From 5e84a014afaa5e212c4618a9db2b757d591d6e50 Mon Sep 17 00:00:00 2001 From: Andrey Velichkevich Date: Tue, 7 Apr 2020 04:21:43 +0100 Subject: [PATCH] Optimize chocolate suggestion (#1116) --- .../chocolate/base_chocolate_service.py | 163 ++++++++++++------ pkg/suggestion/v1alpha3/chocolate_service.py | 24 ++- 2 files changed, 128 insertions(+), 59 deletions(-) diff --git a/pkg/suggestion/v1alpha3/chocolate/base_chocolate_service.py b/pkg/suggestion/v1alpha3/chocolate/base_chocolate_service.py index 2e4a3b6f397..8cb1b708412 100644 --- a/pkg/suggestion/v1alpha3/chocolate/base_chocolate_service.py +++ b/pkg/suggestion/v1alpha3/chocolate/base_chocolate_service.py @@ -9,24 +9,35 @@ logger = logging.getLogger(__name__) +DB_ADDRESS = "sqlite:///my_db.db?check_same_thread=False" +DB_FIELD_LOSS = "_loss" +DB_FIELD_CHOCOLATE_ID = "_chocolate_id" +DB_FIELD_TRIAL_NAME = "_trial_name" + class BaseChocolateService(object): """ Refer to https://chocolate.readthedocs.io/ """ - def __init__(self, algorithm_name=""): - self.algorithm_name = algorithm_name + def __init__(self, algorithm_name, search_space): + self.conn = choco.SQLiteConnection(DB_ADDRESS) + self.search_space = search_space + self.chocolate_optimizer = None + self.create_optimizer(algorithm_name) + # created_trials is the list of dicts with all created trials assignments, loss and trial name + # _chocolate_id is the ID of the trial, Assignment names are encoded, _loss is the target metric, _trial_name is the Trial name + # One row example: + # {'_chocolate_id': 0, 'LS1scg==': 0.001, 'LS1udW0tZXBvY2hz': 1, 'LS1udW0tbGF5ZXJz': 2, "_loss": "0.97", "_trial_name": "grid-example-hsdvfdwl"} + self.created_trials = [] + self.recorded_trials_names = [] - def getSuggestions(self, search_space, trials, request_number): - """ - Get the new suggested trials with chocolate algorithm. - """ + def create_optimizer(self, algorithm_name): - # Example: {"x" : choco.uniform(-6, 6), "y" : choco.uniform(-6, 6)} + # Search Space example: {"x" : choco.uniform(-6, 6), "y" : choco.uniform(-6, 6)} chocolate_search_space = {} - for param in search_space.params: + for param in self.search_space.params: key = BaseChocolateService.encode(param.name) if param.type == INTEGER: chocolate_search_space[key] = choco.quantized_uniform( @@ -40,61 +51,109 @@ def getSuggestions(self, search_space, trials, request_number): chocolate_search_space[key] = choco.choice( [float(e) for e in param.list]) - conn = choco.SQLiteConnection("sqlite:///my_db.db") # Refer to https://chocolate.readthedocs.io/tutorials/algo.html - if self.algorithm_name == "grid": - sampler = choco.Grid(conn, chocolate_search_space, clear_db=True) + if algorithm_name == "grid": + self.chocolate_optimizer = choco.Grid( + self.conn, chocolate_search_space, clear_db=True) # hyperopt-random is the default option in katib. - elif self.algorithm_name == "chocolate-random": - sampler = choco.Random(conn, chocolate_search_space, clear_db=True) - elif self.algorithm_name == "chocolate-quasirandom": - sampler = choco.QuasiRandom( - conn, chocolate_search_space, clear_db=True) - elif self.algorithm_name == "chocolate-bayesian-optimization": - sampler = choco.Bayes(conn, chocolate_search_space, clear_db=True) + elif algorithm_name == "chocolate-random": + self.chocolate_optimizer = choco.Random( + self.conn, chocolate_search_space, clear_db=True) + elif algorithm_name == "chocolate-quasirandom": + self.chocolate_optimizer = choco.QuasiRandom( + self.conn, chocolate_search_space, clear_db=True) + elif algorithm_name == "chocolate-bayesian-optimization": + self.chocolate_optimizer = choco.Bayes( + self.conn, chocolate_search_space, clear_db=True) # elif self.algorithm_name == "chocolate-CMAES": - # sampler = choco.CMAES(conn, chocolate_search_space, clear_db=True) - elif self.algorithm_name == "chocolate-mocmaes": + # self.chocolate_optimizer = choco.CMAES(self.conn, chocolate_search_space, clear_db=True) + elif algorithm_name == "chocolate-mocmaes": mu = 1 - sampler = choco.MOCMAES( - conn, chocolate_search_space, mu=mu, clear_db=True) + self.chocolate_optimizer = choco.MOCMAES( + self.conn, chocolate_search_space, mu=mu, clear_db=True) else: raise Exception( - '"Failed to create the algortihm: {}'.format(self.algorithm_name)) - - for index, trial in enumerate(trials): - loss_for_choco = float(trial.target_metric.value) - if search_space.goal == MAX_GOAL: - loss_for_choco = -1 * loss_for_choco - - entry = {"_chocolate_id": index, "_loss": loss_for_choco} - for param in search_space.params: - param_assignment = None - for assignment in trial.assignments: - if param.name == assignment.name: - param_assignment = assignment.value - break - if param.type == INTEGER: - param_assignment = int(param_assignment) - elif param.type == DOUBLE: - param_assignment = float(param_assignment) - entry.update({BaseChocolateService.encode( - param.name): param_assignment}) - logger.info(entry) - # Should not use sampler.update(token, loss), because we will create - # a new BaseChocolateService