-
Notifications
You must be signed in to change notification settings - Fork 6
/
apu.c
532 lines (438 loc) · 13.8 KB
/
apu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/**
* emulate the audio processing unit (APU) of the Game Boy.
* Based on MiniGBS: https://github.com/baines/MiniGBS
*/
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "apu.h"
/* Enable high-pass filter */
#define ENABLE_HIPASS 1
#define AUDIO_NSAMPLES ((unsigned) (AUDIO_SAMPLE_RATE / VERTICAL_SYNC) * 2)
#define AUDIO_MEM_SIZE (0xFF3F - 0xFF10 + 1)
#define AUDIO_ADDR_COMPENSATION 0xFF10
/* Assume neither a nor b is a statement expression of increment, decrement, or
* assignment.
*/
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) <= (b) ? (a) : (b))
/* Memory holding audio registers between 0xFF10 and 0xFF3F inclusive */
static uint8_t audio_mem[AUDIO_MEM_SIZE];
struct chan_len_ctr {
unsigned load : 6;
unsigned enabled : 1;
float counter;
float inc;
};
struct chan_vol_env {
unsigned step : 3;
unsigned up : 1;
float counter;
float inc;
};
struct chan_freq_sweep {
uint_fast16_t freq;
unsigned rate : 3;
unsigned up : 1;
unsigned shift : 3;
float counter;
float inc;
};
static struct chan {
unsigned enabled : 1;
unsigned powered : 1;
unsigned on_left : 1;
unsigned on_right : 1;
unsigned muted : 1;
unsigned volume : 4;
unsigned volume_init : 4;
uint16_t freq;
float freq_counter;
float freq_inc;
int val;
struct chan_len_ctr len;
struct chan_vol_env env;
struct chan_freq_sweep sweep;
/* square */
uint8_t duty;
uint8_t duty_counter;
/* noise */
uint16_t lfsr_reg;
bool lfsr_wide;
int lfsr_div;
/* wave */
uint8_t sample;
#if ENABLE_HIPASS
float capacitor;
#endif
} chans[4];
static float vol_l, vol_r;
static float hipass(struct chan *c, float sample)
{
#if ENABLE_HIPASS
float out = sample - c->capacitor;
c->capacitor = sample - out * 0.996f;
return out;
#else
return sample;
#endif
}
static void set_note_freq(struct chan *c, const uint_fast16_t freq)
{
c->freq_inc = freq / AUDIO_SAMPLE_RATE;
}
static void chan_enable(const uint_fast8_t i, const bool enable)
{
chans[i].enabled = enable;
uint8_t val = (audio_mem[0xFF26 - AUDIO_ADDR_COMPENSATION] & 0x80) |
(chans[3].enabled << 3) | (chans[2].enabled << 2) |
(chans[1].enabled << 1) | (chans[0].enabled << 0);
audio_mem[0xFF26 - AUDIO_ADDR_COMPENSATION] = val;
}
static void update_env(struct chan *c)
{
c->env.counter += c->env.inc;
while (c->env.counter > 1.0f) {
if (c->env.step) {
c->volume += c->env.up ? 1 : -1;
if (c->volume == 0 || c->volume == 15) {
c->env.inc = 0;
}
c->volume = MAX(0, MIN(15, c->volume));
}
c->env.counter -= 1.0f;
}
}
static void update_len(struct chan *c)
{
if (c->len.enabled) {
c->len.counter += c->len.inc;
if (c->len.counter > 1.0f) {
chan_enable(c - chans, 0);
c->len.counter = 0.0f;
}
}
}
static bool update_freq(struct chan *c, float *pos)
{
float inc = c->freq_inc - *pos;
c->freq_counter += inc;
if (c->freq_counter > 1.0f) {
*pos = c->freq_inc - (c->freq_counter - 1.0f);
c->freq_counter = 0.0f;
return true;
} else {
*pos = c->freq_inc;
return false;
}
}
static void update_sweep(struct chan *c)
{
c->sweep.counter += c->sweep.inc;
while (c->sweep.counter > 1.0f) {
if (c->sweep.shift) {
uint16_t inc = (c->sweep.freq >> c->sweep.shift);
if (!c->sweep.up)
inc *= -1;
c->freq += inc;
if (c->freq > 2047) {
c->enabled = 0;
} else {
set_note_freq(c, 4194304 / ((2048 - c->freq) << 5));
c->freq_inc *= 8.0f;
}
} else if (c->sweep.rate) {
c->enabled = 0;
}
c->sweep.counter -= 1.0f;
}
}
static void update_square(float *restrict samples, const bool ch2)
{
struct chan *c = chans + ch2;
if (!c->powered)
return;
set_note_freq(c, 4194304.0f / ((2048 - c->freq) << 5));
c->freq_inc *= 8.0f;
for (uint_fast16_t i = 0; i < AUDIO_NSAMPLES; i += 2) {
update_len(c);
if (c->enabled) {
update_env(c);
if (!ch2)
update_sweep(c);
float pos = 0.0f;
float prev_pos = 0.0f;
float sample = 0.0f;
while (update_freq(c, &pos)) {
c->duty_counter = (c->duty_counter + 1) & 7;
sample += ((pos - prev_pos) / c->freq_inc) * (float) c->val;
c->val = (c->duty & (1 << c->duty_counter)) ? 1 : -1;
prev_pos = pos;
}
sample += ((pos - prev_pos) / c->freq_inc) * (float) c->val;
sample = hipass(c, sample * (c->volume / 15.0f));
if (!c->muted) {
samples[i + 0] += sample * 0.25f * c->on_left * vol_l;
samples[i + 1] += sample * 0.25f * c->on_right * vol_r;
}
}
}
}
static uint8_t wave_sample(const unsigned int pos, const unsigned int volume)
{
uint8_t sample = audio_mem[(0xFF30 + pos / 2) - AUDIO_ADDR_COMPENSATION];
if (pos & 1) {
sample &= 0xF;
} else {
sample >>= 4;
}
return volume ? (sample >> (volume - 1)) : 0;
}
static void update_wave(float *restrict samples)
{
struct chan *c = chans + 2;
if (!c->powered)
return;
uint_fast16_t freq = 4194304.0f / ((2048 - c->freq) << 5);
set_note_freq(c, freq);
c->freq_inc *= 16.0f;
for (uint_fast16_t i = 0; i < AUDIO_NSAMPLES; i += 2) {
update_len(c);
if (c->enabled) {
float pos = 0.0f;
float prev_pos = 0.0f;
float sample = 0.0f;
c->sample = wave_sample(c->val, c->volume);
while (update_freq(c, &pos)) {
c->val = (c->val + 1) & 31;
sample += ((pos - prev_pos) / c->freq_inc) * (float) c->sample;
c->sample = wave_sample(c->val, c->volume);
prev_pos = pos;
}
sample += ((pos - prev_pos) / c->freq_inc) * (float) c->sample;
if (c->volume > 0) {
float diff = (float[]){7.5f, 3.75f, 1.5f}[c->volume - 1];
sample = hipass(c, (sample - diff) / 7.5f);
if (!c->muted) {
samples[i + 0] += sample * 0.25f * c->on_left * vol_l;
samples[i + 1] += sample * 0.25f * c->on_right * vol_r;
}
}
}
}
}
static void update_noise(float *restrict samples)
{
struct chan *c = chans + 3;
if (!c->powered)
return;
uint_fast16_t freq =
4194304 / ((uint_fast8_t[]){8, 16, 32, 48, 64, 80, 96, 112}[c->lfsr_div]
<< c->freq);
set_note_freq(c, freq);
if (c->freq >= 14)
c->enabled = 0;
for (uint_fast16_t i = 0; i < AUDIO_NSAMPLES; i += 2) {
update_len(c);
if (c->enabled) {
update_env(c);
float pos = 0.0f;
float prev_pos = 0.0f;
float sample = 0.0f;
while (update_freq(c, &pos)) {
c->lfsr_reg = (c->lfsr_reg << 1) | (c->val == 1);
if (c->lfsr_wide) {
c->val =
!(((c->lfsr_reg >> 14) & 1) ^ ((c->lfsr_reg >> 13) & 1))
? 1
: -1;
} else {
c->val =
!(((c->lfsr_reg >> 6) & 1) ^ ((c->lfsr_reg >> 5) & 1))
? 1
: -1;
}
sample += ((pos - prev_pos) / c->freq_inc) * c->val;
prev_pos = pos;
}
sample += ((pos - prev_pos) / c->freq_inc) * c->val;
sample = hipass(c, sample * (c->volume / 15.0f));
if (!c->muted) {
samples[i + 0] += sample * 0.25f * c->on_left * vol_l;
samples[i + 1] += sample * 0.25f * c->on_right * vol_r;
}
}
}
}
/* SDL2 style audio callback function */
void audio_callback(void *userdata, uint8_t *restrict stream, int len)
{
float *samples = (float *) stream;
/* Appease unused variable warning. */
(void) userdata;
memset(stream, 0, len);
update_square(samples, 0);
update_square(samples, 1);
update_wave(samples);
update_noise(samples);
}
static void chan_trigger(uint_fast8_t i)
{
struct chan *c = chans + i;
chan_enable(i, 1);
c->volume = c->volume_init;
/* volume envelope */
{
uint8_t val = audio_mem[(0xFF12 + (i * 5)) - AUDIO_ADDR_COMPENSATION];
c->env.step = val & 0x07;
c->env.up = val & 0x08 ? 1 : 0;
c->env.inc = c->env.step
? (64.0f / (float) c->env.step) / AUDIO_SAMPLE_RATE
: 8.0f / AUDIO_SAMPLE_RATE;
c->env.counter = 0.0f;
}
/* freq sweep */
if (i == 0) {
uint8_t val = audio_mem[0xFF10 - AUDIO_ADDR_COMPENSATION];
c->sweep.freq = c->freq;
c->sweep.rate = (val >> 4) & 0x07;
c->sweep.up = !(val & 0x08);
c->sweep.shift = (val & 0x07);
c->sweep.inc = c->sweep.rate ? (128.0f / (float) (c->sweep.rate)) /
AUDIO_SAMPLE_RATE
: 0;
c->sweep.counter = nexttowardf(1.0f, 1.1f);
}
int len_max = 64;
if (i == 2) { /* wave */
len_max = 256;
c->val = 0;
} else if (i == 3) { /* noise */
c->lfsr_reg = 0xFFFF;
c->val = -1;
}
c->len.inc = (256.0f / (float) (len_max - c->len.load)) / AUDIO_SAMPLE_RATE;
c->len.counter = 0.0f;
}
/* Read audio register.
* \param addr Address of audio register. Must be 0xFF10 <= addr <= 0xFF3F.
* This is not checked in this function.
* \return Byte at address.
*/
uint8_t audio_read(const uint16_t addr)
{
static uint8_t ortab[] = {0x80, 0x3f, 0x00, 0xff, 0xbf, 0xff, 0x3f, 0x00,
0xff, 0xbf, 0x7f, 0xff, 0x9f, 0xff, 0xbf, 0xff,
0xff, 0x00, 0x00, 0xbf, 0x00, 0x00, 0x70};
if (addr > 0xFF26)
return audio_mem[addr - AUDIO_ADDR_COMPENSATION];
return audio_mem[addr - AUDIO_ADDR_COMPENSATION] | ortab[addr - 0xFF10];
}
/* Write audio register.
* \param addr Address of audio register. Must be 0xFF10 <= addr <= 0xFF3F.
* This is not checked in this function.
* \param val Byte to write at address.
*/
void audio_write(const uint16_t addr, const uint8_t val)
{
/* Find sound channel corresponding to register address. */
uint_fast8_t i = (addr - 0xFF10) / 5;
audio_mem[addr - AUDIO_ADDR_COMPENSATION] = val;
switch (addr) {
case 0xFF12:
case 0xFF17:
case 0xFF21: {
chans[i].volume_init = val >> 4;
chans[i].powered = (val >> 3) != 0;
/* "zombie mode" stuff, needed for Prehistorik Man and similar */
if (chans[i].powered && chans[i].enabled) {
if ((chans[i].env.step == 0 && chans[i].env.inc != 0)) {
if (val & 0x08) {
chans[i].volume++;
} else {
chans[i].volume += 2;
}
} else {
chans[i].volume = 16 - chans[i].volume;
}
chans[i].volume &= 0x0F;
chans[i].env.step = val & 0x07;
}
} break;
case 0xFF1C:
chans[i].volume = chans[i].volume_init = (val >> 5) & 0x03;
break;
case 0xFF11:
case 0xFF16:
case 0xFF20: {
const uint8_t duty_lookup[] = {0x10, 0x30, 0x3C, 0xCF};
chans[i].len.load = val & 0x3f;
chans[i].duty = duty_lookup[val >> 6];
break;
}
case 0xFF1B:
chans[i].len.load = val;
break;
case 0xFF13:
case 0xFF18:
case 0xFF1D:
chans[i].freq &= 0xFF00;
chans[i].freq |= val;
break;
case 0xFF1A:
chans[i].powered = (val & 0x80) != 0;
chan_enable(i, val & 0x80);
break;
case 0xFF14:
case 0xFF19:
case 0xFF1E:
chans[i].freq &= 0x00FF;
chans[i].freq |= ((val & 0x07) << 8);
/* Intentional fall-through */
case 0xFF23:
chans[i].len.enabled = val & 0x40 ? 1 : 0;
if (val & 0x80)
chan_trigger(i);
break;
case 0xFF22:
chans[3].freq = val >> 4;
chans[3].lfsr_wide = !(val & 0x08);
chans[3].lfsr_div = val & 0x07;
break;
case 0xFF24:
vol_l = ((val >> 4) & 0x07) / 7.0f;
vol_r = (val & 0x07) / 7.0f;
break;
case 0xFF25:
for (uint_fast8_t i = 0; i < 4; ++i) {
chans[i].on_left = (val >> (4 + i)) & 1;
chans[i].on_right = (val >> i) & 1;
}
break;
}
}
void audio_init(void)
{
/* Initialize channels and samples */
memset(chans, 0, sizeof(chans));
chans[0].val = chans[1].val = -1;
/* Initialize IO registers */
{
const uint8_t regs_init[] = {0x80, 0xBF, 0xF3, 0xFF, 0x3F, 0xFF,
0x3F, 0x00, 0xFF, 0x3F, 0x7F, 0xFF,
0x9F, 0xFF, 0x3F, 0xFF, 0xFF, 0x00,
0x00, 0x3F, 0x77, 0xF3, 0xF1};
for (uint_fast8_t i = 0; i < sizeof(regs_init); ++i)
audio_write(0xFF10 + i, regs_init[i]);
}
/* Initialize Wave Pattern RAM */
{
const uint8_t wave_init[] = {0xac, 0xdd, 0xda, 0x48, 0x36, 0x02,
0xcf, 0x16, 0x2c, 0x04, 0xe5, 0x2c,
0xac, 0xdd, 0xda, 0x48};
for (uint_fast8_t i = 0; i < sizeof(wave_init); ++i)
audio_write(0xFF30 + i, wave_init[i]);
}
}