You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi,
I am training VaDE with my own dataset.
My X is of the shape 1603x1992.
I have followed your paper and your code. However, I am getting a Dimension Mismatch at the 'gamma_output.predict(X,batchsize = 100)' point.
the first layer of my gamma_output model is input_24 (InputLayer) (100, 1992)
My error is
Hi,
I am training VaDE with my own dataset.
My X is of the shape 1603x1992.
I have followed your paper and your code. However, I am getting a Dimension Mismatch at the 'gamma_output.predict(X,batchsize = 100)' point.
the first layer of my gamma_output model is
input_24 (InputLayer) (100, 1992)
My error is
Input dimension mis-match. (input[0].shape[0] = 3, input[5].shape[0] = 100) Apply node that caused the error: Elemwise{Composite{(i0 + i1 + (exp((i2 * (i3 + i4))) * i5))}}[(0, 0)](InplaceDimShuffle{0,x,x,1}.0, InplaceDimShuffle{x,x,x,0}.0, TensorConstant{(1, 1, 1, 1) of 0.5}, InplaceDimShuffle{0,x,x,1}.0, InplaceDimShuffle{x,x,x,0}.0, InplaceDimShuffle{0,x,x,1}.0) Toposort index: 41 Inputs types: [TensorType(float32, (False, True, True, False)), TensorType(float32, (True, True, True, False)), TensorType(float32, (True, True, True, True)), TensorType(float32, (False, True, True, False)), TensorType(float32, (True, True, True, False)), TensorType(float32, (False, True, True, False))] Inputs shapes: [(3, 1, 1, 18), (1, 1, 1, 18), (1, 1, 1, 1), (3, 1, 1, 18), (1, 1, 1, 18), (100, 1, 1, 18)] Inputs strides: [(72, 72, 72, 4), (72, 72, 72, 4), (4, 4, 4, 4), (72, 72, 72, 4), (72, 72, 72, 4), (72, 72, 72, 4)] Inputs values: ['not shown', 'not shown', array([[[[0.5]]]], dtype=float32), 'not shown', 'not shown', 'not shown'] Inputs type_num: [11, 11, 11, 11, 11, 11] Outputs clients: [[Alloc(Elemwise{Composite{(i0 + i1 + (exp((i2 * (i3 + i4))) * i5))}}[(0, 0)].0, Shape_i{0}.0, TensorConstant{1}, TensorConstant{18}, Shape_i{1}.0)]]
Can you please help me solve this or interpret it?
The text was updated successfully, but these errors were encountered: