) { /* Compute distances and keep smallest values */ long * heap_ids = res->ids + i * k; float * heap_dis = res->val + i * k; const uint8_t * qcode = qcodes + i * code_size; if (init_finalize_heap) maxheap_heapify (k, heap_dis, heap_ids); const uint8_t * bcode = bcodes; for (size_t j = 0; j < nb; j++) { float dis = 0; const float * tab = sdc_table.data(); for (int m = 0; m < M; m++) { dis += tab[bcode[m] + qcode[m] * ksub]; tab += ksub * ksub; } if (dis < heap_dis[0]) { maxheap_pop (k, heap_dis, heap_ids); maxheap_push (k, heap_dis, heap_ids, dis, j); } bcode += code_size; } if (init_finalize_heap) maxheap_reorder (k, heap_dis, heap_ids); } } } // namespace faiss