


This section will discussion interaction with the OCI command group, new to Singularity 3.1.0. If you are using versions of Singularity

before this, you won’t be able to use these functions. If you want to learn more about OCI, see opencontainers.org.

background: some quick background on the OCI runtime spec

setup: create a bundle folder with a config.json to drive it

quick start: Quick start to create an OCI image object

create: create an OCI image using the client

The commands for state, kill, pause, resume, etc. will be discussed in context of the above.

Background
To give you some quick background, the runtime-spec of the open container initiative (OCI), you’ll see that it defines a way to create a

container from something called a “bundle”

What is a bundle?

A bundle is just a folder on your computer with the contents of an operating system, libraries, and so�ware, along with a configuration

file (config.json). The configuration file conforms to this “runtime specification,” and generally describes permissions, binds,

What would you like to know? Singularity Python



https://www.github.com/singularityhub/singularity-cli/tree/master/docs/pages/commands-oci.md
https://opencontainers.org/
https://github.com/opencontainers/runtime-spec
http://127.0.0.1:4000/singularity-cli/

environment, and other runtime variables for the container.

Why do we have this specification?

It might seem silly, but what this runtime specification is a standard set of terms for generating and interacting with containers. What

does this mean in practice? We can have tools and infrastructure (for example, Kubernetes, a container orchestration system) that know

how to interact with many di�erent kinds of containers. How? Because they implement the OCI specification, and the communication is

standardized.

Usage

Install

If you haven’t yet installed Singularity Python:

$ pip install spython

or see the install docs for di�erent variants of that.

Setup

Now that you are familiar with the idea of a bundle, let’s:

create a folder with an operating system

add a config.json template there

create an OCI Image with the Singularity Python client

What would you like to know? Singularity Python







https://singularityhub.github.io/singularity-cli/install
http://127.0.0.1:4000/singularity-cli/

We will do these steps before all of the “Create” examples below. First, open up an ipython shell. You can use spython shell to get

one loaded with a client.

spython shell

Once in ipython, let’s use Singularity build with sandbox to dump a busybox base operating system into a temporary folder. Singularity

Python also will provide you with a dummy (limited) configuration file) to use to test.

from spython.utils import get_installdir

Here is the dummy config.json for you!
config = "%s/oci/config.json" % get_installdir()

Let's now build a bundle into /tmp/bundle
image = client.build("docker://busybox:1.30.1",
 image='/tmp/bundle',
 sandbox=True,
 sudo=False)

If you need to import the client on your own (if you don’t use spython shell)

from spython.main import Client as client

Next, copy the config to your bundle folder.

import shutil
shutil.copyfile(config, '%s/config.json' % image)

Now that you have your bundle and config.json file, you can create an Oci Image from it.

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

Quick Start

The quickest way to create a running Oci Image from a bundle is to instantiate an OciImage instance. If you didn’t import the client, do

that now:

from spython.main import Client as client

Here is the OciImage object to instantiate! Notice that we are providing the full path to the bundle folder, along with an id for our

container.

$ image = client.oci.OciImage(bundle='/tmp/bundle',
 container_id='figbars')
[singularity-python-oci:figbars]

The variable “image” now holds a complete OciImage class (not attached to the client) and with “mycontainer” set as the container_id.

If you are in ipython and press TAB, you will see all the expected functions.

attach() execute() mount() resume()
 container_id get_container_id() OciImage RobotNamer
 create() get_uri() parse_image_name() run()
 delete() kill() remove_uri() run_command()

It’s created o� the bat! And further, the container id you defined is stored with the object, so you don’t need to ask for it again.

image.state()

{'attachSocket': '/var/run/singularity/instances/root/figbars/attach.sock',
 'bundle': '/tmp/bundle',
 'controlSocket': '/var/run/singularity/instances/root/figbars/control.sock',

What would you like to know? Singularity Python 

http://127.0.0.1:4000/singularity-cli/

 'createdAt': 1551744400481853703,
 'id': 'figbars',
 'ociVersion': '1.0.1-dev',
 'pid': 20854,
 'status': 'created'}

Here is the stored container id:

image.container_id
'figbars'

And we can see that the default is that sudo is used to create it:

image.sudo
True

By default, if you don’t provide a bundle directory it won’t be created.

$ image = client.oci.OciImage(container_id='figbars')

This would be a good way to get a handle for an (already created) image, or something you are otherwise not ready to create. You can

also explicitly tell the function not to create the image.

$ image = client.oci.OciImage(bundle='/tmp/bundle',
 container_id='figbars',
 create=False)

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

From this point on, you can interact with your image via this object. The commands that will be discussed below are available to you.

Press TAB a�er typing “image.” to see the options:

In [39]: image.
 attach() debug get_uri() parse_image_name()
 bundle delete() kill() quiet
 container_id execute() mount() remove_uri() >
 create() get_container_id() OciImage resume()

Give everything a test! For example, try executing a command to your image:

result = image.execute(command=["ls","/"])
print(result)
bin
boot
cdrom
dev
etc
home
initrd.img
initrd.img.old
lib
lib32
lib64
lost+found
media
mnt
opt
proc
root
run
sbin
srv
sys

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

test
tmp
usr
var
vmlinuz
vmlinuz.old

You can then clean up.

image.pause()
or
image.kill()
image.delete()

Create

Let’s discuss another option for create - one that also starts from our bundle folder, but instead just uses the client to interact with it

(without directly creating an instance). Here is how to create it:

metadata = client.oci.create(bundle=image, container_id='robot-man')

As of 3.1.0, the command above does require sudo, so it will prompt you for it unless you already have e�ective user id as 0. The return

of the above will be a json object that describes metadata for the container, the same that we saw above when we asked for the

image.state() .

{'attachSocket': '/var/run/singularity/instances/root/robot-man/attach.sock',
 'bundle': '/tmp/bundle',
 'controlSocket': '/var/run/singularity/instances/root/robot-man/control.sock',
 'createdAt': 1551744049459537512,
 'id': 'robot-man',

What would you like to know? Singularity Python



http://127.0.0.1:4000/singularity-cli/

 

 'ociVersion': '1.0.1-dev',
 'pid': 20602,
 'status': 'created'}

Notice that the status is “created.” If you wanted to get this result again with the client:

$ client.oci.state('robot-man', sudo=True)

{'attachSocket': '/var/run/singularity/instances/root/robot-man/attach.sock',
 'bundle': '/tmp/bundle',
 'controlSocket': '/var/run/singularity/instances/root/robot-man/control.sock',
 'createdAt': 1551744049459537512,
 'id': 'robot-man',
 'ociVersion': '1.0.1-dev',
 'pid': 20602,
 'status': 'created'}

important notice how we included sudo=True with the above - since we created the Oci Image with sudo, it lives in root’s space. If we

call without sudo, or ask for the state of a non existing container, we will get None for a result.

$ client.oci.state('doesntexist')

No sudo
$ client.oci.state('mycontainer')

Both of the above return no result (None).

We haven’t gone through all of the examples, but if you would like a specific example please let us know.

What would you like to know? Singularity Python

https://www.github.com/singularityhub/singularity-cli/issues
http://127.0.0.1:4000/singularity-cli/

  The Singularity Hub

Singularity Python is maintained by Vanessa Sochat.
Contribute on GitHub.

What would you like to know? Singularity Python

https://www.github.com/singularityhub/singularity-cli
http://127.0.0.1:4000/singularity-cli/pdf.html
https://singularityhub.github.io/
http://localhost:4000/
https://singularityhub.github.io/singularity-cli
https://www.github.com/singularityhub/singularity-cli
http://127.0.0.1:4000/singularity-cli/

