forked from breadwallet/breadwallet-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BRMerkleBlock.c
348 lines (294 loc) · 15.4 KB
/
BRMerkleBlock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
//
// BRMerkleBlock.c
//
// Created by Aaron Voisine on 8/6/15.
// Copyright (c) 2015 breadwallet LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "BRMerkleBlock.h"
#include "BRCrypto.h"
#include "BRAddress.h"
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include <assert.h>
#define MAX_PROOF_OF_WORK 0x1d00ffff // highest value for difficulty target (higher values are less difficult)
#define TARGET_TIMESPAN (14*24*60*60) // the targeted timespan between difficulty target adjustments
inline static int _ceil_log2(int x)
{
int r = (x & (x - 1)) ? 1 : 0;
while ((x >>= 1) != 0) r++;
return r;
}
// from https://en.bitcoin.it/wiki/Protocol_specification#Merkle_Trees
// Merkle trees are binary trees of hashes. Merkle trees in bitcoin use a double SHA-256, the SHA-256 hash of the
// SHA-256 hash of something. If, when forming a row in the tree (other than the root of the tree), it would have an odd
// number of elements, the final double-hash is duplicated to ensure that the row has an even number of hashes. First
// form the bottom row of the tree with the ordered double-SHA-256 hashes of the byte streams of the transactions in the
// block. Then the row above it consists of half that number of hashes. Each entry is the double-SHA-256 of the 64-byte
// concatenation of the corresponding two hashes below it in the tree. This procedure repeats recursively until we reach
// a row consisting of just a single double-hash. This is the merkle root of the tree.
//
// from https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki#Partial_Merkle_branch_format
// The encoding works as follows: we traverse the tree in depth-first order, storing a bit for each traversed node,
// signifying whether the node is the parent of at least one matched leaf txid (or a matched txid itself). In case we
// are at the leaf level, or this bit is 0, its merkle node hash is stored, and its children are not explored further.
// Otherwise, no hash is stored, but we recurse into both (or the only) child branch. During decoding, the same
// depth-first traversal is performed, consuming bits and hashes as they were written during encoding.
//
// example tree with three transactions, where only tx2 is matched by the bloom filter:
//
// merkleRoot
// / \
// m1 m2
// / \ / \
// tx1 tx2 tx3 tx3
//
// flag bits (little endian): 00001011 [merkleRoot = 1, m1 = 1, tx1 = 0, tx2 = 1, m2 = 0, byte padding = 000]
// hashes: [tx1, tx2, m2]
//
// NOTE: this merkle tree design has a security vulnerability (CVE-2012-2459), which can be defended against by
// considering the merkle root invalid if there are duplicate hashes in any rows with an even number of elements
// returns a newly allocated merkle block struct that must be freed by calling BRMerkleBlockFree()
BRMerkleBlock *BRMerkleBlockNew(void)
{
BRMerkleBlock *block = calloc(1, sizeof(*block));
assert(block != NULL);
block->height = BLOCK_UNKNOWN_HEIGHT;
return block;
}
// buf must contain either a serialized merkleblock or header
// returns a merkle block struct that must be freed by calling BRMerkleBlockFree()
BRMerkleBlock *BRMerkleBlockParse(const uint8_t *buf, size_t bufLen)
{
BRMerkleBlock *block = (buf && 80 <= bufLen) ? BRMerkleBlockNew() : NULL;
size_t off = 0, len = 0;
assert(buf != NULL || bufLen == 0);
if (block) {
block->version = get_u32le(&buf[off]);
off += sizeof(uint32_t);
block->prevBlock = get_u256(&buf[off]);
off += sizeof(UInt256);
block->merkleRoot = get_u256(&buf[off]);
off += sizeof(UInt256);
block->timestamp = get_u32le(&buf[off]);
off += sizeof(uint32_t);
block->target = get_u32le(&buf[off]);
off += sizeof(uint32_t);
block->nonce = get_u32le(&buf[off]);
off += sizeof(uint32_t);
if (off + sizeof(uint32_t) <= bufLen) {
block->totalTx = get_u32le(&buf[off]);
off += sizeof(uint32_t);
block->hashesCount = (size_t)BRVarInt(&buf[off], (off <= bufLen ? bufLen - off : 0), &len);
off += len;
len = block->hashesCount*sizeof(UInt256);
block->hashes = (off + len <= bufLen) ? malloc(len) : NULL;
if (block->hashes) memcpy(block->hashes, &buf[off], len);
off += len;
block->flagsLen = (size_t)BRVarInt(&buf[off], (off <= bufLen ? bufLen - off : 0), &len);
off += len;
len = block->flagsLen;
block->flags = (off + len <= bufLen) ? malloc(len) : NULL;
if (block->flags) memcpy(block->flags, &buf[off], len);
}
BRSHA256_2(&block->blockHash, buf, 80);
}
return block;
}
// returns number of bytes written to buf, or total len needed if buf is NULL (block->height is not serialized)
size_t BRMerkleBlockSerialize(const BRMerkleBlock *block, uint8_t *buf, size_t bufLen)
{
size_t off = 0, len = 80;
assert(block != NULL);
assert(buf != NULL || bufLen == 0);
if (block->totalTx > 0) {
len += sizeof(uint32_t) + BRVarIntSize(block->hashesCount) + block->hashesCount*sizeof(UInt256) +
BRVarIntSize(block->flagsLen) + block->flagsLen;
}
if (buf && len <= bufLen) {
set_u32le(&buf[off], block->version);
off += sizeof(uint32_t);
set_u256(&buf[off], block->prevBlock);
off += sizeof(UInt256);
set_u256(&buf[off], block->merkleRoot);
off += sizeof(UInt256);
set_u32le(&buf[off], block->timestamp);
off += sizeof(uint32_t);
set_u32le(&buf[off], block->target);
off += sizeof(uint32_t);
set_u32le(&buf[off], block->nonce);
off += sizeof(uint32_t);
if (block->totalTx > 0) {
set_u32le(&buf[off], block->totalTx);
off += sizeof(uint32_t);
off += BRVarIntSet(&buf[off], (off <= bufLen ? bufLen - off : 0), block->hashesCount);
if (block->hashes) memcpy(&buf[off], block->hashes, block->hashesCount*sizeof(UInt256));
off += block->hashesCount*sizeof(UInt256);
off += BRVarIntSet(&buf[off], (off <= bufLen ? bufLen - off : 0), block->flagsLen);
if (block->flags) memcpy(&buf[off], block->flags, block->flagsLen);
off += block->flagsLen;
}
}
return (! buf || len <= bufLen) ? len : 0;
}
static size_t _BRMerkleBlockTxHashesR(const BRMerkleBlock *block, UInt256 *txHashes, size_t hashesCount, size_t *idx,
size_t *hashIdx, size_t *flagIdx, int depth)
{
uint8_t flag;
if (*flagIdx/8 < block->flagsLen && *hashIdx < block->hashesCount) {
flag = (block->flags[*flagIdx/8] & (1 << (*flagIdx % 8)));
(*flagIdx)++;
if (! flag || depth == _ceil_log2(block->totalTx)) {
if (flag && *idx < hashesCount) {
if (txHashes) txHashes[*idx] = block->hashes[*hashIdx]; // leaf
(*idx)++;
}
(*hashIdx)++;
}
else {
_BRMerkleBlockTxHashesR(block, txHashes, hashesCount, idx, hashIdx, flagIdx, depth + 1); // left branch
_BRMerkleBlockTxHashesR(block, txHashes, hashesCount, idx, hashIdx, flagIdx, depth + 1); // right branch
}
}
return *idx;
}
// populates txHashes with the matched tx hashes in the block
// returns number of hashes written, or total number of matched hashes in the block if txHashes is NULL
size_t BRMerkleBlockTxHashes(const BRMerkleBlock *block, UInt256 *txHashes, size_t hashesCount)
{
size_t idx = 0, hashIdx = 0, flagIdx = 0;
assert(block != NULL);
assert(txHashes != NULL || hashesCount == 0);
return _BRMerkleBlockTxHashesR(block, txHashes, (txHashes) ? hashesCount : SIZE_MAX, &idx, &hashIdx, &flagIdx, 0);
}
// recursively walks the merkle tree to calculate the merkle root
// NOTE: this merkle tree design has a security vulnerability (CVE-2012-2459), which can be defended against by
// considering the merkle root invalid if there are duplicate hashes in any rows with an even number of elements
static UInt256 _BRMerkleBlockRootR(const BRMerkleBlock *block, size_t *hashIdx, size_t *flagIdx, int depth)
{
uint8_t flag;
UInt256 hashes[2], md = UINT256_ZERO;
if (*flagIdx/8 < block->flagsLen && *hashIdx < block->hashesCount) {
flag = (block->flags[*flagIdx/8] & (1 << (*flagIdx % 8)));
(*flagIdx)++;
if (flag && depth != _ceil_log2(block->totalTx)) {
hashes[0] = _BRMerkleBlockRootR(block, hashIdx, flagIdx, depth + 1); // left branch
hashes[1] = _BRMerkleBlockRootR(block, hashIdx, flagIdx, depth + 1); // right branch
if (! UInt256Eq(hashes[0], hashes[1])) {
if (UInt256IsZero(hashes[1])) hashes[1] = hashes[0]; // if right branch is missing, dup left branch
BRSHA256_2(&md, hashes, sizeof(hashes));
}
else *hashIdx = SIZE_MAX; // defend against (CVE-2012-2459)
}
else md = block->hashes[(*hashIdx)++]; // leaf
}
return md;
}
// true if merkle tree and timestamp are valid, and proof-of-work matches the stated difficulty target
// NOTE: this only checks if the block difficulty matches the difficulty target in the header, it does not check if the
// target is correct for the block's height in the chain - use BRMerkleBlockVerifyDifficulty() for that
int BRMerkleBlockIsValid(const BRMerkleBlock *block, uint32_t currentTime)
{
assert(block != NULL);
// target is in "compact" format, where the most significant byte is the size of resulting value in bytes, the next
// bit is the sign, and the remaining 23bits is the value after having been right shifted by (size - 3)*8 bits
static const uint32_t maxsize = MAX_PROOF_OF_WORK >> 24, maxtarget = MAX_PROOF_OF_WORK & 0x00ffffff;
const uint32_t size = block->target >> 24, target = block->target & 0x00ffffff;
size_t hashIdx = 0, flagIdx = 0;
UInt256 merkleRoot = _BRMerkleBlockRootR(block, &hashIdx, &flagIdx, 0), t = UINT256_ZERO;
int r = 1;
// check if merkle root is correct
if (block->totalTx > 0 && ! UInt256Eq(merkleRoot, block->merkleRoot)) r = 0;
// check if timestamp is too far in future
if (block->timestamp > currentTime + BLOCK_MAX_TIME_DRIFT) r = 0;
// check if proof-of-work target is out of range
if (target == 0 || target & 0x00800000 || size > maxsize || (size == maxsize && target > maxtarget)) r = 0;
if (size > 3) set_u32le(&t.u8[size - 3], target);
else set_u32le(t.u8, target >> (3 - size)*8);
for (int i = sizeof(t) - 1; r && i >= 0; i--) { // check proof-of-work
if (block->blockHash.u8[i] < t.u8[i]) break;
if (block->blockHash.u8[i] > t.u8[i]) r = 0;
}
return r;
}
// true if the given tx hash is known to be included in the block
int BRMerkleBlockContainsTxHash(const BRMerkleBlock *block, UInt256 txHash)
{
int r = 0;
assert(block != NULL);
assert(! UInt256IsZero(txHash));
for (size_t i = 0; ! r && i < block->hashesCount; i++) {
if (UInt256Eq(block->hashes[i], txHash)) r = 1;
}
return r;
}
// verifies the block difficulty target is correct for the block's position in the chain
// transitionTime is the timestamp of the block at the previous difficulty transition
// transitionTime may be 0 if height is not a multiple of BLOCK_DIFFICULTY_INTERVAL
//
// The difficulty target algorithm works as follows:
// The target must be the same as in the previous block unless the block's height is a multiple of 2016. Every 2016
// blocks there is a difficulty transition where a new difficulty is calculated. The new target is the previous target
// multiplied by the time between the last transition block's timestamp and this one (in seconds), divided by the
// targeted time between transitions (14*24*60*60 seconds). If the new difficulty is more than 4x or less than 1/4 of
// the previous difficulty, the change is limited to either 4x or 1/4. There is also a minimum difficulty value
// intuitively named MAX_PROOF_OF_WORK... since larger values are less difficult.
int BRMerkleBlockVerifyDifficulty(const BRMerkleBlock *block, const BRMerkleBlock *previous, uint32_t transitionTime)
{
int r = 1;
assert(block != NULL);
assert(previous != NULL);
if (! previous || !UInt256Eq(block->prevBlock, previous->blockHash) || block->height != previous->height + 1) r = 0;
if (r && (block->height % BLOCK_DIFFICULTY_INTERVAL) == 0 && transitionTime == 0) r = 0;
#if BITCOIN_TESTNET
// TODO: implement testnet difficulty rule check
return r; // don't worry about difficulty on testnet for now
#endif
if (r && (block->height % BLOCK_DIFFICULTY_INTERVAL) == 0) {
// target is in "compact" format, where the most significant byte is the size of resulting value in bytes, next
// bit is the sign, and the remaining 23bits is the value after having been right shifted by (size - 3)*8 bits
static const uint32_t maxsize = MAX_PROOF_OF_WORK >> 24, maxtarget = MAX_PROOF_OF_WORK & 0x00ffffff;
int timespan = (int)((int64_t)previous->timestamp - (int64_t)transitionTime), size = previous->target >> 24;
uint64_t target = previous->target & 0x00ffffff;
// limit difficulty transition to -75% or +400%
if (timespan < TARGET_TIMESPAN/4) timespan = TARGET_TIMESPAN/4;
if (timespan > TARGET_TIMESPAN*4) timespan = TARGET_TIMESPAN*4;
// TARGET_TIMESPAN happens to be a multiple of 256, and since timespan is at least TARGET_TIMESPAN/4, we don't
// lose precision when target is multiplied by timespan and then divided by TARGET_TIMESPAN/256
target *= timespan;
target /= TARGET_TIMESPAN >> 8;
size--; // decrement size since we only divided by TARGET_TIMESPAN/256
while (size < 1 || target > 0x007fffff) target >>= 8, size++; // normalize target for "compact" format
// limit to MAX_PROOF_OF_WORK
if (size > maxsize || (size == maxsize && target > maxtarget)) target = maxtarget, size = maxsize;
if (block->target != ((uint32_t)target | size << 24)) r = 0;
}
else if (r && block->target != previous->target) r = 0;
return r;
}
// frees memory allocated by BRMerkleBlockParse
void BRMerkleBlockFree(BRMerkleBlock *block)
{
assert(block != NULL);
if (block->hashes) free(block->hashes);
if (block->flags) free(block->flags);
free(block);
}