Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.
The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent and accessible way.
- Machine Learning From Scratch
$ git clone https://github.com/eriklindernoren/ML-From-Scratch
$ cd ML-From-Scratch
$ python setup.py install
$ python mlfromscratch/examples/polynomial_regression.py
Figure: Regularized polynomial regression of temperature data measured in
Linköping, Sweden 2016.
$ python mlfromscratch/examples/convolutional_neural_network.py
+---------+
| ConvNet |
+---------+
Input Shape: (1, 8, 8)
+----------------------+------------+--------------+
| Layer Type | Parameters | Output Shape |
+----------------------+------------+--------------+
| Conv2D | 160 | (16, 8, 8) |
| Activation (ReLU) | 0 | (16, 8, 8) |
| Dropout | 0 | (16, 8, 8) |
| BatchNormalization | 2048 | (16, 8, 8) |
| Conv2D | 4640 | (32, 8, 8) |
| Activation (ReLU) | 0 | (32, 8, 8) |
| Dropout | 0 | (32, 8, 8) |
| BatchNormalization | 4096 | (32, 8, 8) |
| Flatten | 0 | (2048,) |
| Dense | 524544 | (256,) |
| Activation (ReLU) | 0 | (256,) |
| Dropout | 0 | (256,) |
| BatchNormalization | 512 | (256,) |
| Dense | 2570 | (10,) |
| Activation (Softmax) | 0 | (10,) |
+----------------------+------------+--------------+
Total Parameters: 538570
Training: 100% [------------------------------------------------------------------------] Time: 0:01:55
Accuracy: 0.987465181058
Figure: Classification of the digit dataset using CNN.
$ python mlfromscratch/examples/dbscan.py
Figure: Clustering of the moons dataset using DBSCAN.
$ python mlfromscratch/unsupervised_learning/generative_adversarial_network.py
+-----------+
| Generator |
+-----------+
Input Shape: (100,)
+------------------------+------------+--------------+
| Layer Type | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense | 25856 | (256,) |
| Activation (LeakyReLU) | 0 | (256,) |
| BatchNormalization | 512 | (256,) |
| Dense | 131584 | (512,) |
| Activation (LeakyReLU) | 0 | (512,) |
| BatchNormalization | 1024 | (512,) |
| Dense | 525312 | (1024,) |
| Activation (LeakyReLU) | 0 | (1024,) |
| BatchNormalization | 2048 | (1024,) |
| Dense | 803600 | (784,) |
| Activation (TanH) | 0 | (784,) |
+------------------------+------------+--------------+
Total Parameters: 1489936
+---------------+
| Discriminator |
+---------------+
Input Shape: (784,)
+------------------------+------------+--------------+
| Layer Type | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense | 401920 | (512,) |
| Activation (LeakyReLU) | 0 | (512,) |
| Dropout | 0 | (512,) |
| Dense | 131328 | (256,) |
| Activation (LeakyReLU) | 0 | (256,) |
| Dropout | 0 | (256,) |
| Dense | 514 | (2,) |
| Activation (Softmax) | 0 | (2,) |
+------------------------+------------+--------------+
Total Parameters: 533762
Figure: Training progress of a MNIST Generative Adversarial Network.
$ python mlfromscratch/examples/deep_q_network.py
+----------------+
| Deep Q-Network |
+----------------+
Input Shape: (4,)
+-------------------+------------+--------------+
| Layer Type | Parameters | Output Shape |
+-------------------+------------+--------------+
| Dense | 320 | (64,) |
| Activation (ReLU) | 0 | (64,) |
| Dense | 130 | (2,) |
+-------------------+------------+--------------+
Total Parameters: 450
Figure: Deep Q-Network solution to the CartPole-v1 environment in OpenAI gym.
$ python mlfromscratch/examples/restricted_boltzmann_machine.py
Figure: Shows how the network gets better during training at reconstructing
the digit 2 in the MNIST dataset.
