
The problem

We sample N -dimensional unit multivariate normal q ∼ N (0, IN ) using mass
matrix M and stepsize ε. These result in some single-step average acceptance
probability 〈a〉.

Next we update the mass matrix to Mnew and the goal is to �nd a new
stepsize εnew such that the new single-step acceptance probability is equal to
the old one 〈anew〉 = 〈a〉.

We will only study the limit ε → 0, a → 1. It may seem strange to take
the limit a→ 1 here since we know that optimal tuning has a ≈ 0.8. However,
that result is for a calculated between the ends of a long trajectory but here a
is calculated for a single-step only and is necessarily higher. We expect a → 1
when ε→ 0 is relevant (ie. for large N).

The integral

In the small stepsize limit the energy error of a single step starting from q with
momemtum p is approximately

∆E (q, p) ≈ ε3

4
pTM−2q

The acceptance probability is related to the energy error by (using notation
‖x‖− = min (0, x))

a (q, p) = min (1, exp (∆E (q, p)))

= exp
(
‖∆E (q, p)‖−

)
≈ 1 + ‖∆E (q, p)‖−

≈ 1 +
ε3

4
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∥∥
−

Let 〈·〉 denote the expectation over q ∼ N (0, IN ) , p ∼ N (0,M). Reparametrize
p = Lz with the cholesky factor LLT = M because then z ∼ N (0, IN ). The
average acceptance probability is

〈a (q, p)〉 ≈ 1 +
ε3

4
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〉
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ε3
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= 1− ε3
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1



The last line switches to ordinary absolute value because the distribution is
symmetric.

The integral E =
〈∣∣zTL−1M−1q

∣∣〉 is too complicated to evaluate exactly but
we can still �nd useful upper and lower bounds.

An upper bound

An upper bound is straightforward. Let X = L−1M−1.

E =
〈∣∣zTXq∣∣〉

=

〈√
(zTXq)

2

〉
<

√〈
(zTXq)

2
〉

=
√
〈(zTXq) (qTXT z)〉

=
√
〈trace (XqqTXT zzT )〉

=
√

trace (X 〈qqTXT zzT 〉)

Recall that q and z are independent normal variates.

E <
√

trace (X 〈qqT 〉XT 〈zzT 〉)

=
√

trace (XINXT IN )

=
√

trace (XXT )

=
√

trace (M−3)

=
∥∥∥M− 3

2

∥∥∥
F

Here ‖·‖F is the Frobenius norm.

Lower bounds

Let's start by taking the singular value decomposition X = UΣV . The rotation
matrices U and V are cancelled by the rotational invariance of z and q.

E =
〈∣∣zTUΣV q

∣∣〉 =
〈∣∣zT Σq

∣∣〉 =

〈∣∣∣∣∣∑
i

σiziqi

∣∣∣∣∣
〉

Consider E as a function of the singular values (in descending order σ1 ≥
σ2 ≥ · · · ≥ σN ). This function is homegenous, convex and monotonically in-
creasing.
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E = E (σ1, σ2, · · · , σN )

= σKE
(
σ1
σK

, · · · , σK
σK

,
σK+1

σK
, · · · , σN

σK

)

≥ σKE

1, · · · , 1︸ ︷︷ ︸
K

, 0, · · · , 0︸ ︷︷ ︸
N−K


= σK

〈∣∣∣∣∣
K∑
i=1

ziqi

∣∣∣∣∣
〉

= σK 〈|z · q|〉 = σK 〈|z| |qz|〉

The vectors z and q are here taken to be K-dimenstional. The projection qz
has 1D unit normal distribution and is independent of |z|, which has χ distribu-
tion with K degrees of freedom. All we need to know that 〈|z|〉 〈|qz|〉 > 1

2

√
K.

This gives us lower bounds

∀k : E > 1

2

√
kσk

Recall the upper bound
∥∥∥M− 3

2

∥∥∥
F

=
√∑

k σ
2
k. How far can it be from the

highest lower bound?
The gap between the upper and the highest lower bound is at it's maximum

when all lower bounds are equal. This must be so because if there was a k such
that the kth lower bound 1

2

√
kσk is below the highest lower bound then you

could increase the upper bound without changing the highest lower bound by
increasing the value of σk.

Thus, the maximum gap happens when σk =
√
k
−1
σ1 and it is

√∑
k σ

2
k

maxk

(
1
2

√
kσk

) =

√∑
k

(√
k
−1
σ1

)2
1
2σ1

= 2

√√√√ N∑
k=1

k−1 ≤ 2
√

1 + logN

We have a general lower bound

E > 1

2
√

1 + logN

∥∥∥M− 3
2
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F

Putting it all together

Let's get back to 〈a〉 = 〈anew〉.
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〈a〉 = 〈anew〉

1− ε3

8
E = 1− ε3new

8
Enew

ε3E = ε3newEnew

Now apply the bounds
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F

These can be rearranged to
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NB:
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because the norm is submulti-

plicative.
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