instance for every request. Thus we need - # to insert all previous trials every time. - conn.insert_result(entry) + '"Failed to create Chocolate optimizer for the algorithm: {}'.format(algorithm_name)) - list_of_assignments = [] + def getSuggestions(self, trials, request_number): + """ + Get the new suggested trials with chocolate algorithm. + """ + logger.info("-" * 100 + "\n") + logger.info("New GetSuggestions call\n") + for _, trial in enumerate(trials): + if trial.name not in self.recorded_trials_names: + loss_for_choco = float(trial.target_metric.value) + if self.search_space.goal == MAX_GOAL: + loss_for_choco = -1 * loss_for_choco + + trial_assignments_dict = {} + for param in self.search_space.params: + param_assignment = None + for assignment in trial.assignments: + if param.name == assignment.name: + param_assignment = assignment.value + break + if param.type == INTEGER: + param_assignment = int(param_assignment) + elif param.type == DOUBLE: + param_assignment = float(param_assignment) + trial_assignments_dict.update({BaseChocolateService.encode( + param.name): param_assignment}) + # Finding index for the current Trial Assignments in created_trial list without loss + new_trial_loss_idx = -1 + i = 0 + while new_trial_loss_idx == -1 and i < len(self.created_trials): + # Created Trial must not include loss and must have the same param assignment + if ((DB_FIELD_LOSS not in self.created_trials[i] or self.created_trials[i][DB_FIELD_LOSS] is None) and + len(trial_assignments_dict.items() & self.created_trials[i].items()) == len(self.search_space.params)): + new_trial_loss_idx = i + i += 1 + + if new_trial_loss_idx != -1: + self.created_trials[new_trial_loss_idx][DB_FIELD_LOSS] = loss_for_choco + self.created_trials[new_trial_loss_idx][DB_FIELD_TRIAL_NAME] = trial.name + + # Update sqlite database with new loss and trial assignments + id_filter = { + DB_FIELD_CHOCOLATE_ID: self.created_trials[new_trial_loss_idx][DB_FIELD_CHOCOLATE_ID]} + self.conn.update_result( + id_filter, + self.created_trials[new_trial_loss_idx]) + + self.recorded_trials_names.append(trial.name) + + logger.info("New record in sqlite DB is updated") + logger.info("{}\n".format( + self.created_trials[new_trial_loss_idx])) + + list_of_assignments = [] for i in range(request_number): try: - token, chocolate_params = sampler.next() - list_of_assignments.append( - BaseChocolateService.convert(search_space, chocolate_params)) + token, chocolate_params = self.chocolate_optimizer.next() + new_assignment = BaseChocolateService.convert( + self.search_space, chocolate_params) + list_of_assignments.append(new_assignment) + logger.info("New suggested parameters for Trial with chocolate_id: {}".format( + token[DB_FIELD_CHOCOLATE_ID])) + for assignment in new_assignment: + logger.info("Name = {}, Value = {}".format( + assignment.name, assignment.value)) + logger.info("-" * 50 + "\n") + # Add new trial assignment with chocolate_id to created trials + token.update(chocolate_params) + new_trial_dict = token + self.created_trials.append(new_trial_dict) + except StopIteration: - logger.info("Chocolate db is exhausted, increase Search Space or decrease maxTrialCount!") + logger.info( + "Chocolate db is exhausted, increase Search Space or decrease maxTrialCount!") + + if len(list_of_assignments) > 0: + logger.info( + "GetSuggestions returns {} new Trials\n\n".format(request_number)) + return list_of_assignments @staticmethod diff --git a/pkg/suggestion/v1alpha3/chocolate_service.py b/pkg/suggestion/v1alpha3/chocolate_service.py index 208ba4a448e..1fa75a43528 100644 --- a/pkg/suggestion/v1alpha3/chocolate_service.py +++ b/pkg/suggestion/v1alpha3/chocolate_service.py @@ -13,8 +13,12 @@ logger = logging.getLogger(__name__) -class ChocolateService( - api_pb2_grpc.SuggestionServicer, HealthServicer): +class ChocolateService(api_pb2_grpc.SuggestionServicer, HealthServicer): + def __init__(self): + super(ChocolateService, self).__init__() + self.base_service = None + self.is_first_run = True + def ValidateAlgorithmSettings(self, request, context): algorithm_name = request.experiment.spec.algorithm.algorithm_name if algorithm_name == "grid": @@ -31,12 +35,18 @@ def GetSuggestions(self, request, context): """ Main function to provide suggestion. """ - base_serice = BaseChocolateService( - algorithm_name=request.experiment.spec.algorithm.algorithm_name) - search_space = HyperParameterSearchSpace.convert(request.experiment) + + if self.is_first_run: + search_space = HyperParameterSearchSpace.convert( + request.experiment) + self.base_serice = BaseChocolateService( + algorithm_name=request.experiment.spec.algorithm.algorithm_name, + search_space=search_space) + self.is_first_run = False + trials = Trial.convert(request.trials) - new_assignments = base_serice.getSuggestions( - search_space, trials, request.request_number) + new_assignments = self.base_serice.getSuggestions( + trials, request.request_number) return api_pb2.GetSuggestionsReply( parameter_assignments=Assignment.generate(new_assignments) )