


Singularity Python Recipes
We will here discuss the Singularity Python recipe writers and parsers that will help you to convert between Singularity and Docker recipes. First, let’s define what these

things are:

a Recipe is a base class that holds general variables and instructions for a container recipe (e.g., environment, labels, install steps).

a parser is a class that knows how to read in a special recipe type (e.g., Dockerfile) and parse it into the Recipe class.

a writer is a class that knows how to use a filled in Recipe to write a special recipe type (e.g., Singularity) with the content.

Now we can answer what kind of things might you want to do:

convert a Dockerfile to a Singularity Recipe

convert a Singularity Recipe to a Dockerfile

read in a recipe of either type, and modify it before doing the above

Command Line Client
You don’t need to interact with Python to use the converter! It’s sometimes much easier to use the command line and spit something out into the terminal, for quick

visual inspection or piping into an output file. If you use the spython utility, you can see your options available:

spython recipe --help

usage: spython recipe [-h] [--entrypoint ENTRYPOINT] [--json] [--force]
 [--parser {auto,docker,singularity}]
 [--writer {auto,docker,singularity}]
 [files [files ...]]

positional arguments:

What would you like to know? Singularity Python

https://www.github.com/singularityhub/singularity-cli/tree/master/docs/pages/recipes.md
http://127.0.0.1:4000/singularity-cli/

 files the recipe input file and [optional] output file

optional arguments:
 -h, --help show this help message and exit
 --entrypoint ENTRYPOINT
 define custom entry point and prevent discovery
 --json dump the (base) recipe content as json to the terminal
 --force if the output file exists, overwrite.
 --parser {auto,docker,singularity}
 Is the input a Dockerfile or Singularity recipe?
 --writer {auto,docker,singularity}
 Should we write to Dockerfile or Singularity recipe?

Auto Detection

The most basic usage is auto generation - meaning you provide a Dockerfile or Singularity recipe, and we automatically detect it and convert to the other type. Until we

add additional writers and/or parsers, this is reasonable to do:

$ spython recipe Dockerfile
Bootstrap: docker
From: python:3.5.1
...

Instead of printing to the screen. we can provide a filename to write to file:

$ spython recipe Dockerfile Singularity.snowflake

The same auto-detection can be done for converting a Dockerfile to Singularity

$ spython recipe Singularity
$ spython recipe Singularity Dockerfile

And don’t forget you can interact with Docker images natively with Singularity!

$ singularity pull docker://ubuntu:latest

What would you like to know? Singularity Python



http://127.0.0.1:4000/singularity-cli/

Customize Writers and Parsers

If you want to specify the writer or parser to use, this can be done with the --writer and --parser argument, respectively. The following would convert a Dockerfile

into a version of itself:

$ spython recipe --writer docker Dockerfile

or if our file is named something non-traditional, we would need to specify the parser too:

$ spython recipe --parser singularity container.def

Custom Entrypoint

Another customization to a recipe can be modifying the entrypoint on the fly.

$ spython recipe --entrypoint /bin/sh Dockerfile
...
%runscript
exec /bin/sh "$@"

Debug Generation

Finally, you can ask for help and print with more verbosity! Just ask for --debug

$ spython --debug recipe Dockerfile
DEBUG Logging level DEBUG
DEBUG Singularity Python Version: 0.0.63
DEBUG [in] FROM python:3.5.1
DEBUG FROM python:3.5.1
DEBUG [in] ENV PYTHONUNBUFFERED 1
DEBUG [in] RUN apt-get update && apt-get install -y \
DEBUG [in] pkg-config \
DEBUG [in] cmake \
DEBUG [in] openssl \
DEBUG [in] wget \
DEBUG [in] git \

What would you like to know? Singularity Python 





http://127.0.0.1:4000/singularity-cli/

DEBUG [in] vim
...

or less, ask for --quiet

$ spython --quiet recipe Dockerfile

Python API

Recipes
If you want to create a generic recipe (without association with a container technology) you can do that.

from spython.main.parse.recipe import Recipe
recipe = Recipe

By default, the recipe starts empty.

recipe.json()
{}

Generally, you can inspect the attributes to see what can be added! Here are some examples:

recipe.cmd = ['echo', 'hello']
recipe.entrypoint = '/bin/bash'
recipe.comments = ['This recipe is great', 'Yes it is!']
recipe.environ = ['PANCAKES=WITHSYRUP']
recipe.files = [['one', 'two']]
recipe.test = ['true']
recipe.install = ['apt-get update']
recipe.labels = ['Maintainer vanessasaur']
recipe.ports = ['3031']
recipe.volumes = ['/data']
recipe.workdir = '/code'

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

And then verify they are added:

recipe.json()
{'cmd': ['echo', 'hello'],
 'comments': ['This recipe is great', 'Yes it is!'],
 'entrypoint': '/bin/bash',
 'environ': ['PANCAKES=WITHSYRUP'],
 'files': [['one', 'two']],
 'install': ['apt-get update'],
 'labels': ['Maintainer vanessasaur'],
 'ports': ['3031'],
 'test': ['true'],
 'volumes': ['/data'],
 'workdir': '/code'}

And then you can use a writer to print a custom recipe type to file.

