Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

training with new data #14

Open
bhavikajalli opened this issue Dec 7, 2018 · 0 comments
Open

training with new data #14

bhavikajalli opened this issue Dec 7, 2018 · 0 comments

Comments

@bhavikajalli
Copy link

bhavikajalli commented Dec 7, 2018

Hi,
I am training VaDE with my own dataset.
My X is of the shape 1603x1992.
I have followed your paper and your code. However, I am getting a Dimension Mismatch at the 'gamma_output.predict(X,batchsize = 100)' point.
the first layer of my gamma_output model is
input_24 (InputLayer) (100, 1992)
My error is

Input dimension mis-match. (input[0].shape[0] = 3, input[5].shape[0] = 100) Apply node that caused the error: Elemwise{Composite{(i0 + i1 + (exp((i2 * (i3 + i4))) * i5))}}[(0, 0)](InplaceDimShuffle{0,x,x,1}.0, InplaceDimShuffle{x,x,x,0}.0, TensorConstant{(1, 1, 1, 1) of 0.5}, InplaceDimShuffle{0,x,x,1}.0, InplaceDimShuffle{x,x,x,0}.0, InplaceDimShuffle{0,x,x,1}.0) Toposort index: 41 Inputs types: [TensorType(float32, (False, True, True, False)), TensorType(float32, (True, True, True, False)), TensorType(float32, (True, True, True, True)), TensorType(float32, (False, True, True, False)), TensorType(float32, (True, True, True, False)), TensorType(float32, (False, True, True, False))] Inputs shapes: [(3, 1, 1, 18), (1, 1, 1, 18), (1, 1, 1, 1), (3, 1, 1, 18), (1, 1, 1, 18), (100, 1, 1, 18)] Inputs strides: [(72, 72, 72, 4), (72, 72, 72, 4), (4, 4, 4, 4), (72, 72, 72, 4), (72, 72, 72, 4), (72, 72, 72, 4)] Inputs values: ['not shown', 'not shown', array([[[[0.5]]]], dtype=float32), 'not shown', 'not shown', 'not shown'] Inputs type_num: [11, 11, 11, 11, 11, 11] Outputs clients: [[Alloc(Elemwise{Composite{(i0 + i1 + (exp((i2 * (i3 + i4))) * i5))}}[(0, 0)].0, Shape_i{0}.0, TensorConstant{1}, TensorConstant{18}, Shape_i{1}.0)]]
Can you please help me solve this or interpret it?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant