From d9db5c54bee06b212a5bcf312aa5fc349c0452c6 Mon Sep 17 00:00:00 2001 From: Michael Grund <23025878+michaelgrund@users.noreply.github.com> Date: Mon, 22 Nov 2021 00:50:58 +0100 Subject: [PATCH] Add gallery example to showcase blockmean (#1598) Co-authored-by: Will Schlitzer Co-authored-by: Dongdong Tian --- examples/gallery/histograms/blockm.py | 63 +++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) create mode 100644 examples/gallery/histograms/blockm.py diff --git a/examples/gallery/histograms/blockm.py b/examples/gallery/histograms/blockm.py new file mode 100644 index 00000000000..87c35347392 --- /dev/null +++ b/examples/gallery/histograms/blockm.py @@ -0,0 +1,63 @@ +""" +Blockmean +--------- +The :meth:`pygmt.blockmean` method calculates different quantities +inside blocks/bins whose dimensions are defined via the ``spacing`` parameter. +The following examples show how to calculate the averages of the given values +inside each bin and how to report the number of points inside each bin. +""" + +import pygmt + +# Load sample data +data = pygmt.datasets.load_japan_quakes() +# Select only needed columns +data = data[["longitude", "latitude", "depth_km"]] + +# Set the region for the plot +region = [130, 152.5, 32.5, 52.5] +# Define spacing in x and y direction (150 by 150 minute blocks) +spacing = "150m" + +fig = pygmt.Figure() + +# Calculate mean depth in km from all events within 150x150 minute +# bins using blockmean +df = pygmt.blockmean(data=data, region=region, spacing=spacing) +# convert to grid +grd = pygmt.xyz2grd(data=df, region=region, spacing=spacing) + +fig.grdimage( + grid=grd, + region=region, + frame=["af", '+t"Mean earthquake depth inside each block"'], + cmap="batlow", +) +# plot slightly transparent landmasses on top +fig.coast(land="darkgray", transparency=40) +# plot original data points +fig.plot( + x=data.longitude, y=data.latitude, style="c0.3c", color="white", pen="1p,black" +) +fig.colorbar(frame=["x+lkm"]) + +fig.shift_origin(xshift="w+5c") + +# Calculate number of total locations within 150x150 minute bins via +# blockmean's summary parameter +df = pygmt.blockmean(data=data, region=region, spacing=spacing, summary="n") +grd = pygmt.xyz2grd(data=df, region=region, spacing=spacing) + +fig.grdimage( + grid=grd, + region=region, + frame=["af", '+t"Number of points inside each block"'], + cmap="batlow", +) +fig.coast(land="darkgray", transparency=40) +fig.plot( + x=data.longitude, y=data.latitude, style="c0.3c", color="white", pen="1p,black" +) +fig.colorbar(frame=["x+lcount"]) + +fig.show()