Parsers
Your first interaction will be with a parser, all of which are defined at spython.main.parse.parsers . If you know the parser you want directly, you can import it:

from spython.main.parse.parsers import DockerParser

or you can use a helper function to get it:

from spython.main.parse.parsers import get_parser
DockerParser = get_parser('docker')
spython.main.parse.parsers.docker.DockerParser

then give it a Dockerfile to munch on.

parser=DockerParser('Dockerfile')

By default, it will parse the Dockerfile (or other container recipe) into a Recipe class, provided at parser.recipe :

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

parser.recipe
[spython-recipe][source:/home/vanessa/Documents/Dropbox/Code/sregistry/singularity-cli/Dockerfile]

You can quickly see the fields with the .json function:

parser.recipe.json()
{'cmd': '/code/run_uwsgi.sh',
 'environ': ['PYTHONUNBUFFERED=1'],
 'files': [['requirements.txt', '/tmp/requirements.txt'],
 ['/home/vanessa/Documents/Dropbox/Code/sregistry/singularity-cli',
 '/code/']],
 'install': ['PYTHONUNBUFFERED=1',
...

All of these fields are attributes of the recipe, so you could change or otherwise interact with them:

parser.recipe.entrypoint = '/bin/sh'

or if you don’t want to, you can skip automatic parsing:

parser = DockerParser('Dockerfile', load=False)
parser.recipe.json()

And then parse it later:

parser.parse()

The same is available for Singularity recipes:

SingularityParser = get_parser("Singularity")
parser = SingularityParser("Singularity")

parser.recipe.json()
Out[16]:
{'cmd': 'exec /opt/conda/bin/spython "$@"',
 'install': ['apt-get update && apt-get install -y git',

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

 '# Dependencies',
 'cd /opt',
 'git clone https://www.github.com/singularityhub/singularity-cli',
 'cd singularity-cli',
 '/opt/conda/bin/pip install setuptools',
 '/opt/conda/bin/python setup.py install'],
 'labels': ['maintainer vsochat@stanford.edu']}

Writers
Once you have loaded a recipe and possibly made changes, what comes next? You would want to write it to a possibly di�erent recipe file. For example, let’s read in some

Dockerfile, and then hand o� the recipe to a SingularityWriter. The same functions are available to get a writer, or you can import directly.

from spython.main.parse.writers import get_writer
from spython.main.parse.parsers import get_parser

DockerParser = get_parser('docker')
SingularityWriter = get_writer('singularity')
from spython.main.parse.writers import SingularityWriter

First, again parse the Dockerfile:

parser = DockerParser('Dockerfile')

And then give the recipe object at parser.recipe to the writer!

writer = SingularityWriter(parser.recipe)

How do you generate the new recipe? You can do:

writer.convert()

To better print it to the screen, you can use print:

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/

 

print(writer.convert())
Bootstrap: docker
From: python:3.5.1
%files
requirements.txt /tmp/requirements.txt
...

%environment
export PYTHONUNBUFFERED=1
%runscript
cd /code
exec /bin/bash/bin/bash /code/run_uwsgi.sh "$@"
%startscript
cd /code
exec /bin/bash/bin/bash /code/run_uwsgi.sh "$@"

Or return to a string, and save to file as you normally would.

result = writer.convert()

The same works for a DockerWriter.

SingularityParser = get_parser('singularity')
DockerWriter = get_writer('docker')
parser = SingularityParser('Singularity')
writer = DockerWriter(parser.recipe)
print(writer.convert())

FROM continuumio/miniconda3
LABEL maintainer vsochat@stanford.edu
RUN apt-get update && apt-get install -y git
RUN cd /opt
RUN git clone https://www.github.com/singularityhub/singularity-cli
RUN cd singularity-cli
RUN /opt/conda/bin/pip install setuptools
RUN /opt/conda/bin/python setup.py install
CMD exec /opt/conda/bin/spython "$@"

What would you like to know? Singularity Python

http://127.0.0.1:4000/singularity-cli/client
http://127.0.0.1:4000/singularity-cli/contribute
http://127.0.0.1:4000/singularity-cli/

  The Singularity Hub

Singularity Python is maintained by Vanessa Sochat.
Contribute on GitHub.

What would you like to know? Singularity Python

https://www.github.com/singularityhub/singularity-cli
http://127.0.0.1:4000/singularity-cli/pdf.html
https://singularityhub.github.io/
http://127.0.0.1:4000/singularity-cli/client
http://127.0.0.1:4000/singularity-cli/contribute
http://localhost:4000/
https://singularityhub.github.io/singularity-cli
https://www.github.com/singularityhub/singularity-cli
http://127.0.0.1:4000/singularity-cli/