$ python mlfromscratch/examples/neuroevolution.py
+---------------+
| Model Summary |
+---------------+
Input Shape: (64,)
+----------------------+------------+--------------+
| Layer Type | Parameters | Output Shape |
+----------------------+------------+--------------+
| Dense | 1040 | (16,) |
| Activation (ReLU) | 0 | (16,) |
| Dense | 170 | (10,) |
| Activation (Softmax) | 0 | (10,) |
+----------------------+------------+--------------+
Total Parameters: 1210
Population Size: 100
Generations: 3000
Mutation Rate: 0.01
[0 Best Individual - Fitness: 3.08301, Accuracy: 10.5%]
[1 Best Individual - Fitness: 3.08746, Accuracy: 12.0%]
...
[2999 Best Individual - Fitness: 94.08513, Accuracy: 98.5%]
Test set accuracy: 96.7%
Figure: Classification of the digit dataset by a neural network which has
been evolutionary evolved.
$ python mlfromscratch/examples/genetic_algorithm.py
+--------+
| GA |
+--------+
Description: Implementation of a Genetic Algorithm which aims to produce
the user specified target string. This implementation calculates each
candidate's fitness based on the alphabetical distance between the candidate
and the target. A candidate is selected as a parent with probabilities proportional
to the candidate's fitness. Reproduction is implemented as a single-point
crossover between pairs of parents. Mutation is done by randomly assigning
new characters with uniform probability.
Parameters
----------
Target String: 'Genetic Algorithm'
Population Size: 100
Mutation Rate: 0.05
[0 Closest Candidate: 'CJqlJguPlqzvpoJmb', Fitness: 0.00]
[1 Closest Candidate: 'MCxZxdr nlfiwwGEk', Fitness: 0.01]
[2 Closest Candidate: 'MCxZxdm nlfiwwGcx', Fitness: 0.01]
[3 Closest Candidate: 'SmdsAklMHn kBIwKn', Fitness: 0.01]
[4 Closest Candidate: ' lotneaJOasWfu Z', Fitness: 0.01]
...
[292 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
[293 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
[294 Answer: 'Genetic Algorithm']
$ python mlfromscratch/examples/apriori.py
+-------------+
| Apriori |
+-------------+
Minimum Support: 0.25
Minimum Confidence: 0.8
Transactions:
[1, 2, 3, 4]
[1, 2, 4]
[1, 2]
[2, 3, 4]
[2, 3]
[3, 4]
[2, 4]
Frequent Itemsets:
[1, 2, 3, 4, [1, 2], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 4], [2, 3, 4]]
Rules:
1 -> 2 (support: 0.43, confidence: 1.0)
4 -> 2 (support: 0.57, confidence: 0.8)
[1, 4] -> 2 (support: 0.29, confidence: 1.0)
- Adaboost
- Bayesian Regression
- Decision Tree
- Elastic Net
- Gradient Boosting
- K Nearest Neighbors
- Lasso Regression
- Linear Discriminant Analysis
- Linear Regression
- Logistic Regression
- Multi-class Linear Discriminant Analysis
- Multilayer Perceptron
- Naive Bayes
- Neuroevolution
- Particle Swarm Optimization of Neural Network
- Perceptron
- Polynomial Regression
- Random Forest
- Ridge Regression
- Support Vector Machine
- XGBoost
- Apriori
- DBSCAN
- FP-Growth
- Gaussian Mixture Model
- Generative Adversarial Network
- Genetic Algorithm
- K-Means
- Partitioning Around Medoids
- Principal Component Analysis
- Restricted Boltzmann Machine
- Neural Network
- Layers
- Activation Layer
- Average Pooling Layer
- Batch Normalization Layer
- Constant Padding Layer
- Convolutional Layer
- Dropout Layer
- Flatten Layer
- Fully-Connected (Dense) Layer
- Fully-Connected RNN Layer
- Max Pooling Layer
- Reshape Layer
- Up Sampling Layer
- Zero Padding Layer
- Model Types
If there's some implementation you would like to see here or if you're just feeling social, feel free to email me or connect with me on LinkedIn.